
Quantum Metrology

Gabriel Durkin, 
Quantum Laboratory, NASA Ames Research Center

July 1st, 2008



Outline

 Surprise and Relative Entropy
 Quantum Metrology, Mach Zehnder Interferometer
 Parameter Estimation Concept
 Some Previous Approaches
 Distinguishability and 
 Local Tracking vs Global Acquisition
 Local Distinguishability → Fisher Information
 Advantages of our Approach



Surprise and Uncertainty

Probability ↓, surprise ↑ and vice versa. Choose 1/P? 
Surprise is additive: Indep events 1,2: P = P1xP2 but combined 
surprise should be sum. Use Logs.
Surprise = Log (1/P) = Log(1/P1)+Log(1/P2) = Log 1/ (P1 x P2)
Average Surprise for a Distribution is ‘Uncertainty’:
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Uncertainy is known as 

Shannon Entropy, 

after Claude Shannon, 1916-2001. 



Relative Entropy

Average expected Surprise is

Actual Surprise is

Surprise discrepancy is
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What if we expect our data to belong to a probability distribution 
Q(X), yet the data set is typical of distribution P(X) for random 
variable X? 
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This is the Relative Entropy or Kullbach-Leibler divergence.

Not a metric distance: S[P||Q] ≠S[Q||P], but non-negative. Related 
to metric distance as P approaches Q.

In Bayes experiments one tries to maximize Relative Entropy 
between Posterior and Prior distributions.



Relative Entropy in Use: Coin Toss
Coin Toss Sequence: HHHTHHTHHHTHTHHTHHTT
You decide: Fair or Unfair Coin? Hx7, Tx13

What is the likelihood the coin is fair, i.e. that governing 
distribution is fair: Pf(H)=Pf(T)=1/2? 
Data distribution is Pd(H)=7/20, Pd(T)=13/20.

Upper bound on probability that the coin is fair:
P < 2^{-k S(Pf||Pd)}, where k = 20 is the number of tosses, and 
S[Pf||Pd] is the Relative Entropy distance between the data 
distribution and the fair distribution.

Calculation gives P < 2^{-20 * (0.066) } = 0.401, i.e. Coin has less 
than 40% chance of being fair.
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Relative Entropy in Quantum Mechanics

ρLog(σ)ρLog(ρ)σ]||S[ρ 

Relative Entropy of Entanglement is Relative Entropy between an 
Entangled State and ‘nearest’ state in the Separable Set D.

Quantum Relative Entropy is measured between density matrices 
rather than probability distributions:
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Interferometry & Metrology
 Prototype Mach Zehnder performs rotation about y-axis.

 Interferometry → Classical Parameter Estimation: We know 
Hamiltonian = Jy, but what is rotation angle 

 Metrology: How precise is any unbiased estimate we make of ?

 P(M|) typically multiple-peaked and periodic in , take care when 
using conventional indicators, e.g. variance, moments, maximum 
likelihood approach.

 Schwinger Spin Representation: (nc+nd)=2j, (nc-nd)=2m



Accuracy and Precision

High Accuracy
Low Precision

High Precision
Low Accuracy



Photon Counting Distribution of MZ



How has the problem been tackled?
(more than one way to skin Schrodinger’s Cat)

 Error Propagation.

 Bahder & Lopata: ‘Fidelity’

 Pezze & Smerzi: Simple Bayesian Analysis

 Berry & Wiseman: Sharpness & Holevo Variance



Error Propagation
Most popular approach in the literature.
Simple to grasp, easy to calculate.

What about multiple peaks and periodic distributions? No 
applicability.

Inconclusive or incorrect scaling for pathological probe states, e.g. 
those that are symmetric have              for all phases  . But even a 
simple input           gives scaling: 
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This should be contrasted with 
the true scaling, from Cramer 
Rao:
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Badher & Lopata: Fidelity of Qm Interferometers
Phys. Rev. A 74 051801 (2006)

•Acknowledge problems with Error Propagation model.

•Propose Mutual Information Between posterior Phase Distribution 
P(m|) and Phase .

•Want a strong correlation between phase and measurement, but is 
this enough to quantify confidence in inference:

•Also, what about quantifying the uncertainty of P()? This should 
also be minimized.


P(m|)

P(X)P(Y)]||Y)S[P(X,Y)(X;IM 
It is uncertainty reduction in 
P( due to knowledge of P(m).



Pezze & Smerzi

 Also criticize linear error propagation approach
 Promote a Bayesian Analysis for event A followed in time by B.

P(A|B) = P(B|A) x P(A)  / P(B), where P(B) = ∑ P(B|A) x P(A) 
(posterior)              (prior)

 They analyse probe states of form

 Analysis limited to  = 0, i.e. when the interferometer doesn’t change 
the input state!

 Conclusion is that m=1 in states above represents best state for
interferometry, with no caveats.

 However in our calculation of Cramer-Rao bound:  

 Bayesian Calculation has exp high computational overhead.
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Phys. Rev. A 73 011801 (R) (2006)
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Berry & Wiseman

Drawback:Sharpness
needs redefining 
depending on periodicity 
of P(), not a Universal 
methodology. 



Schematic of Phase Inference
 

Q1 Q2 Governing Distribution Q

P1 P2 Distribution P of Measured Data: 
Typical is in White, Atypical is 
Grey

S[Q1||Q2] → Maximize!

Overlap Region: 
Ambiguity in 
Inferring 

Unknown phase could be 1 or 2



Our Approach: Intrinsic Distinguishability

Task: To unambiguously perform inverse map 

New parameter , a priori precision, determines 
global (large ) vs. local (small ) nature of 
Metrology Task.



Local and Global Parameter Estimation

 Contrast pre- and post- target locking.
 Initially target location is unknown, but exists within 

some large global  window.
 After initial lock, target is being tracked within a tight 

localized  parameter range.
 Q: Are some probe states better for a global phase 

acquisition, and others for local tracking?



Local Distinguishability & Fisher Information

Here is a table of 
Fisher Information for 
various probe states



Our Results I

n=16 photons0 



Our Results II

Probe States: NOON (pentagons), Phase States (stars), Twin 
Fock (triangles), Coherent Light+Vacuum (squares)



Advantages to our Approach
 Distinguishability is property of whole distribution, not 

just partial info, such as moments provide.
 We examine Photon-Counting Measurements, but 

analysis applies to any type, including quadratures
and POVMs.

 The lower bounds we provide to sensitivity are 
rigorous and require no approximation such as          
n ~ ∞, or   ~ 0.

  is a new sub-wavelength parameter, providing a 
local/global context to the measurement task, and an 
indication of what probe states to use.



What Next? The Future…
 Add Noise and Decoherence.
 Apply to other measurement types, e.g. Homodyning

and POVMs.
 Use this rigorous universal methodology to move 

beyond intrinsic fitness of states, to develop a Phase 
Estimation Protocol.

 Adapt for Atom Interferometry and BECs.



Thank You for Listening


