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Surprise and Uncertainty

*Probability |, surprise 1 and vice versa. Choose 1/P?

=Surprise is additive: Indep events 1,2: P = P1xP2 but combined
surprise should be sum. Use Logs.

=Surprise = Log (1/P) = Log(1/P1)+Log(1/P2) = Log 1/ (P1 x P2)
»Average Surprise for a Distribution is ‘Uncertainty’:

(Log (1/p)) = > p Log (1/p) "l'_ll i

Uncertainy is known as i |

Shannon Entropy
after Claude Shannon, 1916-2001.




Relative Entropy

"\What if we expect our data to belong to a probability distribution
Q(X), yet the data set is typical of distribution P(X) for random
variable X?

=Average expected Surprise is

(Log[L/Q(X)]) = D P(x)Log[1/Q(X)]

XeX

»Actual Surprise is

(Log[1/P(x)]) = > P(x)Log[1/P(x)]

XeX

S[P11Q] = > P(x)Log[P(x)/Q(x)]

*This is the Relative Entropy or Kullbach-Leibier divergence.

=Surprise discrepancy is

*Not a metric distance: S[P||Q] #S[Q||P], but non-negative. Related
to metric distance as P approaches Q

(2]0)]|p(x|0 +¢€) ])>

*"|In Bayes experiments one tries to maximize Relative Entropy
between Posterior and Prior distributions.




Relative Entropy in Use: Coin Toss

Coin Toss Sequence: HHHTHHTHHHTHTHHTHHTT
You decide: Fair or Unfair Coin? Hx7, Tx13

What is the likelihood the coin is fair, i.e. that governing
distribution is fair: Pf(H)=Pf(T)=1/27 kS
Data distribution is Pd(H)=7/20, Pd(T)=13/20. Pr_p <2

Upper bound on probability that the coin is fair:

P < 2M-k S(Pf||Pd)}, where k = 20 is the number of tosses, and
S[Pf||Pd] is the Relative Entropy distance between the data
distribution and the fair distribution.

Calculation gives P < 2*{-20 * (0.066) } = 0.401, i.e. Coin has less
than 40% chance of being fair.




Relative Entropy in Quantum Mechanics

»Quantum Relative Entropy is measured between density matrices
rather than probability distributions:

S[p ||o] = pLog(p) — pLog(c)

»Relative Entropy of Entanglement is Relative Entropy between an
Entangled State and ‘nearest’ state in the Separable Set D.

all states

entangled :

states
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We analyze the resilience under photon loss of the bipartite entanglement present in multiphoton states
produced by parametric down-c

symmefry of the states that pe
the states to the set of posit

onversion. The quantification of the entanglement is made possible by a
/€ ion-independent 1 We examine the approach of
entropy of

entanglement. We find that some bipartite distillable entanglement persists for arbitrarily high losses.




Interferometry & Metrology

= Prototype Mach Zehnder performs rotation about y-axis.

Schrodinger equation E)_Hliﬁ\ = Jy|p)
o _

o Jy01,1 A

evolution o) = |1g)

Interferometry — Classical Parameter Estimation: We know
Hamiltonian = Jy, but what is rotation angle 6?

Metrology: How precise is any unbiased estimate we make of 67

P(M|0) typically multiple-peaked and periodic in 6, take care when
using conventional indicators, e.g. variance, moments, maximum
likelihood approach.
Schwinger Spin Representation: (nc+nd)=2j, (nc-nd)=2m
J. = (@%h + ab%)/2, J, =(a'h — ab")/2i,
J,=(a%a +bb)/2, J*=1TJ2+ T+ %,




Accuracy and Precision

High Accuracy High Precision
Low Precision Low Accuracy




Photon Counting Distribution of MZ
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How has the problem been tackled?
(more than one way to skin Schrodinger’s Cat)

Error Propagation.

Bahder & Lopata: ‘Fidelity’

Pezze & Smerzi: Simple Bayesian Analysis

Berry & Wiseman: Sharpness & Holevo Variance




Error Propagation

*Most popular approach in the literature.
=Simple to grasp, easy to calculate.

"\What about multiple peaks and periodic distributions? No
applicability.

i:j- l}'b —

Graph for
nc=4, nd=2
detected

05 10 15 20 25 30

=Inconclusive or incorrect scaling for pathological probe states, e.g.
those that are symmetrlc have =0 for all phases ¢ . But even a
simple input |j,m) gives scallng \/

j(j+)-m’

This should be contrasted with
the true scaling, from Cramer

Rao: \/2j(j+l) 2m°




Badher & Lopata: Fidelity of Qm Interferometers

*Phys. Rev. A 74 051801 (2006)
*Acknowledge problems with Error Propagation model.

*Propose Mutual Information Between posterior Phase Distribution
P(m|0) and Phase 6.

I (X;Y) =S[P(X, Y) [[P(X)P(Y)]
It is uncertainty reduction in

P(6) due to knowledge of P(m). EBS

*\Want a strong correlation between phase and measurement, but is
this enough to quantify confidence in inference:

*Also, what about quantifying the uncertainty of P(6)? This should
also be minimized.




Pezze & Smerzi

=Phys. Rev. A 73 011801 (R) (2006)

= Also criticize linear error propagation approach
= Promote a Bayesian Analysis for event A followed in time by B.
P(A|B) = P(B|A) x P(A) / P(B), where P(B) = > P(B|A) x P(A)
(posterior) (prior) A

They analyse probe states of form J’+m> + J’_m>)

J2

Analysis limited to 6 = 0, i.e. when the interferometer doesn’t change
the input state!

Conclusion is that m=1 in states above represents best state for
interferometry, with no caveats.

However in our calculation of Cramer-Rao bound: [JSEEREe RN

(0 ) > 1/7(0) T = Z Pm (0) (— lnp,,,(9)> =2\

m——7

= Bayesian Calculation has exp high computational overhead.




Berry & Wiseman
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Holevo phase variance [10]
(Ap) =Vy =S5,7 -1, (6)

where S, € [0, 1] is the sharpness of the phase distribu-
tion, defined as

Drawback:Sharpness
3 2 . needs redefining
S = K" = ft, AR dcpending on periodicity

where the “mean phase™ ¢ is defined so that Sy is positive. of P((I)), not a Universal
The Holevo variance is the natural quantifier for dispersion methodo|ogy_

in a cyclic variable. If the variance is small, then it is easy

to show that

2 (b — b
Vg :f 4-“'11'1“(%)1’[@}(?@5, (8)
0

e

from which the equivalence to the usual definition of vari-
ance for well-localized distributions is readily apparent.




Schematic of Phase Inference

02  Unknown phase could be 61 or 62

>

_— S[Q1||Q2] — Maximize!

Governing Distribution Q

- Distribution P of Measured Data:
~ Typical is in White, Atypical is

Grey

Overlap Region:
Ambiguity in
Inferring 6




Our Approach: Intrinsic Distinguishability
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Local and Global Distinguishability in Quantum Interferometry
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A statistical distinguishability based on relative entropy characterizes the fitness of quantum states for
phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to
interpolate between two regimes of local and global phase distinguishability. The scaling of distinguish-
ability in these regimes with photon number is explored for various quantum states. It emerges that local
distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our
analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the

“NOON* states share this bound, but other states exhibit a better trade-off when comparing local and
global phase regimes.

Task: To unambiguously perform inverse map |G,

We propose that a global distinguishability for estimat-
ing a phase @, previously known to exist within a finite +J p(6))
interval A centered on # = y be defined as S[P(6)) || P(6,)] = Z ]J,”(H])lugg%ﬁ]
Pm\U2

m=-—]

S[P(6)) || P(8,)]d6,d6,.

New parameter A, a priori precision, determines

global (large A) vs. local (small A) nature of
Metrology Task.




Local and Global Parameter Estimation

Contrast pre- and post- target locking.

Initially target location is unknown, but exists within
some large global A ~ 2w window.

After initial lock, target is being tracked within a tight
localized A ~ 0 parameter range.

Q: Are some probe states better for a global phase
acquisition, and others for local tracking?




Local Distinguishability & Fisher Information

distinguishability D(y, A) =3 / S[P(6:1)||P(02)|d6,db
J01,05=x—A/2

For vanishingly small A ~ 0, D approaches a local distin-
guishability:

i S[P(x—A/2)||P(x+A/2)]+S[P(x+A/2)||P(x—A/2)]

A2

~8In2 WG A 2B GEITAT2 NS ()(A-'%)

Above, J(6) is the classical Fisher Information for the
measurement distribution P(6),

0= Pn(0) (% lnp-m,w))z

Cramér-Rao bound (6¢.)* > 1/7(6) [10)
. 7, +7) = 27
Here is a table of 15, 0). 2j(j + 1)
Fisher Information for (17, +7)y + €14, —4)y) /V2 45
various probe states (19, +m)y + €13, —=m)y) /2 4m?
,m)- 20(j +1) - m?)
) = o Y e gmy | 3G+ D)




Our Results |
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Our Results I

x = 7/2 (shaded black)
X = 37 /4 (shaded grey)
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Probe States: NOON (pentagons), Phase States (stars), Twin
Fock (triangles), Coherent Light+Vacuum (squares)




Advantages to our Approach

Distinguishability is property of whole distribution, not
just partial info, such as moments provide.

We examine Photon-Counting Measurements, but
analysis applies to any type, including quadratures
and POVMs.

The lower bounds we provide to sensitivity are
rigorous and require no approximation such as

n~°,or 6~0.
A IS a new sub-wavelength parameter, providing a

local/global context to the measurement task, and an
Indication of what probe states to use.




What Next? The Future...

Add Noise and Decoherence.

Apply to other measurement types, e.g. Homodyning
and POVMs.

Use this rigorous universal methodology to move

beyond intrinsic fithess of states, to develop a Phase
Estimation Protocol.

Adapt for Atom Interferometry and BECs.




Thank You for Listening




