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Surprise and Uncertainty

Probability ↓, surprise ↑ and vice versa. Choose 1/P? 
Surprise is additive: Indep events 1,2: P = P1xP2 but combined 
surprise should be sum. Use Logs.
Surprise = Log (1/P) = Log(1/P1)+Log(1/P2) = Log 1/ (P1 x P2)
Average Surprise for a Distribution is ‘Uncertainty’:
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Uncertainy is known as 

Shannon Entropy, 

after Claude Shannon, 1916-2001. 



Relative Entropy

Average expected Surprise is

Actual Surprise is

Surprise discrepancy is
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What if we expect our data to belong to a probability distribution 
Q(X), yet the data set is typical of distribution P(X) for random 
variable X? 
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x)/Q(x)]P(x)Log[P(Q]||S[P
This is the Relative Entropy or Kullbach-Leibler divergence.

Not a metric distance: S[P||Q] ≠S[Q||P], but non-negative. Related 
to metric distance as P approaches Q.

In Bayes experiments one tries to maximize Relative Entropy 
between Posterior and Prior distributions.



Relative Entropy in Use: Coin Toss
Coin Toss Sequence: HHHTHHTHHHTHTHHTHHTT
You decide: Fair or Unfair Coin? Hx7, Tx13

What is the likelihood the coin is fair, i.e. that governing 
distribution is fair: Pf(H)=Pf(T)=1/2? 
Data distribution is Pd(H)=7/20, Pd(T)=13/20.

Upper bound on probability that the coin is fair:
P < 2^{-k S(Pf||Pd)}, where k = 20 is the number of tosses, and 
S[Pf||Pd] is the Relative Entropy distance between the data 
distribution and the fair distribution.

Calculation gives P < 2^{-20 * (0.066) } = 0.401, i.e. Coin has less 
than 40% chance of being fair.
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Relative Entropy in Quantum Mechanics

ρLog(σ)ρLog(ρ)σ]||S[ρ 

Relative Entropy of Entanglement is Relative Entropy between an 
Entangled State and ‘nearest’ state in the Separable Set D.

Quantum Relative Entropy is measured between density matrices 
rather than probability distributions:
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Interferometry & Metrology
 Prototype Mach Zehnder performs rotation about y-axis.

 Interferometry → Classical Parameter Estimation: We know 
Hamiltonian = Jy, but what is rotation angle 

 Metrology: How precise is any unbiased estimate we make of ?

 P(M|) typically multiple-peaked and periodic in , take care when 
using conventional indicators, e.g. variance, moments, maximum 
likelihood approach.

 Schwinger Spin Representation: (nc+nd)=2j, (nc-nd)=2m



Accuracy and Precision

High Accuracy
Low Precision

High Precision
Low Accuracy



Photon Counting Distribution of MZ



How has the problem been tackled?
(more than one way to skin Schrodinger’s Cat)

 Error Propagation.

 Bahder & Lopata: ‘Fidelity’

 Pezze & Smerzi: Simple Bayesian Analysis

 Berry & Wiseman: Sharpness & Holevo Variance



Error Propagation
Most popular approach in the literature.
Simple to grasp, easy to calculate.

What about multiple peaks and periodic distributions? No 
applicability.

Inconclusive or incorrect scaling for pathological probe states, e.g. 
those that are symmetric have              for all phases  . But even a 
simple input           gives scaling: 
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This should be contrasted with 
the true scaling, from Cramer 
Rao:
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Badher & Lopata: Fidelity of Qm Interferometers
Phys. Rev. A 74 051801 (2006)

•Acknowledge problems with Error Propagation model.

•Propose Mutual Information Between posterior Phase Distribution 
P(m|) and Phase .

•Want a strong correlation between phase and measurement, but is 
this enough to quantify confidence in inference:

•Also, what about quantifying the uncertainty of P()? This should 
also be minimized.


P(m|)

P(X)P(Y)]||Y)S[P(X,Y)(X;IM 
It is uncertainty reduction in 
P( due to knowledge of P(m).



Pezze & Smerzi

 Also criticize linear error propagation approach
 Promote a Bayesian Analysis for event A followed in time by B.

P(A|B) = P(B|A) x P(A)  / P(B), where P(B) = ∑ P(B|A) x P(A) 
(posterior)              (prior)

 They analyse probe states of form

 Analysis limited to  = 0, i.e. when the interferometer doesn’t change 
the input state!

 Conclusion is that m=1 in states above represents best state for
interferometry, with no caveats.

 However in our calculation of Cramer-Rao bound:  

 Bayesian Calculation has exp high computational overhead.
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Phys. Rev. A 73 011801 (R) (2006)
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Berry & Wiseman

Drawback:Sharpness
needs redefining 
depending on periodicity 
of P(), not a Universal 
methodology. 



Schematic of Phase Inference
 

Q1 Q2 Governing Distribution Q

P1 P2 Distribution P of Measured Data: 
Typical is in White, Atypical is 
Grey

S[Q1||Q2] → Maximize!

Overlap Region: 
Ambiguity in 
Inferring 

Unknown phase could be 1 or 2



Our Approach: Intrinsic Distinguishability

Task: To unambiguously perform inverse map 

New parameter , a priori precision, determines 
global (large ) vs. local (small ) nature of 
Metrology Task.



Local and Global Parameter Estimation

 Contrast pre- and post- target locking.
 Initially target location is unknown, but exists within 

some large global  window.
 After initial lock, target is being tracked within a tight 

localized  parameter range.
 Q: Are some probe states better for a global phase 

acquisition, and others for local tracking?



Local Distinguishability & Fisher Information

Here is a table of 
Fisher Information for 
various probe states



Our Results I

n=16 photons0 



Our Results II

Probe States: NOON (pentagons), Phase States (stars), Twin 
Fock (triangles), Coherent Light+Vacuum (squares)



Advantages to our Approach
 Distinguishability is property of whole distribution, not 

just partial info, such as moments provide.
 We examine Photon-Counting Measurements, but 

analysis applies to any type, including quadratures
and POVMs.

 The lower bounds we provide to sensitivity are 
rigorous and require no approximation such as          
n ~ ∞, or   ~ 0.

  is a new sub-wavelength parameter, providing a 
local/global context to the measurement task, and an 
indication of what probe states to use.



What Next? The Future…
 Add Noise and Decoherence.
 Apply to other measurement types, e.g. Homodyning

and POVMs.
 Use this rigorous universal methodology to move 

beyond intrinsic fitness of states, to develop a Phase 
Estimation Protocol.

 Adapt for Atom Interferometry and BECs.



Thank You for Listening


