National Aeronautics and Space Administration

Lyndon B. Johnson Space Center White Sands Test Facility P.O. Box 20 Las Cruces, NM 88004-0020

April 27, 2023

Reply to Attn of: RE-23-075

Mr. Dave Cobrain, Acting Bureau Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Subject: Response to Second Disapproval 200 and 600 Area Vapor Intrusion Assessment Report

NASA received NMED's *Disapproval 200 and 600 Area Vapor Intrusion Assessment Report* dated September 20, 2022, directing NASA to address three comments (Comment 1, Comment 2 Bullets a. through i., and Comment 3 Bullets a. through c.) and submit a revised report no later than April 28, 2023.

Enclosure 1 provides the response table with cross-references where NMED modifications were addressed in the report. Enclosure 2 provides a hard copy of the final report excluding Appendices. Enclosure 3 includes analytical lab reports in PDF format. Enclosure 4 provides input files and analytical data in Excel format. Enclosure 5 provides electronic copies of the revised final report, the redline-strikeout report version, the response table, Enclosure 4, and Enclosure 5 on CD-ROM.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RE-23-075

If you have any questions or comments concerning this submittal, please contact Antonette Doherty of my staff at 575–202–5406.

TIMOTHY DAVIS Digitally signed by TIMOTHY DAVIS Date: 2023.04.27 08:44:35 -06'00'

Timothy J. Davis Chief, Environmental Office

3 Enclosures

cc:

Mr. Gabriel Acevedo Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Ms. Melanie Sandoval Submitted electronically via NASA Box National Aeronautics and Space Administration

200 and 600 Area Vapor Intrusion Assessment Report

June 2018

Revised January 2020

Revised April 2023

NM8800019434

200 and 600 Area Vapor Intrusion Assessment Report

June 2018

Revised January 2020

Revised April 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

TIMOTHY DAVIS Date: 2023.04.27 08:45:10 -06'00'

Timothy J. Davis Chief, NASA Environmental Office <u>See Electronic Signature</u> Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

The results of the National Aeronautics and Space Administration (NASA) 200 Area Phase II Investigation Report (IR) submitted on June 29, 2015 indicated that concentrations of contaminants of potential concern (COPC) in soil vapor at the 200 Area Hazardous Waste Management Units (HWMUs) exceeded New Mexico Environment Department (NMED) and/or WSTF-specific screening criteria. NASA recommended a vapor intrusion assessment of the complete vapor pathway in the 200 Area. NASA submitted the 200 and 600 Area Vapor Intrusion Assessment Work Plan (VIAWP) on February 26, 2016, and this was approved by NMED on May 27, 2016.

This vapor intrusion assessment report (VIAR) follows a tiered vapor intrusion evaluation process. The two locations with the greatest potential for vapor intrusion were evaluated: the 200 Area on the west side of Building 200 at the location of the former Clean Room tank HWMU; and, 600 Area Building 637 located near the 600 Area HWMU. Additional evaluation to determine whether soil vapor is a potential source of unacceptable indoor air risks include a review of building foundations, building ventilation systems, a temporal trend analysis of VOC source concentrations in groundwater, characterization of the vertical distribution of vadose zone pore vapor, and comparison of the concentrations of COPCs in source media (soil vapor) and exposure media (indoor air) to assess the contribution of source area COPCs to indoor air risks.

Two semi-annual sampling events were performed in the summer (August 2017) and winter (February 2018). Soil vapor samples were analyzed using EPA Method TO-15. In the 200 Area, soil vapor samples were collected from the shallow ports of three MSVM wells on the west side of Building 200. Indoor samples were collected at locations in Building 200 above the subsurface footprint of the former 200 Area Clean Room Tank HWMU and outdoor air samples were collected adjacent to Building 200. In the 600 Area, samples were collected from the shallow ports in two MSVM wells on the west side of Building 637. Indoor air samples were collected in Building 637 along with outdoor air samples at adjacent locations. The 200 and 600 Area soil vapor risk and hazard results were combined with previous soils risk and hazard data. Risk screening evaluations for soil vapor include both carcinogenic and noncarcinogenic toxicity and were performed using ProUCL Version 5.2.

For the 200 and 600 Area vadose zone, TCE concentrations in soil vapor exceed the NMED VISL and in the 200 Area, WSTF RBC as well for both sampling events. PCE soil vapor concentrations exceed the VISL for both sampling events but are below the RBC at 25 ft bgs. The concentrations for the other remaining COPCs in vadose zone soil vapor are below the VISL (except 1,1-Dichloroethane in the 200 Area) and RBC. Concentrations in Building 200 outdoor and indoor air samples were generally non-detect or below 1 μ g/m³ for COPCs and below the VISL and RBC. Cumulatively, TCE and PCE are the risk drivers for soil vapor. Both individual and cumulative risk was exceeded by TCE concentrations for the residential and industrial scenarios in the 200 Area. Even though risk and hazard targets were exceeded for soil vapor, indoor air risk and hazard were below targets. Separate contaminant suites between indoor air and soil vapor, intact building foundations, robust ventilation systems, a generally increasing contaminant concentration trend with depth provide evidence that vapor intrusion is not a significant contributor to indoor air in Building 200 or Building 637.

From the Decision Rule: "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below risk-based indoor air concentrations..., then current vapor intrusion risks are acceptable." Based on this VIAR, NASA concludes that potential vapor intrusion into the buildings does not present a risk of industrial/occupational exposure to personnel, and no additional investigation or vapor intrusion mitigation is required.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

The risk screening performed for this VIAR is not intended to be complete at this time, as continued monitoring is planned for the 200 and 600 Areas. NASA will perform continued risk and hazard screening, including soil-to-groundwater and an ecological assessment in accordance with the current NMED RA Guidance, Volumes I and II at an appropriate time to make corrective action decisions or to seek closure. At that time, NASA will provide a risk report in accordance with the WSTF Permit Section 6.5.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

Executive Sum	mary	.iii
Table of Conte	ents	v
List of Figures	and Tables	/111
List of Acrony	ms	X
1.0 Introdu	iction	1
1.1 Faci	lity Location and Description	1
1.2 WS7	TF 200 Area and 600 Area Closure Conditions	1
1.3 Regi	Ilatory Requirements	2
1.4 Purp	ose and Method of Vapor Intrusion Assessment	2
1.5 Vapo	or Intrusion Screening Levels and Risk Based Concentrations	4
1.6 Vapo	or Intrusion Pathway	5
1.7 Meth	nodologies	6
2.0 Backgr	ound	6
2.1 Soil	Vapor Contamination	6
2.2 Ratio	onale For Selection of Buildings for Vapor Intrusion Assessment	8
2.3 Open	rational History	9
2.3.1	200 Area Activities	9
2.3.2	600 Area Activities	9
2.4 Envi	ronmental Setting	10
2.4.1	200 Area and 600 Area Surface Conditions	10
2.4.2	200 Area and 600 Area Subsurface Conditions	11
2.5 200	Area and 600 Area HWMU Description	12
2.5.1	200 Area Clean Room Tank Location and Use	12
2.5.2	600 Area Surface Impoundments Location and Use	12
2.6 Prev	ious Vadose Zone Investigations Delineating Contaminant Distribution	12
2.7 Cont	aminants of Potential Concern	12
2.8 Site	Conceptual Exposure Model	13
2.8.1	Contamination Sources	13
2.8.2	Release Mechanisms	13
2.8.3	Potential Exposure Pathways and Receptors	13
3.0 Scope	of Activities	14
3.1 Data	Quality Objectives	15
3.1.1	Problem Statements	15
3.1.2	Study Goals	15
3.1.3	Information Inputs	16
3.1.4	Spatial Extent of Assessment	16
3.1.5	Decision Rule	16
3.2 Asse	ssment Activities	17
3.2.1	Vadose Zone Soil Vapor Sample Locations and Schedule	17
3.2.2	Indoor and Outdoor Air Sample Locations and Schedule	18
3.2.3	Sampling Procedures	18
3.2.4	Analytical Tasks	19
3.2.5	Health and Safety	20
3.2.6	Field Documentation	20
3.2.7	Investigation-Derived Waste Management Plan	21
4.0 Field D	Data Collection, Assessment, and Review	21
4.1 Proje	ect Documentation	21
4.2 Buile	ding Walkthrough Inspections	21
4.2.1	Building 200	22

4.2.2	Building 637	23
4.3 Pr	eparation of Buildings	24
4.4 Fi	eld Preparation and Sampling	24
4.4.1	Summer Semi-Annual Sampling Event (August 2017)	24
4.4.2	Winter Semi-Annual Sampling Event (February 2018)	24
4.5 Va	apor Intrusion Assessment Sampling	25
4.6 Va	adose Zone Soil Vapor Sampling	25
4.7 In	door and Outdoor Air Sampling	26
4.8 So	il Sampling	26
4.9 O	f-site Laboratory Data	26
4.10 Da	ata Assessment and Review	26
5.0 Sum	mary of Soil Vapor, Outdoor Air, and Indoor Air Data	28
5.1 20	0 Area Soil Vapor, Outdoor Air, and Indoor Air Sampling	28
5.1.1	200 Area Soil Vapor Analytical Results	28
5.1.2	Building 200 Outdoor Air Analytical Results	29
5.1.3	Building 200 Indoor Air Analytical Results	29
5.1.4	Building 200 Trends and Observations	30
5.2 60	0 Area Soil Vapor. Outdoor Air. and Indoor Air	
5.2.1	600 Area Soil Vapor Analytical Results	
5.2.2	Building 637 Outdoor Air Analytical Results	
5.2.3	Building 637 Indoor Air Analytical Results	
5.2.4	Building 600 Trends and Observations	31
5.3 Pc	tential Bias due to Field Sampling Conditions	32
6.0 Scre	ening Level Risk Assessment Uncertainties and Lines of Evidence	32
6.1 Sere	reening Level Risk Assessment	32
6.1.1	200 Area Screening Risk Assessment	33
6.1.2	600 Area Screening Risk Assessment	36
6.2 U	ncertainties	38
621	Constituents without Published Screening Values	38
6.2.2	Small Sample Sizes	38
6.2.3	Industrial Pathway Sample Depths	39
624	Large Dilution and Elevated Detection Limits	39
63 Li	nes of Evidence	39
631	Conservative Risk Using Maximum Concentrations	39
632	Soil Vapor Vertical Concentration Profiles	39
633	Integrity of Building Slabs	<i>37</i> 42
634	Ventilation Systems	42
635	Personnel Management Practices	42
636	Indoor Air Quality – Risk to Worker	43
637	Concentration Ratios of Detected Constituents in Soil Vapor and Indoor Air	43
6.4 A	essessment of Worker Risks for Occupants of Buildings 200 and 637	13
7.0 Sum	mary and Conclusions	44
7 1 Sum	mmary of Soil Vapor, Outdoor Air, and Indoor Air Sampling and Screening Criteria	44
7.2 C	initially of son vapor, outdoor ran, and indoor ran sumpring and servering oritoria	45
721	200 Area	45
7 2 2	600 Area	15 46
80 Reco	mmendations	+0 47
9.0 Refe	rences	48
Figures		53
Tables		70
Appendix A	Pre-Sampling Building Inspection Forms	

Appendix B Pre-Sampling Building Walkthrough Photographs	3-1
Appendix C Quality Assurance Reports	C-1
Appendix D UCL95 Results for Cumulative Risk Assessment)-1
Appendix E Soil Vapor Vertical Concentration Profiles	E-1

Figure 1.1	WSTF Location Map	54
Figure 1.2	Vapor Intrusion Assessment Building Location Map	55
Figure 2.1	Freon 113 Soil Vapor and Groundwater Concentrations (Oct-14)	56
Figure 2.2	Trichloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	57
Figure 2.3	Tetrachloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	58
Figure 2.4	Building 200 Site Conditions	59
Figure 2.5	Building 637 Site Conditions	60
Figure 2.6	Site Conceptual Exposure Model	61
Figure 3.1	West Building 200 Soil Vapor and Air Sampling Locations	62
Figure 3.2	Building 637 Soil Vapor and Air Sampling Locations	63
Figure 5.1	West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results	64
Figure 5.2	Building 637 Soil Vapor and Air Sampling Locations and Analytical Results	65
Figure 6.1	Revised Site Conceptual Exposure Model	66
Figure 6.2	WSTF Background Soil Area Map	67
Figure 6.3	200 Area Soil Boring Locations	68
Figure 6.4	600 Area Soil Boring Locations	69

Table 1.1	Comparison of Soil Vapor and Air Concentration Guidance Levels	71
Table 3.1	Soil Vapor Monitoring Well Sampling Locations	72
Table 3.2	Indoor and Outdoor Air Sampling Locations	73
Table 4.1	Product Inventory Form for 200 Area Building 200 on 6/21/2017	74
Table 4.2	Product Inventory form for 200 Area Building 637 on 6/26/2017	76
Table 4.3	Summary of 200 Area Building 200 and Vicinity Soil Vapor, Outdoor Air, and I	ndoor
	Air Analytical Results	77
Table 4.4	Detection Limits Exceeding Screening Levels Well 200-LV-150	
Table 5.1	Summary of 600 Area Building 637 and Vicinity Soil Vapor, Outdoor Air, and I	ndoor
	Air Analytical Results	
Table 6.1	200 Area Soil Vapor: Residential Cancer Risk (VISLs)	
Table 6.2	200 Area Soil Vapor: Industrial Cancer Risk (VISLs)	
Table 6.5	200 Area Soil Vapor: Residential (Noncancer) Hazard Index (VISLs)	90
Table 6.6	200 Area Soil Vapor: Industrial (Noncancer) Hazard Index (VISLs)	91
Table 6.7	200 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)	
Table 6.9	200 Area Indoor Air: Residential Cancer Risk (VISLs)	93
Table 6.10	200 Area Indoor Air: Industrial Cancer Risk	93
Table 6.11	200 Area Indoor Air: Residential (Noncancer) Hazard Index (VISLs)	94
Table 6.12	200 Area Indoor Air: Industrial (Noncancer) Hazard Index (VISLs)	96
Table 6.13	200 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV	()
	Comparison	
Table 6.14	200 Area Essential Nutrient Soil Maximum Concentrations vs. Background Three	eshold
	Value (BTV) Comparison	
Table 6.15	Population Comparison of Background and 200 Area Soil Data	
Table 6.16	200 Area Soil: Residential Cancer Risk	
Table 6.17	200 Area Soil: Industrial Cancer Risk	
Table 6.18	200 Area Soil: Residential (Noncancer) Hazard Index	
Table 6.19	200 Area Soil: Industrial (Noncancer) Hazard Index	
Table 6.20	200 Area Cumulative Residential Risk and Hazard; All Pathways	
Table 6.21	200 Area Cumulative Industrial Risk and Hazard; All Pathways	

Table 6.22	600 Area Soil Vapor: Residential Cancer Risk (VISLs)	101
Table 6.25	600 Area Soil Vapor: Residential (Noncancer) Hazard Index (VISLs)	103
Table 6.27	600 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)	106
Table 6.29	600 Area Indoor Air: Residential Cancer Risk (VISLs)	110
Table 6.31	600 Area Indoor Air: Residential (Noncancer) Hazard Index(VISLs)	111
Table 6.33	600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)	
	Comparison	113
Table 6.34	600 Area Essential Nutrients Soil Maximum Concentrations vs. Background Thresh	old
	Value (BTV) Comparison	115
Table 6.35	Population Comparison of Background and 600 Area Soil Data	116
Table 6.36	600 Area Soil: Residential Cancer Risk	117
Table 6.38	600 Area Soil: Residential (Noncancer) Hazard Index	118
Table 6.40	600 Area Cumulative Residential Risk and Hazard; All Pathways	120
Table 6.41	600 Area Cumulative Industrial Risk and Hazard; All Pathways	120
Table 6.42	Summary of F113 and TCE Vertical Concentration Profiles for Select 200 and 600 A	Area
	Wells	121

List of Acronyms

μg	Microgram
µg/kg	Micrograms per kilogram
µg/L	Micrograms per liter
AOI	Area of Interest
bgs	Below ground surface
BTV	Background Threshold Value
CAP	RCRA Corrective Action Program
CFR	Code of Federal Regulations
CH4	Methane
CO2	Carbon Dioxide
CoC	Chain-of-custody
COPC	Contaminant of Potential Concern
DQOs	Data Quality Objectives
EDD	Electronic Data Deliverable
EPA	Environmental Protection Agency
Freon 11	Trichlorofluoromethane
Freon 113	1,1,2-Trichloro-1,2,2-Trifluoroethane
ft	Feet/foot
GCL	Geosciences Consultants, Ltd.
GMP	Groundwater Monitoring Plan
GSA	Gardner Spring Arroyo
HAZWOPER	Hazardous Waste Operations and Emergency Response
HIS	Historical Information Summary
HVAC	Heating, Ventilation, and Air Conditioning
HWB	Hazardous Waste Bureau
HWMU	Hazardous Waste Management Unit
HWTL	Hazardous Waste Transmission Line
IDW	Investigation-Derived Waste
in.	Inch(es)
IR	Investigation Report
IWP	Investigation Work Plan
JDMB	Jornada del Muerto Basin
m	Meter
MSVGM	Multiport Soil Vapor and Groundwater Monitoring
MSVM	Multiport Soil Vapor Monitoring
NASA	National Aeronautics and Space Administration
NMED	New Mexico Environment Department
O2	Oxygen
ODEQ	Oregon Department of Environmental Quality
PCC	Post-Closure Care
PCE	Tetrachloroethene
PDF	Portable Document File
PEL	Permissible Exposure Limit(s)
PID	Photoionization Detector
PPE	Personal Protective Equipment
ppm	Part per million
PVC	Polyvinyl Chloride
QA	Quality Assurance
QC	Quality Control

RBC	Risk-Based Concentrations
RCRA	Resource Conservation and Recovery Act
SAM	San Andres Mountains
SCEM	Site Conceptual Exposure Model
SHP	Safety and Health Plan
SOP	Standard Operating Procedure
sq ft	Square foot/feet
SSL	Soil Screening Level
SVE	Soil Vapor Extraction
SWMU	Solid Waste Management Unit
TCE	Trichloroethene
TPH	Total Petroleum Hydrocarbons
TWA	Time Weighted Average
UST	Underground Storage Tank
VIAR	Vapor Intrusion Assessment Report
VIAWP	Vapor Intrusion Assessment Work Plan
VISL	Vapor Intrusion Screening Level
VOC	Volatile Organic Compounds
WSTF	White Sands Test Facility

1.0 Introduction

National Aeronautics and Space Administration (NASA) submitted the results of the 200 Area Phase II Investigation Report (IR; NASA, 2015b) to the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) on June 29, 2015. The IR described the most recent phase of a comprehensive 200 Area vadose zone investigation and included the results of the comprehensive soil vapor sampling event in the 200 and 600 Areas conducted in October 2014. Based on the results of the IR, NASA proposed a quantitative assessment of the potential complete vapor intrusion pathway for the Building 200 foundation near the location of the former Clean Room underground storage tank (UST; also known as the 200 Area West Closure hazardous waste management unit [HWMU]). NMED agreed with NASA's intent to address potential complete vapor intrusion pathways in their approval with modifications for the IR on November 30, 2015 (NMED, 2015b).

The additional assessment of potential vapor intrusion in the 600 Area was proposed following written communications between NASA and NMED. On April 16, 2015, NASA submitted the 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 2 for NMED review (NASA, 2015a). NMED approved the report with modifications on July 15, 2015, and required further investigation of the source of contamination at or near the HWMU (NMED, 2015a). NASA has already performed several investigations at the 600 Area HWMU, and concluded there is not a continuing source of contamination in the vadose zone beneath the HWMU. In a November 25, 2015 letter to NMED (NASA, 2015d), NASA included a summary of the environmental investigations performed at the 600 Area HWMU, the findings of those investigations, and the NMED responses to NASA's conclusions.

However, it has yet to be determined whether the presence of volatile organic compounds (VOCs) in soil vapor presents a risk to human health. Building 637, located southeast of the Closure, is the closest potential structure that could provide a current pathway for receptor exposure in the 600 Area.

1.1 Facility Location and Description

NASA Johnson Space Center White Sands Test Facility (WSTF) is located at 12600 NASA Road in central Doña Ana County, New Mexico. The site is approximately 12 miles northeast of Las Cruces, New Mexico and 65 miles north of El Paso, Texas (Figure 1.1). The WSTF U.S. Environmental Protection Agency (EPA) Facility Identification Number is NM8800019434. The facility has supported testing of space flight equipment and hazardous materials since 1964. WSTF contains five closed HWMUs that are under post-closure care (PCC) and 37 solid waste management units (SWMUs) within the 200, 300, 400, and 600 Areas. PCC requirements are specified by the NASA WSTF Hazardous Waste Permit (Permit) issued by NMED (2023). Specific regulatory requirements are discussed in Section 1.3.

1.2 WSTF 200 Area and 600 Area Closure Conditions

The field activities performed for the vapor intrusion assessment did not compromise the integrity of the 200 Area former Clean Room Tank HWMU. The original closure cap was removed when the building extension was constructed in 1991. The 200 Area former Clean Room Tank excavation cannot be accessed as it is located under Building 200 which is still in operation. Multiport soil vapor monitoring (MSVM) well 200-SV-05 and multiport soil vapor and groundwater monitoring (MSVGM) well (200-LV-150) are located adjacent to the building. Their installation and sampling do not affect the closure cap.

Activities in the 600 Area for this assessment also did not compromise the integrity of the 600 Area closure cap. As directed by NMED, MSVM wells 600-SGW-2, 600-SGW-5, and 600-SGW-6 were installed through or adjacent to the cap during previous investigations, and no new wells were installed

for this assessment. No unintentional damage to either of the HWMU closures was identified during a post-assessment evaluation of closure conditions.

1.3 Regulatory Requirements

The Permit requires that NASA investigate and address historical releases of hazardous waste and hazardous constituents that may have occurred at sites throughout WSTF as part of the Resource Conservation and Recovery Act (RCRA) corrective action process (CAP). The CAP consists of investigation, characterization, and, if necessary, cleanup. The principal components of the CAP are:

- RCRA Facility Assessment.
- RCRA Facility Investigation.
- Interim Corrective Measures (if necessary).
- Corrective Measures Study (if necessary).
- Corrective Measures Implementation (if necessary).

NMED guidance requires that a quantitative vapor intrusion pathway assessment be performed where a "complete pathway" category exists (NMED, 2022c). The Permit (NMED, 2023) does not include cleanup standards for soil vapor. However, NMED has issued the latest Risk Assessment Guidance for Site Investigations and Remediation Volume I (NMED, 2022c) and has directed NASA to use this latest guidance to provide specific information on the development of screening levels for soil vapor contaminants and for evaluating exposure pathways and receptors. These are termed WSTF risk-based concentrations (RBCs; NASA, 2019a, 2017a) (Table 1.1).

In the event the assessment indicates a complete pathway and unacceptable risk is present at either of the two target building locations in the 200 and 600 Areas, NASA would be required to work with NMED to perform a corrective measures evaluation in accordance with Section 3.12 of the Permit.

NMED presented the available vapor intrusion screening assessment criteria alternatives in their November 30, 2015, 200 Area Phase II Approval with Modifications (NMED, 2015b). In accordance with an NMED recommendation (NMED, 2015b), NASA updated existing RBCs using available 2018 data in conjunction with the pre-assessment planning and preparation activities for this vapor intrusion assessment. Updated RBCs were available for use as a component for this vapor intrusion screening assessment.

NASA routinely collects groundwater samples from a comprehensive network of monitoring wells at WSTF in accordance with the NMED-approved Groundwater Monitoring Plan (GMP; NASA, 2017b). Groundwater samples are collected for the analysis of the following primary constituents: VOCs; n-nitrosodimethylamine, bromacil, and metals. In addition to routine groundwater samples required by the GMP, samples for other chemical analyses are frequently collected at many of the groundwater monitoring wells. Because these samples are not a direct requirement of the GMP, the results of these analyses are provided in the appropriate project-specific report. This Vapor Intrusion Assessment Report (VIAR) was prepared in response to NMED's approval (NMED, 2016a) of the 200 Area and 600 Area Vapor Intrusion Assessment Work Plan (VIAWP; NASA, 2016b).

1.4 Purpose and Method of Vapor Intrusion Assessment

The process to assess and remediate vapor intrusion in buildings (if required) involves a tiered approach. Firstly, source area vadose zone soil and groundwater VOC concentrations are compared to available

regulatory standards, in this case the NMED Soil Screening Levels (SSLs; NMED, 2022c) and WSTF groundwater cleanup levels (GMP; NASA, 2017b). Secondly, concentrations of VOCs in soil vapor are compared to the latest NMED Vapor Intrusion Screening Levels (VISLs) (NMED, 2022c) and WSTF RBCs (NASA, 2019a). Both of these comparisons were performed for the original submittal of this report, *200 Area and 600 Area Vapor Intrusion Assessment Report*, dated June 2018. However, as noted by NMED (NMED, 2019) in comments to the original submittal, these comparisons did not constitute a complete risk screening for soil vapor because total vapor risk was not calculated for the soil risk (soil results had not been discussed at all in the June 2018 submittal). This revision revisits the risk screening as required by the NMED Risk Assessment Guidance.

Originally, because specific samples in the 200 Area were identified that exceeded soil vapor screening levels during both soil vapor screening processes (NASA, 2015c), NASA and NMED agreed that the next step in the investigation process would be a vapor intrusion assessment focused on the areas of greatest potential concern. The objective of the 2018 200 Area and 600 Area vapor intrusion assessment was to perform an evaluation of the vapor intrusion pathways at the priority locations within the 200 and 600 Areas that present the most likely routes for vapor intrusion based on previous investigations (Figure 1.2). The investigation and 2018 report moved directly to evaluating the potential for vapor to affect industrial/occupational indoor air in specific buildings in accordance with NMED guidance (NMED, 2022c). It was predicated that a complete vapor intrusion exposure pathway had already been established. These locations can be described specifically as follows.

- The 200 Area immediately adjacent to, and below the foundation of Building 200 above the location of the former Clean Room tank HWMU, and adjacent to soil borings 200-SB-05 (MSVM well 200-SV-05), 200-SB-06 (MSVGM well 200-LV-150), and 200-SB-09 (MSVM well 200-SV-09). This location provided the highest soil vapor concentrations in the 200 Area vadose zone for 1,1,2-trichloro-1,2,2-trifluoroethane (Freon^{®1} 113), TCE, and tetrachloroethene (PCE) during the October 2014 comprehensive soil vapor sampling event (NASA, 2015c). According to the NMED Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2022c), this location exceeded NMED industrial/occupational VISLs for Freon 113, TCE, and PCE, WSTF's RBC for TCE at a location that is immediately adjacent to a building, and falls into the "complete pathway" category for vapor intrusion.
- The 600 Area between the 600 Area HWMU and Building 637, located 150 feet (ft) to the southeast, near soil borings 600-SB-02 (MSVM well 600-SGW-02), 600-SB-05 (MSVM well 600-SGW-05), and 600-SB-06 (MSVM well 600-SGW-06). This location provided the highest soil vapor concentrations in the 600 Area vadose zone for TCE and some of the highest for Freon 113 during the October 2014 comprehensive soil vapor sampling event (NASA, 2015c). Building 637 is the most proximal structure to the southeast side of the 600 Area HWMU. This location also exceeded NMED industrial/occupational soil vapor VISLs for TCE and warrants assessment related to potential vapor intrusion.

Steps 1 through 3 listed below were performed as part of this assessment.

• Step 1: Using historical soil vapor investigation data, compare concentrations for vadose zone soil vapor to the corresponding NMED VISL and NMED-approved WSTF RBC to determine whether the vapor intrusion pathway must be evaluated for industrial workers in 200 or 600 Area buildings.

¹ Freon is a registered trademark of The Chemours Company CF, LLC.

NMED VISLs and RBCs are presented in <u>Table 1.1</u>. This evaluation was performed in the June 2018 submittal of this report.

- Step 2: Evaluate the vapor intrusion pathway and perform human health risk screening for exposure pathways, including soil and soil vapor, using all COPCs, their additive nature, and the soil and soil vapor additive pathways. This evaluation was performed in the June 2018 submittal of this report, and is presented here. This corresponds to Step 1 of a quantitative soil vapor assessment described in Section 2.5.2.3 of NMED (2022b).
- Step 3: If a comparison to soil vapor screening criteria indicates potentially unacceptable risk, as was indicated in the June 2018 submittal of this report, obtain additional information and assess potential human health risks based on multiple lines of evidence. Accordingly, activities that were completed in accordance with the VIAR included visual evaluation of the building foundations and determination of any preferential pathways, identification of the building ventilation systems, collection of shallow soil vapor samples in nearby MSVM and MSVGM wells in conjunction with indoor and outdoor air sampling at the two building locations being evaluated, and evaluation of vertical soil vapor concentrations to determine origin and attenuation from vapor sources. Converging lines of evidence are used to determine whether there are potentially unacceptable risks to present-day industrial workers in the buildings. This corresponds to Step 2 of a quantitative soil vapor assessment described in Section 2.5.2.3 of NMED (2022b).
- 1.5 Vapor Intrusion Screening Levels and Risk Based Concentrations

WSTF industrial/occupational workers could be exposed to VOCs derived from the migration of subsurface soil vapor through pore spaces in the vadose zone and building foundations into indoor air. The NMED Risk Assessment Guidance for Investigations and Remediation (NMED, 2022c) provides preliminary criteria to determine when vapor intrusion pathways must be evaluated:

- If there are compounds present in subsurface media that are sufficiently volatile and toxic, and
- If there are existing or planned buildings where exposure could occur.

"A chemical is considered to be sufficiently volatile if its Henry's law constant is $1 \ge 10-5$ atm-m³/mole or greater and its molecular weight is approximately 200 g/mole or less. A chemical is considered to be sufficiently toxic if the vapor concentration of the pure component poses an incremental life time cancer risk greater than 1E-05 or the non-cancer hazard index is greater than 1.0" (NMED, 2022c).

In order to establish whether adverse human health risk is a factor at the 200 and 600 Areas, a risk screening evaluation in accordance with the RA Guidance is initially required. VISLs are not designed to be used as action standards or cleanup levels, but can be used as a tool for screening potential cumulative risks and/or hazards from exposure to volatile and toxic chemicals and to determine if further evaluation may be needed using site-specific data. NMED (2017) indicates that VISLs can be used as a first tier screening assessment under certain conditions, including; the absence of shallow groundwater, no shallow soil contamination within 10 ft of the foundation base, no buildings with subsurface openings, no significant vadose zone advective transport (from landfills producing methane or industrial sites with applicable vapor density), and no leaking vapors from gas transmission lines. NMED VISLs were used for first tier screening due to the following:

- The 200 and 600 Areas have relatively deep groundwater sources (greater than 100 ft) below the building foundation levels.
- Shallow soil contamination resulting in vapor sources was not identified during previous investigations, although samples are greater than 10 ft from the building foundations. The closest soil sample to Building 200 was in soil boring 200-SB-05 located 18 ft from the building at a

depth of 8 to 10 ft below ground surface (bgs). The closest soil sample to Building 637 was collected below the 600 Area Closure cap in soil boring 600-SB-05 located 181 ft from the building at a depth of 8 to 10 ft bgs.

- Buildings do not have significant known openings to the subsurface (no sumps or earthen floors) or other significant preferential pathways.
- No known sources exist for advective transport (no vapor-forming chemicals released within an enclosed space where vapors could migrate downward through cracks and openings in floors and into the vadose zone).
- No known leaking gas transmission lines exist at WSTF.

Annually updated WSTF soil vapor RBCs are preferred relative to the screening and evaluation of soil vapor intrusion (NASA, 2019a). WSTF RBCs represent the maximum VOC concentrations allowed in soil vapor at a given depth for a complete vapor intrusion pathway. A VISL is calculated with a depth at or just below the surface (sub-slab). Since RBCs are more site-specific to WSTF than the generic VISLs and are calculated for multiple depths, using RBCs is preferred at WSTF.

First developed in 2012, these RBCs were based on EPA ambient air regional screening levels. The WSTF RBC calculations were completed for multiple depths in the vadose zone to provide a direct reference against soil vapor samples collected at the equivalent depths. To provide the best understanding of potential exposure, soil vapor and air concentrations were referenced and compared to the latest WSTF RBCs for air contaminants (Table 1.1).

1.6 Vapor Intrusion Pathway

No significant concentrations of VOCs were detected in vadose zone soil samples collected during the 200 Area or 600 Area investigations (NASA, 2015c, 2011a). In the 200 Area, organic compounds with more than one detection in soil samples were limited to traces of toluene and acetone at concentrations several orders of magnitude below the applicable NMED SSLs. Traces of acetone were considered an artifact of the sampling and analytical processes. The random horizontal and vertical distribution of trace concentrations of toluene do not support a vadose zone contaminant source. In the 600 Area, traces of trichlorofluoromethane (Freon 11), Freon 113, TCE, and PCE were rarely reported in soil samples, again at concentrations orders of magnitude below applicable NMED SSLs. NMED approved "No Longer Contained in Determinations" for all soils from the 200 Area and 600 Area investigations (NMED, 2009b, 2011b, 2014b, 2014c). Soils were redistributed at the surface in the vicinity of the soil borings from which they were derived (NASA, 2015c, 2011a). However, VOCs were detected above the applicable NMED VISLs in soil vapor and above the TCE cleanup level for groundwater samples collected in conjunction with the soil samples during these previous investigations.

Chemical analytical data were also obtained from two types of sampling performed for the assessment of the vapor intrusion pathway: passive vadose zone soil vapor sampling and active indoor/outdoor air sampling. Passive vadose zone samples from MSVM and MSVGM wells were used to confirm the presence of VOCs and their relative concentrations at specific depths in the vadose zone. Active indoor and outdoor air samples collected within the target buildings are required for quantitative assessments. Chemicals that should be considered for the vapor intrusion pathway include both volatile and toxic constituents (NMED, 2017). For the 200 and 600 Area building assessments, the vapor intrusion pathway options considered were: 1) incomplete and no action required; 2) potentially complete and a qualitative evaluation required; or 3) complete and quantitative evaluation required.

1.7 Methodologies

The VIAR provides specific information on the following activities:

- Project planning and preparation; NASA developed the required internal planning documents and coordinated the assignment of on and off-site resources for the assessment.
- Assessment activities, including soil vapor sample collection from MSVM and MSVGM wells and indoor and outdoor air sample collection at and adjacent to the target buildings.
- Investigation-derived waste (IDW) management as described in the VIAWP IDW Management Plan (NASA, 2016b; Appendix A).
- Data evaluation to determine if there are COPC concentrations above screening levels for vadose zone soil vapor and/or indoor air at the target buildings, as well as in surface soil. If COPCs are detected at concentrations above screening levels, the data can be used to guide remedial action, if necessary.
- Development and submittal of the 200 Area and 600 Area VIAR to NMED.

2.0 Background

2.1 Soil Vapor Contamination

Concentrations of soil vapor contaminants in the WSTF source areas vadose zone are widespread and have been identified and delineated during previous soil vapor surveys (Geosciences Consultants, Ltd. [GCL], 1986; NASA, 2013b). The first shallow soil vapor survey performed at WSTF (GCL, 1986) incorporated all WSTF source areas and areas topographically and hydrologically downgradient to the west. A strong correlation between the footprint of the groundwater contaminant plume and the overlying soil vapor contaminant plume within the vadose zone was observed. Soil vapor concentrations decreased to the west as the depth to the groundwater table increased from approximately 140 ft bgs in the source areas to more than 400 ft bgs in the Jornada del Muerto Basin (JDMB), which was consistent with a groundwater source.

The most recent 200 Area vadose zone investigation included a soil vapor survey that was performed using a phased approach. Fieldwork and laboratory testing activities were completed between June 2012 and January 2013 (Phase I) and June 2014 through January 2015 (Phase II). NMED requested that NASA report the 200 Area Phase I investigation results separately prior to implementing Phase II of the investigation (NMED, 2012). This allowed NMED to evaluate the initial Phase I data and review NASA's strategy for the Phase II investigation.

The Phase I field investigation (NASA, 2013b) included the shallow soil vapor survey, which was performed on a grid across the WSTF 200 Area and portions of the adjacent 100, 600, and 800 Areas in order to derive shallow soil vapor isoconcentration maps and delineate additional areas of interest (AOIs). The survey was conducted in two sub-phases using Gore Modules emplaced at a depth of 2.5 ft bgs in a grid pattern on 250-ft centers to evaluate soil vapor adjacent to and surrounding three HWMUs (former 200 Area USTs and former 600 Area surface impoundments), SWMUs 4 through 9, portions of SWMU 10, SWMUs 19 and 20, and six additional targets identified in the 200 Area Historical Information Summary (HIS; NASA, 2012b). The initial survey incorporated 144 survey points. An additional 38 points were installed within the grid to further evaluate specific areas yielding the highest soil vapor concentrations. Each sample module was analyzed for a total of 45 VOCs using EPA Method 8260. Five VOCs showed consistent detections in the vadose zone: TCE; PCE; Freon 11; Freon 113; and total petroleum hydrocarbons (TPH). NASA submitted the results in the 200 Area Phase I Status Report on

January 30, 2013 (NASA, 2013b). Following NMED review (NMED, 2013a), NASA submitted a revised Phase I IR on August 6, 2013 (NASA, 2013d). The revised report was approved by NMED on October 22, 2013 (NMED, 2013b).

The Phase II field investigation comprised subsurface evaluation of 200 Area HWMUs, SWMUs, AOIs outlined in the Phase I IR, and additional locations required by NMED (2013b). Subsurface drilling with soil and bedrock core sampling was followed by the installation of MSVM or MSVGM wells in the boreholes, and finally soil vapor and groundwater sampling (NASA, 2015c). All targets identified for Phase II were evaluated to the depth of bedrock, with the exception of the two 200 Area HWMUs that were investigated to the upper groundwater table located at depth in fractured rock. Fieldwork and laboratory testing activities were performed between June and November 2014. The final component of the 200 Area Phase II investigation comprised a comprehensive vadose zone soil vapor sampling event (NASA, 2015c).

The concentrations of VOCs in soil vapor within the 200 and 600 Areas have declined since the initiation of soil vapor monitoring at WSTF in 2000 with installation of the first MSVGM wells within the 200 Area (NASA, 2004). Subsequent comprehensive soil vapor sampling incorporating all MSVM and MSVGM wells in the 200 and 600 Areas were performed during four semi-annual events (NASA, 2011b, 2012a, 2012d, 2013c) required by NMED as a follow up to the 600 Area Closure investigation (NASA, 2011a). Comprehensive soil vapor sampling culminated with the most recent event in October 2014, which was performed as a component of the 200 Area Phase II investigation (NASA, 2015b). A historical data trend analysis to demonstrate the declining concentrations over time between sequential sampling events is included on the vertical concentration profiles provided in Section 6.2 of this vapor intrusion assessment. The vertical concentration profiles demonstrate the decline in soil vapor concentrations over time for two of the primary and most widely distributed contaminants (Freon 113 and TCE) for sampling events performed in August 2010 (NASA, 2011b), March 2013 (NASA, 2013c), October 2014 (NASA, 2015b), and for this vapor intrusion assessment in August 2017 and February 2018.

Declines in soil vapor concentrations have been observed in conjunction with a corresponding decline in concentrations of the same contaminants in groundwater (NASA, 2016a). The maximum soil vapor concentrations measured during the most recent (October 2014) comprehensive survey, including the newly installed 200 Area Phase II wells, decreased toward the southwest through the area covered by existing 100 and 200 Area wells and into the 600 Area HWMU along the downgradient path for groundwater plume migration and contamination. NASA submitted the results in the 200 Area Phase II IR on June 29, 2015 (NASA, 2015c). The report was approved with modifications by NMED on November 30, 2015 (NMED, 2015b).

NASA compared these maximum soil vapor concentrations to the equivalent WSTF site-specific RBCs (NASA, 2012c; Figure 2.1 through Figure 2.3) during the last comprehensive soil vapor sampling event (NASA, 2015c). Results indicated that the maximum Freon 113 and PCE soil vapor concentrations measured were one to three orders of magnitude lower than the proposed site-specific WSTF RBCs at that time (NASA, 2012c). TCE is the primary soil vapor contaminant with respect to health risk from vapor intrusion in the 200 and 600 Areas (Figure 2.2). The most concentrated soil vapor areas for TCE exceeded both the NMED VISL and the equivalent WSTF RBCs in the 2014 soil vapor sampling event. Nine specific soil vapor points in seven different monitoring wells exceeded the RBCs and the VISL. These were grouped into three specific locations:

• The former Clean Room UST HWMU and surrounding area located adjacent to Apollo Boulevard on the northwest side of the Building 200 Clean Room (three wells: 200-SV-05, 200-LV-150, and 200-SV-09).

- The west side of the former 200 Area Evaporation Treatment Unit near the former 200 Area Burn Pit (SWMU 9) and the hazardous waste transmission lines (HWTLs) temporary tanker location (part of SWMU 10). This location (200-SG-3) is approximately 300 ft from the most proximal building, and as stated above, TCE concentrations decrease in this direction (from the 200 Area southwest to the 600 Area HWMU).
- The 200-D well cluster area immediately surrounding groundwater monitoring wells 200-D-109 and 200-D-240 (three wells: 200-SV-19, 200-SG-1, and 200-SG-4). This location is approximately 1,600 ft from the most proximal building.

Soil vapor concentrations at the 200 Area former Clean Room UST HWMU were of the greatest potential concern because they were the highest measured within the 200 and 600 Areas. VOC concentrations at this location are the most proximal to and potentially below the northwest side of Building 200. The NMED VISLs for Freon 113 and PCE (Figure 2.3) were also exceeded by the concentrations in the soil vapor at this location.

The highest concentrations of TCE at the 600 Area HWMU were identified within the wells located near the southeast boundary of the closure (Figure 2.2), which is in the closest proximity to Building 637 (wells 600-SGW-2, 600-SGW-5, and 600-SGW-6). Although TCE concentration at these wells exceeded the NMED VISL, they did not exceed the VISLs for Freon 11, Freon 113, or PCE. The concentrations of all four of these VOCs were also below the WSTF RBCs (Table 1.1). The closure boundary is located approximately 100 ft northeast of Building 637.

2.2 Rationale For Selection of Buildings for Vapor Intrusion Assessment

Supporting data and evaluations that demonstrate the rationale for the selection of Building 200 and Building 637 as the locations most likely to present a risk from vapor intrusion are documented in several previous investigations referenced within this report. Elevated concentrations of COPCs in shallow soil vapor in the 200 Area vicinity of Building 200 were most recently confirmed by the results of a qualitative shallow soil vapor survey performed on a grid across the 200 Area (discussed in Sections 2.3, 3.2 and 5.1.2 of the 200 Area Phase I Status Report [NASA, 2013b]). Elevated vadose zone soil vapor concentrations identified within MSVM and MSVGM wells subsequently installed in the 200 Area adjacent to Building 200 were discussed in Section 4.3.2.1 of the 200 Area Phase II Investigation Report (NASA, 2015b). Of particular interest is the soil vapor isopleth map for TCE discussed in Section 6.3.3 that identifies RBC exceedances at the former Clean Room Tank HWMU adjacent to Building 200. The elevated TCE concentrations on the northwest side of Building 200 and a comparison to WSTF RBCs are further discussed in Section 7.3.3. A recommendation in Section 8.3 identified the need for a quantitative assessment of the vapor pathway for Building 200 near the location of the former Clean Room Tank; also known as the 200 Area West Closure HWMU.

Soil vapor concentrations in the vadose zone below the 600 Area Closure were first evaluated during the 600 Area Closure Investigation (NASA, 2011a). NASA recommended interim vadose zone soil vapor and groundwater monitoring to assist with the upcoming implementation of the 200 Area investigations. Four *200/600 Area Semi-annual Soil Vapor and Groundwater Data Summaries* were subsequently provided to NMED, culminating with the fourth sample event in March 2013 (NASA, 2013c). MSVM well 600-SGW-2 located on the south corner of the closure was identified as the location well where a single COPC (TCE) exceeded the WSTF RBC. The maximum soil vapor concentration levels for Freon 11, Freon 113, and TCE in the 600 Area MSVM wells were subsequently identified in the deepest port of well 600-SGW-5 at 137.5 ft. These are discussed in Section 4.3.2.3 of the 200 Area Phase II Investigation Report (NASA, 2015b) and do not exceed WSTF RBCs.

The evaluation of potential vapor intrusion in the 600 Area was added to the VIAWP following communications between NASA and NMED following completion of the 200 area Phase II investigation (NASA, 2015b). Following several vadose zone investigations at the 600 Area HWMU, NASA concluded that the source of soil vapor contaminants beneath the 600 Area HWMU is the underlying groundwater. In a November 25, 2015 letter to NMED (NASA, 2015c), NASA proposed an assessment of the 600 Area Building 637, located southeast of the 600 Area HWMU, as the closest structure and primary potential target for exposure. The approach of utilizing Buildings 200 and 637 for the same assessment ensured consistent evaluation of the vapor intrusion pathway at the 200 West Closure and 600 Area HWMUs.

2.3 Operational History

2.3.1 200 Area Activities

The operational history of the 200 Area is provided in the 200 Area HIS (NASA, 2012b). Descriptions are provided for the two 200 Area East Closure USTs, the two West Closure USTs, and seven SWMUs (SWMUs 4 through 10) as identified in the Permit. Six potential AOIs were identified within the HIS (the Chemistry Laboratory Acid Tank Drain Pipe, an additional Building 203 industrial drain pipe, the Chemical Storage Building 253, the 270 Area Military Transport Vehicle Fire Suppression Test Area, two additional 200 Area historical burn pits, and the 250 Area Possible Septic Tank Drainage Source). These areas were evaluated during the 200 Area Phase I shallow soil vapor field investigation.

The 200 Area became operational in 1964 to support propulsion testing facilities for the Apollo program. The Clean Room was first used for the precision cleaning of equipment in 1967 and began to evaluate flammability and toxicity characteristics of materials used in the Apollo spacecraft. By 1970, the Apollo program focused on materials' testing capability for oxygen and propellant-exposure environments. As materials' testing expanded at WSTF, five test facilities were developed, four within or near the 200 Area: the Chemistry and Metallurgical Laboratories (200 Area), the High-Flow Components Facility (250 Area), Hazardous Hypervelocity and Detonation Facilities (270 and 272 Areas), and the Materials Test Facility (800 Area). The 800 Area Materials Test Facility was completed between 1975 and 1979, the 250 High-Flow Components Area was completed between 1989 and 1990, and the 270 and 272 Hypervelocity and Detonation Areas were completed between 1987 and 1991.

In a pollution abatement report to NASA headquarters in June 1984, NASA proposed constructing aboveground evaporation tanks at WSTF to store hazardous waste in order to cease using the 200 Area USTs and the 600 Area surface impoundments (which were not specifically designed for hazardous waste disposal). In the interim, NASA proposed constructing a hazardous waste drain line that would transport (by gravity) 200 Area hazardous wastes directly to the 600 Area surface impoundments. On April 22, 1986, it was discovered that the 8-inch (in.) long vertical carbon steel nozzle on the Clean Room tank (II) had corroded away, and there was an elliptical breach approximately 8 in. by 10 in. in the top of the Clean Room tanks were removed, and the remaining tanks were drained in November 1986. During tank removal, it was discovered that the bottom portion of tank I had completely corroded.

2.3.2 600 Area Activities

The operational history of the 600 Area is summarized in the 600 Area Closure Investigation Work Plan (NASA, 2009). In the mid-1960s, the 600 Area surface impoundments were designed to contain the saltwater backwash produced from regenerating the zeolite beds in the WSTF water softening plant located to the south. The impoundments received the saltwater backwash through an 8-in. diameter pipeline from 1964 to 1984.

From 1968 to 1986, 4,000 to 12,000 gallons of hazardous waste were transported by tanker truck from the 200 Area Clean Room and Chemistry Laboratory Tanks to the surface impoundments per week. White Sands Missile Range's High Energy Laser System Test Facility also contributed process waste from September 1983 to June 1984. The Hazardous Waste Transmission Line (SWMU 10) was constructed in May of 1986 to transport waste from the 200 Area Laboratories to the 600 Area surface impoundments. One month later, on June 13, 1986, the 600 Area impoundments were closed in response to an EPA order, and the pipeline was re-routed to nearby stainless steel tankers for transportation of wastes to an off-site RCRA disposal facility.

2.4 Environmental Setting

The topography at WSTF is typical of the Basin and Range physiographic province of the southwestern United States. The area is characterized by late Tertiary extensional tectonism, with linear mountain ranges separated by broad intermontaine basins in a northwest-trending direction. The adjacent San Andres Mountains (SAM) adjacent and east of WSTF represent an uplifted northwest-trending mountain block that is separated from adjacent mountain ranges to the west by the southern JDMB. WSTF is located on the alluvial-covered bedrock pediment slope that separates the eastern foothills of the SAM from the JDMB.

2.4.1 200 Area and 600 Area Surface Conditions

The 200 Area industrial complex is constructed on a pediment of thin alluvium (18 to 50 ft in thickness) overlying Permian limestone bedrock (Figure 2.4) at an elevation of approximately 4,930 ft above mean sea level. Pennsylvanian to Permian limestones crop out approximately 1,000 ft to the east on the east side of Gardner Spring Arroyo (GSA). The 200 Area is located immediately west of and is bound on the south by the GSA drainage as it diverts westward and downgradient toward the axis of the JDMB (Figure 1.2). Gardner Spring is the only natural surface water feature in the area and is located approximately 2,000 ft northeast of the 200 Area industrial complex within GSA. It is an intermittent spring and ceases to flow for long periods of up to several years between rare periods of heavy mountainfront rainfall.

The 600 Area complex in the vicinity of Building 637 is located on top of an alluvial pediment approximately 150 ft thick overlying Tertiary andesitic bedrock (Figure 2.5) at an elevation of approximately 4,755 ft above mean sea level. No significant drainages are present within the immediate area, and GSA is located approximately 1,500 ft north of the 600 Area HWMU as it moves west toward the JDMB.

Soils in the vicinity of the 200 and 600 Areas are classified as Tencee-Nickel Association Gently Sloping and Steep units (United States Department of Agriculture Soil Conservation Service, 1976). The Tencee Series is comprised of shallow, well-drained soils which formed in calcareous gravelly loamy alluvial sediments on old alluvial fans. The soil is slightly hard, dry, and very friable with common interstitial pores. The soil is approximately 30 to 45% caliche and gravel, is strongly calcareous, and has nearly continuous lime coatings on all clasts. The Nickel series soils comprise deep, well-drained soils on old alluvial fans. They are gravelly, medium textured alluvial sediments with gravel contents to 50%. The Tencee-Nickel, Gently Sloping unit is approximately 65% Tencee Very Gravelly Loam and 20% Nickel Fine Sandy Loam. The soil is nearly level to gently sloping and occurs on old alluvial fans. Included within these soils are arroyo bottoms and areas of soils similar to Tencee and Nickel soils except that they contain less than 35% coarse fragments. The Tencee-Nickel, Steep unit is approximately 45% Tencee Very Gravelly Loam and 40% Nickel Fine Sandy Loam. The area is characterized by a Chihuahuan Desert Shrub climate, with abundant sunshine, low humidity, slight rainfall, and a large day-to-night temperature variance. The adjacent mountainous terrain influences the climate by blocking the incursion of moisture laden maritime air masses. Sparse biotic resources are typical of those found in the arid southwest. The average rainfall of 10 in. per year makes it difficult to support agriculture. As is typical with all deserts and semi-arid areas, the overall species diversity is low. Vegetation includes a combination of woody shrubs and grasses. These shrubs include Louisiana white sage, creosote bush, honey mesquite, tarbush, broom snakeweed, and lotebush. Common grasses include alkali sacaton, side-oats grama, fluff grass, tobosa grass, and purple three awn. Plant species biodiversity is low relative to that in better drained upland slopes. Shrubs provide a microhabitat for warm season grasses and forbs as well as herptiles and small mammals. WSTF is considered to be a low affectability area, with little capacity to be influenced by physical stimuli. The facility receives little use by wildlife species because it has been physically altered by human disturbance.

2.4.2 200 Area and 600 Area Subsurface Conditions

The predominant alluvial lithology across the area is the poorly indurated piedmont slope facies of the Camp Rice Formation (Seager, 1981). Vadose zone alluvium in the 200 Area (Figure 2.4) and 600 Area (Figure 2.5) near the buildings of interest consists of coalescent alluvial fan deposits derived from the adjacent SAM to the east. The alluvium is an unconsolidated to locally cemented, poorly sorted polygenetic pebble to boulder conglomerate. Lenticular sandy to clayey gravels, sandy silt, and silty clays are interbedded with the conglomerate. Clast lithologies include varieties of subrounded to subangular granite, rhyolite, siltstone, and micritic limestone in sand to boulder-size clasts.

2.4.2.1 200 Area

Previous 200 Area vadose zone investigations have identified moderately cemented caliche horizons a few inches thick at depths ranging from 2 ft bgs to 65 ft bgs. Significant barriers to soil vapor migration have not been encountered within 200 or 600 Area soil borings (e.g., NASA, 1996, 2015c). Well-formed drainages like the GSA that drains south and subsequently west between the 200 Area and 600 Area HWMUs host younger piedmont slope alluvium, characterized by unconsolidated silt, sand, gravel, and loam within the arroyo floor. Alluvial fan materials visible in cut sections of the GSA are indicative of irregular channeled morphologies with grain sizes ranging from clay to well-graded sandy gravel.

Alluvium overlies Pennsylvanian to Permian age limestone bedrock, which occurs at variable depths due to faulting in the area and irregular erosion of the pre-alluvial bedrock surface. The 200 Area bedrock has been fractured pervasively, predominantly on an orthogonal system, with one fracture set trending northeast-southwest and the other fracture set trending northwest-southeast. The shallowest bedrock in the industrialized 200 Area is located in the vicinity of SWMU 4, the Clean Room Discharge Pipe (14 ft bgs), southwest across Road L at well 200-F (17 ft bgs), and at the adjacent 200 Area Clean Room Tank across Apollo Boulevard to the east (18 ft bgs). This accounts for the primary bedrock high in the vicinity of the 200 Area West Closure.

2.4.2.2 600 Area

Alluvium in the vicinity of the 600 Area HWMU is between 140 and 160 ft thick and overlies poorly fractured Tertiary Orejon Andesite bedrock. Fracturing is sparse based on the observation of camera logs recorded in 600 Area HWMU boreholes utilized for groundwater wells, with individual calcite-filled hairline fractures often separated by several tens of feet. Permian limestone is topographically and hydrologically upgradient, juxtaposed against the andesite along the Hardscrabble Hill Fault which lies east of the 600 Area HWMU and Building 637.

2.5 200 Area and 600 Area HWMU Description

2.5.1 200 Area Clean Room Tank Location and Use

A detailed description of the 200 Area Clean Room Tank located in Building 200 is provided in the HIS (NASA 2012b). Activities in the 200 Area Clean Room included the precision cleaning of propulsion system components using solvents and degreasers. Wastes included dilute solutions of organic solvents, heavy metals, inorganic salts and various formulations of Oakite Brand cleaning solutions. Wastes generated from cleaning activities were gravity fed through single-walled stainless steel pipes to the UST located west of the former front of Building 200, in front of the laboratories complex.

The original carbon steel Clean Room tank (I) had a 2,000-gallon capacity, was 14 ft long by 5 ft in diameter, and was installed in 1964. Drawings for this tank do not show corrosion protection. This original Clean Room tank (I) was used until late 1978 or early 1979 and abandoned in place. A new underground Clean Room tank (II) was installed in late 1978 or early 1979 approximately 50 ft to the west of the original tank (I). This carbon steel tank had a 4,000-gallon capacity and was 19 ft long, 6 ft in diameter with a 5/16-in. thick shell. This new tank is believed to have contained external corrosion protection. Wastes were gravity-drained from 50-gallon sinks and the sump of the outdoor Clean Room pad to the tank using 3-in. diameter, schedule 10, grade 304 stainless steel lines. The tank was connected to the drain lines using 3-in. schedule 40 carbon steel. Prior to 1968, excess wastes from the original Clean Room tank (I) were discharged to grade. This process was discontinued in 1968, and the Clean Room tank was used as temporary storage.

2.5.2 600 Area Surface Impoundments Location and Use

A detailed description of the 600 Area HWMU is provided in the 600 Area Closure Investigation Report (NASA, 2011a). The surface impoundments, constructed in 1964, consisted of two adjacent individual 150 ft x 350 ft x 3 ft deep cells, separated by a narrow central berm, and lined with an 8-mil polyvinyl chloride (PVC) liner. This liner was protected by an overlying layer of rip-rap, consisting of large gravel and wire mesh, and sand. The cells received saltwater backwash through an 8-in. diameter pipeline from 1964 to 1984. There is no indication that this pipeline was used at any time for hazardous waste. HWMU closure activities commenced on November 7, 1988, and following construction of the closure, vent wells were installed on May 26, 1989. Concrete lined drainage ditches were constructed along the north, south and east sides of the cap to support the drainage of surface water.

2.6 Previous Vadose Zone Investigations Delineating Contaminant Distribution

The concentrations and distribution of vadose zone soil vapor contaminants in the 200 and 600 Area HWMUs have been defined by previous comprehensive vadose zone investigations (NASA, 2011a, 2013b, 2015b) that have all been approved with modifications by NMED (NMED, 2011a, 2013b, 2015a, 2015b). Subsequent monitoring of 200/600 Area soil vapor distribution has been performed through contemporaneous semi-annual sampling of all accessible multiport soil vapor monitoring ports in the 200 and 600 Areas along with groundwater sampling at underlying or nearby locations (NASA, 2012a, 2012d, 2013c, 2015b). The 200 Area Phase II IR (NASA, 2015b) presented the results of the latest comprehensive soil vapor sampling event in the 200 and 600 Areas conducted in October 2014.

2.7 Contaminants of Potential Concern

The VIAWP (NASA, 2016) presented a list of 13 VOCs known to have been managed in the 200 Area USTs and potentially discharged at SWMUs during historical operations including: TCE; PCE; Freon 11; Freon 113; 2-butanone (methyl ethyl ketone); 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene;

toluene; xylenes; acetone; and 2-propanol (isopropyl alcohol). Waste management practices at WSTF have been continually modified and improved through time to effectively minimize, document, store, and dispose of wastes. Wastes generated in the 200 Area were transported to the 600 Area surface impoundments. The VOCs placed in the 600 Area impoundments were the same as those stored in 200 Area USTs.

2.8 Site Conceptual Exposure Model

A preliminary site conceptual exposure model (SCEM) was developed as part of the 200 and 600 Area VIAWP (NASA, 2016b; Figure 2.6) to provide an understanding of the potential for exposure to hazardous contaminants at the site based on the source of contamination, the release mechanism, the exposure pathway, and the potential receptor(s). Please see Section 6.1 for the SCEM revised based on the results of this investigation.

2.8.1 Contamination Sources

The former UST locations at the 200 Area Clean Room tanks and the 600 Area surface impoundments were the primary contaminant sources. Secondary sources include groundwater directly impacted by releases and soil vapor derived from groundwater that filled fractures within bedrock and pore space within the overlying soils. Subsurface vadose zone soils in the 200 and 600 Areas that were once impacted by the releases have been evaluated through sampling extensively. The soils have been shown to be non-hazardous in nature and are not considered a continuing source of contaminants to groundwater (NASA 2015c, 2011a).

2.8.2 Release Mechanisms

Vadose zone contamination at the 200 Area Clean Room HWMU and 600 Area surface impoundments HWMU resulted from the release of hazardous constituents into the vadose zone between 1964 and 1986. Release mechanisms comprised the infiltration of liquid-phase contaminants into the vadose zone, downward to the groundwater table by the hydrodynamic processes of gravity and precipitation, and infiltration of the vadose zone pore space as vapor-phase contamination.

2.8.3 Potential Exposure Pathways and Receptors

Potential present-day receptors identified in the vicinity of the 200 and 600 Area HWMUs are industrial/occupational workers who occupy buildings adjacent to the HWMU areas while performing their daily duties. The primary potential present-day exposure pathway for these WSTF industrial/occupational site personnel in the 200 and 600 Area buildings addressed in this investigation is the inhalation of volatile contaminants derived from soil vapor and potentially present in indoor air. Soil vapor contamination has been identified from past investigations in the vadose zone near WSTF industrial area buildings (NASA, 2015c, 2011a). Additionally, present-day receptors in Buildings 200 and 637 are potentially exposed to residual soil contamination in the vicinity of these buildings.

Building 637 is situated approximately 100 ft away from the 600 Area surface impoundments HWMU that is the source of VOC releases. In the future, if the HWMU closure cap is removed or compromised and a building is situated at that location, building occupants could be exposed to VOCs when entering that building through vapor intrusion. Because Building 200 is adjacent to the former 200 Area West UST that is the source of VOC releases from the 200 Area Clean Room, potential future receptors for this HWMU are identical to present-day receptors.

There are no current or future residential land use scenarios anticipated in the vicinity of the 200 or 600 Area HWMUs. WSTF is a controlled test site located on the U.S. Army White Sands Missile Range. There are no encroaching residential areas and no present or future residential land use scenarios in this SCEM, though contaminants were screened to the most conservative residential levels. A cumulative risk screen evaluation in conformance with Risk Assessment Guidance has been provided in Section 6.1 as a supporting line of evidence for acceptable risk levels.

The groundwater underlying much of the WSTF industrialized source areas is known to be contaminated and its future use and potential risk to receptors are part of ongoing site-wide evaluations and corrective actions. The water supply wells for the 200 and 600 Areas are located several miles to the west of the investigation areas and are not contaminated. These wells are monitored regularly for the presence of known WSTF groundwater contaminants. A groundwater assessment was not conducted specifically as part of the vapor intrusion assessment. Groundwater assessment activities are regularly reported in NASA's quarterly Periodic Monitoring Reports (NASA, 2018a). These data are also available for review in conjunction with results of the VIAR.

3.0 Scope of Activities

The area of concern on the west side of Building 200 is located directly above the footprint of the 200 Area Clean Room Tank HWMU adjacent to MSVM wells 200-SV-05 and 200-SV-09, and MSVGM well 200-LV-150 (Figure 3.1). The area of concern within Building 637 is approximately 100 ft southeast of the southeast margin of the 600 Area HWMU in close proximity to MSVM wells 600-SGW-1, 600-SGW-2, and 600-SGW-5 (Figure 3.2).

The following additional sampling activities were performed as part of this assessment to evaluate the existence of a complete exposure pathway.

- Sample and evaluate VOC concentrations (including COPCs) in soil vapor in the upper vadose zone utilizing MSVM and MSVGM well ports located in the vicinity of the buildings.
- Sample and evaluate VOC concentrations (including COPCs) in indoor air and outdoor air.

The following activities were performed as part of the vapor intrusion assessment. Some of the preliminary required vapor intrusion activities identified in Steps 1 and 2 of Section 1.4 had already been performed as part of previous investigations in the 200 and 600 Areas (NASA, 2013b, 2015c, 2011a).

- Identification of the appropriate vadose zone soil vapor sampling locations (based on the previous 200 Area HIS, 200 and 600 Area IRs, and soil vapor sampling events in the 200 and 600 Areas).
- Determination of a representative number of soil vapor and air samples, specification of the frequency and duration of sampling, and identification of the sampling and analytical methods to be employed.
- Daily planning sessions and health and safety briefings.
- Field collection of soil vapor samples from the uppermost vadose zone located adjacent to the target buildings.
- Field collection of indoor air samples within the buildings and outdoor samples adjacent and upgradient of the buildings.
- Documentation, management, and shipment of soil vapor and indoor and outdoor air samples (including field quality control [QC] samples).

- Performance of laboratory analyses by an accredited laboratory (including laboratory QC samples), analytical reporting, and data processing using the established WSTF data management system.
- Evaluation and interpretation of technical and analytical data for use in development of a final VIAR.

3.1 Data Quality Objectives

The assessment approach was based on "Guidance on Systematic Planning Using the Data Quality Objectives Process" (DQOs; EPA, 2006), the Corrective Action Site Investigations requirements of the Permit (NMED, 2023; Part 3), and Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2022c). The data acquisition plan (i.e., sampling design) is based on the data quality objective process. The DQOs addressed the qualitative and quantitative nature of the sampling data to ensure that any data collected was appropriate for the intended purpose. Development of the DQOs considers precision, accuracy, representativeness, completeness, comparability of the data, sampling locations, laboratory analyses, detection limits, data quality, and the employment of adequate quality assurance/quality control measures. The VIAR documents the DQO procedures that were followed to assess the potential migration pathway between vadose zone soil vapor contamination and indoor air.

3.1.1 Problem Statements

The 200 Area Clean Room HWMU USTs leaked contaminants to the vadose zone, comprising approximately 18 ft of porous alluvial soil overlying fractured limestone bedrock. The tanks were located at a depth of between 8 and 12 ft bgs. The water table is located at a depth of 140 ft bgs. Soil samples collected during the installation of adjacent soil borings indicated that soil samples did not exceed the regulatory criteria applicable at the time of the investigation and soil remedial action was not required (NASA, 2015c). Groundwater in the area exceeds the NMED cleanup level for TCE. Soil vapor concentrations from samples collected in adjacent MSVM wells and a MSVGM well exceeds NMED VISLs for TCE, PCE, and Freon 113 and the WSTF RBC for TCE. The HWMU is located directly below a northwestern extension of Building 200 that is currently operated by an industrial/occupational labor force. The inaccessible location of this HWMU is the primary constraint to the vapor intrusion assessment (Figure 2.4).

Contaminants from the 600 Area HWMU may have been leaked to the vadose zone characterized by approximately 146 ft of porous alluvial soil overlying poorly-fractured andesite bedrock. A perched (and potentially temporary) water table is currently encountered at a depth of 143 ft bgs, which may be sourced from groundwater recharge during heavy rainfall and up to this time from the adjacent 600 Area Overflow Lagoons that are currently in the process of being removed. Soil samples collected during the installation of soil borings through the Closure cap to bedrock indicated that soil samples did not exceed the regulatory criteria applicable at the time of the investigation and soil remedial action was not required (NASA, 2011a). Groundwater in the area exceeds the New Mexico cleanup level for TCE. Soil vapor concentrations from samples collected in adjacent MSVM and MSVGM wells historically exceed NMED VISLs for TCE, PCE, and Freon 113. The 600 Area HWMU is located approximately 160 ft from Building 637 that is operated by an industrial/occupational labor force.

3.1.2 Study Goals

The primary decision is whether additional corrective actions are warranted at the 200 and 600 Area targets (identified through previous investigation) as a result of the intrusion of soil vapor VOCs from the vadose zone into nearby buildings affecting the indoor air quality. Alternative actions for the decisions include:

- Consider a "Corrective Action Complete" status determination.
- If required, perform a corrective measures evaluation for the site(s) to identify remedial options for mitigation of source(s) of continuing contamination or human health risk.

3.1.3 Information Inputs

The results of previous investigations performed in the 200 and 600 Areas provide information for this VIAR. The results of these previous investigations are documented within the 200 Area HIS (NASA, 2012b), the 200 Area Phase I Status Report (NASA, 2013b), the 200 Area Phase II IR (NASA, 2015c), and the 600 Area Closure IR (NASA, 2011a), including:

- Detailed investigation pertinent to the establishment and operational history of the 200 and 600 Area HWMUs.
- Analytical data sets for soil (as part of the risk/hazard screening), soil vapor, and groundwater samples collected during previous investigations at the 200 and the 600 Area HWMUs.

The primary data inputs for the VIAR are the analytical results of soil vapor, indoor air, and outdoor air sampling described in Sections 3.0 and 4.0 of this report.

Two types of soil vapor screening criteria are used as inputs to assess potential risks related to the soil vapor data. These include NMED VISLs (NMED, 2022c) and WSTF RBCs (NASA, 2019a). NMED VISLs are applicable to soil vapor concentrations present immediately below a building foundation, from where vapors may enter a building. WSTF RBCs are calculated for various depths below a building foundation, and therefore can potentially be applied to assess soil vapor risks from data collected at different depths. Indoor air screening criteria used in this VIAR are taken from NMED (2022c), and the EPA (EPA, 2019) if no values were provided by NMED. See also <u>Table 1.1</u> and Section 1.5.

3.1.4 Spatial Extent of Assessment

The horizontal study boundaries are shown in <u>Figure 1.2</u>. The vapor intrusion pathway that is considered a primary potential threat and requires priority assessment is typically for buildings located within 100 ft of the vadose zone soil vapor plume that exceeds established soil vapor RBCs. In this case, NMED VISLs and WSTF RBCs were utilized to identify the targets of greatest concern.

In the 200 Area, soil vapor from the three most proximal MSVM and MSVGM wells located within 85 ft of the former Clean Room Tanks HWMU and air from the most proximal tier of indoor rooms on the west side of Building 200 within a distance of 100 ft of the footprint of the HWMU was evaluated (Figure 2.4). In the 600 Area, soil vapor from the three most proximal MSVM wells within 240 ft of Building 637, and the indoor air within Building 637 (Figure 2.5) were evaluated.

The vertical boundaries of the study are constrained between a maximum depth of 34 ft in the vadose zone as characterized by the maximum depth of upper ports in MSVM and MSVGM wells utilized and the industrial/occupational worker breathing zone of between 3 and 5 ft above ground surface.

3.1.5 Decision Rule

The vapor intrusion assessment addresses COPC soil vapor concentrations within the upper vadose zone surrounding the target buildings and COPC air concentrations inside the buildings. The assessment was performed to determine if a complete pathway is present and whether contaminants are present at concentrations at or above the latest NMED VISLs (NMED, 2022c) and WSTF RBCs (NASA, 2019a).

Updated RBCs were determined concurrently with the pre-assessment planning and preparation phase for this vapor intrusion assessment.

Decisions were structured as follows.

- If the subsurface vadose zone VOC contribution to indoor air levels exceeds indoor air NMED VISLs and updated NMED-approved WSTF RBCs as a result of a confirmed complete exposure pathway under the industrial/occupational worker scenario, then there is an unacceptable current and future risk to building occupants. These levels must be specific to vapor intrusion as opposed to an artifact of an alternate process identified within the building. Corrective action, removal and/or remediation are necessary.
- If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable.
- If the vapor intrusion assessment fails to fully determine the nature, source, and extent of indoor air contamination, additional investigative measures may be required.
- 3.2 Assessment Activities

Two semi-annual sampling events (seasonal events within the summer [August 2017] and winter [February 2018]) were performed to address the potential issue of seasonal building pressure gradients that can influence vapor intrusion into buildings. Indoor and outdoor air pressures were not observed to vary significantly (all readings were approximately 30 in. of mercury for both sampling events). Early morning outside temperatures for the August event (67-70 degrees Fahrenheit) were significantly higher than for the February 2018 event (34 to 37 degrees Fahrenheit), with indoor air temperatures maintained in the vicinity of 70 degrees Fahrenheit for both buildings. VOC levels in ambient air can vary over time and may fluctuate diurnally due to the ebb and flow of industrial/occupational activity, and as a result of atmospheric heating and cooling cycles, air pressure changes, and wind speed. During winter months, heated air rises within buildings and exits through the roof. This reduces indoor air pressure, may draw in soil vapor, and potentially increases vapor intrusion rates.

3.2.1 Vadose Zone Soil Vapor Sample Locations and Schedule

Soil vapor samples were collected from the shallowest soil vapor port within the three MSVM or MSVGM wells located closest to the 200 Area and 600 Area target buildings. In the 200 Area, the three wells are all located within 84 ft of the west side of Building 200. In the 600 Area, the three wells are all located within 260 ft of Building 637. The soil vapor wells and specific ports that were sampled are listed below.

- Adjacent to the 200 Area Clean Room Tank HWMU (Figure 3.1, Table 3.1)
 - o 200-SV-05 at 9 ft
 - o 200-SV-09 at 19 ft
 - 200-LV-150 at 34 ft
- Nearby the 600 Area HWMU (Figure 3.2, Table 3.1)
 - o 600-SGW-1 at 12.5 ft
 - 600-SGW-2 at 12.5 ft
 - 600-SGW-5 at 7.5 ft

Six vadose zone samples from the vapor monitoring well network and one duplicate sample were collected from the 200 and 600 Area MSVM and MSVGM wells for each soil vapor sampling event. Additional field QC samples are provided in Section 3.2.3. Two consecutive semi-annual sampling events were performed in August 2017] and February 2018. A total of 14 vadose zone soil vapor samples were collected.

3.2.2 Indoor and Outdoor Air Sample Locations and Schedule

The number and locations of indoor and outdoor air samples was established in the VIAWP (NASA, 2016b) based on building size, proximity to the potential intrusion source, the scale of the vadose zone vapor impact, subsurface heterogeneity, and sample purpose. Increased sample density is typical of a nearby spill or release and heterogeneity in the subsurface. Because no releases have been identified in soil, the soils are relatively homogeneous and porous, and a fractured bedrock and groundwater VOC source is inferred, sample densities were compared to standard guidance (e.g., ODEQ, 2010). Typical sample densities in buildings between 1,000 square feet (sq ft) and 10,000 sq ft in size are one sample per 1,500 sq ft. The sample locations identified in this VIAR (Figure 3.1, Figure 3.2) have a greater density than the standard guidance.

Where rooms exceed 500 sq ft in size as in the case of Building 200, samples were collected at a frequency of approximately one sample per 500 sq ft. Samples were collected within the normal breathing zone at a height of between 3 to 5 ft above the building floor. Ambient outdoor air samples were collected at the same time and using the same method as the indoor samples at each of the two building locations. Indoor and outdoor air sample locations are summarized below.

- Building 200 Preparation Building (Figure 3.1, Table 3.2)
 - Eight indoor air samples within individual rooms in the areas above and adjacent to the subsurface footprint of the former 200 Area Clean Room Tank HWMU.
 - Two outdoor air samples adjacent to Building 200 near the former 200 Area Clean Room Tank HWMU at locations upgradient of the prevailing wind direction on the day of sampling.
 - One sample duplicate.
- Building 637 Groundwater Assessment Building (Figure 3.2, Table 3.2)
 - Four indoor air samples in Building 637 distributed in the four quadrants of the single room building.
 - Two outdoor air samples adjacent to the Building 637 on the northeast side at locations upgradient of the prevailing wind direction on the day of sampling.
 - One sample duplicate.

A total of 16 indoor and outdoor air samples and two duplicate samples were collected for each sampling event performed for a total of 18 samples during each event. Two consecutive semi-annual indoor and outdoor air sampling events were performed in August 2017 and February 2018. A total of 36 indoor and outdoor air samples were collected during vapor intrusion assessment fieldwork.

3.2.3 Sampling Procedures

NASA has developed comprehensive internal procedures for soil vapor sample collection and management. These procedures provide specific information on sample management and related documentation, including instructions for sample custody (internal to NASA and external during shipment), storage, packaging, shipment, delivery tracking, and related recordkeeping. These procedures

were followed during this assessment to ensure appropriate sample management. Sampling procedures and the equipment used follows generally accepted EPA guidance (EPA, 2015a). Sample collection techniques and flow rates conformed to the specifications for the appropriate EPA sample collection method. Soil vapor samples from MSVM and MSVGM wells, indoor samples, and outdoor samples for each area was collected contemporaneously on the same day within each area. Samples from the 200 and 600 Areas were collected on consecutive days for both semi-annual sampling events. The two semi-annual sampling events were 182 days apart. The following generalized procedures were followed:

- Sampling start times and the initial vacuum gauge readings were recorded in the field sampling logbook and on the internal chain-of-custody (CoC) form.
- For indoor and outdoor air samples, a flow-controller was to be affixed to the canister prior to sampling at a rate pre-set by the laboratory to provide for collection of the samples over an 8-hour period. The indoor and outdoor sampling periods were the same in length, but the outdoor air samples were initiated approximately one hour before starting the indoor samples to reduce potential errors. The EPA estimates that indoor air undergoes a complete exchange every one to two hours. Initiating outdoor air sampling early compensated for this potential lag time.
- Sample valves on each canister were opened to perform sample collection.
- Upon the completion of vadose zone, indoor air, and outdoor air sampling, the valve on the passivated stainless steel canister was closed and the time and ending vacuum pressure recorded in the field sampling logbook and on the internal CoC form.
- Canisters and flow-controllers were shipped back as a single shipment to the analytical laboratory for each of the two semi-annual sampling events.

Disposable gloves were worn to collect soil vapor and indoor air samples and were changed between sampling locations. Gloves and other disposable materials contacting the samples were collected and managed in accordance with the IDW Management Plan in the VIAWP (NASA, 2016b; Appendix A).

Field QC samples were collected to ensure high quality data are generated during the assessment, and were analyzed for the same parameters as the primary samples.

- Indoor and outdoor duplicate samples were collected at a rate of 10% of the project sampling locations (two samples per sampling event).
- Field blanks (one outdoor and one indoor for each of the two target buildings in the 200 Area and 600 Areas at a rate of four samples per sampling event).
- Trip blanks (one per sample shipment).

The samples were managed according to established site procedures that included labeling, CoC documentation, storage, packing, and expedited overnight shipment to the analytical laboratory for analysis.

3.2.4 Analytical Tasks

Soil vapor samples were analyzed using EPA Method TO-15 in order to achieve the assessment DQOs. NASA typically contracts services from off-site National Environmental Laboratory Accreditation Program-accredited analytical laboratories as required to support program and project needs. The analytical tasks required to achieve the project objectives was awarded to the ALS Environmental laboratory. Potential laboratories must respond to a comprehensive statement of work developed to meet the project objectives defined in this VIAR. Analytical standard operating procedures (SOPs), laboratory quality manuals, and other laboratory-specific documentation are provided by the analytical laboratory

following award of the contract and are not available in advance. These documents are retained in the project record and are available for NMED review as required.

The overall objective for laboratory analysis is to produce data of known and sufficient quality. Appropriate procedures and QC checks were used so that known and acceptable levels of accuracy and precision are maintained for each data set. All samples were analyzed by a fully qualified laboratory in accordance with the laboratory's Quality Plan, which ensures that the contract laboratory adheres to standardized analytical protocols and reporting requirements and is capable of producing accurate analytical data.

Method blanks and laboratory QC samples are prepared and analyzed in accordance with the laboratory's method-specific SOPs. The analytical results of method blanks were reviewed to evaluate the possibility of contamination caused by analytical procedures. At a minimum, the laboratory analyzed method blanks and laboratory control samples at a frequency of 1 in 20 for all batch runs.

3.2.5 Health and Safety

Field activities were conducted in accordance with requirements of Occupational Safety and Health Administration Standards for Hazardous Waste Operations and Emergency Response ([HAZWOPER]; 29 Code of Federal Regulations [CFR] 1910.120 [a] – [o], 2013). The WSTF environmental contractor's corporate-wide Safety and Health Plan (SHP) was augmented with site-specific Job Hazard Analyses to address potential hazards foreseeable for the project and was followed in accordance with applicable requirements of the standards. The augmented SHP addressed safety and health issues pertaining to work activities, including known and reasonably anticipated hazards associated with project scope of work as well as contingencies for unexpected conditions. Project field personnel were required to be current in HAZWOPER training. The SHP was reviewed and approved by the contractor Health and Safety Manager, and no new hazards were encountered that were not addressed by the SHP.

3.2.6 Field Documentation

The field geologist ensured that activities related to this assessment were documented using a field logbook, field data records, and/or any required site-specific procedural documentation. Logbook entries included, as applicable, information such as:

- Standard Daily Header project name, logbook number, date, weather conditions, team members present and their affiliations (including subcontractors), sample location identification, day's task(s), daily safety meeting topics, required personal protective equipment (PPE), equipment in use, and any calibration information, if applicable.
- Daily activities (time and observations recorded) site arrival and departure, visitors and the purpose of their visit, vapor sampling information, decontamination (i.e., method, equipment cleaned), reference data sheets or maps, if applicable.
- Daily summary action items, materials used, changes or deviations made from planned protocol, plan for next day.
- Signatures (field personnel and logbook reviewer).

At a minimum, field records included observations of environmental conditions, sampling conditions, and sample documentation. For analytical samples, the date, location, depth, sample type, collection method, identification number, sampler, and any circumstances, events, or decisions that could impact sample quality were documented by the on-site geologist in the project field logbook. Even though each case may be unique, the geologist must document any conditions that precipitated any decisions for the

unsuitability of samples for analyses. In addition to the field logbook entries for sampling events, CoC forms were completed for analytical samples and maintained with project documentation.

Evidential records for the entire project are maintained in hard copy or electronic form and consist of:

- Project VIAR with NMED modifications or deviations redlined.
- Site-specific internal procedural documentation or plans.
- Project logbooks.
- Field data records.
- Sample CoC forms.
- NMED correspondence.
- Final analytical data packages.
- Reports.
- Miscellaneous related records such as photos, maps, drawings, etc.
- 3.2.7 Investigation-Derived Waste Management Plan

As required in Permit Part 6 (Section 6.2.13; NMED, 2023), the IDW Management Plan for this vapor intrusion assessment was provided to NMED in the 200 and 600 Area Vapor Intrusion Assessment Work Plan (NASA, 2016b, Appendix A). The IDW Management Plan provided a description of the potential wastes that could be generated from the 200 and 600 Area as well as procedures for waste management, waste characterization, and waste disposition. Wastes that were generated as part of the assessment comprised: used sampling equipment; PPE; and alcohol free moist wipes used for equipment decontamination.

4.0 Field Data Collection, Assessment, and Review

4.1 Project Documentation

All facets of this assessment were documented in detail by the responsible project personnel. Records are retained in the WSTF Operating Record and can be accessed at any time by authorized WSTF personnel. Sample information and field measurements were recorded in the field logbook by the responsible project field personnel. Records were reviewed by knowledgeable project personnel on a regular basis during the assessment and are retained in the project file. The sample information and field measurements are ultimately archived in the WSTF Records Management System as part of the Operating Record. As required for reporting, these data are also transferred to and archived in operational and historical databases.

4.2 Building Walkthrough Inspections

For most sites, detecting specific COPCs inside a building is not definitive evidence of vapor intrusion since VOCs can also be common contaminants in ambient air and may also have other sources inside buildings. Approximately two weeks prior to collecting the first semi-annual set of indoor and outdoor air samples at Building 200 and Building 637, a pre-sampling inspection was performed to identify conditions that may affect or interfere with the proposed sampling, and where possible to provide temporary mitigation of these conditions. A standard building inspection form (<u>Appendix A</u>; developed from ODEQ, 2010) was used to evaluate the type of structure, floor layout, physical conditions, and

airflow of the buildings being studied. The 200 Area building complex includes a network of laboratories and cleaning rooms that contain several of the COPCs identified in Section 2.2 that are commonly used as laboratory chemicals (e.g., acetone, methyl ethyl keytone, isopropyl alcohol).

Potential COPC sources were evaluated within the building by conducting a product inventory and recording the results on the building survey form. The primary objective of the product inventory is to identify potential air sampling interference by characterizing the occurrence and use of chemicals and products throughout the building. This information helped formulate the indoor environment profile. Both Building 200 and Building 637 are single floor structures. Individual rooms were carefully inspected for products and an inventory provided as products stored in another area of the building can affect the air of the room being tested.

An MSA Altair^{®2} 5X photo ionization detector (PID) was used for the indoor and outdoor air screening of potential air contaminants (oxygen, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfur dioxide, ammonia, chlorine, and VOCs) at concentrations as low as 1 part per million (ppm). Dry decontamination followed. An alcohol-free moist wipe was used for the PID between screening readings. Any waste materials removed from the equipment and the wipes used were disposed of as IDW and managed in accordance with the VIAWP (NASA, 2016b; Appendix A).

Portable vapor monitoring equipment readings using the PID and a description of any odors present were used to help evaluate potential indoor sources. Where available, chemical ingredients of interest were recorded for each product as best possible. If the ingredients are not listed on the label, each product's exact and full name, and the manufacturer's name, address and phone number, if available were recorded on product inventory forms (<u>Table 4.1, Table 4.2, Appendix A</u>).

Building walkthrough inspections were performed at Building 200 on June 21, 2017, and at Building 637 on June 26, 2017. The junction between walls and the building foundation of the west side of Building 200 and surrounding 600 Area Building 637 were visually evaluated at this time to the best extent possible for structural integrity, staining, or any other visible defects. No significant foundation issues were identified at either building.

Walkthrough observations were documented using building inspection forms for each of the two buildings (<u>Appendix A</u>) to support evaluation of the vapor intrusion pathway. Each building inspection form includes a product inventory form listing the specific products found in each building that have the potential to affect air quality. Photographs recorded during and immediately following the initial building inspections on June 28, 2017, are provided in <u>Appendix B</u>: Photographs 1 through 18 were taken at Building 200; and Photographs 19 through 26 were taken at Building 637.

4.2.1 Building 200

Building 200 is an industrial building used primarily as a laboratory. The northwest side of the building incorporates machine shops, equipment and materials storage, utility rooms, photo lab, garage, and offices (Appendix A). The building is an insulated single floor structure that was constructed in 1965 The portion of Building 200 on the west side that is of interest relative to the vapor intrusion study is approximately 11,000 square feet in size. The building is cooled using forced refrigerated air through a central air system, with outdoor air infiltration restricted to open doors, door thresholds, windows, and potentially any cracks in the structure walls. Above grade construction comprises sealed concrete walls with some metal paneling in the North Highbay. The floor is composed of poured concrete covered with concrete

200 and 600 Area Vapor Intrusion Assessment Report

² Altair is a registered trademark of MSA Technology, LLC.

sealant and 9-in. x 9-in. x 1/16-in. vinyl tile. The heating system relies upon hot air circulation generated using natural gas, which is also used to heat water. The heating and cooling systems are typically run 24 hours a day, seven days a week due to operation of the building as a laboratory. Room 206B (Figure 3.1) was constructed directly above the former fenced yard that was the location for the Clean Room tank HWMU installed in the mid-1960s. The machine shop is equipped with a drill, lathe, and a variety of lubricating oils.

The building is a non-smoking facility and is cleaned as required and on a daily basis on workdays (Monday through Friday) using commercial cleaning materials. A cleaning room is also present for advanced equipment cleaning operations that are performed regularly during the work week. Cosmetics and air fresheners are used regularly by employees. No painting had been performed within the six months preceding the first sampling event, and no new textiles had been installed. Several flume hoods are present on the peripheral interior walls and vent to the outside of the building. Pesticides are applied on a quarterly schedule to address problems with stinging insects, spiders, and scorpions. During the walkthrough, it was noted that several odors were present in the building, which is not atypical of a chemical laboratory. Many individual rooms had distinct odors related to the specific supplies stored within the room. Chemical supplies included solvents and volatile chemicals that are components of oils, lubricants, paints, and adhesives. Potable water is provided by the WSTF supply wells located within the JDMB approximately 5 miles to the west. Sewage is managed through the City of Las Cruces public sanitary system that was connected to the building in 2015. Table 4.1 provides a summary of the products contained within Building 200 as listed within the product inventory form of Appendix A. The products included a variety of glues, acids, paints, flammables, oils, and Freon. Photographs 1 through 18 were taken within a variety of rooms during the walkthrough inspection and are provided in Appendix B.

4.2.2 Building 637

Building 637 is a relatively small and isolated industrial building approximately 1,200 square feet in size (<u>Appendix A</u>). It is used by the WSTF Environmental Department for the groundwater assessment program, primarily for the storage and management of soil, soil vapor, and groundwater sampling equipment and laboratory-provided sample containers. The building is a single floor structure with insulated walls that was constructed in 1992 Airflow through the building is generated by forced air through two evaporative coolers located on the north wall of the building, with outdoor air infiltration through a door and single garage bay door on the northwest side. The above grade construction consists of poured concrete footing and corrugated metal siding sealed with paint. The floor comprises a concrete slab with concrete sealant. Heating is provided by hot air circulation fueled by natural gas. The air conditioning system is typically operated between 7 a.m. to 4 p.m. on workdays on an as-needed basis. The system is usually shut down at weekends when the building is unoccupied. The building contains a workbench with tools and a variety of lubricants in the west corner of the building.

The building is a non-smoking facility. Cleaning products are regularly used to clean work surfaces when required. No cosmetic products are used, no painting had been performed in the six months preceding the first sampling event, no air fresheners are used, and no carpets, drapes, or textiles are present. A pesticide application was performed within a month prior to the building inspection for insects and rodents. Trace odors are present in the building, usually related to chemical preservatives (dilute acids) used for groundwater samples. Potable water is supplied by the WSTF supply wells located within the JDMB approximately five miles to the west. No restroom facilities are present in the building 637 as listed within the product inventory form of <u>Appendix A</u>. The products included dilute acid preservatives, cleaning products, oils, lubricants, compressed gas (nitrogen), and fuel in an adjacent outside storage building (gasoline). Photographs 19 through 26 were taken inside and outside Building 637 during the walkthrough inspection and are included in <u>Appendix B</u>.
4.3 Preparation of Buildings

The pre-sampling inspection provided adequate advance notice to the local workforce to minimize potential background sources prior to air sampling through best management practices. At a minimum, it was ensured that containers were tightly sealed. However, no potential sources were actually removed from Building 200 or Building 637. The inability to eliminate potential interference is considered justification for not testing, especially when testing for similar compounds at low levels. Although Freon was observed to be stored in Room 202 where sample B200-IA-05 was located, sample collection proceeded as planned. Room 202 is the former etching room that has been converted to a storage area for various solvents (Appendix A).

Once interfering background sources were removed or minimized to the extent possible, the building ventilation system in Building 200 continued to operate under normal conditions for approximately 48 hours (Friday and Saturday) prior to testing to eliminate residual contamination in the indoor air. Ventilation was accomplished by operating the building's heating ventilation and air conditioning (HVAC) system. Air samples were intended to represent typical exposure in a mechanically ventilated building, and the operation of HVAC systems during sampling was noted. It was ensured that the building's HVAC system was operating under normal conditions. In addition, steps were taken to avoid any painting, cleaning, pesticide spraying, or air freshening activities at least two weeks prior to air sampling. No exceptions were noted.

4.4 Field Preparation and Sampling

Vapor intrusion assessment fieldwork included preparation of the buildings to be assessed, sample planning and preparation activities, and sample collection and management. Field activities commenced following appropriate planning and preparation activities and NMED approval of the VIAWP (NMED, 2016a). Field assessment activities required approximately six months in order to complete two semi-annual soil vapor sampling events that were performed in consecutive summer (August 2017) and winter (February 2018) seasons.

4.4.1 Summer Semi-Annual Sampling Event (August 2017)

- Monday August 21 analytical laboratory sampling equipment and containers shipped to WSTF.
- Friday August 25 non-working day at WSTF. Buildings 200 and 637 experienced minimal occupation or traffic. HVAC system operating normally 24-7 in Building 200 laboratories. Building 637 HVAC system shut off for weekend.
- Saturday August 26 Building 637 sampling event performed starting at 0700 hours, completed at 1700 hours.
- Sunday August 27 Building 200 sampling event performed starting at 0700 hours, completed at 1730 hours.
- Weather conditions at 0700 hours (both days): clear skies, outdoor air pressure approximately 30 in. of mercury, warm with outside temperature 67 to 70 degrees Fahrenheit, trace winds from the northeast at < 2 miles per hour.

4.4.2 Winter Semi-Annual Sampling Event (February 2018)

• Tuesday February 20 – analytical laboratory sampling equipment and containers shipped to WSTF.

- Friday February 23 non-working day at WSTF. Buildings 200 and 637 experienced minimal occupation or traffic. HVAC system operating normally 24-7 in Building 200 laboratories. Building 637 HVAC system shut off for weekend.
- Saturday February 24 Building 637 sampling event performed starting at 0700 hours, completed at 1630 hours.
- Sunday February 25 Building 200 sampling event performed starting at 0640 hours, completed at 1730 hours.
- Weather conditions at 0700 hours (both days): clear skies, outdoor air pressure approximately 30 in. of mercury, outside temperature 34-37 degrees Fahrenheit, no winds.
- 4.5 Vapor Intrusion Assessment Sampling

The vapor intrusion assessment incorporated soil vapor samples from MSVM and MSVGM wells, outdoor air samples, and indoor air samples. The objective of this sampling was to determine whether indoor air in Building 200 and Building 637 is impacted by intrusion of VOCs from soil vapor. Laboratory containers and analysis were provided by the ALS Environmental Laboratory in Simi Valley, California. Soil vapor grab samples were collected from ports in MSVM and MSVGM wells utilizing 1-liter evacuated canisters provided by the laboratory. Outdoor and indoor air samples for the two buildings targeted for air intrusion analysis (200 Area Building 200 and 600 Area Building 637) were collected in 6-liter canisters equipped with 8-hour flow controllers. All samples were analyzed using EPA Method TO-15 in order to achieve the vapor intrusion assessment DQOs.

4.6 Vadose Zone Soil Vapor Sampling

Soil vapor sampling was conducted following standard site procedures for each of the MSVM or MSVGM well sampling ports. Critical information describing the sampling event was recorded in the field sampling logbooks. Vadose zone soil vapor samples were collected in laboratory-evacuated stainless steel electropolished passivated vessels (passivated stainless steel canisters) certified as clean and provided by the laboratory. The stainless steel construction ensures soil vapor and air samples did not permeate through the vessel wall or degrade due to exposure to light during shipment to the laboratory. Standard 1-liter canisters were used for soil vapor grab sampling from MSVM and MSVGM wells. These samples were anticipated to be more concentrated than the corresponding indoor and outdoor air samples.

Immediately prior to sampling, the ambient barometric pressure was recorded and vacuum conditions within the passivated stainless steel canisters recorded. Three tubing volumes of air were purged from each sampling port and stainless steel tubing using a LANDTEC^{®3} GEM 2000+ gas analyzer to ensure the removal of stagnant air. The pump on a gas analyzer was used to purge the soil vapor well tubing for a minimum of five minutes per zone to evacuate at least three volumes of the ¼ in. tubing and soil vapor port. During purging, concentrations of methane (CH4), carbon dioxide (CO2), and oxygen (O2) indicator parameters were monitored. Each parameter is required to be stable prior to sampling; additional purging was performed as required. A passivated stainless steel canister was then attached to the sampling port, opened, and filled to capacity (<u>Appendix B</u>, Photograph 27). Field QC samples were collected to ensure high quality data were generated during the assessment (Section 3.3.7).

³ LANDTEC is a registered trademark of Q.E.D. Environmental Systems, Inc.

4.7 Indoor and Outdoor Air Sampling

Passivated stainless steel canisters were utilized for indoor and outdoor air sampling. Six-liter volume canisters were used due to the relatively low concentration of analytes anticipated in the indoor and outdoor samples, the 8-hour sampling duration, preferred sampling flow rate for this type of sample, and the sample volume required for the sampling period. Six-liter canisters are typically used to obtain the integrated time-weighted average ambient air samples at sampling times of up to 24 hours. High quality valves were utilized that resist human error in sample collection activities (e.g., over tightening that potentially could cause leaks). Low-flow precision regulators were used with each of the canisters to ensure a consistent airflow over the designated eight-hour sampling duration.

Sample collection intakes were located to approximate the breathing zone for building occupants at heights of 3 to 5 ft above the building floor. Indoor air samples were collected during typical working hours to be representative of typical exposure in a manner as to minimize disruptions to normal building activities (<u>Appendix B</u>, Photograph 28). Outdoor air samples were collected starting one-hour earlier but otherwise at the same times as the indoor samples (<u>Appendix B</u>, Photograph 29). Sampling technicians did not remain in the immediate area of the canisters when samples were being collected.

4.8 Soil Sampling

For the cumulative soil risk screening, soil data for the 200 Area came from the 200 Area Phase II Investigation Report, Appendix E (NASA, 2015b) and soil data for the 600 Area came from the 600 Area Closure Investigation Report, Appendix 13.B (NASA, 2011a). The soil analytical data used is provided in Excel format and included in Enclosure 4.

4.9 Off-site Laboratory Data

Data packages from the laboratory consisted of two primary components: comprehensive reports submitted as Adobe portable document files (PDF) for review and archiving (provided as an enclosure to this report); and electronic data deliverable (EDD) files to facilitate transfer of chemical analytical data into WSTF's analytical database(s). The PDF reports included the laboratory name, report date, sample-specific information, analyte names and Chemical Abstract Service numbers, analytical results, QC sample results, data qualifiers and narratives, pertinent analytical notes, laboratory reviewer signatures, and a variety of other information specific to the laboratory and analytical method. The EDD files include the associated electronic data and follow the same review and approval cycle as the PDF report.

4.10 Data Assessment and Review

A quality assurance (QA) specialist evaluated the sample data, field, and laboratory QC results for acceptability with respect to the project quality objectives. Chemical analytical data was compared with the project DQOs and evaluated using the data validation guidelines contained in EPA guidance documents, the latest version of SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," and industry-accepted QA/QC methods and procedures (EPA, 2013). A QA report for the vapor data and a second report for the previous soil data are provided in <u>Appendix C</u>.

A comprehensive review of sample analytical data was conducted. Prior to conducting the review, the following information (where required and applicable) was compiled and provided.

- The NMED-approved VIAWP.
- Field sampling and geologist logs.

- Laboratory reports.
- Statements of work and the laboratory Quality Management Plan.
- EDD Files.
- SOPs.
- Data tools.

Data review elements included:

Step I: Verification – Verification (review for completeness) is the confirmation by examination and provision of objective evidence that the specified requirements (sampling and analytical) have been completed (EPA, 2005).

Data verification is the process of determining whether data have been collected or generated as required by the project documents. The process consists of the following categories: 1) verifying that field sampling operations were performed as outlined in the vapor intrusion assessment Investigation Work Plan (IWP; NASA 2016b); 2) verifying that the data collection procedures and protocols were followed; 3) verifying completeness to establish that sufficient data necessary to meet project objectives have been collected; and 4) checking that QC sample results meet control limits defined in the analytical methods.

Step II: Validation – Validation is the confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled. Validation is a sampling and analytical process that includes evaluating compliance with method, procedure, or contract requirements and extends to evaluating against criteria based on the quality objectives developed (EPA, 2005).

The purpose of validation is to assess the performance of the sampling and analysis processes to determine the quality of specified data. Data validation consists of the following objectives: 1) verifying that measurements (field and laboratory) meet the user's needs; and 2) providing information to the data user regarding data quality by assignment of individual data qualifiers based on the associated degree of variability. Data management performed data validation in accordance with the requirements in this IWP and existing WSTF procedures.

Step III: Usability Assessment – Usability assessment is the determination of the adequacy of data, based on the results of validation and verification, for the decisions being made. The usability process involves assessing whether the process execution and resulting data meet project quality objectives (EPA, 2005).

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. Data may be qualified as being unusable or rejected (R), as based on established quality review protocols. Data qualified as estimated concentrations (J) are less precise, or less accurate, than unqualified data but are still acceptable for use. The data users, with support from the contractor environmental data management staff, are responsible for assessing the effect of the inaccuracy or imprecision of the qualified data on statistical procedures and other data uses. The data reporting included a discussion of data limitations and their effect on data interpretation activities.

A review of COPC detection limits obtained from the laboratory compared to regulatory screening levels was conducted. Several COPCs in the 200 Area had dilution issues for the soil vapor samples where detection limits reached were higher than regulatory screening levels. The issue arises when there are very high concentrations of a VOC in a sample. For the instruments to read the contaminants, the sample must be diluted, and sometimes diluted by orders of magnitude. However, this can cause other VOCs to be

masked, since dilution raises the detection limits for other VOCs. Soil vapor samples from well 200-LV-150 at 34 ft bgs contain high concentrations of VOCs. The August 2017 samples contain a dilution of 6600, and in February 2018, a dilution of 1530 was needed. These dilutions resulted in VOC detection limits greater than VISLs or air RSLs. Detection limits higher than applicable regulatory screening levels are highlighted in yellow on <u>Table 4.3</u> and provided with dilutions on <u>Table 4.4</u>. COPCs affected include carbon tetrachloride, chloroform, ethylbenzene, heptane, 2-hexanone, 2-propanol, TCE, and 1,2,4trimethylbenzene.

Examples to illustrate the elevated dilution and detection limits include TCE and chloroform. TCE detection limits were 920 μ g/m³ for August 2017 and 430 μ g/m³ for February 2018. These detection limits are above the residential cancer and noncancer VISLs (69.5 and 147 μ g/m³, respectively) and the industrial noncancer VISL (328 μ g/m³). However, the very high concentrations of TCE detected in the 200-LV-150 samples required the large dilutions (410,000 μ g/m³ and 140,000 μ g/m³). These large dilutions (6600 and 1530) also caused elevated detection limits for other VOCs, such as chloroform. The August 2017 and February 2018 detection limits for chloroform for soil vapor in well 200-LV-150 were 1,100 and 260 μ g/m³, which are above the residential and industrial cancer VISLs of 40.7 μ g/m³ and 199 μ g/m³. Chloroform was not detected in soil vapor samples in 200-LV-150. However, due to the high detection limits, it is not possible to determine if chloroform was present in 200-LV-150 samples above regulatory cancer limits. Table 4.4 provides details of the other six affected constituents.

5.0 Summary of Soil Vapor, Outdoor Air, and Indoor Air Data

The chemical analytical results from the two semi-annual soil vapor sampling events were verified, validated, and used to develop the final VIAR. Laboratory reports for the two semi-annual sampling events (Sampling Event #1 in August 2017 and Sampling Event #2 in February 2018) are provided as an enclosure to this report. A complete set of tabulated analytical results for all soil vapor and air samples is provided as an enclosure to this report.

5.1 200 Area Soil Vapor, Outdoor Air, and Indoor Air Sampling

Figure 5.1 posts the analytical results for soil vapor, indoor air, and outdoor air samples in association with the sample locations within and immediately surrounding Building 200 in the 200 Area. Analytical results for the four primary COPCs anticipated to be present (TCE, PCE, Freon 11, and Freon 113) are shown for both semi-annual sampling events performed on August 27, 2017 and February 25, 2018.

<u>Table 4.3</u> provides a summary of the maximum observed contaminant concentrations for subsurface soil vapor within wells adjacent to Building 200, the maximum contaminant concentrations for outdoor air adjacent to Building 200, and the maximum contaminant concentrations for indoor air samples. Results are provided for all 13 COPCs identified in Section 2.6 of this report (TCE; PCE; Freon 11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) for the August 2017 and February 2018 semi-annual sampling events. <u>Table 4.3</u> also compares the maximum contaminant concentrations reported to the available vapor intrusion screening levels: NMED VISLs and WSTF RBCs (Section 1.5).

5.1.1 200 Area Soil Vapor Analytical Results

For both semi-annual sampling events, the TCE soil vapor concentrations from well 200-LV-150 at 34 ft (410,000 and 140,000 μ g/m³), well 200-SV-05 at 9 ft (40,000 and 26,000 μ g/m³), and well 200-SV-09 at 19 ft (35,000 and 31,000 μ g/m³) significantly exceeded both the NMED residential and industrial VISLs (69.5 μ g/m³ noncancer, 147 μ g/m³ cancer, 328 μ g/m³ noncancer, and 1,120 μ g/m³ cancer). For WSTF RBCs, well 200-LV-150 significantly exceeded the appropriate RBCs at 25 ft bgs (residential: 4,900

 $\mu g/m^3$ noncancer and 11,000 $\mu g/m^3$ cancer; industrial: 84,000 $\mu g/m^3$ noncancer and 280,000 $\mu g/m^3$ cancer).

For wells 200-SV-05 and 200-SV-09, residential RBCs were exceeded (1,500 μ g/m³ noncancer and 3,400 μ g/m³ cancer at 5 ft bgs; and 2,300 μ g/m³ noncancer and 5,400 μ g/m³ cancer at 10 ft bgs), but not all industrial RBCs were exceeded. In well 200-SV-05 (at 9 ft), concentrations (40,000 and 26,000 μ g/m³) exceeded the industrial noncancer RBC (18,000 μ g/m³ at 5 ft) but not the industrial cancer RBCs (60,000 μ g/m³ at 5 ft). In well 200-SV-09 (at 19 ft), the August 2017 sample (35,000 μ g/m³) exceeded only the industrial noncancer RBC (34,000 μ g/m³ at 10 ft) but not the industrial cancer RBC (120,000 μ g/m³ at 10 ft). In February 2018, the 200-SV-09-19 sample concentration (31,000 μ g/m³) was below both industrial RBCs (34,000 μ g/m³ noncancer and 120,000 μ g/m³ cancer at 10 ft).PCE soil vapor concentrations exceeded the NMED residential noncancer and cancer and industrial noncancer VISLs (1,390 μ g/m³ noncancer, 3,600 μ g/m³ cancer, and 6,550 μ g/m³noncancer) in all three soil vapor wells for the August 2017 sampling event (200-LV-150 at 34 ft was 57,000 μ g/m³; 200-SV-05 at 9 ft was 9,500 μ g/m³; and 200-SV-09 at 19 ft was 6,600 μ g/m³). The industrial cancer VISL (17,600 μ g/m³) was exceeded only in well 200-LV-150 in August 2017.

For the February 2018 sampling event, PCE exceeded all the NMED VISLs (residential: 1,390 μ g/m³ noncancer, 3,600 μ g/m³ cancer; industrial: 6,550 μ g/m³ noncancer, 17,600 μ g/m³ cancer) in well 200-LV-150 (36,000 μ g/m³) and the residential VISLs in 200-SV-05 and 200-SV-09 (5,300 and 5,400 μ g/m³, respectively). February 2018 concentrations of PCE were below industrial VISLs.

Both August 2017 (well 200-LV-150 at 34 ft was 57,000 μ g/m³; well 200-SV-05 at 9 ft was 9,500 μ g/m³; and well 200-SV-09 at 19 ft was 6,600 μ g/m³) and February 2018 concentrations of PCE (well 200-LV-150 at 34 ft was 36,000 μ g/m³; well 200-SV-05 at 9 ft was 5,300 μ g/m³; and well 200-SV-09 at 19 ft was 5,400 μ g/m³) in all soil vapor wells are all below the WSTF RBCs at the appropriate corresponding depths (residential: 340,000 cancer and 130,000 μ g/m³ noncancer at 25 ft bgs; 93,000 cancer and 35,000 μ g/m³ noncancer at 5 ft; and 150,000 cancer and 58,000 μ g/m³ noncancer at 10 ft. Industrial: 2,300,000 μ g/m³ cancer at 5 ft; and 910,000 μ g/m³ noncancer and 2,400,000 μ g/m³ cancer at 10 ft).

All 11 remaining maximum concentrations for COPCs in vadose zone soil vapor (Freon11; Freon 113; 2butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2propanol) are below the corresponding NMED VISL and WSTF RBC.

5.1.2 Building 200 Outdoor Air Analytical Results

Outdoor air samples were either non-detect or below $1 \ \mu g/m^3$ for TCE, PCE, Freon 113, 1,1,1trichloroethane, chloroform, benzene, ethylbenzene, toluene, xylenes, acetone, and 2-propanol. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017 and February 2018) and 2-Butanone (maximum 3 $\mu g/m^3$ in August 2017) were also detected.

5.1.3 Building 200 Indoor Air Analytical Results

No indoor air concentrations exceeded NMED VISLs. The maximum concentration for indoor air samples were non-detect or below 1 μ g/m³ for four COPCs: PCE; 1,1,1-trichloroethane; chloroform; and ethylbenzene. Trace concentrations were observed for eight COPCs: TCE (maximum 1.3 μ g/m³ in February 2018); Freon 11 (maximum 22 μ g/m³ in August 2017); 2-Butanone (maximum 8.7 μ g/m³ in August 2017); benzene (maximum 1.6 μ g/m³ in February 2018); toluene (maximum 22 μ g/m³ in August 2017); xylenes (maximum 1.5 μ g/m³ in August 2017); acetone (maximum 29 μ g/m³ in August 2017); and 2-propanol (maximum 68 μ g/m³ in August 2017). The highest concentration of Freon 113 of 3,200 μ g/m³

was reported in August 2017 from sample location 200-IA-5. This maximum concentration is one and two orders of magnitude below the NMED VISL for residential and industrial indoor air of 31,300 and 147,000 μ g/m³, respectively.

5.1.4 Building 200 Trends and Observations

The following section describes trends and observations for the 200 Area vapor analytical results.

- Soil vapor COPC concentrations were higher in the summer semi-annual sampling event (August 2017), characterized by elevated outdoor temperatures, compared to the winter sampling event for all four WSTF primary COPCs detected: (TCE, PCE, Freon 11, and Freon 113).
- The highest concentrations detected in vapor in the investigation were for TCE, PCE, and Freon 113. Maximum concentrations for TCE, PCE, and Freon 113 were reported from well 200-LV-150-34, and the maximum concentration for Freon 11 from well 200-SV-05. These wells are both located downgradient of the former Clean Room Tank HWMU with respect to surface topography, bedrock topography, and groundwater flow. From the 200 Area Phase II investigation (NASA, 2015b), residual concentrations of the primary COPCs are present within microfractures of vadose zone bedrock, as demonstrated through core analysis.
- The highest indoor air concentration for Freon 113 of 3,200 µg/m³ (in August 2017) was reported from sample location 200-IA-5 within Room 202 (Figure 5.1). The product inventory form (Table 4.1) indicates that steel canisters containing Freon are stored in this secure, unoccupied storage room. Room 202 is used exclusively for materials storage and is utilized periodically for chemical storage and chemical management activities.
- The trace indoor air concentration for 2-propanol of 68 µg/m³ reported in August 2017 is from sample location 200-IA-3 within the equipment storage area of Room 205. 2-propanol is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants and detergents that are stored in this room. Room 205 is used exclusively for equipment and storage and is occupied only during maintenance activities.
- Indoor air concentrations of COPCs were generally slightly higher than the contemporaneous outdoor air samples collected, but well below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM and MSVGM wells.
- 5.2 600 Area Soil Vapor, Outdoor Air, and Indoor Air

The analytical results for all soil vapor and air sample locations within and immediately surrounding Building 637 in the 600 Area are provided in Figure 5.2. The concentrations of the primary WSTF COPCs (TCE, PCE, Freon 11, and Freon 113) are provided for two semi-annual sampling events performed on August 26, 2017 and February 24, 2018.

Table 5.1 summarizes the maximum contaminant concentrations observed for subsurface soil vapor within the MSVM wells located closest to Building 637, the maximum contaminant concentrations for outdoor air adjacent to Building 637, and the maximum contaminant concentrations for indoor air samples for both of the semi-annual sampling events. Results are provided for all COPCs identified in Section 2.6 of this report (TCE; PCE; Freon11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) with a comparison to the available vapor intrusion screening levels: NMED VISLs and WSTF RBCs (Section 1.5).

5.2.1 600 Area Soil Vapor Analytical Results

TCE concentrations in well 600-SGW-1 (480 and 740 μ g/m³) exceed residential VISLs (69.5 and 147 μ g/m³) and the industrial noncancer VISL (328 μ g/m³), but not the industrial cancer VISL (1,120 μ g/m³) for both sampling events. Well 600-SGW-2 TCE concentrations (330 and 270 μ g/m³) exceed the residential VISLs for both sampling events, but only exceed the industrial noncancer VISL for the August 2017 event (330 μ g/m³). TCE concentrations were below the industrial noncancer VISL in February 2018 and the industrial cancer VISL in both 2017 and 2018. TCE soil vapor concentrations were below RBCs at 10 ft bgs (residential: 2,300 μ g/m³ noncancer and 5,400 μ g/m³ cancer; industrial: 34,000 μ g/m³ noncancer and 120,000 μ g/m³ cancer). Well 600-SGW-5 TCE concentrations (44 and 42 μ g/m³) were below all VISLs.

All other maximum concentrations for the 12 remaining COPCs for both the August 2017 and February 2018 sampling events (PCE; Freon 11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) are below the respective NMED VISLs and WSTF RBCs at the appropriate depths.

5.2.2 Building 637 Outdoor Air Analytical Results

The concentrations of COPCs in outdoor air samples were either non-detect or below 1 μ g/m³ for 10 of the 13 COPCs (TCE, PCE, Freon 113, 1,1,1-trichloroethane, chloroform, benzene, ethylbenzene, toluene, xylenes, and 2-propanol). Traces of Freon 11 (maximum 1.2 μ g/m³ in August 2017), 2-Butanone (maximum 2.4 μ g/m³ in August 2017), and acetone (maximum 10 μ g/m³ in August 2017) were also detected.

5.2.3 Building 637 Indoor Air Analytical Results

The maximum concentration for indoor air samples were non-detect or below 1 μ g/m³ for nine of the 13 COPCs: TCE; PCE; Freon 113; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; and, xylenes. Trace concentrations of three COPCs were also observed: Freon 11 (maximum 1.4 μ g/m³ in February 2018); 2-Butanone (maximum 5.3 μ g/m³ in August 2017); acetone (maximum 16 μ g/m³ in August 2017); and, 2-propanol (maximum 3.4 μ g/m³ in August 2017). No indoor air concentrations exceeded NMED VISLs.

5.2.4 Building 600 Trends and Observations

The following section describes trends and observations for the 600 Area vapor analytical results.

- The indoor air concentrations for specific COPCs were slightly above the contemporaneous outdoor air samples collected, but significantly below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM wells.
- The higher concentrations for COPCs in the vadose zone MSVM wells are variable between the summer (August 2017) and winter (February 2018) sampling events characterized by significantly different ambient outdoor temperatures. Of the four primary COCs, TCE and PCE are slightly higher for February 2017, and Freon 11 and Freon 113 are slightly higher for August 2017. This irregularity is true for 12 of the 13 COPCs detected in the vadose zone. The rationale may be related to limited amounts of groundwater available as a source for contaminants within poorly fractured andesite bedrock, and lower concentrations of VOCs in the local aquifer. The effect of increased volatilization during hotter (summer) months is less apparent than higher flow/higher contaminant concentrations areas such as the 200 Area fractured limestone aquifer.

- Analytical results for the four indoor air sample locations are also compatible with each other due to the open nature of the building with no divides or separate offices.
- 5.3 Potential Bias due to Field Sampling Conditions

The VIAWP was followed at all times including the performance of field sampling, and no potential biases due to field conditions were reported. The same analytical laboratory, sampling containers, and supplies were used for both the August 2017 and February 2018 sampling events. The same facility preparation and sampling protocol was also followed at Buildings 200 and 637 for each of the two events. Climatic conditions remained favorable throughout. The two semi-annual sampling events were performed 182 days apart during the summer and winter seasons as required by the VIAWP.

6.0 Screening Level Risk Assessment, Uncertainties, and Lines of Evidence

6.1 Screening Level Risk Assessment

This investigation was designed to evaluate whether there was unacceptable risk or hazard to WSTF workers in the most likely location at WSTF for current vapor intrusion, buildings adjacent to the 200 Area west closure HWMU and the 600 Area HWMU. A comprehensive risk/hazard screening assessment was not planned nor originally performed, and no soil borings were planned nor completed for this vapor intrusion investigation. However, in the disapproval of the initial VIAR, NMED requested that NASA perform a combined health risk and hazard screening evaluating soil vapor combined with soil data (NMED, 2019). Since no soil data was collected as part of the vapor intrusion field work, additional data collected prior to 2017 was used for soil risk and hazard screening. The soil data used was collected under NMED-approved work plans (200 Area Investigation – Phase II Investigation Work Plan [NASA, 2013a] and NASA Response to NMED 03/19/09 Comments on the 600 Area Closure Investigation [NASA, 2009]). This additional soil data was also previously included in NMED-approved reports (NASA WSTF 200 Area Phase II Investigation Report [NASA, 2015b] and 600 Area Closure Investigation Report Provided in Response to a NMED Notice of Disapproval [NASA, 2011a]. Soil vapor and indoor air data used in the risk and hazard screening evaluation were collected for this investigation in 2017 and 2018 only. Analytical data used are provided in Excel format in Enclosure 4.

As requested, and per NMED Guidance (NMED, 2022c), a cumulative screening risk assessment is conducted at both the 200 and 600 Areas for the following potential exposure pathways: inhalation of intruding soil vapors, inhalation of indoor air, and the ingestion, dermal contact, or inhalation of chemicals present in soils. Figure 6.1 is the SCEM revised based on the results of this investigation and risk assessment.

Consistent with Section 2.8.2 of the NMED Risk Assessment Guidance (2022c), soil data from samples at any depth within 0 to 10 ft of the ground surface can be screened using residential or construction worker scenarios, whereas data from the 0 to 1 ft interval are applicable for evaluating industrial exposures. However, soil samples for the 200 and 600 Area investigations were not collected in the 0 to 1 ft depth range. The 200 and 600 Area investigations were originally designed to identify the locations of the greatest soil contamination. Samples were obtained where contamination was suspected. Since WSTF sites have been used for multiple purposes over time, surface soils have been disturbed and clean fill added at multiple WSTF sites. Due to the disturbed surface soils and the goal of locating the highest soil contaminant concentrations, surface soils were not collected for the 200 and 600 Area investigations, and the industrial pathway was not initially evaluated. In addition, no soil vapor wells on site at WSTF were designed with ports in the 0 to 1 ft bgs depth range. However, for this revision per NMED comments in the NMED Disapproval (NMED, 2022b), the industrial pathway was evaluated using the shallowest soil and vapor samples collected for the 200 and 600 Area investigations, even though the depths sampled were greater than 1 ft bgs. (The shallowest depths are: 200 Area soils: 8 and 16 ft bgs; 600 Area soils: 3,

4, 6, and 10 ft bgs; 200 Area soil vapor: 9, 19, and 34 ft bgs; and 600 Area soil vapor: 7.5 and 12.5 ft bgs).

In accordance with NMED Risk Assessment Guidance Section 2.8.4 (NMED, 2022c), when a constituent's maximum detected value exceeded or neared NMED screening levels, an exposure point concentration (EPC) can be calculated. If sufficient data are available, EPA's ProUCL software (most recent version EPA, 2022a) is used to calculate the constituent's 95 percent Upper Confidence Limit (UCL95) of the mean concentration. Ideally, a minimum of eight samples collected with at least five detections is preferred for calculating statistics. The UCL95 is then compared to the applicable screening level. When a detected constituent has no NMED screening level, EPA screening levels (EPA, 2022b) are used. Finally, WSTF RBCs (NASA, 2022) can be used for soil vapor as screening levels containing more site-specific criteria and should be compared against if NMED screening targets are not met. If less than eight samples or less than five detections were present for constituents, the maximum concentration was used as the EPC.

The cumulative screening risk assessment is performed with vapor analytical data from this investigation, as well as soil data from previous investigations conducted in the 200 and 600 Areas (NASA, 2015b; 2011a). Soil vapor and indoor air quality data collected during this investigation are the most relevant to the goals of this risk screening and are therefore used as key input parameters in the cumulative screening assessments.

- 6.1.1 200 Area Screening Risk Assessment
- 6.1.1.1 200 Area Soil Vapor Screening Risk Assessment

For this investigation, soil vapor samples were collected from the shallowest vapor ports in three wells in the 200 Area. Since two separate sampling events (August 2017 and February 2018) were conducted, there is a total of six samples per constituent for the 200 Area. Per NMED (2022c) and EPA (2022a) guidance, six samples are not a sufficient number to perform reliable statistics. Therefore, the maximum concentration per constituent was used in all screening for 200 Area soil vapor.

Table 6.1 contains the 200 Area residential soil vapor cancer risk screening compared to NMED VISLs. Benzene, tetrachloroethene (PCE) and trichloroethylene (TCE) are the only carcinogenic constituents detected. Benzene has a residential cancer risk of 6.67E-06. PCE and TCE are the risk drivers, each having a cancer risk that exceeds the target if 1E-05 (1.58E-04 and 2.79E-02, respectively). The total cancer risk is 2.81E-02, which exceeds the target of 1E-05 set by the NMED (NMED, 2022c).

<u>Table 6.2</u> contains the 200 Area industrial soil vapor cancer risk screening compared to NMED VISLs. Like the residential scenario, the industrial scenario risk drivers are PCE and TCE, each exceeding the risk target (3.24E-05 and 3.66E-03, respectively). The total soil vapor industrial risk is 3.69E-03, which exceeds the target of 1E-05.

Since both the residential and industrial pathways exceeded the cancer target compared to NMED VISLs, 200 Area maximum soil vapor concentrations were compared to more site-specific and approved WSTF RBCs (NASA, 2022; NMED, 2022a). <u>Table 6.3</u> compares the maximum concentration to the RBC at the next shallowest depth. For example, the maximum benzene concentration was detected at 19 ft bgs, and this was compared to the RBC at 10 ft bgs. The risk driver for maximum concentrations compared to WSTF RBCs remains TCE at an individual risk of 3.73E-04. The total risk for 200 Area residential soil vapor is 3.75E-04, which exceeds the risk target of 1E-05. <u>Table 6.4</u> presents the 200 Area industrial soil vapor cancer risk screening results compared with WSTF RBCs. TCE is near the target risk level at 1.46E-05, and the total risk is 1.48E-05, which equals or just exceeds the NMED target of 1E-05.

The 200 Area residential soil vapor noncancer hazard screening comparing maximum concentrations to NMED VISLs is shown in <u>Table 6.5</u>. Eight constituents are detected, with PCE, TCE, and 1,1-Dichloroethene exceeding their respective NMED VISLs. The total hazard for 200 Area residential soil vapor is 5.94E+03, which exceeds the NMED hazard index of 1E+00.

<u>Table 6.6</u> presents the 200 Area maximum soil vapor concentrations compared to industrial noncancer VISLs for the six detected constituents. PCE and TCE exceeded the NMED hazard index of 1 (at 8.70E+00 and 1.25E+03, respectively). The total hazard is 1.26E+03.

Since NMED targets for hazard were exceeded using the VISLs, the data are compared against more site-specific WSTF RBCs, as shown in <u>Table 6.7</u>. The RBCs take into account site-specific conditions and are expected to better reflect the actual risk to human health and hazard on-site (NASA, 2019a). Constituents are compared against the RBC value at the nearest depth shallower than the sample depth since shallower RBCs are smaller numbers (more conservative; NASA, 2022). The cumulative hazard is reduced to 8.42E+01, which still exceeds the respective NMED screening target of 1E+00. TCE is the only constituent that independently exceeds screening levels, and is a risk driver (at 8.37E+01 individually).

Table 6.8 shows the 200 Area industrial soil vapor hazard screening using WSTF RBCs. TCE still exceeds the NMED target of 1E+00 (at 4.88E+00) and results in a total hazard of 4.91E+00.

6.1.1.2 200 Area - Indoor Air Screening Risk Assessment

<u>Table 6.9</u> contains the residential cancer risk screening for 200 Area indoor air. All eight detected constituents are below their respective NMED indoor air screening levels. The total cancer risk is 1.24E-05, which approximately equals the target of 1E-05 set by the NMED.

The 200 Area industrial indoor air cancer risk is calculated using maximum concentrations compared to NMED indoor air VISLs in <u>Table 6.10</u>. No individual constituent nor the total combined cancer risk (2.31E-06) exceeds the NMED target of 1E-05.

<u>Table 6.11</u> contains the screening residential hazard assessment for the 200 Area indoor air. There are 29 detected constituents, all of which are below their respective NMED indoor air screening levels. Because a sufficient number of samples were present to obtain reliable statistical results, UCL95 values are calculated for 14 constituents. The other 10 constituents did not have enough detections to perform reliable statistics and therefore, the maximum concentrations were used. The output files for UCL95 calculations are provided in <u>Appendix D</u>. The cumulative residential indoor air hazard is 6.09E-01 which is below the target of 1.0E+00 set by the NMED.

<u>Table 6.12</u> provides the 200 Area industrial indoor air hazard screening. This table uses the same UCL95 calculated concentrations or maximum concentrations as <u>Table 6.11</u>. For the industrial indoor air pathway, no individual or combined hazard (2.73E-01) exceeded the NMED target of 1E+00.

6.1.1.3 200 Area – Soils Screening Risk Assessment

Figure 6.2 shows the WSTF background soil areas. The 200 Area is within WSTF background Area 2. Table 6.13 shows the 200 Area maximum soil concentrations versus the Area 2 Background Threshold Value (BTV) comparisons that are used to determine what COPCs are initially indicative of WSTF background and are therefore not COPCs in the 200 Area. Table 6.14 contains the maximum detected 200 Area soil concentrations for essential nutrients compared to WSTF BTVs for Area 2. If maximum detected values for a constituent are below previously established background concentrations within the same depth range, the constituent is no longer considered to be a COPC. Using maximum 200 Area soil

concentrations compared to BTVs, the only COPCs were mercury and nitrate/nitrite. Mercury was detected in one sample in the 200 Area (at 0.003 mg/kg) and must be retained as a COPC because mercury was not detected in background Area 2 in sufficient enough quantity to calculate a BTV or compare populations in the 8 to 12 ft depth range. Using ProUCL software, the populations of nitrate/nitrite were compared between WSTF background Area 2 and the 200 Area soil data. When duplicate data are present, the most conservative value of the sample and duplicate was used. For background soil Area 2, the lower of the two concentrations was used, and the maximum 200 Area investigation soil concentration of the sample and duplicate was used. Nitrate/nitrite in 200 Area soils were not greater than background nitrate/nitrite Area 2 concentrations. Therefore, nitrate/nitrite was not retained as a 200 Area soil COPC (Table 6.15). The ProUCL data input file is provided as an enclosure and all ProUCL output files are provided in <u>Appendix D</u>.

Table 6.16 contains the residential cancer risk screening for the 200 Area soils. Risk was calculated using data from soil borings 200-SB-05 through 200-SB-13, shown in Figure 6.3 (wells 200-SB-6 and 200-SB-7 subsequently renamed 200-LV-150 and 200-KV-150, respectively), at depths between 0-10 ft bgs, except for soil boring 200-SB-10, for which no sample was collected within the 0 to 10 ft interval. For this well, the shallowest sample (collected at 16 ft bgs) was used for the 200 Area risk/hazard screening. All 200 Area soil samples used in this screening were collected during the 200 Area Phase II Investigation (NASA, 2015b). 200 Area soil analytical data from the Phase II investigation are provided in excel format in Enclosure 4. The only COPCs detected in 200 Area soils for the residential scenario were dioxins and furans. The toxicity equivalents were calculated per the NMED Guidance (NMED, 2022c) and are presented in <u>Appendix D</u>. For this revision, toxicity equivalents (TEQs) were updated to exclude total dioxin/furan data. Per Section 2.1 of the NMED Guidance (NMED, 2022c), only individual congeners were evaluated. As required, the maximum dioxin/furan TEQ concentration was used for the risk screening and compared to 2,3,7,8-TCDD (Tetrachlorodibenzo –p-dioxin). The resulting total cancer risk is 6E-08 (Table 6.16) which is below the respective target of 1E-05 set by the NMED.

Table 6.17 provides the 200 Area industrial soil cancer risk for dioxins and furans. The risk of 1E-08 does not exceed the NMED target of 1E-05.

Table 6.18 contains the 200 Area residential soils hazard screening, calculated using the same soil data from the 200 Area Phase II Investigation Report (provided in excel format in Enclosure 4). Three COPCs (mercury, toluene and dioxins/furans) are detected in these soil samples, all of which are below their respective NMED SSLs. The TEQs for the dioxins/furans were calculated (<u>Appendix D</u>) and then compared to the NMED residential noncancer SSL. The total hazard is 6.67E-03 which is below the target of 1.0E+00 set by the NMED (NMED, 2022c).

<u>Table 6.19</u> compares the 200 Area maximum soil concentrations of mercury, toluene, and dioxins and furans to the industrial hazard screening levels. The total hazard is 5.47E-04, which is below the target of 1E+00.

6.1.1.4 200 Area – Cumulative Screening Risk Assessment for Residential Exposure

A screening of worker risks related to both indoor inhalation and soil exposure pathways for the 200 Area is provided in this section for both the residential and industrial exposure scenarios. <u>Table 6.20</u> shows summed cancer risk and hazard for exposure to soil vapor and soil for the residential scenario in the 200 Area. The 200 Area has cumulative cancer risk of 4E-04 and a cumulative chemical hazard of 8E+01. <u>Table 6.21</u> shows the summed cancer risk and hazard for exposure to soil vapor and soil for the industrial scenario in the 200 Area. The 200 Area. The 200 Area cumulative industrial cancer risk is 1.48E-05, and the cumulative industrial hazard is 4.91E+00. All cumulative risk and hazard exceed targets.

All analytical data for the 200 Area cumulative screening risk assessment are included as an enclosure to this report (vapor laboratory reports are in Enclosure 3 and analytical data in excel format are in Enclosure 4).

6.1.2 600 Area Screening Risk Assessment

6.1.2.1 600 Area - Soil Vapor Screening Risk Assessment

For this investigation, soil vapor samples were collected from the shallowest vapor ports in three wells in the 600 Area (600-SGW-1 at 12.5 ft bgs, 600-SGW-2 at 12.5 ft bgs, and 600-SGW-5 at 7.5 ft bgs). Since two separate sampling events (August 2017 and February 2018) were conducted, there is a total of six samples per constituent for the 600 Area. Per NMED (2022c) and EPA (2022a) guidance, six samples are not a sufficient number to perform reliable statistics. Therefore, the maximum concentration per constituent was used in all screening for 600 Area soil vapor.

The 600 Area risk/hazard screening was performed in the same way that the 200 Area risk/hazard screening was done. 600 Area soil vapor analytical data was compared to NMED VISLs (and EPA RSLs if no VISL was available) as a first screen. Table 6.22 contains the 600 Area residential soil vapor cancer risk compared to NMED VISLs. There are 11 detected constituents, all of which are below their respective NMED VISLs, except TCE (5.03E-05). The total cancer risk is 6.15E-05, which exceeds the NMED target risk of 1E-05 (NMED, 2022c).

<u>Table 6.23</u> provides the comparison of the maximum concentrations to industrial VISLs for soil vapor in the 600 Area. All of the 11 detected constituents are below their respective NMED VISLs, and the total 600 Area industrial soil vapor cancer risk of 8.90E-06 is below the NMED target of 1E-05.

Since the total risk for the 600 Area residential soil vapor pathway exceeded the target compared to VISLs, the more site-specific WSTF RBCs were used for comparison to maximum soil vapor concentrations in <u>Table 6.24</u>. The total 600 Area residential soil vapor cancer risk is 2.20E-06, which is below the target cancer risk of 1E-05 (NMED, 2022c).

<u>Table 6.25</u> contains the residential hazard assessment for soil vapor in the 600 Area. There are 28 constituents detected with only TCE exceeding its NMED VISL (1.06E+01). The total hazard for the 600 Area soil vapor is 1.08E+01, which exceeds the NMED target hazard of 1E+00 (NMED, 2022c).

The 600 Area industrial soil vapor hazard is shown in <u>Table 6.26</u>. Like the residential scenario, TCE is the only constituent that exceeded the individual noncancer VISLs (2.26E+00). The total hazard is 2.30E+00, which also exceeds the target of 1E+00 (NMED, 2022c).

The 600 Area soil vapor hazard assessment using WSTF RBCs is shown in <u>Table 6.27</u>. The RBCs take into account site specific conditions and are expected to better reflect the actual risk to human health onsite than NMED VISLs (NASA, 2022c). Constituents are compared against the RBC value at the nearest depth shallower than the sample depth since shallower RBCs are more conservative. There are no available RBCs for 1,2-Dichloroethane, 1,4-Dichlorobenzene, Ethylbenzene, Toluene, m,p-Xylene, and o-Xylene, so the NMED VISLs were used as screening levels for these constituents. For cis-1,2-dichloroethene and 1,2,4-Trimethylbenzene, the EPA RSL for resident air was used since there were no RBCs or NMED VISLs established. The cumulative hazard is reduced to 3.63E-01, which is below the NMED target hazard of 1E+00 (NMED, 2022c). There are no constituents that exceed WSTF RBCs. <u>Table 6.28</u> presents the 600 Area industrial soil vapor maximum concentrations to WSTF RBCs. All constituents were below the corresponding WSTF RBC for the industrial scenario, and the total hazard for soil vapor is 3.25E-02, also below the target to 1E+00 (NMED, 2022c).

6.1.2.2 600 Area – Indoor Air Risk Assessment

<u>Table 6.29</u> contains the 600 Area residential indoor air cancer risk screening assessment. The four detected constituents are below their respective NMED indoor air screening levels. The total cancer risk is 2.49E-06 which is below the NMED target risk of 1E-05 (NMED, 2022c).

Table 6.30 contains the 600 Area industrial indoor air cancer risk screening. All four detected constituents are below their respective NMED indoor air industrial screening levels, and the total cancer risk is 5.09E-07, which is also below the 1E-05 target (NMED, 2022c).

<u>Table 6.31</u> contains the residential hazard assessment for 600 Area indoor air. There are 16 detected constituents, all of which are below their respective NMED indoor air screening levels. The cumulative hazard is 1.05E-01 which is below the NMED target hazard of 1E+00 (NMED, 2022c).

The 600 Area industrial indoor air hazard screening is presented in <u>Table 6.32</u>. No constituent exceeded any individual VISLs. The total hazard (6.44E-02) also was below the target of 1E+00 (NMED, 2022c).

6.1.2.3 600 Area – Soils Risk Assessment

Figure 6.2 shows the WSTF background soil areas. The 600 Area is within WSTF background Area 4. Table 6.33 shows BTV comparisons that are used to determine background constituents in the 600 Area. If maximum detected values for a constituent are below previously established background concentrations within the same depth range (NASA, 2015d), the constituent is no longer considered to be a COPC. Using maximum 600 Area soil concentrations compared to BTVs, potential COPCs were antimony, barium, beryllium, boron, cadmium, chromium, cobalt, copper, manganese, mercury, molybdenum, NO₂/NO₃, perchlorate, thallium, tin, and zinc. Essential nutrient maximum concentrations that exceeded BTVs were magnesium, potassium, and sodium (Table 6.34). Following comparison of 600 Area soils data to the BTVs, the two populations of data were compared for 600 Area soil constituents that had a maximum concentration that exceeded the BTV. Using ProUCL software (Version 5.2), the populations were compared between WSTF background Area 4 and the 600 Area soil data. When duplicate data are present, the most conservative value between the sample and duplicate was used. (For background soil Area 4, the lower of the two concentrations was used, and the maximum 600 Area investigation soil concentration of the sample and duplicate was used.) Antimony, boron, cadmium, chromium, NO₂/NO₃, perchlorate, thallium, and tin in 600 Area soils were retained as COPCs (Table 6.33 and Table 6.35). Sodium was also retained as an essential nutrient (Also shown on Table 6.35).

<u>Table 6.36</u> and <u>Table 6.37</u> contain the cancer risk screenings for the 600 Area soils, calculated using data from soil borings 600-SB-1 through 600-SB-10, shown in <u>Figure 6.4</u>, collected between 0 to 10 ft bgs in the 600 Area Closure Investigation Report (NASA, 2011a). There are six detected carcinogenic constituents, all of which are below their respective NMED SSLs (residential in <u>Table 6.36</u> and industrial in <u>Table 6.37</u>). The cumulative cancer risk is 1.80E-06 for residential risk and 3.40E-07 for industrial risk, which are both below the NMED target risk of 1E-05 (NMED, 2022c).

<u>Table 6.38</u> contains the residential hazard assessment for the 600 Area soils calculated using data from the 600 Area Closure Investigation Report (NASA, 2011a). There are 19 constituents detected in these soil samples, of which thallium is the only analyte to exceed its respective NMED residential SSL

(6.63E+00). The total residential hazard including thallium is 6.66E+00, which exceeds the target of 1E+00.

<u>Table 6.39</u> shows 600 Area industrial soil hazard. All constituents, including thallium, are below the target of 1E+00. is 2.8E-02. The total industrial hazard is 4.01E-01, which is also below the 1E+00 target (NMED, 2022c).

6.1.2.4 600 Area – Cumulative Screening Risk Assessment for all Exposure Pathways

A screening of worker risks related to both indoor inhalation and soil exposure pathways for the 600 Area is provided here. Table 6.40 shows summed cancer risk and chemical hazard for exposure to soil vapor and soil in the 600 Area. The 600 Area has a cumulative cancer risk of 4E-06 and a chemical hazard of 7E+00.

All analytical data (vapor laboratory reports and an Excel file data summary for vapor and soils) for the 600 Area cumulative screening risk assessment are included as an enclosure to this report. Data for statistics for the 600 Area are provided in <u>Appendix D</u>.

6.2 Uncertainties

6.2.1 Constituents without Published Screening Values

The only detected constituents found in vapor throughout this investigation for which no published inhalation screening level is available are 2,2,4-Trimethylpentane, ethanol, and Freon 21. The organic chemical 2,2,4-Trimethylpentane is a component of gasoline and diesel but is not associated with any historical operations related to the 200 and 600 Area HWMUs that are the focus of this investigation. The relatively low measured concentrations (0.36 to 0.39 μ g/m³) and few detections (2 of 52 samples, both with J QA flags and adjacent to each other in the 200 Area Building [samples 200-IA-3 and 200-IA-4; Figure 3.1]) indicate that this chemical is unlikely to present significant health risks/hazards.

All three constituents (Ethanol, Freon 12, 2,2,4-Trimethylpentane) were detected in low concentrations (Ethanol: 1.5-9.6 μ g/m³; Freon 21: 0.84-6 μ g/m³ detected 6 out of 52 samples; 2,2,4-Trimethylpentane: 0.36 and 0.39 μ g/m³, detected 2 out of 52 samples), and none were detected in soils, likely indicating there is not a continuous soil source. In addition, the hazard calculations using approved WSTF RBCs included Ethanol (using methanol as a surrogate) and Freon 21 (using Freon 12 as a surrogate). No significant hazard was contributed by either ethanol or Freon 21 (Table 6.27 and Table 6.28).

6.2.2 Small Sample Sizes

The goal of the 200/600 VI investigation was to obtain indoor air, outdoor air, and soil vapor samples at the 200 and 600 Area over two seasonal changes and compare results to NMED VISLs and RBCs (if there were VISL exceedances). This could determine if further evaluation was warranted. Performing a comprehensive health risk was not part of the original scope. However, NASA was directed by NMED to perform health risk for this investigation, which usually involves performing statistical calculations. Both NMED and EPA recommend a minimum of 8 to 10 samples to perform reliable statistics. Only two sets of samples within three soil vapor wells per area were collected for this investigation (resulting in a total of 6 samples per constituent). Therefore, no EPCs such as UCL95 could be calculated for soil vapor. Since the maximum concentrations were used for risk and hazard, this creates uncertainty (biased high) in the risk and hazard results. A receptor is unlikely to be exposed to only the maximum concentrations of constituents, so the risk and hazard are currently conservative and likely do not represent real conditions.

6.2.3 Industrial Pathway Sample Depths

The initial 200 Area Phase II and 600 Area HWMU investigations were not designed specifically for risk assessment. Since they were designed to find the greatest concentrations of contaminants and WSTF soils have historically been disturbed, removed, and clean fill added, neither soil samples nor soil vapor samples were collected from the 0-1 ft bgs depth range for this investigation. The shallowest soils depths sampled and used for this risk screening were 8 and 16 ft bgs for the 200 Area and 3, 4, 6, and 10 ft bgs for the 600 Area. For soil vapor, the 200 Area was sampled at 9, 19, and 34 ft bgs, and the 600 Area was sampled at 7.5 and 12.5 ft bgs. This imparts uncertainty to the risk and hazard for the industrial pathway. Lines of evidence can support risk and hazard conclusions.

6.2.4 Large Dilution and Elevated Detection Limits

When a laboratory needs to dilute a sample a large amount due to very high concentrations of one or more VOCs, this causes the detection limits of other VOCs to be artificially raised. Especially when the detection limits are greater than corresponding regulatory screening levels, this creates uncertainty for the health risk and hazard evaluations. It cannot be stated that the constituent is not present in the sample in greater concentrations than the screening level. This could potentially bias the risk and hazard screening low, meaning there could be more contamination at higher risk and hazards than the risk screening indicates. For this evaluation, eight VOC constituents had detection limits greater than NMED VISLs due to large dilutions for soil vapor samples in well 200-LV-150 (sampled at 34 ft bgs).

6.3 Lines of Evidence

Since there are always uncertainties associated with risk and hazard screenings, lines of evidence can be applied to provide more confidence in the risk and hazard screening conclusions. The following lines of evidence can be applied for this 200/600 Area VIAR.

6.3.1 Conservative Risk Using Maximum Concentrations

When either an individual COPC or the combined sum exceeds NMED screening levels, risk, or hazard using maximum COPC concentrations, further evaluation is required. As stated in Section 2.8.4 of the NMED Guidance, UCL95 (the 95 percent upper confidence limit of the arithmetic mean) concentration of a contaminant may be calculated to represent an average concentration likely to be contacted over time. However, due to small sample size, UCL95 values could not be calculated for soil vapor. In addition, many constituents were only detected once or only a few times, requiring retaining the maximum concentration as the EPC. This will result in conservative estimates of risk/hazard.

6.3.2 Soil Vapor Vertical Concentration Profiles

Soil vapor vertical concentration profiles for 200 and 600 Area wells were constructed to present the distribution of COPCs in the vadose zone and identify any sourcing relationships to the local contaminated groundwater aquifer. The evaluation includes a temporal element with comparison of shallow soil vapor port analytical results generated specifically for the VI assessment to historical soil vapor analytical data collected for previous investigations (NASA, 2011b; NASA, 2013c; and NASA, 2015b). Historical soil vapor sampling events included all accessible ports within 200 and 600 Area MSVM and MSVGM wells that were sampled collectively as single events in order to provide a results snapshot using soil vapor isopleth maps. Vertical concentration profiles also incorporate soil sample analytical results collected during borehole installation, the soil porosity from geotechnical soil sample analyses, and groundwater analytical results from contemporaneous sampling events performed to support the soil vapor investigations. COPC concentrations in groundwater were used to calculate the equivalent

soil vapor concentrations in equilibrium with groundwater using Henry's Coefficient (NMED, 2019). The calculated values are compared to soil vapor concentrations from the most proximal port located above groundwater.

With the exception of TCE, soil vapor analytical results for the majority of COPCs for the VI assessment and historical sampling events (PCE; Freon11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) are below the respective NMED VISL and WSTF RBC in soil vapor. For the optimum vertical concentration profiling of soil vapor, the COPCs Freon 113 and TCE were selected as they consistently display greater frequency of detection, relatively high concentrations, and more widespread vertical distribution. Freon 113 and TCE also represent two of the primary COPCs known to have been released from historical activities within the 200 and 600 Areas (NASA, 2012b). Vertical concentration profiles for select 200 and 600 Area wells are provided in Appendix E, with a summary of the profiles presented in Table 6.42.

6.3.2.1 200 Area - Wells 200-SG-2 and 200-SG-3

MSVGM wells 200-SG-2 and 200-SG-3 were utilized for vertical concentration profiles for the 200 Area vadose zone, in lieu of VI assessment wells 200-SV-05 and 200-SV-09 located adjacent to Building 200. Wells 200-SV-05 and 200-SV-09 comprise single port constructions directly above Permian Hueco limestone bedrock at 9 ft and 19 ft respectively, which preclude the ability to plot vertical concentration profiles. VI assessment MSVGM well 200-LV-150 was also not utilized for vertical concentration profiles because the shallow port at 34 ft was blocked during the only comprehensive sampling event performed (NASA, 2015), leaving only two lower ports accessible at 64 ft and 84 ft. The three ports are also all located below shallow alluvium - Permian Hueco Limestone bedrock interface at 18 ft, with bedrock elevated as a geological horst block along two subparallel faults below the industrialized 200 Area. The bedrock vadose zone in this area is not characterized by the high porosity and permeability of the relatively thick vadose zone alluvial section found in other parts of the 200 Area and the 600 Area. The bedrock vadose zone below the former Clean Room Tank HWMU located adjacent to Building 200 has been demonstrated to host residual COPCs within irregular low permeability bedrock fractures sampled in cores (NASA, 2015b).

Wells 200-SG-2 and 200-SG-3 were not utilized for shallow soil vapor sampling as part of the vapor intrusion assessment due to their distance from Building 200 of approximately 1,200 ft and 700 ft, respectively. The wells were installed in 1998 as part of the well 200-D area vadose zone investigation (NASA, 2004), through a thicker section of vadose zone alluvium peripheral to the industrialized 200 Area. Well 200-SG-2 was installed south of the industrialized 200 Area within a borehole drilled to a depth of 240 ft bgs. The borehole intercepted Permian Hueco Limestone bedrock at 90 ft bgs, and groundwater was initially identified at 230 ft bgs during drilling. The confined groundwater subsequently increased in elevation to a depth of 83 ft bgs. Three soil vapor ports were positioned at depths of 30 ft, 60 ft, and 84 ft bgs. The first two ports are located within the alluvial vadose zone, and the deep port is located within bedrock comprising interbedded limestone, shale, and sandstone. A screened groundwater monitoring zone is present at a depth of 85 ft to 100 ft bgs. Because confined groundwater increased in elevation above the bottom port, it became submerged and non-operational. The middle soil vapor port positioned approximately 23 ft above the local water table is now utilized as the deep port.

MSVGM well 200-SG-3 was installed south of the 200 Area buildings in the vicinity of the former hazardous waste evaporation tanks within a borehole drilled to a depth of 250 ft bgs. The borehole intercepted Permian Hueco Limestone bedrock at 80 ft bgs, and groundwater at 190 ft bgs during drilling. The groundwater table subsequently increased in elevation to a depth of 164 ft bgs. Five soil vapor ports were located at depths of 30 ft, 60 ft, 90 ft, 120 ft (reported as blocked following installation), and 154 ft bgs. The shallow two ports are located within the alluvial vadose zone, and the three deeper ports are

located within bedrock comprising interbedded limestone, shale, and sandstone. A screened groundwater monitoring zone is present between 155 ft and 170 ft bgs, with the deep soil vapor port located 10 ft above the local groundwater table.

Evaluation of the vertical concentration profiles in the 200 Area at wells 200-SG-2 and 200-SG-3 (Appendix E, Table 6.42) indicate variable and complex relationships between soil vapor in the vadose zone and groundwater. Proximal to Building 200, residual COPCs sourced from the former Clean Room Tank HWMU characterize fractured Permian Hueco limestone bedrock. Relatively low and variable permeability in the fractured interbedded limestone, sandstone, and shale comprises the majority of the vadose zone along and within the horst block. Adjacent to the industrialized 200 Area where the alluvial vadose zone is thicker, shallower soil vapor ports located within alluvium or proximal to the upper bedrock section (well 200-SG-3, port at 90 ft) display generally increasing trends with depth, that are characteristic of the vadose zone at the 600 Area Closure (Section 6.2.2).

Soil vapor ports within the fractured limestone section do not display the same increasing COPC concentration trend as the alluvial vadose zone and are more irregular in profile. This trend could potentially be attributed to irregular vadose zone sources in the fractured bedrock vadose zone and local groundwater aquifer. Localized sources in these areas may be sourced by the infiltration of COPCs observed at surface (NASA, 2012b) through the alluvial soil to the bedrock interface, with subsequent migration down dip along relatively low permeability bedding planes or within bedding plane solution channels saturated below the local groundwater table. Vertical concentration profiles generally demonstrate declining soil vapor concentrations over time since the inception of soil vapor sampling in this area, which coincides with declining COPC trends in groundwater (NASA, 2019a). Where COPC concentrations in groundwater were used to calculate the equivalent equilibrium soil vapor concentrations, the results for the deep port in the respective well were within one order of magnitude for Freon 113 and the same order of magnitude for TCE.

6.3.2.2 600 Area - Wells 600-SGW-1 and 600-SGW-5

600 Area MSVM wells 600-SGW-1 and 600-SGW-5 were utilized for vertical concentration profiles in the vicinity of Building 637. The shallow port in each well (12.5 ft and 7.5 ft, respectively) was used to collect shallow soil vapor samples as part of the VI assessment. Well 600-SGW-1 was installed in 2009 as part of a closure investigation through the 600 Area closure cap within a borehole drilled to 135 ft bgs. The borehole was not advanced to the projected depth of bedrock (anticipated at between 160 ft and 170 ft) due to drilling difficulties with the sonic drilling method. Three soil vapor ports were located at 12.5 ft, 57.5 ft, and 117.5 ft bgs. Well 600-SGW-1 is located 184 ft from Building 637, and all vapor ports within the well have been sampled several times during previous investigations, providing a record of historical vertical profiles.

MSVM well 600-SGW-5 was also installed as part of the closure investigation immediately adjacent to the east corner of the 600 Area closure cap within a borehole drilled to 156 ft bgs. The well comprises four soil vapor ports located at 7.5 ft, 52.5 ft, 102.5 ft, and 137.5 ft. During borehole installation, perched groundwater was encountered at 144 ft on top of the alluvium-poorly fractured Tertiary Orejon andesite interface at 148 ft bgs. Well 600-SGW-5 is the most proximal well to building 637 at a distance of 181 ft, and was historically sampled as part of the same events as well 600-SGW-1. Because of the identification of perched groundwater in the borehole, the well was twinned with monitoring well 600-G-138 in 2011 to evaluate the perched groundwater. The results for Freon 113 and TCE for groundwater samples collected from 600-G-138 within the same timeframe as the soil vapor samples from well 600-SGW-5 are used to compare the soil vapor COPC concentration in equilibrium with groundwater to soil vapor in the deepest port at 137.5 ft.

The vertical concentration profiles in the 600 Area evaluated for wells 600-SGW-1 and 600-SGW-5 (Appendix E, Table 6.42) indicate a relationship between soil vapor in the vadose zone and groundwater. Both wells are located within an area characterized by an alluvial vadose zone with high porosity and permeability. The spectrum of soil vapor ports in these wells show consistently increasing COPC concentrations with depth and proximity to either perched groundwater or the local groundwater table. Vertical concentration profiles also demonstrate declining soil vapor concentrations over time since the inception of soil vapor sampling in this area that coincides with local declines in COPC concentrations in groundwater. Where COPC concentrations, the results were comparable and within the same order of magnitude for the deep port in well 600-SG-5 located 7 ft above perched groundwater.

6.3.3 Integrity of Building Slabs

Building 200 was constructed in 1964 as a semi-permanent structure with a reinforced concrete floor (NASA, 1994). The concrete slab floor is 6 in. in thickness. The facility was intended for its present use as a laboratory with offices and is fully suitable for this use. Details of the Building 200 construction characteristics identified through the building inspection performed for the vapor intrusion assessment are provided in <u>Appendix A</u>. The floor is composed of a poured concrete slab covered with concrete sealant and 9-in. x 9-in. x 1/16-in. vinyl tiling. No significant cracks were observed in the concrete foundation slab during the building inspection around the outside periphery of Building 200 or inside within areas of exposed concrete floor. Therefore, known vapor intrusion routes of entry through the foundation slab are limited to diffusion through the concrete slab.

Building 637 was built in 1991 as a semi-permanent structure with a reinforced concrete floor (NASA, 1994). The concrete slab floor is 6 in. in thickness. The facility was intended for its present use for sample storage and is fully suitable for this use. Details of the Building 637 construction characteristics are provided in <u>Appendix A</u>. The floor comprises a poured concrete slab covered with concrete sealant. No significant cracks were observed in the concrete foundation during the building inspection around the outside periphery of the building or within the interior concrete floor. Therefore, known vapor intrusion routes of entry through the foundation slab are limited to diffusion through the concrete slab.

6.3.4 Ventilation Systems

Building 200 comprises a single floor structure. Airflow is through cycled air, and outdoor air infiltration can enter the building through open doors, door thresholds, and air ducts in the roof. Heating is through hot air circulation sourced by natural gas, and air conditioning is provided through central air. The HVAC systems run constantly throughout the day in order to preserve the laboratory environment (Appendix A).

Building 637 comprises a single floor structure. During summer months, airflow is through forced central air generated by evaporative coolers located on the ground on the north side of the building. Outdoor air infiltration could potentially be generated through the evaporative cooler intakes or on occasions when the bay door on the west side of the building is open. Heating is through hot air circulation sourced by natural gas. The HVAC systems run intermittently due to the irregular usage of the building on working days (Appendix A).

6.3.5 Personnel Management Practices

The practices for chemical storage and chemical waste management in Buildings 200 and 637 have been continually modified and improved through time at WSTF as part of the ongoing health, safety, and environmental culture. Personnel management practices have effectively promoted the minimization, documentation, storage, and disposal of wastes. These practices include: the training of WSTF employees

operating within the target buildings to manage potential chemical sources of vapors appropriately; communication of best practices for chemicals management from managers through supervisors to workers; communication of the safety culture awareness; establishing chemical best management policies; and, providing constant supervision and monitoring of the work environment. Development and streamlining of the personnel management practices has helped minimize the potential for vapor intrusion into the buildings and vapor circulation within the buildings.

6.3.6 Indoor Air Quality – Risk to Worker

In Building 200, the concentration of 3,200 μ g/m³ of Freon 113 reported in August 2017 from sample location 200-IA-5 within Room 202 is two orders of magnitude below the NMED VISL for industrial indoor air of 147,000 μ g/m³ (Table 4.3). The product inventory form (Table 4.1) indicates that steel canisters containing Freon are stored in this secure, unoccupied storage room. A trace indoor air concentration for 2-propanol of 68 μ g/m³ reported in August 2017 from sample location 200-IA-3 within Room 205 is one order of magnitude below the residential and industrial RSLs (Table 4.3). 2-propanol is a common ingredient in chemicals such as antiseptics, disinfectants and detergents that are stored in this room. Room 205 is used exclusively for equipment and storage and is occupied only during maintenance activities. The workers are protected under this scenario.

In Building 637, a trace indoor air concentration for acetone of 16 μ g/m³ reported in August 2017 from sample location 600-IA-2 is four orders of magnitude below the NMED VISL for industrial indoor air of 152,000 μ g/m³ (Table 5.1). Acetone is a common solvent used for cleaning tools occasionally used in the building. The workers are protected under this scenario.

6.3.7 Concentration Ratios of Detected Constituents in Soil Vapor and Indoor Air

If vapor intrusion impacted indoor air quality in Building 200 or 637 one would expect to see a similar detection pattern and ratio of constituent concentrations for indoor air and soil vapor samples. However, analytical results from the two semi-annual indoor air and soil vapor sampling events show that the types and concentrations of VOCs in indoor air in Buildings 200 and 637 are unrelated to soil vapor measurements in those areas. This supports a conclusion that any constituents detected in indoor air samples did not enter the building through vapor intrusion from the vadose zone. The trace level constituents present within the buildings are not unexpected due to the inventoried storage of chemicals within the Building 200 laboratories and Building 637 sample storage areas (see Section 6.6 and <u>Appendix A</u>).

TCE, PCE, and 1,1-Dichloroethene were the three primary risk drivers which exceeded screening levels in the 200 Area soil vapor samples as follows:

- TCE was detected in all eight of the vadose zone soil vapor samples collected. Of the 18 indoor air samples, TCE was only detected in eight of the samples.
- PCE was again detected in all eight of the vadose zone soil vapor samples collected. There was only one detection of PCE within the 18 indoor air samples, and the detection was a trace amount (0.28 ug/m³).
- 1,1-Dichloroethene was detected again in all eight of the soil vapor samples, while the constituent was non-detect for all 18 indoor air samples.

6.4 Assessment of Worker Risks for Occupants of Buildings 200 and 637

The three constituents which exceed NMED screening levels in 200 Area soil vapor coexist in all of the soil vapor samples. This same correlation between these constituents does not exist in indoor air samples, indicating that soil vapor is not the source of the trace indoor detections.

The primary risk driver that exceeded NMED VISLs in the 600 area was TCE. TCE was detected in each of the eight soil vapor samples collected within the 600 Area during this investigation. However, TCE was not detected in any of the ten indoor air samples that were collected in Building 637. The absence of TCE in indoor air samples is a strong line of evidence that TCE in soil vapor in the 600 Area does not present a risk to present-day workers.

Industrial/occupational workers at WSTF who occupy buildings in the vicinity of the former 200 Area Clean Room Tank HWMU and the 600 Area HWMU while performing their daily duties are the primary potential receptors for COPC vapor intrusion. RA Guidance Section 2.5.2.1 (NMED, 2022c) states that the vapor intrusion pathway may only be considered incomplete if all soil vapor sample concentrations results are 100 percent non-detect. A cumulative health risk assessment was requested as part of the vapor intrusion investigation by the NMED (NMED, 2022c). The assessment was included in the revised report, and was completed in accordance with the RA Guidance to evaluate the pathway between soil vapor in the 200 and 600 Area vadose zones and indoor air in the vicinity of adjacent Buildings 200 and 637. Lines of evidence considered include:

- A cumulative screening level risk assessment.
- Evaluation of vertical concentration profiles within the 200 and 600 Areas.
- The results of the visual inspection of the buildings including the integrity of the building foundations, quality of the ventilation systems, and an evaluation of personnel management practices.
- Quantitative screening assessment of vadose zone soil vapor, outdoor air, and indoor air laboratory results with comparison to available vapor intrusion soil vapor screening levels and industrial exposure scenario air screening levels.

Evaluation of the lines of evidence support the conclusion that no additional investigation or vapor intrusion mitigation is required in Building 200 or Building 637.

Although vadose zone soil vapor concentrations of PCE and/or TCE at the locations of the 200 West Closure and 600 Area HWMUs exceeded NMED VISLs and updated NMED-approved WSTF RBCs as expected, indoor air exposure within Buildings 200 and 637 presents no unacceptable risk. The subsurface contribution to indoor VOC levels is below the equivalent indoor air screening levels.

<u>Table 6.20</u>, <u>Table 6.21</u>, <u>Table 6.40</u>, and <u>Table 6.41</u> show the cumulative risk of soil and soil vapor within the 200 and 600 Areas, respectively. This calculation does not include results from indoor air sampling and is therefore representative of future risk. The same risk drivers remain present in this assessment.

7.0 Summary and Conclusions

7.1 Summary of Soil Vapor, Outdoor Air, and Indoor Air Sampling and Screening Criteria

The investigation reported in this VIAR used a tiered approach to evaluate the potential for vapor intrusion in the WSTF 200 and 600 Areas. The vapor intrusion pathway between soil vapor in the vadose zone and industrial/occupational indoor air at two locations identified through previous investigations was evaluated by comparing the maximum detected concentrations to the corresponding NMED VISLs, and

WSTF RBCs. Additional lines of evidence were reviewed including evaluation of the building foundations and ventilation systems, and evaluation of the results of indoor and outdoor air sampling at these locations.

Adjacent to the 200 Area Clean Room Tank HWMU, soil vapor samples were collected from shallow soil vapor ports in MSVM wells 200-SV-05 at 9 ft bgs, 200-SV-09 at 19 ft bgs, and MSVGM well 200-LV-150 at 34 ft bgs. All three wells are located within 85 ft of the west side of Building 200. Air samples were collected simultaneously with the vadose zone samples. Indoor air samples were collected at locations in Building 200 above and adjacent to the subsurface footprint of the former 200 Area Clean Room Tank HWMU along with outdoor air samples adjacent to Building 200.

In the 600 Area, soil vapor samples were collected from shallow soil vapor ports in MSVM wells 600-SGW-1 at 12.5 ft bgs, 600-SGW-2 at 12.5 ft bgs, and 600-SGW-5 at 7.5 ft bgs, all located within 210 ft of Building 637. Indoor air samples were collected in Building 637 within the single room of the building, along with outdoor air samples at adjacent locations.

Sample collection activities at both locations were performed as two single semi-annual events in the summer (August 2017) and winter (February 2018) to address potential seasonal differences in HVAC performance and related air pressure fluctuations that could affect vapor intrusion. Vadose zone, indoor air, and outdoor air samples were collected over non-working three-day weekends on the same day within each area, and on consecutive days for both sampling events. Indoor and outdoor air sampling procedures were performed to assess the potential contribution of background levels of VOCs in ambient air to measured VOC concentrations in indoor air. Soil vapor samples were analyzed using EPA Method TO-15 in order to achieve the project DQOs. 2022 NMED VISLs and 2022 WSTF RBCs (submitted to NMED for review December 14, 2021; memorandum approved with modification by NMED on February 11, 2022, and resubmitted May 10, 2022), which incorporate new toxicity data and exposure factors, were used for screening soil vapor data. Potential health effects related to inhalation of indoor air data were screened using NMEDs air screening levels. NMED industrial soil screening levels were used to support the all-pathways cumulative screening assessment.

- 7.2 Conclusions
- 7.2.1 200 Area
- 7.2.1.1 Vadose Zone Soil Vapor

The shallow soil vapor port within three wells adjacent to Building 200 (and the location of the former Clean Room Tank HWMU) were utilized for the air intrusion evaluation. All three wells (200-LV-150-34, 200-SV-05, and 200-SV-09) have historically shown TCE soil vapor concentrations that exceed WSTF RBCs (NASA, 2015, Phase II report). Vadose zone TCE concentrations in soil vapor from MSVM wells 200-SV-05 at 9 ft bgs, 200-SV-09 at 19 ft bgs, and 200-LV-150 at 34 ft bgs exceed NMED VISL (11,000 and 280,000 μ g/m³ cancer and 69.5 and 328 μ g/m³ noncancer) and WSTF RBC at 25 ft bgs (4,900 and 84,000 μ g/m³ noncancer) for the August 2017 and February 2018 semi-annual sampling events performed for this vapor intrusion assessment. PCE soil vapor concentrations exceed the NMED VISL (3,600 and 17,600 μ g/m³ cancer and 1,390 and 6,550 μ g/m³ noncancer) in all three wells for the August 2017 sampling event but are below the WSTF RBC at 25 ft bgs (340,000 and 6,000,000 cancer and 130,000 and 2,300,000 μ g/m³ noncancer). In February 2018, only the PCE sample from 200-LV-150 at 34 ft bgs exceeded the NMED VISLs. The concentrations for the other remaining COPCs in vadose zone soil vapor are below the corresponding NMED VISLs (except 1,1-Dichloroethane) and WSTF RBCs.

7.2.1.2 Outdoor Air

Concentrations in Building 200 outdoor air samples were generally either non-detect or below 1 μ g/m³ for COPCs. Traces of Freon 11 (maximum 1.2 μ g/m³ in August 2017 and February 2018) and 2-Butanone (maximum 3 μ g/m³ in August 2017) were observed. Based on this simple comparison, NASA concludes that outdoor air does not present a significant risk of industrial/occupational exposure and no additional investigation or mitigation is required at this time.

7.2.1.3 Indoor Air

Concentrations in Building 200 indoor air samples were generally non-detect or present at trace concentrations for COPCs. One low concentration of Freon 113 of 3,200 μ g/m³ was reported in August 2017 at location 200-IA-5. This concentration is two orders of magnitude below the NMED VISL for industrial indoor air (147,000 μ g/m³). All indoor air concentrations for all COPCs were well below NMED VISLs. As stated in the NMED Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2022c), the "application of the VISLs is appropriate as a first-tier screening assessment." Although the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs.

The Decision Rule from the approved work plan (provided in Section 3.1.4) states that "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." Based on the results of a visual inspection of the structural stability WSTF Building 200, an evaluation of personnel management practices, and the quantitative assessment of soil vapor and air sample laboratory results with comparison to available vapor intrusion screening levels including NMED VISLs and WSTF RBC, NASA concludes the following:

- According to NMED Guidance on vapor intrusion pathway designation (NMED, 2022c), there is a complete exposure pathway in the 200 Area.
- Potential vapor intrusion into Building 200 does not present a risk of industrial/occupational exposure to personnel working in the building.
- No additional investigation or vapor intrusion mitigation is required in Building 200.

7.2.2 600 Area

7.2.2.1 Vadose Zone Soil Vapor

The shallow soil vapor ports within three wells located on the 600 Area HWMU adjacent to Building 637 were sampled as part the air intrusion evaluation. Well 600-SGW-2 has periodically yielded concentrations of TCE that have exceeded WSTF site-specific RBCs (NASA, 2013c 200/600 semi-annual fourth report), although TCE concentrations remained below the RBC for the last sampling event (NASA, 2015 Phase II report). TCE concentrations within soil vapor for well 600-SGW-1-12.5 (480 μ g/m³ in August 2017 and 740 μ g/m³ in February 2018) and well 600-SGW-2-12.5 (330 μ g/m³ in August 2017) exceed the NMED VISL (69.5 and 328 μ g/m³), but are significantly below the WSTF RBC at 10 ft bgs (5,400 μ g/m³). All other maximum concentrations for the remaining COPCs for both the August 2017 and February 2018 sampling events are below the respective NMED VISL and WSTF RBC in soil vapor. Based on the historical soil vapor data and soil vapor results presented in the VIAR, NASA concludes that activities related to the ongoing 600 Area Perched Groundwater Extraction Pilot Test (NASA, 2018b)

and upcoming 600 Area Perched Groundwater Investigation (NMED, 2017b) will address concerns related to the presence of VOCs in soil vapor in the area.

7.2.2.2 Outdoor Air

The concentrations for COPCs for Building 600 outdoor air samples were generally non-detect or below $1 \ \mu g/m^3$ for the COPCs. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017), 2-butanone (maximum 2.4 $\mu g/m^3$ in August 2017), and acetone (maximum 10 $\mu g/m^3$ in August 2017) were reported.. Based on this comparison, NASA concludes that outdoor air does not present a significant risk of industrial/occupational exposure and no additional investigation or mitigation is required at this time.

7.2.2.3 Indoor Air

The Building 600 indoor air concentrations for specific COPCs were slightly above the contemporaneous outdoor air samples collected, but significantly below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM wells. The maximum concentration for indoor air samples were generally non detect or below 1 μ g/m³ for the COPCs. Trace concentrations were observed for three COPCs: Freon 11 (maximum 1.4 μ g/m³ in February 2018); 2-Butanone (maximum 5.3 μ g/m³ in August 2017); acetone (maximum 16 μ g/m³ in August 2017); and 2-propanol (maximum 3.4 μ g/m³ in August 2017). No concentrations of indoor air COPCs exceeded the NMED VISLs.

The Decision Rule from the approved work plan (provided in Section 3.1.4) states that "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." Based on the results of a visual inspection of the structural stability WSTF Building 637, an evaluation of personnel management practices, and the quantitative assessment of soil vapor and air sample laboratory results with comparison to available vapor intrusion screening levels including NMED VISLs and WSTF RBC, NASA concludes the following:

- According to NMED Guidance on vapor intrusion pathway designation (NMED, 2022c), there is a complete exposure pathway in the 600 Area.
- Potential vapor intrusion into Building 637 does not present a risk of industrial/occupational exposure to personnel working in the building.
- No additional investigation or vapor intrusion mitigation is required in Building 637.

8.0 Recommendations

Based on the background data presented in this report, the comparison of analytical results to applicable regulatory screening level criteria, and the performance of a cumulative screening level risk assessment, NASA concludes that there is a complete vapor intrusion pathway within the 200 and 600 areas, but there is no unacceptable impact to human health within Building 200 and 637, respectively.

From the Decision Rule: "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below risk-based indoor air concentrations shown in Table A-4 of NMED's Soil Screening Guidance for Human Health Risk Assessments VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." No further soil vapor investigation or corrective actions are recommended for Building 200 and Building 637 due to the lack of unacceptable health risk of soil vapor COPCs from the vadose zone into the target buildings.

The risk screening performed for this VIAR is not intended to be complete at this time, as continued monitoring is planned for the 200 and 600 Areas. NASA will perform continued risk and hazard screening, including soil-to-groundwater and an ecological assessment in accordance with the current NMED RA Guidance, Volumes I and II at an appropriate time to make corrective action decisions or to seek closure. At that time, NASA will provide a risk report in accordance with the WSTF Permit Section 6.5.

In accordance with Permit Sections 2.3, 7.3.5, and Attachment 5 (NMED, 2023), NASA will continue to perform the necessary post-closure care inspections and activities at both the 200 Area and 600 Area closures. Planned activities include continued groundwater monitoring in accordance with Permit Section 3.3, 4.3, and 7.3.4, surface impoundment requirements of Section 7.3.5.1, landfill requirements of Section 7.3.5.2, and the security measures described in Section 7.3.5.4. NASA will continue to perform inspections and maintenance as specified in Permit Attachment 5.

9.0 References

- EPA. (2005, March). Evaluating, Assessing, and Documenting Environmental Data Collection and Use Programs. Final Version 1. Uniform Federal Policy for Quality Assurance Project Plans. Part 1: UFP-QAPP Manual. United States Environmental Protection Agency Publication Number EPA-505-B-04-900A. Intergovernmental Data Quality Task Force, Washington DC. Retrieved from http://www.epa.gov/fedfac/pdf/ufp_qapp_v1_0305.pdf
- EPA. (2006, February). Guidance on Systematic Planning Using the Data Quality Objectives Process. Environmental Protection Agency QA/G-4, Washington, DC.
- EPA. (2013, June). SW-846-Test Methods for Evaluating Solid Wastes Physical/Chemical Methods. Environmental Protection Agency. Retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/online/
- EPA. (2015a, June). Oswer Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. U. S. Environmental Protection Agency Office of Solid Waste and Emergency Response, Washington, DC. Retrieved from <u>http://www.epa.gov/sites/production/files/2015-09/documents/oswer-vaporintrusion-technical-guide-final.pdf</u>
- EPA. (2015b, October). ProUCL Version 5.1.00 Technical Guide (Draft). Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. <u>https://www.epa.gov/land-research/proucl-software</u>
- EPA. (2022a, June 14). *ProUCL Version 5.2.00 Technical Guide*. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. https://www.epa.gov/land-research/proucl-software
- EPA. (2022b, November). Regional Screening Level (RSL) Summary Table. Retrieved from <u>https://semspub.epa.gov/work/HQ/403628.pdf</u>
- Geoscience Consultants, Ltd. (1986, December 22). Shallow Soil Gas Investigation at the NASA-Johnson Space Center White Sands Test Facility Interim Report. Las Cruces, NM.

Hazardous waste operations and emergency response, 29 C.F.R. § 1910.120 (2013). Retrieved from

- NASA Johnson Space Center White Sands Test Facility. (1989, May 11). Certification of Closures, 200 and 400 Areas. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (1996, May 2). Draft RCRA Facility Investigation (RFI) and Corrective Measures Study (CMS) for NASA WSTF. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2004, May 19). Well 200-D Area Vadose Zone Investigation Report NASA White Sands Test Facility. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2009, April 17). NASA Response to NMED 03/19/09 Comments on the 600 Area Closure Investigation Work Plan HWB-NASA-08-007. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2011a, March 30). 600 Area Closure Investigation Report Provided in Response to a NMED Notice of Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2011b, May 9). Fee Assessment for 200/600 Area Soil Gas and Groundwater Data Evaluation Report (NMED Invoice Number HWB-NASA-11-003). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2012a, March 1). 200/600 Area Semi-Annual Soil Gas and Groundwater Data for NASA WSTF November 2011. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2012b, March 28). 200 Area Investigation Work Plan and 200 Area Historical Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2012c, June 1). Development of Site-specific Risk-based Regulatory Criteria for Soil Vapor. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2012d, November 1). 200/600 Area Semi-Annual Soil Vapor and Groundwater Data for NASA WSTF - June 2012 Data. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013a, January 30). 200 Area Investigation -Phase II Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013b, January 30). 200 Area Investigation -Phase I Status Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013c, June 14). 200/600 Area Semi-annual Soil Vapor and Groundwater Data Summary (Fourth Report - March 2013 Data). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013d, August 28). 200 Area Investigation Phase I Geophysical Data, Notice of Disapproval (NOD) Response, and Phase II Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015a, April 16). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report - Project Year 2. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015b, June 29). NASA WSTF 200 Area Phase II Investigation Report. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2015c, November 25). Response to NMED Request for 600 Area Vadose Zone IWP. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015d, September). Soil Background Study Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016a, January 27). NASA WSTF Periodic Monitoring Report - Fourth Quarter 2015. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016b, February 25). 200 and 600 Area Vapor Intrusion Assessment Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017a, January 26). NASA White Sands Test Facility (WSTF) Updated Soil Vapor Risk-Based Concentrations (RBCs) Memorandum. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017b, April 27). NASA WSTF Groundwater Monitoring Plan Update for 2017. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018a, January 27). NASA WSTF Periodic Monitoring Report - Fourth Quarter 2018. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018b, May 3). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 5. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019a, February 6). NASA WSTF (White Sands Test Facility) 2018 Soil Vapor RBC (Risk Based Concentrations) Memorandum NMED Approval with Modifications Response. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, April 29). NASA WSTF Periodic Monitoring Report – First Quarter 2019. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022, May 10). NASA White Sands Test Facility (WSTF) 2022 Soil Vapor Risk Based Concentrations (RBC) Memorandum. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2009a, May 6). Notice of Approval 600 Area Closure Investigation Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2009b, December 16). Approval of "Contained-In" Determination Request - 600 Area Closure Investigation-Derived Waste Soil and Debris. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2011a, June 9). Approval with Modifications: 600 Area Closure Investigation Report and 200/600 Area Soil Gas and Groundwater Data Evaluation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2011b, December 2). Approval of No Longer "Contained-In" Determination 200/600 Area Drilling Investigation-Derived Waste. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2012, May 22). Disapproval 200 Area Closure Investigation Work Plan and 200 Area Historical Information Summary. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2013a, May 8). Notice of Disapproval for 200 Area Investigation -Phase I Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013b, October 22). Approval with Modifications for 200 Area Investigation - Phase I Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2014a, January 22). Approval for 200 Area Phase II Investigation Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2014b, August 27). Approval of Request for a No Longer Contained-In Determination (NLCID) for Investigation Derived Waste (IDW) from the 200 Area Phase II Investigation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2014c, September 10). Approval of Request for a No Longer Contained-In Determination (NLCID) for Investigation Derived Waste (IDW) from the 200 Area Phase II Investigation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2015a, July 15). Approval with Modifications 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report - Project Year 2. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2015b, November 30). Approval with Modification 200 Area Phase II Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2016b, November 10). Administrative Completeness and Fee Assessment Transmittal of Class 1 Permit Modification Without Prior Approval. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2017a, March). Risk Assessment Guidance for Site Investigations and Remediation Volume II Soil Screening Guidance for Ecological Risk Assessments. Santa Fe, NM
- NMED Hazardous Waste Bureau. (2017b, March 31). Approval Abbreviated Investigation Work Plan for 600 Area Perched Groundwater. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019, June 5). Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020, November 9). Approval Soil Vapor Risk-Based Concentrations Memorandum. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022a, February 11). Approval with Modifications NASA White Sands Test Facility (WSTF) 2022 Soil Vapor Risk Based Concentrations (RBC) Memorandum Update. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022b, September 20). Disapproval 200 and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM
- NMED Hazardous Waste Bureau. (2022c, November). Risk Assessment Guidance for Site Investigations and Remediation Volume I Soil Screening Guidance for Human Health Risk Assessments. Santa Fe, NM.NMED Hazardous Waste Bureau. (2023, April 27). Hazardous Waste Permit No. NM8800019434. Santa Fe, NM.

- ODEQ (2010, March 25). Guidance for Assessing and Remediating Vapor Intrusion in Buildings. Portland, OR.
- Seager, W. R. (1981, May). Geology of Organ Mountains and Southern San Andres Mountains, New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 36. Socorro, NM.
- United States Department of Agriculture Soil Conservation Service, United States Department of the Army White Sands Missile Range, and New Mexico Agricultural Experimental Station. (1976, January). Soil Survey of White Sands Missile Range, New Mexico Parts of Dona Ana, Lincoln, Otero, Sierra, and Socorro Counties. Las Cruces, NM.

Figures

Figure 1.1

(SEE NEXT PAGE)

Figure 1.2 Vapor Intrusion Assessment Building Location Map

(SEE NEXT PAGE)

Figure 2.1 Freon 113 Soil Vapor and Groundwater Concentrations (Oct-14)

(SEE NEXT PAGE)

Figure 2.2Trichloroethene Soil Vapor and Groundwater Concentrations (Oct-14)

Figure 2.3 Tetrachloroethene Soil Vapor and Groundwater Concentrations (Oct-14)

Figure 2.4

Figure 2.5

Building 637 Site Conditions

Figure 2.6

Site Conceptual Exposure Model

Figure 3.1 West Building 200 Soil Vapor and Air Sampling Locations

Figure 3.2 Building 637 Soil Vapor and Air Sampling Locations

Figure 5.1 West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results

	La Carta Marken Cart	· ····································	XV	a start a set		and the of		
	200-SV-09-19 Results	200-5V-09		200-0A-	2 Results	AMA 11 - 11		
	Analyte Aug-17 Feb-18 Units	• •		Analyte Aug 17	Ech 18 Units	(NSD) : 174	1	
	TCE 35000 31000 $\mu\sigma/m^3$	and the second second		TCE ND	ND ug/m ³		and the second sec	he -
	PCE 6 600 5 400 ug/m ³		A Starter	ICE ND	ND ug/m			
	FCE 0,000 5,400 ug/ii	mar and the state	134	PCE ND	ND ug/m ³			
	Freon II ND ND ug/m ³	CALL TRACT MARCH	67 1 1 1 1 - 1	Freon 11 1.2 A	1.2 ug/m ³			
Image: product of the strength of	Freon 113 16,000 12,000 ug/m ³	The second states of the	and the second	Freon 113 0.76 J	0.49 J ug/m ³			THE A
Image: product of the state o	1	Sister Contractor	S. F. C. S.		V			X
					Contraction of the second		1 and the city	10
		200-IA-1 Results		12				1 2
		Analyte Aug-17 Feb-18	Units	200-04-2			7/	V -
	200-LV-150-34 Results	TCE ND ND	ug/m ³	2 C C C C C C C C C C C C C C C C C C C				-
	Analyte Aug-17 Feb-18 Units	PCE ND ND	ug/m ³	1	15			
	TCE 410,000 140,000 D ug/m ³	Freon 11 1.4 A 1.4	ug/m ³	200 IA 2 Besults				
	PCE 57,000 36,000 ug/m ³	Freon 113 1 J 0.64 J	ug/m ³	200-IA-5 Results				Sec.
	Freon 11 ND ND ug/m ³	and start and	Analyte	Aug-17 Feb-18	Units	200-IA-8 Results		
	Freon 113 470,000 140.000 D ug/m ³	200-LV-150	TCE	0.4 J 0.48 J	ug/m ³	Analyte Aug-17 Feb-18 Units		a la so
Image: Note of the image: Note of			PCE	ND ND	ug/m ³	TCE ND ND ug/m ³		
Variation Varia	MARCH AND		Freon 11	22 A QD 4.4	ug/m ³	PCE ND ND ug/m ³		
Image: Amount of the state	A A S A	200-IA-2 Results	Freon 11:	3 120 QD 24	ug/m ³	Freon 11 1.7 A FB 1.5 FB ug/m ³		
x x	Analyte	Aug-17 Feb-18 Units	6		3	Freon 113 1.2 FB 24 FB ug/m ³	6	
Συσ-5γ-65-98 σεω1π Ν	TCE	ND ND ug/m ³						
Luo L	200 SV 05 9 Posults PCE	ND ND ug/m ³		A.C.	W.	200-IA-7 Results	26	
mary the Zup2 / Yeb 18 that is 100 0 10 x 10 10 10 10 10 10 10 10 10 10 10 10 10	Applyte a the state Unite Freen 11	1 1.3 A 1.3 ug/m ³		A	Analyte	Aug-17 Feb-18 Units		
ILE 40.00 2000 ug/m Freen 11 40.00 28.000 ug/m DE200-1A-2 p <t< td=""><td>TOT 40,000 26,000 (3) Freen 11</td><td>3 0.97 0.53 J ug/m³</td><td></td><td></td><td>TCE</td><td>ND ND ug/m³</td><td></td><td></td></t<>	TOT 40,000 26,000 (3) Freen 11	3 0.97 0.53 J ug/m ³			TCE	ND ND ug/m ³		
Pice 23.00 100 m Pice Pice 14.000 28.000 100 m Pice Pice 14.000 28.000 100 m Pice 16.00 m Pice 16.00 m Pice 16.00 m Pice Course Course <thcourse< th=""> Course <th< td=""><td>PCE 0.500 5.000 ug/m³</td><td></td><td></td><td></td><td>PCF</td><td>ND ND ug/m³</td><td></td><td></td></th<></thcourse<>	PCE 0.500 5.000 ug/m ³				PCF	ND ND ug/m ³		
Preco 11 400 Å ND ug/m D200 D1252 ND ND UP	PCE 9,500 5,300 ug/m ³	B200-IA-2/		1 16	Freen 11 1	$6 \wedge FR = 1.4 = \mu g/m^3$		- C. C. C.
Pren 13 44,00 20,00 ugint Pren 14 1.1100 1.1100 1.1100 1.1100	Freon II 490 A ND ug/m ³	DEQUITATE S		D. C.A.	From 112	$\frac{4 \text{ EP}}{11} = \frac{11}{1000} 1000000000000000000000000000000000000$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second
200-SV205 05 100	Freon 113 44,000 28,000 ug/m ³	2 TRAIL			I Teoli II3			
200-65 V-05 P200-70A-1 P200-0A-1 Results <u>100 - 0A - 1 Results</u> <u>100 - 1A - 2 Results</u> <u>100 - 1A - 5 Results</u> <u>100 - 1A - 4 Results</u> <u>100 - 1B -</u>			IN ISA				· · /	Y STATE
B200-0A-1 Paulo	200	D-SV-05	X	1 th	200-	IA-5 Results		L'HE SA
Image: Non-OA-1 Image: No-1 Image: Non-OA-1 Imag	CANDA COMPANY				Analyte Aug-	17 Feb-18 Units		
200-OA-1 Results Imalyte Aug-17 Feb-18 Units CE ND ND ug/m³ PCE ND ND ug/m³ Freen 11 ND 1.3 ug/m³ PCE ND ND ug/m³ PCE ND	12 Man shall be sure		P B200HK	HE /	TCE ND	ND ug/m ³	130	
Z00-0A-1 Results Analyte Aug-17 Feb-18 Units CE ND ND ug/m³ PCE ND ND ug/m³ Fron 113 0.67 JTB 0.47 JTB Multic ND ug/m³ Units Nultics Multic ND Ug/m³ Nultics Nultics Multic Nultics Nultics Nultics Nultics Mul	B 112 11 July and a second	B200-04-1		109 10	PCE ND	ND ug/m ³		
200-OA-1 Results Analyte Aug-17 Feb-18 Units Analyte Aug-17 Feb-18 Units CE ND ND ug/m3 PCE ND ND ug/m3 Freon 113 0.67 JTB 0.47 JTB ug/m3 VMP V V V V V V	11 7 9 6 15	201	BRUUHA		Freon 11 ND	1.3 ug/m ³		
Analyte Aug.17 Feb.18 Units YEE ND ND ug/m3 PCE ND ND ug/m3 Freon 11 1.2.4 1.2. ug/m3 Freon 113 0.67 J TB 0.47 J TB ug/m3 NM NM Ug/m3 NM Ug/m3 Freon 113 0.67 J TB 0.47 J TB Ug/m3 NM NM Ug/m3 NM Ug/m3 Freon 113 0.67 J TB 0.47 J TB Ug/m3 NM NM Ug/m3 Ug/m3 Ug/m3 Freon 113 0.67 J TB 0.47 J TB Ug/m3 Ug/m3 Ug/m3 NM NM Ug/m3 Ug/m3 Ug/m3 Ug/m3 Ug/m3 NM ND 0.281 ug/m3 Ug/m3 Ug/m3 Ug/m3		200-0A-1 Results	3 X 2 V	10	Freon 113 3,200	730 D ug/m ³		7 - 5 H
Image Augrity Federity Fed	Analyte	Aug 17 Eab 19 Units	30. 10.			- 67 · · · ·		and the se
ICE ND ND ug/m3 PCE ND ND ug/m3 Freon 11 1.2 A 1.2 ug/m3 Freon 113 0.67 J TB 0.47 J TB ug/m3 Imp Ralyte Aug-17 Feb-18 Units Freon 113 0.67 J TB 0.47 J TB ug/m3 Imp Results Freon 113 Units CE 0.86J 1.3 ug/m3 PCE ND 0.28L up(m)		ND ND ug/m ³		100	200-IA-4 Resu	ilts		
PCE ND ND ug/m ² Freen 11 1.2 ug/m ³ Freen 113 0.67 J T B 0.47 J T B ug/m ³ Question 200-IA-6 Results Analyte Aug-17 Feb-18 Units TCE 0.86J 1.3 ug/m ³ PCE ND 0.281 ug/m ³	DCE	ND ND ug/m	105 .00	Analy	te Aug-17 Feb	-18 Units		
Preon 111 1.2 A 1.2 Ug/m² Freon 113 0.67 J T B 0.47 J T B ug/m³ Z00-IA-6 Results Analyte Aug-17 Feb-18 Units TCE 0.86J 1.3 ug/m³ PCE ND 0.21 ug/m³	I CE		× 103 1	TCE	0.39J 0.33	3J ug/m ³		
Image: Preon 113 0.6/J I B 0.4/J I B ug/m ² Image: Preon 113 0.6/J I B 0.4/J I B ug/m ² Image: Preon 113 0.6/J I B 0.4/J I B ug/m ² Image: Preon 113 0.6/J I B 0.4/J I B ug/m ² Image: Preon 113 0.6/J I B 0.4/J I B ug/m ² Image: Preon 113 0.6/J I B 0.13 ug/m ²	Freen 11	1.2 A 1.2 ug/m ²	10.1	PCE	ND N	D ug/m ³	ALL PLAN	
Analyte Aug-17 Feb-18 Units TCE 0.86J 1.3 ug/m³ PCE ND 0.28L no(m³)	Preon 113	0.67 J I B 0.47 J I B ug/m ³	200 IA 6 Bocul	Freon	11 20 A 4.	3 ug/m ³		
Analyte Aug-17 Peg-18 Onto TCE 0.86J 1.3 ug/m ³ PCE ND 0.28L ug/m ³			Applyte Aug 17 Feb	Freon	113 100 21	ug/m ³		
$\mathbf{W}^{\mathbf{F}} = \frac{\mathbf{P} \mathbf{C} \mathbf{E}}{\mathbf{P} \mathbf{C} \mathbf{F}} = \mathbf{N} \mathbf{D} = 0.281 + \mathbf{n} \mathbf{c} \mathbf{m}^2$				-10 Units	18			and the second
		1001		ug/m ²				A COLORED OF
$\frac{102}{1000} \frac{11}{1000} \frac{62}{1000} \frac{1000}{1000} 100$	Caller and and a second		Free 11 62 A 0.28	ug/m ³	14"		AA	State of the local day
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			FICON 11 0.5 A 2.7	ug/m ³				115
Freon 113 31 14 ug/m ³			Freon 113 31 14	ug/m ³	8	A A A A A A A A A A A A A A A A A A A		USA .
	al				- 01/2	a start and a start as	*	TIN
	a second and a second as a						St. Aller	

 \bigstar

Concentration exceeds NMED VISL

West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results

MSVGM Well Sample

10,000

Concentration exceeds NMED VISL and WSTF RBC

0

Notes: 100 Concentration below NMED VISL and WSTF RBC See Table 5.1 for Data Flags (A,D,FB,J,TB)

 \bigcirc

MSVM Sample

1,000

Air Sample Location

100 Feet

25

Figure 5.2 Building 637 Soil Vapor and Air Sampling Locations and Analytical Results

600-OA-1 Results

600-SGW-1

\sim	\times	\sim	\sim	\times					
\bigotimes	600-SGW-1-12.5 Results								
\otimes	Analyte	Aug-17	Feb-18	Units					
\otimes	TCE	480 D	740 D	ug/m3					
\bigotimes	PCE	3.4	3.5	ug/m3					
\bigotimes	Freon 11	84 A	14	ug/m3					
\bigotimes	Freon 113	290	370	ug/m3					

Building 637 Soil Vapor and Air Sampling Locations and Analytical Results

10,000

Air Sample Location

MSVM Well Sample

Perched GW Monitoring Well

HWMU

Notes: 100 Concentration below NMED VISL and WSTF RBC See Table 5.1 for Data Flags (A,D,FB,J)

 \bigcirc

Concentration exceeds NMED VISL

 \bigcirc

1,000

Concentration exceeds NMED VISL270 D and WSTF RBC

	and and a second se						
GW-5-7.5 Results							
g-17	Feb-18	Units					
44	42	ug/m3					
٨D	0.6 J	ug/m3					
20 A	2.7	ug/m3					
D Q D	310	ug/m3					

600-OA-2 Results							
Analyte	Aug-17	Feb-18	Units				
TCE	ND	ND	ug/m3				
PCE	ND	ND	ug/m3				
Freon 11	1.2 A	1.1	ug/m3				
Freon 113	0.48 J	0.5 J	ug/m3				

	And the lot of the lot						
600-IA-4 Results							
nalyte	Aug-17	Feb-18	Units				
CE	ND	ND	ug/m3				
CE	ND	ND	ug/m3				
reon 11	1.2 A	1.4	ug/m3				
reon 113	0.48 J	0.56 J	ug/m3				

June 2018

25

50

100 Feet

Revised Site Conceptual Exposure Model

Figure 2.2	Site Conceptual Exposur	e Model 200 and	600 Areas	Vanor	Intrusion
------------	-------------------------	-----------------	-----------	-------	-----------

LEGEND					
Flow-chart stops here; incomplete pathway					
	Flowchart continues; potentially complete pathway				
•	Potential pathway				
0	Incomplete pathway				

WSTF Background Soil Area Map

200 Area Soil Boring Locations

600 Area Soil Boring Locations

Tables

Table 1.1	Comparison of Soil Vapor and Air Concentration Guidance Levels						
	NMED	VISLs ¹	WSTF RBCs ^{2,3}				
Chemical	Industrial/ Occu A (µg	upational Indoor .ir /m³)	Commercial Worker @ 5-ft bgs (μg/m³)	Commercial Worker @ 10-ft bgs (µg/m ³)			
TCE	9.83	328	$18,000^{2}$ (8,800 ³)	$34,000^{2}$ (14,000 ³)			
РСЕ	197	6,550	$460,000^{2}$ (210,000 ³)	910,000 ² (350,000)			
Freon 11	3,440	115,000	$6,400,000^{2}$ (130,000,000 ³)	$\begin{array}{c} 13,000,000^2 \\ (210,000,000^3) \end{array}$			
Freon 113	147,000	4,920,000	440,000,000 ² (180,000,000 ³)	900,000,000 ² (310,000,000 ³)			

T 11 4 4 \sim .

Notes:

 1 = NMED, 2022c.

² = NASA, 2019a (NASA WSTF NMED-approved Soil Vapor RBCs for 2018)
 ³ = NASA, 2017a (NASA WSTF NMED-approved Soil Vapor RBCs for 2017).

Well ID	Location Description	Well Type	Soil Vapor Sample Port Locations (ft bgs)	Groundwater Sample Location (ft bgs)	Horizontal Distance to Building (ft)	Concentrations for Primary Contaminants from Oct-14 (µg/m ³)
	200 Area in the vicinity	of the Clea	n Room Tank HWM	U Located Below the	East Side of Buildin	g 200
200-SV-05	West side of B. 200 southwest of the former Clean Room Tank location	MSVM	9		28	Freon 11 = 160 (J) Freon 113 = 54,000 TCE = 47,000 PCE = 8,300 (J)
200-LV-150	Immediately west and adjacent to B. 200 at the former Clean Room Tank location	MSVGM	34, 64, 84	150 - 170	18	Freon 11 = ND Freon 113 = 6,600,000 TCE = 380,000 PCE = 42,000
200-SV-09	Across Apollo Boulevard to the west of B. 200 at location for former Clean Room Discharge pipe	MSVM	19		84	Freon 11 = ND Freon 113 = 14,000 TCE = 23.000 PCE = 3,700
	600 Area in the	Vicinity of t	he Southeast Side of	the 600 Area Closure	Near Building 637	
600-SGW-1	Northwest of B. 637 within southeast cell of former 600 Area surface impoundments	MSVM	12.5, 57.5, 117.5		184	Freon 11 = ND Freon 113 = 43,000 TCE = 3,800 PCE = ND
600-SGW-2	West of B. 637 along southwest side of southeast cell of former 600 Area surface impoundments	MSVM	12.5, 47.5, 107.5, 150		260	Freon 11 = ND Freon 113 = 200,000 TCE = 10,300 PCE = ND
600-SGW-5	North of B. 637 at east corner of southeast cell of former 600 Area Surface Impoundments	MSVM	7.5, 52.5, 102.5, 137.5		181	Freon 11 = 1,200 (J) Freon 113 = 280,000 TCE = 15,000 PCE = 1.4

Table 3.1Soil Vapor Monitoring Well Sampling Locations

Notes:

(J) = Estimated value is less than the quantitation limit, but greater than or equal to the detection limit.

MSVM = Multiport Soil Vapor Monitoring, MSVGM = Multiport Soil Vapor and Groundwater Monitoring

- Two semi-annual sampling rounds are proposed to provide seasonal samples. Indoor and outdoor air pressure will be monitored during sampling.

- Approximately seven vadose zone samples (one duplicate) per semi-annual sampling event and 14 samples total.

Indoor Air (IA)/ Outdoor Air (OA) Sample ID	Horizontal Distance from Primary Vadose Zone Vapor Source* (ft)	Sample Type and Frequency	Indoor/ Outdoor Air Sample Collection Location	Sample Collection Strategies	Sample Container and Analysis	Sample Notes
	Build	ing 200 (West Side	200 Area) in the	Vicinity of the Clean Room Tank HWMU	Γ	
B200-IA-01	13					
B200-IA-02	4			Indoor samples will be collected with outer		
B200-IA-03	0	Indoor/outdoor		wall windows and doors closed to	2 1 .	
B200-IA-04	12	air grab sample.	3 to 5 ft above ground surface in typical breathing zone	minimize any contribution from outside air and will be distributed through rooms as applicable.	3-Liter passivated stainless steel canister, analysis by TO-15	Flow controller over 8- hour period
B200-IA-05	22	Two semi-annual				
B200-IA-06	40	sampling events				
B200-IA-07	24	and winter		Outdoor air samples from a representative		
B200-IA-08	60	seasons.		upwind location away from any wind obstructions.		
B200-OA-01	33					
B200-OA-02	23					
]	Building 637 in the	Vicinity of the Second	outheast Side of the 600 Area Closure		
B637-IA-01	92	Indoor/outdoor		Indoor samples will be collected with outer		
B637-IA-02	93	air grab sample.		wall windows and doors closed to minimize any contribution from outside air	3-Liter	Flow
B637-IA-03	118	Two semi-annual	3 to 5 ft above ground surface in typical	and will be distributed through rooms as	passivated stainless steel	controller over 8- hour period
B637-IA-04	118	sampling events		applicable.	canister, analysis by TO-15	
B637-OA-01	100	in the summer	breathing zone	Outdoor air samples from a representative upwind location away from any wind obstructions.		
B637-OA-02	100	seasons.				

 Table 3.2
 Indoor and Outdoor Air Sampling Locations

Notes:

* = Primary elevated vapor source in the 200 Area is the footprint of the former Clean Room Tank excavation (HWMU). Primary elevated vapor source in the 600 Area is MSVM well 600-SGW-05.

- Two semi-annual sampling rounds are proposed to provide seasonal samples. Indoor and outdoor air pressure will be monitored during sampling.

- Approximately 18 indoor and outdoor air samples (two duplicates) per semi-annual sampling event and 36 samples total.

Room Location/ (Sample Location)	Product Description	Size (units)	Condition	Chemical Ingredients	MSA Altair 5X PID Reading (ppm)	Photo Y/N
	Glue Paper		In Use	Heat-activated Adhesive	0	
Photo Lab	Flammables Cabinet	$\sim 3 \ ft^3$	In Use	Various chemicals	1	
Rm 102	Fire Extinguisher		Unopened	Possible fluorocarbon propelling agent	0	Y
(B200-IA-06)	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Hand Sanitizer	2 liters	In Use	Ethyl Alcohol	0	
	Fire Extinguisher		Ready to Use	Possible fluorocarbon propelling agent	0	
Photo Lab Room 203	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	Y
	Gator Board		In Use	Adhesive Backing	0	
Photo Lab Room 204.	Adhesive Tape	50 ft roll	Open & Unopened	Adhesive Backing	0	
Storage Shelves	Dry Erase Markers		Unopened	Solvent (ethanol ?)	0	Y
(B200-IA-04)	Kodak Lens Cleaner		Unopened		0	
Room 202	Sure Coat	5 gal buckets	Unopened & Used	Ероху	0	Y
(B200-IA-05)	Freon	Steel canisters	Unopened	Freon	0	
P oom 201	FilterMate Vapor Extractor	Machine	In Use	?	0	V
Room 201	Hydraulic Drill Press	Machine	In Use	Lubes/Oils	0	I
Room 111	Cleaners	Open Vats	In Use	Oakite, oxidizers, sulfuric acids	0	Y
Room 201	drain to sanitary sewer (outside room 111)	Utility Sink	In Use	?	0	
(B200-IA-08) (B200-IA-07)	Flammable Cabinets #2 & #3	1 large, 1 small	In Use	Alcohols, chlorinated solvents, Rustoleum spray paints, WD-40	0	Y
(())	Flammable Cabinet #1	Small	In Use	Paints, solvents, lubes	0	

Table 4.1Product Inventory Form for 200 Area Building 200 on 6/21/2017

Room Location/ (Sample Location)	Product Description	Size (units)	Condition	Chemical Ingredients	MSA Altair 5X PID Reading (ppm)	Photo Y/N
Room 216 Assembly Room	Krytox		In Use	?	0	Y
Room 206 (CSS HighBay (B200-IA-01)) Several products		In Use	Oakite, IPA, Acids, Satellite Accumulation Area containing chemical ingredients identified for other rooms.	0	Y
Room 206B Workbench Area (B200-IA-02)	Marker Pens Oils used for assembly	Small	In Use	?	0	Y
Room 205 Utility Room	Active Drain to Sewer		In Use	Citric acid anhydrous	0	Y
(B200-IA-03)	Bags of water softening pellets				ũ	-
Room 204	Various		In Use	Full of petrochemicals, acids, corrosives, vacuum pump oils.	0	Y

Room Location/ (Sample Location)	Product Description	Size (units)	Condition	Chemical Ingredients	MSA Altair 5X PID Reading (ppm)	Photo Y/N
Building 637 (B637-IA-1	Sample Bottles (with Preservative)	$\begin{array}{c} 40 \ mL-1 \\ L \end{array}$	Unopened	Dilute hydrochloric acid, sulfuric acid, sodium hydroxide	0	17
B637-IA-2 B637-IA-3	Fire Extinguisher	0.5 cu ft	Unopened	Possible fluorocarbon propelling agent	0	Ŷ
B03/-IA-4)	Hand Sanitizer	1 L	In Use	Ethyl Alcohol	0	
	Flammables Cabinet	0.25 L – 1 L	In Use	Silicone spray, isopropyl alcohol, gasoline, Rustoleum products	0	
	Corrosives Cabinet	14 oz	In Use	Sodium hydroxide	0	
Building T-637A	Generators	8 cu ft	In Use	Gasoline and oil	0	
	Steam Cleaners	8 cu ft	In Use	Gasoline and oil	0	Y
	Oils/Lubricants	1 L	Unopened	Various motor oils and lubricants (WD40)	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
Building T-637B	Groundwater Sampling Equipment Electronics	50 ft – 500 ft reels	In Use		0	Y
Compressed Nitrogen Storage Area Adjacent to B637	Compressed Gas Cylinders	1.5 cu ft	In Use	Nitrogen	0	N

Table 4.2Product Inventory form for 200 Area Building 637 on 6/26/2017

Table 4.3Summary of 200 Area Building 200 and Vicinity Soil Vapor, Outdoor Air, and Indoor Air Analytical Results													
Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m³)	NMED VISL or RSL* Residential Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (µg/m ³) ¹	NMED VISL or RSL* Industrial Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (µg/m ³) ¹	WSTF RBC Residential ft bgs nc / c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
Soil Vapor (MSVM Well) Maximum	410,000	200-LV- 150-34	<mark>920</mark>	140,000 (D)	200-LV- 150-34	<mark>430</mark>	<mark>69.5</mark> / <mark>147</mark>	NA	<mark>328</mark> / 1,120	NA	4,900 / 11,000	84,000 / 280,000	Yes: Res risk VISLs (2.79E-02) Res risk RBCs (3.73E-04) Res haz VISLs (5.90E+03) Res haz RBCs (8.37E+01) Indus risk VISLs (3.66E-03) Indus haz VISLs (1.25E+03) Indus haz RBCs (4.88E+00)
B200 Outdoor Air Maximum	< 0.26	200-OA-1	0.26	< 0.21	200-OA-1	0.21	NA	NA	NA	NA	NA	NA	NA
B200 Indoor Air Maximum	0.86	200-IA-6	0.27	1.3	200-IA-6	0.20	NA	2.09 / 4.42	NA	9.83 / 33.6	NA	NA	No
Soil Vapor (MSVM Well) Maximum	57,000	200-LV- 150-34	920	36,000	200-LV- 150-34	210	1,390 / 3,600	NA	6,550 / 17,600	NA	130,000 / 340,000	2,300,000 / 6,000,000	Yes: Res risk VISLs (1.58E-04) Res haz VISLs (4.10E+01) Indus risk VISLs (3.24E-05) Indus haz VISLs (8.70E+00)
B200 Outdoor Air Maximum	< 0.26	200-OA-1	0.26	< 0.21	200-OA-1	0.21	NA	NA	NA	NA	NA	NA	NA
B200 Indoor Air Maximum	ND	200-IA-6	0.27	0.28 (J)	200-IA-6	0.20	NA	41.7 / 108	NA	197 / 529	NA	NA	No
Soil Vapor (MSVM Well) Maximum	490 (A)	200-SV-05- 9	94	<52	200-SV-05- 9	52	24,300 /	NA	115,000 /	NA	530,000 /	6,400,000 / -	No
B200 Outdoor Air Maximum	1.2 (A)	200-OA-1	0.32	1.2	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
B200 Indoor Air Maximum	22 (A, QD)	200-IA-3	0.32	4.4	200-IA-3	0.26	NA	730 /	NA	3,440 /	NA	NA	No
Soil Vapor (MSVM Well) Maximum	470,000	200-LV- 150-34	1,100	140,000 (D)	200-LV- 150-34	520	1,040,000 / -	NA	4,920,000 /	NA	120,000,000 / -	2,300,000,00 0 /	No
B200 Outdoor Air Maximum	0.76 (J)	200-OA-2	0.29	0.49 (J)	200-OA-2	0.26	NA	NA	NA	NA	NA	NA	NA
B200 Indoor Air Maximum	3,200	200-IA-5	6.6	730 (D)	200-IA-5	2.7	NA	31,300 /	NA	147,000 /	NA	NA	No
Soil Vapor (MSVM Well) Maximum	<1,400	200-LV- 150-34	1,400	<320	200-LV- 150-34	320	174,000 /	NA	819,000 /	NA	9,600,000 /	160,000,000 /	No
B200 Outdoor Air Maximum	3 (J, TB)	200-OA-1	0.39	0.42	200-OA-2	0.32	NA	NA	NA	NA	NA	NA	NA
B200 Indoor Air Maximum	8.7	200-IA-3	0.30	2 (J)	200-IA-2	0.36	NA	5,210 /	NA	24,600 /	NA	NA	No
Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<260	200-LV- 150-34	260	174,000 /	NA	819,000 /	NA	13,000,000 /	220,000,000	No
B200 Outdoor Air Maximum	<0.32	200-OA-1	0.32	<0.25	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	Sample TypeSoil Vapor (MSVM Well) MaximumB200 Outdoor Air MaximumB200 Indoor Air MaximumB200 Indoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Indoor Air MaximumB200 Outdoor Air MaximumB200 Indoor Air MaximumB200 Indoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Indoor Air MaximumB200 Indoor Air MaximumB200 Indoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Indoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air MaximumB200 Outdoor Air Maximum	Sample Type8/27/17 Sample Event (µg/m³)Soil Vapor (MSVM Well) Maximum410,000B200 Outdoor Air Maximum<0.26	Sample Type $\frac{8/27/17}{Sample}$ Event (µg/m³)Sample LocationSoil Vapor (MSVM Well) Maximum $410,000$ 200 -LV- 150-34 $\frac{B200}{Maximum}$ <0.26 200 -OA-1 B200 $\frac{B200}{Indoor Air Maximum}$ 0.86 200 -IA-6 $\frac{Soil Vapor (MSVM}{Well) Maximum}$ $57,000$ 200 -LV- 150-34 $\frac{B200}{Indoor Air Maximum}$ <0.26 200 -OA-1 $\frac{B200}{Indoor Air Maximum}$ (A) 9 $B200$ Outdoor Air 1.2 200 -OA-1 $\frac{B200}{Indoor Air Maximum}$ (A) 9 $B200$ Outdoor Air 1.2 200 -OA-1 $\frac{B200}{Indoor Air Maximum}$ (A) 200 -IA-3 $\frac{Soil Vapor (MSVM}{VM}$ $470,000$ 200 -LV- $150-34$ $\frac{B200}{B200}$ Outdoor Air 0.76 200 -OA-2 $\frac{B200}{Indoor Air Maximum}$ (I, TB) 200 -OA-1 $\frac{B200}{Indoor Air Maximum}$ $<1,400$ $150-34$ $B200$ Outdoor Air 3 200 -OA-1 $\frac{B200}{Indoor Air Maximum}$ $<1,400$ $150-34$ $B200$ Outdoor Air 3 200 -OA-1 $B200$ Outdoor Air 3 200 -IA-3 $Soil Vapor (MSVM$ $<1,400$ $150-34$ $B200$ Outdoor Air 3 200 -IA-3 $Soil Vapor (MSVM$ $<1,0$	Sample Type $\frac{8/27/17}{Sample}$ Event (µg/m³) Sample Sample Location Method Detection Limit (µg/m³) Soil Vapor (MSVM Well) Maximum $410,000$ 200 -LV- 150-34 920 B200 Outdoor Air Maximum <0.26 200 -OA-1 0.26 B200 Indoor Air Maximum <0.26 200 -IV- 150-34 920 B200 Indoor Air Maximum 0.86 200 -IV- 150-34 920 B200 Outdoor Air Maximum <0.26 200 -OA-1 0.26 B200 Indoor Air Maximum <0.26 200 -IV- 150-34 920 B200 Outdoor Air Maximum <0.26 200 -OA-1 0.26 B200 Indoor Air Maximum ND 200 -IA-6 0.27 Soil Vapor (MSVM Well) Maximum <0.26 200 -OA-1 0.32 B200 Indoor Air Maximum (A) 200 -IA-3 0.32 B200 Indoor Air Maximum (A, QD) 200 -IV- 150-34 $1,100$ B200 Indoor Air Maximum 0.76 200 -IV- 150-34 $1,400$ B200 Indoor Air Maximum 0.76 200 -IV- 150-34 $1,400$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample Type 8/27/17 Sample Event (µg/m³) Sample Location Method Detection 22/25/18 Sample Event (µg/m³) Sample Sample Event (µg/m³) Sample Sample Event (µg/m³) Sample Sample Event (µg/m³) Sample Sample Event (µg/m³) Sample Sample Event (µg/m³) Soil Vapor (MSVM Well) Maximum 410,000 200-LV- 150-34 920 140,000 (D) 200-LV- 150-34 B200 Outdoor Air Maximum <0.26	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample Type Sample Event (ggm) Sample Location Method Detection (ggm) Sample Event (ggm) NMED VISL NMED VISL NMED VISL or RNL* (residential industrial indus	Sample Type 8/27/7 Sample (ug/m ³) Sample Location (ug/m ³) Method Detection (ug/m ³) Sample Sample (ug/m ³) Method Sample (ug/m ³	Sample Type Sample Sample (ggm ²) Method faculation 225/19 (ggm ²) Method faculation (ggm ²) Number Visto (ggm ²) NMED VIsto reflection (ggm ²) NMED VIsto (ggm ²) NMED VIsto (ggm ²) N	Sample Type Sample Network (gg/m ²) Number Sample Learning Weithout Example (gg/m ²) Weithout Sample (gg/m ²) Number Sample Learning Number Sample (gg/m ²) Number Sample Learning Number Sample (gg/m ²) Number Sample Learning Number Sample Learning Number Sample (gg/m ²) Number Sample (gg/m ²) </td

СОРС	Sample Type	8/27/17 Sample Event (µg/m³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (µg/m³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RSL* Residential Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (µg/m ³) ¹	NMED VISL or RSL* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc / c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
1,1,1- trichloroethane	B200 Indoor Air Maximum	<0.38	200-IA-1	0.38	<0.27	200-IA-1	0.27	NA	5,210 /	NA	24,600 /	NA	NA	No
Chloroform	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<260	200-LV- 150-34	<mark>260</mark>	3,410 / <mark>40.7</mark>	NA	16,100/ <mark>199</mark>	NA	210,000 / 2,500	3,700,000 / 46,000	No
	B200 Outdoor Air Maximum	0.35 (J)	200-OA-1	0.32	ND	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B200 Indoor Air Maximum	0.33 (J)	200-IA-3	0.25	0.39 (J)	200-IA-3	0.26	NA	102 / 1.22	NA	5.98 / 5.98	NA	NA	No
Benzene	Soil Vapor (MSVM Well) Maximum	80 (J)	200-SV-09- 19	67	<52	200-SV-09- 19	52	1,040 / 120	NA	4,920 / 588	NA	29,000 / 3,400	400,000 / 49,000	No
	B200 Outdoor Air Maximum	< 0.27	200-OA-2	0.27	0.3 (J)	200-OA-2	0.24	NA	NA	NA	NA	NA	NA	NA
	B200 Indoor Air Maximum	1.1	200-IA-4	0.29	1.6	200-IA-8	0.27	NA	31.3 / 3.60	NA	17.6 / 17.6	NA	NA	No
Ethylbenzene	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	<mark>1,100</mark>	<240	200-LV- 150-34	240	34,800 / <mark>374</mark>	NA	164,000 / 1,840	NA			No
	B200 Outdoor Air Maximum	<0.30	200-OA-1	0.30	<0.24	200-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B200 Indoor Air Maximum	0.47 (J)	200-IA-3	0.23	< 0.30	200-IA-3	0.30	NA	1,040 / 11.2	NA	55.1 / 55.1	NA	NA	No
Toluene	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<260	200-LV- 150-34	260	174,000 /	NA	819,000 /	NA			No
	B200 Outdoor Air Maximum	0.39 (J, TB)	200-OA-1	0.32	<0.25	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B200 Indoor Air Maximum	7.2 (J)	200-IA-5	6.6	1.1	200-IA-3	0.26	NA	5,210 /	NA	24,600 /	NA	NA	No
Xylenes	Soil Vapor (MSVM Well) Maximum	<2,000	200-LV- 150-34	2,000	<460	200-LV- 150-34	460	3,480 /	NA	16,400 /	NA			No
	B200 Outdoor Air Maximum	<0.56	200-OA-1	0.56	<0.44	200-OA-1	0.44	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	1.5	200-IA-3	0.44	<0.47	200-IA-3	0.47	NA	104 /	NA	492 /	NA	NA	No
Acetone	Soil Vapor (MSVM Well) Maximum	<5,100	200-LV- 150-34	5,100	<1,200	200-LV- 150-34	1,200	1,080,000 / -	NA	5,080,000 /	NA	53,000,000 /	860,000,000 /	No
	B200 Outdoor Air Maximum	13 (TB)	200-OA-1	1.4	2.4	200-OA-2	1.2	NA	NA	NA	NA	NA	NA	NA
	B200 Indoor Air Maximum	29 (QD)	200-IA-3	1.4	8.7	200-IA-2	1.3	NA	32,300 /	NA	152,000 /	NA	NA	No
2-propanol	Soil Vapor (MSVM Well) Maximum	<2,800	200-LV- 150-34	<mark>2,800</mark>	<640	200-LV- 150-34	<mark>640</mark>	210*/	NA	<mark>880</mark> * /	NA	350,000 /	5,600,000 / -	No
	B200 Outdoor Air Maximum	4.3	200-OA-2	0.71	<0.66	200-OA-2	0.66	NA	NA	NA	NA	NA	NA	NA

200 and 600 Area Vapor Intrusion Assessment Report

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m³)	NMED VISL or RSL* Residential Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RSL* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (µg/m ³) ¹	WSTF RBC Residential ft bgs nc / c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
2-propanol	B200 Indoor Air Maximum	68 (QD)	200-IA-3	0.61	4.3	200-IA-1	0.67	NA	210* /	NA	880* /	NA	NA	No
1,1-Dichloroethene	Soil Vapor (MSVM Well) Maximum	12,000	200-LV- 150-34	1,100	7,500	200-LV- 150-34	260	6,950 /	NA	32,800 /	NA	400,000 /	6,700,000 / -	Yes: Res haz VISLs (1.73E+00)
	B.200 Outdoor Air Maximum	< 0.32	200-OA-1	0.32	<0.25	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	< 0.38	200-IA-1	0.38	< 0.27	200-IA-1	0.27	NA	209 /	NA	983 /	NA	NA	No
1,2,4-Trimethy- lbenzene ³	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	<mark>990</mark>	<230	200-LV- 150-34	<mark>230</mark>	<mark>63</mark> /	NA	<mark>260</mark> /	NA			No
	B.200 Outdoor Air Maximum	<0.28	200-OA-1	0.28	< 0.22	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.92	200-IA-3	0.22	ND	200-IA-1	0.24	NA	63 /	NA	260 /	NA	NA	No
2,2,4-Trimethyl- pentane	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	990	<230	200-LV- 150-34	230		NA		NA			No
	B.200 Outdoor Air Maximum	<0.28	200-OA-1	0.28	< 0.22	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.39 (J)	200-IA-3	0.28	<0.24	200-IA-1	0.24	NA		NA		NA	NA	No
2-Hexanone	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	<mark>1,100</mark>	<240	200-LV- 150-34	<mark>240</mark>	<mark>31</mark> * /	NA	<mark>130</mark> */	NA	7,1000 /	1,200,000 / -	No
	B.200 Outdoor Air Maximum	0.62 (J)	200-OA-1	0.30	<0.24	200-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	1.1	200-IA-3	0.30	0.39 (J)	200-IA-2	0.28	NA	31*/	NA	130* /	NA	NA	No
4-Methyl-2- pentanone (methyl isobutyl ketone)	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<240	200-LV- 150-34	240	104,000 /	NA	492,000 /	NA	7,200,000 /	120,000,000 /	No
	B.200 Outdoor Air Maximum	0.42	200-OA-1	0.30	<0.24	200-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	24	200-IA-3	0.23	<0.25	200-IA-1	0.25	NA	3,130 /	NA	14,700 /	NA	NA	No
Carbon Disulfide	Soil Vapor (MSVM Well) Maximum	64 (J)	200-SV-09- 19	63	<230	200-LV- 150-34	230	24,300 /	NA	115,000 /	NA	610,000 / 1,200,000 /	8,100,000 / - 19,000,000 /	No
	B.200 Outdoor Air Maximum	0.73 (J A TB)	200-OA-1	0.28	<0.22	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.47 (J A)	200-IA-1	0.33	<0.24	200-IA-1	0.24	NA	730 /	NA	3,440 /	NA	NA	No
Carbon Tetrachloride	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	<mark>990</mark>	<230	200-LV- 150-34	<mark>230</mark>	3,480 / <mark>156</mark>	NA	16,400 / <mark>765</mark>	NA			No
	B.200 Outdoor Air Maximum	0.41	200-OA-2	0.25	0.4	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA

200 and 600 Area Vapor Intrusion Assessment Report
СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RSL* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RSL* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc / c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
	B.200 Indoor Air Maximum	0.45	200-IA-1	0.33	0.41	200-IA-3	0.23	NA	104 / 4.68	NA	22.9 / 22.9	NA	NA	No
Chloromethane	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	990	<230	200-LV- 150-34	230	3,130 / 520	NA	14,700 / 2,550	NA	140,000 / 22,000	2,100,000 / 370,000	No
	B.200 Outdoor Air Maximum	0.42 (J TB)	200-OA-1	0.28	0.57 (J)	200-OA-2	0.23	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.37 (J)	200-IA-6	0.29	0.6 (J)	200-IA-3	0.23	NA	93.9 / 15.6	NA	76.5 / 76.5	NA	NA	No
Ethanol	Soil Vapor (MSVM Well) Maximum	<5,300	200-LV- 150-34	5,300	<1,200	200-LV- 150-34	1,200		NA		NA	26,000,000 /	400,000,000 /	No
	B.200 Outdoor Air Maximum	56	200-OA-1	1.5	<1.2	200-OA-1	1.2	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	23	200-IA-3	1.2	11	200-IA-1	1.3	NA		NA		NA	NA	No
Freon 12 (Dichloro-difluoro-	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	1,200	200-LV- 150-34	260	3,480 /	NA	16,400 /	NA	220,000 /	3,800,000 / -	No
methane)	B.200 Outdoor Air Maximum	2.3 (TB)	200-OA-1	0.32	2.4	200-OA-1	0.25 (TB)	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	2.7	200-IA-4	0.31	2.7	200-IA-3	0.26	NA	104 /	NA	492 /	NA	NA	No
Freon 21 (Dichloro-	Soil Vapor (MSVM Well) Maximum	<1,600	200-LV- 150-34	1,600	<370	200-LV- 150-34	370		NA		NA	220,000 /	4,300,000 / -	No
fluoromethane)	B.200 Outdoor Air Maximum	<0.45	200-OA-1	0.45	<0.35	200-OA-1	0.35	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	3.5	200-IA-3	0.45	<0.38	200-IA-1	0.38	NA		NA		NA	NA	No
Heptane	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<260	200-LV- 150-34	260	<mark>420</mark> * /	NA	1,800* /	NA	1,000,000 /	18,000,000 /	No
	B.200 Outdoor Air Maximum	< 0.32	200-OA-1	0.32	<0.25	200-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.33 (J)	200-IA-3	0.25	<0.27	200-IA-1	0.27	NA	420* /	NA	1,800* /	NA	NA	No
Hexane	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	990	<230	200-LV- 150-34	230	24,300 /	NA	115,000 /	NA	1,600,000 /	28,000,000 /	No
	B.200 Outdoor Air Maximum	0.35 (J TB)	200-OA-1	0.28	<0.22	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	1.2	200-IA-3	0.22	1.1	200-IA-3	0.25	NA	730 /	NA	3,440 /	NA	NA	No
Methylene Chloride	Soil Vapor (MSVM Well) Maximum	<1,100	200-LV- 150-34	1,100	<260	200-LV- 150-34	260	20,900 / 33,800	NA	98,300 / 459,000	NA	1,100,000 / 1,700,000	18,000,000 / 79,000,000	No
	B.200 Outdoor Air Maximum	<0.32	200-OA-1	0.32	0.42 (J)	200-OA-2	0.26	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	1.6	200-IA-4	0.31	0.43 (J)	200-IA-2	0.29	NA	626 / 1,010	NA	2,950 / 13,800	NA	NA	No

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m³)	NMED VISL or RSL* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (µg/m ³) ¹	NMED VISL or RSL* Industrial Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (µg/m ³) ¹	WSTF RBC Residential ft bgs nc / c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
Styrene	Soil Vapor (MSVM Well) Maximum	<990	200-LV- 150-34	990	<230	200-LV- 150-34	230	34,800 /	NA	164,000 /	NA			No
	B.200 Outdoor Air Maximum	<0.28	200-OA-1	0.28	<0.22	200-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	1.9	200-IA-3	0.22	<0.24	200-IA-1	0.24	NA	1,040 /	NA	4,920 /	NA	NA	No
Tetrahydrofuran	Soil Vapor (MSVM Well) Maximum	<1,300	200-LV- 150-34	1,300	<310	200-LV- 150-34	310	2,100* /	NA	1,800* /	NA	3,600,000 /	59,000,000 /	No
	B.200 Outdoor Air Maximum	<0.38	200-OA-1	0.38	1.2	200-OA-2	0.30	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	0.29 (J)	200-IA-3	0.29	< 0.32	200-IA-1	0.32	NA	2,100* /	NA	1,800* /	NA	NA	No
trans-1,2- Dichloroethene	Soil Vapor (MSVM Well) Maximum	<1,300	200-LV- 150-34	1,300	<290	200-LV- 150-34	290	1,390 /	NA	6,550 /	NA			No
	B.200 Outdoor Air Maximum	<0.36	200-OA-1	0.36	<0.28	200-OA-1	0.28	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	2.2 (FB)	200-IA-8	0.36	1.8 (FB)	200-IA-8	0.32	NA	41.7 /	NA	197 /	NA	NA	No

 $\mathbf{Red} = \mathbf{VISL}$ or \mathbf{RBC} exceeded.

Yellow = Detection limit exceeds VISL or RBC.

Flags = (D) reported result is from a dilution, (J) result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit, (A) result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits, (QD) relative percent difference for a field duplicate was outside standard limits, (FB) analyte was detected in the trip blank, (FB) analyte was detected in the field blank.

--- = Not available. NA = Not applicable.

nc / c = noncancer / cancer

¹ = NMED VISLs taken from Risk Assessment Guidance for Site Investigations and Remediation November 2022 (NMED, 2022c).

² = WSTF RBCs for soil vapor taken from NASA WSTF NMED-approved Soil Vapor RBCs for 2022 (NASA, 2022), approved with modification February 11, 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next shallowest depth to the sample depth was chosen to be conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used.

* = No NMED VISL was listed, so EPA RSL for air was used (EPA, 2022b).

1 able 4		CHOIL LINING LA	ceeding bereening Devels wen 200 Dv	-130
Constituent	Detected?	Detection Limit	Screening Level Exceeded (µg/m³)	Dilution
Carbon tetrachloride	No	990 and 230 990	Residential cancer VISL 156; Industrial cancer VISL 765	6600 and 1530
Chloroform	No	1,100 and 260	Resident cancer VISL 40.7; Industrial cancer VISL 199	6600 and 1530
Ethylbenzene	No	1,100	Residential cancer VISL 374	6600
Heptane	No	1,100	Residential air (noncancer) RSL 420	6600
2-Hexanone	No	1,100 and 240	Residential air (noncancer) RSL 31; Industrial air (noncancer) RSL 130	6600 and 1530
2-Propanol (Isopropanol)	No	2,800 and 640 2,800	Residential air (noncancer) RSL 210; Industrial air (noncancer) RSL 880	6600 and 1530
Trichloroethylene (TCE)	Yes	920 and 430	Residential noncancer VISL 69.5; Residential cancer VISL 147; Industrial noncancer VISL 328	6600 and 3060
1,2,4- Trimethylbenzene	No	990 and 230 990	Residential air (noncancer) RSL 63; Industrial air (noncancer) RSL 260	6600 and 1530

Table 4.4	Detection Limits Exceeding Screening Levels Well 200-LV-150

Note: Well was sampled at 34 ft bgs.

			Table 5.	.1 Sum	mary of 6	00 Area Bui	lding 637 an	d Vicinity Soil V	apor, Outdoor	Air, and Indoo	r Air Analytica	l Results		
СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (μg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
TCE	Soil Vapor (MSVM Well) Maximum	480 (D)	600-SGW- 1-12.5	5.8	740 (D)	600-SGW- 1-12.5	5.3	69.5 / 147	NA	328 / 1,120	NA	2,300 / 5,400	34,000 / 120,000	Yes: Res cancer VISLs (5.03E-05) Res nonc VISLs (1.06E+01) Indus nonc VISLs (2.26E+00)
	B637 Outdoor Air Maximum	<0.29	600-OA-1	0.29	< 0.21	600-OA-1	0.21	NA	NA	NA	NA	NA	NA	NA
	B637 Indoor Air Maximum	<0.24	600-IA-1	0.24	< 0.22	600-IA-1	0.22	NA	2.09 / 4.42	NA	9.83 / 33.6	NA	NA	No
PCE	Soil Vapor (MSVM Well) Maximum	3.4	600-SGW- 1-12.5	0.58	5.2	600-SGW- 2-12.5	0.53	1,390 / 3,600	NA	6,550 / 17,600	NA	58,000 / 150,000	910,000 / 2,400,000	No
	B637 Outdoor Air Maximum	<0.29	600-OA-1	0.29	< 0.21	600-OA-1	0.21	NA	NA	NA	NA	NA	NA	NA
	B637 Indoor Air Maximum	<0.24	600-IA-1	0.24	< 0.22	600-IA-1	0.22	NA	41.7 / 108	NA	197 / 529	NA	NA	No
Freon 11	Soil Vapor (MSVM Well) Maximum	1,400 (A)	600-SGW- 2-12.5	18	14	600-SGW- 1-12.5	0.65	24,300 /	NA	115,000 /	NA	840,000 /	31,000,000 /	No
	B637 Outdoor Air Maximum	1.2 (A)	600-OA-2	0.31	1.1	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B637 Indoor Air Maximum	1.2 (A)	600-IA-2	0.29	1.4	600-IA-2	0.26	NA	730 /	NA	3,440 /	NA	NA	No
Freon 113	Soil Vapor (MSVM Well) Maximum	8,200	600-SGW- 2-12.5	18	5,300 (D)	600-SGW- 2-12.5	17	1,040,000 /	NA	4,920,000 /	NA	55,000,000 /	900,000,000 /	No
	B637 Outdoor Air Maximum	0.48 (J)	600-OA-2	0.31	0.51 (J)	200-OA-2	0.25	NA	NA	NA	NA	NA	NA	NA
	B637 Indoor Air Maximum	0.49 (J)	600-IA-2	0.29	0.59 (J)	600-IA-2	0.26	NA	31,300 /	NA	147,000 /	NA	NA	No
2-Butanone	Soil Vapor (MSVM Well) Maximum	12 (J, FB)	600-SGW- 1-12.5	0.87	5 (J)	600-SGW- 5-7.5	0.81	174,000 /	NA	819,000 /	NA	4,800,000 / 3,200,000 /	66,000,000 / 35,000,000 /	No
	B637 Outdoor Air Maximum	2.4 (J)	600-OA-1	0.44	0.42 (J)	600-OA-2	0.31	NA	NA	NA	NA	NA	NA	NA
	B637 Indoor Air Maximum	5.3 (J)	600-IA-4	0.44	0.52 (J, FB)	600-IA-1	0.34	NA	5,210 /	NA	24,600 /	NA	NA	No
1,1,1- trichloroethane	Soil Vapor (MSVM Well) Maximum	0.76 (J)	600-SGW- 1-12.5	0.70	3.6	600-SGW- 2-12.5	0.65	174,000 /	NA	819,000 /	NA	6,100,000 /	90,000,000 /	No
	B637 Outdoor Air Maximum	< 0.36	600-OA-1	0.36	<0.25	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.29	600-IA-1	0.29	<0.29	600-IA-1	0.29	NA	5,210 /	NA	24,600 /	NA	NA	No

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (µg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
Chloroform	Soil Vapor (MSVM Well) Maximum	31	600-SGW- 1-12.5	0.70	41	600-SGW- 1-12.5	0.65	3,410 / 40.7	NA	199 / 3,200	NA	100,000 / 1,200	1,500,000 / 19,000	No
	B.637 Outdoor Air Maximum	<0.36	600-OA-1	0.36	<0.25	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.29	600-IA-1	0.29	<0.27	600-IA-1	0.27	NA	102 / 1.22	NA	5.98 / 5.98	NA	NA	No
Benzene	Soil Vapor (MSVM Well) Maximum	3.2 (FB)	600-SGW- 1-12.5	0.66	1.3 (J, FB)	600-SGW- 1-12.5	0.61	1,040 / 120	NA	4,920 / 588	NA	29,000 / 3,400	400,000 / 49,000	No
	B.637 Outdoor Air Maximum	< 0.34	600-OA-1	0.34	0.25 (J)	600-OA-2	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.33 (J)	600-IA-4	0.26	0.4 (J)	600-IA-1	0.26	NA	31.3 / 3.60	NA	17.6 / 17.6	NA	NA	No
Ethylbenzene	Soil Vapor (MSVM Well) Maximum	1.6 (J)	600-SGW- 1-12.5	0.66	<0.61	600-SGW- 1-12.5	0.61	34,800 / 374	NA	164,000 / 1,840	NA			No
	B.637 Outdoor Air Maximum	< 0.34	600-OA-1	0.34	<0.24	600-OA-2	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.28	600-IA-1	0.28	<0.26	600-IA-1	0.26	NA	1,040 / 11.2	NA	55.1 / 55.1	NA	NA	No
Toluene	Soil Vapor (MSVM Well) Maximum	0.87 (J)	600-SGW- 5-7.5	0.67	<0.65	600-SGW- 1-12.5	0.65	174,000 /	NA	819,000 /	NA			No
	B.637 Outdoor Air Maximum	0.35 (J)	600-OA-2	0.31	< 0.25	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.6 (J)	600-IA-4	0.36	0.32 (J)	600-IA-4	0.25	NA	5,210 /	NA	24,600 /	NA	NA	No
Xylenes	Soil Vapor (MSVM Well) Maximum	<1.1	600-SGW- 1-12.5	1.1	<32	600-SGW- 1-12.5	32	3,480 /	NA	16,400 /	NA			No
	B.637 Outdoor Air Maximum	<0.63	600-OA-1	0.63	<0.44	600-OA-1	0.44	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.52	600-IA-1	0.52	<0.48	600-IA-1	0.48	NA	104 /	NA	492 /	NA	NA	No
Acetone	Soil Vapor (MSVM Well) Maximum	22	600-SGW- 5-7.5	3.0	27	600-SGW- 5-7.5	3.0	1,080,000 /	NA	5,080,000 /	NA	19,000,000 /	200,000,000 /	No
	B.637 Outdoor Air Maximum	10 (J)	600-OA-1	1.6	2.2 (J)	600-OA-1	1.1	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	28	600-IA-4	1.2	4.7 (J, FB)	600-IA-1	1.1	NA	32,300 /	NA	152,000 /	NA	NA	No

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
2-propanol (Isopropanol or Isopropyl alcohol)	Soil Vapor (MSVM Well) Maximum	<1.6	600-SGW- 1-12.5	1.6	<45	600-SGW- 2-12.5	45	210* /	NA	880* /	NA	180,000 /	2,400,000 /	No
	B.637 Outdoor Air Maximum	<0.88	600-OA-1	0.88	0.66 (J)	600-OA-2	0.62	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	3.4	600-IA-4	0.88	1.1 (J)	600-IA-4	0.62	NA	210*/	NA	880* /	NA	NA	No
1,1-Dichloroethane	Soil Vapor (MSVM Well) Maximum	5.7	600-SGW- 1-12.5	0.66	5.2	600-SGW- 1-12.5	0.61	/ 585	NA	2,870	NA	/ 17,000	/ 250,000	No
	B.637 Outdoor Air Maximum	< 0.34	600-OA-1	0.34	<0.24	600-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.28	600-IA-1	0.28	< 0.27	600-IA-1	0.27	NA	/ 17.5	NA	/ 86	NA	NA	No
1,2,4-Trimethyl- benzene ³	Soil Vapor (MSVM Well) Maximum	0.92 (J)	600-SGW- 1-12.5	0.62	<0.57	600-SGW- 1-12.5	0.57	63 /	NA	260 /	NA			No
	B.637 Outdoor Air Maximum	< 0.32	600-OA-1	0.32	<0.22	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.26	600-IA-1	0.26	<0.26	600-IA-1	0.26	NA	63 /	NA	260 /	NA	NA	No
1,2-Dichloroethane	Soil Vapor (MSVM Well) Maximum	0.73 (J)	600-SGW- 1-12.5	0.66	<0.61	600-SGW- 1-12.5	0.61	243 / 36	NA	1,150 / 176	NA			No
	B.637 Outdoor Air Maximum	< 0.34	600-OA-1	0.34	<0.24	600-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.28	600-IA-1	0.28	< 0.27	600-IA-1	0.27	NA	7.30 / 1.08	NA	5.29 / 5.29	NA	NA	No
1,4- Dichlorobenzene	Soil Vapor (MSVM Well) Maximum	1.9 (J)	600-SGW- 1-12.5	0.58	<0.58	600-SGW- 1-12.5	0.58	27,800 / 85.1	NA	131,000 / 417	NA			No
	B.637 Outdoor Air Maximum	<0.29	600-OA-1	0.29	<0.29	600-OA-1	0.29	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.24	600-IA-1	0.24	<0.24	600-IA-1	0.24	NA	834 / 2.55	NA	12.5 / 12.5	NA	NA	No
2-Hexanone	Soil Vapor (MSVM Well) Maximum	<0.66	600-SGW- 1-12.5	0.66	1 (J)	600-SGW- 5-7.5	0.62	31*/	NA	130* /	NA	34,000 / 22,000 /	490,000 / 250,000 /	No
	B.637 Outdoor Air Maximum	<0.34	600-OA-1	0.34	<0.24	600-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	1.1	600-IA-4	0.26	<0.27	600-IA-1	0.27	NA	31* /	NA	130* /	NA	NA	No

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (μg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
4-Methyl-2- pentanone methyl isobutyl ketone)	Soil Vapor (MSVM Well) Maximum	<0.66	600-SGW- 1-12.5	0.66	<0.61	600-SGW- 1-12.5	0.61	104,000 /	NA	492,000 /	NA	3,500,000 /	51,000,000 /	No
	B.637 Outdoor Air Maximum	<0.34	600-OA-1	0.34	< 0.24	600-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.5 (J)	600-IA-4	0.34	< 0.27	600-IA-1	0.27	NA	3,130 /	NA	14,700 /	NA	NA	No
Bromodichloromet hane	Soil Vapor (MSVM Well) Maximum	0.62 (J)	600-SGW- 1-12.5	0.62	0.59 (J)	600-SGW- 1-12.5	0.57	/ 25.3	NA	/ 124	NA	/ 980	/ 15,000	No
	B.637 Outdoor Air Maximum	< 0.32	600-OA-1	0.32	< 0.22	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.26	600-IA-1	0.26	<0.26	600-IA-1	0.26	NA	/ 0.759	NA	3.72 / 3.72	NA	NA	No
Carbon Disulfide	Soil Vapor (MSVM Well) Maximum	86 (A FB)	600-SGW- 1-12.5	0.62	<0.57	600-SGW- 1-12.5	0.57	24,300 /	NA	115,000 /	NA	610,000 /	8,100,000 /	No
	B.637 Outdoor Air Maximum	< 0.32	600-OA-1	0.32	<0.22	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.26	600-IA-1	0.26	<0.26	600-IA-1	0.26	NA	730 /	NA	3,440 /	NA	NA	No
Carbon Tetrachloride	Soil Vapor (MSVM Well) Maximum	<0.62	600-SGW- 1-12.5	0.62	<0.57	600-SGW- 1-12.5	0.57	3,480 / 156	NA	16,400 / 765	NA			No
	B.637 Outdoor Air Maximum	0.41 (J)	600-OA-1	0.32	0.4 (J)	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.41 (J)	600-IA-1	0.26	0.45 (J)	600-IA-1	0.24	NA	104 / 4.68	NA	22.9 / 22.9	NA	NA	No
Chloroethane (Ethyl chloride)	Soil Vapor (MSVM Well) Maximum	2 (J)	600-SGW- 1-12.5	0.70	1.7 (J)	600-SGW- 1-12.5	0.65	348,000 /	NA	1,640,000 /	NA	8,900,000 /	120,000,000 /	No
	B.637 Outdoor Air Maximum	< 0.36	600-OA-1	0.36	< 0.25	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.29	600-IA-1	0.29	< 0.27	600-IA-1	0.27	NA	10,400 /	NA	49,200 /	NA	NA	No
Chloromethane	Soil Vapor (MSVM Well) Maximum	1.5 (J FB)	600-SGW- 1-12.5	0.62	1.2 (J FB)	600-SGW- 1-12.5	0.57	3,130 / 520	NA	14,700 / 2,550	NA	72,000 / 12,000	900,000 / 160,000	No
	B.637 Outdoor Air Maximum	0.39 (J)	600-OA-1	0.32	0.63 (J)	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.33 (J)	600-IA-4	0.32	0.65 (J)	600-IA-4	0.22	NA	93.9 / 15.6	NA	76.5 / 76.5	NA	NA	No
cis-1,2- Dichloroethene	Soil Vapor (MSVM Well) Maximum	0.82 (J)	600-SGW- 1-12.5	0.66	<0.61	600-SGW- 1-12.5	0.61	42* /	NA	180* /	NA			No
	B.637 Outdoor Air Maximum	< 0.34	600-OA-1	0.34	<0.24	600-OA-1	0.24	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.28	600-IA-1	0.28	<0.26	600-IA-1	0.26	NA	42* /	NA	180* /	NA	NA	No

200 and 600 Area Vapor Intrusion Assessment Report

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (μg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (μg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
Ethanol	Soil Vapor (MSVM Well) Maximum	9.6 (J FB)	600-SGW- 1-12.5	3.3	<3.0	600-SGW- 1-12.5	3.0	NE	NA	NE	NA	15,000,000 /	170,000,000 /	No
	B.637 Outdoor Air Maximum	3.5 (J)	600-OA-2	1.5	2.6 (J)	600-OA-2	1.2	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	20	600-IA-4	1.7	4.2 (J FB)	600-IA-1	1.3	NA	NA	NA	NA	NA	NA	No
Freon 12 (Dichlorodifluorom ethane)	Soil Vapor (MSVM Well) Maximum	2.4	600-SGW- 5-7.5	0.67	2.2 (FB)	600-SGW- 1-12.5	0.65	3,480 /	NA	16,400 /	NA	70,000 / 110,000 /	810,000 / 1,600,000 /	No
	B.637 Outdoor Air Maximum	2.3	600-OA-1	0.36	2.1	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	2.3 (FB)	600-IA-1	0.29	2.3 (FB)	600-IA-1	0.27	NA	104 /	NA	492 /	NA	NA	No
Freon 21 (Dichlorofluoro- methane)	Soil Vapor (MSVM Well) Maximum	10	600-SGW- 1-12.5	0.99	6	600-SGW- 1-12.5	0.91	NE	NA	NE	NA	120,000 /	1,800,000 /	No
	B.637 Outdoor Air Maximum	<0.50	600-OA-1	0.50	< 0.35	600-OA-1	0.35	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.41	600-IA-1	0.41	< 0.38	600-IA-1	0.38	NA	NA	NA	NA	NA	NA	No
Heptane	Soil Vapor (MSVM Well) Maximum	<0.70	600-SGW- 1-12.5	0.70	<0.65	600-SGW- 1-12.5	0.65	420* /	NA	1,800* /	NA	490,000 /	7,300,000 /	No
	B.637 Outdoor Air Maximum	< 0.36	600-OA-1	0.36	< 0.25	600-OA-1	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.3 (J)	600-IA-4	0.28	< 0.27	600-IA-1	0.27	NA	420* /	NA	1,800* /	NA	NA	No
Hexane	Soil Vapor (MSVM Well) Maximum	1.5 (J FB)	600-SGW- 1-12.5	0.62	<0.57	600-SGW- 1-12.5	0.57	24,300 /	NA	115,000 /	NA	780,000 /	11,000,000 /	No
	B.637 Outdoor Air Maximum	0.82 (J)	600-OA-1	0.32	< 0.22	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	0.79 (J)	600-IA-4	0.32	<0.24	600-IA-1	0.24	NA	730 /	NA	3,440 /	NA	NA	No
Methylene Chloride	Soil Vapor (MSVM Well) Maximum	24	600-SGW- 1-12.5	0.70	24	600-SGW- 1-12.5	0.65	20,900 / 33,800	NA	98,300 / 459,000	NA	550,000 / 870,000	7,400,000 / 33,000,000	No
	B.637 Outdoor Air Maximum	< 0.36	600-OA-1	0.36	0.43 (J)	600-OA-2	0.25	NA	NA	NA	NA	NA	NA	NA
	B.637 Indoor Air Maximum	<0.29	600-IA-1	0.29	0.55 (J FB)	600-IA-1	0.27	NA	626 / 1,010	NA	2,950 / 13,800	NA	NA	No
Tetrahydrofuran	Soil Vapor (MSVM Well) Maximum	0.85 (J)	600-SGW- 1-12.5	0.83	<0.76	600-SGW- 1-12.5	0.76	2,100* /	NA	1,800* /	NA	1,800,000 /	24,000,000 /	No
	B.637 Outdoor Air Maximum	1.1	600-OA-1	0.42	<0.29	600-OA-1	0.29	NA	NA	NA	NA	NA	NA	NA

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	NMED VISL or RBC* Residential Soil Vapor nc / c (μg/m ³) ¹	NMED VISL or RBC* Residential Indoor Air nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor nc / c (µg/m ³) ¹	NMED VISL or RBC* Industrial Indoor Air nc / c (µg/m ³) ¹	WSTF RBC Residential ft bgs nc /c (μg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
	B.637 Indoor Air Maximum	< 0.34	600-IA-1	0.34	< 0.32	600-IA-1	0.32	NA	2,100*/	NA	1,800* /	NA	NA	No

Red = VISL or RBC exceeded.

Flags = (D) reported result is from a dilution, (J) result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit, (A) result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits, (QD) relative percent difference for a field duplicate was outside standard limits, (TB) analyte was detected in the trip blank, (FB) analyte was detected in the field blank.

--- = Not available

NA = Not applicable

NE = Not Established

 1 = NMED VISLs taken from Risk Assessment Guidance for Site Investigations and Remediation November 2022 (NMED, 2022c). 2 = WSTF RBCs for soil vapor taken from NASA WSTF NMED-approved Soil Vapor RBCs for 2022 (NASA, 2022), approved with modification February 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next shallowest depth to the sample depth was chosen to be conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used

* = No NMED VISL was listed, so EPA RSL for air was used (EPA, 2022b).

Table 6.1	200 Area Soil Vapor:	Residential Cancer Ris	k (VISLs)					
Constituent	Maximum Concentration (µg/m³)	VISL ² (µg/m ³)	Cancer Risk ¹					
Benzene	8.00E+01	1.20E+02	6.67E-06					
PCE	5.70E+04	3.60E+03	1.58E-04					
TCE	4.10E+05	1.47E+02	2.79E-02					
Total 200 Area Residential Soil Vapor Cancer Risk2.81E-02								

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Residential Vapor Intrusion Screening Levels (NMED, 2022c)

Table 6.2	200 Area Soil Vapor:	Industrial Cancer Risl	k (VISLs)
Constituent	Maximum Concentration (µg/m³)	VISL ² (µg/m ³)	Cancer Risk ¹
Benzene	8.00E+01	5.88E+02	1.36E-06
PCE	5.70E+04	1.76E+04	3.24E-05
TCE	4.10E+05	1.12E+03	3.66E-03
Total 200 Area Industrial	Soil Vapor Cancer Risk		3.69E-03

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (NMED, 2022c)

Bold values indicate an exceedance of screening levels.

Table 6.3	200 Area Soil Vapor: Residential Cancer Risk (RBCs)				
Constituent	Maximum Concentration	Depth Maximum Detected	RBC ²	RBC Depth Used	Cancer Risk ¹
	(µg/m³)	(ft bgs)	(µg/m³)	(ft bgs)	
Benzene	8.00E+01	19	3.40E+03	10	2.35E-07
PCE	5.70E+04	34	3.40E+05	25	1.68E-06
TCE	4.10E+05	34	1.10E+04	25	3.73E-04
Total 200 Area Residenti	3.75E-04				

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

Bold values indicate an exceedance of screening levels.

RBC - WSTF Risk Based Concentration

5.94E+03

Table 6.4	200 Area Soil Vapor: Industrial Cancer Risk (RBCs)				
Constituent	Maximum Concentration	Depth Maximum Detected	RBC ²	RBC Depth Used	Cancer Risk ¹
	(µg/m³)	(ft bgs)	(µg/m ³)	(ft bgs)	
Benzene	8.00E+01	19	4.90E+04	10	1.63E-08
PCE	5.70E+04	34	6.00E+06	25	9.50E-08
TCE	4.10E+05	34	2.80E+05	25	1.46E-05
Total 200 Area Industria	1.48E-05				

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022).

Bold values indicate an exceedance of screening levels.

RBC - WSTF Risk Based Concentration

Table 6.5 200 Ar	0 Area Soil Vapor: Residential (Noncancer) Hazard Index (VISLs)					
Constituent	Maximum Concentration (µg/m³)	VISL ² (µg/m ³)	Hazard Quotient ¹			
Benzene	8.00E+01	1.04E+03	7.69E-02			
Carbon disulfide	6.40E+01	2.43E+04	2.63E-03			
Freon-12 (Dichlorodifluoromethane)	1.20E+03	3.48E+03	3.45E-01			
1,1-Dichloroethene	1.20E+04	6.95E+03	1.73E+00			
PCE	5.70E+04	1.39E+03	4.10E+01			
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	4.70E+05	1.04E+06	4.52E-01			
TCE	4.10E+05	6.95E+01	5.90E+03			
Freon-11 (Trichlorofluoromethane)	4.90E+02	2.43E+04	2.02E-02			

Total 200 Area Residential Soil Vapor Hazard Index

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Residential Vapor Intrusion Screening Levels (NMED, 2022c), unless otherwise noted. Bold values indicate an exceedance of screening levels.

	cu son vuport muustriui (rion	euneer) mazara m	uen († 1815)
Constituent	Maximum Concentration (μg/m³)	VISL ² (µg/m ³)	Hazard Quotient ¹
Benzene	8.00E+01	4.92E+03	1.63E-02
Carbon disulfide	6.40E+01	1.15E+05	5.57E-04
Freon-12 (Dichlorodifluoromethane)	1.20E+03	1.64E+04	7.32E-02
1,1-Dichloroethene	1.20E+04	3.28E+04	3.66E-01
PCE	5.70E+04	6.55E+03	8.70E+00
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	4.70E+05	4.92E+06	9.55E-02
TCE	4.10E+05	3.28E+02	1.25E+03
Freon-11 (Trichlorofluoromethane)	4.90E+02	1.15E+05	4.26E-03
Total 200 Area Industrial So	il Vapor Hazard Index		1.26E+03

Table 6.6	200 Area Soil Vapor: I	ndustrial (Noncancer) Hazard Index ((VISLs)
-----------	------------------------	----------------------	------------------	---------

 ¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
 ² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (NMED, 2022c), unless otherwise noted. **Bold** values indicate an exceedance of screening levels.

Constituent	Maximum Concentration (µg/m³)	Depth Maximum Detected (ft bgs)	RBC ² (µg/m ³)	RBC Depth Used (ft bgs)	Hazard Quotient ¹
Benzene	8.00E+01	19	2.90E+04	10	2.76E-03
Carbon disulfide	6.40E+01	19	6.10E+05	10	1.05E-04
Freon-12 (Dichlorodifluoromethane)	1.20E+03	34	2.20E+05	25	5.45E-03
1,1-Dichloroethene	1.20E+04	34	4.00E+05	25	3.00E-02
PCE	5.70E+04	34	1.30E+05	25	4.38E-01
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	4.70E+05	34	1.20E+08	25	3.92E-03
TCE	4.10E+05	34	4.90E+03	25	8.37E+01
Freon-11 (Trichlorofluoromethane)	4.90E+02	9	5.30E+05	5	9.25E-04
Total 200 Area Residential Soil Va	apor Hazard Inde	ex			8.42E+01

Table 6.7200 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

Bold values indicate an exceedance of NMED screening levels or target hazard.

RBC - WSTF Risk Based Concentration

Table 6.8	200 Area Soil Va	por: Industrial (Noncancer) Hazard Index	(RBCs)
-----------	------------------	-------------------	-----------	----------------	--------

Constituent	Maximum Concentration (µg/m ³)	Depth Maximum Detected (ft bgs)	RBC ² (µg/m ³)	RBC Depth Used (ft bgs)	Hazard Quotient ¹
Benzene	8.00E+01	19	4.00E+05	10	2.00E-04
Carbon disulfide	6.40E+01	19	8.10E+06	10	7.90E-06
Freon-12 (Dichlorodifluoromethane)	1.20E+03	34	3.80E+06	25	3.16E-04
1,1-Dichloroethene	1.20E+04	34	6.70E+06	25	1.79E-03
PCE	5.70E+04	34	2.30E+06	25	2.48E-02
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	4.70E+05	34	2.30E+09	25	2.04E-04
TCE	4.10E+05	34	8.40E+04	25	4.88E+00
Freon-11 (Trichlorofluoromethane)	4.90E+02	9	6.40E+06	5	7.66E-05
Total 200 Area Industrial S	oil Vapor Hazard	l Index			4.91E+00

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022).

Bold values indicate an exceedance of screening levels.

RBC – WSTF Risk Based Concentration

Constituent	Maximum Concentration (µg/m³)	Indoor Air VISL ² (µg/m ³)	Cancer Risk ¹
Benzene	1.60E+00	3.60E+00	4.44E-06
Carbon tetrachloride	4.50E-01	4.68E+00	9.62E-07
Chloroform	3.90E-01	1.22E+00	3.20E-06
Chloromethane	6.00E-01	1.56E+01	3.85E-07
Ethylbenzene	4.70E-01	1.12E+01	4.20E-07
Methylene chloride	1.60E+00	1.01E+03	1.58E-08
РСЕ	2.80E-01	1.08E+02	2.59E-08
TCE	1.30E+00	4.42E+00	2.94E-06
Total 200 Area Residen	tial Indoor Air Cancer Risk		1.24E-05 or 1E-05

Table 6.9	200 Area Indoor Air: Residential Cancer Risk (VISL	s)
	200 million macon million (182	~,

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.
 ² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 2022c).

I	able 0.10 200 Area Indoor A	Air: Industrial Cancer Kis	6K
Constituent	Maximum Concentration (µg/m³)	Indoor Air VISLs² (µg/m³)	Cancer Risk ¹
Benzene	1.60E+00	1.76E+01	9.09E-07
Carbon tetrachloride	4.50E-01	2.29E+01	1.97E-07
Chloroform	3.90E-01	5.98E+00	6.52E-07
Chloromethane	6.00E-01	7.65E+01	7.84E-08
Ethylbenzene	4.70E-01	5.51E+01	8.53E-08
Methylene chloride	1.60E+00	1.38E+04	1.16E-09
PCE	2.80E-01	5.29E+02	5.29E-09
TCE	1.30E+00	3.36E+01	3.87E-07
Total 200 Area Indus	trial Indoor Air Cancer Risk		2.31E-06

200 Area Indoor Air: Industrial Cancer Risk Table 6 10

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.
 ² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c).

Constituent	Max. Concentration Or UCL95 (µg/m ³)	Indoor AirVISLs ² (µg/m ³)	Hazard Quotient ¹
Acetone ³	1.21E+01	3.23E+04	3.76E-04
Benzene ³	7.05E-01	3.13E+01	2.25E-02
2-Butanone (Methyl ethyl ketone) ³	2.75E+00	5.21E+03	5.28E-04
Carbon disulfide	4.70E-01	7.30E+02	6.44E-04
Carbon tetrachloride ³	4.11E-01	1.04E+02	3.95E-03
Chloroform	3.90E-01	1.02E+02	3.82E-03
Chloromethane ³	5.27E-01	9.39E+01	5.61E-03
Ethylbenzene	4.70E-01	1.04E+03	4.52E-04
Freon-12 (Dichlorodifluoromethane) ³	2.50E+00	1.04E+02	2.41E-02
trans-1,2-Dichloroethene	2.20E+00	4.17E+01	5.28E-02
n-Hexane ³	6.24E-01	7.30E+02	8.55E-04
4-Methyl-2-pentanone (Methyl isobutyl ketone)	2.40E+01	3.13E+03	7.67E-03
Methylene chloride ³	5.84E-01	6.26E+02	9.33E-04
Styrene	1.90E+00	1.04E+03	1.83E-03
PCE	2.80E-01	4.17E+01	6.71E-03
Toluene ³	2.68E+00	5.21E+03	5.14E-04
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane) ³	6.19E+02	3.13E+04	1.98E-02
TCE ³	5.21E-01	2.09E+00	2.49E-01
Freon-11 (Trichlorofluoromethane) ³	7.57E+00	7.30E+02	1.04E-02
m,p-Xylene	1.50E+00	1.04E+02	1.44E-02
o-Xylene	6.00E-01	1.04E+02	5.75E-03
1,2,4-Trimethylbenzene ⁴	9.20E-01	6.30E+01	1.46E-02
2,2,4-Trimethylpentane	3.90E-01	NE	NA
2-Hexanone ⁴	1.10E+00	3.10E+01	3.55E-02
2-Propanol (Isopropanol) ^{3,4}	2.63E+01	2.10E+02	1.25E-01
Ethanol ³	8.64E+00	NE	NA
Freon-21 (Dichlorofluoromethane)	3.50E+00	NE	NA
Heptane ⁴	3.30E-01	4.20E+02	7.86E-04
Tetrahydrofuran ⁴	2.90E-01	2.10E+03	1.38E-04
Total 200 Area Residential Indoo	r Air Hazard Index		6.09E-01

Table 6.11	200 Area Indoor Air: Residential (Noncancer) Hazard Index (VISLs)
------------	---

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
 ² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.

³ These entries are UCL95 values calculated using ProUCL software.
⁴ EPA Regional Screening Level Residential Air (EPA, 2022) used when NMED screening levels are unavailable.
NA – Not Applicable

NE – Not Established

Constituent	Maximum Concentration Or UCL95 (µg/m ³)	Indoor Air VISLs ² (µg/m ³)	Hazard Quotient ¹
Acetone ³	1.21E+01	1.52E+05	7.99E-05
Benzene ³	7.05E-01	1.76E+01	4.01E-02
2-Butanone (Methyl ethyl ketone) ³	2.75E+00	2.46E+04	1.12E-04
Carbon disulfide	4.70E-01	3.44E+03	1.37E-04
Carbon Tetrachloride ³	4.11E-01	2.29E+01	1.79E-02
Chloroform	3.90E-01	5.98E+00	6.52E-02
Chloromethane ³	5.27E-01	7.65E+01	6.89E-03
Ethylbenzene	4.70E-01	5.51E+01	8.53E-03
Freon-12 (Dichlorodifluoromethane) ³	2.50E+00	4.92E+02	5.09E-03
trans-1,2-Dichloroethene	2.20E+00	1.97E+02	1.12E-02
n-Hexane ³	6.24E-01	3.44E+03	1.81E-04
4-Methyl-2-pentanone (Methyl isobutyl ketone)	2.40E+01	1.47E+04	1.63E-03
Methylene chloride ³	5.84E-01	2.95E+03	1.98E-04
Styrene	1.90E+00	4.92E+03	3.86E-04
PCE	2.80E-01	1.97E+02	1.42E-03
Toluene ³	2.68E+00	2.46E+04	1.09E-04
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane) ³	6.19E+02	1.47E+05	4.21E-03
TCE ³	5.21E-01	9.83E+00	5.30E-02
Freon-11 (Trichlorofluoromethane) ³	7.57E+00	7.30E+02	1.04E-02
m,p-Xylene	1.50E+00	4.92E+02	3.05E-03
o-Xylene	6.00E-01	4.92E+02	1.22E-03
1,2,4-Trimethylbenzene ⁴	9.20E-01	2.60E+02	3.54E-03
2,2,4-Trimethylpentane	3.90E-01	NE	NA
2-Hexanone ⁴	1.10E+00	1.30E+02	8.46E-03
2-Propanol (Isopropanol) ^{3,4}	2.63E+01	8.80E+02	2.99E-02
Ethanol ³	8.64E+00	NE	NA
Freon-21 (Dichlorofluoromethane)	3.50E+00	NE	NA
Heptane ⁴	3.30E-01	1.80E+03	1.83E-04
Tetrahydrofuran ⁴	2.90E-01	8.80E+03	3.30E-05
Total 200 Area Industrial Indoor	· Air Hazard Index		2.73E-01

Table 6.12	200 Area Indoor Air: Industrial (Noncancer) Hazard Index ((VISLs)
------------	-----------------------------------	-----------	------------------	---------

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.

³ These entries are UCL95 values calculated using ProUCL software.
⁴ EPA Regional Screening Level Industrial Air (EPA, 2022) used when NMED screening levels are unavailable.
NA – Not Applicable

NE – Not Established

		200 Area	Soil Background Area 2	
	Depth	Max. Detected	BTV (95% UTL)	
Constituent	Range	Concentration	8-12 ft	Conclusion
	(ft)	(mg/kg)	(mg/kg)	
Aluminum, Total	8-10	6,460	12,577	Below background
Antimony, Total	8-10	1.2	1.77	Below background
Arsenic, Total	8-10	13.7	14.2	Below background
Barium, Total	8-10	108	137	Below background
Beryllium, Total	8-10	0.49	0.609	Below background
Cadmium, Total	8-10	0.95	1.42	Below background
Chromium, Hex	8-10	0.04	3.78	Below background
Chromium, Total	8-10	9.26	9.41	Below background
Cobalt, Total	8-10	5.35	5.49	Below background
Copper, Total	8-10	8.21	8.29	Below background
Iron, Total	8-10	19,300	39,313	Below background
Lead, Total	8-10	13	21.6	Below background
Manganese, Total	8-10	321	404	Below background
Mercury, Total	8-10	0.003	NE	Include as COPC
Molybdenum, Total	8-10	1.8	3.65	Below background
Nickel, Total	8-10	11	17.1	Below background
NO ₂ /NO ₃	8-10	7.4	3.1	Compare populations
Strontium, Total	8-10	250	896	Below background
Titanium, Total	8-10	111	273	Below background
Uranium, Total	8-10	1.76	3.26	Below background
Vanadium, Total	8-10	42.2	50.1	Below background
Zinc, Total	8-10	68	96.5	Below background

Table 6.13200 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)
Comparison

NE = Not Established. Constituent was not detected in sufficient samples to establish a BTV.

Constituent	Depth Range (ft)	200 Area Max. Detected Concentration (mg/kg)	Soil Background Area 2 BTV (95% UTL) 8-12 ft (mg/kg)	Conclusion
Calcium, Total	8-16 ¹	108,000	109,364	Below background
Chloride	8-10	16	579	Below background
Magnesium, Total	8-10	28,400	47,233	Below background
Potassium, Total	8-10	1,870	2,942	Below background
Sodium, Total	8-10	200	796	Below background

Table 6.14200 Area Essential Nutrient Soil Maximum Concentrations vs. Background
Threshold Value (BTV) Comparison

Notes:

¹ No analytical samples were collected between 0-10 ft bgs for 200-SB-10, so the shallowest sample was used for that soil boring (16 ft bgs).

Table 6.15	Population Comparison of Background and 200 Area Soil Data			
Constituent	Area 2	Conclusion		
NO ₂ /NO ₃	BG >= 200 Area	200 Area soil data is no more than Background data. Delete as COPC.		

	Table 6.16200 Area S	oil: Residential Cancer Risk	
Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Cancer Risk ¹
Dioxins/Furans	2.99E-07	$4.90E-05^{3}$	6.10E-08
Total 200 Area Res	idential Soil Cancer Risk		6E-08

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 2022c).

³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD

(Tetrachlorodibenzo-p-dioxin).

	Table 6.17 20	0 Area Soil: Industrial Cancer Risk	
Constituent	Maximur Concentrat (mg/kg)	m Soil Screening Level ² (mg/kg)	Cancer Risk ¹
Dioxins/Furans	2.99E-07	7 $2.38E-04^3$	1.26E-08
Total 200 Area Industrial Soil Cancer Risk			1E-08

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c).

³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD

(Tetrachlorodibenzo-p-dioxin).

		()	
Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Hazard Quotient ¹
Mercury (elemental)	3.00E-03	2.38E+01	1.26E-04
Toluene	2.10E+00	5.23E+03	4.02E-04
Dioxins/Furans	3.11E-07	5.06E-05 ³	6.15E-03
Total 200 Area Resident	6.7E-03		

Table 6.18	200 Area 8	Soil:	Residential	(Noncancer)) Hazard	Index
------------	------------	-------	-------------	-------------	----------	-------

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 2022c).

³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD (Tetrachlorodibenzo-p-dioxin).

Table 6.19200 Area Soil: Industrial (Noncancer) Hazard Index				
Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Hazard Quotient ¹	
Mercury (elemental)	3.00E-03	2.35E+01	1.28E-04	
Toluene	2.10E+00	6.13E+04	3.43E-05	
Dioxins/Furans	3.11E-07	$8.08E-04^{3}$	3.85E-04	
Total 200 Area Industrial Soil Hazard Index 5.47E-04				

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c).

³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD

(Tetrachlorodibenzo-p-dioxin).

Table 6.20	200 Area Cumulative Residential Risk and Hazard: All Pathways
1 abic 0.20	200 Area Cumulative Residential Risk and Hazaru, An Fathways

Pathway	Cancer Risk	Hazard	Source Risk / Hazard
Soil Vapor	3.75E-04	8.42E+01	Table 6.3 (RBCs) / Table 6.7 (RBCs)
Soil	6.35E-08	6.67E-03	Table 6.16 / Table 6.18
Total	3.75E-04	8.42E+01	

Notes:

Bold values indicate exceedance of NMED target.

1 able 6.21 200 Area Cumulative Industrial Risk and Hazard; All Pathway	Table 6.21	200 Area Cumulative Industrial Risk and Hazard; All Pathways
---	-------------------	--

Pathway	Cancer Risk	Hazard	Source Risk / Hazard
Soil Vapor	1.48E-05	4.91E+00	Table 6.4 (RBCs) / Table 6.8 (RBCs)
Soil	1.31E-08	5.47E-04	Table 6.17 / Table 6.19
Total	1.48E-05	4.91E+00	

Notes:

Bold values indicate exceedance of NMED target.

Constituent	Maximum Concentration (µg/m³)	VISLs ² (μg/m ³)	Cancer Risk ¹
Benzene	3.20E+00	1.20E+02	2.67E-07
Bromodichloromethane	6.20E-01	2.53E+01	2.45E-07
Chloroform	4.10E+01	4.07E+01	1.01E-05
Chloromethane	1.50E+00	5.20E+02	2.88E-08
1,4-Dichlorobenzene	1.90E+00	8.51E+01	2.23E-07
1,1-Dichloroethane	5.70E+00	5.85E+02	9.74E-08
1,2-Dichloroethane	7.30E-01	3.60E+01	2.03E-07
Ethylbenzene	1.60E+00	3.74E+02	4.287E-08
Methylene chloride	2.40E+01	3.38E+04	7.10E-09
PCE	5.20E+00	3.60E+03	1.44E-08
TCE	7.40E+02	1.47E+02	5.03E-05
Total 600 Area Resident	6.15E-05		

Table 6.22	600 Area Soil Vapor:	Residential Cancer Risk	(VISLs)
-------------------	----------------------	--------------------------------	---------

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Residential Vapor Intrusion Screening Levels (VISLs; NMED, 2022c).

Bold values indicate an exceedance of screening levels.

Constituent	Maximum Concentration (µg/m³)	VISLs ² (µg/m ³)	Cancer Risk ¹	
Benzene	3.20E+00	5.88E+02	5.44E-08	
Bromodichloromethane	6.20E-01	1.24E+02	5.00E-08	
Chloroform	4.10E+01	1.99E+02	2.06E-06	
Chloromethane	1.50E+00	2.55E+03	5.88E-09	
1,4-Dichlorobenzene	1.90E+00	4.17E+02	4.56E-08	
1,1-Dichloroethane	5.70E+00	2.87E+03	1.99E-08	
1,2-Dichloroethane	7.30E-01	1.76E+02	4.15E-08	
Ethylbenzene	1.60E+00	1.84E+03	8.70E-09	
Methylene chloride	2.40E+01	4.59E+05	5.23E-10	
PCE	5.20E+00	1.76E+04	2.95E-09	
TCE	7.40E+02	1.12E+03	6.61E-06	
Total 600 Area Industrial Soil Vapor Cancer Risk8.90E-06				

Table 6.23 600 Area Soil Vapor: Industrial Cancer Risk (VISLs)

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (VISLs; NMED, 2022c).

Constituent	Maximum Concentration (µg/m³)	Depth Maximum Detected (ft bgs)	RBC ² (µg/m ³)	RBC Depth Used (ft bgs)	Cancer Risk ¹
Benzene	3.20E+00	12.5	3.40E+03	10	9.41E-09
Bromodichloromethane	6.20E-01	12.5	9.80E+02	10	6.33E-09
Chloroform	4.10E+01	12.5	1.20E+03	10	3.42E-07
Chloromethane	1.50E+00	12.5	1.20E+04	10	1.25E-09
1,4-Dichlorobenzene ³	1.90E+00	12.5	8.51E+01	10	2.23E-07
1,1-Dichloroethane	5.70E+00	12.5	1.70E+04	10	3.35E-09
1,2-Dichloroethane ³	7.30E-01	12.5	3.60E+01	10	2.03E-07
Ethylbenzene ³	1.60E+00	12.5	3.74E+02	10	4.28E-08
Methylene chloride	2.40E+01	12.5	8.70E+05	10	2.76E-10
PCE	5.20E+00	12.5	1.50E+05	10	3.47E-10
TCE	7.40E+02	12.5	5.40E+03	10	1.37E-06
Total 600 Area Resident	tial Soil Vapor Ca	ncer Risk			2.20E-06

 Table 6.24
 600 Area Soil Vapor: Residential Cancer Risk (RBCs)

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

³ NMED screening level (Table A-4 NMED VISLs; NMED 2022c) used when WSTF RBC screening levels are unavailable.

RBC - WSTF Risk Based Concentration

Constituent	Maximum Concentration (µg/m³)	VISLs ² (µg/m ³)	Hazard Quotient ¹
Acetone	2.70E+01	1.08E+06	2.50E-05
Benzene	3.20E+00	1.04E+03	3.08E-03
2-Butanone (Methyl ethyl ketone)	1.20E+01	1.74E+05	6.90E-05
Carbon disulfide	8.60E+01	2.43E+04	3.54E-03
Chloroform	4.10E+01	3.41E+03	1.20E-02
Chloromethane	1.50E+00	3.13E+03	4.79E-04
Cis-1,2-dichloroethene ³	8.20E-01	4.20E+01	1.95E-02
1,2-Dichloroethane	7.30E-01	2.43E+02	3.00E-03
1,4-Dichlorobenzene	1.90E+00	2.78E+04	6.83E-05
Ethylbenzene	1.60E+00	3.48E+04	4.60E-05
Freon-12 (Dichlorodifluoromethane)	2.40E+00	3.48E+03	6.90E-04
Ethyl chloride (Chloroethane)	2.00E+00	3.48E+05	5.75E-06
n-Hexane	1.50E+00	2.43E+04	6.17E-05
Methylene chloride	2.40E+01	2.09E+04	1.15E-03
PCE	5.20E+00	1.39E+03	3.74E-03
Toluene	2.90E+00	1.74E+05	1.67E-05
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	8.20E+03	1.04E+06	7.88E-03
1,1,1-Trichloroethane	3.60E+00	1.74E+05	2.07E-05
TCE	7.40E+02	6.95E+01	1.06E+01
Freon-11 (Trichlorofluoromethane)	1.40E+03	2.43E+04	5.76E-02
m,p-Xylene	2.90E+00	3.48E+03	8.33E-04
o-Xylene	1.10E+00	3.48E+03	3.16E-04
1,2,4-Trimethylbenzene ³	9.20E-01	6.30E+01	1.46E-02
2-Hexanone ³	1.00E+00	3.10E+01	3.23E-02
2-Propanol (Isopropyl alcohol or Isopropanol) ³	4.30E+00	2.10E+02	2.05E-02
Ethanol	9.60E+00	NE	NA
Freon 21 (Dichlorofluoromethane)	1.00E+01	NE	NA
Tetrahydrofuran ³	8.50E-01	2.10E+03	4.05E-04
Total 600 Area Residential Soil V	apor Hazard Index		1.08E+01

Table 6.25	600 Area Soil Va	por: Residential ((Noncancer) Hazard Index (VISLs)	
------------	------------------	--------------------	------------	------------------	--------	--

 ¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
 ² Table A-4, NMED Residential Vapor Intrusion Screening Levels (VISLs; NMED, 2022c), unless otherwise noted. ³ EPA Regional Screening Level Residential Air used when NMED screening levels are unavailable.

Bold values indicate an exceedance of screening levels.

NA = Not applicable

NE – Not Established

Constituent	Maximum Concentration (μg/m ³) VISLs ² (μg/m ³)		Hazard Quotient ¹
Acetone	2.70E+01	5.08E+06	5.31E-06
Benzene	3.20E+00	4.92E+03	6.50E-04
2-Butanone (Methyl ethyl ketone)	1.20E+01	8.19E+05	1.47E-05
Carbon disulfide	8.60E+01	1.15E+05	7.48E-04
Chloroform	4.10E+01	1.61E+04	2.55E-03
Chloromethane	1.50E+00	1.47E+04	1.02E-04
cis-1,2-dichloroethene ³	8.20E-01	1.80E+02	4.56E-03
1,2-Dichloroethane	7.30E-01	1.15E+03	6.35E-04
1,4-Dichlorobenzene	1.90E+00	1.31E+05	1.45E-05
Ethylbenzene	1.60E+00	1.64E+05	9.76E-06
Freon-12 (Dichlorodifluoromethane)	2.40E+00	1.64E+04	1.46E-04
Ethyl chloride (Chloroethane)	2.00E+00	1.64E+06	1.22E-06
n-Hexane	1.50E+00	1.15E+05	1.30E-05
Methylene chloride	2.40E+01	9.83E+04	2.44E-04
PCE	5.20E+00	6.55E+03	7.94E-04
Toluene	2.90E+00	8.19E+05	3.54E-06
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluorooethane)	8.20E+03	4.92E+06	1.67E-03
1,1,1-Trichloroethane	3.60E+00	8.19E+05	4.40E-06
TCE	7.40E+02	3.28E+02	2.26E+00
Freon-11 (Trichlorofluoromethane)	1.40E+03	1.15E+05	1.22E-02
m,p-Xylene	2.90E+00	1.64E+04	1.77E-04
o-Xylene	1.10E+00	1.64E+04	6.71E-05
1,2,4-Trimethylbenzene ³	9.20E-01	2.60E+02	3.54E-03
2-Hexanone ³	1.00E+00	1.30E+02	7.69E-03
2-Propanol (Isopropyl alcohol or Isopropanol) ³	4.30E+00	8.80E+02	4.89E-03
Ethanol	9.60E+00	NE	NA
Freon 21 (Dichlorofluoromethane)	1.00E+01	NE	NA
Tetrahydrofuran ³	8.50E-01	8.80E+03	9.66E-05
Total 600 Area Industrial Soil Va	apor Hazard Index		2.30E+00

Table 6.26	600 Area Soil V	/apor: Industrial	(Noncancer)) Hazard Index	(VISLs)	
------------	-----------------	-------------------	-------------	----------------	---------	--

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (VISLs; NMED, 2022c), unless otherwise noted.

³ EPA Regional Screening Level Industrial Air used when NMED screening levels are unavailable.

Bold values indicate an exceedance of screening levels.

NA - Not Applicable

NE - Not Established

	Maximum	Depth		RBC	
Constituent	Concentration	Maximum	RBC ²	Depth	Hazard
Constituent	$(\mu g/m^3)$	Detected	(µg/m³)	Used	Quotient ¹
		(ft bgs)		(ft bgs)	
Acetone	2.70E+01	7.5	1.90E+07	5	1.42E-06
Benzene	3.20E+00	12.5	2.90E+04	10	1.10E-04
2-Butanone (Methyl ethyl ketone)	1.20E+01	12.5	4.80E+06	10	2.50E-06
Carbon disulfide	8.60E+01	12.5	6.10E+05	10	1.41E-04
Chloroform	4.10E+01	12.5	1.00E+05	10	4.10E-04
Chloromethane	1.50E+00	12.5	7.20E+04	10	2.08E-05
Cis-1,2-dichloroethene ⁴	8.20E-01	12.5	4.20E+01	10	1.95E-02
1,2-Dichloroethane ³	7.30E-01	12.5	2.43E+02	10	3.00E-03
1,4-Dichlorobenzene ³	1.90E+00	12.5	2.78E+04	10	6.83E-05
Ethylbenzene ³	1.60E+00	12.5	3.48E+04	10	4.60E-05
Freon-12 (Dichloro- difluoromethane)	2.40E+00	7.5	7.00E+04	5	3.43E-05
Ethyl chloride (Chloroethane)	2.00E+00	12.5	8.90E+06	10	2.25E-07
n-Hexane	1.50E+00	12.5	7.80E+05	10	1.92E-06
Methylene chloride	2.40E+01	12.5	5.50E+05	10	4.36E-05
PCE	5.20E+00	12.5	5.80E+04	10	8.97E-05
Toluene ³	2.90E+00	12.5	1.74E+05	10	1.67E-05
Freon-113 (1,1,2-					
Trichloro-1,2,2-	8.20E+03	12.5	5.50E+07	10	1.49E-04
trifluoroethane)					
1,1,1-Trichloroethane	3.60E+00	12.5	6.10E+06	10	5.90E-07
TCE	7.40E+02	12.5	2.30E+03	10	3.22E-01
Freon-11 (Trichlorofluoromethane)	1.40E+03	12.5	8.40E+05	10	1.67E-03
m,p-Xylene ³	2.90E+00	12.5	3.48E+03	10	8.33E-04
o-Xylene ³	1.10E+00	12.5	3.48E+03	10	3.16E-04
1,2,4-Trimethylbenzene ⁴	9.20E-01	12.5	6.30E+01	10	1.46E-02
2-Hexanone	1.00E+00	7.5	2.20E+04	5	4.55E-05
2-Propanol (Isopropyl alcohol)	4.30E+00	12.5	1.80E+05	10	2.39E-05
Ethanol	9.60E+00	12.5	1.50E+07	10	6.40E-07
Freon 21	1.005+01	12.5	1 2012 + 0.5	10	9 225 05
(Dichlorofluoromethane)	1.00E+01	12.5	1.20E+05	10	8.33E-05
Tetrahydrofuran	8.50E-01	12.5	1.80E+06	10	4.72E-07
Total 600 Area Residential	Soil Vapor Hazard	Index			3.63E-01

Table 6.27600 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

³ NMED screening level (Table A-4 VISLs; NMED, 2022c) used when WSTF RBC screening levels are unavailable.

⁴EPA screening level used when WSTF RBC and NMED screening level are unavailable.

RBC - WSTF Risk Based Concentration

Constituent	Maximum Concentration (µg/m³)	Depth Maximum Detected (ft bgs)	RBC ² (µg/m ³)	RBC Depth Used (ft bgs)	Hazard Quotient ¹
Acetone	2.70E+01	7.5	2.00E+08	5	1.35E-07
Benzene	3.20E+00	12.5	4.00E+05	10	8.00E-06
2-Butanone (Methyl ethyl ketone)	1.20E+01	12.5	6.60E+07	10	1.82E-07
Carbon disulfide	8.60E+01	12.5	8.10E+06	10	1.06E-05
Chloroform	4.10E+01	12.5	1.50E+06	10	2.73E-05
Chloromethane	1.50E+00	12.5	9.00E+05	10	1.67E-06
cis-1,2-dichloroethene ⁴	8.20E-01	12.5	1.80E+02	10	4.56E-03
1,2-Dichloroethane ³	7.30E-01	12.5	1.15E+03	10	6.35E-04
1,4-Dichlorobenzene ³	1.90E+00	12.5	1.31E+05	10	1.45E-05
Ethylbenzene ³	1.60E+00	12.5	1.64E+05	10	9.76E-06
Freon-12 (Dichlorodifluoromethane)	2.40E+00	7.5	8.10E+05	5	2.96E-06
Ethyl chloride (Chloroethane)	2.00E+00	12.5	1.20E+08	10	1.67E-08
n-Hexane	1.50E+00	12.5	1.10E+07	10	1.36E-07
Methylene chloride	2.40E+01	12.5	7.40E+06	10	3.24E-06
PCE	5.20E+00	12.5	9.10E+05	10	5.71E-06
Toluene ³	2.90E+00	12.5	8.19E+05	10	3.54E-06
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluorooethane)	8.20E+03	12.5	9.00E+08	10	9.11E-06
1,1,1-Trichloroethane	3.60E+00	12.5	9.00E+07	10	4.00E-08
TCE	7.40E+02	12.5	3.40E+04	10	2.18E-02
Freon-11 (Trichlorofluoromethane)	1.40E+03	12.5	8.40E+05	10	1.67E-03
m,p-Xylene ³	2.90E+00	12.5	1.64E+04	10	1.77E-04
o-Xylene ³	1.10E+00	12.5	1.64E+04	10	6.71E-05
1,2,4-Trimethylbenzene ⁴	9.20E-01	12.5	2.60E+02	10	3.54E-03
2-Hexanone	1.00E+00	7.5	2.50E+05	5	4.00E-06
2-Propanol (Isopropyl alcohol)	4.30E+00	12.5	2.40E+06	10	1.79E-06
Ethanol	9.60E+00	12.5	1.70E+08	10	5.65E-08
Freon 21 (Dichlorofluoromethane)	1.00E+01	12.5	1.80E+06	10	5.56E-06
Tetrahydrofuran	8.50E-01	12.5	2.40E+07	10	3.54E-08
Total 600 Area Industrial Soil	Vapor Hazard I	ndex			3.25E-02
Notes:					

Table 6.28	600 Area Soil Vapor:	Industrial (Noncancer)	Hazard Index	(RBCs)
-------------------	----------------------	------------------------	--------------	--------

 ¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
 ² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022).
 ³ NMED screening level (Table A-4 VISLs; NMED, 2022c) used when WSTF RBC screening levels are unavailable.

⁴ EPA screening level used when WSTF RBC and NMED screening level are unavailable. RBC – WSTF Risk Based Concentration

Constituent	Maximum Concentration (µg/m³)	VISLs ² (µg/m ³)	Cancer Risk ¹		
Benzene	4.00E-01	3.60E+00	1.11E-06		
Carbon tetrachloride	4.50E-01	4.68E+00	9.62E-07		
Chloromethane	6.50E-01	1.56E+01	4.17E-07		
Methylene chloride	5.50E-01	1.01E+03	5.45E-09		
Total 600 Area Residential Indoor Air Cancer Risk2.4					

Table 6.29	600 Area Indoor Air: Residential Cancer Risk (VISLs)
-------------------	--	--------

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.
 ² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 2022c).

Table 6.30	600 Area Indoor Air: Industrial Cancer Risk (VISLs)				
Constituent	Maximum Concentration	VISLs ²	Cancer Risk ¹		
	(µg/m ³)	(µg/m ³)			
Benzene	4.00E-01	1.76E+01	2.27E-07		
Carbon tetrachloride	4.50E-01	2.29E+01	1.97E-07		
Chloromethane	6.50E-01	7.65E+01	8.50E-08		
Methylene chloride	5.50E-01	1.38E+04	3.99E-10		
Total 600 Area Industrial l	5.09E-07				

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c).

Constituent	Maximum Concentration (μg/m ³)	VISLs ² (µg/m ³)	Hazard Quotient ¹
Acetone	2.80E+01	3.23E+04	8.67E-04
Benzene	4.00E-01	3.13E+01	1.28E-02
2-Butanone (Methyl ethyl ketone)	5.30E+00	5.21E+03	1.02E-03
Carbon tetrachloride	4.50E-01	1.04E+02	4.33E-03
Chloromethane	6.50E-01	9.39E+01	6.92E-03
Freon-12 (Dichlorodifluoromethane)	2.30E+00	1.04E+02	2.21E-02
n-Hexane	7.90E-01	7.30E+02	1.08E-03
4-Methyl-2-pentanone (Methyl isobutyl ketone)	5.00E-01	3.13E+03	1.60E-04
Methylene chloride	5.50E-01	6.26E+02	8.79E-04
Toluene	6.00E-01	5.21E+03	1.15E-04
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	5.90E-01	3.13E+04	1.88E-05
Freon-11 (Trichlorofluoromethane)	1.40E+00	7.30E+02	1.92E-03
2-Hexanone ³	1.10E+00	3.10E+01	3.55E-02
2-Propanol ³	3.40E+00	2.10E+02	1.62E-02
Ethanol ⁴	2.00E+01	NE	NA
Heptane ³	3.00E-01	4.20E+02	7.14E-04
Total 600 Area Residential Indoor	Air Hazard Index		1.05E-01

Table 6.31600 Area Indoor Air: Residential (Noncancer) Hazard Index(VISLs)

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.
 ³ EPA Regional Screening Level (EPA, 2022) used when NMED screening levels and WSTF RBCs are unavailable.

NA – Not Applicable

NE - Not Established

Constituent	Maximum Concentration	VISLs ²	Hazard Quotient ¹
	(µg/m ³)	(µg/m ³)	
Acetone	2.80E+01	1.52E+05	1.84E-04
Benzene	4.00E-01	1.76E+01	2.27E-02
2-Butanone (Methyl ethyl ketone)	5.30E+00	2.46E+04	2.15E-04
Carbon tetrachloride	4.50E-01	2.29E+01	1.97E-02
Chloromethane	6.50E-01	7.65E+01	8.50E-03
Freon-12 (Dichlorodifluoromethane)	2.30E+00	4.92E+02	4.67E-03
n-Hexane	7.90E-01	3.44E+03	2.30E-04
4-Methyl-2pentanone (Methyl isobutyl ketone)	5.00E-01	1.47E+04	3.40E-05
Methylene chloride	5.50E-01	2.95E+03	1.86E-04
Toluene	6.00E-01	2.46E+04	2.44E-05
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	5.90E-01	1.47E+05	4.01E-06
Freon-11 (Trichlorofluoroethane)	1.40E+00	3.44E+03	4.07E-04
2-Hexanone ³	1.10E+00	3.10E+02	3.55E-03
2-Propanol ³	3.40E+00	8.80E+02	3.86E-03
Ethanol	2.00E+01	NE	NA
Heptane ³	3.00E-01	1.80E+03	1.67E-04
Total 600 Area Industrial Indoor	6.44E-02		

Table 6.32	600 Area Indoor Air: Industrial	(Noncancer) Hazard Index	(VISLs)
-------------------	---------------------------------	------------	----------------	---------

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.

³ EPA Regional Screening Level (EPA, 2022) used when NMED screening levels and WSTF RBCs are unavailable.

NA-Not Applicable

NE - Not Established

Constituent	Depth Range (ft)	600 Area Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion
	0-4	9,480	17,681	
Aluminum, Total	4-8	11,600	12,154	Below background
	8-10	4,650	13,653	
	0-4	$< 0.5^{1}$	NE^2	
Antimony, Total	4-8	$< 0.5^{1}$	NE^2	Include as COPC
	8-10	0.4	NE^2	
	0-4	8.3	11.1	
Arsenic, Total	4-8	10.1	12.6	Below background
	8-10	6.76	11.9	
	0-4	191	215	Commono
Barium, Total	4-8	240	398	Compare
	8-10	338	310	ropulations
	0-4	0.56	1.1	C
Beryllium, Total	4-8	0.72	0.713	Compare
-	8-10	0.37	0.814	Populations
	0-4	3	NE ²	
Boron, Total	4-8	<21	NE^2	Include as COPC
	8-10	4	NE^2	
	0-4	0.2	0.696	
Cadmium, Total	4-8	0.36	NE^2	Include as COPC
	8-10	0.27	NE^2	
	0-4	0.4	1.2	
Chromium, Hex	4-8	0.21	6.94	Below background
	8-10	$< 0.2^{1}$	1.23	-
	0-4	16.7	11.1	C
Chromium, Total	4-8	15.4	11.7	Compare
	8-10	7.2	11.3	Populations
	0-4	6.8	5.35	C
Cobalt, Total	4-8	5.4	5.35	Compare
	8-10	2.2	5.28	ropulations
	0-4	7.7	11.7	C
Copper, Total	4-8	10.4	9.2	Compare
	8-10	6.8	13.5	Populations
	0-4	13,800	39,911	
Iron, Total	4-8	12,600	15,794	Below background
	8-10	8,140	18,759	C C
	0-4	8.8	15.9	
Lead, Total	4-8	9.5	10.3	Below background
·	8-10	5.7	15.6	e
	0-4	187	444	C
Manganese, Total	4-8	325	296	Compare
	8-10	253	393	ropulations

Table 6.33600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)
Comparison

Constituent	Depth Range (ft)	600 Area Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion
	0-4	0.012	0.0709	C
Mercury, Total	4-8	0.099	0.0576	Compare
·	8-10	0.005	0.0302	Populations
	0-4	3.2	1.33	<u> </u>
Molybdenum,	4-8	1.8	2.85	Compare
Total	8-10	1.4	1.98	Populations
	0-4	14.9	15.4	
Nickel, Total	4-8	11.4	12.3	Below background
	8-10	7.2	14.1	C
	0-4	54.6	6.39	
NO ₂ /NO ₃	4-8	55.4	2.84	Compare
1.021.03	8-10	14.9	4.82	Populations
	0-4	0.00086	0.0112	
Perchlorate	4-8	$< 0.0005^{1}$	0.00495	Include as COPC
	8-10	0.03	0.00337	
	0-4	0.4	1.96	
Selenium, Total	4-8	$< 0.4^{1}$	1.7	Below background
,	8-10	0.5	2.45	C
	0-4	5.9	NE ²	
Thallium, Total	4-8	7.1	NE^2	Include as COPC
	8-10	7.6	NE^2	
	0-4	7	NE ²	
Tin, Total	4-8	10	NE^2	Include as COPC
,	8-10	6	NE^2	
	0-4	211	359	
Titanium, Total	4-8	213	352	Below background
	8-10	130	330	C
	0-4	26	33.9	
Vanadium, Total	4-8	32.6	56.3	Below background
	8-10	19.7	42.4	C
	0-4	38.6	59.7	~
Zinc, Total	4-8	43.7	40.8	Compare
,	8-10	23.2	52.9	Populations

Table 6.33600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)
Comparison

Notes:¹ Not Detected above laboratory detection limit ² Not Established

Bold font indicates concentration exceeds BTV.

Constituent	Depth Range (ft)	600 Area Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion	
	0-4	177,000	302,460		
Calcium, Total	4-8	200,000	214,770	Below background	
	8-10	145,000	332,558		
Magnesium,	0-4	19,800	14,149	C	
	4-8	21,800	31,298	Compare	
Total	8-10	15,600	33,658	ropulations	
	0-4	2,020	4,151	Commons	
Potassium, Total	4-8	3,130	3,038	Compare	
	8-10	1,090	3,125	ropulations	
Sodium	0-4	280	643	C	
	4-8	12,900	1,242	Compare	
	8-10	1,260	1,297	i opulations	

Table 6.34600 Area Essential Nutrients Soil Maximum Concentrations vs. Background
Threshold Value (BTV) Comparison

Notes:

Bold font indicates maximum concentration exceeds BTV.
Constituent	Area 4	Conclusion
Barium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Beryllium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Chromium	BG < 600 Area	600 Area soil data exceeds Background data. Retain as COPC.
Cobalt	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Copper	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Manganese	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Mercury	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Molybdenum	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
NO ₂ /NO ₃	BG < 600 Area	600 Area soil data exceeds Background data. Retain as COPC.
Zinc	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Essential Nutrients		
Magnesium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete nutrient.
Potassium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete nutrient.
Sodium	BG < 600 Area	600 Area soil data may exceed Background data. Retain nutrient.

Table 6 25	Donulation Con	manicon of Doolygnous	nd and 600 Ana	a Sail Data
1 able 0.35	ropulation Con	iparison of Dackgrou	nu anu ovo Are	a son Data

Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Cancer Risk ¹
Benzo(a)anthracene	4.80E-03	1.53E+00	3.14E-08
Bis(2-ethylhexyl)phthalate	1.40E+00	3.80E+02	3.68E-08
Cadmium	3.60E-01	8.59E+04	4.19E-11
Chromium (Total)	1.67E+01	9.66E+01	1.73E-06
Chrysene	4.40E-03	1.53E+02	2.88E-10
Trichloroethylene	4.90E-04	1.55E+01	3.16E-10
Total 600 Area Residential S		1.80E-06	

Table 6.36600 Area Soil: Residential Cancer Risk

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 2022c).

Table 6.37	600 Area Soil: I	ndustrial Cancer Risk			
Constituent	Maximum Concentration	Soil Screening Level ²	Cancer Risk ¹		
	(mg/kg)	(mg/kg)			
Benzo(a)anthracene	4.80E-03	3.23E+01	1.49E-09		
Bis(2-ethylhexyl)phthalate	1.40E+00	1.83E+03	7.65E-09		
Cadmium	3.60E-01	4.17E+05	8.63E-12		
Chromium (Total)	1.67E+01	5.05E+02	3.31E-07		
Chrysene	4.40E-03	3.23E+03	1.36E-11		
Trichloroethylene	4.90E-04	1.12E+02	4.38E-11		
Total 600 Area Industrial Soil Cancer Risk3.40E-07					

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c).

	Maximum	Soil Screening	
Constituent	Concentration (mg/kg)	Level ² (mg/kg)	Hazard Quotient ¹
Acetone	8.70E-02	6.63E+04	1.31E-06
Antimony	4.00E-01	3.13E+01	1.28E-02
Benzyl Alcohol ³	3.20E-01	6.30E+03 ³	5.08E-05
Bis(2-ethylhexyl)phthalate	1.40E+00	1.23E+03	1.14E-03
Boron	4.00E+00	1.56E+04	2.56E-04
2-Butanone (Methyl ethyl ketone)	7.00E-03	3.74E+04	1.87E-07
Cadmium	3.60E-01	7.05E+01	5.11E-03
Carbon disulfide	8.10E-04	1.55E+03	5.23E-07
Chromium (Total)	1.67E+01	4.52E+04	3.69E-04
Methyl isobutyl ketone	1.10E-03	5.81E+03	1.89E-07
Nitrite	5.54E+01	7.82E+03	7.08E-03
Perchlorate	3.00E-02	5.48E+01	5.47E-04
Thallium ⁴	5.19E+00	7.82E-01	6.63E+00
Toluene	6.00E-04	5.23E+03	1.15E-07
Freon-113	1.40E-01	5.08E+04	2.76E-06
TCE	4.90E-04	6.77E+00	7.24E-05
Tetrahydrofuran ³	1.70E-03	1.80E+04	9.44E-08
Tin, Total ^{3,4}	1.00E+01	4.70E+04	2.13E-04
2-Propanol ³	1.80E-02	5.60E+03	3.21E-06
Total 600 Area Residential Soil Ha		6.66E+00	
Essential Nutrients			
Sodium	1.29E+04	7.82E+06	

1 u D U U U U U U U U U U U U U U U U U U	Table 6.38	600 Area	Soil:	Residential	(Noncancer)	Hazard Index
---	------------	----------	-------	--------------------	-------------	--------------

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
² Table A-1, NMED Residential Soil Screening Levels (NMED, 2022c), unless otherwise noted.

³ EPA screening level (EPA, 2022) used when NMED screening levels are unavailable.

⁴ These entries are UCL95 values calculated using ProUCL software.

Bold values indicate an exceedance of screening levels.

Constituent	Maximum Concentration	Soil Screening Level ²	Hazard Quotient ¹
	(mg/kg)	(mg/kg)	
Acetone	8.70E-02	9.60E+05	9.06E-08
Antimony	4.00E-01	5.19E+02	7.71E-04
Benzyl Alcohol ³	3.20E-01	8.20E+04	3.90E-06
Bis(2-ethylhexyl)phthalate	1.40E+00	1.83E+04	7.65E-05
Boron	4.00E+00	2.59E+05	1.54E-05
2-Butanone (Methyl ethyl ketone)	7.00E-03	4.11E+05	1.70E-08
Cadmium	3.60E-01	1.11E+03	3.24E-04
Carbon disulfide	8.10E-04	8.54E+03	9.48E-08
Chromium (Total)	1.67E+01	3.14E+05	5.32E-05
Methyl isobutyl ketone	1.10E-03	8.16E+04	1.35E-08
Nitrite	5.54E+01	1.30E+05	4.26E-04
Perchlorate	3.00E-02	9.08E+02	3.30E-05
Thallium ⁴	5.19E+00	1.30E+01	3.99E-01
Toluene	6.00E-04	6.13E+04	9.79E-09
Freon-113	1.40E-01	2.43E+05	5.76E-07
TCE	4.90E-04	3.65E+01	1.34E-05
Tetrahydrofuran ³	1.70E-03	9.50E+04	1.79E-08
Tin, Total ³	1.00E+01	7.00E+05	1.43E-05
2-Propanol ³	1.80E-02	2.40E+04	7.50E-07
Total 600 Area Industrial Soil Haz	ard Index		4.01E-01

Table 6.39600 Area Soil: Industrial (Noncancer) Hazard Index

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c), unless otherwise noted.

³ EPA screening level (EPA, 2022) used when NMED screening levels are unavailable.

⁴ These entries are UCL95 values calculated using ProUCL software.

Pathway	Cancer Risk	Hazard	Source Risk / Hazard
Soil Vapor	2.20E-06	3.63E-01	Table 6.24 (RBCs) / Table 6.27 (RBCs)
Soil	1.80E-06	6.66E+00	Table 6.36 / Table 6.38
Total	4.00E-06	7.02E+00	

Table 6.40600 Area Cumulative Residential Risk and Hazard; All Pathways

Notes:

Bold value indicates exceedance of NMED target.

Table 6.41 600 Area		nulative Industria	l Risk and Hazard; All Pathways
Pathway	Cancer Risk	Hazard	Source Risk / Hazard
Soil Vapor	8.90E-06	3.25E-02	Table 6.23 (VISLs) / Table 6.28 (RBCs)
Soil	3.40E-07	4.01E-01	Table 6.37 / Table 6.39
Total	9.24E-06	4.34E-01	

	1 able 0.42	Summary of F113	and TCE vertical Co	incenti ation 1 romes	Ior Select 200 and 0	Jou Alea wells
СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
			MSVGM W	ell 200-SG-2		
Freon 113	F113 in soil non-detect $(<11.0 \ \mu g/kg)$ for soil sample at 80 ft bgs. Vadose zone soil porosity not reported (insufficient sample for geotechnical analysis [@]).	Increasing F113 in soil vapor with depth by one order of magnitude from shallow port (30 ft) to middle port (60 ft). Deep port submerged in aquifer. Significant concentration increase with depth by one order of magnitude.	Steadily decreasing trend for F113 in deep soil vapor port over time for historical sampling events from 169,000 µg/m ³ to 110,000 µg/m ³ .	Latest equivalent soil vapor in equilibrium with groundwater is 2,592,000 µg/m ³ on 10/22/14.	Soil vapor concentration in middle port (deep port submerged) at 110,000 µg/m ³ is one order of magnitude below equivalent soil vapor in equilibrium with groundwater.	The increasing F113 in soil vapor with depth is coincident with proximity to the local confined groundwater aquifer. The deep port is located 23 ft above groundwater Decreasing F113 soil vapor concentrations over time are coincident with declining F113 groundwater concentrations (<u>Appendix E</u> and NASA, 2019b).*
TCE	TCE in soil non-detect $(<5.3 \ \mu g/kg)$ for soil sample at 80 ft bgs. Vadose zone porosity not reported (insufficient sample for geotechnical analyses [@]).	Generally increasing TCE in soil vapor with depth (within the same order of magnitude) from shallow (30 ft) to middle (60 ft) port located. Deep port submerged in aquifer.	Irregular TCE trend in deep soil vapor port over time for relatively low concentrations within the same order of magnitude for historical sampling events.	Latest equivalent soil vapor in equilibrium with groundwater is 485 µg/m ³ on 10/22/14.	Soil vapor concentration in middle port at 800 µg/m ³ is within the same order of magnitude as equivalent soil vapor in equilibrium with groundwater.	The increasing TCE in soil vapor with port depth is coincident with proximity to groundwater. The deep port is located 23 ft above groundwater. Fluctuating TCE soil vapor concentrations over time are within the same order of magnitude and are consistent with the relatively stable low level groundwater concentrations of between 1.2 µg/L and 1.6 µg/L

Table 6.42Summary of F113 and TCE Vertical Concentration Profiles for Select 200 and 600 Area Wells

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
						(<u>Appendix E</u> and NASA, 2019b).*
	-		MSVGM W	ell 200-SG-3	-	-
Freon 113	F113 in soil non-detect (<11.0 μg/kg) for soil samples at 30 ft, 50 ft, and 60 ft bgs. Vadose zone soil porosity reported as between 24% and 46% at the same sampling intervals. [@]	Increasing F113 in soil vapor with port depth by one order of magnitude for the upper 3 ports located at 30 ft, 60 ft, and 90 ft within vadose zone alluvium and shallow bedrock. Concentrations subsequently decline within the deep bedrock port at 154 ft.	Steadily decreasing trend for F113 in soil vapor ports over time for historical sampling events.	Equivalent soil vapor in equilibrium with groundwater is 1,922,400 µg/m ³ on 10/21/14.	Soil vapor for the deep port (110,000 µg/m ³) is one order of magnitude lower than equivalent soil vapor in equilibrium with groundwater.	Increasing F113 in soil vapor with depth for the ports at 30 ft, 60 ft, & 90 ft located within either permeable alluvium or shallow bedrock. Decreasing F113 soil vapor concentrations occur within the port at depth (154 ft) located 10 ft above groundwater within a sedimentary bedrock sequence with irregular permeability. Decreasing F113 trend in soil vapor over time is coincident with declining groundwater concentrations in the local 200 Area aquifer (<u>Appendix E</u> and NASA, 2019b).*

COPC	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
TCE	TCE in soil non-detect (<5.3 µg/kg) for soil samples at 30 ft, 50 ft, and 60 ft bgs. Vadose zone soil porosity reported as between 24% to 46% at the same sampling intervals. [@]	Increasing TCE in soil vapor with port depth within the same order of magnitude for the upper 3 ports located at 30 ft, 60 ft, and 90 ft within vadose zone alluvium and shallow bedrock. Concentrations subsequently decline within deep port at 154 ft.	Pecreasing TCE in vapor with port h within the same r of magnitude he upper 3 ports ted at 30 ft, 60 ft, 90 ft within ose zone alluvium shallow bedrock. centrations sequently decline in deep port at ft.		Soil vapor for the deep port (4,200 μ g/m ³) is within the same order of magnitude as equivalent soil vapor in equilibrium with groundwater.	Increasing TCE in soil vapor with depth for the ports at 30 ft, 60 ft, & 90 ft) located within relatively permeable alluvium or shallow bedrock. Decreasing TCE soil vapor concentrations within the accessible port at depth (154 ft) located 10 ft above groundwater within a sedimentary bedrock sequence with irregular permeability. Decreasing TCE trend in soil vapor over time is consistent with declining groundwater concentrations in the local 200 Area aquifer (<u>Appendix E</u> and NASA, 2019b).*
			MSVM Well	600-SGW-1		
F113	F113 in soil	Steadily increasing	Steadily decreasing	No groundwater	No direct	The increasing F113 trend in

F113	F113 in soil 140 and non- detect (<0.76 μ g/kg) at 10 - 12 ft, and non- detect (<0.79	Steadily increasing F113 in soil vapor with depth in ports located at 12.5 ft, 57.5 ft, and 117.5 ft. Concentrations	Steadily decreasing F113 in soil vapor ports over time for all historical sampling events 2010 - 2014. The	No groundwater sample available for this well.	No direct comparison performed.	The increasing F113 trend in soil vapor with port depth is coincident with proximity to the projected fractured bedrock depth at 160 ft) and projected groundwater
	µg/kg) for the	remain within the	shallow port at 12.5			aquifer depth at 170 ft.
	soil sample at		ft sampled for the			Although no groundwater

200 and 600 Area Vapor Intrusion Assessment Report

СОРС	SoilSoilAnalyticalSoil VaporData (DrillingSoil Vapor VerticalSampling EventCOPCPhase) andConcentrationTrends OverSoil PorosityTrends with DepthTimeframe 2010 –(Geotechnical2018 ^{#&} (µg/m³)Samples)Samples		Soil Vapor (Deep Port) EquivalentRelationship Between SoilConcentration in Equilibrium with GroundwaterPort) and Groundwater		Comments	
	72.5 - 75 ft. vadose zone soil porosity reported as 32% at 10 – 12 ft and 47% at 72.5 – 75 ft. [#]	same order of magnitude.	vapor intrusion assessment display continuation of this declining trend.			sample is available for this well, decreasing F113 soil vapor concentrations over time correspond to declining F113 concentrations in the local 600 Area groundwater aquifer (<u>Appendix E</u> and NASA, 2019b).*
TCE	TCE in soil 0.49 and non- detect (<0.41 μ g/kg) at 10 – 12 ft, and non- detect (<0.43 μ g/kg) for the soil sample at 72.5 – 75 ft. Vadose zone soil porosity reported as 32% at 10 – 12 ft and 47% at 72.5 – 75 ft.#	Steadily increasing TCE in soil vapor with depth in ports located at 12.5 ft, 57.5 ft, and 117.5 ft. Concentrations remain within the same order of magnitude.	Steadily decreasing TCE in all soil vapor ports over time for all historical sampling events 2010 - 2014. Shallow port at 12.5 ft sampled for VI assessment events continued the declining vapor concentration trend.	No groundwater sample available for this well.	No direct comparison performed.	Increasing TCE trend in soil vapor with port depth coincident with proximity to projected fractured bedrock (depth 160 ft) and projected groundwater aquifer (depth 170 ft). Although no groundwater sample is available for this well, decreasing TCE soil vapor concentrations over time are coincident with declines for TCE concentrations in local 600 Area groundwater aquifer (<u>Appendix E</u> and NASA, 2019b).*
	-	MSVM Well	600-SGW-5 (Twinned	with Monitoring W	ell 600-G-138)	
Freon 113	F113 in soil non-detect for the soil	Increasing F113 in soil vapor with port depth by two orders	Decreasing F113 in all soil vapor ports over time for	Latest equivalent soil vapor concentration in	Soil vapor concentration in the lower port	Increasing F113 in soil vapor with depth and significant increase in deep port at

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
	samples at 4 ft $(<0.71 \ \mu\text{g/kg})$ and 77 $(<0.65 \ \mu\text{g/kg})$ ft. Vadose zone soil porosity reported as 34% at $4-6$ ft. [#]	of magnitude. Significant increase in deep port at 137.5 ft.	historical sampling events 2010 – 2014.	equilibrium with groundwater from twinned well 600- G-138 is 280,800 μg/m ³ on 11/20/14.	(280,000 µg/m ³ on 10/9/14) is within the same order of magnitude and has excellent correlation to the equivalent soil vapor in equilibrium with groundwater.	137.5 ft located 7 ft above perched groundwater on top of bedrock. Irregular F113 soil vapor concentrations over time within the deep port are associated with irregularly fluctuating F113 concentrations in perched groundwater at 600 Area well 600-G-136 (<u>Appendix E</u> and NASA, 2019b).*
TCE	TCE in soil non-detect for soil samples at 4 ft (<0.39 μ g/kg) and 77 (<0.35 μ g/kg) ft. Vadose zone soil porosity reported as 34% at 4 – 6 ft. [#]	Increasing TCE in soil vapor with port depth by two orders of magnitude. Significant increase in deep port at 137.5 ft.	Decreasing TCE in upper 3 soil vapor ports over time for historical sampling events. Deep port relatively consistent at between 13,800 and 16,000 µg/m ³ .	Latest equivalent soil vapor concentration in equilibrium with groundwater from twinned well 600- G-138 is 26,260 µg/m ³ on 11/20/14.	Soil vapor concentration in the lower port (15,000 μ g/m ³ on 10/9/14) is within the same order of magnitude and has strong correlation to the equivalent soil vapor in equilibrium with groundwater.	Increasing TCE in soil vapor with depth and significant increase in deep port at 137.5 ft located 7 ft above perched groundwater on top of bedrock. Irregular TCE soil vapor concentrations over time within the deep port are associated with irregularly fluctuating TCE concentrations in perched groundwater at twinned 600 Area well 600-G-136 (Appendix E and NASA, 2019b).*

Notes: @ = Soil analytical data from NASA, 2004.

- # = Soil and soil vapor analytical data (August 2010) from NASA, 2010.
 & = Soil vapor data sets: March 2013 (NASA, 2013c); October 2014 (NASA, 2015c); and the VI assessment (August 2017 and February 2018).
 * = Vertical concentration profiles (<u>Appendix E</u>) and Periodic Monitoring Report Time-Concentration maps and table (Appendix E of NASA, 2019b).

Appendix A Pre-Sampling Building Inspection Forms

Complete This	<u>s Form For Each Buil</u>	ding Involved In Indoor Air Testing/Sampling ZOO 6850
	and plates	200 Mich 15:200
Preparer's Nan	ne: GEOFF	GILES Date/Time Prepared: 6/21/17 /2000 HRS
Preparer's Affi	liation: NAVALLO RE	Work Phone: 575-524-5352
Purpose of Inve	estigation: LOHPONE	VT OF 200 AREA AND LOD AREA MAD R
1. OCCUPANT:	INTRUSI	ON ASSESSMENT WORK PLAN
Interviewed:	es or No	
Last Name:	PINA ARPIN	First Name: CHRISTINA
Address: 12 d	500 NASA ROA:	
County: D	DÃA AUA	, s. 200, CTS UNICES, NM 83012
Work Phone: 5	75-524-5-195	Alternate Phone
Number of occup	pants at location:	
Age of occupant	s: 20-60	IFAIL
2 OWNED OD I		
Interviewed Y	N N Check if	same as occupant)
Last Name:		First Name:
Address:		
County:		
Work Phone:		Alternate Phone:
3. BUILDING CHA	RACTERISTICS:	
Type of Building	: (Circle appropriate res	ponse)
Residential	School Com	mercial/Multi-use
Industrial	Church Othe	r: WSTE TR 200 ARM
If the property is	residential, type? (Cire	cle appropriate response)
Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouse/Condos
Modular	Log Home	Other:
Note : JUM MCC THE COM	LULOUGH @ 575-	524-5287 (200 ALCA ENGINEER) PROVIDED ASSISTANCE WITH

1

If multiple units, how many?
If the property is commercial, type?
Business Type(s) LABORATOLY - PHOTOLAB MARLITINE SHOP TO HUMAN FAN
Does it include residences (i.e., multi-use)? Yes or No) If yes, how many?
Other characteristics:
Number of floors: Building Age: 53 V=0.5
Is the building insulated Yes or No How air tight? Tight / Average / Not Tight
4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns & qualitatively describe
Airflow between floors:
SINGLE FLOOR
Airflow near source:
FORCED REFRIDGERATED AIR (USING WATER-FILLED CONVERS)
Outdoor air infiltration:
THROUGH DOOR THRESHOLDS, CRACKS DEN DOORS ITT
Infiltration into air ducts:
DUCT LEAKAGE THROUGH AIR DUCTS IN ROOF
5. BASEMENT & CONSTRUCTION CHARACTERISTICS (Circle all that and b)
Above grade construction: wood frame concrete) stone brick (SOME METAL SITEET PANEL
Basement type: full crawlspace slab other:
Basement floor: concrete dirt stone other:
Basement floor: unsealed sealed
Covered with:
Concrete floor: unsealed sealed
Sealed with: CONCRETE SEALANT COVERED WITH 9 "X9" MINUT
Foundation walls: poured block stone other:
Foundation walls: unsealed sealed
Sealed with: CONCRETE SEALANT COVERED WITH FAINT
The basement is: wet damp dry moldy (N/K)

,	
-	
	2

The basement is:	finished	unfinished partially finished (NA)
Sump present? Yes	or No	Franki Mashed
Basement/Lowest	level depth below grad	de: foot
Water in sump? Y Identify potential drains).	Yes No Not Applica soil vapor entry points	s & approximate size (e.g., cracks, utility ports,
6. HEATING, VENTI Type of heating system	NG & AIR CONDITION em(s) used in this buildin	NING (Circle all that apply) ng: (circle all that apply – note primary)
Hot air circulation	Heat pump	Hot water baseboard
Space heaters	Steam radiation	Radiant floor
Electric baseboard Other:	Wood stove	Outdoor wood boiler
The primary type of	fuel used is:	
Natural gas	Fuel oil	Kerosene
Electric	Propane	Solar
Wood	Coal	
Domestic hot water ta Boiler/furnace located Other:	ank fueled by: <u>NAT</u>	Outdoors Main Floor (NORTH HIGHBAY)
Air conditioning: Are there air distribu	Central air Window tion ducts present? Yes	or No
Describe the supply & there is a cold air retu diagram. HVAC SISTEM	Heat Pu cold air return ductwor rn & tightness of duct jo RUNS 24 e 7	None rk & its condition where visible, including whether pints. Indicate the locations on the floor plan DUE TO LABORATORY ENVIRONMENT
A NUTE NOON ZO	US WIS SULT DUE	CTHE PONCED-IN YARD THAT WAS THE LOCATION FOR

THE CLERN ROOM TANKS IN THE 1960'S.

7. OCCUPANCY Is basement/lowest lever occupied? Full-time Occasionally Seldom Almost never Level General use of each floor (e.g., family room, bedroom, lowedry, marked by the second	
Basement: N/A	
1st Floor: PHOTOGRAPHY LAB, MACHINE, SHOPE FOR DUD - 1114-PHOT - PARE AND	
2nd Floor: NA	LITY ROOMS.
3rd Floor: N/A	
4th Floor: N/A	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY	
Is there an attached garage? Yes or No	
Does the garage have a separate heating unit? Vec. No or Net Arelia 11	
Are petroleum-powered machines or vehicles stored in the server 2 (
Yes or No. Please specify:	
Has the building ever had a fire? Yes or No When?	
Is a kerosene or unvented gas snace heater present? Ves or No	
Where & Type?	
Is there a workshop or hobby/craft area? Yesor No	
Where & Type? MACHINE SHOP WITH NAILY ATHE LUBRICATION	
Is there smoking in the building? Yes or No? Frequency?	
Have cleaning products been used recently? Yes or No	
When and What Type? JANITOR CLEARIS THILL DIALE AS PODULED (100 11/1 Am	
Have cosmetic products been used recently? Yes or No	OHEILATIONS,
When and What Type? LOSHETIC PLODENTS USED DALLY BY DORE WE	
Has painting/staining been done in the last 6 months? Yes or No	
Where and When?	
Is there new carpet, drapes or other textiles? Yes or No	
Where and When?	
Have air fresheners been used recently? (Yes)or No	
When and What Type? FEBREEZE IN RATHRANS	
Is there a kitchen exhaust fan? (Yes or No	

If yes, where vented? Southan FUME HODS VENTED ON ADJACENT WALL TO OUTSIDE
Is there a bathroom exhaust fan? Yes or No
If yes, where vented? ADJACOUT WALL TO ROOF AREA.
Is there a clothes dryer? Yes or No If yes, is it vented outside? (Yes) or No (VALVE SHOP AREA)
Has there been a pesticide application? Yes or No
When and Type? ON A QUARTERLY SLITEDULE - POTENTIALY TODAY (6/21/17).
Are there odors in the building? Yes or No
If yes, please describe: <u>BUILDING MET OF CHEMISTRY LAB - EACH ROOM HAS A DIFFICIENT ODOR</u> LEATED TO SUPPLIES. Do any of the building occupants use solvents or volatile chemicals at work ? Yes or No (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide applicator, cosmetologist, carpet installer)
If yes, what type of solvents are used? <u>CHEMICAL MASUFACTURISE, LABORATORY SOLVENTS, OILS E</u> LUBRICANTS IN If yes, are their clothes washed at work? (Yes) or No
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle one) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service No
Unknown
Is there a radon mitigation system for the building/structure? Yes or No
Date of Installation:
Is the system active or passive? Active or Passive
9. WATER & SEWAGE
Water Supply: Public water Drilled well Driven well Dug well
Other: WATER SUPPLIED FROM DRIVED WELLS LOLATED SMILES TO THE LIEST
Sewage Disposal: Public sewer Septic tank Leach field Dry well
Other: CITY OF LAS CRUCES PUBLIC SANITARY SYSTEM
10. RELOCATION INFORMATION (for oil spill residential emergence)
a. Provide reasons why relocation is recommended:
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Yes or No

ć –

d. Relocation package provided & explained to residents? Yes or No

11. FLOOR PLANS

Draw a plan view sketch of the basement & first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

First Floor:	SEE	ATTACHED	SHEET	WEST	BUILDING	200)
					J L	

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc), outdoor air sampling location(s) & PID meter readings.

Also indicate compass direction, wind direction & speed during sampling, the locations of the well & septic system, if applicable, & a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Preliminary walk-through conducted on 6/21/2017 P. Egan and G. Giles, Navarro

Make & Model of field instrument used: MSA Altair 5X PID

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (ppm)	Photo** Y / N
Photo Lab	Glue Paper		In Use	Heat-activated Adhesive	0	Y
Rm 102	Flammables Cabinet	$\sim 3 \mathrm{ft}^3$	In Use	Various chemicals	1	
D200-1A-00	Fire Extinguisher		Unopened	Possible fluorocarbon propelling agent	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Hand Sanitizer	2 liters	In Use	Ethyl Alcohol	0	
Photo Lab Room	Fire Extinguisher		Ready to Use	Possible fluorocarbon propelling agent	0	Y
203	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Gator Board		In Use	Adhesive Backing	0	
Photo Lab Room 204	Adhesive Tape	50' roll	Open & Unopened	Adhesive Backing	0	Y
(Storage (Shelves)	Dry Erase Markers		Unopened	Solvent (ethanol ?)	0	
B200-IA-04	Kodak Lens Cleaner		Unopened		0	
Room 202 B200-IA-05	Sure Coat	5 gal buckets	Unopened & Used	Ероху	0	Y
	Freon	Steel canisters	Unopened	Freon	0	
Room 201	FilterMate Vapor Extractor	machine	In Use	?	0	Y
	Hydraulic Drill Press	machine	In Use	Lubes/Oils	0	
Room 111	Cleaners	Open Vats	In Use	Oakite, oxidizers, sulfuric acids	0	Y
Room 201 B200-IA-08	drain to sanitary sewer (outside room 111)	Utility Sink	In Use	?	0	Y
B200-IA-07	Flammable Cabinets #2 & #3	1 large, 1 small	In Use	Alcohols, chlorinated solvents, Rustoleum spray paints, WD-40	0	
	Flammable Cabinet #1	small	In Use	Paints, solvents, lubes	0	

Room 216 Assembly Room	Krytox		In Use	?	0	Y
Room 206 (CSS HiBay) B200-IA-01	Several products		In Use	Oakite, IPA, Acids, Sat Accum Area, full of stuff!	0	Y
Room 206B Workbench Area B200-IA-02	Marker Pens Oils used for assembly	small	In Use	?	0	Y
Room 205 Utility Room	Active Drain to Sewer		In Use	Citric acid anhydrous	0	Y
B200-IA-03	Bags of water softening pellets					
Room 204	Various		In Use	Full of petrochemicals, acids, corrosives, vacuum pump oils.	0	Y

*Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) **Photographs of the front & back of the product containers can replace the hand written list of chemical ingredients. However, the photographs must be of good quality & ingredient labels must be legible.

Complete This Form For Each Building Involved In Indoor Air Testing/Sampling 600 AREA B.6	37
Preparer's Name: GEOFF GIVES Date/Time Prepared: 6/26/17 1400 HLS	
Preparer's Affiliation: NAVARDO RESEARCH Work Phone: 575-524 -5352	
Purpose of Investigation: COMPONENT OF 200 AREA AND 600 AREA VAPOR	
1. OCCUPANT: Interviewed: Yes or No	
Last Name: DEL FERRARO First Name: CRAIG	
Address: 12600 NASA ROAD, 3.637, LAS CRUES, NM 88012	
County: DONA ANA	
Work Phone: 575-524-5399 Alternate Phone:	
Number of occupants at location: $\simeq 8$	
Age of occupants: 20-60 YEARS	
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y/N	
Last Name: First Name:	
Address:	
County:	
Work Phone: Alternate Phone:	
3. BUILDING CHARACTERISTICS:	
Type of Building: (Circle appropriate response)	
Residential School Commercial/Multi-use	
Industrial Church Other: WSTF B.637 ALEA (1200 SQFF BUILDING)	
If the property is residential, type? (Circle appropriate response)	
Ranch 2-Family 3-Family	
Raised Ranch Split Level Colonial	
Cape Cod Contemporary Mobile Home	
Duplex Apartment House Townhouse/Condos	
Modular Log Home Other:	

	If multiple units, how many?
	If the property is commercial, type?
	Business Type(s) GROUND WARER ASSESSMENT BUILDING -SAMPLING EDUIPHENT
	Does it include residences (i.e., multi-use)? Yes on No If yes, how many?
	Other characteristics:
	Number of floors: Building Age: ZG /EALS
	Is the building insulated? Yes or No How air tight? Tight / Average / Not Tight
4.	AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns & qualitatively describe:
	Airflow near source:
	FORTED DUR THE SUICE STATE RELEASE
	Outdoor air infiltration
	THROUGH Done THRESHOLDS OPEN DORES (1)- 1000
	Infiltration into air ducts:
	VIA SWAMP (DY FR) STATE AL SPACE AND AN INTER STATE
	PASEMENT & CONCEPTION OF THE AND ON NOMIN SIDE OF 8,637
э.	BASEMENT & CONSTRUCTION CHARACTERISTICS (Circle all that apply)
	Above grade construction: wood frame concrete stone brick Collubated METAL SIDING
	Basement type: full crawlspace slab other:
	Basement floor: concrete dirt stone other:
	Basement floor: unsealed sealed
	Covered with:
	Concrete floor: unsealed sealed
	Sealed with: LONLANT SEALANT
	Foundation walls: poured block stone other: Poures concrete FOOTING
	Foundation walls: unsealed sealed COLRUGATED METAL SIJING
	Sealed with: DAINT
	The basement is: wet damp dry moldy N/A

The basement is:	finished	unfinished	partially finished	(N/A)
Sump present? Yes	or No			\bigcirc
Basement/Lowest	level depth belo	ow grade:		feet
Water in sump? ` Identify potential drains).	Yes No Not A soil vapor entry	Applicable 7 points & approxim a	ate size (e.g., cracks,	utility ports,
6. HEATING, VENTI Type of heating syst	NG & AIR CONI tem(s) used in this	DITIONING (Circle al s building: (circle all th	ll that apply) 1at apply – note prima	ry)
Hot air circulation	Heat pump	Hot	water baseboard	
Space heaters	Steam radiat	tion Radi	ant floor	
Electric baseboard	Wood stove	Outd		
Other:				
The primary type of	fuel used is:			
Natural gas	Fuel oil	Kerosene		
Electric	Propane	Solar		
Wood	Coal			
Domestic hot water	tank fueled by:	N/A		
Boiler/furnace locate	ed in: Baseme	ent Outdoors	Main Floor	
Other:				
Air conditioning:	Central air	Window units Open w	windows	
Are there air distrib	ution ducts presen	nt? Yesor No		
		Heat Pump None		
Describe the supply of the supply of there is a cold air ret diagram.	& cold air return arrn & tightness o	ductwork & its condit of duct joints. Indicate	ion where visible, inclu the locations on the flo	uding whether oor plan
SWAMP COOLER	- USUALY S	SHUT DOWN AT	WEEKEND WH	EN BULDING

IS UNOLLUPIED

7. OCCUPANCY

	Is basement/lowest lever occupied? Full-time Occasionally Seldom Almost never
	Level General use of each floor (e.g., family room, bedroom, laundry, workshop, storage)
	Basement: N/A
	IST FLOOR: SAMILE EQUIPMENT STOLAGE AND SAMPLE MANAGEMENT IN SINGLE ROOM WALEHOUSE,
	2nd Floor: N/A
	3rd Floor: N/A
	4th Floor: N/A
8.	FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY
	Is there an attached garage? Yes or No NEARBY (10 FT) MOREM ZUILDING (T-637A) ON SOUTHWEST CORNER, CONTAINS GENERATORS, STEAM CLEANERS, FLAMMABLES - SILICONE SPAN, SOUTHWEST CORNER,
	Does the garage have a separate heating unit? Yes, No or Not Applicable
	Are petroleum-powered machines or vehicles stored in the garage? (e.g., lawnmower, ATV, car)
	Yes or No. Please specify:
	Has the building ever had a fire? Yes of No When?
	Is a kerosene or unvented gas space heater present? Yes or No
	Where & Type?
	Is there a workshop or hobby/craft area? Yes or No
	Where & Type? WORKBENCH WITH TOOLS & LUBALLANTS IN SOUTHNEST COLNER OF BUILDING.
	Is there smoking in the building? Yes on N? Frequency?
	Have cleaning products been used recently? Yes or No
	When and What Type? TELHNICIANS CLEAN WOLF SULFACES W/CHEORINATED WIRES WHEN LEOUINED.
	Have cosmetic products been used recently? Yes or No
	When and What Type?
	Has painting/staining been done in the last 6 months? Yes or No
	Where and When?
	Is there new carpet, drapes or other textiles? Yes or No
	Where and When?
	Have air fresheners been used recently? Yes or No
	When and What Type?
	Is there a kitchen exhaust fan? Yes or No

Is there a bathroom exhaust fan? Yes or No
If yes, where vented?
Is there a clothes dryer? Yes or No If yes, is it vented outside? Yes or No
Has there been a pesticide application? Yes or No
When and Type? WITHIN LAST MONTH FOR INSELTS & for ENTS,
Are there odors in the building? Yes or No
If yes, please describe: <u>CHEMICAL MEEDIATIVES FOR WATER SAMPLES</u> (DILUTE ALD: Do any of the building occupants use solvents or volatile chemicals at work ? Yes or No (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide applicator, cosmetologist, carpet installer)
If yes, what type of solvents are used? LABORATORY MESCHATIVES, CLEANING FOR OS-
If yes, are their clothes washed at work? Yes or No.
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle one) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Unknown
Is there a radon mitigation system for the building/structure? Yes or No
Date of Installation:
Is the system active or passive? Active or Passive
9. WATER & SEWAGE
Water Supply: Public water Drilled well Driven well Dug well
Other: WATER SUPPLIED FROM DRIVED WELLS LOCATED 4 MILES TO THE WEST
Sewage Disposal: Public sewer Septic tank Leach field Dry well
Other:
10. RELOCATION INFORMATION (for oil spill residential emergency)
a. Provide reasons why relocation is recommended:

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Yes or No

d. Relocation package provided & explained to residents? Yes or No

11. FLOOR PLANS

Draw a plan view sketch of the basement & first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

N/A Basement:

'irst Floor:	SEE	ATTACHED	SHEET	(BUILDING 03 . 1
	_			
	-			
	_			
				╶┼┟╏╎╎╏╎╎╎╎╎╎╎╎╎╎╎

First Floor: SEE ATTACHED SHEET (BUILDING 637)

ond Floor:	N/A				
			++++	+++++	
++++				+++++	
			+++++++++++++++++++++++++++++++++++++++	+	
			+++++	+++++	
				-	
++++			+++++		
+	┼┼┼┼┼			+ $+$ $+$ $+$ $+$ $+$ $+$	
		++++			┼┼┼┼┼┼
	+ + + + +	+ + + + +			
			++++-	+ + + + + + + + + + + + + + + + + + +	
			+ + + + + +		

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc), outdoor air sampling location(s) & PID meter readings.

Also indicate compass direction, wind direction & speed during sampling, the locations of the well & septic system, if applicable, & a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Preliminary walk-through conducted on 6/26/2017 G. Giles, Navarro

Make & Model of field instrument used: MSA Altair 5X PID

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (ppm)	Photo** Y / N
Building 637	Sample Bottles (with Preservative)	40 mL – 1 Liter	Unopened	Dilute hydrochloric acid, sulfuric acid, sodium hydrozide	0	Y
	Fire Extinguisher	0.5 cuft	Unopened	Possible fluorocarbon propelling agent	0	
	Hand Sanitizer	1 Liter	In Use	Ethyl Alcohol	0	
Building T-637A	Flammables Cabinet	0.25L – 1 Liter	In Use	Silicone spray, isopropyl alcohol, gasoline, Rustoleum products	0	Y
	Corrosives Cabinet	14 oz	In Use	Sodium hydroxide	0	
	Generators	8 cuft	In Use	Gasoline and oil	0	
	Steam Cleaners	8 cuft	In Use	Gasoline and oil	0	
	Oils/Lubricants	1 Liter	Unopened	Various motor oils and lubricants (WD40)	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
Building T-637B	Groundwater Sampling Equipment Electronics	50' – 500' reels	In Use		0	Y
Compressed Nitrogen Storage Area Adjacent to B. 637	Compressed Gas Cylinders	1.5 cuft	In Use	Nitrogen	0	N

List specific products found in the residence that have the potential to affect indoor air quality.

*Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) **Photographs of the front & back of the product containers can replace the hand written list of chemical ingredients. However, the photographs must be of good quality & ingredient labels must be legible.

Appendix B Pre-Sampling Building Walkthrough Photographs

Photograph 2 Building 200, Room 102 (Photographic Laboratory) – 06/28/2017

Photograph 4 Building 200, Room 108 (Photographic Laboratory Office) – 06/28/2017

Photograph 6

Building 200, Room 203 (Photographic Laboratory) – 06/28/2017

Photograph 8 Building 200, Room 201 (Technical Facility Store Room) – 06/28/2017

Photograph 10

Building 200, Room 201 (Machine Shop) – 06/28/2017

 Photograph 12
 Building 200, Room 206 (Technical Facility Chemical Storage) – 06/28/2017

Photograph 14 Building 200, Room 206 (Technical Facility Chemical Storage) – 06/28/2017

Photograph 16

Building 200, Room 205 (Equipment Room) - 06/28/2017

Photograph 18 Building 200, Room 204 (Equipment Room Storage) – 06/28/2017

Photograph 20 Building 637 Northwest Corner (Groundwater Assessment Building) – 06/28/2017

Photograph 22 Building 637 Southeast Corner (Groundwater Assessment Building) – 06/28/2017

Photograph 24 Building T-637A (Morgan Building for Flammable Storage) – 06/28/2017

Photograph 26 Building T-637B (Morgan Building for Miscellaneous Equipment Storage) – 06/28/2017

Photograph 28 Building 200, Room 102 (6L Indoor Air Sample) – 02/25/2018

Appendix C Quality Assurance Reports National Aeronautics and Space Administration

Quality Assurance Report for White Sands Test Facility 200 and 600 Area Vapor Intrusion Assessment Report Soils Analytical Data

April 2023

NM 8800019434

Report Submitted: Report Prepared by: Will Teas Navarro Research and Engineering, Inc.

1.0 Introduction

The 200 and 600 Area Vapor Intrusion Assessment Work Plan requires the preparation of an investigation report that includes soil analytical data reported. The Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which soil samples were collected in April and October 2017.
- The quantity and type of quality control samples collected or prepared in April and October 2017.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of duplicate samples and their relative percent differences (RPD)
- A summary table of blank sample detections.

2.0 Data Quality

2.1 Notable Anomalies

Soil analytical data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report were used to perform a cumulative risk screening assessment. The soil data includes equipment blanks, field blanks, duplicates, trip blanks, in accordance with the approved work plan.

3.0 Data Tables

<u>Table 1</u> summarizes the soil sample events in September 2009, November 2009, December 2009, January 2010, June 2014, and July 2014. This report is based on data quality issues related to the sample events listed in Table 1.

<u>Table 2</u> through <u>Table 5</u> contain information related to the sample events identified in <u>Table 1</u>. As specified by the Vapor Intrusion Assessment Work Plan, Section 5.4, specific quality control samples are utilized to assess the quality of analytical data. <u>Table 2</u> presents the quantity of quality control samples collected for each analytical method. <u>Table 3</u> compares the quality control sample percentages collected to the requirements in the respective investigation work plan. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in <u>Table 4</u>. <u>Table 5</u> presents the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. <u>Table 6</u> provides the RPD between duplicate samples. Samples associated with qualified data are identified by bold text in <u>Table 6</u>. <u>Table 7</u> provides all detections found in trip blank and field blank samples. All data affected by blank sample detections are appropriately qualified.

4.0 Usability Assessment

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. This QAR qualifies as the completed assessment for the soil data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report in addition to the August 2017 and February 2018 sample events performed for the 200 and 600 Area Vapor Intrusion Assessment Report. No data was rejected (R) based on established quality review protocols.

Location Sample ID	Sample Motriv	Event Date
200-SB-5 (8 ft bgs)	Soil	6/15/2014
200-SB-6 (8 ft bgs)	Soil	6/14/2014
200-SB-7 (8 ft bgs)	Soil	6/11/2014
200-SB-7 (18 ft bgs)	Soil	6/11/2014
200-SB-7 (38 ft bgs)	Soil	6/12/2014
200-SB-8 (8 ft bgs)	Soil	7/13/2014
200-SB-8 (28 ft bgs)	Soil	6/13/2014
200-SB-8 (43 ft bgs)	Soil	6/13/2014
200-SB-9 (8 ft bgs)	Soil	6/30/2014
200-SB-10 (16 ft bgs)	Soil	6/28/2014
200-SB-10 (26 ft bgs)	Soil	6/28/2014
200-SB-10 (36 ft bgs)	Soil	6/28/2014
200-SB-11 (8 ft bgs)	Soil	7/1/2014
200-SB-11 (28 ft bgs)	Soil	7/1/2014
200-SB-13 (8 ft bgs)	Soil	6/16/2014
200-SB-13 (28 ft bgs)	Soil	6/16/2014
600-SB-01 (6 ft bgs)	Soil	11/13/2009
600-SB-01 (72 ft bgs)	Soil	11/16/2009
600-SB-02 (3 ft bgs)	Soil	1/26/2010
600-SB-02 (8 ft bgs)	Soil	1/26/2010
600-SB-02 (75 ft bgs)	Soil	1/27/2010
600-SB-02A (3 ft bgs)	Soil	11/19/2009
600-SB-02A (8 ft bgs)	Soil	11/19/2009
600-SB-03 (6 ft bgs)	Soil	11/19/2009
600-SB-03 (10 ft bgs)	Soil	11/19/2009
600-SB-03 (75 ft bgs)	Soil	1/13/2010
600-SB-04 (6 ft bgs)	Soil	11/20/2009
600-SB-04 (10 ft bgs)	Soil	11/20/2009
600-SB-04 (75 ft bgs)	Soil	1/20/2010
600-SB-05 (4 ft bgs)	Soil	11/23/2009
600-SB-05 (77 ft bgs)	Soil	12/17/2009
600-SB-05 (144 ft bgs)	Soil	12/21/2009
600-SB-06 (4 ft bgs)	Soil	11/23/2009
600-SB-06 (75 ft bgs)	Soil	1/6/2010
600-SB-07 (6 ft bgs)	Soil	11/20/2009
600-SB-07 (78 ft bgs)	Soil	12/2/2009
600-SB-07 (158 ft bgs)	Soil	12/2/2009
600-SB-08 (6 ft bgs)	Soil	11/20/2009
600-SB-08 (85 ft bgs)	Soil	12/10/2009
600-SB-08 (150 ft bgs)	Soil	12/14/2009
600-SB-10 (01 ft bgs)	Soil	9/18/2009
600-SB-10 (10 ft bgs)	Soil	9/21/2009
600-SB-10 (20 ft bgs)	Soil	9/22/2009

Table 1 – Soil Sample Events

Matrix	Method	Total Samples	Non-QA Samples	Equipment Blanks	Field Blanks	Duplicates	Trip Blanks
Soil	353.2M	44	23	16		5	
Soil	607M	72	41	25		6	
Soil	6010	3	3				
Soil	6010B	46	23	17	1	5	
Soil	6010C	26	16	8		2	
Soil	6011C		0				
Soil	6020A		0				
Soil	6056A		0				
Soil	6850	47	35	8		4	
Soil	7196a	10	1	8		1	
Soil	7199	37	21	13		3	
Soil	8260B	65	26	20	1	5	13
Soil	8260C	34	16	8		2	8
Soil	8270C	44	23	16		5	
Soil	8270D	25	15	8		2	
Soil	8290A	26	16	8		2	
Total		479	259	155	2	42	21

 Table 2 Quantity of Quality Control Samples

Table 3 – Quality Control Sample Percentages (Soil)

Method	Quality Control Requirement	Sample Quantity	QC Quantity	QC %
	Equipment Blanks	60	16	27
252 214	Field Blanks	44	0	0
555.2IVI	Duplicates	49	5	10
	Trip Blanks	44	0	0
	Equipment Blanks	97	25	26
607M	Field Blanks	72	0	0
007141	Duplicates	78	6	8
	Trip Blanks	72	0	0
	Equipment Blanks	3	0	0
6010	Field Blanks	3	0	0
0010	Duplicates	3	0	0
	Trip Blanks	3	0	0
	Equipment Blanks	63	17	27
6010B	Field Blanks	47	1	2
0010D	Duplicates	51	5	10
	Trip Blanks	46	0	0
	Equipment Blanks	34	8	24
6010C	Field Blanks	26	0	0
0010C	Duplicates	28	2	7
	Trip Blanks	26	0	0
	Equipment Blanks	55	8	15
	Field Blanks	47	0	0
6850	Duplicates	51	4	8
	Trip Blanks	47	0	0
	Equipment Blanks	18	8	44
7196a	Field Blanks	10	0	0
/190a	Duplicates	11	1	9
	Trip Blanks	10	0	0

Method	Quality Control Requirement	Sample Quantity	QC Quantity	QC %
	Equipment Blanks	50	13	26
7199	Field Blanks	37	0	0
	Duplicates	40	3	8
	Trip Blanks	37	0	0
	Equipment Blanks	85	20	24
8260D	Field Blanks	66	1	2
8200B	Duplicates	70	5	7
	Trip Blanks	78	13	17
	Equipment Blanks	42	8	19
8260C	Field Blanks	34	0	0
8200C	Duplicates	36	2	6
	Trip Blanks	42	8	19
	Equipment Blanks	60	16	27
8270C	Field Blanks	44	0	0
8270C	Duplicates	49	5	10
	Trip Blanks	44	0	0
	Equipment Blanks	33	8	24
8270D	Field Blanks	25	0	0
8270D	Duplicates	27	2	7
	Trip Blanks	25	0	0
	Equipment Blanks	34	8	24
82000	Field Blanks	26	0	0
0230D	Duplicates	28	2	7
	Trip Blanks	26	0	0

Table 4 – Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
Α	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
Т	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

СОРС	FB	EB	TB	Q	QD	SP	R	*	Α	AD	G	RB	Т	D	i	J	TIC
2-Butanone (Methyl																	
ethyl ketone)												2				19	
2-Propanol		1														2	
Acetone		9	1									13				16	
Antimony						1						18				19	
Benzo(a)anthracene																	
Benzyl Alcohol												12				14	
Bis(2- ethylhexyl)phthalate									2								
Boron																3	
Cadmium																38	
Carbon disulfide						1										2	
Chromium (Total)					2	1											
Chrysene																1	
Cobalt						1										18	
Freon-113																	
Manganese					2	3											
Mercury												2				22	
Methyl isobutyl ketone																1	
Molybdenum									8			3				31	
Nitrate+Nitrite as																	
Nitrogen					5							3				27	
Tetrahydrofuran												8				11	
Thallium																1	
Tin, Total																19	
Toluene									3							10	
Trichloroethylene																4	
Zinc					2												

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records (Soil)

Table 6 – Duplicate Sample Relative Percent Difference

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-SB-5-8	6/15/2014	Antimony	10.5		J RB
200-SB-5-8	6/15/2014	Cadmium	31.6		J
200-SB-5-8	6/15/2014	Chromium	8.0		
200-SB-5-8	6/15/2014	Cobalt	1.3		
200-SB-5-8	6/15/2014	Manganese	10.3		
200-SB-5-8	6/15/2014	Molybdenum	11.8		J
200-SB-5-8	6/15/2014	Nitrate+Nitrite as Nitrogen	13.3		J
200-SB-5-8	6/15/2014	Zinc	0.3		
200-SB-8-8	7/13/2014	Antimony	18.2		J RB
200-SB-8-8	7/13/2014	Cadmium	18.2		J
200-SB-8-8	7/13/2014	Chromium	5.6		
200-SB-8-8	7/13/2014	Cobalt	20.8		
200-SB-8-8	7/13/2014	Manganese	8.8		
200-SB-8-8	7/13/2014	Molybdenum	24.0		J
200-SB-8-8	7/13/2014	Nitrate+Nitrite as Nitrogen	0.0		J
200-SB-8-8	7/13/2014	Zinc	14.7		
600-SB-01-006	11/13/2009	Freon 113	24.0		

NASA White Sands Test Facility

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
600-SB-01-006	11/13/2009	2-Butanone (MEK)	33.3		J
600-SB-01-006	11/13/2009	Acetone	27.6		
600-SB-01-006	11/13/2009	Benz(a)anthracene	NA*		
600-SB-01-006	11/13/2009	Bis(2-ethylhexyl) Phthalate	17.6		Α
600-SB-01-006	11/13/2009	Cadmium	2.8		J
600-SB-01-006	11/13/2009	Carbon Disulfide	NA*		J
600-SB-01-006	11/13/2009	Chromium	3.6		
600-SB-01-006	11/13/2009	Chrysene	NA*		
600-SB-01-006	11/13/2009	Cobalt	16.0		J
600-SB-01-006	11/13/2009	Manganese	17.0		
600-SB-01-006	11/13/2009	Mercury	11.1		J
600-SB-01-006	11/13/2009	Nitrate+Nitrite as Nitrogen	15.4		J
600-SB-01-006	11/13/2009	Thallium	70.0		
600-SB-01-006	11/13/2009	Tin, Total	22.2		J
600-SB-01-006	11/13/2009	Trichloroethene (TCE)	4.2		J
600-SB-01-006	11/13/2009	Zinc	11.6		
600-SB-02A-003	11/19/2009	2-Butanone (MEK)	24.0		J
600-SB-02A-003	11/19/2009	Benzyl Alcohol	32.7		J RB
600-SB-02A-003	11/19/2009	Cadmium	0.0	25	J
600-SB-02A-003	11/19/2009	Chromium	25.7	25	QD
600-SB-02A-003	11/19/2009	Cobalt	34.5	25	
600-SB-02A-003	11/19/2009	Manganese	13.3	25	
600-SB-02A-003	11/19/2009	Mercury	18.2	25	J
600-SB-02A-003	11/19/2009	Molybdenum	37.0	25	Α
600-SB-02A-003	11/19/2009	Nitrate+Nitrite as Nitrogen	93.2	25	QD
600-SB-02A-003	11/19/2009	Thallium	56.0	25	J
600-SB-02A-003	11/19/2009	Zinc	35.4	25	QD
600-SB-05-004	11/23/2009	2-Butanone (MEK)	11.6	25	J
600-SB-05-004	11/23/2009	2-Propanol	NA*	25	J EB
600-SB-05-004	11/23/2009	Acetone	14.1	25	J RB
600-SB-05-004	11/23/2009	Benzyl Alcohol	33.3	25	J RB
600-SB-05-004	11/23/2009	Cadmium	66.7	25	J
600-SB-05-004	11/23/2009	Chromium	17.1	25	
600-SB-05-004	11/23/2009	Cobalt	27.5	25	J
600-SB-05-004	11/23/2009	Manganese	50.3	25	QD
600-SB-05-004	11/23/2009	Mercury	28.6	25	J
600-SB-05-004	11/23/2009	Nitrate+Nitrite as Nitrogen	85.9	25	QD
600-SB-05-004	11/23/2009	Tetrahydrofuran	NA*	25	
600-SB-05-004	11/23/2009	Thallium	18.5	25	
600-SB-05-004	11/23/2009	Tin	0.0	25	J
600-SB-05-004	11/23/2009	Zinc	20.8	25	

¹RPD could not be calculated due to one of the duplicate samples being non-detect

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
200-SB-11-8	7/1/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	9.40E-01	μg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Chromium, Total	2.00E-03	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Manganese	3.00E-03	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	3.00E-02	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Zinc	8.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Chromium, Total	2.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Manganese	5.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Mercury	1.00E-04	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.90E-02	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Zinc	6.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Acetone	2.60E+00	μg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1 30F+00	ug/I	IFR
200-SB-5-8	6/15/2014	Equipment Blank	Chromium Total	3.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Manganese	6.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Molybdenum	2 00E-03	mg/L	J EB
200 SD 5 0	(15/2014		Nitrate+Nitrite as	2.005.02	/1	
200-SB-5-8	6/15/2014	Equipment Blank	Nitrogen	2.90E-02	mg/L	JEB
200-SB-5-8	6/15/2014	Equipment Blank	Zinc	6.00E-03	mg/L	JEB
200-SB-6-8	6/14/2014	Equipment Blank	Acetone	2.00E+00	μg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Antimony Bis(2-ethylhexyl)	3.00E-04	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Phthalate	1.50E+01	μg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Chromium, Total	1.10E-02	mg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Manganese	1.70E-02	mg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Molybdenum	5.00E-03	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.40E-02	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Zinc	1.40E-02	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Acetone	1.60E+00	μg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Antimony	2.00E-04	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Carbon Disulfide	6.80E-01	μg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Manganese	6.00E-03	mg/L	J RB EB
200-SB-7-8	6/11/2014	Equipment Blank	Molybdenum	2.00E-03	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	4.30E-02	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Zinc	9.00E-03	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Acetone	1.50E+00	μg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Antimony	2.00E-04	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.10E+01	μg/L	EB
200-SB-8-8	7/13/2014	Equipment Blank	Chromium, Total	1.00E-02	mg/L	EB
200-SB-8-8	7/13/2014	Equipment Blank	Manganese	1.70E-02	mg/L	EB

Table 7 – Blank Sample Detections

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
200-SB-8-8	7/13/2014	Equipment Blank	Molybdenum	7.00E-03	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.10E-02	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Zinc	1.00E-02	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Acetone	1.60E+00	μg/L	J RB EB A
200-SB-9-8	6/30/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.80E+00	μg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Manganese	7.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Molybdenum	2.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.90E-02	mg/L	J EB
600-SB-01-072	11/16/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.40E+00	μg/L	J RB EB
600-SB-01-072	11/16/2009	Equipment Blank	Thallium	5.00E-04	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.00E+00	μg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Boron	6.00E-02	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-02-075	1/27/2010	Equipment Blank	Bis(2-ethylhexyl) Phthalate	6.70E-01	μg/L	J
600-SB-02-075	1/27/2010	Equipment Blank	Chromium, Total	5.00E-03	mg/L	J EB
600-SB-02-075	1/27/2010	Equipment Blank	Manganese	1.60E-02	mg/L	EB
600-SB-02-075	1/27/2010	Equipment Blank	Zinc	1.00E-02	mg/L	J EB
600-SB-02A-003	11/19/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Acetone	3.40E+00	μg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Manganese	5.00E-03	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.00E-02	mg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Acetone	1.70E+00	μg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Manganese	1.00E-03	mg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Nitrate+Nitrite as Nitrogen	7.00E-03	mg/L	J RB EB
600-SB-03-075	1/13/2010	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Acetone	2.40E+00	μg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as	9.00E-03	mg/L	LEB
600-SB-04-075	1/20/2010	Equipment Blank	Acetone	1 90E+00	μσ/L	I TR ER
600-SB-05-004	11/23/2009	Equipment Blank	2-Propanol	1.90E+00	<u>μ</u> σ/L	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.10E+00	μσ/Γ	JEB
600-SB-05-004	11/23/2009	Equipment Blank	Manganese	4 00F-03	<u>µg/L</u>	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Molyhdenum	4 00E-03	mg/L	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Thallium	1.30E-03	mg/L	J EB

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-SB-05-077	12/17/2009	Equipment Blank	Acetone	2.80E+00	μg/L	J TB EB
600-SB-06-075	1/6/2010	Equipment Blank	Acetone	2.90E+00	μg/L	J TB EB
600-SB-07-006	11/20/2009	Equipment Blank	Acetone	2.80E+00	μg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.50E-01	μg/L	J RB EB
600-SB-07-006	11/20/2009	Equipment Blank	Manganese	3.00E-03	mg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	3.00E-03	mg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	2-Propanol	3.60E+01	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Acetone	5.50E+00	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.30E-01	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Manganese	7.00E-03	mg/L	J RB EB
600-SB-07-078	12/2/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.40E-02	mg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Zinc	5.00E-03	mg/L	J EB
600-SB-07-158	12/2/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.00E-01	μg/L	J EB
600-SB-07-158	12/2/2009	Equipment Blank	Manganese	3.00E-03	mg/L	J RB EB
600-SB-07-158	12/2/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.70E-02	mg/L	J RB EB
600-SB-07-158	12/2/2009	Equipment Blank	Zinc	3.00E-03	mg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Acetone	3.30E+00	μg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	4.30E-01	μg/L	J EB RB
600-SB-08-006	11/20/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	5.00E-03	mg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	4.60E+00	μg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.80E-02	mg/L	J RB EB
600-SB-08-085	12/10/2009	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Acetone	2.20E+00	μg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.30E+00	μg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Manganese	2.20E-02	mg/L	EB
600-SB-10-001	9/18/2009	Equipment Blank	Zinc	1.30E-02	mg/L	J RB EB
600-SB-10-010	9/21/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.60E+00	μg/L	J EB
600-SB-10-010	9/21/2009	Equipment Blank	Manganese	5.00E-03	mg/L	J EB FB
600-SB-10-010	9/21/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	6.00E-03	mg/L	J EB
600-SB-10-010	9/21/2009	Equipment Blank	Zinc	4.00E-03	mg/L	J EB FB
600-SB-10-020	9/22/2009	Equipment Blank	Acetone	2.70E+01	μg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Antimony	9.00E-04	mg/L	J RB EB
600-SB-10-020	9/22/2009	Equipment Blank	Cadmium	3.00E-04	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Chromium, Total	2.68E-01	mg/L	EB

NASA White Sands Test Facility

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-SB-10-020	9/22/2009	Equipment Blank	Cobalt	5.00E-03	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Manganese	3.68E-01	mg/L	EB
600-SB-10-020	9/22/2009	Equipment Blank	Molybdenum	6.00E-03	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Zinc	1.21E-01	mg/L	EB
600-SB-10-010	9/21/2009	Field Blank	Antimony	4.00E-04	mg/L	J RB FB
600-SB-10-010	9/21/2009	Field Blank	Chromium, Total	2.60E-02	mg/L	FB
600-SB-10-010	9/21/2009	Field Blank	Manganese	4.00E-02	mg/L	EB FB
600-SB-10-010	9/21/2009	Field Blank	Zinc	1.45E-01	mg/L	FB
600-SB-01-072	11/16/2009	Trip Blank	Acetone	1.90E+00	μg/L	J TB
600-SB-04-006	11/20/2009	Trip Blank	Carbon Disulfide	1.20E+00	μg/L	TB
600-SB-04-075	1/20/2010	Trip Blank	2-Propanol	2.30E+01	μg/L	J TB
600-SB-04-075	1/20/2010	Trip Blank	Acetone	3.60E+00	μg/L	J TB EB
600-SB-05-077	12/17/2009	Trip Blank	Acetone	5.30E+00	μg/L	J TB EB
600-SB-06-075	1/6/2010	Trip Blank	Acetone	2.00E+00	μg/L	J TB EB
600-SB-10-001	9/18/2009	Trip Blank	Carbon Disulfide	1.80E+00	μg/L	TB
600-SB-10-010	9/21/2009	Trip Blank	Acetone	1.80E+00	μg/L	J TB

National Aeronautics and Space Administration

Quality Assurance Report for White Sands Test Facility 200 and 600 Area Vapor Intrusion Assessment Report Vapor Analytical Data

April 2023

NM 8800019434

Report Submitted: Report Prepared by: Will Teas Navarro Research and Engineering, Inc.

1.0 Introduction

The 200 and 600 Area Vapor Intrusion Assessment Work Plan requires the preparation of an investigation report that includes soil analytical data reported. The Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which soil samples were collected in April and October 2017.
- The quantity and type of quality control samples collected or prepared in April and October 2017.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of duplicate samples and their relative percent differences (RPD)
- A summary table of blank sample detections.

2.0 Data Quality

2.1 Notable Anomalies

In the 200 and 600 areas, samples collected during this investigation include soil vapor samples, indoor air samples, and outdoor air samples. These sample sets include field blanks, duplicates, trip blanks, and matrix spikes in accordance with the approved work plan.

3.0 Data Tables

<u>Table 1</u> summarizes the soil vapor, indoor air, and outdoor air sample events in August 2017 and February 2018. This report is based on data quality issues related to the sample events listed in <u>Table 1</u>.

Table 2 through Table 6 contain information related to the sample events identified in Table 1. As specified by the Vapor Intrusion Assessment Work Plan Section 5.4, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the respective investigation work plan. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 presents the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 6 provides the RPD between duplicate samples. Samples associated with qualified data are identified by bold text in Table 6. Table 7 provides all detections found in trip blank and field blank samples. All data affected by blank sample detections are appropriately qualified.

4.0 Usability Assessment

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. This QAR qualifies as the completed assessment for the soil data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report in addition to the August 2017 and February 2018 sample events performed for the 200 and 600 Area Vapor Intrusion Assessment Report. There were ten Freon 123a soil vapor detections that included a tentatively identified compound (TIC) QA flag which were excluded from the dataset. No data was rejected (R) based on established quality review protocols.

5.0 References

Table 1 – Soil Vapor,	Indoor Air, and Outdoor	Air Sample Events
-----------------------	-------------------------	-------------------

Location Sample ID	Sample Matrix	Event Date				
		8/27/2017				
200-IA-1	Air	2/25/2018				
		8/27/2017				
200-IA-2	Air	2/25/2018				
		8/27/2017				
200-IA-3	Air	2/25/2018				
		8/27/2017				
200-IA-4	Air	2/25/2018				
		8/27/2017				
200-IA-5	Air	2/25/2018				
		8/27/2017				
200-IA-6	Air	2/25/2018				
		8/27/2017				
200-IA-7	Air	2/25/2018				
		8/27/2017				
200-IA-8	Air	2/25/2018				
		8/27/2017				
200-OA-1	Air	2/25/2018				
		8/27/2017				
200-OA-2	Air	2/25/2018				
		8/26/2017				
600-IA-1	Air	2/24/2018				
		8/26/2017				
600-IA-2	Air	2/24/2018				
		8/26/2017				
600-IA-3	Air	2/24/2018				
		8/26/2017				
600-IA-4	Air	2/24/2018				
		8/26/2017				
600-OA-1	Air	2/24/2018				
		8/26/2017				
600-OA-2	Air	2/24/2018				
		8/27/2017				
200-LV-150 (34 ft bgs)	Soil Vapor	2/25/2018				
		8/27/2017				
200-SV-05 (9 ft bgs)	Soil Vapor	2/25/2018				
		8/27/2017				
200-SV-09 (19 ft bgs)	Soil Vapor	2/25/2018				
		8/26/2017				
600-SGW-1 (12.5 ft bgs)	Soil Vapor	2/24/2018				
		8/26/2017				
600-SGW-2 (12.5 ft bgs)	Soil Vapor	2/24/2018				

Quality Assurance Report – April and October 2017

Location Sample ID	Sample Matrix	Event Date			
		8/26/2017			
600-SGW-5 (7.5 ft bgs)	Soil Vapor	2/24/2018			

Table 2 – Quantity of Quality Control Samples (Soil Vapor, Indoor Air, and Outdoor Air)

Matrix	Method	Total Samples	Non-QA Samples	Field Blanks	Duplicates	Trip Blanks	Matrix Spikes
Indoor/Outdoor Air	TO-15	74	32	4	4	2	32
Soil Vapor	TO-15	32	12	4	4	0	12
Total		106	44	8	8	2	44

Table 3 – Quality Control Sample Percentages (Soil Vapor, Indoor Air, and Outdoor Air)

Quality Control Requirement	IWP Requirement	Sample Quantity	QC Quantity	QC %
Air, Field Blanks	4	40	8	20
Air, Trip Blanks	1 per shipment	34	2	6
Air, Duplicates	10%	40	8	20
Air, Matrix Spikes		64	32	50
Soil Vapor, Field Blanks	4	12	4	33
Soil Vapor, Trip Blanks	1 per shipment	12		0
Soil Vapor, Duplicates	10%	12	4	33
Soil Vapor, Matrix Spikes		24	12	50

Table 4 – Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
А	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing
	calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The
	presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
Т	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

СОРС	Method	Total Records	FB	EB	ТВ	0	QD	SP	R	*	Α	AD	G	RB	Т	D	i	J	TIC
1,1,1-Trichloroethane	TO-15	52																2	
1,1-Dichloroethene	TO-15	52																	
1,2,4- Trimethylbenzene	TO-15	52																4	
1,2-Dichloroethane	TO-15	52																1	
1,4-Dichlorobenzene	TO-15	52																1	
2,2,4-Trimethylpentane	TO-15	52																2	
2-Butanone (Methyl Ethyl Ketone)	TO-15	52	9		2													39	
2-Hexanone	TO-15	52	2															7	
2-Propanol	TO-15	52	2		1		2											7	
4-Methyl-2-pentanone	TO-15	52					2											4	
Acetone	TO-15	52	12		2		4			1								23	
Benzene	TO-15	52	2															22	
Bromodichloromethane	TO-15	52																2	
Carbon Disulfide	TO-15	52	2		1						6							7	
Carbon Tetrachloride	TO-15	52	2															36	
Chloroethane	TO-15	52																2	
Chloroform	TO-15	52	4															10	
Chloromethane	TO-15	52	8		2													37	
cis-1,2-Dichloroethene	TO-15	52																1	
Ethanol	TO-15	52	7		1		2											21	
Ethyl Benzene	TO-15	52																4	
Freon 11	TO-15	52	9				2				22								
Freon 113	TO-15	52	7		2		4									4		21	
Freon 12	TO-15	52	12		2														
Freon 123a	TO-15	52	4							26									10
Freon 21	TO-15	52																1	
Heptane	TO-15	52																4	
Hexane	TO-15	52	1		1													14	
m,p-Xylene	TO-15	52	1															4	
Methylene Chloride	TO-15	52	4		1													21	
o-Xylene	TO-15	52																4	
Styrene	TO-15	52																	
Tetrachloroethene	TO-15	52	1															2	
Tetrahydrofuran	TO-15	52																3	
Toluene	TO-15	52	5		1													17	
trans-1,2- Dichloroethene	TO-15	52	2															4	
Trichloroethene	TO-15	52	4													4		7	

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records (Soil Vapor, Indoor Air, and Outdoor Air)

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-IA-3	8/27/2017	1,2,4-Trimethylbenzene	104.1	25	
200-IA-3	8/27/2017	2,2,4-Trimethylpentane	NA ¹	25	
200-IA-3	8/27/2017	2-Butanone (Methyl Ethyl Ketone)	43.4	25	
200-IA-3	8/27/2017	2-Hexanone	89.5	25	J
200-IA-3	8/27/2017	2-Propanol	120.0	25	QD
200-IA-3	8/27/2017	4-Methyl-2-pentanone	193.1	25	QD
200-IA-3	8/27/2017	Acetone	63.6	25	QD
200-IA-3	8/27/2017	Benzene	20.2	25	J
200-IA-3	8/27/2017	Carbon Tetrachloride	2.4	25	J
200-IA-3	8/27/2017	Chloroform	NA ¹	25	J
200-IA-3	8/27/2017	Chloromethane	8.7	25	J
200-IA-3	8/27/2017	Ethanol	48.6	25	QD
200-IA-3	8/27/2017	Ethyl Benzene	NA ¹	25	J
200-IA-3	8/27/2017	Freon 11	58.8	25	A QD
200-IA-3	8/27/2017	Freon 113	33.0	25	QD
200-IA-3	8/27/2017	Freon 12	4.1	25	
200-IA-3	8/27/2017	Freon 21	74.5	25	
200-IA-3	8/27/2017	Heptane	NA ¹	25	J
200-IA-3	8/27/2017	Hexane	23.3	25	
200-IA-3	8/27/2017	m,p-Xylene	69.1	25	
200-IA-3	8/27/2017	Methylene Chloride	NA ¹	25	J
200-IA-3	8/27/2017	o-Xylene	55.3	25	J
200-IA-3	8/27/2017	Styrene	NA^1	25	
200-IA-3	8/27/2017	Tetrahydrofuran	NA ¹	25	J
200-IA-3	8/27/2017	Toluene	26.7	25	
200-IA-3	8/27/2017	trans-1,2-Dichloroethene	24.8	25	J
200-IA-3	8/27/2017	Trichloroethene	2.5	25	J
200-SV-05-9	8/27/2017	1,1-Dichloroethene	2.3	25	
200-SV-05-9	8/27/2017	Freon 11	NA ¹	25	Α
200-SV-05-9	8/27/2017	Freon 113	0.0	25	

Table 6 –	Duplicate	Sample	Relative	Percent	Difference
-----------	-----------	--------	----------	---------	------------

Quality Assurance Report – April and October 2017
Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-SV-05-9	8/27/2017	Tetrachloroethene	3.2	25	
200-SV-05-9	8/27/2017	Trichloroethene	2.5	25	
600-IA-4	8/26/2017	2-Butanone (Methyl Ethyl Ketone)	33.0	25	J
600-IA-4	8/26/2017	2-Hexanone	11.5	25	
600-IA-4	8/26/2017	2-Propanol	30.5	25	
600-IA-4	8/26/2017	4-Methyl-2-pentanone	0.0	25	J
600-IA-4	8/26/2017	Acetone	43.5	25	QD
600-IA-4	8/26/2017	Benzene	NA ¹	25	J
600-IA-4	8/26/2017	Carbon Tetrachloride	15.8	25	J
600-IA-4	8/26/2017	Chloromethane	3.1	25	J
600-IA-4	8/26/2017	Ethanol	121.3	25	J
600-IA-4	8/26/2017	Freon 11	0.0	25	Α
600-IA-4	8/26/2017	Freon 113	4.3	25	J
600-IA-4	8/26/2017	Freon 12	4.4	25	
600-IA-4	8/26/2017	Heptane	NA ¹	25	J
600-IA-4	8/26/2017	Hexane	5.2	25	J
600-IA-4	8/26/2017	Toluene	47.4	25	J
600-SGW-5-7.5	8/26/2017	2-Butanone (Methyl Ethyl Ketone)	51.9	25	J FB
600-SGW-5-7.5	8/26/2017	Acetone	31.6	25	J FB
600-SGW-5-7.5	8/26/2017	Carbon Disulfide	NA ¹	25	J A FB
600-SGW-5-7.5	8/26/2017	Chloroform	12.5	25	J FB
600-SGW-5-7.5	8/26/2017	Ethanol	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Freon 11	177.7	25	A FB
600-SGW-5-7.5	8/26/2017	Freon 113	26.5	25	QD FB
600-SGW-5-7.5	8/26/2017	Freon 12	4.3	25	FB
600-SGW-5-7.5	8/26/2017	Methylene Chloride	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Toluene	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Trichloroethene	9.5	25	FB
200-IA-3	2/25/2018	2-Butanone (Methyl Ethyl Ketone)	106.0	25	J
200-IA-3	2/25/2018	2-Propanol	13.3	25	

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-IA-3	2/25/2018	Acetone	61.5	25	J
200-IA-3	2/25/2018	Benzene	2.7	25	J
200-IA-3	2/25/2018	Carbon Tetrachloride	7.6	25	J
200-IA-3	2/25/2018	Chloroform	13.7	25	J
200-IA-3	2/25/2018	Chloromethane	5.1	25	J
200-IA-3	2/25/2018	Ethanol	7.4	25	J
200-IA-3	2/25/2018	Freon 11	2.3	25	
200-IA-3	2/25/2018	Freon 113	13.3	25	
200-IA-3	2/25/2018	Freon 12	7.7	25	
200-IA-3	2/25/2018	Hexane	9.5	25	
200-IA-3	2/25/2018	Methylene Chloride	4.8	25	J
200-IA-3	2/25/2018	Toluene	0.0	25	
200-IA-3	2/25/2018	Trichloroethene	20.7	25	J
200-SV-05-9	2/25/2018	1,1-Dichloroethene	3.8	25	
200-SV-05-9	2/25/2018	Freon 113	3.6	25	
200-SV-05-9	2/25/2018	Tetrachloroethene	1.9	25	
200-SV-05-9	2/25/2018	Trichloroethene	3.9	25	
600-IA-1	2/24/2018	2-Butanone (Methyl Ethyl Ketone)	18.9	25	J FB
600-IA-1	2/24/2018	Acetone	13.6	25	J FB
600-IA-1	2/24/2018	Benzene	5.1	25	J
600-IA-1	2/24/2018	Carbon Tetrachloride	6.9	25	J
600-IA-1	2/24/2018	Chloromethane	12.2	25	J FB
600-IA-1	2/24/2018	Ethanol	54.5	25	J FB
600-IA-1	2/24/2018	Freon 11	7.4	25	FB
600-IA-1	2/24/2018	Freon 113	1.8	25	J
600-IA-1	2/24/2018	Freon 12	4.4	25	FB
600-IA-1	2/24/2018	Methylene Chloride	3.7	25	J FB
600-IA-1	2/24/2018	Toluene	NA ¹	25	
600-SGW-5-7.5	2/24/2018	2-Butanone (Methyl Ethyl Ketone)	77.8	25	J FB
600-SGW-5-7.5	2/24/2018	2-Hexanone	NA ¹	25	J FB

NASA White Sands Test Facility

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
600-SGW-5-7.5	2/24/2018	Acetone	34.8	25	FB
600-SGW-5-7.5	2/24/2018	Chloroform	0.0	25	J FB
600-SGW-5-7.5	2/24/2018	Freon 11	3.8	25	FB
600-SGW-5-7.5	2/24/2018	Freon 113	0.0	25	FB
600-SGW-5-7.5	2/24/2018	Freon 12	0.0	25	FB
600-SGW-5-7.5	2/24/2018	Tetrachloroethene	NA ¹	25	J FB
600-SGW-5-7.5	2/24/2018	Trichloroethene	2.4	25	FB

¹RPD could not be calculated due to one of the duplicate samples being non-detect

Table 7 – Blank Sample Detections

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	ed Concentration Units		QA Flag
200-IA-7	8/27/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	19	UG/M3	I FB
200-IA-7	8/27/2017	Field Blank	2-Propanol	14.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Acetone	17.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Chloromethane	0.6	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Ethanol	15.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Freon 11	3.9	UG/M3	A FB
200-IA-7	8/27/2017	Field Blank	Freon 113	25.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Freon 12	2.8	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Tetrachloroethene	0.6	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Tetrahydrofuran	45.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Toluene	1.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Trichloroethene	2.7	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	2.3	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	2-Propanol	0.8	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Acetone	12.0	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	Benzene	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Carbon Tetrachloride	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Ethanol	1.6	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Freon 11	1.0	UG/M3	A FB
200-SV-09-19	8/27/2017	Field Blank	Freon 113	0.5	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Freon 12	2.0	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	Hexane	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Tetrahydrofuran	3.9	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	1,4-Dioxane	1.5	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	5.9	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	2-Hexanone	0.9	UG/M3	J FB

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-IA-1	8/26/2017	Field Blank	Acetone	62.0	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	Carbon Disulfide	130.0	UG/M3	A FB
600-IA-1	8/26/2017	Field Blank	Chloromethane	0.8	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	Ethanol	9.1	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	Freon 11	1.2	UG/M3	J A FB
600-IA-1	8/26/2017	Field Blank	Freon 12	2.3	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	Tetrahydrofuran	0.9	UG/M3	J FB
			2-Butanone (Methyl			
600-SGW-1-12.5	8/26/2017	Field Blank	Ethyl Ketone)	4.2	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Acetone	23.0	UG/M3	FB
600-SGW-1-12.5	8/26/2017	Field Blank	Benzene	1.0	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Carbon Disulfide	13.0	UG/M3	J A FB
600-SGW-1-12.5	8/26/2017	Field Blank	Chloromethane	0.7	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Cyclohexane	2.1	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Ethanol	4.6	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 11	1.2	UG/M3	J A FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 113	0.8	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 12	2.3	UG/M3	FB
600-SGW-1-12.5	8/26/2017	Field Blank	Hexane	1.4	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	m,p-Xylene	1.9	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Styrene	0.8	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Toluene	6.2	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	2-Propanol	2.7	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Acetone	5.9	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Carbon Tetrachloride	0.4	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Chloromethane	0.6	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Ethanol	1.8	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Freon 11	1.9	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Freon 113	12.0	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Freon 12	2.4	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Methylene Chloride	0.4	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Toluene	0.5	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	trans-1,2- Dichloroethene	1.6	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Trichloroethene	0.4	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Acetone	8.1	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Chloromethane	1.1	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Freon 11	1.2	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Freon 113	6.9	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Freon 12	2.4	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Methylene Chloride	0.7	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Tetrachloroethene	2.7	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Trichloroethene	15.0	UG/M3	FB

NASA White Sands Test Facility

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
			2-Butanone (Methyl			
600-IA-1	2/24/2018	Field Blank	Ethyl Ketone)	0.9	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Acetone	14.0	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Carbon Disulfide	2.6	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Chloromethane	1.1	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Ethanol	5.1	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Freon 11	1.4	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Freon 12	2.3	UG/M3	FB
600-IA-1	2/24/2018	Field Blank	Methylene Chloride	0.9	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	2-Butanone (Methyl Ethyl Ketone)	3.6	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	2-Propanol	9.1	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Acetone	14.0	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Benzene	2.6	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Carbon Disulfide	6.3	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Chloromethane	1.0	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Cyclohexane	9.5	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Ethanol	9.1	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 11	1.2	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 113	0.9	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 12	2.3	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Heptane	2.1	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Hexane	5.9	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Methylene Chloride	1.3	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Toluene	20.0	UG/M3	FB
200-OA-1	2/25/2018	Trip Blank	2-Propanol	15.0	UG/M3	TB
200-OA-1	2/25/2018	Trip Blank	Freon 113	2.4	UG/M3	J TB
200-OA-1	2/25/2018	Trip Blank	Freon 12	2.4	UG/M3	J TB
200-OA-1	2/25/2018	Trip Blank	o-Xylene	1.4	UG/M3	J TB

¹There were no detections in the Trip Blank (200-IA-7) collected on August 27, 2017.

Appendix D UCL95 Results for Cumulative Risk Assessment

	Α	Т	В	С	D	E	F	G	Н	I	J	K	L
1					Goodness-o	of-Fit Test S	tatistics for	Jncensored	Full Data Se	ts without No	on-Detects		
2		Us	er Seleo	cted Options									
3	[ate/Ti	me of Co	omputation	ProUCL 5.2	4/2/2023 10):03:59 PM						
4				From File	UCL95_inpu	ut_Revised.>	kls						
5			Fu	II Precision	OFF								
6		Cor	nfidence	Coefficient	0.95								
7													
8													
9	200_Soil	_NO2/	NO3										
10													
11				Raw S	tatistics								
12				Num	ber of Valid C	bservations)	8						
13				Number	r of Distinct C	bservations)	8						
14						Minimum	0.6						
15						Maximum	n 7.4						
16					Mean	of Raw Data	2.9						
17				Standa	rd Deviation	of Raw Data	2.479						
18						Khat	t 1.594						
19						Theta hat	t 1.82						
20						Kstar	1.079						
21						Theta star	2.687						
22				Mean	of Log Trans	formed Data	0.719						
23			Standa	rd Deviation	of Log Trans	formed Data	0.909						
24													
25				Normal GOF	Test Result	s							
26													
27					Correlation (Coefficient R	0.925						
28				S	hapiro Wilk T	est Statistic	0.847						
29				Shapiro	Wilk Critical	(0.05) Value	0.818						
30				Approxim	ate Shapiro \	Wilk P Value	e 0.11						
31					Lilliefors 7	est Statistic	0.296						
32	.	-		Lillie	etors Critical	(0.05) Value	0.283						
33	Data app	ear Ap	proxima	ite Normal at	t (0.05) Signi	ficance Lev	el						
34													
35			(Jamma GOF	- Test Result	IS							
36					O a mal ti d	D	0.070						
37							0.9/2						
38					A-D I	est Statistic	0.421						
39					A-D Critical	(U.U5) Value	0.728						
40					K-S I	est Statistic	0.236						
41	Deta				K-S Critical(U.U5) Value	0.299						
42	Data app	ear Ga	amma D	Istributed at	(0.05) Signif	ICANCE LEVE							
43													

200_Background_GOF.xlsx

	А	B	C	D	E	F	G	Н	I	J	К	L
44 45		L	ognormal GO	F Test Resu	Its							
46				Correlation C	Coefficient R	0.974						
47			S	hapiro Wilk T	est Statistic	0.932						
48			Shapiro	Wilk Critical ((0.05) Value	0.818						
49			Approxima	ate Shapiro V	Vilk P Value	0.677						
50				Lilliefors T	est Statistic	0.194						
51			Lillie	fors Critical ((0.05) Value	0.283						
52	Data appea	r Lognorma	al at (0.05) Sig	nificance Le	vel	I						
53												
54	200_BG2_N	NO2/NO3										
55												
56			Raw St	atistics								
57			Numb	er of Valid O	bservations	36						
58			Number	of Distinct O	bservations	15						
59					Minimum	0.5						
60					Maximum	3.1						
61				Mean	of Raw Data	1.225						
62			Standar	d Deviation	of Raw Data	0.533						
63					Khat	7.222						
64					Theta hat	0.17						
65					Kstar	6.638						
66					Theta star	0.185						
67			Mean	of Log Transf	ormed Data	0.132						
68		Standa	ard Deviation	of Log Transf	ormed Data	0.364						
69												
70			Normal GOF	Test Result	S							
71												
72				Correlation C	Coefficient R	0.882						
73			S	hapiro Wilk T	est Statistic	0.792						
74			Shapiro	Wilk Critical ((0.05) Value	0.935						
75			Approxima	ate Shapiro V	Vilk P Value	2.2301E-6						
76				Lilliefors T	est Statistic	0.191						
77			Lillie	fors Critical ((0.05) Value	0.145						
78	Data not No	ormal at (0.	05) Significan	ce Level								
79												
80			Gamma GOF	Test Result	s							
81												
82				Correlation C	Coefficient R	0.938						
83				A-D T	est Statistic	1.244						
84				A-D Critical ((0.05) Value	0.749						
85				K-S T	est Statistic	0.184						
86				K-S Critical(0.05) Value	0.147						
87	Data not Ga	amma Distr	ibuted at (0.0	5) Significan	ce Level							
88												

200_Background_GOF.xlsx

	А	В	С	D	E	F	G	Н	J	K	L
89		Lo	ognormal GC	F Test Resu	llts						
90											
91				Correlation C	Coefficient R	0.964					
92			S	hapiro Wilk T	est Statistic	0.941					
93			Shapiro	Wilk Critical	(0.05) Value	0.935					
94			Approxim	ate Shapiro V	Vilk P Value	0.0699					
95				Lilliefors T	est Statistic	0.169					
96			Lillie	fors Critical	(0.05) Value	0.145					
97	Data appea	r Approxima	te_Lognorm	al at (0.05) S	Significance	Level					

200_NO2NO3_BG2_pop2pop_Gehan

	Δ	В	C	D	F	F	G	н		I 1	ĸ	1
1			Gehan S	ample 1 vs \$	Sample 2 C	omparison H	ypothesis T	est for Data	Sets with No	n-Detects	I IX	
2												
3		User Sel	ected Options	;								
4	Da	te/Time of C	Computation	ProUCL 5.2	3/6/2023 1:	49:38 AM						
5			From File	UCL95_inpu	ut_Revised.	xls						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	S	elected Null	l Hypothesis	Sample 1 M	lean/Median	<= Sample 2	2 Mean/Med	lian (Form 1)				
9		Alternative	e Hypothesis	Sample 1 M	lean/Median	> Sample 2	Mean/Media	an				
10									1	T	1	T
11												
12	Sample 1 L	Data: 200_S	501_NO2/NO3	5								
13	Sample 2 L	Data: 200_B	3G2_NU2/NU	3								
14				Dow Statiatia	<u> </u>							
15			ſ		Somplo 1	Sampla 2						
16			Number of V	Valid Data		36						
17			Number of No	n-Detects	1	0						
18			Number of D	etect Data	7	36						
19			Minimum N	lon-Detect	0.6	N/A						
20			Maximum N	Ion-Detect	0.6	N/A						
21			Percent No	on-detects	12.50%	0.00%						
22			Minim	um Detect	0.8	0.5						
23			Maxim	um Detect	7.4	3.1						
25			Mean	of Detects	3.229	1.225						
26			Median	of Detects	1.8	1						
27			SD	of Detects	2.482	0.533						
28				KM Mean	2.9	1.225						
29				KM SD	2.319	0.533						
30					<u> </u>							
31			Sample 1 v	vs Sample 2	Gehan Test	t						
32												
33	HU: Mean/M	viedian of S	ample 1 <= N	lean/Median	of backgrou	una						
34			Caban	- Teet \/elue	1 600							
35			Genan	z rest value	1.028							
36			CII	B Value	0.0518							
37				F-Value	0.0518							
38	Conclusion	with Alnha	= 0.05									
39	Do Not F		i – 0.00 Conclude Sem	nle 1 <= Sa	mple 2							
40	P-Value	>= alnha (0)										
41		- aipiia (0	,,									
42												

200_NO2NO3_BG2_pop2pop_Tarone-Ware

	Δ		В	C	D	F	F	G	н	1		ĸ	L 1
1		-	0	Tarone-Wa	re Sample 1	vs Sample 2	2 Comparisor	Hypothesis	Test for Da	ta Sets with	Non-Detects	3	
2													
3			User Sele	cted Options	6								
4	D	ate/	Time of C	omputation	ProUCL 5.2	3/6/2023 1:	50:46 AM						
5				From File	UCL95_inpt	ut_Revised.	ds						
6			Fu	II Precision	OFF								
7		С	onfidence	Coefficient	95%								
8	Ċ,	Sele	cted Null	Hypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9		A	ternative	Hypothesis	Sample 1 M	lean/Median	> Sample 2 I	Mean/Median	1				
10													
11													
12	Sample 1	Dat	a: 200_So	oil_NO2/NO	3								
13	Sample 2	Dat	a: 200_B	G2_NO2/NC)3								
14					<u> </u>								
15					Raw Statistic	S O a manda 1	0 0						
16				Number of	Valid Data	Sample I	Sample 2						
17				Number of N		0	30						
18			I	Number of No	of Detects	7	36						
19				Minimum	lon Detects	,	50 N/A						
20				Maximum N		0.0	N/A						
21				Percent N		12 50%	0.00%						
22				Minim	um Detect	0.8	0.0070						
23				Maxim	num Detect	7.4	3.1						
24				Mean	of Detects	3.229	1.225						
25				Median	of Detects	1.8	1						
20				SD	of Detects	2.482	0.533						
27					KM Mean	2.9	1.225						
20					KM SD	2.319	0.533						
30													
31			S	ample 1 vs S	Sample 2 Tar	one-Ware T	est						
32													
33	H0: Mean	/Me	dian of Sa	ample 1 <= N	/lean/Median	of Sample 2	2						
34													
35					TW Statistic	1.539							
36				TW Critical	Value (0.05)	1.645							
37					P-Value	0.0619							
38													
39	Conclusio	n wi	ith Alpha	= 0.05									
40	Do Not	Rej	ect H0, C	onclude San	nple 1 <= Sai	mple 2							
41	P-Value) >=	alpha (0.	05)									
42													

	A B C	D	E	F	G	Н		J	К	L
1	t-Test	Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Data	Sets without	ut NDs		
2										
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	2:18:04 AM						
5	From File	UCL95_inpu	ut_Revised.	xls						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Substantial Difference (S)	0.000								
9	Selected Null Hypothesis	Sample 1 M	ean <= San	nple 2 Mean (Form 1)					
10	Alternative Hypothesis	Sample 1 M	า							
11										
12										
13	Sample 1 Data: 600 Barium 0-10									
14	Sample 2 Data: 600 BG4 Barium 0-7	12								
15										
16										
17	F	Raw Statistic	S							
18			Sample 1	Sample 2						
19	Number of Valid Ob	servations	15	36						
20	Number of Distinct Ob	servations	15	33						
21		Minimum	36.4	42.2						
22		Maximum	338	383						
23		Mean	142.4	114.1						
24		Median	151	94.85						
25		SD	77.81	67.71						
26	S	E of Mean	20.09	11.28						
27										
28	Sample 1 vs Sa	ample 2 Two	-Sample t-	Test						
29										
30	HU: Mean of Sample 1 - Mean of Sa	mple 2 <= 0								
31			t-lest	Critical						
32	Method	DF	Value	t (0.05)	P-Value					
33	Pooled (Equal Variance)	0.100								
34	Welch-Satterthwaite (Unequal Varian	23.3	0.116							
35	Pooled SD /0./43									
36	Conclusion with Alpha = 0.050									
37	Student t (Pooled) Test: Do Not Rej	ect H0, Conc	lude Sampl	e 1 <= Sampl	e2					
38	Welch-Satterthwaite Test: Do Not R	eject H0, Co	nclude Sarr	nple 1 <= Sam	ple 2					
39										
40										

Ba_BG4_pop2pop_t-test

	А	В	С	D	E	F	G	Н	I	J	K	L
41			Test of	Equality of V	ariances							
42												
43			Variance o	f Sample 1	6055							
44			Variance o	f Sample 2	4584							
45												
46	Numer	ator DF	Denomi	nator DF	F-Tes	t Value	P-Value					
47	1	4	3	35	1.3	321	0.490					
48	Conclusion	with Alpha =	0.05									
49	Two variand	ces appear t	o be equal									
50												

Ba_BG4_pop2pop_Wil-Mann-Whit

	A B C	D	E	F	G	Н	I	J	К	L
1	Wilcoxon-Mann-Whitn	ey Sarr	nple 1 vs Sa	mple 2 Com	parison Test	for Uncens	or Full Data	Sets without	NDs	
2										
3	User Selected Options									
4	Date/Time of Computation ProU	ICL 5.2	3/6/2023 12	2:21:18 AM						
5	From File UCLS	95_inpu	t_Revised.x	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000)								
9	Selected Null Hypothesis Sam	ple 1 Me	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sam	ple 1 Me	ean/Median	> Sample 2	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Barium 0-10									
14	Sample 2 Data: 600 BG4 Barium 0-12									
15										
16	Raw S	Statistic	S							
17			Sample 1	Sample 2						
18	Number of Valid Observat	tions	15	36						
19	Number of Distinct Observat	tions	15	33						
20	Minir	num	36.4	42.2						
21	Maxir	num	338	383						
22	N	lean	142.4	114.1						
23	Me	dian	151	94.85						
24		SD	77.81	67.71						
25	SE of N	lean	20.09	11.28						
26										
27	Wilcoxon-Mann-W	/hitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/M	Nedian	of Sample 2	2						
30										
31	Sample 1 Rank Sum	W-Stat	457							
32	Standardized WMW	U-Stat	1.375							
33	Me	ean (U)	270							
34	SD(U) - A	Adj ties	48.37							
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted fo	or Ties)	0.0846							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sample 1	<= San	nple 2							
40	P-Value >= alpha (0.05)									
41										

	Δ	B	C	D	F	F	G	Ц			ĸ	
1	~	<u> </u>		Goodness-	of-Fit Test	Statistics for	Uncensored	Full Data Se	ts without N	lon-Detects		<u> </u>
2		User Selec	cted Options									
3	Dat	e/Time of Co	omputation	ProUCL 5.2	3/6/2023 1	2:09:56 AM						
4			From File	UCL95_inpu	ut_Revised	xls						
5		Fu	Il Precision	OFF								
6		Confidence	Coefficient	0.95								
7				•								
8												
9	600 Barium	0-10										
10												
11			Raw S	tatistics								
12			Num	ber of Valid C	Observation	s 15						
13			Numbe	r of Distinct C	Observation	s 15						
14					Minimu	n 36.4						
15					Maximu	n 338						
16				Mean	of Raw Dat	a 142.4						
17			Standa	rd Deviation	of Raw Dat	a 77.81						
18					Kha	at 3.575						
19					Theta ha	at 39.82						
20					Ksta	ar 2.904						
21					Theta sta	ar 49.01						
22			Mean	of Log Trans	formed Dat	a 4.812						
23		Standa	rd Deviation	of Log Trans	formed Dat	a 0.582						
24												
25			Normal GOF	Test Result	S							
26												
27				Correlation (Coefficient	R 0.951						
28			S	Shapiro Wilk T	Fest Statist	c 0.914						
29			Shapiro	Wilk Critical	(0.05) Valu	e 0.881						
30			Approxim	ate Shapiro \	Wilk P Valu	e 0.14						
31				Lilliefors 7	l est Statist	c 0.166						
32	_		Lilli	efors Critical	(0.05) Valu	e 0.22						
33	Data appea	r Normal at	(0.05) Signif	icance Level								
34												
35		(Gamma GO	- Test Result	ts							
36				<u> </u>	0 (7)							
37				Correlation (۲ U.9/9						
38				A-D 1	est Statist	c 0.366						
39				A-D Critical	(U.U5) Valu	e 0./42						
40				K-S T	est Statist	c 0.184						
41	Data	- 0		K-S Critical(U.U5) Valu	e 0.223						
42	uata appea	r Gamma Di	istributed at	(0.05) Signifi	ICANCE LEV	ei						
43												

	А	В	С	D	E	F	G	Н	J	K	L
44		L	ognormal GC	OF Test Resu	lits						
45											
46				Correlation (Coefficient R	0.976					
47			S	hapiro Wilk T	est Statistic	0.957					
48			Shapiro	Wilk Critical	(0.05) Value	0.881					
49			Approxim	ate Shapiro \	Wilk P Value	0.597					
50				Lilliefors T	Fest Statistic	0.211					
51			Lillie	efors Critical	(0.05) Value	0.22					
52	Data appea	r Lognorma	al at (0.05) Sig	gnificance Le	evel						
53											
54	600 BG4 Ba	arium 0-12									
55											
56			Raw S	tatistics							
57			Numi	ber of Valid C	bservations	36					
58			Number	r of Distinct C	bservations	33					
59					Minimum	42.2					
60					Maximum	383					
61			0	Mean	of Raw Data	114.1					
62			Standa	rd Deviation	of Raw Data	67.71					
63					Khat	4.383					
64					I heta hat	26.04					
65					Kstar	4.036					
66					I heta star	28.27					
67	-		Mean	of Log Transf	formed Data	4.619					
68		Standa	ard Deviation	of Log Trans	formed Data	0.465					
69											
70			Normal GOF	l est Result	S						
71				0 1		0.047					
72			-	Correlation C		0.847					
73			Oh a mina			0.736					
74			Snapiro		(0.05) Value	0.935					
75			Approxim	ate Snapiro V		8.1232E-8					
76			1 :0:.		(0.05) Value	0.219					
77	Data nat Na	www.al.at.(0.)			(0.05) value	0.145					
78		ormai at (U.	Jo) Significan								
79			0	Test Desuk	1 4						
80			Gamma GOF		lS						
81				Correlation	Coofficient D	0.024					
82						1 012					
83						0.752					
84						0.702					
85				K-SI		0.143					
86	Data fallow	Anna 0			0.05) Value	0.147					
87	Data follow	Appr. Gam	ma Distributio	on at (0.05) \$	Significance	Levei					
88											

	A	В	С	D	E	F	G	Н	I	J	K	L
89		L	ognormal GC	OF Test Resu	lits							
90				0 1 1 1		0.070						
91						0.973						
92			Ohanina			0.952						
93			Snapiro	Wilk Critical		0.935						
94			Approxim	ate Snapiro V		0.159						
95			. :0:			0.108						
96	Data annas				(0.05) value	0.145						
97	Data appea	r Lognorma	al at (0.05) Si	gnificance Le	evei							
98	600 Dendlin											
99		IM 0-10										
100			Dows	tatiatiaa								
101			Num		beenvetione	15						
102			Numbo	r of Dictinct C	beenvetions	10						
103			Number		Minimum	0.24						
104					Movimum	0.34						
105				Maan		0.72						
106			Standa		of Raw Data	0.45						
107			Stanua		VI Raw Data	0.103						
108						23.3						
109					Kotor	19 60						
110					Kstar	0.0241						
111			Moon	of Log Transf	formed Date	0.0241						
112		Stand			formed Data	-0.02						
113		Stariu		or Log Transi		0.21						
114			Normal COE	Tost Posult								
115					5							
116				Corrolation (Coofficient P	0.037						
117			9	Correlation C		0.937						
118			Shaniro	Wilk Critical		0.002						
119			Approvim	ate Shaniro V	Nilk D Value	0.001						
120			Аррголіп			0.0455						
121			l illia	efors Critical	(0.05) Value	0.107						
122	Data annea	r Normal a	t (0.05) Signif		(0.00) Value	0.22						
123												
124			Gamma GOF	Test Result	e							
125				Test Result								
126				Correlation (Coefficient R	0.962						
127					est Statistic	0.382						
128				A-D Critical	(0.05) Value	0.735						
129				K-S T	est Statistic	0,139						
130				K-S Critical	0.05) Value	0.221						
131	Data annea	r Gamma I	Distributed at	(0.05) Signifi	cance I evel	5. <i>LL</i> 1						
132	Jaia appea											
133												

	L	ognormal GC	r test kesu	Its							
			0 1 1 0		0.000						
					0.969						
		Oh a mina			0.937						
		Snapiro			0.001						
		Approxim		VIIK P Value	0.30						
		1 :0:.	Lillietors I	est Statistic	0.126						
oto onnoo					0.22						
ata appea	Lognorma	li al (0.05) Sij	ynincance Le								
00 BC4 Ba	ndlium 0.1	<u>າ</u>									
	ayıllum 0-1.	2									
		Dow S	tatietice								
		Num		beenvations	36						
		Number		beenvations	27						
		Number	Of Distinct O	Minimum	0.17						
				Maximum	0.17						
			Mean	of Raw Data	0.72						
		Standa	rd Deviation (of Raw Data	0.471						
		Otanda		Khat	13.66						
				Theta hat	0.0345						
				Kstar	12 54						
				Theta star	0.0376						
		Mean	of Log Transf	formed Data	-0 789						
	Standa	ard Deviation	of Log Transf	ormed Data	0.292						
	otanac			onnoù Dulu	0.202						
		Normal GOF	Test Results	5							
				-							
			Correlation C	Coefficient R	0.992						
		S	hapiro Wilk T	est Statistic	0.986						
		Shapiro	Wilk Critical ((0.05) Value	0.935						
		Approxim	ate Shapiro V	Vilk P Value	0.943						
			Lilliefors T	est Statistic	0.106						
		Lillie	efors Critical ((0.05) Value	0.145						
ata appea	r Normal at	(0.05) Signif	icance Level								
		Gamma GOF	Test Result	s							
			Correlation C	Coefficient R	0.975						
			A-D T	est Statistic	0.529						
			A-D Critical ((0.05) Value	0.748						
			K-S T	est Statistic	0.116						
			K-S Critical(0.05) Value	0.147						
ata appea	r Gamma D	istributed at	(0.05) Signifi	cance Level							
	ata appea 00 BG4 Be	ata appear Lognorma D0 BG4 Beryllium 0-1	S Shapiro Approxim Lillie ata appear Lognormal at (0.05) Sig D0 BG4 Beryllium 0-12 Raw S Numl Number Standard Number Standard Deviation Mean Standard Deviation Lillie ata appear Normal at (0.05) Signif	Correlation C Shapiro Wilk Critical Approximate Shapiro V Lilliefors T Lilliefors Critical ata appear Lognormal at (0.05) Significance Le 00 BG4 Beryllium 0-12 Raw Statistics Number of Valid C Number of Distinct C Number of Distinct C Mean of Standard Deviation of Standard Deviation of Standard Deviation of Log Transf Standard Deviation of Log Transf Standard Deviation of Log Transf Standard Deviation of Log Transf Correlation O Shapiro Wilk Critical Approximate Shapiro V Lilliefors T Lilliefors Critical ata appear Normal at (0.05) Significance Level Gamma GOF Test Result Correlation C A-D T A-D Critical K-S Critical K-S Critical	Correlation Coefficient R Shapiro Wilk Test Statistic Shapiro Wilk Critical (0.05) Value Approximate Shapiro Wilk P Value Lilliefors Test Statistic Lilliefors Critical (0.05) Value ata appear Lognormal at (0.05) Significance Level D0 BG4 Beryllium 0-12 Raw Statistics Number of Valid Observations Number of Distinct Observations Number of Distinct Observations Minimum Maximum Mean of Raw Data Standard Deviation of Raw Data Khat Theta hat Kstar Theta star Mean of Log Transformed Data Standard Deviation of Log Transformed Data Correlation Coefficient R Shapiro Wilk Test Statistic Shapiro Wilk Critical (0.05) Value Lilliefors Test Statistic Lilliefors Critical (0.05) Value ata appear Normal at (0.05) Significance Level Correlation Coefficient R A-D Test Statistic A-D Critical (0.05) Value ata appear Gamma Distributed at (0.05) Significance Level	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level 00 BG4 Beryllium 0-12 Raw Statistics Number of Valid Observations 36 Number of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Mean of Raw Data 0.119 Khat 13.66 Theta hat 0.0345 Kstar 12.54 Theta star 0.0376 Mean of Log Transformed Data 0.292 Normal GOF Test Results Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 0.943 Lilliefors Critical (0.05) Value 0.145 ata appear Normal at (0.05) Significance Level Correlation Coefficient R 0.992 A-D Critical (0.05) Value 0.147 ata appear Gamma Distributed at (0.05) Significance Level	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level 0.22 ata appear Lognormal at (0.05) Significance Level 0.22 Maintum 0.72 0.27 Raw Statistics 0.17 Mumber of Valid Observations 27 Minimum 0.72 0.411 Maximum 0.72 0.411 Maximum 0.72 0.411 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Standard Deviation of Log Transformed Data 0.0376 Mean of Log Transformed Data 0.0376 Mean of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.992 Shapiro Wilk Test Statistic 0.996 <td>Correlation Coefficient R 0.969 Shapiro Wilk Critical (0.05) Value 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Raw Statistics Number of Valid Observations 7 Number of Past Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Correlation Coefficient R 0.992 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>Correlation Coefficient R 0.969 Shapiro Wilk Cest Statistic 0.937 Approximate Shapiro Wilk P Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significence Level 0.22 Wilk Critical (0.05) Value 0.22 Number of Valid Observations 36 Number of Valid Observations 27 Minimum 0.17 Maximum 0.72 Mean of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.411 Standard Deviation of Raw Data 0.471 Katar 12.54 Theta tat 0.0376 Katar 12.54 Mean of Log Transformed Data 0.292 Standard Deviation of Cog Transformed Data 0.292 Shapiro Wilk Critical (0.05) Value 0.935 Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.</td> <td>Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Rew Statistics Number of Valid Observations 36 Number of Valid Observations 27 Maintimum 0.17 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Mean of Log Transformed Data 0.376 Theta hat 0.0376 Mean of Log Transformed Data 0.789 Standard Deviation of Cefficient R 0.992 Mean of Log Transformed Data 0.789 Standard Deviation of Log Transformed Data 0.992 Correlation Coefficient R 0.992 Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Test Statistic 0.986 Correlation Coefficient R 0.992</td> <td>Correlation Coefficient R 0.969 </td>	Correlation Coefficient R 0.969 Shapiro Wilk Critical (0.05) Value 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Raw Statistics Number of Valid Observations 7 Number of Past Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Correlation Coefficient R 0.992 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Correlation Coefficient R 0.969 Shapiro Wilk Cest Statistic 0.937 Approximate Shapiro Wilk P Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significence Level 0.22 Wilk Critical (0.05) Value 0.22 Number of Valid Observations 36 Number of Valid Observations 27 Minimum 0.17 Maximum 0.72 Mean of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.411 Standard Deviation of Raw Data 0.471 Katar 12.54 Theta tat 0.0376 Katar 12.54 Mean of Log Transformed Data 0.292 Standard Deviation of Cog Transformed Data 0.292 Shapiro Wilk Critical (0.05) Value 0.935 Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Rew Statistics Number of Valid Observations 36 Number of Valid Observations 27 Maintimum 0.17 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Mean of Log Transformed Data 0.376 Theta hat 0.0376 Mean of Log Transformed Data 0.789 Standard Deviation of Cefficient R 0.992 Mean of Log Transformed Data 0.789 Standard Deviation of Log Transformed Data 0.992 Correlation Coefficient R 0.992 Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Test Statistic 0.986 Correlation Coefficient R 0.992	Correlation Coefficient R 0.969

	A	В	С	D	E	F	G	Н	I	J	K	L
179			Lognormal GC	F Test Resu	lits							
180				0 1 1 1		0.050						
181				Correlation C		0.953						
182			S			0.919						
183			Shapiro	Wilk Critical	(0.05) Value	0.935						
184			Approxim	ate Shapiro V	Wilk P Value	0.0138						
185				Lilliefors I	est Statistic	0.112						
186	_		Lillie	efors Critical	(0.05) Value	0.145						
187	Data appea	ar Approxin	nate_Lognorm	al at (0.05) S	Significance	Level						
188												
189	600 Cadmii	um 0-10										
190												L
191			Raw S	tatistics		· -						L
192			Numl	ber of Valid C	bservations	15						
193			Number	r of Distinct C	bservations	13						L
194					Minimum	0.09						
195					Maximum	0.36						
196				Mean	of Raw Data	0.187						
197			Standa	rd Deviation of	of Raw Data	0.0727						
198					Khat	7.519						
199					Theta hat	0.0248						
200					Kstar	6.059						
201					Theta star	0.0308						
202			Mean	of Log Transf	formed Data	-1.746						
203		Stand	ard Deviation	of Log Transf	formed Data	0.381						
204												
205			Normal GOF	Test Result	s							
206												
207				Correlation C	Coefficient R	0.968						
208			S	hapiro Wilk T	Fest Statistic	0.939						
209			Shapiro	Wilk Critical	(0.05) Value	0.881						
210			Approxim	ate Shapiro V	Nilk P Value	0.363						
211				Lilliefors T	Fest Statistic	0.124						
212			Lillie	efors Critical	(0.05) Value	0.22						
213	Data appea	ar Normal a	t (0.05) Signif	icance Level								
214												
215			Gamma GOF	Test Result	ts							
216												
217				Correlation C	Coefficient R	0.991						
218				A-D T	est Statistic	0.187						
219				A-D Critical	(0.05) Value	0.738						
220				K-S T	est Statistic	0.124						
221				K-S Critical(0.05) Value	0.222						
222	Data appea	ar Gamma	Distributed at	(0.05) Signifi	icance Level							
223												

	А	В	С	D	E	F	G	Н	J	K	L
224		L	ognormal GC	OF Test Resu	lits						
225											
226				Correlation (Coefficient R	0.994					
227			S	hapiro Wilk T	Fest Statistic	0.985					
228			Shapiro	Wilk Critical	(0.05) Value	0.881					
229			Approxim	ate Shapiro \	Wilk P Value	0.989					
230				Lilliefors T	Fest Statistic	0.113					
231			Lillie	efors Critical	(0.05) Value	0.22					
232	Data appea	r Lognorma	l at (0.05) Sig	gnificance Le	evel						
233											
234	600 BG4 Ca	admium 0-1	2								
235											
236			Raw S	tatistics							
237			Numl	ber of Valid C	Observations	36					
238			Number	r of Distinct C	Observations	10					
239					Minimum	0.06					
240					Maximum	0.21					
241				Mean	of Raw Data	0.0847					
242			Standa	rd Deviation	of Raw Data	0.0365					
243					Khat	8.066					
244					Theta hat	0.0105					
245					Kstar	7.413					
246					Theta star	0.0114					
247			Mean	of Log Transt	formed Data	-2.532					
248		Standa	ard Deviation	of Log Transt	formed Data	0.331					
249											
250			Normal GOF	Test Result	S						
251											
252				Correlation (Coefficient R	0.779					
253			S	hapiro Wilk T	Fest Statistic	0.615					
254			Shapiro	Wilk Critical	(0.05) Value	0.935					
255			Approxim	ate Shapiro \	Wilk P Value	1.578E-10					
256				Lilliefors T	Fest Statistic	0.434					
257			Lillie	efors Critical	(0.05) Value	0.145					
258	Data not No	ormal at (0.0	05) Significan	ce Level							
259											
260			Gamma GOF	Test Result	ts						
261											
262				Correlation (Coefficient R	0.855					
263				A-D T	Fest Statistic	5.712					
264				A-D Critical	(0.05) Value	0.749					
265				K-S T	Fest Statistic	0.435					
266				K-S Critical(0.05) Value	0.147					
267	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
268											

	A	В	С	D	E	F	G	Н	I	J	K	L
269			.ognormal GC	F Test Resu	llts							
270												
271				Correlation (Coefficient R	0.824						
272			S	hapiro Wilk T	est Statistic	0.679						
273			Shapiro	Wilk Critical	(0.05) Value	0.935						
274			Approxim	ate Shapiro \	Wilk P Value	3.7477E-9						
275				Lilliefors T	est Statistic	0.428						
276			Lillie	efors Critical	(0.05) Value	0.145						
277	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
278												
279	Non-param	etric GOF	Fest Results									
280												
281	Data do not	t follow a di	scernible dist	ribution at (0	.05) Level of	Significance						
282												
283	600 Chromi	ium 0-10										
284												
285			Raw S	tatistics								
286			Numl	per of Valid C	bservations	15						
287			Numbe	of Distinct C	bservations	14						
288					Minimum	4.88						
289					Maximum	16.7						
290				Mean	of Raw Data	8.633						
291			Standa	rd Deviation	of Raw Data	3.716						
292					Khat	7.17						
293					Theta hat	1.204						
294					Kstar	5.78						
295					Theta star	1.493						
296			Mean	of Log Trans	formed Data	2.084						
297		Stand	ard Deviation	of Log Transt	formed Data	0.373						
298												
299			Normal GOF	Test Result	S							
300												
301				Correlation (Coefficient R	0.884						
302			S	hapiro Wilk T	est Statistic	0.779						
303			Shapiro	Wilk Critical	(0.05) Value	0.881						
304			Approxim	ate Shapiro \	Wilk P Value	0.00173						
305				Lilliefors T	est Statistic	0.28						
306			Lillie	efors Critical	(0.05) Value	0.22						
307	Data not No	ormal at (0.	05) Significan	ce Level								
308												
000								1	1	1	1	1

	А	В	С	D	E	F	G	Н	J	K	L
309			Gamma GOF	F Test Result	S						
310											
311				Correlation (Coefficient R	0.93					
312				A-D T	est Statistic	1.101					
313				A-D Critical	(0.05) Value	0.738					
314				K-S 1	est Statistic	0.238					
315				K-S Critical(0.05) Value	0.222					
316	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
317											
318		L	ognormal GC	OF Test Resu	llts						
319						0.007					
320						0.937					
321			<u> </u>			0.873					
322			Shapiro	Wilk Critical	(0.05) Value	0.881					
323			Approxim	ate Shapiro \	Wilk P Value	0.0408					
324						0.212					
325	D.I.		Lillie	efors Critical	(0.05) Value	0.22					
326	Data appea	ar Approxima	ate_Lognorm	al at (0.05) S	Significance	Level					
327			10								
328	600 BG4 C	hromium 0-	12								
329											
330			Raw S	tatistics							
331			Numl	per of Valid C	bservations	36					
332			Number	r of Distinct C	bservations	36					
333					Minimum	3.44					
334					Maximum	9.8					
335				Mean	of Raw Data	6.296					
336			Standa	rd Deviation	of Raw Data	1.607					
337					Khat	15.1					
338					Theta hat	0.417					
339					Kstar	13.86					
340					Theta star	0.454					
341			Mean	of Log Trans	formed Data	1.806					
342		Standa	ard Deviation	of Log Trans	formed Data	0.267					
343											
344			Normal GOF	Test Result	S						
345											
346				Correlation (Coefficient R	0.986					
347			S	napiro Wilk T	est Statistic	0.962					
348			Shapiro	VVIIK Critical	(U.U5) Value	0.935					
349			Approxim	ate Shapiro \	VIIK P Value	0.315					
350				Lillietors T	est Statistic	0.113					
351				etors Critical	(0.05) Value	0.145					
352	Data appea	ar Normal at	(U.U5) Signif	icance Level							
353											

	А	В	С	D	E	F	G	Н	J	K	L
354			Gamma GOF	F Test Result	ls						
355											
356				Correlation (Coefficient R	0.983					
357				A-D 1	est Statistic	0.614					
358				A-D Critical	(0.05) Value	0.747					
359				K-S 1	Fest Statistic	0.129					
360				K-S Critical(0.05) Value	0.147					
361	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
362											
363		L	ognormal GC	F Test Resu	lits						
364											
365				Correlation (Coefficient R	0.981					
366			S	hapiro Wilk 1	est Statistic	0.952					
367			Shapiro	Wilk Critical	(0.05) Value	0.935					
368			Approxim	ate Shapiro	Wilk P Value	0.161					
369				Lilliefors I	est Statistic	0.143					
370			Lillie	efors Critical	(0.05) Value	0.145					
371	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
372		0.10									
373	600 Cobalt	0-10									
374											
375			Raw S	tatistics		· -					
376			Num	per of Valid C	bservations	15					
377	-		Numbe	r of Distinct C	bservations	14					
378					Minimum	1.8					
379					Maximum	6.8					
380				Mean	of Raw Data	3.58					
381			Standa	rd Deviation	of Raw Data	1.4/2					
382					Khat	6.759					
383					I heta hat	0.53					
384					Kstar	5.451					
385				() T	I heta star	0.657					
386		0	Mean	of Log Trans	formed Data	1.2					
387		Standa	ard Deviation	of Log Trans	formed Data	0.401					
388				Test Dessile							
389			Normal GOF	Test Result	S						
390				Correlation	De officient D	0.000					
391						0.902					
392			Shanira			0.92					
393			Δοργογία	ate Shanire V		0.001					
394			Ahhioxim			0.210					
395			1.005			0.174					
396	Doto onno	r Normal -+			(0.05) value	0.22					
397	Data appea	ii inormai at	(u.us) signif	ICATICE LEVE	l						
398											

	А	В	С	D	E	F	G	Н	J	K	L
399			Gamma GOF	Test Result	ls						
400											
401				Correlation (Coefficient R	0.987					
402				A-D 1	est Statistic	0.306					
403				A-D Critical	(0.05) Value	0.738					
404				K-S 1	Fest Statistic	0.121					
405				K-S Critical(0.05) Value	0.222					
406	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
407											
408		L	ognormal GC	F Test Resu	lits						
409				Correlation	De officient D	0.096					
410				Correlation C		0.986					
411			Chamina			0.90					
412			Snapiro	vviik Critical		0.881					
413			Арргохіті			0.757					
414			1.102			0.114					
415	Data annos	ar Lognorma				0.22					
416	Data appea		ii al (0.00) Si								
417	600 BG4 C	obalt 0_12									
418											
419			Pow S	latietice							
420			Num	per of Valid (hearvations	37					
421			Number		bservations	34					
422			Number		Minimum	2 12					
423					Maximum	4.6					
424				Mean	of Raw Data	3.329					
425			Standa	rd Deviation	of Raw Data	0.727					
426			e tantaa		Khat	20.88					
427					Theta hat	0.159					
428					Kstar	19.2					
429					Theta star	0.173					
430			Mean	of Log Trans	formed Data	1.179					
431		Standa	ard Deviation	of Log Trans	formed Data	0.225					<u> </u>
432											
433			Normal GOF	Test Result	s						
435											
436				Correlation (Coefficient R	0.978					
437			S	hapiro Wilk 1	est Statistic	0.935					
438			Shapiro	Wilk Critical	(0.05) Value	0.936					
439			Approxim	ate Shapiro V	Wilk P Value	0.0428					
440				Lilliefors 7	est Statistic	0.106					
441			Lillie	efors Critical	(0.05) Value	0.144					
442	Data appea	ar Approxim	ate Normal a	t (0.05) Signi	ificance Leve	əl					
443											

	А	В	С	D	E	F	G	Н	J	K	L
444			Gamma GOF	- Test Result	IS						
445											
446				Correlation (Coefficient R	0.971					
447				A-D T	Fest Statistic	0.736					
448				A-D Critical	(0.05) Value	0.747					
449				K-S 1	est Statistic	0.117					
450				K-S Critical(0.05) Value	0.145					
451	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level						
452											
453		L	ognormal GC	F Test Resu	lits						
454											
455				Correlation (Coefficient R	0.976					
456			S	hapiro Wilk T	est Statistic	0.932					
457			Shapiro	Wilk Critical	(0.05) Value	0.936					
458			Approxim	ate Shapiro \	Wilk P Value	0.0338					
459				Lilliefors T	est Statistic	0.128					
460	_		Lillie	efors Critical	(0.05) Value	0.144					
461	Data appea	ar Approxim	ate_Lognorm	al at (0.05) S	Significance	Level					
462											
463	600 Coppe	r 0-10									
464											
465			Raw S	tatistics							
466			Numl	per of Valid C	Observations	15					
467			Numbe	r of Distinct C	bservations	15					
468					Minimum	2.2					
469					Maximum	10.4					
470				Mean	of Raw Data	4.84					
471			Standa	rd Deviation	of Raw Data	2.546					
472					Khat	4.258					
473					Theta hat	1.137					
474					Kstar	3.451					
475					Theta star	1.402					
476			Mean	of Log Trans	formed Data	1.455					
477		Standa	ard Deviation	of Log Trans	formed Data	0.505					
478											
479			Normal GOF	Test Result	S						
480											
481				Correlation (Coefficient R	0.939					
482			S	hapiro Wilk T	est Statistic	0.872					
483			Shapiro	Wilk Critical	(0.05) Value	0.881					
484			Approxim	ate Shapiro \	VIIK P Value	0.0422					
485				Lilliefors T	est Statistic	0.22					
486			Lillie	etors Critical	(0.05) Value	0.22					
487	Data not No	ormal at (0.0	05) Significan	ce Level							
488											

	А	В	С	D	E	F	G	Н	I	J	K	L
489			Gamma GOF	Test Result	ts							
490												
491				Correlation (Coefficient R	0.974						
492				A-D 1	est Statistic	0.585						
493				A-D Critical	(0.05) Value	0.74						
494				K-S 1	est Statistic	0.167						
495				K-S Critical(0.05) Value	0.222						
496	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level							
497												
498		L	ognormal GC	F Test Resu	llts							
499												
500				Correlation (Coefficient R	0.97						
501			S	hapiro Wilk I	est Statistic	0.924						
502			Shapiro	Wilk Critical	(0.05) Value	0.881						
503			Approxim	ate Shapiro \		0.283						
504						0.153						
505	Data anna			efors Critical	(0.05) Value	0.22						
506	Data appea	ar Lognorma	ai at (0.05) Sig	gnificance Le	evei							
507	000 504 0											
508	600 BG4 C	opper 0-12										
509			Daw O									
510			Raw S									
511			Numi	per of Valid C	bservations	36						
512			Number	r of Distinct C	observations	35						
513					Mawimum	3.73						
514				Maaa		9.53						
515			Chanada		of Raw Data	0.009						
516			Stanua		UI Raw Dala	12.0						
517						0.422						
518					Ketor	12 76						
519					Thota star	0.459						
520			Mean	of Log Trans	formed Data	1 732						
521		Standa			formed Data	0.271						
522		Stanua				0.271						
523			Normal GOF	Test Result	\$							
524				TOST ROSult								
525				Correlation (Coefficient R	0,964						
526			S	hapiro Wilk T	est Statistic	0.913						
527			Shapiro	Wilk Critical	(0.05) Value	0.935						
528			Approxim	ate Shapiro \	Nilk P Value	0.00897						
529			r P	Lilliefors T	est Statistic	0.133						
530			Lillie	efors Critical	(0.05) Value	0.145						
531	Data appea	ar Approxim	ate Normal at	t (0.05) Siani	ficance Leve							
532				() 								
533												

	А	В	С	D	E	F	G	Н	J	K	L
534			Gamma GOF	Test Result	S						
535											
536				Correlation (Coefficient R	0.98					
537				A-D T	est Statistic	0.712					
538				A-D Critical	(0.05) Value	0.748					
539				K-S 1	est Statistic	0.123					
540				K-S Critical(0.05) Value	0.147					
541	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	cance Level						
542											
543		L	ognormal GC	F Test Resu	lts						
544											
545				Correlation (Coefficient R	0.979					
546			S	hapiro Wilk T	est Statistic	0.939					
547			Shapiro	Wilk Critical	(0.05) Value	0.935					
548			Approxim	ate Shapiro \	Wilk P Value	0.062					
549				Lilliefors T	est Statistic	0.112					
550			Lillie	efors Critical	(0.05) Value	0.145					
551	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
552											
553	600 Manga	nese 0-10									
554											
555			Raw S	tatistics							
556			Numl	per of Valid C	bservations	15					
557			Number	of Distinct C	bservations	13					
558					Minimum	102					
559					Maximum	325					
560				Mean	of Raw Data	175.9					
561			Standa	rd Deviation	of Raw Data	65.42					
562					Khat	8.6					
563					Theta hat	20.45					
564					Kstar	6.924					
565					Theta star	25.4					
566			Mean	of Log Trans	formed Data	5.11					
567		Standa	ard Deviation	of Log Trans	formed Data	0.35					
568											
569			Normal GOF	Test Result	S						
570											
571				Correlation (Coefficient R	0.943					
572			S	hapiro Wilk T	est Statistic	0.884					
573			Shapiro	Wilk Critical	(0.05) Value	0.881					
574			Approxim	ate Shapiro \	VIIK P Value	0.0611					
575				Lilliefors T	est Statistic	0.231					
576			Lillie	etors Critical	(0.05) Value	0.22					
577	Data appea	ar Approxim	ate Normal at	: (0.05) Signi	ficance Leve						
578											

	А	В	С	D	E	F	G	Н	J	K	L
579			Gamma GOF	- Test Result	IS						
580											
581				Correlation (Coefficient R	0.973					
582				A-D 1	est Statistic	0.579					
583				A-D Critical	(0.05) Value	0.738					
584				K-S 1	est Statistic	0.221					
585				K-S Critical(0.05) Value	0.222					
586	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
587											
588		L	ognormal GC	F Test Resu	lits						
589											
590				Correlation (Coefficient R	0.969					
591			S	hapiro Wilk 1	est Statistic	0.929					
592			Shapiro	Wilk Critical	(0.05) Value	0.881					
593			Approxim	ate Shapiro \	Wilk P Value	0.312					
594				Lilliefors 1	est Statistic	0.204					
595	_		Lillie	efors Critical	(0.05) Value	0.22					
596	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
597											
598	600 BG4 M	anganese ()-12								
599											
600			Raw S	tatistics							
601			Numl	per of Valid C	Observations	36					
602			Number	r of Distinct C	bservations	33					
603					Minimum	74					
604					Maximum	320					
605				Mean	of Raw Data	178.2					
606			Standa	rd Deviation	of Raw Data	61.62					
607					Khat	8.503					
608					I heta hat	20.96					
609					Kstar	/.813					
610				<u> </u>	I heta star	22.81					
611			Mean	of Log Trans	formed Data	5.123					
612		Standa	ard Deviation	of Log Trans	formed Data	0.358					
613			N 1005								
614			Normal GOF	l est Result	s						
615				0 1 1 1		0.00					
616					Loefficient R	0.98					
617			S Obseri			0.951					
618			Snapiro	oto Sharing '		0.935					
619			Approxim			0.148					
620			1			0.145					
621	Data arra i			eiors Critical	(0.05) Value	0.145					
622	Data appea	ir Approxim	ate Normal at	(0.05) Signi	TICANCE Leve)					
623											

	А	В	С	D	E	F	G	Н	J	K	L
624			Gamma GOF	- Test Result	IS						
625											
626				Correlation (Coefficient R	0.988					
627				A-D T	Fest Statistic	0.425					
628				A-D Critical	(0.05) Value	0.749					
629				K-S 1	est Statistic	0.125					
630				K-S Critical(0.05) Value	0.147					
631	Data appea	ar Gamma D	istributed at	(0.05) Signifi	icance Level						
632											
633		L	ognormal GC	DF Test Resu	lits						
634											
635				Correlation (Coefficient R	0.985					
636			S	hapiro Wilk T	est Statistic	0.962					
637			Shapiro	Wilk Critical	(0.05) Value	0.935					
638			Approxim	ate Shapiro \	Wilk P Value	0.326					
639				Lilliefors T	est Statistic	0.102					
640	_		Lillie	efors Critical	(0.05) Value	0.145					
641	Data appea	ar Lognorma	ll at (0.05) Sig	gnificance Le	evel						
642											
643	600 Mercur	γ 0-10									
644											
645			Raw S	tatistics							
646			Num	ber of Valid C	bservations	15					
647			Numbe	r of Distinct C	Observations	11					
648					Minimum	0.001					
649					Maximum	0.099					
650				Mean	of Raw Data	0.0155					
651			Standa	rd Deviation	of Raw Data	0.0268					
652					Khat	0.764					
653					Theta hat	0.0202					
654					Kstar	0.656					
655					Theta star	0.0236					
656			Mean	of Log Transt	formed Data	-4.951					
657		Standa	ard Deviation	of Log Transt	formed Data	1.152					
658											
659			Normal GOF	Test Result	s						
660											
661				Correlation (Coefficient R	0.71					
662			S	hapiro Wilk T	est Statistic	0.527					
663			Shapiro	Wilk Critical	(0.05) Value	0.881					
664			Approxim	ate Shapiro \	Wilk P Value	1.4244E-6					
665				Lilliefors T	est Statistic	0.418					
666			Lillie	efors Critical	(0.05) Value	0.22					
667	Data not No	ormal at (0.0	05) Significan	ce Level							
668											

	А	В	С	D	E	F	G	Н	J	K	L
669			Gamma GOF	F Test Result	ls						
670											
671				Correlation (Coefficient R	0.92					
672				A-D T	est Statistic	1.576					
673				A-D Critical	(0.05) Value	0.774					
674				K-S 1	est Statistic	0.314					
675				K-S Critical(0.05) Value	0.23					
676	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
677											
678		L	ognormal GC	F Test Resu	lits						
679											
680				Correlation (Coefficient R	0.944					
681			S	hapiro Wilk T	est Statistic	0.904					
682			Shapiro	Wilk Critical	(0.05) Value	0.881					
683			Approxim	ate Shapiro \	Wilk P Value	0.0914					
684				Lilliefors T	est Statistic	0.217					
685	_		Lillie	efors Critical	(0.05) Value	0.22					
686	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
687											
688	600 BG4 M	ercury 0-12									
689											
690			Raw S	tatistics							
691			Numl	per of Valid C	Observations	36					
692			Numbe	r of Distinct C	bservations	11					
693					Minimum	0.006					
694					Maximum	0.025					
695				Mean	of Raw Data	0.00897					
696			Standa	rd Deviation	of Raw Data	0.00517					
697					Khat	4.787					
698					I heta hat	0.00187					
699					Kstar	4.406					
700					I heta star	0.00204					
701			Mean	of Log Transf	formed Data	-4.822					
702		Standa	ard Deviation	of Log Trans	formed Data	0.427					
703			N 1005								
704			Normal GOF	l est Result	s						
705				0 1 1 1		0 700					
706						0.792					
707			S Ob and			0.628					
708			Snapiro	vviik Critical		0.935					
709			Approxim	ate Snapiro \		2.94/E-10					
710			1 :00			0.303					
711	Data				(0.05) Value	0.145					
712	Data not No	ormai at (0.0	uo) Significan	ce Level							
713											

	A	В	С	D	E	F	G	Н	J	K	L
714			Gamma GOF	Test Result	s						
715											
716				Correlation C	Coefficient R	0.887					
717				A-D T	est Statistic	4.493					
718				A-D Critical	(0.05) Value	0.751					
719				K-S T	est Statistic	0.259					
720				K-S Critical(0.05) Value	0.147					
721	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
722											
723		L	ognormal GO	F Test Resu	lts						
724											
725				Correlation C	Coefficient R	0.851					
726			S	hapiro Wilk T	est Statistic	0.716					
727			Shapiro	Wilk Critical	(0.05) Value	0.935					
728			Approxim	ate Shapiro V	Vilk P Value	2.7161E-8					
729				Lilliefors T	est Statistic	0.245					
730			Lillie	efors Critical	(0.05) Value	0.145					
731	Data not Lo	gnormal at	(0.05) Signifi	cance Level		I					
732											
733	Non-param	etric GOF T	est Results								
734											
735	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	f Significanc					
736											
737	600 Molybd	lenum 0-10									
738											
739			Raw St	tatistics							
740			Numb	per of Valid C	bservations	15					
741			Number	of Distinct C	bservations	7					
742					Minimum	0.4					
743					Maximum	3.2					
744				Mean	of Raw Data	0.887					
745			Standa	rd Deviation of	of Raw Data	0.784					
746					Khat	2.054					
747					Theta hat	0.432					
748					Kstar	1.688					
749					Theta star	0.525					
750			Mean	of Log Transf	ormed Data	-0.383					
751		Standa	ard Deviation of	of Log Transf	ormed Data	0.698					
752											
753			Normal GOF	Test Result	3						
754											
755				Correlation C	Coefficient R	0.824					
756			S	hapiro Wilk T	est Statistic	0.691					
757			Shapiro	Wilk Critical	(0.05) Value	0.881					
758			Approxim	ate Shapiro V	Vilk P Value	1.1009E-4					
759				Lilliefors T	est Statistic	0.289					
760			Lillie	efors Critical	(0.05) Value	0.22					
761	Data not No	ormal at (0.0)5) Significan	ce Level							
762											

	А	В	С	D	E	F	G	Н	I	J	K	L
763			Gamma GOF	Test Result	s							
764												
765				Correlation C	Coefficient R	0.947						
766				A-D T	est Statistic	1.573						
767				A-D Critical	(0.05) Value	0.747						
768				K-S T	est Statistic	0.31						
769				K-S Critical(0.05) Value	0.224						
770	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
771												
772		L	ognormal GC	F Test Resu	lts							
773												
774				Correlation C	Coefficient R	0.885						
775			S	hapiro Wilk T	est Statistic	0.774						
776			Shapiro	Wilk Critical	(0.05) Value	0.881						
777			Approxim	ate Shapiro V	Vilk P Value	0.00163						
778				Lilliefors T	est Statistic	0.311						
779			Lillie	efors Critical	(0.05) Value	0.22						
780	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
781												
782	Non-param	etric GOF T	est Results									
783												
784	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	Significanc						
785												
786	600 BG4 M	olybdenum	0-12									
787												
788			Raw St	tatistics								
789			Num	per of Valid C	bservations	36						
790			Number	of Distinct C	bservations	11						
791					Minimum	0.2						
792	-				Maximum	1.9						
793				Mean	of Raw Data	0.661						
794			Standa	rd Deviation of	of Raw Data	0.428						
795					Khat	2.862						
796					Theta hat	0.231						
797					Kstar	2.642						
798					Theta star	0.25						
799			Mean	of Log Transf	ormed Data	-0.599						
800		Standa	ard Deviation	of Log Transf	ormed Data	0.614						
801												
802			Normal GOF	Test Result	S							
803												
804				Correlation C	Coefficient R	0.926						
805			S	hapiro Wilk T	est Statistic	0.853						
806			Shapiro	Wilk Critical	(0.05) Value	0.935						
807			Approxim	ate Shapiro V	Vilk P Value	1.1553E-4						
808				Lilliefors T	est Statistic	0.178						
809			Lillie	efors Critical	(0.05) Value	0.145						
810	Data not No	ormal at (0.0	05) Significan	ce Level								
811												

	A	В	C	D	E	F	G	Н	I	J	K	L
812			Gamma GOF	- Test Result	(S							
813												
814				Correlation (Coefficient R	0.983						
815				A-D	est Statistic	0.675						
816				A-D Critical	(0.05) Value	0.755						
817				K-S T	est Statistic	0.14						
818	_			K-S Critical	0.05) Value	0.148						
819	Data appea	ir Gamma I	Distributed at	(0.05) Signif	icance Level							
820					. Ia .							
821		L	ognormal GO	F Test Rest	lits							
822				O a ma la tí a m (D = = # := : = = + D	0.082						
823						0.963						
824			Chanira			0.95						
825	-		Approvim	oto Shoniro V		0.935						
826			Approxim			0.135						
827						0.145						
828	Data annoa		Lillit			0.145						
829	Data appea		ai at (0.00) Się									
830	600 NO2/N	03 0-10										
831	000 1102/11	000-10										
832			Raw St	tatistics								
833			Num	her of Valid (hservations	15						
834			Number	r of Distinct (bservations	15						
835					Minimum	0.7						
836					Maximum	55.4						
837				Mean	of Raw Data	16.21						
838			Standa	rd Deviation	of Raw Data	20.26						
839					Khat	0.72						
040					Theta hat	22.53						
841					Kstar	0.62						
04Z					Theta star	26.14						
843			Mean	of Log Trans	formed Data	1.949						
845		Standa	ard Deviation	of Log Trans	formed Data	1.407						
846												
847			Normal GOF	Test Result	s							
848												
849				Correlation (Coefficient R	0.856						
850			S	hapiro Wilk	est Statistic	0.721						
851			Shapiro	Wilk Critical	(0.05) Value	0.881						
852			Approxim	ate Shapiro	Wilk P Value	3.3924E-4						
853				Lilliefors 7	est Statistic	0.342						
854			Lillie	efors Critical	(0.05) Value	0.22						
855	Data not No	ormal at (0.	05) Significan	ce Level								
856												

	А	В	С	D	E	F	G	Н	J	K	L
857			Gamma GOF	Test Result	S						
858											
859				Correlation (Coefficient R	0.933					
860				A-D T	est Statistic	0.819					
861				A-D Critical	(0.05) Value	0.777					
862				K-S 1	est Statistic	0.25					
863				K-S Critical(0.05) Value	0.231					
864	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
865											
866		L	ognormal GC	F Test Resu	llts						
867											
868				Correlation (Coefficient R	0.973					
869			S	hapiro Wilk T	est Statistic	0.932					
870			Shapiro	Wilk Critical	(0.05) Value	0.881					
871			Approxim	ate Shapiro \	Wilk P Value	0.356					
872				Lilliefors T	est Statistic	0.168					
873	_		Lillie	efors Critical	(0.05) Value	0.22					
874	Data appea	ar Lognorma	ıl at (0.05) Sig	gnificance Le	evel						
875											
876	600 BG4 N	O2/NO3 0-1	2								
877											
878			Raw S	tatistics							
879			Numl	per of Valid C	bservations	40					
880			Number	r of Distinct C	bservations	18					
881					Minimum	0.3					
882					Maximum	3.3					
883				Mean	of Raw Data	0.95					
884			Standa	rd Deviation	of Raw Data	0.784					
885					Khat	1.891					
886					Theta hat	0.502					
887					Kstar	1.766					
888					Theta star	0.538					
889			Mean	of Log Trans	ormed Data	-0.338					
890		Standa	ard Deviation	of Log Trans	formed Data	0.75					
891											
892			Normal GOF	Test Result	S						
893											
894				Correlation (coefficient R	0.897					
895			S	napiro Wilk T	est Statistic	0.799					
896			Shapiro	VVIIK Critical		0.94					
897			Approxim	ate Shapiro \	VIIK P Value	0.9488E-/					
898				Lillietors T	est Statistic	0.204					
899				etors Critical	(0.05) Value	0.139					
900	Data not No	ormai at (0.0	J5) Significan	ce Level							
901											

	A	В	С	D	Е	F	G	Н	J	K	L
902			Gamma GOF	Test Result	s						
903											
904				Correlation C	Coefficient R	0.982					
905				A-D T	est Statistic	1.429					
906				A-D Critical	(0.05) Value	0.76					
907				K-S T	est Statistic	0.156					
908				K-S Critical(0.05) Value	0.141					
909	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
910											
911		L	ognormal GO	F Test Resu	lts						
912											
913				Correlation C	Coefficient R	0.961					
914			S	hapiro Wilk T	est Statistic	0.899					
915			Shapiro	Wilk Critical	(0.05) Value	0.94					
916			Approxim	ate Shapiro V	Vilk P Value	0.00153					
917				Lilliefors T	est Statistic	0.151					
918			Lillie	efors Critical	(0.05) Value	0.139					
919	Data not Lo	gnormal at	(0.05) Signifi	cance Level							
920											
921	Non-parame	etric GOF T	est Results								
922											
923	Data do not	follow a dis	scernible dist	ribution at (0	.05) Level of	Significance					
924											
925	600 Zinc 0- ⁻	10									
926											
927			Raw St	tatistics							
928			Numb	per of Valid C	bservations	15					
929			Number	r of Distinct C	bservations	15					
930					Minimum	15.8					
931					Maximum	43.7					
932				Mean	of Raw Data	23.89					
933			Standa	rd Deviation of	of Raw Data	8.72					
934					Khat	9.577					
935					Theta hat	2.494					
936					Kstar	7.706					
937					Theta star	3.1					
938			Mean	of Log Transf	ormed Data	3.12					
939		Standa	ard Deviation of	of Log Transf	ormed Data	0.325					
940											
941			Normal GOF	Test Result	S						
942											
943				Correlation C	Coefficient R	0.907					
944			S	hapiro Wilk T	est Statistic	0.817					
945			Shapiro	Wilk Critical	(0.05) Value	0.881					
946			Approxim	ate Shapiro V	Vilk P Value	0.00615					
947				Lilliefors T	est Statistic	0.265					
948			Lillie	efors Critical	(0.05) Value	0.22					
949	Data not No	ormal at (0.0	05) Significan	ce Level							
950											

	А	В	С	D	E	F	G	Н	J	K	L
951			Gamma GOF	- Test Result	IS						
952											
953				Correlation (Coefficient R	0.948					
954				A-D 1	est Statistic	0.839					
955				A-D Critical	(0.05) Value	0.737					
956				K-S 1	est Statistic	0.226					
957				K-S Critical(0.05) Value	0.222					
958	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
959					-						
960		L	ognormal GC	F Test Resu	llts						
961				0		0.045					
962						0.945					
963			<u> </u>		est Statistic	0.882					
964			Shapiro	Wilk Critical	(0.05) Value	0.881					
965			Approxim	ate Shapiro V		0.0613					
966					est Statistic	0.204					
967	D.I.			efors Critical	(0.05) Value	0.22					
968	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
969											
970	600 BG4 Zi	Inc 0-12									
971											
972			Raw S	tatistics							
973			Numl	per of Valid C	bservations	36					
974			Number	r of Distinct C	bservations	32					
975					Minimum	12.7					
976					Maximum	44.8					
977				Mean	of Raw Data	27.5					
978			Standa	rd Deviation	of Raw Data	7.299					
979					Khat	13.57					
980					Theta hat	2.027					
981					Kstar	12.46					
982					Theta star	2.208					
983			Mean	of Log Trans	formed Data	3.277					
984		Standa	ard Deviation	of Log Trans	formed Data	0.285					
985											
986			Normal GOF	Test Result	S						
987											
988				Correlation (Coefficient R	0.992					
989			S	hapiro Wilk 1	est Statistic	0.981					
990			Shapiro	Wilk Critical	(0.05) Value	0.935					
991			Approxim	ate Shapiro	VIIK P Value	0.834					
992				Lilliefors 7	est Statistic	0.0865					
993			Lillie	etors Critical	(0.05) Value	0.145					
994	Data appea	ar Normal at	(0.05) Signif	icance Level							
995											
	A	В	С	D	E	F	G	Н	J	K	L
------	------------	--------------	------------------	-----------------	---------------	--------	---	---	---	---	---
996			Gamma GOF	F Test Result	ls						
997											
998				Correlation (Coefficient R	0.987					
999				A-D 1	est Statistic	0.346					
1000				A-D Critical	(0.05) Value	0.748					
1001				K-S T	est Statistic	0.0982					
1002				K-S Critical(0.05) Value	0.147					
1003	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level						
1004											
1005		L	ognormal GC	F Test Resu	llts						
1006											
1007				Correlation (Coefficient R	0.979					
1008			S	hapiro Wilk T	est Statistic	0.956					
1009			Shapiro	Wilk Critical	(0.05) Value	0.935					
1010			Approxim	ate Shapiro \	Wilk P Value	0.219					
1011				Lilliefors T	est Statistic	0.0973					
1012			Lillie	efors Critical	(0.05) Value	0.145					
1013	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
1014											
1015	600 Magne	sium 0-10									
1016											
1017			Raw S	tatistics							
1018			Numl	per of Valid C	Observations	15					
1019			Number	r of Distinct C	Observations	15					
1020					Minimum	3460					
1021					Maximum	21800					
1022				Mean	of Raw Data	11429					
1023			Standa	rd Deviation	of Raw Data	5270					
1024					Khat	4.567					
1025					Theta hat	2503					
1026					Kstar	3.698					
1027					Theta star	3091					
1028			Mean	of Log Trans	formed Data	9.23					
1029		Standa	ard Deviation	of Log Trans	formed Data	0.519					
1030											
1031			Normal GOF	Test Result	s						
1032											
1033				Correlation (Coefficient R	0.985					
1034			S	hapiro Wilk T	est Statistic	0.964					
1035			Shapiro	Wilk Critical	(0.05) Value	0.881					
1036			Approxim	ate Shapiro \	Wilk P Value	0.78					
1037				Lilliefors T	est Statistic	0.124					
1038			Lillie	efors Critical	(0.05) Value	0.22					
1039	Data appea	ar Normal at	: (0.05) Signif	icance Level							
1040											

	А	В	С	D	E	F	G	Н	J	K	L
1041			Gamma GOF	F Test Result	S						
1042											
1043				Correlation (Coefficient R	0.988					
1044				A-D 1	est Statistic	0.207					
1045				A-D Critical	(0.05) Value	0.739					
1046				K-S 1	est Statistic	0.116					
1047				K-S Critical(0.05) Value	0.222					
1048	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	cance Level						
1049											
1050		L	ognormal GC	OF Test Resu	llts						
1051						0.070					<u> </u>
1052				Correlation (Coefficient R	0.978					
1053			S	hapiro Wilk I	est Statistic	0.954					
1054			Shapiro	Wilk Critical	(0.05) Value	0.881					
1055			Approxim	ate Shapiro \	Wilk P Value	0.585					
1056				Lilliefors T	est Statistic	0.149					
1057	_		Lillie	efors Critical	(0.05) Value	0.22					
1058	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
1059											
1060	600 BG4 M	lagnesium 0)-12								
1061											
1062			Raw S	tatistics							
1063			Numl	per of Valid C	bservations	36					
1064			Number	r of Distinct C	bservations	35					
1065					Minimum	4000					
1066					Maximum	18000					
1067				Mean	of Raw Data	8765					
1068			Standa	rd Deviation	of Raw Data	4012					
1069					Khat	5.165					
1070					Theta hat	1697					
1071					Kstar	4.753					
1072					Theta star	1844					
1073			Mean	of Log Trans	formed Data	8.979					
1074		Standa	ard Deviation	of Log Trans	formed Data	0.453					
1075											
1076			Normal GOF	Test Result	s						
1077											
1078				Correlation (Coefficient R	0.954					
1079			S	hapiro Wilk T	est Statistic	0.894					
1080			Shapiro	Wilk Critical	(0.05) Value	0.935					
1081			Approxim	ate Shapiro \	Wilk P Value	0.00218					
1082				Lilliefors T	est Statistic	0.2					
1083	_	-	Lillie	efors Critical	(0.05) Value	0.145					
1084	Data not No	ormal at (0.0	05) Significan	ce Level							
1085											

	А	В	С	D	E	F	G	Н	I	J	K	L
1086			Gamma GOF	Test Result	S							
1087												
1088				Correlation C	Coefficient R	0.978						
1089				A-D T	est Statistic	1.012						
1090				A-D Critical	(0.05) Value	0.75						
1091				K-S T	est Statistic	0.181						
1092				K-S Critical(0.05) Value	0.147						
1093	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
1094												
1095		L	ognormal GO	F Test Resu	llts							
1096												
1097				Correlation C	Coefficient R	0.973						
1098			S	hapiro Wilk T	est Statistic	0.925						
1099			Shapiro	Wilk Critical	(0.05) Value	0.935						
1100			Approxim	ate Shapiro V	Wilk P Value	0.0213						
1101				Lilliefors T	est Statistic	0.163						
1102			Lillie	efors Critical	(0.05) Value	0.145						
1103	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
1104												
1105	Non-param	etric GOF T	est Results									
1106												
1107	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	f Significanc						
1108												
1109	600 Potass	ium 0-10										
1110												
1111			Raw St	tatistics								
1112			Numb	per of Valid C	bservations	15						
1113			Number	of Distinct C	bservations	14						
1114					Minimum	830						
1115	-				Maximum	3130						
1116				Mean	of Raw Data	1371						
1117			Standa	rd Deviation	of Raw Data	614.5						
1118					Khat	7.247						
1119					Theta hat	189.1						
1120					Kstar	5.842						
1121					Theta star	234.6						
1122			Mean	of Log Transf	formed Data	7.152						
1123		Standa	ard Deviation	of Log Transf	formed Data	0.364						
1124												
1125			Normal GOF	Test Result	S							
1126												
1127				Correlation C	Coefficient R	0.858						
1128			S	hapiro Wilk T	est Statistic	0.75						
1129			Shapiro	Wilk Critical	(0.05) Value	0.881						
1130			Approxim	ate Shapiro V	Wilk P Value	5.9501E-4						
1131				Lilliefors T	est Statistic	0.282						
1132	l		Lillie	efors Critical	(0.05) Value	0.22						
1132	Data not No	ormal at (0.0)5) Significan	ce Level		I						
1134												

	А	В	С	D	E	F	G	Н	I	J	K	L
1135			Gamma GOF	Test Result	S							
1136												
1137				Correlation C	Coefficient R	0.925						
1138				A-D T	est Statistic	1.094						
1139				A-D Critical	(0.05) Value	0.738						
1140				K-S T	est Statistic	0.264						
1141				K-S Critical(0.05) Value	0.222						
1142	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
1143												
1144		L	ognormal GO	F Test Resu	llts							
1145												
1146				Correlation C	Coefficient R	0.926						
1147			S	hapiro Wilk T	est Statistic	0.862						
1148			Shapiro	Wilk Critical	(0.05) Value	0.881						
1149			Approxim	ate Shapiro V	Wilk P Value	0.0242						
1150				Lilliefors T	est Statistic	0.244						
1151			Lillie	efors Critical	(0.05) Value	0.22						
1152	Data not Lo	ognormal at	(0.05) Signifi	cance Level								
1153												
1154	Non-param	etric GOF T	est Results									
1155												
1156	Data do not	t follow a dis	scernible disti	ribution at (0	.05) Level of	f Significanc	4					
1157												
1158	600 BG4 P	otassium 0-	12									
1159												
1160			Raw St	tatistics								
1161			Numb	per of Valid C	bservations	36						
1162			Number	of Distinct C	bservations	34						
1163					Minimum	920						
1164					Maximum	2770						
1165				Mean	of Raw Data	1801						
1166			Standa	rd Deviation	of Raw Data	539.8						
1167					Khat	10.73						
1168					Theta hat	167.9						
1169					Kstar	9.854						
1170					Theta star	182.8						
1171			Mean	of Log Transf	formed Data	7.449						
1172		Standa	ard Deviation of	of Log Transf	formed Data	0.32						
1173												
1174			Normal GOF	Test Result	S							
1175												
1176				Correlation C	Coefficient R	0.988						
1177			S	hapiro Wilk T	est Statistic	0.955						
1178			Shapiro	Wilk Critical	(0.05) Value	0.935						
1179			Approxim	ate Shapiro V	Wilk P Value	0.198						
1180				Lilliefors T	est Statistic	0.109						
1181			Lillie	efors Critical	(0.05) Value	0.145						
1182	Data appea	ar Normal at	(0.05) Signifi	icance Level		1						
1183												

	А	В	С	D	E	F	G	Н	J	K	L
1184			Gamma GOF	F Test Result	S						
1185											
1186				Correlation (Coefficient R	0.979					
1187				A-D T	est Statistic	0.409					
1188				A-D Critical	(0.05) Value	0.748					
1189				K-S 1	est Statistic	0.0904					
1190				K-S Critical(0.05) Value	0.147					
1191	Data appea	ar Gamma D	istributed at	(0.05) Signifi	cance Level						
1192											
1193		L	ognormal GC	DF Test Resu	llts						
1194											
1195				Correlation (Coefficient R	0.981					
1196			S	hapiro Wilk T	est Statistic	0.943					
1197			Shapiro	Wilk Critical	(0.05) Value	0.935					
1198			Approxim	ate Shapiro \	Nilk P Value	0.0833					
1199				Lilliefors T	est Statistic	0.0996					
1200			Lillie	efors Critical	(0.05) Value	0.145					
1201	Data appea	ar Lognorma	l at (0.05) Sig	gnificance Le	evel						
1202											
1203	600 Sodiun	n 0-10									
1204											
1205			Raw S	tatistics							
1206			Num	ber of Valid C	bservations)	15					
1207			Numbe	r of Distinct C	bservations)	14					
1208					Minimum	140					
1209					Maximum	12900					
1210				Mean	of Raw Data	1615					
1211			Standa	rd Deviation	of Raw Data	3352					
1212					Khat	0.585					
1213					Theta hat	2761					
1214					Kstar	0.512					
1215					Theta star	3152					
1216			Mean	of Log Transt	formed Data	6.327					
1217		Standa	ard Deviation	of Log Transt	formed Data	1.309					
1218											
1219			Normal GOF	Test Result	s						
1220											
1221				Correlation (Coefficient R	0.677					
1222			S	hapiro Wilk T	est Statistic	0.484					
1223			Shapiro	Wilk Critical	(0.05) Value	0.881					
1224			Approxim	ate Shapiro \	Wilk P Value	5.1804E-7					
1225				Lilliefors T	est Statistic	0.409					
1226			Lillie	efors Critical	(0.05) Value	0.22					
1227	Data not No	ormal at (0.0	05) Significan	ce Level							
1228											

	А	В	С	D	E	F	G	Н	J	K	L
1229			Gamma GOF	F Test Result	S						
1230											
1231				Correlation (Coefficient R	0.924					
1232				A-D 1	est Statistic	1.538					
1233				A-D Critical	(0.05) Value	0.787					
1234				K-S T	est Statistic	0.276					
1235				K-S Critical(0.05) Value	0.233					
1236	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
1237											
1238		L	ognormal GC	F Test Resu	lits						
1239											
1240				Correlation (Coefficient R	0.938					
1241			S	hapiro Wilk T	est Statistic	0.878					
1242			Shapiro	Wilk Critical	(0.05) Value	0.881					
1243			Approxim	ate Shapiro \	Wilk P Value	0.0461					
1244				Lilliefors T	est Statistic	0.152					
1245			Lillie	efors Critical	(0.05) Value	0.22					
1246	Data appea	ar Approxim	ate_Lognorm	al at (0.05) S	Significance I	Level					
1247											
1248	600 BG4 S	odium 0-12									
1249											
1250			Raw S	tatistics							
1251			Numl	per of Valid C	bservations	36					
1252			Number	r of Distinct C	bservations	32					
1253					Minimum	30					
1254					Maximum	800					
1255				Mean	of Raw Data	286.6					
1256			Standa	rd Deviation	of Raw Data	210.5					
1257					Khat	1.732					
1258					Theta hat	165.4					
1259					Kstar	1.606					
1260					Theta star	178.4					
1261			Mean	of Log Transt	formed Data	5.342					
1262		Standa	ard Deviation	of Log Transt	formed Data	0.875					
1263											
1264			Normal GOF	Test Result	S						
1265											
1266				Correlation (Coefficient R	0.959					
1267			S	hapiro Wilk T	est Statistic	0.907					
1268			Shapiro	Wilk Critical	(0.05) Value	0.935					
1269			Approxim	ate Shapiro \	Wilk P Value	0.00554					
1270				Lilliefors T	est Statistic	0.155					
<u>12</u> 71			Lillie	efors Critical	(0.05) Value	0.145					
1272	Data not No	ormal at (0.0)5) Significan	ce Level							
1273											

	А	В	С	D	E	F	G	Н	J	K	L
1274		(Gamma GOF	Test Resul	ts						
1275											
1276				Correlation (Coefficient R	0.985					
1277				A-D	Fest Statistic	0.252					
1278				A-D Critical	(0.05) Value	0.763					
1279				K-S	Fest Statistic	0.0893					
1280				K-S Critical	0.05) Value	0.149					
1281	Data appea	r Gamma D	istributed at	(0.05) Signif	icance Level						
1282											
1283		Lo	ognormal GC	DF Test Resu	ults						
1284											
1285				Correlation (Coefficient R	0.983					
1286			S	hapiro Wilk	Fest Statistic	0.953					
1287			Shapiro	Wilk Critical	(0.05) Value	0.935					
1288			Approxim	ate Shapiro	Wilk P Value	0.172					
1289				Lilliefors	Fest Statistic	0.093					
1290			Lilli	efors Critical	(0.05) Value	0.145					
1291	Data appea	r Lognorma	l at (0.05) Si	gnificance Le	evel						

	А	В	С	D	E	F	G	Н		J	K	L	
1			t-Test	Sample 1 v	s Sample 2 (Comparison	for Uncenso	ored Full Da	ta Sets with	out NDs			
2													
2		User Sele	cted Options										
3	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 12	:28:23 AM							
4			From File	UCL95 inpu	ut Revised.x	ls							
5		Fu	Il Precision	OFF		-							
6		Confidence	Coefficient	95%									
7	S.	ubstantial Diff	ference (S)	0.000									
8	00			Comple 1 M	loon <= Com	nla 2 Maan (Form 1)						
9	5		Hypotnesis		lean <= Sam	pie z Mean (Form I)						
10		Alternative I	Hypothesis	Sample 1 M	lean > the Sa	imple 2 Meai	1						
11								1			T	·	
12													
13	Sample 1 D	Data: 600 Be	ryllium 0-10										
14	Sample 2 D)ata: 600 BG	4 Beryllium (0-12									
15				-									
16												1	
17			F	Raw Statistic	s							1	_
18					Sample 1	Sample 2						1	
19		Numbe	er of Valid Ob	servations	15	36						1	
20		Number of	of Distinct Ob	servations	13	27							
20				Minimum	0.34	0.17							
21				Maximum	0.72	0.72						-	
22				Mean	0.45	0.471							
23				Median	0.43	0.48							
24				SD	0.103	0.119							
20			S	E of Mean	0.0265	0.0199							
20													
27		Sa	ample 1 vs Sa	ample 2 Two	o-Sample t-T	est							
28			•	•	•								
29	H0: Mean o	of Sample 1 -	Mean of Sa	mple 2 <= 0									
30					t-Test	Critical							
31	Method			DF	Value	t (0.05)	P-Value						_
32	Pooled (Fa	al Variance)	1	49	-0.607	1 677	0 727						
33	Welch-Satt	erthwaite (I In	equal Varian	30.3	-0.646	1 697	0 738						
34	Pooled SD	0 115		00.0	0.010		5.750					+	_
35	Conclusion	with Alpha =	0.050									+	-
36	Student + /			act HO Cono	luda Samala	1 <= Some	2					<u> </u>	
37													
38	Weich-Sat												
39													
40			Tast -//		larian								
41			lest of l	Equality of V	ariances								
42					0.0405	1						<u> </u>	
43			variance of	r Sample 1	0.0105							<u> </u>	
44			Variance of	r Sample 2	0.0142							<u> </u>	
45			1		1		_						
46	Numer	ator DF	Denomi	nator DF	F-Tes	t Value	P-Value						
47	3	35	1	4	1.:	350	0.559						
48	Conclusion	with Alpha =	0.05										
49	Two varian	ces appear t	o be equal										
50													

	А	В	C	D	E	F	G	Н		J	K		L
1			t-Test	Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Dat	a Sets witho	ut NDs			
2													
3		User Sele	cted Options										
4	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:	14:02 AM							-
5			From File	UCL95_inp	ut_Revised.>	xls							
6		Fu	Il Precision	OFF									
7		Confidence	Coefficient	95%									
	Si	ubstantial Diff	ference (S)	0.000									
ð	S	elected Null I	Hypothesis	Sample 1 M	lean <= Sarr	nole 2 Mean (Form 1)						
9		Alternative I	Hypothesis	Sample 1 M	lean > the Sa	ample 2 Mea	n						
10			.)pellieele	oumpio i n		ap.oou							
11												Τ	
12	Sample 1 [Data: 600 Co	balt 0-10										
13	Sample 2 [)ata: 600 BG	4 Cobalt 0-1	2								<u> </u>	
14				2									
15												<u> </u>	
16				Daw Statietic								+	
17			r		Samplo 1	Sample 2						<u> </u>	
18		Numbe	ar of Valid Oh	servations	15	37	1						
19		Number			14	3/						<u> </u>	
20		Number		Minimum	14	0 10							
21				Movimum	1.0	2.12							
22				Maan	0.0	4.0							
23				Madian	3.58	3.329						<u> </u>	
24				wedian	3.5	3.47						<u> </u>	
25				SD	1.472	0.727							
26			5	E of Mean	0.38	0.12							
27		0.		omale O Tur	. Oomela t	Feet						<u> </u>	
28		36	imple 1 vs 5	ample 2 1 wo	5-Sample t-	lesi							
29	HO: Moon o	f Comple 1	Moon of So										
30	HU: Mean C	o sample 1 -			4 T 1	Oritical							
31					t-rest	Critical	D.V.I						
32					value	t (0.05)	P-value						
33	Poolea (Eq			50	0.825	1.070	0.207						
34	Welch-Satt	erthwaite (Un	lequal Varian	16.8	0.629	1.740	0.269						
35	Pooled SD	0.994	0.050										
36	Conclusion	with Alpha =	0.050			1 . 0	0						
37	Student t (Pooled) Test	.: Do Not Reje	ect HU, Cond	lude Sample	e 1 <= Sampl	e 2						
38	Welch-Sat	tterthwaite le	est: Do Not R	eject H0, Co	nclude Sam	ple 1 <= Sam	ple 2						
39													
40												<u> </u>	
41			l est of l	Equality of V	ariances								
42					0.40-							<u> </u>	
43			Variance o	t Sample 1	2.16/							<u> </u>	
44			Variance of	t Sample 2	0.529							<u> </u>	
45												<u> </u>	
46	Nume	rator DF	Denomi	nator DF	F-Tes	st Value	P-Value					<u> </u>	
47		14	3	86	4.	.101	0.001					<u> </u>	
48	Conclusion	with Alpha =	0.05									<u> </u>	
49	Two varian	ices are not e	equal										
50													

Co_BG4_pop2pop_Wil-Mann-Whit

	A B C D	E	F	G	Н		J	К	L
1	Wilcoxon-Mann-Whitney Sar	nple 1 vs Sa	ample 2 Com	parison Tes	t for Uncens	or Full Data	Sets without	NDs	
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.2	3/6/2023 1:	15:08 AM						
5	From File UCL95_inpl	ut_Revised.	xls						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Substantial Difference 0.000								
9	Selected Null Hypothesis Sample 1 M	lean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sample 1 M	lean/Median	> Sample 2	Mean/Media	n				
11									
12									
13	Sample 1 Data: 600 Cobalt 0-10								
14	Sample 2 Data: 600 BG4 Cobalt 0-12								
15									
16	Raw Statistic	s							
17		Sample 1							
18	Number of Valid Observations	15	37						
19	Number of Distinct Observations	14	34						
20	Minimum	1.8	2.12						
21	Maximum	6.8	4.6						
22	Mean	3.58	3.329						
23	Median	3.5	3.47						
24	SD	1.472	0.727						
25	SE of Mean	0.38	0.12						
26									
27	Wilcoxon-Mann-Whitney	(WMW) Te	st						
28									
29	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample 2	2						
30									
31	Sample 1 Rank Sum W-Stat	398.5							
32	Standardized WMW U-Stat	0.0101							
33	Mean (U)	277.5							
34	SD(U) - Adj ties	49.5							
35	Approximate U-Stat Critical Value (0.05)	1.645							
36	P-Value (Adjusted for Ties)	0.496							
37									
38	Conclusion with Alpha = 0.05								
39	Do Not Reject H0, Conclude Sample 1 <= Sa	mple 2							
40	P-Value >= alpha (0.05)								
41									

Cr_BG4_pop2pop_Wil-Mann-Whit

			F	F	G	н	I		ĸ	1
1	Wilcoxon-Mann-Whitne	<u>∽</u> ∋y Sam	ple 1 vs Sa	mple 2 Com	parison Test	for Uncenso	or Full Data	Sets without		
2										
3	User Selected Options									
4	Date/Time of Computation ProUC	CL 5.2 3	3/6/2023 12	:33:49 AM						
5	From File UCL9	5_input	_Revised.>	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000									
9	Selected Null Hypothesis Samp	le 1 Me	an/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Samp	le 1 Me	an/Median	> Sample 2 I	Mean/Mediar	ı				
11	· · · ·									
12										
13	Sample 1 Data: 600 Chromium 0-10									
14	Sample 2 Data: 600 BG4 Chromium 0-12									
15										
16	Raw St	tatistics	;							
17		ę	Sample 1							
18	Number of Valid Observation	ons	15	36						
19	Number of Distinct Observation	ons	14	36						
20	Minim	num	4.88	3.44						
21	Maxim	num	16.7	9.8						
22	Me	ean	8.633	6.296						
23	Med	dian	7.2	6.6						
24		SD	3.716	1.607						
25	SE of Me	ean	0.959	0.268						
26										
27	Wilcoxon-Mann-Wi	hitney (WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/M	ledian o	of Sample 2	2						
30				1	I					
31	Sample 1 Rank Sum V	V-Stat	492							
32	Standardized WMW L	U-Stat	2.098							
33	Mea	an (U)	270							
34	SD(U) - A	48.37								
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted for	r Ties)	0.0179							
37										
38	Conclusion with Alpha = 0.05									
39	Reject H0, Conclude Sample 1 > Sampl	le 2								
40	P-Value < alpha (0.05)									
41										

Cu_BG4_pop2pop_Wil-Mann-Whit

	A B C I	D	E	F	G	Н	I	J	K	L
1	Wilcoxon-Mann-Whitne	ey Sam	ple 1 vs Sa	mple 2 Com	parison Tesi	for Uncens	or Full Data	Sets without	NDs	
2										
3	User Selected Options									
4	Date/Time of Computation ProU	CL 5.2 3	3/6/2023 12	:35:27 AM						
5	From File UCL9	95_input	_Revised.x	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000)								
9	Selected Null Hypothesis Samp	ole 1 Me	an/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Samp	ole 1 Me	an/Median	> Sample 2 I	Mean/Mediar	ı				
11										
12										
13	Sample 1 Data: 600 Copper 0-10									
14	Sample 2 Data: 600 BG4 Copper 0-12									
15										
16	Raw S	tatistics	;							
17		5	Sample 1	Sample 2						
18	Number of Valid Observati	ions	15	36						
19	Number of Distinct Observati	ions	15	35						
20	Minim	num	2.2	3.73						
21	Maxim	num	10.4	9.53						
22	М	ean	4.84	5.859						
23	Med	dian	4	5.675						
24		SD	2.546	1.641						
25	SE of M	ean	0.657	0.274						
26										
27	Wilcoxon-Mann-W	'hitney (WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/W	ledian c	of Sample 2	2						
30										
31	Sample 1 Rank Sum V	N-Stat	287							
32	Standardized WMW	U-Stat	-2.14							
33	Me	an (U)	270							
34	SD(U) - A	dj ties	48.37							
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted for	r Ties)	0.984							
37		I								
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sample 1	<= Sam	ple 2							
40	P-Value >= alpha (0.05)									
41										

	А	В	С	D	E	F	G	Н		J	К	L
1		<u> </u>	Gehan S	Sample 1 vs S	Sample 2 Co	omparison Hy	pothesis T	est for Data S	Sets with No	n-Detects		_
2												
2		User Sele	ected Options	6								
1	Da	te/Time of C	Computation	ProUCL 5.2	3/6/2023 12	::38:15 AM						
5			From File	UCL95_inpt	ut_Revised.>	ds						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	S	elected Null	Hypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Med	ian (Form 1)				
9		Alternative	Hypothesis	Sample 1 M	lean/Median	> Sample 2 M	Mean/Media	in				
10				1								
11												
12	Sample 1 [Data: 600 M	lercury 0-10									
13	Sample 2 [Data: 600 B	G4 Mercury 0)-12								
14												
15				Raw Statistic	s							
16					Sample 1	Sample 2						
17			Number of	Valid Data	15	36						
18			Number of No	on-Detects	1	17						
19			Number of D	etect Data	14	19						
20			Minimum N	Ion-Detect	0.001	0.006						
21			Maximum N	Ion-Detect	0.001	0.006						
22			Percent N	on-detects	6.67%	47.22%						
23			Minim	um Detect	0.002	0.007						
24			Maxim	um Detect	0.099	0.025						
25			Mean	of Detects	0.0165	0.0116						
26			Median	of Detects	0.007	0.009						
27			SD	of Detects	0.0274	0.00602						
28				KM Mean	0.0155	0.00897						
29				KM SD	0.0258	0.0051						
30												
31			Sample 1	vs Sample 2	Gehan Test							
32												
33	H0: Mean/I	Median of S	ample 1 <= N	/lean/Median	of backgrou	Ind						
34												
35			Gehan	z Test Value	0.0109							
36			Cr	itical z (0.05)	1.645							
37				P-Value	0.496							
38												
39	Conclusion with Alpha = 0.05											
40	Do Not F	Reject H0, C	Conclude San	nple 1 <= Sai	mple 2							
41	P-Value	>= alpha (0).05)									
42												

		D	-		0					
-	Tarone-Wai	re Sample 1	ı⊏ vs Sample 2	Comparisor	G Hypothesis	⊓ Test for Da	ta Sets with	Non-Detects	<u> </u>	L
1		-	•	•						
2	User Selected Options	;								
3	Date/Time of Computation	ProUCL 5.2	3/6/2023 2:0	00:42 AM						
4	From File	UCL95_inpt	ut_Revised.>	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
, 8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 M	/lean/Mediar	1				
10										
11										
12	Sample 1 Data: 600 Mercury 0-10									
13	Sample 2 Data: 600 BG4 Mercury 0	-12								
14										
15		Raw Statistic	s							
16			Sample 1	Sample 2						
17	Number of	Valid Data	15	36						
18	Number of No	on-Detects	1	17						
19	Number	of Detects	14	19						
20	Minimum N	Ion-Detect	0.001	0.006						
21	Maximum N	Ion-Detect	0.001	0.006						
22	Percent N	on-detects	6.67%	47.22%						
23	Minim	um Detect	0.002	0.007						
24	Maxim	um Detect	0.099	0.025						
25	Mean	of Detects	0.0165	0.0116						
26	Median	of Detects	0.007	0.009						
27	SD	of Detects	0.0274	0.00602						
28		KM Mean	0.0155	0.00897						
29		KM SD	0.0258	0.0051						
30										
31	Sample 1 vs S	Sample 2 Tar	one-Ware T	est						
32										
33	H0: Mean/Median of Sample 1 <= M	lean/Median	of Sample 2	2						
34		<u></u>	0.1.10							
35		TW Statistic	0.148							
36	I W Critical	Value (0.05)	1.645							
37		P-Value	0.441							
38	Conclusion with Alaka COF									
39	Conclusion with Alpha = 0.05	ania 1 4- 0	male 0							
40	DO NOT REJECT HU, CONCLUDE San	npie i <= Sar	TIPIE 2							
41	P-value >= alpha (0.05)									
42										

$K_BG4_pop2pop_Wil-Mann-Whit$

	A B C	П	F	F	G	Ц	1	1	ĸ	
1	Wilcoxon-Mann-V	Whitney Sam	nple 1 vs Sa	mple 2 Com	parison Test	t for Uncense	or Full Data	Sets without	NDs	
2										
2	User Selected Options									
1	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	:48:02 AM						
5	From File	UCL95_inpu	It_Revised.x	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
, 8	Substantial Difference	0.000								
9	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 I	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Potassium 0-10)								
14	Sample 2 Data: 600 BG4 Potassium	n 0-12								
15										
16	F	Raw Statistic	s							
17			Sample 1	Sample 2						
18	Number of Valid Obs	servations	15	36						
19	Number of Distinct Obs	servations	14	34						
20		Minimum	830	920						
21		Maximum	3130	2770						
22		Mean	1371	1801						
23		Median	1110	1795						
24		SD	614.5	539.8						
25	SI	E of Mean	158.7	89.96						
26										
27	Wilcoxon-Ma	ann-Whitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= M	lean/Median	of Sample 2	2						
30	A 1 1 - 1	<u> </u>		1	[ļ
31	Sample 1 Rank	Sum W-Stat	259							
32	Standardized V	VMW U-Stat	-2.719							
33		Mean (U)	270							
34	SD((U) - Adj ties	48.37							
35	Approximate U-Stat Critical	Value (0.05)	1.645							
36	P-Value (Adjus	sted for Ties)	0.997							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sam	pie 1 <= Sar	nple 2							
40	P-Value >= alpha (0.05)									
41										

Mg_BG4_pop2pop_Wil-Mann-Whit

	A B	С	D	E	F	G	Н		J	K	L
1		t-Tes	t Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Dat	ta Sets with	out NDs		
2											
3	User S	Selected Options	5								
4	Date/Time of	of Computation	ProUCL 5.2	3/6/2023 12	2:36:55 AM						
5		From File	UCL95_inp	ut_Revised.>	ds						
6		Full Precision	OFF								
7	Confide	nce Coefficient	95%								
8	Substantia	Difference (S)	0.000								
9	Selected N	Iull Hypothesis	Sample 1 N	lean <= Sam	ple 2 Mean (Form 1)					
10	Alternat	ive Hypothesis	Sample 1 N	lean > the Sa	ample 2 Mea	n					
11											
12											
13	Sample 1 Data: 600	Manganese 0-	10								
14	Sample 2 Data: 600	BG4 Mangane	se 0-12							-	
15											
16											
17			Raw Statistic	s						1	
18				Sample 1	Sample 2						
19	Nu	mber of Valid Ol	oservations	15	36						
20	Numl	per of Distinct Ob	oservations	13	33						
21			Minimum	102	74						
22			Maximum	325	320						
23			Mean	175.9	178.2						
24			Median	142	156.5						
25			SD	65.42	61.62						
26		Ş	SE of Mean	16.89	10.27						
27											
28		Sample 1 vs S	ample 2 Two	o-Sample t-1	ſest						
29										-	
30	H0: Mean of Sample	e 1 - Mean of Sa	ample 2 <= 0								
31				t-Test	Critical						
32	Method		DF	Value	t (0.05)	P-Value					
33	Pooled (Equal Varia	nce)	49	-0.122	1.677	0.548					
34	Welch-Satterthwaite	(Unequal Variar	n 24.9	-0.119	1.708	0.547					
35	Pooled SD 62.728										
36	Conclusion with Alph	na = 0.050									
37	Student t (Pooled)	Test: Do Not Rej	ect H0, Conc	lude Sample	e 1 <= Sample	e 2					
38	Welch-Satterthwait	e Test: Do Not F	Reject H0, Co	nclude Sam	ole 1 <= Sam	ple 2					
39											
40											
41		Test of	Equality of V	ariances							
42											
43		Variance o	of Sample 1	4280						+	
44		Variance o	of Sample 2	3797						1	<u> </u>
45				1	1	1				+	
46	Numerator DF	Denom	inator DF	F-Tes	t Value	P-Value				+	+
47	14		35	1.	127	0.740				+	
48	Conclusion with Alph	na = 0.05		1		1				+	+
40	Two variances appe	ear to be equal								+	+
50										+	+

Mn_BG4_pop2pop_Wil-Mann-Whit

				Г	C			1	K	
1	Wilcoxon-Mann-W	/hitney Sarr	 ple 1 vs Sa	I F Imple 2 Com	parison Test	t for Uncens	or Full Data	Sets without	NDs	Ĺ
- I - 2		-	-	•	-					
∠ 3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	::37:34 AM						
5	From File	JCL95_inpu	t_Revised.x	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Substantial Difference	0.000								
9	Selected Null Hypothesis	Sample 1 Me	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis	Sample 1 Me	ean/Median	> Sample 2	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Manganese 0-10)								
14	Sample 2 Data: 600 BG4 Manganese	9-12								
15										
16	Ra	aw Statistic	S							
17			Sample 1	Sample 2						
18	Number of Valid Obse	ervations	15	36						
19	Number of Distinct Obse	Number of Distinct Observations 13 33								
20	1	Minimum	102	74						
21	N	laximum	325	320						
22		Mean	175.9	178.2						
23		Median	142	156.5						
24		SD	65.42	61.62						
25	SE	of Mean	16.89	10.27						
26										
27	Wilcoxon-Mar	nn-Whitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Me	an/Median	of Sample 2	2						
30										
31	Sample 1 Rank S	Sum W-Stat	366.5							
32	Standardized W	MW U-Stat	-0.496							
33		Mean (U)	270							
34	SD(L	J) - Adj ties	48.37							
35	Approximate U-Stat Critical V	'alue (0.05)	1.645							
36	P-Value (Adjuste	ed for Ties)	0.69							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Samp	Do Not Reject H0, Conclude Sample 1 <= Sample 2								
40	P-Value >= alpha (0.05)									
41										

Mo_BG4_pop2pop_Gehan

-								-		
	A B C Geban Samo	D la 1 vs 9	E Sample 2 Cr	F F	G Vnothesis Te	H et for Data S	 Sets with No.	J n-Detects	K	L
1				ompanson n	ypoulesis re			-Delecia		
2	User Selected Options									
3	Date/Time of Computation Prol		3/6/2023 11	0.30.20 AM						
4		95 inn								
5	Full Precision OFF	-90_mpt	ut_iteviseu.	×13						
6	Confidence Coefficient 95%	<u>,</u>								
7	Selected Null Hypothesis	, nnla 1 M	lean/Median	<= Sample (Mean/Media	an (Form 1)				
8	Alternative Hypothesis San		lean/Median	\sim Sample 2	Mean/Mediar					
9						•				
10										
11	Sample 1 Data: 600 Molybdenum 0-10									
12	Sample 2 Data: 600 BG4 Molybdenum 0	-12								
13										
14	Baw	Statistic	s							
15			Sample 1	Sample 2						
10	Number of Valid	Data	15	36						
12	Number of Non-De	etects	7	0						
10	Number of Detect	Data	8	36						
20	Minimum Non-D	etect	0.4	N/A						
21	Maximum Non-D	etect	0.4	N/A						
22	Percent Non-de	etects	46.67%	0.00%						
23	Minimum D	etect	0.4	0.2						
24	Maximum D	etect	3.2	1.9						
25	Mean of De	etects	1.313	0.661						
26	Median of De	etects	1.1	0.55						
27	SD of De	etects	0.885	0.428						
28	KMI	Mean	0.887	0.661						
29	KI	MSD	0.757	0.428						
30										
31	Sample 1 vs Sa	mple 2	Gehan Test	t						
32										
33	H0: Mean/Median of Sample 1 <= Mean/	Median	of backgrou	und						
34			1		1					
35	Gehan z Tes	st Value	-0.242							
36	Critical	z (0.05)	1.645							
37	I	P-Value	0.596							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1	ı <= Saı	mple 2							
41	P-value >= alpha (0.05)									
42										

Mo_BG4_pop2pop_Tarone-Ware

				_	-		0				14	г.,
	A	В	C Tarone-War	e Sample 1 v	l ⊢ vs Sample 2	Comparisor	G Hypothesis	H Test for Da	ta Sets with	Non-Detects	K S	L
1											-	
2		Lisor Solor	ted Ontions									
3	Dat	to/Time of Co		DrollCL 5.2	2/6/2022 24	10.42 AM						
4	Dal			FIDUCE 5.2	3/0/2023 2.							
5		E.J.			ul_Revised.	us						
6		Fu										
7		Confidence		95%				· (=)				
8	Se	elected Null F	lypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Media	in (Form 1)				
9		Alternative F	lypothesis	Sample 1 M	lean/Median	> Sample 2 I	Mean/Median					
10										1	1	1
11												
12	Sample 1 D	oata: 600 Mo	lybdenum 0-	-10								
13	Sample 2 D)ata: 600 BG	4 Molybden	um 0-12								
14												
15			F	Raw Statistic	s							
16					Sample 1	Sample 2						
17			Number of V	Valid Data	15	36						
18		N	lumber of No	on-Detects	7	0						
19			Number	of Detects	8	36						
20			Minimum N	on-Detect	0.4	N/A						
21			Maximum N	on-Detect	0.4	N/A						
22			Percent No	on-detects	46.67%	0.00%						
23			Minim	um Detect	0.4	0.2						
24			Maxim	um Detect	3.2	1.9						
25			Mean	of Detects	1.313	0.661						
26			Median	of Detects	1.1	0.55						
27			SD	of Detects	0.885	0.428						
28				KM Mean	0.887	0.661						
29				KM SD	0.757	0.428						
30												
31		Sa	ample 1 vs S	ample 2 Tar	one-Ware T	est						
32												
33	H0: Mean/M	ledian of Sa	mple 1 <= M	lean/Median	of Sample 2	2						
34												
35				TW Statistic	-0.375							
36			TW Critical	Value (0.05)	1.645							
37				P-Value	0.646							
38	8 Conclusion with Alpha = 0.05											
39	9 Conclusion with Alpha = 0.05											
40	0 Do Not Reject H0, Conclude Sample 1 <= Sample 2											
41	P-Value >	>= alpha (0.0	05)									
42												

		Α		В	С	D	F	F	G	Н			к	1
1	,		1	<u> </u>	Wilcoxon-I	Mann-Whitney	Sample 1 v	vs Sample 2	Comparison	Test for Da	a Sets with	Non-Detects		-
2														
3			U	ser Sele	cted Option	s								
4		Da	ite/Ti	me of C	omputation	ProUCL 5.2	3/6/2023 12	::40:28 AM						
5					From File	UCL95_inpu	t_Revised.>	ds						
6				Fu	II Precision	OFF								
7			Cor	nfidence	Coefficient	95%								
8		S	elect	ed Null	Hypothesis	Sample 1 Me	ean/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9			Alte	ernative	Hypothesis	Sample 1 Me	ean/Median	> Sample 2	Mean/Median	1				
10											I	1	I	I
11					<u> </u>									
12	Samp	ole 1 E	Data	600 Mc	olybdenum (0-10								
13	Samp	ole 2 L	Jata	600 BC	i4 Molybder	num 0-12								
14						Daw Otatiatia								
15						Raw Statistics	Somela 1	Sample 2						
16					Number of	Valid Data		Sample 2						
17					Number of N	valid Data	15	30						
18				I		OII-Delects	2	36						
19					Minimum I		0.4	50 N/A						
20					Maximum I	Non-Detect	0.4	N/A						
21					Percent N	lon-detects	46.67%	0.00%						
22					Minin	num Detect	0.4	0.2						
23					Maxin	num Detect	3.2	1.9						
24					Mean	of Detects	1.313	0.661						
25					Median	of Detects	1.1	0.55						
20					SD	of Detects	0.885	0.428						
28														
29					Wilcoxon-M	lann-Whitney	(WMW) Te	st						
30														
31	H0: N	/lean/l	Vedi	an of Sa	ample 1 <= I	Mean/Median (of Sample 2	2						
32														
33				Sa	mple 1 Ranl	K Sum W-Stat	388.5							
34				S	tandardized	WMW U-Stat	-0.0432							
35						Mean (U)	270							
36					SI	D(U) - Adj ties	48.3							
37		Ap	pro	timate U	-Stat Critica	l Value (0.05)	1.645							
38				P	-Value (Adju	sted for Ties)	0.517							
39														
40	Conclusion with Alpha = 0.05													
41	Do Not Reject H0, Conclude Sample 1 <= Sample 2													
42	P-\	Value	>= e	lpha (0.	05)									
43														

Na_BG4_pop2pop_Wil-Mann-Whit

	A B C	D	E	F	G	Н			J	К	L
1	Wilcoxon-Mann-W	hitney Sam	nple 1 vs Sa	mple 2 Com	parison Te	est for Un	censor	Full Data	Sets without	NDs	
2											
3	User Selected Options										
4	Date/Time of Computation P	ProUCL 5.2	3/6/2023 12	::49:32 AM							
5	From File U	JCL95_inpu	t_Revised.x	ds							
6	Full Precision C	DFF									
7	Confidence Coefficient 9	95%									
8	Substantial Difference 0	0.000									
9	Selected Null Hypothesis S	Sample 1 Me	ean/Median	<= Sample 2	2 Mean/Me	dian (Forr	m 1)				
10	Alternative Hypothesis S	Sample 1 Me	ean/Median	> Sample 2	Mean/Med	ian					
11											
12											
13	Sample 1 Data: 600 Sodium 0-10										
14	Sample 2 Data: 600 BG4 Sodium 0-12	2									
15											
16	Ra	w Statistic	S								
17			Sample 1	Sample 2							
18	Number of Valid Obse	ervations	15	36							
19	Number of Distinct Obse	ervations	14	32							
20	N	<i>l</i> inimum	140	30							
21	М	laximum	12900	800							
22		Mean	1615	286.6							
23		Median	580	217.5							
24		SD	3352	210.5							
25	SE	of Mean	865.5	35.09							
26											
27	Wilcoxon-Man	n-Whitney	(WMW) Tes	st							
28											
29	H0: Mean/Median of Sample 1 <= Mea	an/Median	of Sample 2	2							
30				1	-						
31	Sample 1 Rank S	um W-Stat	510.5								
32	Standardized WM	MW U-Stat	2.482								
33		Mean (U)	270								
34	SD(U	J) - Adj ties	48.36								
35	Approximate U-Stat Critical Va	alue (0.05)	1.645								
36	P-Value (Adjuste	ed for Ties)	0.00654								
37											
38	8 Conclusion with Alpha = 0.05										
39	Reject H0, Conclude Sample 1 > Sa										
40	P-Value < alpha (0.05)										
41											

	А	В	С	D	E	F	G	Н	I	J	K	L
1			Wilcoxon-M	ann-Whitney	Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects	5	
2												
3		User Selec	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 12	2:42:41 AM						
5			From File	UCL95_inpu	ut_Revised.>	ds						
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Se	elected Null H	lypothesis	Sample 1 M	ean/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9		Alternative H	lypothesis	Sample 1 M	ean/Median	> Sample 2	Mean/Mediar	ו				
10												
11												
12	Sample 1 D	ata: 600 NO	2/NO3 0-10									
13	Sample 2 D	ata: 600 BG	4 NO2/NO3	0-12								
14												
15			F	Raw Statistic	s	1						
16					Sample 1	Sample 2						
17			Number of \	/alid Data	15	40						
18		N	lumber of No	n-Detects	0	7						
19		١	Number of De	etect Data	15	33						
20			Minimum N	on-Detect	N/A	0.3						
21			Maximum N	on-Detect	N/A	0.3						
22			Percent No	on-detects	0.00%	17.50%						
23			Minimu	um Detect	0.7	0.3						
24			Maximu	um Detect	55.4	3.3						
25			Mean	of Detects	16.21	1.088						
26			Median	of Detects	5.5	0.8						
27			SD o	of Detects	20.26	0.799						
28												
29			Wilcoxon-Ma	nn-Whitney	(WMW) Te	st						
30												
31	HU: Mean/N	iedian of Sa	mple 1 <= M	ean/Median	of Sample 2	2						
32		-		0	600		1					
33		Sar	nple 1 Rank	Sum W-Stat	683							
34		Sta	andardized V	VIVIVV U-Stat	4.984							
35				Mean (U)	300							
36	۸		SD((U) - Adj ties	52.88							
37	Ар	proximate U-		$\frac{1}{10000000000000000000000000000000000$	1.045							
38		P-	value (Adjus	ted for TIES)	3.110/E-/							
39	9 Conclusion with Alpha = 0.05											
40	Delect		- U.UO	Somela 0								
41		v, Conclude	sample i > :	Sample 2								
42	P-value	< aipna (0.05)									
43												

Zn_BG4_pop2pop_Wil-Mann-Whit

	A B C D	F	F	G	Н		J	к	
1	Wilcoxon-Mann-Whitney Sar	nple 1 vs Sa	ample 2 Com	parison Test	for Uncens	or Full Data	Sets without	NDs	
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.2	3/6/2023 12	2:44:58 AM						
5	From File UCL95_inpu	ut_Revised.>	xls						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Substantial Difference 0.000								
9	Selected Null Hypothesis Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sample 1 M	ean/Median	> Sample 2	Mean/Mediar	ı				
11									
12									
13	Sample 1 Data: 600 Zinc 0-10								
14	Sample 2 Data: 600 BG4 Zinc 0-12								
15									
16	Raw Statistic	s							
17		Sample 1	Sample 2						
18	Number of Valid Observations	15	36						
19	Number of Distinct Observations	15	32						
20	Minimum	15.8	12.7						
21	Maximum	43.7	44.8						
22	Mean	23.89	27.5						
23	Median	22.7	27.05						
24	SD	8.72	7.299						
25	SE of Mean	2.251	1.217						
26									
27	Wilcoxon-Mann-Whitney	(WMW) Te	st						
28									
29	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample 2	2						
30		000							
31	Sample 1 Rank Sum W-Stat	300							
32	Standardized WMW U-Stat	-1.8/1							
33	Mean (U)	270							
34	SD(U) - Adj ties	48.37							
35	Approximate U-Stat Critical Value (0.05)	1.645							
36	P-Value (Adjusted for Lies)	0.969							
37									
38	Conclusion with Alpha = 0.05	male 0							
39		TIPIE 2							
40	P-value >= alpha (0.05)								
41									

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	a Sets with N	lon-Detects				
2												
3		User Sele	cted Options	i								
4	Dat	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:4	3:03 PM						
5			From File	UCL95_inpu	ut_Revised.x	ls						
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Tran	ns-1,2-Dichlo	proethene									
11												
12						General	Statistics					
13			Total	Number of C	bservations	16			Numbe	r of Distinct (Observations	14
14				Numbe	er of Detects	5				Number of	Non-Detects	11
15			N	umber of Dist	tinct Detects	5			Numb	er of Distinct	Non-Detects	9
16				Mini	mum Detect	0.51				Minimum	n Non-Detect	0.27
17				Maxi	mum Detect	2.2				Maximum	n Non-Detect	7.3
18				Varia	nce Detects	0.592				Percent	Non-Detects	68.75%
19				М	ean Detects	1.18					SD Detects	0.769
20				Med	dian Detects	0.8					CV Detects	0.652
21				Skewn	ess Detects	0.676				Kurl	tosis Detects	-2.378
22				Mean of Log	ged Detects	-0.00958				SD of Log	gged Detects	0.661
23						I					1	
24					Norm	nal GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.846			Shapiro W	ilk GOF Test	t	
26			1% S	hapiro Wilk C	critical Value	0.686	De	etected Data	appear Nor	mal at 1% Sig	gnificance Lev	/el
27				Lilliefors T	est Statistic	0.289			Lilliefors	GOF Test		
28			1	% Lilliefors C	critical Value	0.396	De	etected Data	appear Nor	mal at 1% Sig	gnificance Lev	/el
29				Det	tected Data	appear Norr	nal at 1% Sig	gnificance L	evel			
30				Note	e GOF tests	may be unro	eliable for sm	nall sample :	sizes			
31												
32			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	Critical Value	s and other	Nonparame	tric UCLs		
33					KM Mean	0.573			KI	VI Standard E	Frror of Mean	0.169
34					90KM SD	0.585				95% KN	/I (BCA) UCL	0.869
35				95%	KM (t) UCL	0.869			95% KM (F	Percentile Bo	otstrap) UCL	0.849
36				95%	KM (z) UCL	0.851				95% KM Boo	otstrap t UCL	1.046
37				90% KM Chel	byshev UCL	1.08				95% KM Che	byshev UCL	1.309
38			97	.5% KM Chel	byshev UCL	1.627				99% KM Che	ebyshev UCL	2.252
39						1	1					
40				G	iamma GOF	Tests on De	etected Obse	ervations Or	nly			
41				A-D T	est Statistic	0.45		A	nderson-Da	rling GOF Te	est	
42				5% A-D C	ritical Value	0.683	Detecte	d data appea	ar Gamma D	istributed at {	5% Significan	ce Level
43				K-S T	est Statistic	0.268		I	Kolmogorov	Smirnov GC)F	
44				5% K-S C	ritical Value	0.359	Detected	d data appea	ar Gamma D	istributed at {	5% Significan	ce Level
45				Detected	data appea	r Gamma Di	stributed at {	5% Significa	nce Level			
46				Note	e GOF tests	may be unro	eliable for sm	nall sample :	sizes			
40								-				

Boring Number	Depth bgs (ft)	Sample Number	Analyte	Result	Original Units	Concentration (mg/kg)	TEF	Concentration x TEF	TEQ
			1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	0.0729	ng/Kg	7.29E-08	0.1	7.29E-09	
		1406151129	Octachlorodibenzo-p-dioxin (OCDD)	0.643	ng/Kg	6.43E-07	0.0003	1.93E-10	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.159	ng/Kg	1.59E-07	0.01	1.59E-09	9.07E-09
	-		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.157	ng/Kg	1.57E-07	0.1	1.57E-08	
200-SB-05	8		1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	2.35	ng/Kg	2.35E-06	0.01	2.35E-08	
200 50 05	0		Octachlorodibenzo-p-dioxin (OCDD)	23.7	ng/Kg	2.37E-05	0.0003	7.11E-09	
		1406151145	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.133	ng/Kg	1.33E-07	0.1	1.33E-08	
			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.123	ng/Kg	1.23E-07	0.1	1.23E-08	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.309	ng/Kg	3.09E-07	0.01	3.09E-09	
			Octachlorodibenzofuran (OCDF)	0.534	ng/Kg	5.34E-07	0.0003	1.60E-10	7.52E-08
200-SB-6	8	1406141704	Octachlorodibenzo-p-dioxin (OCDD)	0.8	ng/Kg	8.00E-07	0.0003	2.40E-10	
200 50 0	0	1100111701	1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	0.182	ng/Kg	1.82E-07	0.01	1.82E-09	2.06E-09
200-SB-7	8	1406111503	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	1.37	ng/Kg	1.37E-06	0.01	1.37E-08	
200 55 7	Ũ	1100111203	Octachlorodibenzo-p-dioxin (OCDD)	17.1	ng/Kg	1.71E-05	0.0003	5.13E-09	1.88E-08
200-SB-8	8 -	1406130804	Octachlorodibenzo-p-dioxin (OCDD)	1.46	ng/Kg	1.46E-06	0.0003	4.38E-10	4.38E-10
	-	1406130814	Octachlorodibenzo-p-dioxin (OCDD)	1.24	ng/Kg	1.24E-06	0.0003	3.72E-10	3.72E-10
			1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.0476	ng/Kg	4.76E-08	0.1	4.76E-09	
200-SB-09	8	1406301549	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.0653	ng/Kg	6.53E-08	0.01	6.53E-10	
200 55 07	Ũ	1100201219	Octachlorodibenzo-p-dioxin (OCDD)	0.475	ng/Kg	4.75E-07	0.0003	1.43E-10	
		$\frac{1}{1406281022}$	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.0413	ng/Kg	4.13E-08	0.01	4.13E-10	5.97E-09
200-SB-09 200-SB-10	16		1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxins (HpCDD)	0.263	ng/Kg	2.63E-07	0.01	2.63E-09	
200-50-10	10	1400201022	Octachlorodibenzo-p-dioxin (OCDD)	1.75	ng/Kg	1.75E-06	0.0003	5.25E-10	3.16E-09
			2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	0.282	ng/Kg	2.82E-07	1	2.82E-07	
			1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.192	ng/Kg	1.92E-07	0.01	1.92E-09	
			Octachlorodibenzo-p-dioxin (OCDD)	0.843	ng/Kg	8.43E-07	0.0003	2.53E-10	
200-SB-11	8	1407011414	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	0.0392	ng/Kg	3.92E-08	0.1	3.92E-09	
200 50 11	0	140/011414	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.0418	ng/Kg	4.18E-08	0.1	4.18E-09	
			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.0479	ng/Kg	4.79E-08	0.1	4.79E-09	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.201	ng/Kg	2.01E-07	0.01	2.01E-09	
			Octachlorodibenzofuran (OCDF)	0.23	ng/Kg	2.30E-07	0.0003	6.90E-11	2.99E-07
			1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	0.105	ng/Kg	1.05E-07	0.1	1.05E-08	
			1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.107	ng/Kg	1.07E-07	0.1	1.07E-08	
			1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.202	ng/Kg	2.02E-07	0.01	2.02E-09	
200-SB-13	8	1406161404	Octachlorodibenzo-p-dioxin (OCDD)	10	ng/Kg	1.00E-05	0.0003	3.00E-09	
200-50-15	0	1400101404	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	0.0506	ng/Kg	5.06E-08	0.1	5.06E-09	
200-SB-13			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.0843	ng/Kg	8.43E-08	0.1	8.43E-09	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.0604	ng/Kg	6.04E-08	0.01	6.04E-10	
			1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	0.0664	ng/Kg	6.64E-08	0.01	6.64E-10	4.10E-08

|--|

			Calculation of Toxicity Equivalents (TE	Q) ¹ for D	oioxins/Fu	rans			
Boring Number	Depth bgs (ft)	Sample Number	Analyte	Result	Original Units	Concentration (mg/kg)	TEF	Concentration x TEF	TEQ

 1 = TEQs calculated per NMED RA Guidance (June 2019) Section 2.1. Dioxin and furan congeners were assessed using the 2005 World Health Organization's (WHO) toxicity equivalency factors (TEF) applied to the analytical results and summed for each sample location. The sum, or toxicity equivalent (TEQ), is compared to the NMED SSL for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in the risk screening evaluation for carcinogens and noncarcinogens.

bgs = below ground surface

UCL95_200_IA_1,2-Dichloroethene

	А	В	С	D	E	F	G	Н	I	J	K	L
48					Gamma	Statistics or	n Detected D	Data Only				
49					k hat (MLE)	3.012			k	star (bias cor	rected MLE)	1.338
50				TI	heta hat (MLE)	0.392			Theta	star (bias cor	rrected MLE)	0.882
51					nu hat (MLE)	30.12				nu star (bia	as corrected)	13.38
52				I	Mean (detects)	1.18						
53												
54					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
55			GROS ma	y not be use	ed when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs		
56		GROS mag	y not be use	d when ksta	ar of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
57			F	or such situ	ations, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
58					This is espec	ially true whe	en the sample	e size is sma	III.			
59		For gar	mma distribu	ited detecte	ed data, BTVs a	and UCLs ma	ay be comput	ted using gar	nma distribu	tion on KM e	stimates	
60					Minimum	0.01					Mean	0.376
61					Maximum	2.2					Median	0.01
62					SD	0.687					CV	1.828
63					k hat (MLE)	0.313			k	star (bias cor	rected MLE)	0.296
64				TI	heta hat (MLE)	1.201			Theta	star (bias cor	rected MLE)	1.27
65					nu hat (MLE)	10.01				nu star (bia	as corrected)	9.465
66			Adjuste	d Level of S	Significance (β)	0.0335						
67		Ap	oproximate C	Chi Square '	Value (9.46, α)	3.61			Adjusted C	hi Square Va	alue (9.46, β)	3.209
68			95% (Gamma App	proximate UCL	0.985			95	% Gamma A	djusted UCL	1.108
69												
70					Estimates of C	amma Para	meters using	g KM Estima	tes			
71					Mean (KM)	0.573					SD (KM)	0.585
72					Variance (KM)	0.342				SE o	f Mean (KM)	0.169
73					k hat (KM)	0.962					k star (KM)	0.823
74					nu hat (KM)	30.78					nu star (KM)	26.34
75					theta hat (KM)	0.596				the	eta star (KM)	0.697
76			80'	% gamma p	percentile (KM)	0.935			909	% gamma pei	rcentile (KM)	1.385
77			95	% gamma p	percentile (KM)	1.841			999	% gamma pei	rcentile (KM)	2.916
78												
79					Gamn	na Kaplan-M	eier (KM) St	atistics				
80		App	proximate Ch	ni Square V	alue (26.34, α)	15.64			Adjusted Ch	i Square Val	ue (26.34, β)	14.71
81			95% KM A	Approximate	e Gamma UCL	0.965			95% K	M Adjusted (Gamma UCL	1.027
82												
83					Lognormal GC	DF Test on D	etected Obs	servations O	nly			
84			ç	Shapiro Wil	k Test Statistic	0.88			Shapiro Wi	lk GOF Test		
85			10% S	Shapiro Will	c Critical Value	0.806	Dete	ected Data ap	opear Logno	rmal at 10% \$	Significance L	evel
86				Lilliefor	s Test Statistic	0.227			Lilliefors	GOF Test		
87			1(0% Lilliefors	s Critical Value	0.319	Dete	ected Data ap	opear Logno	rmal at 10% \$	Significance L	evel
88				De	tected Data ap	pear Lognor	mal at 10%	Significance	Level			
89				N	ote GOF tests	may be unre	eliable for sn	nall sample s	sizes			
90												

UCL95_200_IA_1,2-Dichloroethene

	А	В	С	D	E	F	G	Н		J	K	L
91				L	ognormal RO	S Statistics	Using Impu	ted Non-Detec	cts			
92				Mean in C	Driginal Scale	0.441				Mean	in Log Scale	-1.597
93				SD in C	Driginal Scale	0.651				SD	in Log Scale	1.199
94		95% t L	JCL (assume	es normality	of ROS data)	0.726			95%	Percentile Bo	ootstrap UCL	0.731
95				95% BCA B	ootstrap UCL	0.808				95% Boo	otstrap t UCL	1.147
96				95% H-UC	CL (Log ROS)	1.059						
97												
98			Stati	stics using h	KM estimates	on Logged	Data and As	ssuming Logn	ormal Distri	bution		
99				KM M	lean (logged)	-0.876				K	M Geo Mean	0.416
100				KM	I SD (logged)	0.701			95% (Critical H Val	ue (KM-Log)	2.282
101			KM Standa	rd Error of M	lean (logged)	0.202				95% H-U0	CL (KM -Log)	0.805
102				KM	I SD (logged)	0.701			95% (Critical H Val	ue (KM-Log)	2.282
103			KM Standa	rd Error of M	lean (logged)	0.202						
104												
105						DL/2 S	tatistics					
106			DL/2	Normal					DL/2 Log-1	ransformed		
107				Mean in C	Driginal Scale	0.698				Mean	in Log Scale	-1.068
108				SD in C	Driginal Scale	1.004				SD	in Log Scale	1.124
109			95% t	UCL (Assum	es normality)	1.138				95%	H-Stat UCL	1.498
110			DL/2	is not a reco	ommended m	ethod, provi	ded for com	parisons and	historical re	easons		
111												
112					Nonparam	etric Distribu	tion Free U	CL Statistics				
113				Detecte	d Data appea	ar Normal Di	stributed at	1% Significan	ce Level			
114												
115	5 Suggested UCL to Use											
116				959	% KM (t) UCL	0.869						
117												
118		Note: Sugge	stions regard	ding the sele	ction of a 95%	6 UCL are pr	ovided to he	elp the user to	select the n	nost appropri	ate 95% UCL	
119		Recom	mendations	are based u	pon data size	, data distrib	ution, and s	kewness using	g results fro	m simulation	studies.	
120	Hc	wever, simu	lations resul	ts will not co	ver all Real V	Vorld data se	ts; for additi	onal insight the	e user may	want to cons	ult a statistici	an.
101												

			-										
1		UCL Statis	⊢ tics for Data	Sets with Non-Detects	L								
2													
3	User Selected Options	s											
4	Date/Time of Computation	ProUCL 5.2 3/6/2023 1:3	3:24 PM										
5	From File	UCL95_input_Revised.xl	S										
6	Full Precision	OFF											
7	Confidence Coefficient	95%											
8	Number of Bootstrap Operations	2000											
9													
10	200 IA 2-Butanone (MEK)												
11													
12			General	Statistics									
13	Tota	I Number of Observations	16	Number of Distinct Observations	13								
14		Number of Detects	15	Number of Non-Detects	1								
15	N	lumber of Distinct Detects	12	Number of Distinct Non-Detects	1								
16		Minimum Detect	0.36	Minimum Non-Detect	8.1								
17		Maximum Detect	8.7	Maximum Non-Detect	8.1								
18		Variance Detects	4.008	Percent Non-Detects	6.25%								
19		Mean Detects	1.921	SD Detects	2.002								
20	Median Detects 1.8 CV Detects												
21	Skewness Detects 3.048 Kurtosis Detects 1												
22	2 Mean of Logged Detects 0.292 SD of Logged Detects 0												
23													
24		Norm		t on Detects Univ									
25	10/ 0	Shapiro Wilk Test Statistic	0.589	Snapiro Wilk GOF Test	1								
26	1% 5		0.835	Lilliofere COE Test									
27		Lilliefors Critical Value	0.390	Detected Data Net Normal et 1% Significance Lova	1								
28		Detected Date	0.200	Lat 1% Significance Level									
29													
30	Kanlan	-Meier (KM) Statistics usir	ng Normal C	tritical Values and other Nonnarametric LICLs									
31		KM Mean	1 89	KM Standard Error of Mean	0 49								
32		90KM SD	1.884	95% KM (BCA) UCI	2.848								
33		95% KM (t) UCL	2.749	95% KM (Percentile Bootstrap) UCL	2.727								
34		95% KM (z) UCL	2.696	95% KM Bootstrap t UCL	3.549								
35		90% KM Chebyshev UCL	3.36	95% KM Chebyshev UCL	4.026								
30 27	9	7.5% KM Chebyshev UCL	4.95	99% KM Chebyshev UCL	6.765								
3/		-		· · · · · · · · · · · · · · · · · · ·									
30		Gamma GOF	Tests on De	etected Observations Only									
40		A-D Test Statistic	1.236	Anderson-Darling GOF Test									
41		5% A-D Critical Value	0.753	Detected Data Not Gamma Distributed at 5% Significance	Level								
42		K-S Test Statistic	0.284	Kolmogorov-Smirnov GOF									
43		5% K-S Critical Value	0.225	Detected Data Not Gamma Distributed at 5% Significance	Level								
44		Detected Data Not C	Gamma Dist	ributed at 5% Significance Level									
45													

UCL95_200_IA_2-ButanoneMEK

_		1		1	-			r	1	-		
46	A	В	С	D	E Gamma	F Statistics or	G Detected D	l <u>H</u> Data Only		J	K	L
40					k hat (MLE)	1.531			k	star (bias co	prrected MLE)	1.269
48				The	eta hat (MLE)	1.254			Theta	star (bias co	orrected MLE)	1.513
49					nu hat (MLE)	45.93				nu star (b	ias corrected)	38.08
50				М	ean (detects)	1.921						
51												
52					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS may	y not be used	d when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DL	S	
54		GROS mag	y not be used	d when kstar	of detects is a	small such a	s <1.0, espe	cially when t	he sample s	ize is small	(e.g., <15-20)	
55			Fo	or such situa	tions, GROS I	method may	yield incorre	ect values of	UCLs and B	TVs		
56					This is especi	ally true whe	en the sample	e size is sma	all.			
57		For gar	mma distribu	ited detected	data, BTVs a	ind UCLs ma	ay be comput	ted using ga	mma distribu	ition on KM	estimates	
58					Minimum	0.36					Mean	1.886
59					Maximum	8.7					Median	1.75
60					SD	1.939					CV	1.028
61					k hat (MLE)	1.611			k	star (bias co	orrected MLE)	1.351
62				The	eta hat (MLE)	1.171			Theta	star (bias co	orrected MLE)	1.396
63					nu hat (MLE)	51.55				nu star (b	ias corrected)	43.22
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		App	proximate Ch	ni Square Va	lue (43.22, α)	29.15			Adjusted Ch	ni Square Va	alue (43.22, β)	27.83
66			95% 0	Gamma Appr	oximate UCL	2.796			95	5% Gamma	Adjusted UCL	2.928
67												
68				E	stimates of G	amma Para	meters using	g KM Estima	ites		05 ((0.0)	4 00 4
69					Mean (KM)	1.89					SD (KM)	1.884
70				V	ariance (KM)	3.551				SE	of Mean (KM)	0.49
71					k hat (KM)	1.006					k star (KM)	0.859
72					nu hat (KM)	32.2					nu star (KM)	27.5
73				ti	neta hat (KM)	1.878				tr	neta star (KM)	2.2
74			809	% gamma pe	ercentile (KM)	3.076			909	% gamma pe	ercentile (KM)	4.518
75			955	% gamma pe	ercentile (KM)	5.977			999	% gamma pe	ercentile (KM)	9.404
76					0							
77		A	wavimata Ok			a Kapian-M	eler (KM) St	atistics			(07 E0 0)	15 50
78		App		ni Square va	$\frac{100}{27.50}$	16.54				II Square va	alue $(27.50, \beta)$	15.58
79			95% KIVI A	Approximate	Gamma UCL	3.143			95% r	IM Adjusted	Gamma UCL	3.338
80					ognormal CC	E Tost on F	otacted Obc	on/otions O	nhv			
81			c	L Shaniro Wilk	Test Statistic			oci valions U	Shaniro W		et	
82			10% S	Shapiro Wilk	Critical Value	0.023	De	tected Data	Not Lognorn	nal at 10% S	Significance Lev	
83			10 /0 3		Test Statistic	0.301	De			GOF Teet		
84			10		Critical Value	0.200	De	tected Data	Not Lognorn	nal at 10% 9	Significance Le	vel
85					tected Data	lot Lognorm	al at 10% Si					
86				De			a a 10 /0 31	Sumeance r				
87												

UCL95_200_IA_2-ButanoneMEK

	А		В	С		D	E		F	G		Н			,			K	T	L
88						Lo	ognormal	ROS	Statistics	Using Imput	ted N	on-Dete	ects							
89					Me	an in C	original S	cale	1.877						1	Nean	in L	og Scal	е	0.286
90					S	SD in C	original S	cale	1.942							SD	in L	og Scal	е	0.862
91			95% t U	ICL (assum	ies nor	mality of	of ROS d	lata)	2.728					95% I	Percent	ile Bo	otst	rap UC	L	2.698
92					95% E	BCA Bo	ootstrap l	UCL	3.249						959	% Boc	otstra	ap t UC	L	3.585
93					95%	6 H-UC	L (Log R	OS)	3.367											
94																				
95				Stat	istics u	using K	(M estimation)	ates c	on Logged	Data and As	ssum	ng Logi	normal	Distri	ibution					
96						KM M	lean (logo	ged)	0.284							KI	ИG	eo Mea	n	1.328
97						KM	SD (logo	ged)	0.855				1	95% (Critical	H Val	ue (KM-Loç	J)	2.488
98				KM Stand	ard Err	or of M	lean (logo	ged)	0.226						95%	H-UC	CL (ł	<m -log<="" th=""><th>3)</th><th>3.312</th></m>	3)	3.312
99						KM	SD (logo	ged)	0.855				1	95% (Critical	H Val	ue (KM-Loç	3)	2.488
100				KM Stand	ard Err	or of M	lean (logo	ged)	0.226											
101																				
102									DL/2 Statistics											
103				DL/2	Norm	al							DL/2	Log-1	Transfo	rmed				
104					Me	an in C	riginal S	cale	2.054				Mean in Log Scale						е	0.361
105					5	SD in C	riginal S	cale	2.006							SD	in L	og Scal	е	0.905
106				95% t	UCL (/	Assum	es norma	ality)	2.933							95%	5 H-S	Stat UC	L	3.932
107				DL/2	? is not	a reco	ommende	ed me	thod, provi	ded for com	paris	ons and	1 histor	ical re	easons					
108																				
109							Nonpa	ramet	ric Distribu	tion Free U	CL S	atistics								
110							Data	do no	ot follow a D	Discernible [Distri	oution								
111																				
112								;	Suggested	UCL to Use	Э									
113						95%	% KM (t) l	UCL	2.749											
114																				
115			The ca	Iculated UC	CLs are	e based	d on assi	umpti	ons that the	e data were	colle	cted in a	a rando	om an	d unbia	ased r	man	ner.		
116						Pleas	se verify	the da	he data were collected from random locations.											
117	If the data were colle								cted using judgmental or other non-random methods,											
118						th	en conta	Ict a statistician to correctly calculate UCLs.												
119																				
120		Note:	Sugges	stions rega	ding th	ne seleo	ction of a	95%	UCL are pr	ovided to he	elp the	e user to	select	the m	nost ap	oropri	ate	95% U	CL.	
121			Recom	mendations	s are ba	ased up	pon data	size,	data distrib	ution, and sl	kewn	ess usir	ng resul	lts froi	m simu	ation	stuc	lies.		
122	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.										1.									
123																				

	А	В	С	D	E LICI Static	F	G	H Data Sata	I	J	K		L
1					UCL Statis		ensoreu Fuil	Data Sets					
2		User Se	lected Option	s									
3	Di	ate/Time of		ProUCL 5.2	3/6/2023 1:3	30:01 PM							
4			From File	UCL95 inpu	t Revised.x	ls							
5		F	Full Precision	OFF									
6 7		Confidenc	e Coefficient	95%									
/ 0	Number	of Bootstra	p Operations	2000									
o Q			· ·										
10													
11	200 IA 2-F	ropanol											
12													
13						General	Statistics						
14			Tota	al Number of O	bservations	16			Numbe	r of Distinct C	bservations	s .	15
15									Numbe	r of Missing C	bservations)	5	0
16					Minimum	0.95					Mean	۰ ۱	17.48
17					Maximum	68					Median	ı	7.65
18					SD	20.08				Std. E	rror of Mean	ı	5.021
19				Coefficient	of Variation	1.149					Skewness	5	1.292
20													
21						Normal (GOF Test						
22			10/ /	Shapiro Wilk T	est Statistic	0.813			Shapiro W	ilk GOF Test	<u> </u>		
23			1% \$	Shapiro Wilk C	ritical Value	0.844		Data No	ot Normal at	1% Significan	ice Level		
24				Lilliefors I	est Statistic	0.244		Data ann		GOF lest			
25				Data		U.240	rmal at 1% S						
26				Data	appear vpp			biginicance	Level				
27					As	sumina Nor	mal Distribut	ion					
28			95% N	Iormal UCL		g		95%	UCLs (Adju	usted for Ske	wness)		
29				95% Stud	lent's-t UCL	26.28			95% Adjust	ed-CLT UCL (Chen-1995)		27.47
30									95% Modifi	ed-t UCL (Joł	nnson-1978)		26.55
31 22													
32 33						Gamma	GOF Test						
34				A-D T	est Statistic	0.685		Ande	rson-Darling	Gamma GO	F Test		
35				5% A-D C	ritical Value	0.776	Detected	d data appea	ar Gamma D	istributed at 5	% Significa	nce L	evel
36				K-S T	est Statistic	0.221		Kolmog	jorov-Smirn	ov Gamma G	OF Test		
37				5% K-S C	ritical Value	0.224	Detected	d data appea	ar Gamma D	istributed at 5	% Significa	nce L	evel
38		Detected data ap					stributed at 5	5% Significa	ince Level				
39													
40						Gamma	Statistics						
41					k hat (MLE)	0.732			k	star (bias cor	rected MLE))	0.637
42				Thet	a hat (MLE)	23.87			Theta	star (bias cor	rected MLE)) 2	27.45
43				n	u hat (MLE)	23.43				nu star (bia	s corrected)		20.37
44			Ν	ILE Mean (bias	s corrected)	17.48			A	MLE Sd (bia	s corrected)) 2	21.91
45			A		Diamifi	0.0005			Approximate	e Chi Square	value (0.05))	11.13
46			Adju	isted Level of S	Significance	0.0335			A	ajusted Chi S	quare Value		10.35
47													

	А		В	С	,	D	E	F	G	. н		J	К	L
48				01			As	suming Gam	ima Distribut	ion	0		0	24.20
49				9	5% A	pproximate (Jamma UCL	32			95	5% Adjusted	Gamma UCL	34.39
50								Lognorma	GOE Test					
51					9	haniro Wilk	Foot Statistic		IGOF Test	Sha	piro Wilk Lo	anormal GO	E Toet	
52				10	0% Sł	napiro Wilk (ritical Value	0.911		Data annea		at 10% Sign	ificance Level	
53					0 /0 01		Test Statistic	0.196						
54					10	% Lilliefors (Critical Value	0.196		Data Not I		t 10% Signifi	cance Level	
55					10	Data a	ppear Approx	cimate Loan	ormal at 10%	5 Significan	ce Level			
56										g				
5/								Lognorma	I Statistics					
50					1	Minimum of	Logged Data	-0.0513				Mean of	f logged Data	2.041
60					N	laximum of	Logged Data	4.22				SD of	f logged Data	1.442
61														
62							Assu	uming Logno	ormal Distribu	ution				
63							95% H-UCL	78.32			90%	Chebyshev	(MVUE) UCL	43.53
64				9	95% (Chebyshev (MVUE) UCL	54.46			97.5%	Chebyshev	(MVUE) UCL	69.62
65				ę	99% (Chebyshev (MVUE) UCL	99.41						
66									I				I	
67							Nonparame	etric Distribu	tion Free UC	L Statistics				
68							Data appea	r to follow a	Discernible	Distribution				
69														
70							Nonpa	rametric Dis	tribution Free	e UCLs				
71						95	5% CLT UCL	25.74				95% BCA B	ootstrap UCL	26.85
72					95%	Standard Bo	otstrap UCL	25.4				95% Bo	otstrap-t UCL	30.33
73					9	5% Hall's Bo	otstrap UCL	29.27			95%	Percentile B	ootstrap UCL	25.42
74				90	% Ch	ebyshev(Me	an, Sd) UCL	32.54			95% C	hebyshev(Me	ean, Sd) UCL	39.36
75				97.5	% Ch	ebyshev(Me	an, Sd) UCL	48.84			99% C	hebyshev(Me	∋an, Sd) UCL	67.44
76								0						
77						050/ 04		Suggested	UCL to Use					
78						95% Stu	dent's-t UCL	26.28						
79			The er			a ara basa		ions that the	dete wore e	ollogtod in	o rondom o	nd unbiogod	monnor	
80			The Ca	liculated			on assumpt	lons unat une	lected from		atione			
81						lf the data w			mental or oth	er non-ranc	lom method	e		
82						th	en contact a	statistician t		alculate UC		3,		
83														
84					When	a data set f	ollows an app	proximate dis	tribution pas	sina onlv on	e of the GO	F tests.		
85				it	is su	a acted to u	se a UCL bas	ed upon a d	istribution pas	ssing both (GOF tests in	ProUCL		
86						59				g				
0/ 00		Note	e: Sugge	stions re	egard	ing the seled	tion of a 95%	UCL are pr	ovided to help	p the user to	select the i	most appropr	iate 95% UCL.	
00 80			Recorr	nmendat	tions a	are based up	oon data size,	, data distrib	ution, and ske	ewness usir	ng results fro	om simulation	studies.	
90	Н	lowe	ver, simu	lations r	result	s will not cov	ver all Real W	/orld data se	ts; for additio	nal insight t	he user may	want to cons	sult a statisticia	an.
91														

	А	В	С	D	E	F	G	Н		J	К	L			
1					UCL Statis	stics for Unc	ensored Full	Data Sets							
2				1											
3		User Sele	cted Options		0/0/0000 1 0	0.40 514									
4	Da	ate/Time of Co		ProUCL 5.2	3/6/2023 1:3	2:42 PM									
5		F	From File		it_Revised.x	IS									
6		Fu	Il Precision												
7	Numerie en	Confidence		95%											
8	Number	of Bootstrap	Operations	2000											
9															
10	200 IA Ace	atone													
11															
12						General	Statistics								
13			Total	Number of C	bservations	16			Numbe	r of Distinct (Observations	14			
14									Numbe	of Missing (Observations	0			
15					Minimum	2.4				g	Mean	10.48			
16					Maximum	30					Median	9.35			
17					SD	8.196				Std. E	Error of Mean	2.049			
18				Coefficient	of Variation	0.782					Skewness	1.652			
19															
20						Normal (GOF Test								
21			S	Shapiro Wilk T	est Statistic	0.785			Shapiro Wi	Ik GOF Test	t				
22			1% S	hapiro Wilk C	ritical Value	0.844		Data No	t Normal at	1% Significa	nce Level				
23				Lilliefors T	est Statistic	0.254			Lilliefors	GOF Test					
25			1	% Lilliefors C	ritical Value	0.248		Data No	t Normal at	1% Significa	nce Level				
26					Data Not	Normal at 1	% Significar	nce Level							
27															
28					As	Assuming Normal Distribution									
29			95% N	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)				
30				95% Stu	dent's-t UCL	14.07			95% Adjuste	ed-CLT UCL	(Chen-1995)	14.75			
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	14.21			
32															
33						Gamma	GOF Test								
34				A-D T	est Statistic	0.477		Ande	rson-Darling	Gamma GC	OF Test				
35				5% A-D C	ritical Value	0.75	Detected	d data appea	ar Gamma D	stributed at	5% Significan	ice Level			
36				K-S T	est Statistic	0.165		Kolmog	jorov-Smirno	ov Gamma G	GOF Test				
37				5% K-S C	ritical Value	0.218	Detected	d data appea	ar Gamma D	stributed at	5% Significan	ice Level			
38				Detected	data appear	r Gamma Di	stributed at 5	5% Significa	nce Level						
39							• •••••								
40						Gamma	Statistics					4 754			
41				-	κ nat (MLE)	2.104			k	star (bias co	rrected MLE)	1.751			
42		nu hat (M							Ineta	star (bias co		5.982			
43		MLE Mean (bias correct										20.04 7.016			
44			IVI	LE IVIean (DIA	s corrected)	10.48			Approvimet			1.910			
45			۰۰۰۰۰ ۲۰۰۰	stad Loval of	Significance	0 0335			Approximate			30.00			
46			Aajus		Significance	0.0335			A	ajusteu Chi S		J0.2Ŏ			
47															

	Α	В		С	1	D	Т	F	F		G		Н			1		J			К	Т		
48		Assuming Gamma Distribution																						
49	95% Approximate Gamma UCL 14.74 95% Adjusted Gamma UCL 1														15.33									
50																								
51	Lognormal GOF Test																							
52	Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Lognormal GOF Test																							
53	53 10% Shapiro Wilk Critical Value 0.906 Dat														ta appear Lognormal at 10% Significance Level									
54	4 Lilliefors Test Statistic 0.138 Lilliefors Lognormal GOF Test															st								
55		10% Lilliefors Critical Value 0.196 Data appear Lognormal at 10% Significance Level																						
56		Data appear Lognormal at 10% Significance Level																						
57																								
58	Lognormal Statistics																							
59	9 Minimum of Logged Data 0.875													Mean of logged Data							1	2.093		
60		3.401		SD of logged Data										0.746										
61																								
62		Assuming Lognormal Distribution																						
63		95% H-UC									90% Chebyshev (MVUI								E) UCL		16.71			
64		95% Chebyshev (MVUE) UCL							. 19.54			97.5% Chebyshev (MVUE) UCI									23.46			
65		. 31.15																						
66																								
67		Nonparametric Distribution Free UCL Statistics																						
68		Data appear to follow a Discernible Distribution																						
69																								
70		Nonparametric Distribution Free UCLs																						
71	95% CLT UC								. 13.85	13.85 95							95%	5% BCA Bootstrap UCL					14.63	
72		95% Standard Bootstrap UC							. 13.73	13.73							95% Bootstrap-t UCL						17.39	
73	95% Hall's Bootstrap UCL								. 36.36	/b.3b 95% Percent								entile	e Bootstrap UCL				13.89	
74	90% Chebyshev(Mean, Sd) UCL								. 16.62						95	5% Ch	ebys	hev(l	Mear	n, So	d) UCL		19.41	
75	97.5% Chebyshev(Mean, Sd) UCL										99% Chebyshev(Mean, Sd)						d) UCL	-	30.86					
76																								
77		Suggested UCL to Use																						
78	95% Adjusted Gamma UCL									15.33														
79																								
80		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.																						
81		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.																						
82	Ho	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.																						
83																								
	Δ	B			F	F	G	н	1		ĸ	1												
----	-------------	--------------	---------------	----------------------	---------------	---------------	----------------	--------------------------	---------------	-----------------	---------------	-------												
1	~				UCL Statis	tics for Data	Sets with No	on-Detects																
2																								
3		User Sele	ected Options																					
4	Dat	e/Time of C	omputation	ProUCL 5.2	3/6/2023 1:3	4:36 PM																		
5			From File	UCL95_input	t_Revised.x	ls																		
6		Fu	III Precision	OFF																				
7		Confidence	Coefficient	95%																				
8	Number o	of Bootstrap	Operations	2000																				
9																								
10	200 IA Acet	one																						
11																								
12						General	Statistics																	
13			Total	Number of Ol	bservations	16			Numbe	r of Distinct (Observations	14												
14				Number	r of Detects	15				Number of	Non-Detects	1												
15			N	umber of Disti	nct Detects	13			Numbe	er of Distinct	Non-Detects	1												
16				Minin	num Detect	2.4				Minimun	Non-Detect	30												
17				Maxin	num Detect	29				Maximun	Non-Detect	30												
18				Variar	nce Detects	42.93				Percent	Non-Detects	6.25%												
19				Me	ean Detects	9.173					SD Detects	6.552												
20				Med	ian Detects	8.7					CV Detects	0.714												
21				Skewne	ess Detects	2.015				Kur	tosis Detects	5.829												
22				Mean of Logg	ged Detects	2.006				SD of Log	ged Detects	0.682												
23																								
24					Norm	al GOF Tes	t on Detects	Only																
25			S	hapiro Wilk Te	est Statistic	0.796			Shapiro W	ilk GOF Test	!													
26			1% S	hapiro Wilk Cr	ritical Value	0.835	C	etected Data	a Not Norm	al at 1% Sigr	ificance Leve	el												
27				Lilliefors Te	est Statistic	0.213			Lilliefors	GOF Test														
28			1	% Lilliefors Cr	ritical Value	0.255	De	tected Data	appear Nor	mal at 1% Sig	jnificance Le	vel												
29				Detected D	Data appear	Approximat	e Normal at	1% Significa	nce Level															
30																								
31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Values	s and other l	Nonparame	tric UCLs		1 000												
32					KM Mean	9.1/3			KI	V Standard E	rror of Mean	1.692												
33				05%	90KM SD	6.33			050/ 1/14/	95% KN	1 (BCA) UCL	12.21												
34				95%		12.14			95% KM (F	vercentile Bo	otstrap) UCL	10.00												
35				95% 1		11.96				95% KM Boo		13.62												
36			07		ysnev UCL	14.25				95% KM Che	bysnev UCL	16.55												
37			97	.5% KIVI Cheb	ysnev UCL	19.74				99% KIVI Che	bysnev UCL	20.01												
38						Tooto on Di	tootod Ober	notions 0-	h.z															
39					amma GUF				y domon D-		oct													
40				5% A D C	ritical Value	0.411	Datastad				5% Significan													
41				J /0 A-D U	nucal value	0.740	Delected			Smirnov CC														
42				ר-ט ו (5% ג-פ רי	ritical Value	0.147	Detectod	A conce etch l	r Gamma D	istributed at l	5% Significar													
43				Detected	data annea	Gamma Di	stributed at 5																	
44				Derected	uara ahheai			no Significar																
45																								

UCL95_200_IA_Acetone_NDs

	А	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	n Detected E	Data Only				
47					k hat (MLE)	2.528			k s	star (bias cor	rected MLE)	2.067
48				The	eta hat (MLE)	3.628			Theta s	star (bias cor	rected MLE)	4.438
49					nu hat (MLE)	75.85				nu star (bia	as corrected)	62.01
50				Me	ean (detects)	9.173						
51												
52					Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
53			GROS may	y not be used	l when data s	et has > 50%	6 NDs with n	nany tied obs	ervations at	multiple DLs		
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
55			Fo	or such situat	tions, GROS	method may	yield incorre	ect values of	UCLs and B	rVs		
56				-	This is espec	ially true whe	en the sampl	e size is sma	II.			
57		For gar	nma distribu	ted detected	data, BTVs a	and UCLs ma	ay be compu	ted using gar	nma distribu	tion on KM e	stimates	
58					Minimum	2.4					Mean	9.108
59					Maximum	29					Median	8.413
60					SD	6.335					CV	0.696
61					k hat (MLE)	2.682			k s	star (bias cor	rected MLE)	2.221
62				The	eta hat (MLE)	3.396			Theta s	star (bias cor	rected MLE)	4.101
63					nu hat (MLE)	85.82				nu star (bia	as corrected)	71.06
64			Adjusted	d Level of Sig	gnificance (β)	0.0335				-		
65		Арр	proximate Ch	ii Square Val	ue (71.06, α)	52.65			Adjusted Ch	i Square Val	ue (71.06, β)	50.85
66			95% G	Bamma Appro	oximate UCL	12.29			95	% Gamma A	djusted UCL	12.73
67							<u> </u>		-			
68				E	stimates of G	iamma Para	meters using	g KM Estima	tes			0.00
69					Mean (KM)	9.173				05	SD (KM)	6.33
70				V	ariance (KM)	40.07				SE 0	f Mean (KM)	1.692
71					k hat (KM)	2.1					k star (KM)	1.748
72					nu hat (KM)	67.2					nu star (KM)	55.94
73			0.00	tr	neta hat (KM)	4.368			000	, the	eta star (KM)	5.248
74			805	% gamma pe		13.95			90%	o gamma per	rcentile (KIVI)	18.42
75			955	∞ gamma pe	rcentile (KM)	22.72			99%	o gamma per	centile (KM)	32.33
76					0	o Korlen M	olor (KM) O					
77		۸	rovimete Ch				eiei (r\ivi) Si	ausucs	Adjusted Ch	Caucia Val		20.2
78		Арр		n Square var	1000000000000000000000000000000000000	39.75				A diveted ($ue(55.94, \beta)$	38.2
79			90% KIVI A	vpproximate (Gamma UCL	12.91			90% K	w Aujusted (aamina UCL	13.43
80					ognormal CC	E Test on D	latacted Ob	envetione O	nlv			
81			c	L(Tost Statistic			SCI VALIONS O	Shaniro \//i			
82			10% 0		Critical Value	0.943	Detr	acted Data ar			Significance !	ovol
83			10% 5			0.901	Dete				Significance L	
84			10		ritical Value	0.139	Detr	acted Data ar		mal at 100/ 9	Significance	ovol
85							mal at 10%	Significance		mai at 10 /0 ·		
86				Dete	степ рага ар	pear Lugrior		Signincance	Level			
87												

UCL95_200_IA_Acetone_NDs

	А	В		С		D	ognorn	E nal PO	F S Statistics	G	moute	d Nor	- Detec	 te		J		K		L
88					Mc				0.064		mpute		-Delec	13		Mc	on ir			2 006
89					IVIC	SD in	Original		6 345							ivic				0.659
90		95% t l	ICI (a	ssum	es no	rmality		Aata)	11 85					c)5% F	ercentile		tetran LIC		11.86
91		557010		Joguin	95%		Rootstra		12.63						70 /0 1	95%		stran t LIC	1	13.26
92					959	<u>ж н-Ці</u>			13.49							5570		3000100	-	10.20
93								g1100)	10.40											
94				Stati	istics	usina	KM esti	imates	on Logged	Data ar	nd Ass	umin		rmal I	Distril	oution				
95				otati		KM	Mean (lo		2 006				Logino		olotin		KM	Geo Mea	n	7 431
96						K			0.659					c	95% C	ritical H	Valu		1)	2 229
97			KMS	Standa	ard Fr		Mean (le		0.000						<i>10 /0</i> C	95% H			און און	13.49
98						K			0.170					c	95% C	ritical H	Valu		ש) רב	2 229
99			KMS	Standa	ard Fr		Mean (lo		0.176						<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		vara		3/	2.220
100							mean (it	oggeu)	0.170											
101									DI /2 S	tatistics	\$									
102				DI /2	Norm	nal								1 2/ IO	T-DO	ransform	hed			
103					Me	an in	Original	l Scale	9.538							Me	an ir	n Log Scal	е	2.05
104						SD in	Original	l Scale	6.495								SD ir	n Log Scal	e	0.682
105			ç	95% t	UCL	Assur	nes nor	mality)	12.38							ç)5%	H-Stat UC	L	14.58
105				DL/2	is no	t a rec	commer	nded m	ethod, provi	ded for	comp	arisor	ns and h	nistori	cal re	asons				
107									· •		•									
108							Non	parame	etric Distribu	tion Fre	ee UC	L Sta	istics							
109				De	etecte	d Data	a appea	ar Appr	oximate No	mal Dis	stribut	ed at	1% Sigi	nificar	nce Le	vel				
111							••	••												
112									Suggested	UCL to	Use									
112						95	5% KM (t) UCL	12.14											
114																				
115				Whe	n a da	ata set	follows	an app	oroximate di	stributio	n pas	sing o	nly one	of the	GOF	tests,				
116				it is sı	ugges	ted to	use a U	JCL bas	sed upon a c	listributi	on pa	ssing	both GC)F test	ts in F	roUCL				
117																				
118		Note: Sugge	stions	regar	ding t	he sele	ection o	of a 95%	6 UCL are p	ovided	to hel	p the ı	iser to s	elect	the m	ost appro	opria	te 95% UC	CL.	
119		Recorr	nmenda	ations	are b	ased u	upon da	ata size	, data distrib	ution, a	nd ske	ewnes	s using	result	s fron	n simulat	ion s	tudies.		
120	Hc	wever, simu	lations	s resu	lts wil	l not co	over all	Real W	/orld data se	ts; for a	additio	nal ins	ight the	user	may v	vant to c	onsu	lt a statisti	ician	
121																				

		1		1						1		
1	A	В	C	D	UCL Statis	F tics for Data	G Gets with No	H Detects	Ι	J	K	L
2												
3		User Sele	ected Option	S								
4	Dat	e/Time of C	Computation	ProUCL 5.2	2 3/6/2023 1:3	5:23 PM						
5			From File	UCL95_inp	out_Revised.xl	s						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Benz	zene										
11						Osmanal	Otatiatiaa					
12			Tota	Number of	Obconvotions		Statistics		Numbo	r of Dictinct	Observations	12
13			TOLE		or of Dotocts	0			Numbe	Number of		12
14			Ν		stinct Detects	8			Numb	Pr of Distinct	Non-Detects	6
15				Mir	nimum Detect	0.23				Minimur	n Non-Detect	0.25
16				Мах	kimum Detect	1.6				Maximur	n Non-Detect	6.2
17				Vari	ance Detects	0.227				Percent	Non-Detects	43.75%
10				Ν	Aean Detects	0.55					SD Detects	0.477
20				Me	edian Detects	0.31					CV Detects	0.867
20				Skew	ness Detects	1.796				Kur	tosis Detects	2.368
22				Mean of Log	gged Detects	-0.844				SD of Log	gged Detects	0.684
23												
24					Norm	al GOF Tes	t on Detects	Only				
25				Shapiro Wilk	Test Statistic	0.703			Shapiro W	ilk GOF Tes	t	
26			1% \$	Shapiro Wilk	Critical Value	0.764	D	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	
27				Lilliefors	Test Statistic	0.328			Lilliefors	GOF Test		
28				1% Lilliefors	Critical Value	0.316	D	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	
29					Detected Data	Not Norma	al at 1% Signi	ficance Leve	əl			
30			Kanlan	Maion (KM)	Otatiatian wais			and athen b				
31			Kapian	-Meler (KM)	Statistics usir		ntical values	and other r	vonparame		Fror of Moon	0 104
32						0.427						0.104
33				959	901(W 3D	0.58			95% KM (F	Percentile Bo	otstran) UCL	0.003
34				95%	6 KM (z) UCL	0.598				95% KM Bo	otstrap t UCL	1.224
35				90% KM Che	ebvshev UCL	0.739				95% KM Che	ebvshev UCL	0.88
30			9	7.5% KM Che	ebyshev UCL	1.077				99% KM Che	ebyshev UCL	1.462
37												
30					Gamma GOF	Tests on De	etected Obse	rvations Onl	у			
40				A-D	Test Statistic	0.966		Ar	nderson-Da	rling GOF T	est	
41				5% A-D	Critical Value	0.729	Detecte	d Data Not (Gamma Dis	tributed at 5°	% Significanc	e Level
42				K-S	Test Statistic	0.278		К	olmogorov	Smirnov GC	DF	
43				5% K-S	Critical Value	0.282	Detected	data appear	Gamma D	istributed at	5% Significan	ce Level
44				Detected d	ata follow Ap	or. Gamma	Distribution a	t 5% Signific	cance Leve			
45				No	te GOF tests	may be unre	eliable for sma	all sample s	izes			
46												

UCL95_200_IA_Benzene

		-					1	-	1	T	· · · · ·	
47	A	В	C	D	E Gamma	F Statistics or	G n Detected D	H Data Only		J	K	L
47					k hat (MLE)	2.187		•	k	star (bias co	rrected MLE)	1.532
40				The	eta hat (MLE)	0.251			Theta	star (bias co	rrected MLE)	0.359
50					nu hat (MLE)	39.37				nu star (bi	as corrected)	27.58
51				М	ean (detects)	0.55						
52							J.				L	
53				I	Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
54			GROS may	y not be used	d when data se	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs	3	
55		GROS may	/ not be use	d when kstar	of detects is s	small such a	is <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
56			Fo	or such situa	tions, GROS r	method may	yield incorre	ect values of	UCLs and B	TVs		
57					This is especi	ally true whe	en the sample	e size is sma	all.			
58		For gan	nma distribu	ited detected	data, BTVs a	nd UCLs ma	ay be compu	ted using gai	mma distribu	tion on KM e	estimates	
59					Minimum	0.01					Mean	0.353
60					Maximum	1.6					Median	0.255
61					SD	0.422					CV	1.196
62					k hat (MLE)	0.909				star (bias co	rrected MLE)	0.781
63				Ine	eta hat (MLE)	0.388			Ineta	star (bias co		0.452
64			Adjuctor	d Loval of Sid	nu nat (MLE)	29.1				nu star (bi	as corrected)	24.98
65		٨٥٥				14.6			Adjusted Ch	i Squaro Val		13.7
66		Арр	95% (amma Annr	rovimate LICI	0.604				% Gamma A	diusted UCI	0.643
67			3578 0	даннна дррг		0.004					lujusted UCL	0.043
68				E	stimates of G	amma Para	meters usin	a KM Estima	ites			
69 70					Mean (KM)	0.427					SD (KM)	0.38
70				V	ariance (KM)	0.144				SEC	of Mean (KM)	0.104
71					k hat (KM)	1.261					k star (KM)	1.066
72					nu hat (KM)	40.36					nu star (KM)	34.13
73				tł	neta hat (KM)	0.338				th	eta star (KM)	0.4
74			809	% gamma pe	ercentile (KM)	0.683			90%	6 gamma pe	rcentile (KM)	0.967
76			959	% gamma pe	ercentile (KM)	1.249			99%	% gamma pe	rcentile (KM)	1.902
77												
78					Gamm	a Kaplan-M	eier (KM) St	atistics				
79		Арр	oroximate Ch	ni Square Va	lue (34.13, α)	21.77			Adjusted Ch	i Square Val	lue (34.13, β)	20.65
80			95% KM A	Approximate	Gamma UCL	0.669			95% K	M Adjusted	Gamma UCL	0.705
81												
82				L	ognormal GO	F Test on D	etected Obs	servations O	nly			
83			5	Shapiro Wilk	Test Statistic	0.824			Shapiro Wi	lk GOF Tes	t	
84			10% S	Shapiro Wilk	Critical Value	0.859	De	etected Data	Not Lognorm	nal at 10% S	ignificance Le	vel
85				Lilliefors	Test Statistic	0.24			Lilliefors	GOF Test		
86			10	0% Lilliefors	Critical Value	0.252	Dete	ected Data a	opear Lognoi	rmal at 10%	Significance L	evel
87				Detected D	ata appear A	pproximate	Lognormal a	at 10% Signif	icance Leve			
88				No	te GOF tests	may be unre	eliable for sn	nall sample :	SIZES			
89												

UCL95_200_IA_Benzene

	•		-		1		-	-	-	1	0							<u> </u>			
90	A	В		U		<u> </u>	Lognorr	nal RO	I	Using	Impute	d Non	-Detec	ts		J		r	\	L	
91					Me	ean in	Origina	I Scale	0.405							M	ean in l	Log	Scale	-1.15	5
92						SD in	Origina	I Scale	0.389								SD in I	Log	Scale	0.6	31
93		95% t	UCL	(assum	nes no	rmality	of RO	S data)	0.575					9	5% P	ercentil	e Boots	strap	o UCL	0.5	81
94					95%	BCA B	Bootstra	ap UCL	0.639							95%	Bootst	trap	t UCL	1.0	8
95					959	% H-U	CL (Log	g ROS)	0.553												
96																					
97				Stat	istics	using	KM est	timates	on Logged	Data a	and As	suming	Logno	rmal C	Distrib	ution					
98						KM	Mean (I	ogged)	-1.076								KMC	Geo	Mean	0.3	41
99						K	M SD (I	ogged)	0.577					9	5% C	ritical H	Value	(KN	1-Log)	2.1	33
100			KM	Stand	ard Er	ror of	Mean (I	ogged)	0.159							95% H	I-UCL	(KM	-Log)	0.5	53
101						K	M SD (I	ogged)	0.577					9	5% C	ritical H	Value	(KN	1-Log)	2.1	33
102			KM	Stand	ard Er	ror of	Mean (I	ogged)	0.159												
103			N	ote: KN	UCL	s may	be bia	sed lov	v with this d	ataset.	Other	substit	ution n	nethod	l reco	mmend	ed				
104																					
105									DL/2 \$	Statisti	cs										
106				DL/2	Norm	nal								DL/2 L	.og-Tr	ansforr	ned				
107					Me	ean in	Origina	I Scale	0.558							M	ean in l	Log	Scale	-1.13	31
108						SD in	Origina	I Scale	0.788								SD in I	Log	Scale	0.9	52
109				95% t	UCL	(Assur	mes nor	rmality)	0.903								95% H	-Sta	t UCL	0.9	7
110				DL/2	2 is no	t a rec	comme	nded m	ethod, prov	ided fo	or comp	arison	s and r	istorio	cal rea	asons					
111							New		atala Distaila				-								
112				D			NON	param				LStat	Stics								
113				D	electe	a Data	a appea	ar Appr	oximate Ga	mma L	vistridu	ted at :	o% Sigi	nifican		evei					
114									Suggostor												
115				05%		liuctor	1 Comm			JUCL	lo Use			05%		Adjuct	ad Car	<u></u>		0.6	12
116				95 %		Jusiec	Gamin		0.705					95 /6 0	anua	Aujusi	eu Gai		3 UCL	0.0	43
117				W/bc	n a d	ata sot	tfollows	an an	provimate di	istributi	ion nas	sina or	ly one	of the	COF	tasts					
118				itice						distribu	ition na	sing of			e in P						
119				11 13 3	uyyes					uistribu	luon pa	SSING L			5 11 1	IUUUL					
120		Note: Suga	estion	s rena	rdina t	he sel	ection c	of a 95%	6 UCL are n	rovide	to hel	n the u	ser to s	elect t	he mo	ost annr	onriate	95			
121		Reco	mmer	dation	s are h	based	upon da	ata size	. data distrit	oution	and sk	ewness	s usina	results	s from	simula	tion st	udie	 S.		
122	Но	wever. sim	nulatio	ns resu	Its wil	I not c	over all	Real V	Vorld data se	ets; for	additio	nal ins	ght the	userr	nav w	ant to c	onsult	a st	atistici	ian.	
123		,								-,			5		- , .						
124																					

	٨	1	D				_	0		<u>г г</u>	<u> </u>	L/	
1	A		D			UCL Statis	tics for Data	Sets with N	on-Detects		J	ĸ	L
2													
3		Us	er Sele	cted Options	s								
4	D	ate/Tin	ne of Co	omputation	ProUCL 5.2	2 3/6/2023 1:3	36:19 PM						
5				From File	UCL95_inp	ut_Revised.x	ls						
6			Ful	I Precision	OFF								
7		Conf	idence	Coefficient	95%								
8	Number	of Boo	otstrap (Operations	2000								
9													
10	200 IA Ca	rbon T	etrachl	oride									
11													
12							General	Statistics					
13				Tota	I Number of (Observations	16			Numbe	r of Distinct (Observations	8
14					Numb	er of Detects	15				Number of	Non-Detects	1
15				N	lumber of Dis	stinct Detects	7			Numbe	er of Distinct	Non-Detects	1
16					Min	imum Detect	0.37				Minimum	n Non-Detect	5.8
17					Max	timum Detect	0.45				Maximum	n Non-Detect	5.8
18					Varia	ance Detects	6.2857E-4				Percent	Non-Detects	6.25%
19					N	lean Detects	0.4					SD Detects	0.0251
20					Me	edian Detects	0.39					CV Detects	0.0627
21					Skew	ness Detects	0.628				Kurl	tosis Detects	-0.587
22					Mean of Log	gged Detects	-0.918				SD of Log	gged Detects	0.0618
23													
24						Norn	nal GOF Tes	t on Detects	Only				
25					Shapiro Wilk	Test Statistic	0.908			Shapiro Wi	Ik GOF Test	1	
26				1% S	Shapiro Wilk (Critical Value	0.835	De	etected Data	appear Norr	nal at 1% Sig	gnificance Lev	vel
27					Lilliefors	Test Statistic	0.188			Lilliefors	GOF Test		
28				1	1% Lilliefors (Critical Value	0.255	De	etected Data	appear Norr	nal at 1% Sig	gnificance Lev	vel
29					De	etected Data	appear Norn	nal at 1% Sig	inificance L	evel			
30													
31				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	ritical Value	s and other	Nonparamet			
32						KM Mean	0.4			KN	A Standard E	rror of Mean	0.00647
33						90KM SD	0.0242			050/ 1/14/15	95% KN	I (BCA) UCL	0.411
34					95%		0.411			95% KM (P		otstrap) UCL	0.41
35					95%		0.411					Distrap t UCL	0.413
36				0		ebysnev UCL	0.419					bysnev UCL	0.428
37				9/			U.44	taaat Othar	aubatitution	mothed ree		ebysnev UCL	0.464
38							v wiut this da	iaset. Uther	SUDSTITUTION	method lec	ommended		
39							Tooto on D	tootod Ohaa	notione Or				
40					(Tost Statiatia						oct	
41					A-D		0.301	Dotooto		anderson-Da		5% Significan	
42					5% A-D (Tost Statiatia	0.734	Detected			Smirnov CC	s /o significan	Ce Level
43					۲۵ ۲% ۲ ۵ ۱	Critical Value	0.190	Detector	I sonne eteb t	ar Gamma Di	istributed at 1	n 5% Significan	
44					Detector			etributed at f	uala appea				
45					Delecte	u uata appea				IICE LEVEI			
46													

UCL95_200_IA_Carbon_Tetrachloride

	А	В	С	D	E	F	G	Н		J	K	L
47					Gamma	Statistics or	Detected D	ata Only				
48					k hat (MLE)	278.1			k :	star (bias cor	rected MLE)	222.6
49				The	ta hat (MLE)	0.00144			Theta	star (bias cor	rected MLE)	0.0018
50				r	nu hat (MLE)	8344				nu star (bia	as corrected)	6677
51				Me	an (detects)	0.4						
52												
53				G	amma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
54			GROS may	not be used	when data s	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs		
55		GROS may	not be used	when kstar of	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
56			Fo	r such situati	ons, GROS	method may	yield incorre	ct values of	UCLs and B	ΓVs		
57				T	his is espec	ially true whe	en the sample	e size is sma	all.			
58		For gan	nma distribut	ed detected	data, BTVs a	and UCLs ma	y be comput	ed using ga	mma distribu	tion on KM e	stimates	
59					Minimum	0.37					Mean	0.4
60					Maximum	0.45					Median	0.395
61					SD	0.0242					CV	0.0606
62					k hat (MLE)	296.7			k	star (bias cor	rected MLE)	241.1
63				The	ta hat (MLE)	0.00135			Theta	star (bias cor	rected MLE)	0.00166
64				r	nu hat (MLE)	9494				nu star (bia	as corrected)	7715
65			Adjusted	Level of Sig	nificance (β)	0.0335						
66		Ap	oproximate C	hi Square Va	alue (N/A, α)	7512			Adjusted C	Chi Square V	alue (N/A, β)	7489
67			95% G	amma Appro	ximate UCL	0.411			95	% Gamma A	djusted UCL	0.412
68												
69				Es	timates of G	amma Para	meters using	g KM Estima	ites			
70					Mean (KM)	0.4					SD (KM)	0.0242
71				Va	ariance (KM)	5.8667E-4				SE o	f Mean (KM)	0.00647
72					k hat (KM)	272.7					k star (KM)	221.6
73					nu hat (KM)	8727					nu star (KM)	7092
74				the	eta hat (KM)	0.00147				the	eta star (KM)	0.0018
75			80%	6 gamma per	centile (KM)	0.422			90%	6 gamma pe	rcentile (KM)	0.435
76			95%	6 gamma per	centile (KM)	0.445			99%	6 gamma pe	rcentile (KM)	0.465
77												
78					Gamn	na Kaplan-M	eier (KM) St	atistics				
79		Ap	oproximate C	hi Square Va	alue (N/A, α)	6897			Adjusted C	Chi Square V	alue (N/A, β)	6876
80			95% KM A	pproximate G	Gamma UCL	0.411			95% K	M Adjusted (Gamma UCL	0.413
81			Note: KM	UCLs may b	e biased low	v with this da	taset. Other	substitution	method rec	ommended		
82												
83				Lo	gnormal GC	OF Test on D	etected Obs	ervations O	nly			
84			S	hapiro Wilk T	est Statistic	0.914			Shapiro Wi	lk GOF Test		
85			10% SI	napiro Wilk C	critical Value	0.901	Dete	ected Data a	opear Lognoi	mal at 10%	Significance I	_evel
86				Lilliefors T	est Statistic	0.188			Lilliefors	GOF Test		
87			10	% Lilliefors C	critical Value	0.202	Dete	ected Data a	opear Lognoi	rmal at 10%	Significance I	_evel
88				Detec	cted Data ap	pear Lognor	mal at 10%	Significance	Level			
89												

UCL95_200_IA_Carbon_Tetrachloride

	А	В	С		D		E	F	G		Н	Τ			J		K		L
90					L	ognorm	al RO	S Statistics	Using Im	pute	d Non-	Deteo	cts						
91				М	ean in (Original	Scale	0.4							Me	an ir	n Log Sc	ale	-0.918
92					SD in (Original	Scale	0.0242								SD ir	n Log Sc	ale	0.0597
93		95% t L	JCL (assun	nes no	ormality	of ROS	data)	0.411						95% I	Percentil	e Boc	otstrap U	CL	0.41
94				95%	BCA B	Bootstrap	p UCL	0.411							95%	Boot	strap t U	CL	0.412
95				95	% H-U0	CL (Log	ROS)	N/A								-			
96																		1	
97			Sta	tistics	using l	KM esti	mates	on Logged	Data and	l Ass	uming	Logn	ormal	Distri	bution				
98					KMN	Mean (lo	gged)	-0.918								KM	Geo Me	ean	0.399
99					K١	VI SD (lo	gged)	0.0597					1	95% (Critical H	Valu	e (KM-L	og)	N/A
100			KM Stand	Jard E	rror of N	Mean (lo	gged)	0.016							95% H	-UCI	_ (KM -L	og)	N/A
101					K١	M SD (lo	gged)	0.0597					1	95% (Critical H	Valu	e (KM-L	og)	N/A
102			KM Stand	Jard E	rror of N	Mean (lo	gged)	0.016											
103								·											
104								DL/2 S	tatistics										
105			DL/2	2 Norr	nal								DL/2	Log-1	ransform	ned			
106				М	ean in (Original	Scale	0.556							Me	ean ir	n Log Sc	ale	-0.794
107					SD in (Original	Scale	0.625								SD ir	n Log Sc	ale	0.499
108			95%	t UCL	(Assum	nes norr	nality)	0.83							9)5% I	H-Stat U	CL	0.667
109			DL/:	2 is no	ot a rec	ommen	ded m	ethod, provi	ded for c	omp	arisons	and	histor	ical re	asons				
110																			
111						Nonp	parame	etric Distribu	tion Free	e UC	L Statis	stics							
112				ļ	Detecte	ed Data	appea	ar Normal Di	stributed	at 1	% Sign	ifican	ce Le	vel					
113																			
114								Suggested	UCL to l	Jse									
115					959	% KM (t) UCL	0.411											
116																			
117	1	Note: Sugge:	stions rega	arding ¹	the sele	ection of	a 95%	6 UCL are pr	ovided to	o help	the us	ser to	select	the m	nost appr	opria	te 95% l	JCL	
118		Recom	mendation	is are	based u	upon dat	ta size	, data distrib	ution, and	d ske	wness	using	g resul	ts froi	n simula	tion s	tudies.		
119	Но	wever, simu	lations res	ults wi	ll not co	over all F	Real V	/orld data se	ts; for ad	ditior	nal insię	ght th	e user	may	want to c	onsu	lt a stati	sticia	an.
120																			

	А	В	С	D	F	F	G	Н		J	к	
1					UCL Statis	tics for Data	Sets with N	on-Detects		, ů	~	-
2												
3		User Sele	ected Options	6								
4	Da	te/Time of C	computation	ProUCL 5.2	3/6/2023 1:3	37:22 PM						
5			From File	UCL95_inp	ut_Revised.x	ls						
6		Fι	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10	200 IA Chie	oromethane										
11												
12						General	Statistics					
13			Tota	I Number of C	Observations	16			Numbe	r of Distinct (Observations	11
14				Numb	er of Detects	15				Number of	Non-Detects	1
15			N	umber of Dis	tinct Detects	10			Numbe	er of Distinct	Non-Detects	1
16				Min	imum Detect	0.29				Minimum	n Non-Detect	5.8
17				Max	imum Detect	0.6				Maximum	n Non-Detect	5.8
18				Varia	ance Detects	0.0164				Percent	Non-Detects	6.25%
19				N	lean Detects	0.469					SD Detects	0.128
20				Me	dian Detects	0.56					CV Detects	0.273
21				Skewr	ness Detects	-0.213				Kur	tosis Detects	-2.077
22				Mean of Log	ged Detects	-0.796				SD of Log	ged Detects	0.29
23					Norm		t on Dotooto	Only				
24			c	Shanira Wilk	NOTI			Uniy	Shanira Wi		•	
25			10/ 9			0.701	г		Shapilo wi	al at 1% Sign	vificanco Lovo	
26			1/0 3			0.000	L			GOE Test		1
27					ritical Value	0.295	г	Detected Dat	a Not Norm:	al at 1% Sign	vificance Leve	1
28					Detected Date	a Not Norma	l at 1% Sign	ificance Lev				1
29									CI			
30			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
31			. apian		KM Mean	0.469			KN	/ Standard E	rror of Mean	0.0331
32					90KM SD	0.124				95% KN	I (BCA) UCL	0.518
33				95%	6 KM (t) UCL	0.527			95% KM (F	ercentile Bo	otstrap) UCL	0.519
34				95%	KM (z) UCL	0.523				95% KM Boo	otstrap t UCL	0.524
36				90% KM Che	byshev UCL	0.568			ļ	95% KM Che	byshev UCL	0.613
30			97	.5% KM Che	byshev UCL	0.675				99% KM Che	byshev UCL	0.798
32			Note: KM	UCLs may b	e biased low	with this da	taset. Other	substitution	method rec	ommended		
39												
40				G	amma GOF	Tests on De	etected Obse	ervations On	ly			
41				A-D	Test Statistic	1.547		Α	nderson-Da	rling GOF T	est	
42				5% A-D C	Critical Value	0.736	Detect	ed Data Not	Gamma Dis	tributed at 5%	% Significance	e Level
43				K-S	Test Statistic	0.31		ŀ	Kolmogorov-	Smirnov GC)F	
44				5% K-S C	Critical Value	0.221	Detect	ed Data Not	Gamma Dis	tributed at 5%	% Significance	e Level
45				Detecte	ed Data Not	Gamma Dist	ributed at 5%	6 Significan	ce Level			
46												

UCL95_200_IA_Chloromethane

	А	В	С	D	E	F	G	Н		J	K	L
47					Gamma	Statistics or	n Detected D	Data Only				
48					k hat (MLE)	13.41			k	star (bias cor	rrected MLE)	10.78
49				The	ta hat (MLE)	0.0349			Theta	star (bias cor	rrected MLE)	0.0435
50				r	nu hat (MLE)	402.4				nu star (bia	as corrected)	323.3
51				Me	ean (detects)	0.469						
52												
53				C	Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
54			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	servations at	multiple DLs		
55		GROS may	not be used	when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	ə.g., <15-20)	
56			Fo	r such situati	ions, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
57				Т	his is especi	ally true whe	en the sample	e size is sma	all.			
58		For gan	nma distribut	ed detected	data, BTVs a	and UCLs ma	ay be compu	ted using ga	mma distribu	tion on KM e	stimates	
59					Minimum	0.29					Mean	0.468
60					Maximum	0.6					Median	0.51
61					SD	0.124					CV	0.264
62					k hat (MLE)	14.29			k	star (bias cor	rrected MLE)	11.65
63				The	ta hat (MLE)	0.0328			Theta	star (bias cor	rrected MLE)	0.0402
64				r	nu hat (MLE)	457.4				nu star (bia	as corrected)	372.9
65			Adjusted	Level of Sig	nificance (β)	0.0335						
66		Appro	oximate Chi	Square Value	e (372.95, α)	329.2		ŀ	Adjusted Chi	Square Valu	e (372.95, β)	324.5
67			95% G	amma Appro	oximate UCL	0.53			95	% Gamma A	djusted UCL	0.538
68												
69				Es	stimates of G	iamma Para	meters using	g KM Estima	ites			
70					Mean (KM)	0.469					SD (KM)	0.124
71				Va	ariance (KM)	0.0153				SE o	of Mean (KM)	0.0331
72					k hat (KM)	14.34					k star (KM)	11.69
73					nu hat (KM)	458.8					nu star (KM)	374.1
74				th	eta hat (KM)	0.0327				the	eta star (KM)	0.0401
75			80%	6 gamma per	centile (KM)	0.578			90%	6 gamma pe	rcentile (KM)	0.651
76			95%	6 gamma per	centile (KM)	0.715			99%	6 gamma pe	rcentile (KM)	0.845
77												
78					Gamm	na Kaplan-M	eier (KM) St	atistics			(0=1,1=,0)	
79		Appro	oximate Chi	Square Value	e (3/4.15, α)	330.3		A	Adjusted Chi	Square Valu	e (3/4.15, β)	325.6
80			95% KM A	pproximate (Jamma UCL	0.531			95% K	M Adjusted (Gamma UCL	0.538
81			Note: KM	UCLs may b	e blased low	with this da	taset. Other	[•] substitution	method rec	ommended		
82												
83					ognormal GC	PF lest on D		servations O	nly			
84			S	hapiro Wilk	l est Statistic	0.791			Shapiro Wi	IK GOF Test		
85			10% S	napiro Wilk C	ritical Value	0.901	De	etected Data	Not Lognorm	nal at 10% Si	gnificance Le	vel
86					est Statistic	0.305	-		Lilliefors		i c i i	
87			10	% Lillietors C	ritical Value	0.202	De	etected Data		nai at 10% Si	gnificance Le	vel
88				Det	ected Data	NOT LOGNORM	iai at 10% S	ignificance L	.evel			
89												

UCL95_200_IA_Chloromethane

	А		В	С	D)	E	F	G			H				J		K		L
90						Logno	rmal RO	S Statistics	Using Imp	oute	ed No	on-Dete	ects							
91					Mear	n in Origir	nal Scale	0.468								Mean	1 in Lo	og Scale) -	0.796
92					SD	D in Origin	nal Scale	0.124								SD) in Lo	og Scale	;	0.28
93		g	95% t U	JCL (assum	es norm	ality of R	OS data)	0.522						95%	Percen	tile B	ootst	rap UCL	-	0.517
94					95% BC	CA Bootst	rap UCL	0.514							959	% Bo	otstra	эр t UCL	-	0.523
95					95% H	H-UCL (L	og ROS)	0.537												
96																				
97				Stati	stics us	ing KM e	stimates	on Logged	Data and	Ass	sumir	ng Logr	norma	l Distr	ibution					
98					ŀ	KM Mean	(logged)	-0.796								K	(M Ge	eo Mean	1	0.451
99						KM SD	(logged)	0.28						95%	Critical	H Va	ilue (l	KM-Log))	1.855
100				KM Standa	ard Error	r of Mean	(logged)	0.0748							95%	H-U	CL (k	(M -Log))	0.537
101						KM SD	(logged)	0.28						95%	Critical	H Va	ilue (l	KM-Log))	1.855
102				KM Standa	ard Error	r of Mean	(logged)	0.0748												
103				Note: KM	UCLs n	nay be bi	ased low	/ with this da	taset. Otl	her	subs	titution	meth	od rec	commer	nded				
104																				
105								DL/2 S	tatistics											
106				DL/2	Normal								DL/2	2 Log-	Transfo	rmed	tt			
107					Mear	n in Origir	nal Scale	0.621								Mean	ו in Lo	og Scale	; -	0.679
108					SD	D in Origir	nal Scale	0.62								SD) in Lo	og Scale	;	0.543
109				95% t	UCL (As	ssumes n	ormality)	0.892								95%	% H-S	Stat UCL	-	0.788
110				DL/2	is not a	recomm	ended m	ethod, provi	ded for co	omp	arisc	ons and	l histo	rical r	easons	1				
111																				
112						No	onparame	etric Distribu	tion Free	UC	L Sta	atistics								
113							Data do n	ot follow a [Discernible	e D	istrib	ution								
114																				
115								Suggested	UCL to U	se										
116						95% KN	1 (t) UCL	0.527												
117																				
118		Note: \$	Sugges	stions regar	ding the	selection	of a 95%	6 UCL are pi	ovided to	hel	p the	user to	selec	t the r	nost ap	propr	riate 9	95% UC	L.	
119		F	Recom	mendations	are bas	sed upon	data size	, data distrib	ution, and	ske	ewne	ss usin	g resi	ults fro	m simu	lation	1 stuc	lies.		
120	н	lowever	r, simul	lations resu	Its will no	ot cover a	all Real V	/orld data se	ts; for add	litio	nal ir	nsight th	ne use	er may	want to) cons	sult a	statistic	;ian.	
121																				

	-	_	-					T				
1	A	В	C		E ICL Statis	F tics for Dat	G a Sets with N	On-Detects		J	K	L
2												
3		User Sele	cted Option	s								
4	Dat	e/Time of C	omputation	ProUCL 5.2 3/6	6/2023 1:3	8:05 PM						
5			From File	UCL95_input_	Revised.xl	s						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Etha	nol										
11												
12			 .			General	Statistics					45
13			lota	al Number of Obs	ervations	16			Numbe	r of Distinct (Observations	15
14					of Detects	12			Niumala	Number of	Non-Detects	4
15				Number of Distinc		12			NUMDe	Ainimum	Non-Detects	4
16				Movimu		1.0				Moximun	n Non-Detect	1.4
17				Variano		23				Percent	Non-Detects	25%
18				Mea	n Detects	7 225				Tercent	SD Detects	5 756
19				Media	n Detects	6.1					CV Detects	0.797
20				Skewnes	s Detects	2.025				Kur	tosis Detects	5.237
21				Mean of Logge	d Detects	1.719				SD of Lo	aged Detects	0.771
22											55	
23					Norm	al GOF Te	st on Detects	Only				
24				Shapiro Wilk Tes	t Statistic	0.798		-	Shapiro Wi	lk GOF Tes	t	
25			1%	Shapiro Wilk Criti	cal Value	0.805	[Detected Data	Not Norma	al at 1% Sigr	nificance Leve	əl
27				Lilliefors Tes	t Statistic	0.259			Lilliefors	GOF Test		
28				1% Lilliefors Criti	cal Value	0.281	De	etected Data a	ppear Norr	nal at 1% Si	gnificance Le	vel
29				Detected Da	ta appear	Approxima	te Normal at	1% Significa	nce Level			
30												
31			Kaplar	n-Meier (KM) Sta	tistics usir	ng Normal (Critical Value	s and other N	lonparame	tric UCLs		
32					KM Mean	6.067			KN	A Standard E	Error of Mean	1.469
33				9	90KM SD	5.447				95% KN	/ (BCA) UCL	8.65
34				95% KI	M (t) UCL	8.642			95% KM (F	Percentile Bo	otstrap) UCL	8.447
35				95% KN	/I (z) UCL	8.483				95% KM Bo	otstrap t UCL	10.02
36				90% KM Chebys	shev UCL	10.47			(95% KM Che	byshev UCL	12.47
37			y	7.5% KM Chebys	shev UCL	15.24			ç	99% KM Che	byshev UCL	20.68
38				0	005	T			_			
39								ervations Only	demon D-			
40						0.323	Dotoctor				5% Significar	
41					t Statistic	0.741	Delected			Smirnov CC		
42				5% K-S Criti	cal Value	0.100	Detector	d data annear	Gamma Di	istributed at	5% Significar	ice Level
43				Detected da	ta annear	Gamma D	istributed at P	5% Significan	ce Level			
44					appear	aanina D		eiginnoan				
45												

UCL95_200_IA_Ethanol

	А	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	n Detected D	ata Only				
47					k hat (MLE)	2.086			k	star (bias cor	rected MLE)	1.62
48				The	eta hat (MLE)	3.464			Theta	star (bias cor	rected MLE)	4.461
49				I	nu hat (MLE)	50.05				nu star (bia	as corrected)	38.87
50				Me	ean (detects)	7.225						
51												
52				(Gamma ROS	Statistics u	sing Imputed	l Non-Detec	ts			
53			GROS may	y not be used	I when data so	et has > 50%	6 NDs with m	any tied obs	ervations a	multiple DLs		
54		GROS may	/ not be used	d when kstar	of detects is s	small such a	is <1.0, espe	cially when t	he sample s	ize is small (e	e.g., <15-20)	
55			Fo	or such situat	tions, GROS r	method may	yield incorre	ct values of	UCLs and E	STVs		
56				7	This is especi	ally true whe	en the sample	e size is sma	III.			
57		For gan	nma distribu	ted detected	data, BTVs a	nd UCLs ma	ay be comput	ed using gar	mma distrib	ution on KM e	stimates	
58					Minimum	0.01					Mean	5.694
59					Maximum	23					Median	5.15
60					SD	5.723					CV	1.005
61					k hat (MLE)	0.517			k	star (bias cor	rected MLE)	0.462
62				lhe	eta hat (MLE)	11.01			Iheta	star (bias cor	rected MLE)	12.33
63					nu hat (MLE)	16.55				nu star (bia	as corrected)	14.78
64			Adjusted	Level of Sig	inificance (β)	0.0335					(1170.0)	0.540
65		Арр	proximate Ch	ii Square Val	ue (14.78, α)	/.112			Adjusted C	ni Square Val	ue (14.78,β)	6.513
66			95% 6	iamma Appro	oximate UCL	11.84			9	5% Gamma A	djusted UCL	12.92
67					atimates of O	ommo Doro			•••			
68				E	stimates of G		meters using	J KM Estima	tes			E 447
69					Mean (KM)	0.007				<u>ور</u>	SD (KM)	5.447
70				V	k hot (KM)	29.07				5E 0	r Mean (KM)	1.409
71					K hat (KNI)	1.241					K Star (KIVI)	1.05
72				+6	nu nat (KNI)	39.7				th	nu star (KM)	5 79
73			000	u //		4.09			00			0.70 12.0
74			007		reentile (KM)	9.725			90		reentile (KM)	13.0
75			90.	⁄o yamma pe		17.07			99	% yamma per		21.21
76					Gamm	a Kanlan-M	oior (KM) St	atistics				
77		Ann	provimate Ch	ni Square Val	(33 59 m)	21 33		81131153	Adjusted C	ni Square Val	up (33 59 R)	20.23
78		700	95% KM A		Gamma LICI	9 551			95% I	M Adjusted (Gamma LICI	10.07
79			00701007			0.001			00701			10.07
80				I	ognormal GO	F Test on D	etected Obs	ervations O	nlv			
81			ç	hapiro Wilk	Test Statistic	0.953			Shapiro W	ilk GOF Test		
82			10% S	hapiro Wilk (Critical Value	0.883	Dete	cted Data ar	opear Logno	rmal at 10%	Significance I	evel
83				Lilliefors	Test Statistic	0.169	2010		Lilliefors	GOF Test		
84			10)% Lilliefors (Critical Value	0.223	Dete	cted Data ar	opear Loand	ormal at 10%	Significance L	_evel
85				Dete	cted Data an	pear Loanor	mal at 10% s	Significance	Level			-
86								3				
8/												

UCL95_200_IA_Ethanol

	А		В	Т	С		D	E	=	F	G			H		I	J			K	L
88							L	.ognorm	al RO	S Statistics	Using Im	pute	ed No	n-Dete	cts						
89						N	lean in (Original	Scale	5.874							М	ean i	in Log	Scale	1.388
90							SD in (Original	Scale	5.53								SD i	in Log	Scale	0.94
91			95% t	UCL	. (assum	nes no	ormality	of ROS	data)	8.298						95% I	Percentil	le Bo	otstra	p UCL	8.325
92						95%	BCA E	Bootstrap	UCL	8.902							95%	Boo	otstrap	t UCL	9.72
93						95	% H-U0	CL (Log	ROS)	11.74											
94																					
95					Stat	tistics	using	KM estir	mates	on Logged	Data and	Ass	sumin	g Logn	ormal	Distri	bution				
96							KM	Mean (lo	gged)	1.447								KN	/I Geo	Mean	4.25
97							KN	M SD (lo	gged)	0.856						95% (Critical H	l Valı	ue (KN	M-Log)	2.49
98				KI	M Stand	ard E	rror of N	Mean (lo	gged)	0.231							95% H	H-UC	CL (KN	1 -Log)	10.62
99							KN	M SD (lo	gged)	0.856						95% (Critical H	l Valı	ue (KN	M-Log)	2.49
100				KI	M Stand	ard E	rror of N	Mean (lo	gged)	0.231											
101																					•
102										DL/2 S	statistics										
103					DL/2	2 Nor	nal								DL/2	Log-T	ransfor	med			
104						N	lean in (Original	Scale	6.534							М	ean i	in Log	Scale	1.414
105							SD in (Original	Scale	6.054								SD i	in Log	Scale	1.088
106					95% t	UCL	(Assun	nes norn	nality)	9.188								95%	H-Sta	at UCL	16.5
107					DL/2	2 is n	ot a rec	ommeno	ded m	ethod, provi	ded for c	omp	ariso	ns and	histor	rical re	asons				
108																					
109								Nonp	arame	etric Distribu	ition Free	OU e	L Sta	tistics							
110					D	etect	ed Data	a appear	Appr	oximate Nor	mal Distr	ribut	ed at	1% Sig	Inifica	nce L	evel				
111																					
112										Suggested	UCL to U	Jse									
113							95	% KM (t)) UCL	8.642											
114																					
115					Whe	en a c	lata set	follows	an app	proximate di	stribution	pas	sing c	only one	e of the	e GOF	tests,				
116					it is s	ugge	sted to	use a UC	CL bas	sed upon a d	listributior	n pas	ssing	both G	OF te	sts in l	ProUCL				
117																					
118		Not	e: Sugg	estio	ons rega	rding	the sele	ection of	a 95%	6 UCL are p	ovided to	help	p the	user to	select	t the m	lost app	ropria	ate 95	% UCL	
119			Reco	mme	endations	s are	based ι	upon dat	a size	, data distrib	ution, and	d ske	ewne	ss usiną	g resu	lts from	n simula	ation	studie	es.	
120	ŀ	lowe	ver, sim	ulati	ons resu	ults w	ill not co	over all F	Real W	/orld data se	ets; for add	ditio	nal in	sight th	e use	may	want to o	cons	ult a s	tatistic	ian.
121																					

UCL95_200_IA_Freon11

	٨	Р				F		Ц				
-	A	D		U	□ UCL Statis	tics for Data	a Sets with No	on-Detects	1	J	n.	
2		User Sele	cted Options	6								
3	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:3	9:03 PM						
4			From File	UCI 95 inpu	t Revised x	s						
5		Fu	Il Precision	OFF								
6		Confidence	Coefficient	95%								
7	Number	of Bootstran	Operations	2000								
8			oporatione									
9	200 IA Fred	on 11										
10												
10						General	Statistics					
12			Tota	I Number of O	bservations	16			Numbe	r of Distinct	Observations	12
14				Numbe	r of Detects	15				Number of	Non-Detects	1
14			N	umber of Disti	inct Detects	11			Numbe	er of Distinct	Non-Detects	1
16				Minir	num Detect	1.3				Minimun	n Non-Detect	6.6
17				Maxir	num Detect	22				Maximun	n Non-Detect	6.6
18				Variar	nce Detects	45.44				Percent	Non-Detects	6.25%
19				Me	ean Detects	4.84					SD Detects	6.741
20				Med	ian Detects	1.6					CV Detects	1.393
21				Skewne	ess Detects	2.199				Kur	tosis Detects	3.725
22				Mean of Log	ged Detects	1.004				SD of Log	gged Detects	0.975
23												1
24					Norm	al GOF Tes	t on Detects	Only				
25			S	Shapiro Wilk T	est Statistic	0.578			Shapiro W	lk GOF Tes	t	
26			1% S	hapiro Wilk C	ritical Value	0.835	C	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	əl
27				Lilliefors T	est Statistic	0.326			Lilliefors	GOF Test		
28			1	% Lilliefors C	ritical Value	0.255	C	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	əl
29				De	etected Data	a Not Norma	al at 1% Signi	ficance Leve	el			
30												
31			Kaplan-	Meier (KM) S	tatistics usir	ng Normal C	Critical Values	s and other N	Nonparame	tric UCLs		1
32					KM Mean	4.685			KI	A Standard E	Error of Mean	1.645
33					90KM SD	6.346				95% KN	/I (BCA) UCL	7.475
34				95%	KM (t) UCL	7.569			95% KM (F	Percentile Bo	otstrap) UCL	7.412
35				95%	KM (z) UCL	7.391				95% KM Bo	otstrap t UCL	14.48
36				90% KM Cheb	yshev UCL	9.621				95% KM Che	ebyshev UCL	11.86
37			97	v.5% KM Cheb	byshev UCL	14.96				99% KM Che	ebyshev UCL	21.06
38						Tasta an D			L -			
39				G			elected Obse		y domen D-		t	
40					ritical Value	0.763	Dotoct	AI	Gamma Dia	tributed at 50	vol	
41				5 /0 A-D U		0.703	Delecte			Smirnov CC		
42				5% K-S C	ritical Value	0.000	Detecte	A Data Not	Gamma Die	tributed at 50	% Significant	
43				Detected	d Data Not (Jamma Diel	ributed at 5%					
44				Delecter				, Significand				
45												

UCL95_200_IA_Freon11

	А	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	n Detected D	Data Only				
47					k hat (MLE)	1.007			k :	star (bias cor	rected MLE)	0.85
48				The	eta hat (MLE)	4.806			Theta :	star (bias cor	rected MLE)	5.693
49				I	nu hat (MLE)	30.21				nu star (bia	is corrected)	25.5
50				Me	ean (detects)	4.84						
51												
52				(Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
53			GROS may	y not be used	I when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs		
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when the	ne sample si	ze is small (e	e.g., <15-20)	
55			Fo	or such situat	tions, GROS	method may	yield incorre	ect values of	JCLs and B	ΓVs		
56				٦	This is espec	ially true whe	en the sample	e size is sma	II.			
57		For gar	mma distribu	ted detected	data, BTVs a	and UCLs ma	ay be compu	ted using gar	nma distribu	tion on KM e	stimates	
58					Minimum	1.3					Mean	4.669
59					Maximum	22					Median	1.65
60					SD	6.548					CV	1.402
61					k hat (MLE)	1.039			k :	star (bias cor	rected MLE)	0.886
62				The	eta hat (MLE)	4.493			Thetas	star (bias cor	rected MLE)	5.27
63					nu hat (MLE)	33.25				nu star (bia	is corrected)	28.35
64			Adjusted	d Level of Sig	Inificance (β)	0.0335					(22.2.2.2)	
65		Арр	proximate Ch	ii Square Val	ue (28.35, α)	17.2			Adjusted Ch	i Square Valı	ue (28.35, β)	16.22
66			95% G	Bamma Appro	oximate UCL	7.695			95	% Gamma A	djusted UCL	8.162
67							<u> </u>		-			
68				E	stimates of G	iamma Para	meters using	g KM Estima	tes			0.040
69					Mean (KM)	4.685				05 -	SD (KM)	6.346
70				Vä	ariance (KIVI)	40.27				SE 0	T Mean (KM)	1.645
71					K hat (KM)	0.545					K star (KM)	0.484
72				41-	nu hat (KM)	17.44				41	nu star (KM)	15.5
73			900			8.596			000			9.67
74			80%	% gamma pe		10.0			90%	6 gamma per	centile (KIVI)	12.76
75			95%	% gamma pe	rcentile (KIM)	18.2			99%	₆ gamma per	centile (KIVI)	31.62
76					Comm	e Kanlan M		atiatiaa				
77		٨٣٣	rovimoto Ch				eler (KM) St	austics	Adjusted Ch		10 (1E EO R)	6.00
78		Арр		n Square var	1000000000000000000000000000000000000	0.54				Adjusted (Le $(15.50, \beta)$	10.39
79			90% KIVI A	Approximate (9.54			95% K	ivi Aujusteu (10.39
80					ognormal CC	E Tost on D	otootod Obr	onvotions O	ahv.			
81			c	Lo Shapiro Wilk	Tost Statistic				Shanira Wi	IK COE Tost		
82			10% S			0.702	Do	toctod Data		IN GOF Test	anificanco I o	vol
83			10% 5			0.901	De					
84			10		ritical Value	0.200		stacted Data			anificanco Lo	vol
85			10		tected Date		De al at 10% St			iai at 10 /0 SI		
86				Dei			iai al 1076 S	igninicance L				
87												

UCL95_200_IA_Freon11

	А	В	С	D	E	F	G	ŀ	1	I		J		К	L
88					Lognormal RC	S Statistics	Using Impu	ted Non	-Detec	ts					
89				Mean in	Original Scale	4.68						Me	an in L	_og Scale	0.993
90				SD in	Original Scale	6.543						S	SD in L	_og Scale	0.943
91		95% t l	JCL (assum	es normality	y of ROS data)	7.548				95	5% Pe	ercentile	Boots	strap UCL	7.397
92				95% BCA	Bootstrap UCL	. 8.299						95% E	Bootst	rap t UCL	15.21
93				95% H-U	ICL (Log ROS)	7.966									
94															
95			Stat	istics using	KM estimates	on Logged	Data and As	ssuming	Logno	ormal Di	istrib	ution			
96				KM	Mean (logged)	0.985							KM G	Geo Mean	2.677
97				K	M SD (logged)	0.925				95	5% Cr	itical H `	Value	(KM-Log)	2.591
98			KM Stand	ard Error of	Mean (logged)	0.242						95% H-	-UCL ((KM -Log)	7.623
99				K	M SD (logged)	0.925				95	5% Cr	itical H	Value	(KM-Log)	2.591
100			KM Stand	ard Error of	Mean (logged)	0.242									
101															
102						DL/2 S	tatistics								
103			DL/2	Normal						DL/2 Lo	og-Tra	ansform	ed		
104				Mean in	Original Scale	4.744						Me	an in L	_og Scale	1.016
105				SD in	Original Scale	6.523						5	SD in L	_og Scale	0.943
106			95% t	UCL (Assu	mes normality)	7.603						9	5% H-	-Stat UCL	8.154
107			DL/2	is not a re	commended m	nethod, provi	ded for corr	parison	s and I	nistorica	al rea	sons			
108															
109					Nonparam	etric Distribu	ition Free U	CL Stat	istics						
110					Data do I	not follow a [Discernible	Distribu	tion						
111															
112						Suggested	UCL to Use	Ð							
113				9	5% KM (t) UCL	7.569									
114															
115		The ca	alculated U	CLs are bas	ed on assump	tions that the	e data were	collecte	ed in a	random	n and	unbiase	ed mai	nner.	
116				Ple	ase verify the	data were co	ollected from	n rando	m locat	ions.					
117				If the data	were collecte	d using judg	mental or of	ther non	-rando	m meth	iods,				
118					then contact a	statistician	to correctly	calculat	te UCL	s.					
119															
120	I	Note: Sugge	stions rega	ding the sel	lection of a 959	% UCL are pr	ovided to he	elp the u	ser to s	select th	ne mo	st appro	opriate	95% UC	L.
121		Recom	nmendations	s are based	upon data size	e, data distrib	ution, and s	kewnes	s using	results	from	simulati	ion stu	idies.	
122	Ho	wever, simu	lations resu	lts will not c	over all Real V	Vorld data se	ts; for additi	ional ins	ight the	e user m	nay w	ant to co	onsult	a statistic	ian.
123															

	А	В	3	С	D	E	F	G	Н		J	К		L
1						UCL Statis	tics for Data	a Sets with N	on-Detects					_
2														
3		User	Sele	cted Option	s									
4	Da	ate/Time	of Co	omputation	ProUCL 5.2	2 3/6/2023 1:4	0:06 PM							
5				From File	UCL95_inp	ut_Revised.x	ls							
6			Ful	II Precision	OFF									
7		Confid	ence	Coefficient	95%									
8	Number	of Boots	strap (Operations	2000									
9														
10	200 IA Fre	on 12												
11							0	04-41-41-5						
12				Tata	I Niumbar of (<u>Obe em retiene</u>		Statistics		Numere	e of Distingt	Ohaamiatiama		-
13				lota		Joservations	10			Numbe		Observations		5
14				Ν		tinct Detects	15			Numbr	number of	Non-Delects		1
15				ľ		imum Dotoot	+ 22			NULLIDE	Minimur			6.6
16					Max	imum Detect	2.3				Maximun	n Non-Detect		6.6
17					Varia	ance Detects	0.0155				Percent	Non-Detects		6.25%
18					N	lean Detects	2 447					SD Detects		0.125
19					Me	dian Detects	24					CV Detects	(0.0509
20					Skewi	ness Detects	0.982				Kur	tosis Detects		0.648
21					Mean of Log	ged Detects	0.894				SD of Lo	gged Detects	(0.05
22														
23						Norn	nal GOF Tes	t on Detects	Only					
25				:	Shapiro Wilk	Test Statistic	0.848			Shapiro Wi	lk GOF Tes	t		
26				1% 5	Shapiro Wilk (Critical Value	0.835	De	tected Data	appear Norr	nal at 1% Si	gnificance Le	vel	
27					Lilliefors	Test Statistic	0.246			Lilliefors	GOF Test			
28					1% Lilliefors (Critical Value	0.255	De	tected Data	appear Norr	nal at 1% Si	gnificance Le	vel	
29					De	tected Data	appear Norn	nal at 1% Sig	nificance Le	evel				
30														
31				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	Critical Values	s and other l	Nonparame	tric UCLs			
32						KM Mean	2.447			KN	/ Standard E	Error of Mean	(0.0322
33						90KM SD	0.12				95% KN	M (BCA) UCL	Ν	I/A
34					95%	6 KM (t) UCL	2.503			95% KM (F	Percentile Bo	otstrap) UCL	N	I/A
35					95%	KM (z) UCL	2.5				95% KM Bo	otstrap t UCL	N	I/A
36					90% KM Che	byshev UCL	2.543			ę	95% KM Che	ebyshev UCL		2.587
37				9	7.5% KM Che	byshev UCL	2.648			(99% KM Che	ebyshev UCL		2.767
38							-			• -				
39					(etected Obse	ervations On	ly ndorcer D		loot.		
40					A-D	rition	0.915	Detect		Comme Dia		est	<u></u>	vol
41					5% A-D (0.734	Detecte			Smirnov OC		e Le	vei
42					۲-۵ ۲% ۲ ۵ ۲	ritical Value	0.24ð	Dotoct	Nota Not	Gamma Dia	tributed at 5	∕ı- % Significana		
43					J /o K-O (ad Data Not	Gamma Diet	ributed at 5%			anduteu al o		e Le	
44					Delecti				Significant					
45														

UCL95_200_IA_Freon12

	Α	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	Detected D	ata Only				
47					k hat (MLE)	424.1			k	star (bias co	orrected MLE)	339.3
48				The	eta hat (MLE)	0.00577			Theta	star (bias co	orrected MLE)	0.00721
49					nu hat (MLE)	12723				nu star (bi	as corrected)	10179
50				М	ean (detects)	2.447						
51												
52					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS may	y not be use	d when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DL	S	
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when the the second s	ne sample si	ize is small ((e.g., <15-20)	
55			Fo	or such situa	tions, GROS	method may	yield incorre	ect values of	JCLs and B	TVs		
56					This is espec	ially true whe	en the sample	e size is sma	II.			
57		For gar	nma distribu	ted detected	I data, BTVs a	and UCLs ma	ay be comput	ted using gar	nma distribu	tion on KM e	estimates	1
58					Minimum	2.3					Mean	2.447
59					Maximum	2.7					Median	2.4
60					SD	0.12					CV	0.0492
61					k hat (MLE)	452.3			k	star (bias co	prrected MLE)	367.6
62				The	eta hat (MLE)	0.00541			Theta	star (bias co	prrected MLE)	0.00666
63					nu hat (MLE)	14475				nu star (bi	as corrected)	11762
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		Aj	pproximate (Chi Square \	/alue (N/A, α)	11511			Adjusted (Chi Square V	/alue (N/A, β)	11483
66			95% C	Gamma Appr	oximate UCL	2.5			95	% Gamma A	Adjusted UCL	2.506
67												
68				E	stimates of C	amma Para	meters using	g KM Estima	tes			A 10
69					Mean (KM)	2.447					SD (KM)	0.12
70				V	ariance (KM)	0.0145				SE	of Mean (KM)	0.0322
71					k hat (KM)	413.2					k star (KM)	335.7
72					nu hat (KM)	13221					nu star (KM)	10743
73				t	heta hat (KM)	0.00592				th	eta star (KM)	0.00729
74			809	% gamma pe	ercentile (KM)	2.558			909	% gamma pe	ercentile (KM)	2.619
75			959	% gamma pe	ercentile (KM)	2.67			999	% gamma pe	ercentile (KM)	2.768
76												
77				<u></u>	Gamn	na Kaplan-M	eier (KM) St	atistics				10170
78		A	pproximate (Chi Square V	/alue (N/A, α)	10503			Adjusted (Chi Square V	/alue (N/A, β)	10476
79			95% KM A	Approximate	Gamma UCL	2.503			95% K	M Adjusted	Gamma UCL	2.509
80									- h -			
81					ognormal GC			servations O	niy Ohonim 114		•	
82			100/ 0			0.858	D		Snapiro w		i t	
83			10% S			0.901	De	elected Data			oignificance Le	evei
84				LIIIIefors		0.241		to atc d D - to			ionifican '	
85			10	1% LIIIIefors	Critical Value	0.202	De De			nai at 10% S	oignificance Le	evei
86				De	etected Data		aı at 10% Si	ignificance L	evel			
87												

UCL95_200_IA_Freon12

	Α	В	С		D		F	F	G		Н	Ι				I		К	1
88	7	D	Ū		L	ognorm	nal RO	S Statistics	Using Im	npute	d Non	Detec	cts		Ű	-		IX.	
89				M	ean in C	Original	Scale	2.446							М	ean ii	n Lo	og Scale	0.894
90					SD in C	Original	Scale	0.12								SD i	n Lo	g Scale	0.0483
91		95% t L	JCL (assum	nes no	rmality	of ROS	6 data)	2.499						95% I	Percentil	e Boo	otstr	ap UCL	2.499
92				95%	BCA B	ootstra	p UCL	2.505							95%	Boot	tstra	pt UCL	2.515
93				959	% H-UC	CL (Log	ROS)	N/A											
94								1											
95			Stat	tistics	using k	KM esti	mates	on Logged	Data and	d Ass	uming	Logn	ormal	Distri	bution				
96					KM N	/lean (lo	ogged)	0.894								KN	1 Ge	eo Mean	2.444
97					KN	/I SD (Ic	ogged)	0.0483					1	95% (Critical H	Valu	le (K	(M-Log)	N/A
98			KM Stand	lard Er	ror of N	/lean (lo	ogged)	0.0129							95% H	I-UC	L (K	M -Log)	N/A
99					KN	/I SD (Ic	ogged)	0.0483					1	95% (Critical H	Valu	ıe (K	(M-Log)	N/A
100			KM Stand	lard Er	ror of N	/lean (lo	ogged)	0.0129											
101								1											
102								DL/2 S	tatistics										
103			DL/2	2 Norn	nal								DL/2	Log-1	ransfor	ned			
104				M	ean in C	Original	Scale	2.5							М	ean ii	n Lo	og Scale	0.912
105					SD in C	Original	Scale	0.245								SD ii	n Lo	og Scale	0.0893
106			95% t	t UCL	(Assum	nes nori	mality)	2.607								95%	H-S	tat UCL	N/A
107			DL/2	2 is no	ot a reco	ommen	ded m	ethod, provi	ded for c	comp	arison	s and	histor	ical re	asons				
108																			
109						Nonp	baram	etric Distribu	tion Free	e UC	L Stati	stics							
110				[Detecte	ed Data	appea	ar Normal Di	stributed	l at 1	% Sigr	nifican	ce Le	vel					
111																			
112								Suggested	UCL to	Use									
113					959	% KM (1	t) UCL	2.503											
114																			
115	1	Note: Sugge	stions rega	rding t	he sele	ection of	f a 95%	6 UCL are pr	ovided to	o help	the us	ser to	select	the m	lost appl	opria	ate 9	95% UCL	
116		Recom	mendation	s are t	based u	ipon da	ta size	, data distrib	ution, an	ld ske	wness	using	resul	ts froi	n simula	tion s	studi	ies.	
117	Но	wever, simu	lations resu	ults wil	l not co	over all	Real V	Vorld data se	ts; for ad	ditior	nal insi	ght th	e user	may	want to o	consu	ulta	statistici	an.
118									-	-					-			-	

	А	В	С	D	E	F	G	Н		J	К	L
1					UCL Statis	stics for Unc	ensored Full	Data Sets				
2												
3		User Sele	ected Options	6								
4	Dat	e/Time of C	omputation	ProUCL 5.2 3	/6/2023 1:3	39:34 PM						
5			From File	UCL95_input_	_Revised.x	ls						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10												
11	200 IA Freo	n 113										
12												
13						General	Statistics					
14			Tota	I Number of Ob	servations	16			Numbe	r of Distinct	Observations	15
15									Numbe	r of Missing	Observations	0
16					Minimum	0.53					Mean	267.5
17					Maximum	3200					Median	17.5
18					SD	802.3				Std.	Error of Mean	200.6
19				Coefficient o	f Variation	2.999					Skewness	3.704
20						I	1					I
21						Normal (GOF Test					
22			5	Shapiro Wilk Te	st Statistic	0.38			Shapiro W	ilk GOF Tes	st	
23			1% S	hapiro Wilk Cri	tical Value	0.844		Data Not	t Normal at	1% Significa	ance Level	
24				Lilliefors Te	st Statistic	0.448			Lilliefors	GOF Test		
25			1	% Lilliefors Cri	tical Value	0.248		Data Not	t Normal at	1% Significa	ance Level	
26					Data Not	t Normal at 1	% Significan	ce Level				
27												
28					As	suming Nor	mal Distributi	on				
29			95% N	ormal UCL				95%	UCLs (Adjı	usted for Sk	ewness)	
30				95% Stude	ent's-t UCL	619.2		ę	95% Adjuste	ed-CLT UCL	. (Chen-1995)	795.9
31									95% Modifi	ed-t UCL (J	ohnson-1978)	650.1
32												
33						Gamma	GOF Test					
34				A-D Te	st Statistic	1.49		Anders	son-Darling	Gamma G	OF Test	
35				5% A-D Cri	tical Value	0.866	Da	ata Not Gam	ma Distribu	ted at 5% Si	gnificance Lev	vel
36				K-S Te	st Statistic	0.285		Kolmog	orov-Smirne	ov Gamma	GOF Test	
37				5% K-S Cri	tical Value	0.236	Da	ata Not Gam	ma Distribu	ted at 5% Si	gnificance Lev	/el
38				Data	Not Gam	ma Distribut	ed at 5% Sig	nificance Le	vel			
39												
40						Gamma	Statistics					
41				k	hat (MLE)	0.238			k	star (bias co	prrected MLE)	0.235
42				Theta	hat (MLE)	1123			Theta	star (bias co	prrected MLE)	1138
43				nu	hat (MLE)	7.621				nu star (b	ias corrected)	7.525
44			Μ	LE Mean (bias	corrected)	267.5				MLE Sd (b	ias corrected)	551.7
45								1	Approximate	e Chi Squar	e Value (0.05)	2.463
46			Adju	sted Level of Si	gnificance	0.0335			A	djusted Chi	Square Value	2.146
47												

	А	В	С		D	E	F	G	Н			J		К	L
48		-	-	-		-	Assuming Gar	nma Distribu	tion	-					
49			95% A	Approxi	imate (Gamma U(CL 817.3			9	95%	6 Adjusted	d Gar	nma UCL	938.1
50															
51							Lognorma	al GOF Test							
52			Ś	Shapiro	o Wilk ⁻	Test Statis	tic 0.922		Sha	piro Wilk L	.ogr	normal GO	OF Te	est	
53			10% S	Shapiro	Wilk C	Critical Val	ue 0.906		Data appea	r Lognorm	al a	t 10% Sig	nifica	ince Level	
54				Lilli	iefors -	Test Statis	tic 0.182		Li	lliefors Log	gno	rmal GOF	Tes	t	
55			1(0% Lilli	efors (Critical Val	ue 0.196		Data appea	r Lognorm	al a	t 10% Sig	nifica	ince Level	
56						Data appe	ar Lognormal	at 10% Signi	ificance Lev	el					
57															
58							Lognorm	al Statistics							
59				Minim	um of I	Logged Da	ta -0.635					Mean	of log	ged Data	2.583
60				Maxim	um of l	Logged Da	ta 8.071					SD	of log	ged Data	2.591
61						-									
62						A	ssuming Logn	ormal Distrib	ution		0/ 0		(1.0.)		050.0
63			050/	0		95% H-U	L 16209			90	% C	nebysnev			650.8
64			95%	Cheby	/shev (L 853.5			97.5	% C	hebyshev	/ (MV	UE) UCL	1135
65			99%	Cheby	/snev (MVUE) UG	L 1688								
66						Managara	es stels Distelle								
67						Nonpara			Distribution						
68						Data app	ear to follow a	a Discernible	Distribution						
69						Non	parametric Di	stribution Ero							
70					QF						Q	5% BCA	Roote	tran LICI	900 9
71			95%	6 Stand	lard Bo	otstran U	CL 588.3				5	95% B	ootstr	an-t UCI	5866
72				95% Ha	all's Bo	otstrap U	CI 4024			959	% P	ercentile	Boots	trap UCI	651
73			90% C	hebvsh	nev(Me	an. Sd) U	CL 869.3			95%	Che	ebvshev(N	lean.	Sd) UCL	1142
74			97.5% C	hebysh	nev(Me	an, Sd) U	CL 1520			99%	Che	byshev(N	lean,	Sd) UCL	2263
75				-	•									,	
70							Suggested	UCL to Use							
78				95	5% Stu	dent's-t U	CL 619.2								
79															
80		The ca	alculated UC	CLs are	based	d on assur	nptions that th	e data were	collected in	a random :	and	unbiased	d mar	nner.	
81					Pleas	e verify th	e data were c	ollected from	random loc	ations.					
82				If the	data w	ere collec	ted using judg	mental or oth	ner non-rand	lom metho	ods,				
83					th	en contac	a statistician	to correctly o	calculate UC	CLs.					
84															
85		Note: Sugge	estions regar	ding the	e selec	ction of a 9	5% UCL are p	rovided to he	lp the user to	o select the	e mo	ost approp	oriate	95% UCL	
86		Recon	nmendations	are ba	ased up	oon data si	ze, data distrit	oution, and sk	ewness usir	ng results f	rom	simulatio	on stu	dies.	
87	He	owever, simu	ulations resu	lts will r	not cov	/er all Rea	World data se	ets; for additio	onal insight t	he user ma	ay w	ant to co	nsult	a statistici	an.
88															

	A	В	С	D	E	F	G	Н	I	J	К	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	ected Options	6								
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 1:4	1:03 PM						
5			From File	UCL95_inpu	It_Revised.xl	s						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
7 8	Number	of Bootstrap	Operations	2000								
0 0												
10	200 IA Hex	kane										
11												
12						General	Statistics					
13			Tota	I Number of C	bservations	16			Numbe	r of Distinct (Observations	14
14				Numbe	er of Detects	8				Number of	Non-Detects	8
15			Ν	umber of Dist	inct Detects	7			Numbe	er of Distinct	Non-Detects	7
16				Mini	mum Detect	0.3				Minimun	n Non-Detect	0.22
17				Maxi	mum Detect	1.2				Maximun	n Non-Detect	5.8
18				Varia	nce Detects	0.159				Percent	Non-Detects	50%
19				М	ean Detects	0.659					SD Detects	0.399
20				Мес	dian Detects	0.46					CV Detects	0.606
21				Skewn	ess Detects	0.574				Kur	tosis Detects	-2.107
22				Mean of Log	ged Detects	-0.58				SD of Log	ged Detects	0.607
23												
24					Norm	al GOF Tes	t on Detects	Only				
25			5	Shapiro Wilk T	est Statistic	0.777			Shapiro Wi	lk GOF Test	t	
26			1% S	hapiro Wilk C	ritical Value	0.749	De	etected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
27				Lilliefors T	est Statistic	0.28			Lilliefors	GOF Test		
28			1	% Lilliefors C	ritical Value	0.333	De	etected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
29				Det	tected Data a	appear Norr	nal at 1% Sig	gnificance Lo	evel			
30				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
31												
32			Kaplan-	Meier (KM) S	Statistics usin	ng Normal C	Critical Value	s and other	Nonparame	tric UCLs		
33					KM Mean	0.455			KN	/I Standard E	Error of Mean	0.0964
34					90KM SD	0.349				95% KN	I (BCA) UCL	0.618
35				95%	KM (t) UCL	0.624			95% KM (F	Percentile Bo	otstrap) UCL	0.617
36				95%	KM (z) UCL	0.614				95% KM Boo	otstrap t UCL	0.662
37				90% KM Chel	byshev UCL	0.745			ę	95% KM Che	ebyshev UCL	0.875
38			97	7.5% KM Chel	byshev UCL	1.057			ę	99% KM Che	ebyshev UCL	1.414
39												
40				G	amma GOF	Tests on De	etected Obse	ervations Or	ly			
41				A-D T	est Statistic	0.789		A	nderson-Da	rling GOF T	est	
42				5% A-D C	ritical Value	0.721	Detect	ed Data Not	Gamma Dis	tributed at 59	% Significanc	e Level
43				K-S T	est Statistic	0.257		ŀ	Kolmogorov-	Smirnov GC)F	
44				5% K-S C	ritical Value	0.296	Detecte	d data appea	ir Gamma Di	stributed at	5% Significan	ice Level
45				Detected da	ta follow Ap	pr. Gamma	Distribution	at 5% Signifi	cance Leve			
46				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
47												

UCL95_200_IA_Hexane

		1	-	-	-			-	1	T		
40	A	В	С	D	E Gamma	F Statistics or	G Detected D	H Data Only		J	К	L
48					k hat (MLE)	3.228			k	star (bias co	rrected MLE)	2.101
49 50				The	eta hat (MLE)	0.204			Theta	star (bias co	rrected MLE)	0.314
50					nu hat (MLE)	51.65				nu star (bi	as corrected)	33.62
51				М	ean (detects)	0.659						
52					. ,							
54					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
55			GROS ma	y not be used	d when data se	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs	;	
56		GROS may	y not be use	d when kstar	of detects is s	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
57			Fo	or such situa	tions, GROS r	method may	yield incorre	ct values of	UCLs and B	TVs		
58					This is especi	ally true whe	en the sample	e size is sma	all.			
59		For gar	mma distribu	ited detected	l data, BTVs a	nd UCLs ma	ay be comput	ed using gai	mma distribu	tion on KM e	estimates	
60					Minimum	0.01					Mean	0.347
61					Maximum	1.2					Median	0.26
62					SD	0.425					CV	1.222
63					k hat (MLE)	0.477			k :	star (bias co	rrected MLE)	0.429
64				The	eta hat (MLE)	0.729			Theta	star (bias co	rrected MLE)	0.81
65					nu hat (MLE)	15.25				nu star (bi	as corrected)	13.73
66			Adjusted	d Level of Sig	gnificance (β)	0.0335						
67		Арр	proximate Ch	ni Square Va	lue (13.73, α)	6.384			Adjusted Ch	i Square Val	lue (13.73, β)	5.822
68			95% (Jamma Appr	roximate UCL	0.747			95	% Gamma A	djusted UCL	0.819
69					ation of O	D						
70				E	stimates of G		meters using	J KM Estima	ites			0.240
71					Mean (KM)	0.400				<u>ور</u>	SD (KM)	0.349
72				V		1 702				5E (1 425
73					K Hat (KW)	54.40					K Star (KM)	1.420
74				+1	hota bat (KM)	0.267				th	nu star (KM)	45.01
75			809	w w damma ne	arcentile (KM)	0.207			909		rcentile (KM)	0.52
76			959	% gamma pe	ercentile (KM)	1 207			909	6 gamma pe	rcentile (KM)	1 764
77				/o gamma pe		1.207						1.704
/8					Gamm	a Kaplan-M	eier (KM) Sta	atistics				
/9		App	proximate Ch	ni Square Va	lue (45.61, α)	31.11			Adjusted Ch	i Square Val	ue (45.61, β)	29.75
80			95% KM A	Approximate	Gamma UCL	0.668			95% K	M Adjusted	Gamma UCL	0.698
01 02												
02 92				L	.ognormal GO	F Test on D	etected Obs	ervations O	nly			
84			5	Shapiro Wilk	Test Statistic	0.821			Shapiro Wi	lk GOF Tes	t	
85			10% S	Shapiro Wilk	Critical Value	0.851	De	tected Data	Not Lognorm	nal at 10% S	ignificance Le	vel
86				Lilliefors	Test Statistic	0.242			Lilliefors	GOF Test		
87			10	0% Lilliefors	Critical Value	0.265	Dete	cted Data a	opear Logno	rmal at 10%	Significance L	.evel
88				Detected D	ata appear A	pproximate	Lognormal a	t 10% Signif	ficance Leve	1		
89				No	te GOF tests	may be unre	eliable for sm	nall sample :	sizes			
90												

UCL95_200_IA_Hexane

								-				
┝─┥	А	В	С	<u> </u>		F S Statistics	G	H H		J	K	L
91					ynormal KO	S Statistics	using impu		CIS			1 007
92				Mean in O	riginal Scale	0.401				Mean	In Log Scale	-1.287
93				SD in O	riginal Scale	0.383				SD	in Log Scale	0.868
94		95% t l	JCL (assume	es normality o	of ROS data)	0.569			95%	Percentile Bo	potstrap UCL	0.564
95				95% BCA Bo	ootstrap UCL	0.591				95% Boo	otstrap t UCL	0.621
96				95% H-UC	L (Log ROS)	0.706						
97												
98			Statis	stics using K	M estimates	on Logged	Data and As	ssuming Log	normal Distr	ibution		
99				KM M	ean (logged)	-1.011				K	M Geo Mean	0.364
100				KM	SD (logged)	0.621			95%	Critical H Val	lue (KM-Log)	2.184
101			KM Standa	rd Error of M	ean (logged)	0.172				95% H-U0	CL (KM -Log)	0.626
102				KM	SD (logged)	0.621			95%	Critical H Val	lue (KM-Log)	2.184
103			KM Standa	rd Error of M	ean (logged)	0.172						
104												I
105						DL/2 S	tatistics					
106			DL/2	Normal					DL/2 Log-	Fransformed		
107				Mean in O	riginal Scale	0.565				Mean	in Log Scale	-1.137
108				SD in O	riginal Scale	0.73				SD	in Log Scale	1.044
109			95% t l	UCL (Assume	es normality)	0.885				95%	6 H-Stat UCL	1.169
110			DL/2	is not a reco	mmended m	ethod, provi	ded for com	parisons and	d historical r	easons		
111												
112					Nonparame	etric Distribu	tion Free U	CL Statistics				
113				Detected	l Data appea	r Normal Di	stributed at	1% Significa	nce Level			
114												
115						Suggested	UCL to Use)				
116				95%	6 KM (t) UCL	0.624						
117												
118	I	Note: Sugge	stions regard	ding the selec	ction of a 95%	6 UCL are pr	ovided to he	elp the user to	select the n	nost appropri	iate 95% UCI	
119		Recom	mendations	are based up	oon data size	, data distrib	ution, and sl	kewness usir	ng results fro	m simulation	studies.	
120	Но	wever, simu	lations resul	ts will not cov	/er all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to cons	ult a statistic	ian.
121												

	А		В		С	D	F	F	G	Н	1	J	К	
1			-		-		UCL Statis	tics for Data	Sets with N	on-Detects	•			_
2														
3			User Sele	ected	Options	1								
4		Date	Time of C	Compu	utation	ProUCL 5.2	3/6/2023 1:4	1:36 PM						
5				Fro	m File	UCL95_inpu	ut_Revised.xl	S						
6			Fı	ull Pre	ecision	OFF								
7		С	onfidence	e Coef	fficient	95%								
8	Num	ber of	Bootstrap	Oper	ations	2000								
9														
10	200 IA	Methy	lene Chlo	oride										
11														
12					- -			General	Statistics				<u></u>	10
13					lotal	Number of C	bservations	16			Numbe	r of Distinct (Observations	12
14					N		er of Detects	10			Numb	Number of	Non-Detects	5
15					IN		mum Dotoct	/			NUTID	Minimun	Non-Delects	03
16						Maxi	mum Detect	1.6				Maximun	n Non-Detect	6.6
17						Varia	nce Detects	0.148				Percent	Non-Detects	37.5%
18						M	ean Detects	0.516					SD Detects	0.384
19						Med	dian Detects	0.41					CV Detects	0.744
20						Skewn	ess Detects	3.059				Kur	tosis Detects	9.562
21						Mean of Log	ged Detects	-0.797				SD of Log	gged Detects	0.469
22														
23							Norm	al GOF Tes	t on Detects	Only				
25					S	hapiro Wilk T	est Statistic	0.47			Shapiro W	lk GOF Tes	t	
26					1% S	hapiro Wilk C	ritical Value	0.781	C	Detected Data	a Not Norm	al at 1% Sigr	nificance Leve	el
27						Lilliefors T	est Statistic	0.489			Lilliefors	GOF Test		
28					1	% Lilliefors C	ritical Value	0.304	C	Detected Data	a Not Norm	al at 1% Sigr	nificance Leve	el
29						D	etected Data	a Not Norma	l at 1% Signi	ificance Leve	əl			
30														
31					Kaplan-	Meier (KM) S	Statistics usir	ng Normal C	ritical Values	s and other l	Nonparame	tric UCLs		
32							KM Mean	0.431			KI	A Standard E	Error of Mean	0.0874
33							90KM SD	0.321				95% KN	M (BCA) UCL	0.665
34						95%	KM (t) UCL	0.584			95% KM (F	Percentile Bo	otstrap) UCL	0.597
35						95%	KM (z) UCL	0.574				95% KM Bo	otstrap t UCL	0.87
36						90% KM Che	byshev UCL	0.693				95% KM Che	ebyshev UCL	0.812
37					97		uysnev UCL	0.970				99% NIVI UNE	ebysnev UCL	1.3
38						<u> </u>	amma COF	Tests on D	atented Oben	nyatione On	V			
39						ם ם-מ	est Statistic	2 232			v nderson-Da	rling GOF T	est	
40						5% A-D C	ritical Value	0.73	Detecte	ed Data Not	Gamma Dis	tributed at 5	% Significanc	e Level
41						K-S T	est Statistic	0.469	20000	K	olmogorov	Smirnov GC)F	
42						5% K-S C	critical Value	0.268	Detecte	ed Data Not	Gamma Dis	tributed at 5°	% Significanc	e Level
43						Detecte	ed Data Not C	Gamma Dist	ributed at 5%	6 Significanc	e Level		-	
44										-				

UCL95_200_IA_Methylene_Chloride

	А	В	С	D	E	F	G	Н		J	K	L
46	-				Gamma	Statistics or	n Detected D	ata Only			•	_
47					k hat (MLE)	3.866			k	star (bias co	rrected MLE)	2.773
48				The	eta hat (MLE)	0.133			Theta	star (bias co	rrected MLE)	0.186
49				I	nu hat (MLE)	77.32				nu star (bia	as corrected)	55.46
50				Me	ean (detects)	0.516						
51												
52				(Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS may	y not be used	l when data s	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs	i	
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
55			Fo	or such situat	tions, GROS	method may	yield incorre	ct values of	UCLs and B	TVs		
56					This is especi	ally true whe	en the sample	e size is sma	II.			
57		For gar	mma distribu	ted detected	data, BTVs a	and UCLs ma	ay be comput	ed using gar	nma distribu	tion on KM e	estimates	
58					Minimum	0.01					Mean	0.364
59					Maximum	1.6					Median	0.395
60					SD	0.365					CV	1.003
61					k hat (MLE)	1.196			k :	star (bias co	rrected MLE)	1.013
62				The	eta hat (MLE)	0.305			Theta	star (bias co	rrected MLE)	0.36
63				I	nu hat (MLE)	38.26				nu star (bia	as corrected)	32.42
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		Арр	proximate Ch	ii Square Val	ue (32.42, α)	20.4			Adjusted Ch	i Square Val	ue (32.42, β)	19.32
66			95% 0	Gamma Appro	oximate UCL	0.579			95	% Gamma A	djusted UCL	0.611
67												
68				E	stimates of G	iamma Para	meters using	g KM Estima	tes			
69					Mean (KM)	0.431					SD (KM)	0.321
70				V	ariance (KM)	0.103				SE d	of Mean (KM)	0.0874
71					k hat (KM)	1.799					k star (KM)	1.504
72					nu hat (KM)	57.58					nu star (KM)	48.12
73				tr	neta hat (KM)	0.239				th	eta star (KM)	0.286
74			809	% gamma pe	rcentile (KM)	0.666			90%	% gamma pe	rcentile (KM)	0.897
75			955	% gamma pe	rcentile (KM)	1.121			99%	% gamma pe	rcentile (KM)	1.627
76												
77					Gamm	na Kaplan-M	eier (KM) St	atistics	<u> </u>		(40,40,0)	04 70
78		Арр	proximate Ch	ii Square Val	ue (48.12, α)	33.2			Adjusted Ch	i Square Val	ue (48.12, β)	31.79
79			95% KM A	opproximate (Gamma UCL	0.624			95% K	M Adjusted	Gamma UCL	0.652
80									h -			
81					ognormal GC		etected Obs	ervations O				
82			100/ 0			0.604		tested Det	Snapiro Wi			
83			10% S			0.869	De	elected Data			ignificance Le	vei
84			40		rest Statistic	0.44	D -	tootod Data			anificance L	vol
85			10			U.241				iai at 10% S	ignificance Le	vei
86				De		NOT LOGNORM	iai at 10% Si	gnificance L	evei			
87												

UCL95_200_IA_Methylene_Chloride

	А	В	С		D	E		F	G		H					J		K	L
88						Lognorma	al RO	S Statistics	Using Im	pute	d Non-	Detec	cts						
89				N	lean in	Original	Scale	0.417								Mea	in in	Log Scale	-1.022
90					SD in	Original	Scale	0.327								S	D in	Log Scale	0.485
91		95% t l	JCL (assu	mes no	ormality	y of ROS	data)	0.56						95%	6 Per	centile	Boo	tstrap UCL	0.571
92				95%	5 BCA I	Bootstrap	UCL	0.652								95% B	oots	strap t UCL	0.796
93				95	5% H-U	ICL (Log I	ROS)	0.522											
94																			
95			Sta	atistics	susing	KM estin	nates	on Logged	Data and	l Ass	uming	Logn	ormal	Dist	tribu	tion			
96					KM	Mean (log	gged)	-0.98									KM	Geo Mean	0.375
97				<u> </u>	K	M SD (log	gged)	0.446						95%	6 Crit	tical H V	alue	e (KM-Log)	1.997
98			KM Stan	dard E	rror of	Mean (log	gged)	0.122							9	95% H-l	JCL	. (KM -Log)	0.522
99					K	M SD (log	gged)	0.446						95%	6 Crit	ical H V	alue	e (KM-Log)	1.997
100			KM Stan	dard E	rror of	Mean (log	gged)	0.122											
101			Note: K		Ls may	be biase	ed low	with this da	itaset. O	ther :	substit	ution	methe	od re	ecom	mende	d		
102																			
103				<u></u>				DL/2 S	tatistics						_		<u> </u>		
104			DL	2 Nori	mal	<u></u>		0.50					DL/2	Log	-Tra	nstorme	d.		0.007
105				N	lean in	Original	Scale	0.58								Mea	in in	Log Scale	-0.987
106			0.50/		SD in	Original	Scale	0.801								S	D in	Log Scale	0.836
107			95%	t UCL	(Assu	mes norm	nality)	0.931	.				L. 1 . 4			95	9% F	1-Stat UCL	0.899
108			DL	/2 is n	ot a rec	commend	ied m	etnod, provi	ded for c	omp	arisons	sand	nistoi	rical	reas	ons			
109						Nam		tala Distalka	Han Fran		0.01								
110						Nonpa	arame					STICS							
111						Data	a do n	ot follow a L	viscernid		stridut	on							
112								Queseeted											
113					0	-0/ 1/14 (+)		Suggested		Use									
114					95	5% KIVI (t)	UCL	0.584											
115		Noto: Suggo	ationa rag	ordina	the cel	action of	- 0E%		ovided to	hole	****	orto		+ +b a		tonnror	riot		
116		Pooc~			hasad			data distrib					Selec		inos				
117	<u></u> ц,		lations rec		ill not o			, uala uistriid	te: for ad		al inci			r mar			neul	t a statistici	an
118									15, 101 80	unior		yn di	e use	i ilia	y wa		iisul	น อ รเอแรแต	an.
119																			

	А	В	С	D	E	F	G	Н		J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				1								
3		User Sele			0/6/2022 1.4	4.00 DM						
4	Da	ate/ I lime of Co		PIOUCE 5.2 3	5/0/2023 1:4	4:08 PIVI						
5		Eu				15						
6		Confidence		95%								
7	Number	of Bootstrap	Operations	2000								
8				2000								
9	200 IA TO	CE										
10												
12						General	Statistics					
13			Total	Number of Ot	oservations	16			Numbe	r of Distinct (Observations	13
14				Number	of Detects	6				Number of	Non-Detects	10
15			N	umber of Disti	nct Detects	6			Numbe	er of Distinct	Non-Detects	7
16				Minin	num Detect	0.33				Minimum	n Non-Detect	0.2
17				Maxin	num Detect	1.3				Maximum	n Non-Detect	5.4
18				Variar	ice Detects	0.145				Percent	Non-Detects	62.5%
19				Ме	an Detects	0.627					SD Detects	0.381
20				Medi	ian Detects	0.44					CV Detects	0.608
21				Skewne	ess Detects	1.434				Kurl	tosis Detects	1.163
22				Mean of Logg	ed Detects	-0.598				SD of Log	ged Detects	0.536
23												
24			0		Norm		t on Detects	Only	Oh austana Ma			
25			10/ 0			0.803		to ato d Data	Snapiro wi			
26			1% 5			0.713	De	etected Data	appear Non	GOE Tost	Julicance Le	vei
27			1		itical Value	0.317	De	stected Data	annear Nor	nal at 1% Sid	nificance Le	vol
28				Dete	ected Data	appear Norr	nal at 1% Sic					
29				Note	GOF tests	may be unre	eliable for sm	nall sample	sizes			
30					ue. 10010							
31			Kaplan-	Meier (KM) St	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32			-		KM Mean	0.371			KI	/I Standard E	Fror of Mean	0.0858
34					90KM SD	0.303				95% KN	I (BCA) UCL	0.548
35				95%	KM (t) UCL	0.521			95% KM (F	ercentile Bo	otstrap) UCL	0.522
36				95% ł	KM (z) UCL	0.512				95% KM Boo	otstrap t UCL	0.651
37			ę	0% KM Cheb	yshev UCL	0.628			!	95% KM Che	byshev UCL	0.745
38			97	.5% KM Cheb	yshev UCL	0.906				99% KM Che	byshev UCL	1.224
39												
40				Ga	amma GOF	Tests on De	etected Obse	ervations Or	nly			
41				A-D Te	est Statistic	0.548		A	nderson-Da	rling GOF T	est	
42				5% A-D Cr	itical Value	0.7	Detected	d data appea	ar Gamma D	stributed at	5% Significar	ice Level
43				K-S Te	est Statistic	0.299		 	Kolmogorov-	Smirnov GC)F	
44				5% K-S Cr	itical Value	0.334	Detected	data appea	ar Gamma D	stributed at \$	o% Significar	ice Level
45						r Gamma Di	stributed at t	om Significa				
46				Note	GUF TESTS	may be unre	madie for sm	iali sample	SIZES			
47												

UCL95_200_IA_TCE

		-						-	-	-			
40	A	В	С	D	E Ga	<u>.</u> amma	F Statistics o	G n Detected I	H Data Only	I	J	К	L
48 10					k hat ((MLE)	3.981			k	star (bias co	rrected MLE)	2.102
50				T	Theta hat ((MLE)	0.157			Theta	star (bias co	rrected MLE)	0.298
51					nu hat ((MLE)	47.77				nu star (bia	as corrected)	25.22
52					Mean (de	tects)	0.627						
53								1				l	
54					Gamma	a ROS	Statistics u	sing Impute	ed Non-Detec	cts			
55			GROS may	y not be us	sed when	data se	et has > 50%	% NDs with r	many tied obs	servations at	multiple DLs	;	
56		GROS may	y not be use	d when kst	tar of dete	cts is s	small such a	is <1.0, espe	ecially when	the sample s	ize is small (e.g., <15-20)	
57			Fo	or such site	uations, G	ROS r	method may	yield incorr	ect values of	UCLs and B	TVs		
58					This is e	especi	ally true whe	en the samp	le size is sma	all.			
59		For gar	mma distribu	ited detect	ed data, E	BTVs a	nd UCLs ma	ay be compu	uted using ga	mma distribu	ition on KM e	stimates	
60					Min	imum	0.01					Mean	0.241
61					Max	imum	1.3					Median	0.01
62						SD	0.379						1.5/
63					k hat ((MLE)	0.393			K	star (bias co	rrected MLE)	0.361
64				I	neta nat (12 57			Ineta	star (blas co		0.669
65			Adjusto	d l aval of			0.0225				nu star (bia	as corrected)	11.54
66		۸pr				ce(p)	4 028			Adjusted Ck		up (11 54 B)	1 115
67		Ahh	95% (Tamma An		34, u) ≥ UCI	0.565				ii Square vai	diusted UCI	0.627
68			5570 0		proximate	, 00L	0.000						0.027
69					Estimate	s of G	amma Para	meters usin	a KM Estima	ates			
70					Mean	(KM)	0.371		.ge			SD (KM)	0.303
71					Variance	e (KM)	0.092				SE d	of Mean (KM)	0.0858
72					k hat	t (KM)	1.493					k star (KM)	1.255
73					nu hat	t (KM)	47.79					nu star (KM)	40.16
75					theta hat	t (KM)	0.248				th	eta star (KM)	0.295
76			809	% gamma	percentile	e (KM)	0.584			909	% gamma pe	rcentile (KM)	0.807
77			959	% gamma	percentile	e (KM)	1.026			999	% gamma pe	rcentile (KM)	1.526
78								1				l	
79					(Gamm	a Kaplan-M	leier (KM) S	tatistics				
80		Арр	proximate Ch	ni Square \	Value (40.	16, α)	26.64			Adjusted Ch	ni Square Val	ue (40.16, β)	25.39
81			95% KM A	Approximat	te Gamma	a UCL	0.559			95% k	M Adjusted	Gamma UCL	0.586
82													
83					Lognorm	nal GO	F Test on D	Detected Ob	servations C	only			
84			5	Shapiro Wi	ilk Test St	atistic	0.871			Shapiro W	ilk GOF Tes	t	
85			10% S	Shapiro Wil	lk Critical	Value	0.826	Det	ected Data a	ppear Logno	rmal at 10%	Significance L	.evel
86					rs Test St	atistic	0.267		ented Data	Lilliefors	GUF Test	Olemificano I	
87			1(J% Lilliefor	rs Critical	value	0.298	Det	ected Data a	ppear Logno	rmai at 10%	Significance L	.evei
88				De		ata ap	pear Lognol	mai at 10%	Significance				
89				Г	NOTE GOF	IESIS	may be unr	enable for S	maii sample	SIZES			
90													

UCL95_200_IA_TCE

	٨	Р			<u> </u>	<u>г</u>	-	F	C					1	1	-	—	V	I	
01	A	D	U U	L	Lo	gnorm	⊏ nal RO	S Statistics	Using Im	pute	n ∎d Non	-Dete	ects	1		J		ĸ		L
91				Меа	n in O	riginal	Scale	0.303		-						Mea	n in	Log Sca	le	-1.651
92				SI	D in O	riginal	Scale	0.341								SI) in	Log Sca	le	0.943
93		95% t L	JCL (assume	es norm	nality c	of ROS	data)	0.452						95%	Perce	entile E	3oot	strap UC	CL	0.455
94			-	95% B	CA Bo	otstrap	p UCL	0.491							9	5% Bo	oots	trap t UC	CL	0.601
95				95%	H-UCI	L (Log	ROS)	0.566												
90																				
97			Stati	stics us	sing K	M esti	mates	on Logged I	Data and	Ass	uming	Logr	orma	l Distr	ibutio	n				
99					KM Me	ean (lo	gged)	-1.205								ł	KM (Geo Mea	an	0.3
100					KM	SD (lo	gged)	0.584						95%	Critica	al H Va	alue	(KM-Lo	g)	2.142
101			KM Standa	ard Erro	r of Me	ean (lo	gged)	0.165							959	% H-L	JCL	(KM -Lo	g)	0.491
102					KM	SD (lo	gged)	0.584						95%	Critica	al H Va	alue	(KM-Lo	g)	2.142
102			KM Standa	ard Erro	r of Me	ean (lo	gged)	0.165												
104																				
105								DL/2 S	tatistics											
106			DL/2	Norma	I								DL/2	2 Log-	Trans	forme	d			
107				Mea	n in O	riginal	Scale	0.473								Mea	n in	Log Sca	le	-1.349
108				SI	D in O	riginal	Scale	0.68								S) in	Log Sca	le	1.021
109			95% t	UCL (A	ssume	es norn	nality)	0.771								95	% H	-Stat UC	L	0.9
110			DL/2	is not a	a reco	mmen	ded m	ethod, provi	ded for co	omp	arison	s and	histo	orical r	easor	าร				
111																				
112						Nonp	barame	etric Distribu	tion Free	UC	L Stati	stics								
113				De	tected	l Data	appea	r Normal Di	stributed	at 1	% Sigr	nifica	nce L	evel						
114																				
115								Suggested	UCL to U	Jse										
116					95%	6 KM (t) UCL	0.521												
117																				
118	1	Note: Sugge	stions regard	ding the	e selec	ction of	a 95%	6 UCL are pr	ovided to	help	o the us	ser to	sele	ct the r	nost a	pprop	riate	e 95% U	CL.	
119		Recom	mendations	are bas	sed up	oon dat	ta size	, data distrib	ution, and	d ske	ewness	s usin	g res	ults fro	m sim	nulatio	n stı	udies.		
120	Но	wever, simu	lations resul	lts will n	ot cov	/er all F	Real W	/orld data se	ts; for add	ditio	nal insi	ght th	ne use	er may	want	to cor	sult	a statis	ticia	n.

			_		
1	АВС	UCL Statis	⊢ tics for Data	G H I J K I	L
2					
3	User Selected Options	6			
4	Date/Time of Computation	ProUCL 5.2 3/6/2023 1:4	2:22 PM		
5	From File	UCL95_input_Revised.xl	s		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	200 IA Toluene				
11			Canaral	Statiation	
12	Tata	Number of Observations		Statistics	15
13		Number of Detects	10	Number of Distinct Observations	3
14	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	3
15		Minimum Detect	0.25	Minimum Non-Detect	0.29
16		Maximum Detect	7.2	Maximum Non-Detect	0.38
1/		Variance Detects	3.402	Percent Non-Detects	18.75%
10		Mean Detects	1.285	SD Detects	1.844
20		Median Detects	0.64	CV Detects	1.436
21		Skewness Detects	3.18	Kurtosis Detects	10.71
22		Mean of Logged Detects	-0.238	SD of Logged Detects	0.907
23					
24		Norm	al GOF Tes	t on Detects Only	
25	5	Shapiro Wilk Test Statistic	0.544	Shapiro Wilk GOF Test	
26	1% S	hapiro Wilk Critical Value	0.814	Detected Data Not Normal at 1% Significance Level	
27		Lilliefors Test Statistic	0.313	Lilliefors GOF Test	
28	1	% Lilliefors Critical Value	0.271	Detected Data Not Normal at 1% Significance Level	
29		Detected Data	a Not Norma	I at 1% Significance Level	
30	Kanlan	Maiar (I/M) Otatiatian wei		without Maluan and other Nonneumatric LIOLs	
31	Kapian-				0.420
32			1.092		1.025
33		95% KM (t) LICI	1 843	95% KM (Percentile Rootstrap) UCL	1 864
34		95% KM (7) UCI	1.797	95% KM Bootstrap t UCL	3.447
35		90% KM Chebvshev UCL	2.378	95% KM Chebyshev UCL	2.96
36	97	7.5% KM Chebyshev UCL	3.768	99% KM Chebyshev UCL	5.356
3/ 22					
39		Gamma GOF	Tests on De	etected Observations Only	
40		A-D Test Statistic	0.907	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.755	Detected Data Not Gamma Distributed at 5% Significance	Level
42		K-S Test Statistic	0.208	Kolmogorov-Smirnov GOF	
43		5% K-S Critical Value	0.242	Detected data appear Gamma Distributed at 5% Significance	ce Level
44		Detected data follow Ap	pr. Gamma I	Distribution at 5% Significance Level	
45					

UCL95_200_IA_Toluene

	А	В	С	D	E	F	G	Н		J	K	L
46					Gamma	Statistics or	n Detected D	Data Only				
47					k hat (MLE)	1.163			k	star (bias cor	rected MLE)	0.946
48				The	ta hat (MLE)	1.105			Theta	star (bias cor	rected MLE)	1.358
49				r	nu hat (MLE)	30.23				nu star (bia	is corrected)	24.59
50				Me	ean (detects)	1.285						
51												
52					Jamma ROS	Statistics u		d Non-Detec	ts			
53		0.000	GROS may	/ not be used	when data se	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs	.15.00)	
54		GROS may	/ not be used	i when kstar	of detects is s	mall such a	s <1.0, espe	cially when t	ne sample si	ze is small (e	e.g., <15-20)	
55			FC	or such situat	ions, GROS r	nethod may	yield incorre			IVS		
56		For cor	nma diatribu	l hotostad	dete BTVe e	ally true whe	en the sample	e size is sma	II.	tion on KM o	atimataa	
57		For gar	nma distribu		data, BTVS a		ay be compu	ted using gar	nma distribu		Stimates	1.046
58					Maximum	0.01					Median	0.615
59					iviaximum D	1 720					Median	1.652
60					SD	0.566			k.	star (bias aar		0.502
61				The	K Hat (IVILE)	1 947			Thoto	star (bias cor		2.095
62					au hot (MLE)	1047			meld	nu star (bia		16.05
63			Adjustor			0.0335				nu stat (bia	is corrected)	10.05
64		٨٥٩	Aujusieu		(16.05 c)	7 008			Adjusted Ch	i Squaro Vali	16 05 B)	7 358
65		Ahh	95% 0		ue (10.05, u)	2 008					diusted UCI	2 281
66			3370 C			2.030						2.201
67				Es	stimates of G	amma Para	meters using	o KM Estima	tes			
68					Mean (KM)	1.092					SD (KM)	1.647
69				Va	ariance (KM)	2.712				SE o	f Mean (KM)	0.429
70					k hat (KM)	0.44					k star (KM)	0.399
71					nu hat (KM)	14.07					nu star (KM)	12.76
72				th	eta hat (KM)	2.484				the	eta star (KM)	2.738
73			80%	% gamma per	rcentile (KM)	1.762			90%	6 gamma per	centile (KM)	3.086
74			95%	% gamma per	rcentile (KM)	4.542			99%	6 gamma per	centile (KM)	8.203
75												
70					Gamm	a Kaplan-M	eier (KM) St	atistics				
78		Арр	proximate Ch	i Square Val	ue (12.76, α)	5.734			Adjusted Ch	i Square Valı	ue (12.76, β)	5.207
79			95% KM A	pproximate (Gamma UCL	2.431			95% K	M Adjusted C	Gamma UCL	2.677
80							1					
81				Lo	ognormal GO	F Test on D	etected Obs	servations O	nly			
82			S	Shapiro Wilk	Test Statistic	0.92			Shapiro Wi	lk GOF Test		
83			10% S	hapiro Wilk C	Critical Value	0.889	Dete	ected Data ap	opear Lognoi	mal at 10% S	Significance L	evel
84				Lilliefors 7	Test Statistic	0.129			Lilliefors	GOF Test		
85			10	% Lilliefors C	Critical Value	0.215	Dete	ected Data ap	opear Lognoi	mal at 10% s	Significance L	evel
86				Deteo	cted Data ap	pear Lognor	mal at 10%	Significance	Level			
87												

UCL95_200_IA_Toluene

	А	В	С		D	E		F	G		Н		I		J		K		L
88					L	ognormal	ROS	Statistics	Using Imp	outed	Non-[Detec	ts						
89					Mean in	Original So	cale	1.077							Me	ean in	Log So	ale	-0.522
90					SD in	Original So	cale	1.709								SD in I	Log So	ale	1.019
91		95% t	UCL (ass	umes i	normality	y of ROS d	ata)	1.826					9	95% P	ercentil	e Boots	strap L	JCL	1.83
92				95	% BCA E	Bootstrap L	JCL	2.296							95%	Bootst	rap t L	JCL	3.46
93				ç	95% H-U	CL (Log R	OS)	2.046											
94																			
95			S	Statistic	s using	KM estima	ates or	n Logged	Data and	Assu	ming L	_ogno	rmal [Distrit	oution				
96					KM	Mean (logg	jed)	-0.448								KM	Geo M	ean	0.639
97					K	M SD (logg	jed)	0.9					9	95% C	ritical H	Value	(KM-L	.og)	2.554
98			KM Sta	andard	Error of	Mean (logg	jed)	0.234							95% H	I-UCL	(KM -L	.og)	1.735
99					K	M SD (logg	jed)	0.9					9	95% C	ritical H	Value	(KM-L	.og)	2.554
100			KM Sta	andard	Error of	Mean (logg	jed)	0.234											
101																			
102								DL/2 S	tatistics										
103			D	L/2 No	rmal								DL/2 L	.og-Ti	ansform	ned			
104					Mean in	Original So	cale	1.074							Me	ean in l	Log So	ale	-0.536
105					SD in	Original So	cale	1.711								SD in I	Log So	ale	1.036
106			959	% t UC	L (Assur	mes norma	lity)	1.824							9	95% H	-Stat L	JCL	2.094
107			D	L/2 is	not a rec	commende	d meth	hod, provi	ded for co	mpa	risons	and h	nistorio	cal re	asons				
108																			
109						Nonpar	ametri	ic Distribu	ition Free	UCL	Statis	tics							
110				Detec	ted Data	a appear A	pproxi	imate Gar	nma Distr	ibute	d at 5%	% Sig	nificar	nce Le	evel				
111																			
112							5	uggested	UCL to U	se									
113			95	5% KM	Adjusted	d Gamma L	JCL	2.677											
114																			
115		I he ca	alculated	UCLS	are bas	ed on assu		ns that the	e data we	re co			randoi	m and	undias	ed ma	nner.		
116				16 4	Plea	ase verity i	the dat	ta were co		om ra	Indom	locat	ions.						
117				ITI		were colle	cted u	ising juagi	mental or	otnei	non-r	ando	m met	noas,					
118					1	then conta	ct a sta	atistician	to correct	y cai	culate	UCL	S.						
119				A /l	-l-4 4	. f. II							- 6 41	005					
120			V	vnen a	data set	t tollows an	appro	oximate dis	stribution	bassi	ng only	y one	of the	GOF					
121			it i	s sugg	ested to	use a UCL	. pased	u upon a d	IISTRIDUTION	pass	ing bo	nn GC	r test	is in P	TOUCL				
122							050/ 1	101					-1				050/		
123		Note: Sugge	estions re	garding	y the sel	ection of a	95% L		ovided to	nelp	ine use	er to s		ine m	ost appr	opriate	95%	UUL	•
124		Recon	rimendati	ons are	e based	upon data	size, d	ata distrib	ution, and	SKEV	vness i	using	result	s trom	i simula	uon stu	ales.	-+: ·	
125	Ho	wever, simi	ulations re	esults \	will not c	over all Re	al Wor	nd data se	ets; for add	litiona	ai insig	int the	user	may v	ant to c	onsult	a stati	Sticia	an.
126																			

	А	В	С	D	E	F	G	Н	I	J	К	L
1		-	-	I	UCL Statis	tics for Unc	ensored Full	Data Sets		-	-	
2												
3		User Sele	cted Options									
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 2:2	2:15 PM						
5			From File	UCL95_inpu	It_Revised.xl	ls						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
/	Number	of Bootstrap	Operations	2000								
8			•									
9												
10	600 IA 2-B	utanone (ME	К)									
11			,									
12						General	Statistics					
13			Total	Number of O	bservations	8			Numbe	r of Distinct (Observations	7
14			10101			0			Numbe	r of Missing (Observations	,
15					Minimum	0.37			Numbe		Moon	2 080
16					Movimum	E 2					Madian	2.009
17						1.095				Ctd F		0.702
18				0	SD af Mariatian	1.985				5td. E		0.702
19				Coefficient	of variation	0.95					Skewness	0.677
20			<u> </u>									
21		Note: Sa	mple size is	small (e.g., <	(10), if data a	are collected	l using incre	mental samp	oling metho	dology (ISM)	approach,	
22			refer also t	o ITRC Tech	Reg Guide o	on ISM (ITR	C 2020 and	ITRC 2012)	for addition	al guidance,		
23		Ł	out note that	ITRC may re	commend th	e t-UCL or 1	he Chebysh	ev UCL for s	mall sampl	e sizes (n < :	7).	
24				The Cheby	/shev UCL o	ften results	in gross ove	restimates o	f the mean.			
25			Ret	er to the Pro	UCL 5.2 Tec	hnical Guid	e for a discu	ssion of the	Chebyshev	UCL.		
26												
27						Normal (GOF Test					
28			S	hapiro Wilk T	est Statistic	0.836			Shapiro W	ilk GOF Test	1	
29			1% S	hapiro Wilk C	ritical Value	0.749		Data appe	ear Normal a	at 1% Signific	ance Level	
30				Lilliefors T	est Statistic	0.285			Lilliefors	GOF Test		
31			1	% Lilliefors C	ritical Value	0.333		Data appe	ear Normal a	at 1% Signific	ance Level	
32					Data appea	ar Normal a	t 1% Signific	ance Level				
33				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
34												
35					As	suming Nor	mal Distribut	ion				
36			95% No	ormal UCL				95%	UCLs (Adj	usted for Ske	wness)	
37				95% Stuc	dent's-t UCL	3.418			95% Adjust	ed-CLT UCL	(Chen-1995)	3.423
38									95% Modif	ed-t UCL (Jo	hnson-1978)	3.446
39												
40						Gamma	GOF Test					
41				A-D T	est Statistic	0.673		Ander	son-Darling	Gamma GC	F Test	
42				5% A-D C	ritical Value	0.734	Detecte	d data appea	r Gamma D	istributed at	5% Significan	ice Level
42				K-S T	est Statistic	0.296		Kolmog	orov-Smirn	ov Gamma G	OF Test	
11				5% K-S C	ritical Value	0.301	Detecte	d data appea	r Gamma D	istributed at	5% Significan	ce Level
44				Detected	data appear	Gamma Di	stributed at {	5% Significa	nce Level			
40				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
40								•				
4/												
UCL95_600_IA_2-ButanoneMEK

	А	В	С	D	E	F	G	Н	I	J	К	L
48					k hot (MLE)	1 077	Sidustics		k	star (bias cor	roctod MLE)	0 756
49				The	ta hat (MLE)	1.077			Theta	star (bias cor	rected MLE)	2 762
50					nu hat (MLE)	17.23				nu star (bia	as corrected)	12.1
51			М	E Mean (bia	as corrected)	2.089				MLE Sd (bia	as corrected)	2.402
52					,				Approximate	Chi Square	Value (0.05)	5.293
53			Adjus	sted Level of	Significance	0.0195			Ac	djusted Chi S	quare Value	4.211
55			-		-					-		
56					Ass	uming Gam	nma Distribu	tion				
57			95% A	pproximate (Gamma UCL	4.775			95	% Adjusted (Gamma UCL	6.001
58												
59						Lognorma	I GOF Test					
60			S	hapiro Wilk	Fest Statistic	0.823		Sha	piro Wilk Log	normal GOF	- Test	
61			10% S	hapiro Wilk C	Critical Value	0.851		Data Not I	_ognormal at	10% Signific	cance Level	
62				Lilliefors	Fest Statistic	0.269		Lil	liefors Logno	ormal GOF 1	est	
63			10	% Lilliefors C	Critical Value	0.265		Data Not I	_ognormal at	10% Signific	cance Level	
64					Data Not Lo	gnormal at	10% Signific	cance Level				
65						•						
66				Minimum - 61		Lognorma	I Statistics				la sura di Dista	0.005
67					Logged Data	-0.994				Mean of	logged Data	0.205
68			ľ	naximum of i	Logged Data	1.008				50 01	logged Data	1.17
69					٨٥٩		rmal Dietrib	ution				
70					95% H-UCI	13.4			90%	Chebyshev (MVUE) UCL	4 888
71			95%	Chebvshev (MVUE) UCL	6.125			97.5%	Chebyshev (MVUE) UCL	7.842
72			99%	Chebyshev (MVUE) UCL	11.21						
73					- /							
74					Nonparame	tric Distribu	tion Free UC	CL Statistics				
76					Data appea	r to follow a	Discernible	Distribution				
77												
78					Nonpar	ametric Dis	tribution Fre	e UCLs				
79				95	5% CLT UCL	3.243			1	95% BCA Bo	ootstrap UCL	3.396
80			95%	Standard Bo	otstrap UCL	3.187				95% Boo	otstrap-t UCL	3.727
81			9	5% Hall's Bo	otstrap UCL	3.332			95% I	Percentile Bo	ootstrap UCL	3.236
82			90% Ch	ebyshev(Me	an, Sd) UCL	4.194			95% Ch	ebyshev(Me	an, Sd) UCL	5.148
83			97.5% Ch	ebyshev(Me	an, Sd) UCL	6.472			99% Ch	ebyshev(Me	an, Sd) UCL	9.072
84												
85						Suggested	UCL to Use					
86				95% Stu	dent's-t UCL	3.418						
87												
88		Note: Sugge	estions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	Ip the user to	select the m	lost appropri	ate 95% UCL	
89		Recom	Internetions	are based up	on data size,	aata distrib	ution, and sk	ewness usir	ng results from	n simulation	STUDIES.	
90	H	owever, simu	nations result	S WIII NOT CO	ver all Real W	unu data se	is; for additio	niai insight ti	ne user may	want to cons	uit a statisticia	al).
91												

	А	В	С	D	E	F	G	Н		J	К	L
1					JCL Statis	tics for Unc	ensored Full	Data Sets	-	1 1		
2												
3		User Sele	ected Options	6								
1	Date	e/Time of C	omputation	ProUCL 5.2 3/6	6/2023 2:2	6:35 PM						
5			From File	UCL95_input_	Revised.xl	s						
6		Fu	III Precision	OFF								
7	(Confidence	Coefficient	95%								
/	Number of	f Bootstrap	Operations	2000								
8 0												
9												
10	600 IA Aceto	one										
10												
12						General	Statistics					
13			Tota	I Number of Obs	ervations	8			Numbe	er of Distinct	Observations	7
14						•			Numbe	er of Missing	Observations	0
15					Minimum	3.8					Mean	11 84
16					Maximum	28					Median	7.85
17						9 555				Std	Error of Mean	3 378
18				Coofficient of	Variation	0.807				Olu.	Skownoss	0.846
19				Coemcient of	variation	0.807					SKEWHESS	0.040
20		Noto: So	mala aiza ia) if data a	ro colloctor		montol comm	ling mother) opproach	
21		Note: Sa	mple size is), il uata a				ing meuro) approach,	
22					ey Guide C						, 7)	
23			but note that	The Chebyek				ev UCL for s	mail sampl	e sizes (n <	7).	
24			De									
25					L 3.2 Tec				Chebyshev	UCL.		
26						Normal						
27				Shaniro Wilk Tes	t Statistic	0.832			Shaniro W		et	
28			1% 9	Shapiro Wilk Criti		0.002		Data anne	ar Normal a	at 1% Signifi		
29			170 C		t Statistic	0.743						
30			· · · ·	1% Lilliefors Criti	cal Value	0.333		Data anne	ar Normal a	at 1% Signifi	cance Level	
31)ata annea	ar Normal a	t 1% Signific:	ance i evel				
32				- Note G	OF tests i	may be unr	eliable for sm	all sample s	izes			
33												
34					Ass	sumina Nor	mal Distribut	ion				
35			95% N	ormal UCI				95%	UCI s (Adii	usted for Sk	ewness)	
36				95% Studer	nt's-t UCI	18 24			95% Adjust	ed-CLT UCI	(Chen-1995)	18 47
37									95% Modifi	ied-t UCL (J	ohnson-1978)	18.41
38												
39						Gamma	GOF Test					
40				A-D Tes	t Statistic	0.626		Ander	son-Darling	1 Gamma G	OF Test	
41				5% A_D Criti	cal Value	0 726	Detector	data annea	r Gamma D	istributed at	5% Significar	
42				K-S Tes	t Statistic	0.720	Delecter	Kolmog	prov-Smirn	ov Gamma		
43				5% K_S Criti	cal Value	0.201	Detector	1 data annea	r Gamma D	istributed at	5% Significar	
44				Detected do		Gamma Di	stributed at 5	Significa			. 570 Olyrillical	
45				Noto C			aliable for or					
46				NOLE G		nay be unn		ian sample s	1203			
47												

UCL95_600_IA_Acetone

	А	В	С	D		E	F	G	н			J		К	ΤL	
48				•			Gamma	Statistics	•	•						
49					k	hat (MLE)	1.796				k s	tar (bias	corre	cted MLE) 1.20	06
50					Theta	hat (MLE)	6.589			The	eta s	tar (bias	corre	cted MLE) 9.81	14
51					nu	hat (MLE)	28.74					nu star (bias	corrected) 19.3	\$
52			М	LE Mean	n (bias	corrected)	11.84					MLE Sd (bias	corrected) 10.73	8
53										Approxin	nate	Chi Squa	are V	alue (0.05) 10.3	4
54			Adju	sted Leve	el of Si	ignificance	0.0195				Ad	justed Ch	ni Sq	uare Valu	e 8.72	26
55																
56						As	suming Gan	nma Distribut	tion							
57			95% A	Approxima	ate Ga	amma UCL	22.1				959	% Adjuste	ed Ga	amma UC	_ 26.18	8
58																
59							Lognorma	I GOF Test								
60			S	Shapiro W	Vilk Te	st Statistic	0.843		Sha	oiro Wilk	Log	normal G	OF 1	Fest		
61			10% S	shapiro W	/ilk Cri	tical Value	0.851		Data Not L	ognorma	al at	10% Sign	nifica	nce Level		
62				Lillief	ors Te	st Statistic	0.27		Lil	liefors Lo	ogno	ormal GO	FTe	st		
63			10)% Lilliefo	ors Cri	tical Value	0.265		Data Not L	ognorma	al at	10% Sigr	nifica	nce Level		
64						Data Not L	ognormal at	10% Signific	cance Level							
65							•									
66							Lognorma	al Statistics							0.10	
67				Minimum		gged Data	1.335					Mean	of lo	gged Dat	3 2.16	38 4
68				waximum	n of Lo	gged Data	3.332					5D	OT IO	gged Dat	1 0.84	+
69						٨٥٩	ming Logn	ormal Dietrib	ution							-
70					Q	5% H_UCI	32 65		uuon	Q	0% (hohycho			22.4	8
71			95%	Chebysh	nev (M		27.32			97	5% (Chebyshe	w (M		34.0	14
72			99%	Chebysh	nev (M		47.25			07.	0 /0 (Shebyshe		102,00		_
73			0070	Chebyon		102,002	47.20								_	
/4					1	Nonparame	etric Distribu	ition Free UC	CL Statistics							
75					[Data appea	r to follow a	Discernible	Distribution							
70																
78						Nonpa	rametric Dis	tribution Fre	e UCLs							
70					95%	CLT UCL	17.39				ç	95% BCA	Boo	tstrap UC	_ 18.5	5
80			95%	Standar	d Boot	tstrap UCL	17.13					95% E	Boots	trap-t UC	_ 20.09	19
81			ę	95% Hall'	's Boot	tstrap UCL	18.15			95	5% F	Percentile	Boo	tstrap UC	_ 17.3	9
82			90% Cł	nebyshev	/(Mear	n, Sd) UCL	21.97			95%	5 Ch	ebyshev(Mear	n, Sd) UC	26.50	6
83			97.5% Cł	nebyshev	/(Mear	n, Sd) UCL	32.94			99%	5 Ch	ebyshev(Mear	n, Sd) UC	45.4	5
84																
85							Suggested	UCL to Use								
86				95%	Stude	ent's-t UCL	18.24									
87								·								
88		Note: Sugge	stions regard	ding the s	selectio	on of a 95%	UCL are pr	ovided to hel	p the user to	select th	ne m	ost appro	priat	e 95% UC	;L.	
89		Recom	nmendations	are base	ed upo	n data size	, data distrib	ution, and sk	ewness usin	ig results	fron	n simulati	on st	udies.		
90	F	lowever, simu	llations resul	ts will not	t cove	r all Real W	/orld data se	ets; for additio	onal insight th	ne user m	nay v	want to co	onsul	t a statisti	cian.	
91																

		-		-		-					-		
1	A	1	В	С	D	UCL Statis	F tics for Data	G Sets with No	H on-Detects	Ι	J	К	L
2													
3		U	ser Sele	cted Option	s								
4	Da	te/Ti	me of Co	omputation	ProUCL 5.2	2 3/6/2023 2:2	7:19 PM						
5				From File	UCL95_inp	out_Revised.x	ls						
6			Fu	II Precision	OFF								
7		Con	fidence	Coefficient	95%								
8	Number	of Bo	otstrap	Operations	2000								
9													
10	600 IA Ben	zene)										
11							-	-					
12							General	Statistics					-
13				Tota	al Number of	Observations	8			Numbe	r of Distinct (Observations	6
14					Numb	er of Detects	/			Niccoste	Number of	Non-Detects	1
15				٦	Numper of Dis	SUNCE Detects	0.00			Numbe		Non-Detects	0.00
16					IVIII		0.28				Winimum	Non-Detect	0.28
17					Ivia) Vori	anaa Detect	0.00246				Doroont	Non-Detect	0.28
18					Vall		0.00240				Feiceni	SD Dotocts	0.0496
19					л Ма	dian Detects	0.333					CV Detects	0.0490
20					Skew		-0 537				Kur	tosis Detects	-1.68
21					Mean of Lo	aged Detects	-1.051				SD of Loc	and Detects	0.146
22						9904 2 010010						<u>, , , , , , , , , , , , , , , , , , , </u>	
23		N	lote: Sai	mple size is	small (e.g.,	<10), if data a	are collected	using increr	nental samp	ling method	lology (ISM)	approach,	
24				refer also	to ITRC Tec	h Reg Guide	on ISM (ITR	C 2020 and I	TRC 2012) 1	for additiona	al guidance,		
25			t	out note that	t ITRC may r	ecommend th	e t-UCL or t	he Chebyshe	ev UCL for s	mall sample	e sizes (n <)	7).	
20					The Chet	oyshev UCL o	ften results	in gross ovei	restimates o	f the mean.			
28				Re	efer to the Pr	oUCL 5.2 Tec	hnical Guid	e for a discus	ssion of the	Chebyshev	UCL.		
29													
30						Norm	al GOF Tes	t on Detects	Only				
31				:	Shapiro Wilk	Test Statistic	0.874			Shapiro Wi	lk GOF Test	:	
32				1% \$	Shapiro Wilk	Critical Value	0.73	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
33					Lilliefors	Test Statistic	0.207			Lilliefors	GOF Test		
34					1% Lilliefors	Critical Value	0.35	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
35					D	etected Data	appear Norn	nal at 1% Sig	nificance Le	evel			
36					No	te GOF tests	may be unre	liable for sm	all sample s	izes			
37										-			
38				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	ritical Values	s and other l	Nonparamet	tric UCLs		
39						KM Mean	0.344			KN	A Standard E	Fror of Mean	0.0188
40					05/	90KM SD	0.0492				95% KN		0.3/3
41					959	% KIVI (t) UCL	0.379			95% KM (P		otstrap) UCL	0.3/3
42					95%	o KIVI (Z) UCL	0.3/5				90% KIVI BO		0.3//
43							0.4						0.420
44				9	7.3% KIVI UN		0.401					bysnev UCL	0.531
45													

	Δ	B		C C	I	D	1	F	F		2	н		-		1		ĸ	1	
46		D	1	0			Gamm	a GOF	Tests on D	etecte	d Obse	rvations	Only					IX.		
47						A-D	Test S	Statistic	0.48				And	erson	-Darlin	g GOF	Test			
48					5	% A-D	Critica	l Value	0.708	D	etected	l data ap	pear G	amm	a Distr	ibuted a	at 5%	Significar	ice Lev	vel
49						K-S	Test S	Statistic	0.228				Kol	mogo	rov-Sn	nirnov (GOF			
50					5	% K-S	Critica	l Value	0.311	D	etected	l data ap	pear G	amm	a Distr	ibuted a	at 5%	Significar	ice Lev	vel
51					D)etecte	d data	appea	r Gamma Di	istribul	ed at 5	% Signi	ficance	e Leve	əl					
52						No	te GO	F tests	may be unr	eliable	for sm	all sam	ole size	es						
53																				
54							Ģ	amma	Statistics o	n Dete	cted D	ata Only	/							
55							k hat	t (MLE)	56.44						k sta	r (bias o	correc	ted MLE)	32.	.34
56						The	eta hat	t (MLE)	0.00625					The	eta sta	r (bias o	correc	ted MLE)	0.0)109
57							nu hat	t (MLE)	790.1						r	nu star (bias c	orrected)	452.	.8
58						Μ	lean (d	etects)	0.353											
59							_													
60			0.00				Gamm		Statistics u	Ising Ir	nputed	Non-De	etects			1. L D				
61		0000	GRO	S may	/ not l	be use	d wher	n data s	set has > 50%	6 NDs	with m	any tied	observ	ations	s at mu	iltiple D		.45.00)		
62		GROS may	y not b	e used	1 whe	en Kstar	of det		small such a	is <1.0	, espec	ally wh	en the	sampi		is smai	I (e.g.	, <15-20)		
63				FO	or suc	n situa	This is	GRUS	method may					Ls an	авіv	5				
64			mma di	iotribut	tod d	otootoo				en the	sample	size is	small.	o diat	ributio	n on KN	Lootin			
65		For gar	mma di	Istribui	tea a	elected		BIVSa		ау ре с	omput	ea using	gamm	a dist	ributio		estin	Maan	0.4	220
66							IVII Ma	vinum	0.243									Modion	0.	228
67							IVIa		0.4										0.	33 177
68							k hot		0.0001						k ata	r (hiaa			0.	1//
69						Th			0.0000					Th	K SId		corroc		21.	.49
70							nu hat		547.9						ria sia		hias c		343	8
71			Ad	liusted	1 eve	el of Si	anifica	nce (ß)	0.0195										040.	.0
72		Appr	roximat	e Chi	Saua	re Valu	ue (343	(q) 380 (α)	301.8				Adiı	isted (Chi Sa	uare Va	alue (3	43.80 B)	291	9
73			(95% G	amm	na Appr	roxima	te UCL	0.386				, luje		95%	Gamma	Adiu:	sted UCL	0.4	4
74																				
75						E	stimat	es of G	amma Para	meters	s using	KM Est	imates	;						
70							Меа	ın (KM)	0.344		-							SD (KM)	0.0)492
78						V	/arianc	e (KM)	0.00242							SE	E of M	ean (KM)	0.0)188
70							k ha	at (KM)	48.76								k	star (KM)	30.	.56
80							nu ha	at (KM)	780.1								nu	star (KM)	488.	.9
81						t	heta ha	at (KM)	0.00705								theta	star (KM)	0.0)112
82				80%	% gar	nma pe	ercentil	le (KM)	0.395						90% g	amma	percer	ntile (KM)	0.4	425
83				95%	% gar	nma pe	ercentil	le (KM)	0.452						99% g	amma	percer	ntile (KM)	0.5	505
84									1	1									1	
85								Gamn	na Kaplan-M	leier (ł	(M) Sta	tistics								
86		Appr	roximat	e Chi	Squa	ire Valu	ue (488	3.92, α)	438.6				Adju	usted (Chi Sq	uare Va	alue (4	-88.92, β)	426.	.5
87			95%	KM A	pprox	ximate	Gamm	na UCL	0.383					959	% KM /	Adjuste	d Gan	nma UCL	0.3	394
88																				

UCL95_600_IA_Benzene

	A B	С	D	E	F	G	Н	1	1		J		К	T	L
89			Lo	ognormal GC	F Test on D	etected	Observatio	ons On	y						
90			Shapiro Wilk	Test Statistic	0.869			:	Shapiro	Wilk	GOF Te	est			
91		10% S	Shapiro Wilk C	Critical Value	0.838	I	Detected Da	ata app	ear Log	gnorma	al at 10%	% Sign	ificance	Leve	el
92			Lilliefors	Test Statistic	0.222				Lillief	ors G	OF Test				
93		1(0% Lilliefors C	Critical Value	0.28	l	Detected Da	ata app	ear Log	gnorma	al at 10%	% Sign	ificance	Leve	el
94			Dete	cted Data ap	pear Lognor	mal at 1	0% Signific	ance L	.evel						
95			Note	e GOF tests	may be unre	eliable fo	or small san	nple si	zes						
96															
97			Lo	gnormal RO	S Statistics	Using Im	nputed Non-	-Detec	ts						
98			Mean in O	riginal Scale	0.34						Mea	an in Lo	og Scale	e - '	1.094
99			SD in O	riginal Scale	0.0592						S	D in L	og Scale	9	0.182
100	95	% t UCL (assume	es normality o	of ROS data)	0.379				95	5% Pe	rcentile	Bootst	rap UCL	-	0.371
101			95% BCA Bo	ootstrap UCL	0.369						95% B	ootstra	ap t UCL	-	0.378
102			95% H-UC	L (Log ROS)	0.389										
103															
104		Stati	istics using K	M estimates	on Logged I	Data and	d Assuming	Logno	ormal Di	istribu	tion				
105			KM M	ean (logged)	-1.078							KM G	eo Mear	ı	0.34
106			KM	SD (logged)	0.146				95	5% Crit	tical H V	/alue (KM-Log)	1.89
107		KM Standa	ard Error of M	ean (logged)	0.0558					1	95% H-l	JCL (ŀ	KM -Log)	0.382
108			KM	SD (logged)	0.146				95	5% Crit	tical H V	/alue (KM-Log)	1.89
109		KM Standa	ard Error of M	ean (logged)	0.0558										
110															
111					DL/2 S	tatistics									
112		DL/2	Normal						DL/2 Lo	og-Tra	nsforme	əd			
113			Mean in O	riginal Scale	0.326						Mea	an in Lo	og Scale) - '	1.165
114			SD in O	riginal Scale	0.0881						S	D in L	og Scale	•	0.351
115		95% t	UCL (Assume	es normality)	0.385						95	5% H-S	Stat UCL	-	0.44
116		DL/2	is not a reco	mmended m	ethod, provi	ded for c	comparison	s and I	nistorica	al reas	sons				
117															
118				Nonparame	etric Distribu	tion Free	e UCL Stati	istics	_						
119			Detected	l Data appea	r Normal Di	stributed	d at 1% Sigr	nifican	ce Leve						
120															
121			0.50		Suggested	UCL to	Use								
122			95%	5 KM (t) UCL	0.379										
123															
124	Note: Si	uggestions regard	ding the selec	ction of a 95%	UCL are pr	ovided to	o help the us	ser to s	select th	ie mos	t approp	priate 9	95% UC	L.	
125	Re	ecommendations	s are based up	oon data size	, data distrib	ution, an	a skewness	s using	results	from s	simulatio	on stud	lies.		
126	However,	simulations resul	Its will not cov	/er all Real W	orld data se	ts; for ac	ditional insi	ight the	e user m	nay wa	int to co	nsult a	statistic	cian.	
127															

	А	В	С	D	E	F	G	Н	1	J	K	L
1		-		•	UCL Statis	stics for Unc	ensored Full	Data Sets	•	-	•	
2												
3		User Sele	ected Options	6								
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 2:2	5:47 PM						
5			From File	UCL95_inpu	ut_Revised.x	s						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10												
11	600 IA Car	bon Tetrach	loride									
12												
13						General	Statistics					
14			Tota	I Number of C	Observations	8			Numbe	r of Distinct	Observations	5
15									Numbe	r of Missing	Observations	0
16					Minimum	0.37					Mean	0.419
17					Maximum	0.45					Median	0.42
18					SD	0.0247				Std. I	Error of Mean	0.00875
19				Coefficient	t of Variation	0.0591					Skewness	-0.941
20												
21		Note: Sa	ample size is	small (e.g., •	<10), if data a	are collected	l using increi	mental samp	ling method	ology (ISM)	approach,	
22			refer also	to ITRC Tech	n Reg Guide	on ISM (ITR	C 2020 and	ITRC 2012)	for additiona	al guidance,		
23			but note that	t ITRC may re	ecommend th	ne t-UCL or	the Chebysh	ev UCL for s	small sample	e sizes (n <)	7).	
24				The Cheb	yshev UCL o	ften results	in gross ove	restimates o	f the mean.			
25			Re	efer to the Pro	OUCL 5.2 Teo	chnical Guid	e for a discu	ssion of the	Chebyshev	UCL.		
26												
27						Normal	GOF Test					
28			ę	Shapiro Wilk	Test Statistic	0.912			Shapiro Wi	lk GOF Tes	t	
29			1% S	Shapiro Wilk C	Critical Value	0.749		Data appe	ear Normal a	t 1% Signific	ance Level	
30				Lilliefors	Test Statistic	0.237			Lilliefors	GOF Test		
31			-	1% Lilliefors C	Critical Value	0.333		Data appe	ear Normal a	t 1% Signific	ance Level	
32					Data appe	ar Normal a	t 1% Signific	ance Level				
33				Not	e GOF tests	may be unr	eliable for sm	nall sample s	sizes			
34								-				
35			050/ 1		As	suming Nor	mai Distribut	ion				
36			95% N			0.405		95%				0.42
37				95% Stu	dent's-t UCL	0.435			95% Adjuste		(Cnen-1995)	0.43
38									95% MOUIT	ea-t UCL (JC	onnson-1978)	0.435
39						Commo						
40					Toot Statiatia		GOF Test	Ando	roop Dorling	Commo CC)E Toot	
41				A-D		0.433	Detecto		rson-Darling	Gamma GC	F lest	
42				5% A-D (0.715	Detecte	kolmoo	ar Gamma D	Stributed at	5% Significan	
43				50/V00		0.200	Dataata				5% Significan	
44				Detector		0.294		u uata appea		istributed at	5 % Significan	ce Level
45												
46				INOT	e gur iesis	may be unr		iali sample s	01245			
47												

UCL95_600_IA_Carbon_Tetrachloride

	А	В	С	D	Е	F	G	Н	I	J	K	L
48						Gamma	Statistics			tor (biog oor	reated ML E)	109.0
49				The		0.00122			Thoto	star (bias cor		0.00211
50				n		5072			meta	nu star (bia		3171
51			MI	E Mean (hia		0 / 10				MI E Sd (bia	s corrected)	0.0207
52			1011		s conected)	0.413			Annrovimate		Value (0.05)	3041
53			Adius	ted Level of	Significance	0 0195			Approximate	liusted Chi S	quare Value	3009
54			, tujuc			0.0100					quare raide	
55					As	sumina Garr	ma Distribut	tion				
56			95% A	pproximate C	amma UCL	0.437			95	% Adjusted 0	Gamma UCL	0.441
57										,,		
50						Lognorma	I GOF Test					
59			S	hapiro Wilk T	est Statistic	0.897		Shar	piro Wilk Log	normal GOF	Test	
61			10% S	hapiro Wilk C	ritical Value	0.851		Data appear	- Lognormal a	at 10% Signif	icance Level	
62				Lilliefors T	est Statistic	0.248		Lil	liefors Logno	ormal GOF T	est	
63			10	% Lilliefors C	ritical Value	0.265		Data appear	Lognormal	at 10% Signif	icance Level	
64				I	Data appear	Lognormal	at 10% Signi	ficance Leve	el .			
65				Not	e GOF tests	may be unre	eliable for sm	nall sample s	izes			
66												
67						Lognorma	I Statistics					
68			I	Minimum of L	ogged Data	-0.994				Mean of	logged Data	-0.872
69			Ν	laximum of L	ogged Data	-0.799				SD of	logged Data	0.0606
70							1					
71					Assi	uming Logno	ormal Distrib	ution				
72					95% H-UCL	N/A			90%	Chebyshev (MVUE) UCL	0.446
73			95%	Chebyshev (MVUE) UCL	0.458			97.5%	Chebyshev (MVUE) UCL	0.475
74			99%	Chebyshev (MVUE) UCL	0.508						
75												
76					Nonparame	etric Distribu	tion Free UC	CL Statistics				
77					Data appea	ar to follow a	Discernible	Distribution				
78												
79				05				e UCLs				0.400
80			050/	95 Chan david Da	of the trace LICL	0.433				95% BCA B0		0.429
81			95%			0.432			050/ 1	95% B00	tstrap-t UCL	0.432
82			9 00% Ch			0.431			95% 1	obvehov(Mo		0.431
83			90 % Ch		an, Su) UCL	0.443					an, Su) UCL	0.437
84			37.570 CH	ebysnev(mea	an, 50) 662	0.475			3370 CI		an, 50) 662	0.000
85						Suggested	UCL to Use					
86				95% Stu	dent's-t UCL	0.435						
87						01100						
88		Note: Sugae	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL.	
89		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
9U Q1	H	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may	want to consu	ult a statisticia	an.
02								-				
92		Note: For	highly negat	tively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	gnormal, an	d Gamma) n	nay not be	
94			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
95												

		-					-					
-	A	В	C		E JCL Statis	F This for Unc	G ensored Full	H Data Sets		J	K	L
2												
2		User Sele	cted Options									
4	Dat	e/Time of Co	omputation	ProUCL 5.2 3/6	6/2023 2:2	8:07 PM						
5			From File	UCL95_input_F	Revised.xl	s						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9				1								
10												
11	600 IA Chlo	romethane										
12												
13						General	Statistics					
14			Tota	Number of Obs	ervations	8			Numbe	r of Distinct (Observations	7
15									Number	of Missing (Observations	0
16					Minimum	0.31					Mean	0.471
17				Ν	Maximum	0.65					Median	0.465
18					SD	0.162				Std. E	Fror of Mean	0.0574
19				Coefficient of	Variation	0.345					Skewness	0.0261
20			<u> </u>								<u> </u>	
21		Note: Sai	mple size is	small (e.g., <10)), if data a	are collected	l using incre	mental samp	oling method	lology (ISM)	approach,	
22			refer also t	o ITRC Tech Re	eg Guide o	on ISM (ITR	C 2020 and	ITRC 2012)	for additiona	al guidance,	-\	
23		Ľ	out note that	The Obebueb	mmend th		the Chebysh	ev UCL for s	mall sample	e sizes (n < .	/).	
24			Dei	I ne Chebysh			in gross ove	restimates o	Chebyebey			
25			Re		L 5.2 Tec				Chebyshev	UCL.		
26						Normal (20F Test					
27			S	Shaniro Wilk Test	t Statistic	0 739			Shaniro Wi	lk GOF Test	•	
28			1% S	hapiro Wilk Criti	cal Value	0.749		Data No	t Normal at	1% Significat	nce l evel	
29			1,00	Lilliefors Test	t Statistic	0.308		Data No	Lilliefors	GOF Test		
30			1	% Lilliefors Criti	cal Value	0.333		Data appe	ar Normal a	t 1% Signific	ance Level	
31				Data ap	pear App	roximate No	rmal at 1% S	Significance	Level			
32				Note G	OF tests	mav be unre	eliable for sm	nall sample s	sizes			
33												
34					As	suming Nor	mal Distribut	ion				
36			95% N	ormal UCL		-		95%	UCLs (Adju	sted for Ske	wness)	
30				95% Studen	nt's-t UCL	0.58			95% Adjuste	d-CLT UCL	(Chen-1995)	0.566
32									95% Modifi	ed-t UCL (Jo	hnson-1978)	0.58
39												
40						Gamma	GOF Test					
41				A-D Tes	t Statistic	1.134		Ander	son-Darling	Gamma GC	OF Test	
42				5% A-D Criti	cal Value	0.716	D	ata Not Gam	ma Distribut	ed at 5% Sig	nificance Lev	rel
43				K-S Tes	t Statistic	0.319		Kolmog	orov-Smirno	ov Gamma G	OF Test	
44				5% K-S Criti	cal Value	0.294	D	ata Not Gam	ma Distribut	ed at 5% Sig	nificance Lev	rel
45				Data	Not Gamr	na Distribut	ed at 5% Sig	nificance Le	vel			
<u> </u>												

UCL95_600_IA_Chloromethane

	Α	В	С	D	E	F	G	Н	I	J	K	L
47						Gamma	Statistics					F 007
48				The	K hat (MLE)	9.302			K	star (bias cor		5.897
49				The		140.0			meta			0.0799
50			5.4	LE Maan /hid		148.8				MLE Sd (bid	as corrected)	94.35
51			IVI		as conecteu)	0.471			Approximate			72 95
52			Adius	ted Level of	Significance	0.0195				diusted Chi S		68.2
53			Aujus		Significance	0.0135			~			00.2
54					Ase	suming Gam	ma Distribu	tion				
55			95% A	nnroximate (Gamma UCI	0.61			95	% Adjusted (Gamma UCI	0.652
56				pproximato		0.01						
57						Lognorma	I GOF Test					
58			S	hapiro Wilk	Test Statistic	0.734		Shar	oiro Wilk Lo	normal GOF	- Test	
59			10% S	hapiro Wilk (Critical Value	0.851		Data Not L	_ognormal at	10% Signific	ance Level	
60				Lilliefors	Test Statistic	0.301		Lil	liefors Loan	ormal GOF T	Test	
61			10	% Lilliefors C	Critical Value	0.265		Data Not L	ognormal a	10% Signific	ance Level	
62					Data Not Lo	ognormal at	10% Signific	cance Level				
64						-						
65						Lognorma	I Statistics					
66				Minimum of	Logged Data	-1.171				Mean of	logged Data	-0.807
67			Ν	Maximum of	Logged Data	-0.431				SD of	logged Data	0.357
68												
69					Assı	uming Logno	ormal Distrib	ution				
70					95% H-UCL	0.634			90%	Chebyshev (MVUE) UCL	0.651
71			95%	Chebyshev ((MVUE) UCL	0.732			97.5%	Chebyshev (MVUE) UCL	0.845
72			99%	Chebyshev ((MVUE) UCL	1.067						
73											4	
74					Nonparame	etric Distribu	tion Free UC	CL Statistics				
75					Data appea	r to follow a	Discernible	Distribution				
76												
77					Nonpai	rametric Dis	tribution Fre	e UCLs				
78				95	5% CLT UCL	0.566				95% BCA Bo	ootstrap UCL	0.553
79			95%	Standard Bo	ootstrap UCL	0.56				95% Boo	otstrap-t UCL	0.57
80			9	5% Hall's Bo	ootstrap UCL	0.535			95%	Percentile Bo	ootstrap UCL	0.554
81			90% Ch	ebyshev(Me	an, Sd) UCL	0.644			95% CI	nebyshev(Me	an, Sd) UCL	0.722
82			97.5% Ch	ebyshev(Me	an, Sd) UCL	0.83			99% CI	nebyshev(Me	an, Sd) UCL	1.043
83												
84						Suggested	UCL to Use					
85				95% Stu	dent's-t UCL	0.58						
86			1.4.11		- 11				(1)			
87			Wher	n a data set f	oliows an app	proximate dis	stribution pas	sing only on		- tests,		
88			it is su	ggested to u	se a UCL bas	sed upon a d	istribution pa	issing both G	JUF tests in	ProucL		
89		Noto: Sugar	ctions record	ling the color	tion of a OEM		ovided to be	n the upper to			ato 05% LICI	
90		Poor	mondations	are based		doto diotrib					ate 95% UCL	
91	LIA			are based up		, uaia uistiiD	ts: for addition	ewness usin		want to conc	suules.	an
92		, SIIIU						กลา การเฐาน แ	ie usei IIIdy		นกะ ฉ จเฮแจแปไ	
03												

					1							1	-	
1	A		В	C	D	UCL Statist	F tics for Data	G Sets with No	H on-Detects		J	K		L
2														
3		U	ser Sele	cted Options	5									
4	Da	ate/Ti	me of Co	omputation	ProUCL 5.2	3/6/2023 2:2	9:00 PM							
5				From File	UCL95_inp	ut_Revised.xl	s							
6			Fu	II Precision	OFF									
7		Cor	fidence	Coefficient	95%									
8	Number	of Bo	otstrap	Operations	2000									
9														
10	600 IA Eth	anol												
11														
12							General	Statistics			-	-		_
13				Total	I Number of C	Observations	8			Number	r of Distinct (Observations		8
14					Numb	er of Detects	7				Number of	Non-Detects		1
15	 			N	umber of Dis	unct Detects	/			Numbe	er of Distinct	Non-Detects	·	1
16					Min	imum Detect	1.6				Minimun	n Non-Detect		1.4
17					Max	imum Detect	20				Maximun	n Non-Detect		1.4
18	ļ				Varia	ance Detects	40.81				Percent	Non-Detects		12.5%
19					N	lean Detects	6.271					SD Detects		6.388
20	ļ				Me	dian Detects	3.8					CV Detects		1.019
21					Skewr	ness Detects	2.145				Kur	tosis Detects		4.773
22					wean of Log	ged Detects	1.507				SD of Log	gged Detects		0.822
23			lote: Sa	molo sizo is	emall (e.a. e	<10) if data a	re collector	using increa	nontal camr	ling method		annroach		
24				refer also t	o ITRC Tech	Reg Guide o	n ISM (ITR	C 2020 and l	TRC 2012)	for additiona	d quidance	appioacii,		
25	 		ł		ITRC may re	commend th	et-UCL or t	he Chebyshe	V UCL for s	mall sample	sizes (n <	7)		
26					The Cheb	vshev UCL of	ften results	in aross over	estimates o	f the mean.		.,.		
27				Re	fer to the Pro	UCL 5.2 Tec	hnical Guid	e for a discus	sion of the	Chebvshev	UCL.			
28										,				
29						Norm	al GOF Tes	t on Detects	Only					
30				Ę	Shapiro Wilk	Fest Statistic	0.715		-	Shapiro Wi	lk GOF Test	t		
32				1% S	hapiro Wilk (Critical Value	0.73	D	etected Dat	a Not Norma	al at 1% Sigr	nificance Lev	el	
33					Lilliefors	Fest Statistic	0.341			Lilliefors	GOF Test			
34				1	% Lilliefors (Critical Value	0.35	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	evel	
35					Detected	Data appear	Approximat	e Normal at ⁻	1% Significa	nce Level				
36					Not	e GOF tests i	may be unre	liable for sm	all sample s	sizes				
37														
38				Kaplan-	Meier (KM)	Statistics usir	ng Normal C	ritical Values	and other	Nonparamet	ric UCLs			
39						KM Mean	5.663			KN	A Standard E	Error of Mean		2.201
40						90KM SD	5.762				95% KN	И (BCA) UCL		9.538
41					95%	KM (t) UCL	9.832			95% KM (P	ercentile Bo	otstrap) UCL		9.55
42					95%	KM (z) UCL	9.282				95% KM Boo	otstrap t UCL		21.17
43				9	90% KM Che	byshev UCL	12.26			Ç	95% KM Che	ebyshev UCL		15.25
44				97	7.5% KM Che	byshev UCL	19.4			ę	99% KM Che	ebyshev UCL		27.56
45														

	А	В	С	D	E	F	G	н		J		К	L
46					Gamma GOF	Tests on De	etected Obse	ervations Onl	У	-			_
47				A-D	Test Statistic	0.52		Ar	nderson-Dai	ling GOF	Test		
48				5% A-D	Critical Value	0.719	Detected	d data appear	r Gamma Di	stributed a	at 5% S	Significan	ce Level
49				K-S	Test Statistic	0.3		К	olmogorov-	Smirnov C	GOF		
50				5% K-S	Critical Value	0.316	Detected	d data appear	r Gamma Di	stributed a	at 5% S	Significan	ce Level
51				Detecte	d data appea	r Gamma Di	stributed at 5	5% Significar	nce Level				
52				No	te GOF tests	may be unre	eliable for sm	nall sample s	izes				
53					0		D. to start D	ata Oaka					
54							Detected D	ata Only		ter (bies a			1.040
55				Th	K nat (MLE)	1.009			K S	star (blas c	correct		F 079
56				Ine	pu hot (MLE)	3./5/			Thetas				5.978
57				М		6 271				nu star (mected)	14.09
58				IVI		0.271							
59					Gamma ROS	Statistics u	sina Imputed	Non-Detect	\$				
60			GROS may	/ not be used	d when data s	et has > 50%	6 NDs with m	any tied obse	ervations at	multiple D	Ls		
61		GROS may	v not be used	d when kstar	of detects is	small such a	s <1.0. espec	cially when th	e sample si	ze is smal	l (e.a	<15-20)	
62			Fc	or such situa	tions, GROS	method may	yield incorre	ct values of L	JCLs and BT	Vs	(- 3,	/	
64					This is especi	ally true whe	n the sample	e size is smal	l.				
65		For gar	mma distribu	ted detected	data, BTVs a	nd UCLs ma	y be comput	ed using garr	nma distribut	tion on KN	l estim	ates	
66					Minimum	0.01						Mean	5.489
67					Maximum	20						Median	3.75
68					SD	6.315						CV	1.151
69					k hat (MLE)	0.638			ks	star (bias d	correct	ed MLE)	0.482
70				The	eta hat (MLE)	8.599			Theta s	star (bias o	correct	ed MLE)	11.38
71					nu hat (MLE)	10.21				nu star (bias co	orrected)	7.716
72			Adjusted	Level of Sig	gnificance (β)	0.0195							
73		Ap	oproximate C	hi Square V	alue (7.72, α)	2.572			Adjusted C	hi Square	Value	(7.72, β)	1.885
74			95% G	amma Appr	oximate UCL	16.47			959	% Gamma	Adjus	ted UCL	22.47
75													
76				E	stimates of G	iamma Para	meters using	, KM Estimat	es				
77					Mean (KM)	5.663						SD (KM)	5.762
78				V	ariance (KM)	33.2				SE	E of Me	ean (KM)	2.201
79					k hat (KM)	0.966					ks	star (KM)	0.687
80					nu hat (KM)	15.45					nu s	star (KM)	10.99
81			0.00	ti	neta hat (KM)	5.864			000		theta s	star (KM)	8.244
82			80%	% gamma pe		9.313			90%	o gamma p	bercen		14.28
83			95%	∞ yamma pe	acentile (KM)	19.41			99%	o yamma (Jercen	uie (KIVI)	31.0/
84					Gamm	a Kanlan-M	oior (KM) 94	atistics					
85		Δρ	proximate Ch	i Square Va		4 569	5151 (INI) 36	443463	Adjusted Chi	Square V	alue ('	10 90 RI	3 581
86			95% KM 4		Gamma LICI	13.62		r	Q5% K	M Adjuste	d Gam		17.38
87			3370 NIVI A	,ppi oximate		10.02			33 /0 N				17.50
88													

	A	В	С	D	E	F F Test on D	G etected Obs	H envetions O		J	K		L
89			5	haniro Wilk	Test Statistic		elecieu Obs		Shaniro Wi	Ik GOF Test			
90			10% SI	napiro Wilk	Critical Value	0.330	Dete	cted Data ar		rmal at 10% S	Significance	Leve	4
91				Lilliefors	Test Statistic	0.249	2010		Lilliefors	GOF Test	e.gearree		
92			10'	% Lilliefors	Critical Value	0.28	Dete	cted Data ar	pear Logno	rmal at 10% \$	Significance	Leve	el
93				Det	ected Data ap	pear Lognor	mal at 10% \$	Significance	Level		- J		
94				No	te GOF tests	may be unre	eliable for sm	all sample s	sizes				
90								-					
97				L	.ognormal RO	S Statistics	Using Impute	ed Non-Dete	cts				
98				Mean in	Original Scale	5.562				Mean	in Log Scale	•	1.255
99				SD in	Original Scale	6.245				SD	in Log Scale	•	1.044
100		95% t L	JCL (assume	s normality	of ROS data)	9.746			95%	Percentile Bo	otstrap UCL	. !	9.462
101			ę	95% BCA E	Bootstrap UCL	10.99				95% Boo	otstrap t UCL	. 1	9.63
102				95% H-U	CL (Log ROS)	24.37							
103													
104			Statis	tics using	KM estimates	on Logged	Data and Ass	suming Logr	ormal Distri	ibution			
105				KM	Vlean (logged)	1.361				KI	M Geo Mean	1	3.9
106				KN	VI SD (logged)	0.811			95% (Critical H Val	ue (KM-Log)		2.976
107			KM Standar	d Error of N	Mean (logged)	0.31				95% H-UC	CL (KM -Log)	1	3.48
108				K	VI SD (logged)	0.811			95% (Critical H Val	ue (KM-Log)		2.976
109			KM Standar	d Error of N	vlean (logged)	0.31							
110													<u>.</u>
111				Jormal		DL/2 S				Francformed			
112			DL/21	Mean in (Original Scale	5 575			DL/2 LUg-1	Mean	in Log Scale		1 27/
113				SD in (6 234					in Log Scale		1.274
114			95% t l		nes normality)	9 751				95%	H-Stat UCI	. 2	22 02
115			DL/2 i	s not a rec	ommended m	ethod. provi	ded for comp	arisons and	historical re	easons		. 2	.2.02
116						, p							
110					Nonparame	etric Distribu	tion Free UC	L Statistics					
110			Det	ected Data	a appear Appr	oximate Nor	mal Distribut	ed at 1% Sig	gnificance L	evel			
120													
121						Suggested	UCL to Use						
122				95	% KM (t) UCL	9.832							
123													
124		The ca	Iculated UCI	_s are base	ed on assump	tions that the	e data were c	collected in a	a random an	d unbiased r	nanner.		
125				Plea	ase verify the	data were co	ollected from	random loca	ations.				
126				If the data	were collected	d using judgi	mental or oth	er non-rand	om methods	\$,			
127				t	hen contact a	statistician	o correctly c	alculate UC	Ls.				
128													
129			When	a data set	follows an app	proximate dis	stribution pas	sing only on	e of the GOF	tests,			
130			it is sug	ggested to	use a UCL bas	sed upon a d	istribution pa	ssing both G	OF tests in	ProUCL			
131		Nata: O:					منتاب ا				ata 05% 110	1	
132		Note: Sugges	mondations	ing the sele	ection of a 95%	o UCL are pr	ution and a	p the user to	select the n	nost appropri	ate 95% UC	L.	
133		Recom	lations recult	are based t		, uata distrib	te: for addition	nal insight th			suules.	vion	
134		wever, simu		S WIII HOL CO		ionu uata se		nai insignt tr	ie user may	want to cons	นแ ส รเสมร์ได้	nall.	
135													

		-				-							
	A		В	С	D	UCL Stati	F Stics for Und	G G	H Data Sets		J	К	L
2													
2		Use	er Seleo	ted Option	S								
4	D	ate/Tim	e of Co	mputation	ProUCL 5	.2 3/6/2023 2:2	29:41 PM						
5				From File	UCL95_in	put_Revised.>	ls						
6			Ful	Precision	OFF								
7		Confi	dence	Coefficient	95%								
8	Number	of Boot	tstrap (Operations	2000								
9													
10													
11	600 IA Fre	on 11											
12													
13							General	Statistics					
14				Tota	al Number of	Observations	8			Numbe	r of Distinct (Observations	3
15										Numbe	r of Missing (Observations	0
16						Minimum	1.2					Mean	1.288
17						Maximum	1.4					Median	1.25
18						SD	0.0991				Std. E	Error of Mean	0.035
19					Coefficie	ent of Variation	0.077					Skewness	0.312
20						(10) (1)							
21	Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach,												
22	reter also to ITRC Tech Reg Guide on ISM (TTRC 2020 and TTRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshey UCL for small sample sizes (n < 7)												
23			D							f the mean		/).	
24				B	fer to the P		chnical Guid	e for a discu	seion of the	Chebyebey			
25													
26							Normal	GOF Test					
27					Shapiro Wilk	Test Statistic	0.735			Shapiro Wi	Ik GOF Tes	t	
28				1%	Shapiro Wilk	Critical Value	0.749		Data No	t Normal at	1% Significa	nce Level	
29					Lilliefors	Test Statistic	0.311			Lilliefors	GOF Test		
31					1% Lilliefors	Critical Value	0.333		Data appe	ear Normal a	t 1% Signific	ance Level	
32					Dat	ta appear App	oroximate No	ormal at 1% S	Significance	Level			
33					No	ote GOF tests	may be unr	eliable for sn	nall sample :	sizes			
34													
35						As	suming Nor	mal Distribut	tion				
36				95% N	Normal UCL				95%	UCLs (Adju	sted for Ske	wness)	
37					95% St	tudent's-t UCL	1.354			95% Adjuste	d-CLT UCL	(Chen-1995)	1.349
38										95% Modifi	ed-t UCL (Jo	hnson-1978)	1.355
39													
40							Gamma	GOF Test					
41					A-D	Test Statistic	1.061		Ande	rson-Darling	Gamma GC	OF Test	
42					5% A-D	Critical Value	0.715	D	ata Not Gam	ima Distribut	ed at 5% Sig	nificance Lev	vel
43					K-S	S Test Statistic	0.328		Kolmog	orov-Smirno	ov Gamma C	OF Test	
44					5% K-S	Critical Value	0.294	D	ata Not Garr	ıma Distribut	ed at 5% Sig	nificance Lev	/el
45					0	Data Not Gam	ma Distribut	ed at 5% Sig	inificance Le	evel			
46													

UCL95_600_IA_Freon11

	А	В	C	D		Е	F	G	Н		J	К	L
47						k hat (MLE)	194.8	Olalislics		k	star (bias cor	rected MLE)	121.8
48					The	ta hat (MLE)	0.00661			Theta	star (bias cor		0.0106
49							3117			meta	nu star (bia		10/0
50			•	/I E Mear	n (hia		1 288				MIESd (bia	s corrected)	0 117
51			IV.		n (bia	is conected)	1.200			Annrovimate			1848
52			ibA	isted Levi	el of	Significance	0.0195			Δ	liusted Chi S	quare Value	1823
53			/ taje				0.0100			7.0		quare value	1020
54						As	sumina Gam	ma Distribut	tion				
55			95%	Approxim	nate (Gamma UCI	1.358			95	% Adjusted (Gamma UCI	1.377
56													
57							Lognorma	GOF Test					
58				Shapiro V	Nilk T	est Statistic	0.735		Shar	oiro Wilk Loo	normal GOF	Test	
59			10% 5	Shapiro V	Vilk C	critical Value	0.851		Data Not I	ognormal at	10% Signific	ance Level	
60				Lillief	fors T	est Statistic	0.312		Lil	liefors Loand	ormal GOF T	est	
61			1	0% Lillief	fors C	critical Value	0.265		Data Not I	ognormal at	10% Signific	ance Level	
62			•			Data Not L	ognormal at	10% Signific	cance Level	iog.ioi.iai ai			
63													
64							Lognorma	I Statistics					
65				Minimur	n of L	odded Data	0.182				Mean of	logged Data	0.25
66				Maximur	n of L	Logged Data	0.336				SD of	logged Data	0.0764
67					-	- 33						- 33	
68						Ass	umina Loand	ormal Distrib	ution				
69						95% H-UCL	N/A			90%	Chebvshev (MVUE) UCL	1.392
70			95%	Chebys	hev (l	MVUE) UCL	1.439			97.5%	Chebyshev (MVUE) UCL	1.505
71			99%	Chebysł	hev (l	, MVUE) UCL	1.634				, (,	
72				,		,							
73						Nonparam	etric Distribu	tion Free UC	L Statistics				
74						Data appea	ar to follow a	Discernible	Distribution				
75													
70						Nonpa	rametric Dis	tribution Fre	e UCLs				
77					95	% CLT UCL	1.345				95% BCA Bo	otstrap UCL	N/A
70			95%	% Standar	rd Bo	otstrap UCL	N/A				95% Boo	tstrap-t UCL	N/A
80				95% Hall	l's Bo	otstrap UCL	N/A			95% F	Percentile Bo	otstrap UCL	N/A
81			90% C	hebyshev	v(Me	an, Sd) UCL	1.393			95% Ch	ebyshev(Me	an, Sd) UCL	1.44
82			97.5% C	hebyshev	v(Me	an, Sd) UCL	1.506			99% Ch	ebyshev(Me	an, Sd) UCL	1.636
83													
84							Suggested	UCL to Use					
85				95%	6 Stu	dent's-t UCL	1.354						
86							1	1					
87			Whe	en a data	set fo	ollows an ap	proximate dis	stribution pas	sing only on	e of the GOF	tests,		
88			it is s	uggested	l to us	se a UCL ba	sed upon a d	istribution pa	ssing both G	OF tests in I	ProUCL		
89													
90		Note: Sugge	stions regar	rding the s	selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UCL	•
91		Recom	mendations	s are base	ed up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Ho	wever, simu	lations resu	ılts will no	ot cov	er all Real V	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistici	an.
93													

	· · · ·		-			-	-					17	· · · · ·
1	A	В		С	U U	E UCL Statis	⊢ stics for Unc	ensored Full	H Data Sets	I	J	К	L
2													
3		User Sele	ected	Options									
4	Date/	Time of C	Compu	utation	ProUCL 5.2	3/6/2023 2:3	30:52 PM						
5			Fro	m File	UCL95_inpu	t_Revised.x	ls						
6		Fi	ull Pre	ecision	OFF								
7	C	onfidence	e Coef	ficient	95%								
8	Number of I	Bootstrap	Oper	ations	2000								
9													
10													
11	600 IA Freon	12											
12							0	Otatiatian					
13				Tata	Number of O	haanvationa	General	Statistics		Numbo	r of Distinct	Observations	2
14				Total		DServations	0			Numbe	r of Missing		2
15						Minimum	22			Numbe	or wissing	Mean	2 288
16						Maximum	2.2					Median	2.200
17						SD	0.0354				Std I	Frror of Mean	0.0125
18	Coefficient of Varia						0.0155				010.1	Skewness	-2.828
19													
20		Note: Sa	ample	size is	small (e.g., <	10), if data a	are collected	d using incre	mental samp	ling method	lology (ISM)) approach,	
21			refe	er also t	o ITRC Tech	Reg Guide	on ISM (ITR	C 2020 and	ITRC 2012) 1	for addition	al guidance,	, ,	
22			but no	ote that	ITRC may re	commend th	ne t-UCL or	the Chebysh	ev UCL for s	mall sample	e sizes (n <	7).	
23					The Cheby	shev UCL o	often results	in gross ove	restimates o	f the mean.			
25				Ret	fer to the Pro	UCL 5.2 Tec	chnical Guid	e for a discu	ssion of the	Chebyshev	UCL.		
26													
27							Normal	GOF Test					
28				S	Shapiro Wilk T	est Statistic	0.419			Shapiro W	ilk GOF Tes	t	
29				1% S	hapiro Wilk C	ritical Value	0.749		Data No	t Normal at	1% Significa	ince Level	
30					Lilliefors T	est Statistic	0.513			Lilliefors	GOF Test		
31				1	% Lilliefors C	ritical Value	0.333		Data No	t Normal at	1% Significa	ince Level	
32						Data Not	t Normal at	1% Significa	nce Level				
33													
34						As	suming Nor	mal Distribut	ion			.	
35				95% No			0.011		95%	UCLs (Adju	isted for Ske	ewness)	0.005
36					95% Stud	lent's-t UCL	2.311		,	95% Adjuste	ed-CLI UCL	(Chen-1995)	2.295
37										95% Modifi	ed-t UCL (Jo	onnson-1978)	2.309
38							Commo						
39						oct Statistic	2 504	GOF Test	Andor	son Dorling	Commo C(DE Tost	
40					5% A-D C	ritical Value	0.715		ata Not Cam	ma Distribut	ed at 5% Si		
41					5% A-D C	est Statistic	0.713		Kolmon	orov-Smirne			
42					5% K-S C	ritical Value	0.294	ח	ata Not Gam	ma Distribut	ted at 5% Si	anificance Lev	vel
43					Da	ta Not Gam	ma Distribut	ed at 5% Sig	inificance Le	vel		J	
44					54								
45	1												

UCL95_600_IA_Freon12

	А	В	C	D	E	F Gamma	G Statistics	Н		J	K	L
46					k hat (MLE)	4679			k	star (bias co	rrected MLE)	2924
47				The	ta hat (MLE)	4.8889E-4			Theta	star (bias co	rrected MLE)	7.8221E-4
48				r	nu hat (MLE)	74863				nu star (bi	as corrected)	46791
49			ML	E Mean (bia	as corrected)	2.288				MLE Sd (bi	as corrected)	0.0423
51				•					Approximate	e Chi Square	value (0.05)	46289
52			Adjus	ted Level of	Significance	0.0195			A	djusted Chi S	Square Value	46161
53												
54					As	suming Gam	nma Distribu	tion				
55			95% A	pproximate (Gamma UCL	2.312			95	5% Adjusted	Gamma UCL	2.319
56							L					
57						Lognorma	GOF Test					
58			S	hapiro Wilk T	Test Statistic	0.419		Shap	oiro Wilk Log	gnormal GO	F Test	
59			10% Sł	napiro Wilk C	Critical Value	0.851		Data Not L	ognormal a	t 10% Signifi	cance Level	
60				Lilliefors	Test Statistic	0.513		Lill	iefors Logn	ormal GOF	Test	
61			109	% Lilliefors C	Critical Value	0.265		Data Not L	ognormal a	t 10% Signifi	cance Level	
62					Data Not L	ognormal at	10% Signific	cance Level				
63												
64						Lognorma	I Statistics					0.007
65			ا م	Minimum of I	Logged Data	0.788				Mean of	f logged Data	0.827
66			N	haximum of i	Logged Data	0.833				50.0	r logged Data	0.0157
67					^		rmal Diatrib	ution				
68								uuon	00%	Chobyshov		2 326
69			95% (Chebyshev (2 343			97.5%	Chebyshev		2.320
70			99% (Chebyshev (2.414					(2.007
/1												
72					Nonparam	etric Distribu	tion Free UC	CL Statistics				
73					Data do r	ot follow a D)iscernible D	Distribution				
74												
76					Nonpa	rametric Dis	tribution Fre	e UCLs				
77				95	5% CLT UCL	2.308				95% BCA B	ootstrap UCL	N/A
78			95%	Standard Bo	otstrap UCL	N/A				95% Bo	otstrap-t UCL	N/A
79			9	5% Hall's Bo	ootstrap UCL	N/A			95%	Percentile B	ootstrap UCL	N/A
80			90% Ch	ebyshev(Me	an, Sd) UCL	2.325			95% CI	hebyshev(Me	ean, Sd) UCL	2.342
81			97.5% Ch	ebyshev(Me	an, Sd) UCL	2.366			99% CI	hebyshev(Me	ean, Sd) UCL	2.412
82												
83						Suggested	UCL to Use					
84			Recommend	ation cannot	be provided							
85		Nata O	- 41	in a di		(110)						
86		Note: Sugge	stions regard	ing the selec	ction of a 95%	o UCL are pr	ovided to hel	ip the user to	select the r	nost appropr	atudiaa	•
87		Recom	Interidations a	are based up		, uata distrib	uuon, and sk	ewness using	y results fro	want to con	i studies.	an
88	H	owever, simu		S WIII HUL COV		vonu uata se	is, ior additio	nai insignt th	ie usei may		รมเเ a รเสเเรเเCl	a11.
89		Note: For	highly paget	ively-skowo	d data .confi	dence limite	(e.g. Chen	Johnson La	anormal a	nd Gamma)	may not be	
90		NULE. FUI	reliahla (Chen's and	Johnson's m	ethods provi	de adiustme	nts for nosit	velv skewer	data sete	may not be	
91										2 4414 3613.		
92												

	А	В	С	DE	F	G	Н		J	К	L
1				UCL Sta	tistics for Unc	ensored Full	Data Sets			•	
2											
3		User Sele	ected Options	6							
4	Dat	e/Time of C	omputation	ProUCL 5.2 3/6/2023 2	2:30:17 PM						
5			From File	UCL95_input_Revised	l.xls						
6		Fu	III Precision	OFF							
7		Confidence	Coefficient	95%							
/ 0	Number o	of Bootstrap	Operations	2000							
0											
10											
11	600 IA Fred	n 113									
12											
12					General	Statistics					
14			Tota	Number of Observatior	ns 8			Numbe	r of Distinct	Observations	7
14								Numbe	r of Missing	Observations	0
10				Minimu	m 0.47					Mean	0.524
10				Maximu	m 0.59					Median	0.52
1/				S	D 0.0484				Std.	Error of Mean	0.0171
10				Coefficient of Variation	on 0.0924					Skewness	0.158
19											
20		Note: Sa	mple size is	small (e.g., <10), if data	a are collected	l using increm	nental samp	ling method	lology (ISM) approach,	
21			refer also t	o ITRC Tech Reg Guid	e on ISM (ITR	C 2020 and I	TRC 2012) f	or addition	al guidance	,	
22		but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7).									
23				The Chebyshev UCL	often results	in gross over	estimates of	f the mean.	•	•	
24			Re	fer to the ProUCL 5.2 T	echnical Guid	e for a discus	sion of the (Chebyshev	UCL.		
20								-			
20					Normal (GOF Test					
28			5	Shapiro Wilk Test Statist	ic 0.856			Shapiro W	ilk GOF Te	st	
29			1% S	hapiro Wilk Critical Valu	ie 0.749		Data appe	ar Normal a	it 1% Signifi	cance Level	
30				Lilliefors Test Statist	ic 0.257			Lilliefors	GOF Test		
31			1	% Lilliefors Critical Valu	ie 0.333		Data appe	ar Normal a	t 1% Signifi	cance Level	
32				Data app	pear Normal a	t 1% Significa	nce Level				
33				Note GOF test	ts may be unre	eliable for sma	all sample s	izes			
34											
35				ŀ	Assuming Nor	mal Distributio	on				
36			95% N	ormal UCL			95%	UCLs (Adjı	isted for Sk	ewness)	
37				95% Student's-t UC	L 0.556		ç	95% Adjuste	ed-CLT UCL	_ (Chen-1995)	0.553
38								95% Modifi	ed-t UCL (J	ohnson-1978)	0.556
39											
40					Gamma	GOF Test					
41				A-D Test Statist	ic 0.654		Anders	son-Darling	Gamma G	OF Test	
42					ie 0.715	Detected	data appear	r Gamma D	istributed at	5% Significar	nce Level
				5% A-D Critical Valu		L					-
43				5% A-D Critical Valu K-S Test Statist	ic 0.269		Kolmogo	prov-Smirne	ov Gamma	GOF Test	
43 44				5% A-D Critical Valu K-S Test Statist 5% K-S Critical Valu	ic 0.269 ie 0.294	Detected	Kolmogo data appear	r Gamma D	istributed at	SOF Test	nce Level
43 44 45				5% A-D Critical Value K-S Test Statist 5% K-S Critical Value Detected data appe	ic 0.269 ie 0.294 ear Gamma Di	Detected stributed at 5	Kolmogo data appear % Significar	r Gamma D nce Level	istributed at	GOF Test 5% Significar	nce Level
43 44 45 46				5% A-D Critical Value K-S Test Statist 5% K-S Critical Value Detected data appe Note GOF test	ic 0.269 le 0.294 ear Gamma Di ts may be unre	Detected stributed at 5 ^t	Kolmogo data appear % Significar all sample s	r Gamma D nce Level izes	istributed at	GOF Test	nce Level

UCL95_600_IA_Freon113

	А	В	С	D	E	F	G	Н		J	K	L
48						Gamma	Statistics					
49					k hat (MLE)	134.4			k :	star (bias co	rrected MLE)	84.1
50				Ine	eta hat (MLE)	0.0039			Ineta	star (bias co		0.00623
51			N	LE Moon /bi		2151					as corrected)	0.0571
52			IV	LE Mean (bi	as corrected)	0.524			Approvimate			1261
53			Adiu	sted Level of	Significance	0.0195			Δ	liusted Chi S		1201
54						0.0100						
55					As	sumina Gan	nma Distribu	tion				
50			95% A	Approximate	Gamma UCL	0.559			95	% Adjusted	Gamma UCL	0.568
57										-		
59						Lognorma	I GOF Test					
60			ç	Shapiro Wilk	Test Statistic	0.854		Sha	piro Wilk Log	normal GOI	F Test	
61			10% S	hapiro Wilk	Critical Value	0.851		Data appea	r Lognormal	at 10% Signi	ificance Level	
62				Lilliefors	Test Statistic	0.252		Li	lliefors Logno	ormal GOF	Fest	
63			1(0% Lilliefors	Critical Value	0.265		Data appea	r Lognormal	at 10% Signi	ificance Level	I
64					Data appear	Lognormal	at 10% Signi	ificance Lev	el			
65				No	te GOF tests	may be unro	eliable for sn	nall sample	sizes			
66												
67						Lognorma	al Statistics					
68				Minimum of	Logged Data	-0.755				Mean of	logged Data	-0.65
69				Maximum of	Logged Data	-0.528				SD of	logged Data	0.0922
70					A	ming Logn	ormal Distrib	ution				
71					95% H-UCI				90%	Chebyshev (0 575
72			95%	Chebyshev		0.598			97.5%	Chebyshev (0.63
73			99%	Chebyshev	(MVUE) UCL	0.694					(
74					(-)							
75					Nonparame	etric Distribu	ition Free UC	CL Statistics	;			
70					Data appea	r to follow a	Discernible	Distribution	1			
78												
79					Nonpa	rametric Dis	tribution Fre	e UCLs				
80				9	5% CLT UCL	0.552				95% BCA Bo	ootstrap UCL	0.549
81			95%	Standard B	ootstrap UCL	0.55				95% Boo	otstrap-t UCL	0.558
82			!	95% Hall's B	ootstrap UCL	0.545			95% I	Percentile Bo	ootstrap UCL	0.55
83			90% C	nebyshev(Me	ean, Sd) UCL	0.575			95% Ch	ebyshev(Me	ean, Sd) UCL	0.598
84			97.5% C	nebyshev(Me	ean, Sd) UCL	0.631			99% Ch	ebyshev(Me	an, Sd) UCL	0.694
85												
86				050(0)		Suggested	UCL to Use					
87				95% Sti	ident's-t UCL	0.556						
88		Noto: Succ	octions roace	ding the colo	ction of a OF?		ovidad to be	In the user to	a coloct the m			
89		Reco	mmendations	are based u	non data size	data distrib	ution and ek		na results from	n simulation	studies	
90	н	owever sim	ulations resul	ts will not co	ver all Real W	orld data se	ets: for addition	onal insight t	he user may	want to cons	ult a statistici	an.
91												
92												

	А	В	С	D	E	F	G	Н	I	J	К	L
1				l	JCL Statis	tics for Unc	ensored Full	Data Sets				
2				1								
3		User Sele	ected Options			4 55 514						
4	Da	ate/Time of C		ProUCL 5.2 3/6	5/2023 2:3	1:55 PM						
5			From File	UCL95_input_i	Revised.x	IS						
6		FL		OFF								
7		Confidence		95%								
8	Number	of Bootstrap	Operations	2000								
9												
10	600 Dee6											
11	600 Kes50	dii Inailium										
12						Conorol	Statiation					
13			Total	Number of Obe	onvotiona		Statistics		Numbo	r of Dictinct (Observations	15
14			TOLAI		ervations	15			Numbe	of Missing (15
15					Minimum	0.2			Numbe		Moon	U 4 10
16					Maximum	0.2					Madian	4.10
17				I		7.0				Ctd F		4.0
18				Coofficient of	Variation	2.215				Slu. E		0.572
19				Coefficient of	variation	0.55					Skewness	-0.132
20						Normal (
21				hanira Wille Taa	t Statiatia				Shanira W		<u></u>	
22			10/ 0	hapiro Wilk Tes		0.902		Data ann				
23			170 3			0.635						
24			1	Lilliefors Criti		0.140		Data ann		t 1% Signific	ance Level	
25			1)ata anne:	ar Normal at	t 1% Signific:	ance I evel				
26												
27					As	sumina Nor	mal Distributi	ion				
28			95% No	ormal UCI				95%	UCI s (Adiu	isted for Ske	wness)	
29			00,011	95% Studer	nt's-t UCI	5,188			95% Adjuste		(Chen-1995)	5.1
30					RUTUUL	0.100			95% Modifi	ed-t UCL (Jo	(enen 1998)	5.184
31												01101
32						Gamma	GOF Test					
33				A-D Tes	t Statistic	0.594		Ande	rson-Darling	Gamma GC)F Test	
34				5% A-D Criti	cal Value	0.746	Detected	data appe	ar Gamma D	istributed at {	5% Significan	ce Level
35				K-S Tes	t Statistic	0.193		Kolmog	orov-Smirne	ov Gamma G	OF Test	
30				5% K-S Criti	cal Value	0.224	Detected	d data appea	, ar Gamma D	istributed at §	5% Significan	ce Level
37				Detected da	ata appear	Gamma Di	stributed at 5	5% Significa	nce Level			
30 20								-				
39						Gamma	Statistics					
40		k hat (M							k	star (bias cor	rrected MLE)	1.798
41		Theta hat (M							Theta	star (bias cor	rected MLE)	2.324
42 43		nu hat (M								nu star (bia	as corrected)	53.95
43			Μ	LE Mean (bias c	corrected)	4.18				MLE Sd (bia	as corrected)	3.117
44									Approximate	Chi Square	Value (0.05)	38.08
46	<u> </u>	Adjusted Level of Signif							A	djusted Chi S	Square Value	36.44
47							I					1
-11												

	А	В		С			D	E		F	G	Н			J		K	L
48									Ass	suming Gam	ima Distribut	tion						
49				95	5% A	pprox	imate (Gamma	UCL	5.923				959	6 Adjusted	l Gam	ma UCL	6.189
50																		
51										Lognorma	GOF Test							
52					S	hapiro	o Wilk ⁻	Test Sta	atistic	0.774		Sha	oiro Will	k Log	normal GC	OF Te	st	
53				109	% SI	hapiro	Wilk C	Critical V	Value	0.901		Data Not I	_ognorm	nal at	10% Signi	ficanc	e Level	
54						Lill	iefors -	Test Sta	atistic	0.207		Lil	liefors L	.ogno	rmal GOF	Test		
55					10	% Lilli	iefors (Critical V	Value	0.202		Data Not I	_ognorm	nal at	10% Signi	ficanc	e Level	
56								Data	Not Lo	ognormal at	10% Signific	ance Level						
57																		
58										Lognorma	I Statistics							
59						Minim	um of l	Logged	Data	-1.609					Mean o	of logg	ged Data	1.185
60					Ν	Maxim	um of l	Logged	Data	2.028					SD	of logg	ged Data	0.919
61																		
62									Assı	uming Logno	ormal Distrib	ution						
63								95% H	-UCL	9.483			ę	90% (Chebyshev	۱۹۷۷ (MV	JE) UCL	8.506
64				9	95% (Cheby	yshev ((MVUE)	UCL	10.18			97	.5% (Chebyshev	ı (MVL	JE) UCL	12.51
65				9	9% (Cheby	yshev ((MVUE)	UCL	17.08								
66																		
67								Nonpa	arame	etric Distribu	tion Free UC	L Statistics						
68								Data a	appea	r to follow a	Discernible	Distribution						
69																		
70								N	lonpar	ametric Dis	tribution Free	e UCLs						
71							95	5% CLT	UCL	5.121				ç	95% BCA E	Bootst	rap UCL	5.043
72				ç	95%	Stand	dard Bo	ootstrap	UCL	5.106					95% Bo	ootstra	ap-t UCL	5.144
73					9	95% H	all's Bo	ootstrap	UCL	5.057			ç	95% F	ercentile E	Bootst	rap UCL	5.113
74				90%	% Ch	nebysh	nev(Me	ean, Sd)	UCL	5.896			959	% Ch	ebyshev(N	lean, S	Sd) UCL	6.673
75				97.5%	% Ch	nebysh	nev(Me	ean, Sd)	UCL	7.752			999	% Ch	ebyshev(N	lean, S	Sd) UCL	9.872
76																		
77										Suggested	UCL to Use							
78						95	5% Stu	ident's-t	t UCL	5.188								
79																		
80		Note: Sug	ges	tions reg	gard	ling th	e selec	ction of	a 95%	UCL are pr	ovided to hel	p the user to	select	the m	ost approp	oriate 9	95% UCL.	
81		Rec	comi	mendatio	ons	are ba	ased up	pon data	a size,	, data distrib	ution, and ske	ewness usir	ng result	s fron	n simulatio	n stuc	dies.	
82	Н	owever, si	mul	ations re	esult	ts will	not cov	ver all R	Real W	orld data se	ts; for additio	onal insight t	ne user	may v	vant to cor	nsult a	statisticia	an.
83																		
84		Note: F	For I	highly n	egat	tively-	skewe	d data,	confic	dence limits	(e.g., Chen,	Johnson, L	ognorm	al, an	d Gamma) may	not be	
85				reliab	le. (Chen'	s and .	Johnso	n's me	ethods provi	de adjustme	nts for posit	vely ske	ewed	data sets.			
86																		

	A	В	С	D	E	F	G	Н		J	К	L
1					UCL Statis	stics for Unc	ensored Full	Data Sets				
2				1								
3		User Sele	cted Options									
4	Da	ite/Time of C	omputation	ProUCL 5.2	3/6/2023 2:3	33:03 PM						
5			From File	UCL95_input	t_Revised.x	ls						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10												
11	600 ResSo	oil Tin										
12												
13						General	Statistics					
14			Total	Number of Ol	bservations	15			Numbe	r of Distinct (Observations	6
15						-			Numbe	r of Missing (Observations	0
16					Minimum	3					Mean	6.2
17					Maximum	10					Median	6
18					SD	2.242				Std. E	rror of Mean	0.579
19				Coefficient	of Variation	0.362					Skewness	0.151
20												
21						Normal (GOF Test					
22			S	hapiro Wilk Te	est Statistic	0.929			Shapiro W	ilk GOF Test	1	
23			1% S	hapiro Wilk Cr	ritical Value	0.835		Data appe	ear Normal a	It 1% Signific	ance Level	
24				Lilliefors To	est Statistic	0.136			Lilliefors	GOF Test		
25			1	% Lilliefors Cr	ritical Value	0.255		Data appe	ear Normal a	it 1% Signific	ance Level	
26					Data appe	ar Normal a	t 1% Significa	ance Level				
27												
28					As	suming Nor	mal Distributi	ion			.	
29			95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	wness)	
30				95% Stud	ent's-t UCL	7.22			95% Adjuste	ed-CLI UCL	(Chen-1995)	7.176
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	7.224
32												
33						Gamma	GOF Test					
34				A-D To	est Statistic	0.518		Ander	rson-Darling	Gamma GC	OF Test	
35				5% A-D Cr	ritical Value	0.738	Detected	data appea	ar Gamma D	istributed at	5% Significan	ce Level
36				K-S To	est Statistic	0.18		Kolmog	orov-Smirne	ov Gamma G	OF Test	
37				5% K-S Cr	ritical Value	0.222	Detected	data appea	ar Gamma D	istributed at	5% Significan	ce Level
38		Detected data app					stributed at 5	5% Significa	nce Level			
39												
40							Statistics					
41		k hat (Mi							k	star (bias co	rrected MLE)	5.996
42		Theta hat (MI							Theta	star (bias co	rrected MLE)	1.034
43			· -		u hat (MLE)	223.2				nu star (bia	as corrected)	1/9.9
44			М	LE Mean (bias	s corrected)	6.2				MLE Sd (bia	as corrected)	2.532
45						0.005			Approximate	e Chi Square	Value (0.05)	149.9
46			Adjus	sted Level of S	Significance	0.0324			A	djusted Chi S	Square Value	146.5
47												

	A B C D E	F	G	Н	I	J	К	L
48	Ass	uming Gam	nma Distribut	ion		-	-	
49	95% Approximate Gamma UCL	7.442			95	i% Adjusted	d Gamma UC	L 7.613
50								
51		Lognorma	I GOF Test					
52	Shapiro Wilk Test Statistic	0.894		Shap	oiro Wilk Log	gnormal G	OF Test	
53	10% Shapiro Wilk Critical Value	0.901		Data Not L	ognormal a	t 10% Signi	ficance Level	
54	Lilliefors Test Statistic	0.203		Lill	iefors Logn	ormal GOF	[:] Test	
55	10% Lilliefors Critical Value	0.202		Data Not L	ognormal a	t 10% Signi	ficance Level	
56	Data Not Lo	gnormal at	10% Signific	ance Level				
57								
58		Lognorma	al Statistics					
59	Minimum of Logged Data	1.099				Mean	of logged Data	a 1.756
60	Maximum of Logged Data	2.303				SD	of logged Data	a 0.399
61								
62	Assu	ming Logno	ormal Distrib	ution				
63	95% H-UCL	7.727			90%	Chebyshev	V (MVUE) UC	L 8.193
64	95% Chebyshev (MVUE) UCL	9.081			97.5%	Chebyshev	v (MVUE) UC	L 10.31
65	99% Chebyshev (MVUE) UCL	12.74						
66								
67	Nonparame	tric Distribu	ition Free UC	L Statistics				
68	Data appear	r to follow a	Discernible	Distribution				
69								
70	Nonpara	ametric Dis	tribution Free	e UCLs				
71	95% CLT UCL	7.152				95% BCA	Bootstrap UC	L 7
72	95% Standard Bootstrap UCL	7.134				95% B	ootstrap-t UC	L 7.297
73	95% Hall's Bootstrap UCL	7.258			95%	Percentile	Bootstrap UC	L 7.133
74	90% Chebyshev(Mean, Sd) UCL	7.937			95% CI	nebyshev(N	/lean, Sd) UC	L 8.724
75	97.5% Chebyshev(Mean, Sd) UCL	9.816			99% CI	nebyshev(N	/lean, Sd) UC	L 11.96
76								
77		Suggested	UCL to Use					
78	95% Student's-t UCL	7.22						
79								
80	Note: Suggestions regarding the selection of a 95%	UCL are pr	rovided to hel	p the user to	select the r	nost approp	oriate 95% UC	CL.
81	Recommendations are based upon data size,	data distrib	ution, and sk	ewness using	g results fro	m simulatio	on studies.	
82	However, simulations results will not cover all Real W	orld data se	ets; for additio	nal insight th	e user may	want to co	nsult a statisti	cian.
83								

Appendix E Soil Vapor Vertical Concentration Profiles

MSVGM Well 200-SG-2 Vertical Concentration Profile For Freon 113

ND - Freon 113 soil ${<}\,11.0~\mu\text{g/kg}$

MSVGM Well 200-SG-2 Vertical Concentration Profile For TCE

MSVGM Well 200-SG-3 Vertical Concentration Profile For Freon 113

MSVGM Well 200-SG-3 Vertical Concentration Profile For TCE

MSVM Well 600-SGW-1 Vertical Concentration Profile For Freon 113

MSVM Well 600-SGW-1 Vertical Concentration Profile For TCE

MSVM Well 600-SGW-5 Vertical Concentration Profile For Freon 113

MSVGM Well 600-SGW-5 Vertical Concentration Profile For TCE

ND - TCE soil < 0.35-0.35 µg/kg

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
1. Section 4.10, Data Assessment and Review, Pages 27 and 28	NMED Comment: The section only addresses the steps used for the project data assessment and usability review. Revise the section to discuss the data usability assessment results. Include data usability reports and sample analysis data reports for the August 2017 and February 2018 sampling events provided as Report Enclosure 3 as additional appendices in the revised Report. Revise the Report accordingly.	A Quality Assurance Report has been prepared for soil vapor data (August 2017 and February 2018) used in this response and is included as Appendix C. A separate QA report for previously submitted soil data is also included in Appendix C.
2. Section 6.0, Screening Level Risk Assessment and Evaluation Lines of Evidence, Pages 32 through 42	 NMED Comment: The following project risk assessment issues must be addressed in the revised Report as follows: a. Review of the 200 and 600 Area risk screen evaluations indicate that only residential exposure was evaluated, and the risk assessments are incomplete. Additionally, it was noted that if a chemical exhibited both carcinogenic and noncarcinogenic toxicity, only the most conservative screening criteria were used to evaluate risk for a detected chemical of concern (COC) for the vapor intrusion risk screen evaluations. NMED's June 2022 <i>Risk Assessment Guidance for Site Investigations and Remediation</i> (RA Guidance), Section 5.0, Use of the SSLs [soil screening levels], specifies that if a chemical exhibits both carcinogenic and noncarcinogenic toxicity, impact based on both forms of toxicity must be evaluated. This requirement applies to risk assessments for vapor intrusion. As an example, Section 6.1.1.1, and Table 6.1, 200 Area Soil Vapor: Residential Cumulative Cancer Risk Assessment data, indicate that benzene was the only carcinogen detected in soil vapor at the 200 Area; this is not accurate. RA Guidance Table A-4, NMED Vapor Intrusion Screening Levels (VISLs), has been updated to include cancer and non-cancer VISLs that must be used to evaluate site risk and hazard for the 	 All risk and hazard were re-evaluated using the most recent version of ProUCL (Version 5.2). As a result of re-evaluating all risk and hazard using ProUCL version 5.2, four inorganic constituents (cobalt, manganese, molybdenum, and magnesium) were determined to be no more than background and were not carried forward in the evaluation. Dioxins and furan calculations were updated to remove total concentrations as directed by NMED for previous risk and hazard submittals. Per NMED guidance (NMED, 2022c), Section 2.1, only individual congeners should be evaluated to calculate toxicity equivalents. Updated TEQ calculations are provided in Appendix D. Permit citations were also updated to reflect the new NASA WSTF Permit issued in March 2023. a. All vapor risk and hazard has been revised to include both carcinogenic and noncarcinogenic toxicity per the November 2022 NMED RA Guidance, Appendix A-4.

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
	COCs detected in soil vapor and indoor air samples from the 200 and 600 Areas. The Report must be revised to address these issues.	
	 b. ProUCL output files provided in Appendix C, UCL95 Results for Cumulative Risk Assessment, indicate that insufficient data observations were used to derive 95% upper confidence levels (95UCLs) for various contaminants of concern detected in soil vapor and indoor air samples. As an example, Table 6.2, 200 Area Soil Vapor Residential Cumulative Hazard Assessment, lists a 95UCL for trichloroethylene (TCE) as 3.8E+05 µg/ m3. Appendix C ProUCL output files lists six observations for the reported 95UCL. NMED's review has identified only four valid data points unless duplicate sample data is included, and the data set does not appear to be appropriate for 95UCL calculation. Additionally, RA Guidance, Section 2.8.3, Identification of COPCs [contaminants of potential concern], specifies that the maximum detected concentration between the parent and duplicate sample must be applied as the sample result. To further clarify, only the maximum detected concentration between the parent and duplicate samples must be used as an input value in ProUCL calculations. The revised Report must discuss how duplicate sample results were used in the risk assessments. Revise the Report accordingly. 	 b. All input data files were revised to include only the maximum investigation concentration between the original sample and any duplicate for that sample. Only constituents containing 5 or more detections were used for statistical evaluation. To be conservative, background data sets include the minimum concentration between the original sample and any duplicate for that sample.
	c. For appropriate UCL calculation, RA Guidance Section 2.8.4.1, Discrete Data, specifies that the minimum requirements for calculating UCLs are: 1) each data set must contain at least eight samples (i.e., $n \ge 8$) for the analyte being evaluated; and 2) there	c. For both the 200 Area and the 600 Area soil vapor risk and hazard screening, there were not enough samples collected during the investigation to perform reliable statistical calculations. A minimum sample size of eight is required, and only three wells at two times a year for a total of six

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
	must be a minimum of five detections (i.e., ≥ 5 detected observations) for the analyte being evaluated. Although it is possible to calculate UCLs with small datasets (i.e., $n \leq 8$) and low frequencies of detection (i.e., < 5 detected observations), these estimates are not considered reliable and representative enough to make defensible decisions. Therefore, UCLs must only be calculated for data sets that meet the RA Guidance minimum requirements. Alternatively, for datasets with less than four detects or datasets with less than 10 samples and a low level of detection (less than 10%), the median concentration may be used as the exposure point concentration (EPC). Risk screen evaluation with refined EPCs derived from data sets that do not conform to RA Guidance specifications must not be used for risk assessment. The Report must be revised to resolve the identified issues with various refined EPCs used for the 200 and 600 Area risk screen evaluations.	samples per constituent were collected for this 200/600 VIAR investigation. As a result, no UCL95 calculations could be performed, since there were not enough samples for the recommended minimum sample size to perform reliable statistics. Therefore, only maximum concentrations were used for soil vapor screenings.
	 d. Section 6.1.1.1, 200 Area Screening Risk Assessment, addresses the use of bias- corrected and accelerated (BCA) bootstrap 95UCL for 1,1-dichloroethene due to the ProUCL recommended 95UCL being greater than the maximum detected concentration for the COC; however, sufficient data to calculate a BCA bootstrap 95UCL was not provided. To clarify, October 2015 <i>ProUCL Version 5.1.00 Technical Guide</i>, Section 1.7, Minimum Sample Size Requirements and Power Evaluations, recommends that bootstrap methods must not be used for small data sets with less than 15-20 data point observations. The datasets used for the calculation of 95UCLs in the Report for various COCs including 1,1-dichloroethene appear to contain only 	d. No bootstrap UCLs were used for this revised risk screening. The UCL95 was not recalculated for 1,1- dichloroethene due to insufficient sample size to perform reliable statistics (<8). Therefore, the maximum concentration was used for risk and hazard screening.

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
	four valid data point observations; therefore, use of BCA bootstrap methods are not appropriate. To address this issue, either the maximum detected concentration for a contaminant of concern must be retained as the EPC, or if data of sufficient type and integrity are available, the median may potentially be used as an EPC. Revise the Report to address this issue accordingly.	
	e. An additional concern with deriving 95UCLs for use as refined soil vapor and indoor air EPCs is that maximum detected concentrations were from either the 2017 or 2018 sampling event. Based on this observation, it is inferred that historical data used to derive UCLs were of lower concentrations (to mitigate the maximum concentration) and that there is an increasing trend in concentration. However, using historical data to mitigate increasing concentrations with time is not representative of current or future exposure. An EPC must represent a reasonable maximum exposure (RME) while also being representative of current and future receptors. In addition, the EPC must factor in temporal variations between seasons. Using the data from the two current sampling events summarized in Tables 5.1 and 5.2 will accomplish these tasks. However, refined EPCs appear to have been derived using additional data, which were either data from an unspecified prior investigation or included the use of duplicate sample results as standalone data points. Depending on the historical trend of the data used, the revised EPCs are likely underestimated and not representative of the RME. If data from years other than 2017 and 2018 were used, a clear discussion of the trend in the data	 e. The data obtained for this investigation was limited to air/vapor in 2017 and 2018. No historical or additional data was used in establishing UCL95s/EPCs for soil vapor and indoor air. However, duplicate data was inadvertently included in the risk ProUCL files. The input files have been revised to exclude duplicate data and only include the maximum concentration between the samples and duplicates. Additional (historical) data was used in the risk work for soils. In Comment 1 of the first disapproval of the 200 and 600 Area VIAR (NMED, 2019), NMED required NASA to perform a cumulative vapor intrusion risk screening evaluation. In addition, NMED required NASA to assess the results of the soil vapor risk screen evaluation with results of a cumulative soil risk screen evaluation. However, since no soil data was collected as part of the vapor intrusion field work, additional data collected prior to 2017 had to be used for soil risk screening. The soil data used was collected under NMED-approved work plans (200 Area Investigation - Phase II Investigation Work Plan [NASA 2013a] and NASA Response to prior to 2013 and the series of th
NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
------------------------	---	--
	for soil vapor, outdoor air, and indoor air must be included in the revised Report to address the representativeness of the data for evaluating current and future site risk. Additionally, a clear explanation of where the additional data was sourced must be provided and the data tabulated in an additional Excel spreadsheet to be included in an appropriate enclosure to the revised Report. If the additional data was not collected under an NMED-approved work plan, included in an NMED-approved report, and in NMED's Administrative Record for NASA, it cannot be used for risk assessment. The Report must be revised as necessary to address this comment.	NMED 03/19/09 Comments on the 600 Area Closure Investigation [NASA, 2009]). This additional soil data was also included in NMED- approved reports (NASA WSTF 200 Area Phase II Investigation Report [NASA, 2015b] and 600 Area Closure Investigation Report Provided in Response to a NMED Notice of Disapproval [NASA, 2011a]). For soil vapor and indoor air data used in the risk screening evaluation, only the 2017/2018 data obtained during this investigation was used. NASA has properly cited all NMED-approved documents where soil data was obtained from and has revised the report accordingly.
	f. Risk for the industrial worker scenario was not appropriately evaluated for the 200 and 600 Areas. Only a qualitative discussion of comparison of indoor air data to NMED's industrial VISLs and permissible Occupational Safety and Health Administration (OSHA) exposure limits (PELs) was provided in Section 6.2.6, Indoor Air Quality-Risk to Worker. PELs are a tool for an industrial hygienist to monitor workplace environments and are not appropriate for risk assessment required under the White Sands Test Facility Hazardous Waste Permit and in accordance with the RA Guidance. Use of PELs is not an appropriate tool for assessing total risk to a site worker because many of the PELs are outdated and inadequate for ensuring protection of worker health. In addition, comparison to a PEL does not allow for cumulative or total exposure to multiple contaminants that may be detected in environmental samples. The PEL evaluation must be removed from the revised Report. The risk screen evaluation for the industrial	 f. All discussion of OSHA PELs and comparison of investigation data with OSHA PELs have been removed from the document. Affected sections include: 3.1.5 Decision Rule, Section 5.1 200 Area Soil Vapor, Outdoor Air, Indoor Air Sampling, Section 5.1.2 Building 200 Outdoor Air Analytical Results, 5.1.3 Building 200 Indoor Air Analytical Results, Section 5.2 600 Area Sil Vapor, Outdoor Air, and Indoor Air, Section 5.2.2 Building 637 Outdoor Air Analytical Results, Section 4 Analytical Results, Section 5.2 600 Area Sil Vapor, Outdoor Air, and Indoor Air, Section 5.2.2 Building 637 Outdoor Air Analytical Results, Section 5.2.4 Building 600 Trends and Observations, Section 6.2.6 Indoor Air Quality – Risk to Worker, Section 7.1 Summary of Soil Vapor, Outdoor Air, Indoor Air Sampling and Screening Criteria, Section 7.2.1.2 Outdoor Air, Section 7.2.1.3 Indoor Air, and Section 7.2.2.2 Outdoor Air. Table 1.1, Table 4.3 (previously 5.1), and Table 5.1 (previously 5.2) have also been updated by removing OSHA PEL data.

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
	exposure scenario must be completed for the 200 and 600 Areas in accordance with the RA Guidance and the results documented in the revised Report. Revise the Report accordingly.	
	g. In accordance with the RA Guidance, exposure to contaminants in soil at the 200 and 600 Areas must be evaluated for the industrial worker and the results of the soil risk screen evaluation added to the results of the soil vapor risk screen evaluations. For the 600 Area, applicable surface soil data between 0 to 4 feet below ground surface are available and may be used to calculate cumulative risk and hazard for industrial workers. Table 6.6, 200 Area Soil Background Threshold Value Comparison, indicates surface soil data may not be available for the 200 Area. In this case, the Report must address the data gap and assess exposure to contaminants in soil for the industrial worker with other available information, if available. The results of the industrial worker soil vapor and indoor air risk screen evaluations for the 200 Area must be reported and discussed in appropriate sections of the revised Report. The Report must be revised accordingly.	g. The industrial exposure scenario has been evaluated and included for all pathways (indoor air, soil vapor, and soils). New Tables 6.2, 6.4, 6.6, 6.8, 6.10, 6.12, 6.17, 6.19, 6.21, 6.23, 6.26, 6.28, 6.30, 6.32, 6.37, 6.39, and 6.41 have been added and Section 6 of the report has been updated with industrial scenario results. Since no soil data in the 0-1 ft depth range is available for the 200 and 600 Areas, data from the shallowest soil sample collected per soil boring was used (for 200 Area soil borings: sample depths used were 0-8 ft and 0- 16 ft bgs; for the 600 Area soil borings: sample depths used were 0-3 ft, 0-4 ft 0-6 ft, 0-8 ft, and 0- 10 ft bgs). This issue is discussed in a new Section 6.2 Uncertainties.
	 h. The risk screen evaluations for the 200 and 600 Areas for residential and industrial worker exposure must be conducted using current NMED or United States Environmental Protection Agency VISLs and site specific NMED-approved risk-based concentrations (RBCs) for carcinogenic and non-carcinogenic toxicity in accordance with the RA Guidance. Revise the Report accordingly. 	 h. Screening levels used for this disapproval response were VISLs and SSLs from the NMED Risk Assessment Guidance (November 2022), and air and soil RSLs from the EPA Regional Screening Levels (November 2022). WSTF RBCs used were 2022, approved with modification by NMED on February 11, 2022, and resubmitted as a response to NMED in May 2022.

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
	 All comments included in this letter for residential exposure must also be applied for the required risk screen evaluations for the industrial worker, as applicable. Revise the Report accordingly. 	 All comments that applied to the residential scenario were also applied to the industrial scenario for this disapproval response.
3. Tables 5.1 and	NMED Comment: The Table 5.1 and 5.2 issues must be	
5.2, Summary of	addressed as follows:	
200 and 600 Area Buildings 200 and	a Revise Tables 5.1 and 5.2 to include the screening	a. Tables 4.3 (previously 5.1) and 5.1 (previously 5.2)
637 and Vicinity	level evaluation results for residential and industrial	VISLs and WSTF RBCs. Exceedances of VISLs
Soil Vapor,	exposure for COCs detected in site samples. Revise	and RBCs can be seen by red shading, and a
Outdoor Air, and	the tables and any affected Report section discussions	column has been added for risk / hazard
Indoor Air Analytical	accordingly.	exceedances.
Results, Pages 73	b. Review the analytical reporting limits for all COCs	b. Several detection limits exceeded NMED VISLs
and 91	and ensure they have not exceeded respective VISLs or RBCs. COC concentrations reported as non-detect with reporting limits above applicable screening levels must be flagged as data quality exceptions and the identified issues addressed in the revised Report. Revise the Report as necessary.	for several COCs in the 200 Area soil vapor samples for well 200-LV-150. These high detection limits have been highlighted in yellow on Table 4.3 and shown with additional detail in Table 4.4. A discussion has been added to Section 4.10 and Section 6.2 Uncertainties.
	c. The RBCs for the five-foot interval are listed on Tables 5.1 and 5.2. Clarify footnote two to indicate that the data for the five-foot interval represents the most conservative RBC and is listed for comparison only. In addition, the footnote must indicate that the RBC appropriate for the depth of each sample was applied during the risk assessment. Revise the Report accordingly.	 c. RBCs listed on Tables 4.3 and 5.1 have been updated to reflect the appropriate values for the depths the samples were taken. A footnote has been added to each table describing the RBCs: "WSTF RBCs for soil vapor taken from NASA WSTF NMED-approved Soil Vapor RBCs for 2022 (NASA, 2022), approved with modification February 11, 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next shallowest depth to sample depth was chosen to be

NMED Comment Number	NMED Comments	NASA Revisions/Responses/Discussion
		conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used."

National Aeronautics and Space Administration

200 and 600 Area Vapor Intrusion Assessment Report

June 2018

Revised January 2020

Revised April 2023

NM8800019434

200 and 600 Area Vapor Intrusion Assessment Report

June 2018

Revised January 2020

Revised April 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Timothy J. Davis Chief, NASA Environmental Office

Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

Between September 2012 and JanuaryNovember 20154, the National Aeronautics and Space Administration (NASA) performed a phased investigation of the subsurface at the White Sands Test Facility (WSTF) 200 Area. The results of the National Aeronautics and Space Administration (NASA) 200 Area Phase II Investigation Report (IR) submitted on June 29, 2015 investigation-indicated that concentrations of contaminants of potential concern (COPC) specific volatile organic compounds (VOCs) in soil vapor at the 200 Area Hazardous Waste Management Units (HWMUs) exceeded New Mexico Environment Department (NMED) and/or WSTF-specific screening criteria. In the 200 Area Phase II Investigation Report (IR) submitted on June 29, 2015, NASA compared analytical results from soil vapor sampling to potentially applicable screening levels (NMED Vapor Intrusion Screening Levels [VISLs; NMED, 201922cb] and WSTF risk-based concentrations [RBCs; NASA, 2019a]). The comparison indicated that industrial/occupational workers could be exposed to VOCs at concentrations presenting risks above target values if the screening assumptions relating to migration of subsurface soil vapor through vadose zone pore space and building foundations into indoor air are applicable. In the IR, NASA recommended a vapor intrusion assessment of the complete vapor pathway in the 200 Areafor Building 200. near the location of the former Clean Room underground storage tank (UST); also known as the 200 Area West Closure HWMU. NMED agreed with NASA's intent to evaluate the potential for a complete vapor intrusion pathway in an approval with modifications provided on November 30, 2015.

The evaluation of potential soil vapor intrusion in the 600 Area was added__ to the assessment following communications between NASA and NMED on the 600 Area Perched Groundwater Extraction Pilot Test Interim Report for Year 2 NMED approval with modifications (NMED, 2015a). NASA has performed several vadose zone investigations at the 600 Area HWMU, and concluded that the source of soil vapor contaminants beneath the 600 Area HWMU is the underlying groundwater. In a November 25, 2015 letter to NMED, NASA proposed an assessment of the 600 Area. Building 637, located southeast of the 600 Area HWMU, is the closest structure and constitutes the location at which a potentially complete vapor intrusion pathway would result in the highest level of present day exposure. The approach of utilizing Buildings 200 and 637 ensured consistent evaluation of the <u>current_worst-case vapor intrusion pathway at the 200 West Closure and 600 Area HWMUs</u>. NASA <u>submitted tincorporated all the vapor intrusion assessment requirements into the 200 and 600 Area Vapor Intrusion Assessment Work Plan (VIAWP)_7 which was submitted to NMED on February 26, 2016, and this was and approved by NMED on May 27, 2016.</u>

This vapor intrusion assessment report (VIAR) <u>follows</u> satisfies the components of a tiered vapor intrusion evaluation process-presented in the NMED approved VIAWP. <u>The tBased on previous vadose zone</u> investigations in the 200 Area and 600 Area, two locations with the <u>eurrent</u> greatest potential for vapor intrusion were evaluated: the 200 Area on the west side of Building 200 at the location of the former Clean Room tank HWMU; and, 600 Area Building 637 located near the 600 Area HWMU. The VIAR evaluates the potential significance of a complete exposure pathway existing between soil vapor in the vadose zone and industrial/occupational indoor air is performed through by comparing the maximum detected concentrations for vadose zone soil vapor<u>and</u> to the corresponding NMED VISL and/or WSTF RBC. Additional <u>evaluation lines of evidence beyond comparison of soil vapor data to screening criteria</u> are investigated to determine whether soil vapor is a potential source of unacceptable indoor air risks_-. These included <u>a review of</u> evaluation of the integrity of building foundations, identification of the operating characteristics of the building ventilation systems, <u>a</u> temporal trend analysis of VOC source concentrations in groundwater, characterization of the vertical distribution of vadose zone pore vapor, and comparison of the relative concentrations of <u>key COP</u>VOCs in source media (soil vapor) and exposure media (indoor air) to assess the contribution of source area <u>CO</u>VPQCs to indoor air risks.

Two semi-annual sampling events were performed in the summer (August 2017) and winter (February 2018) to address differences in seasonal air pressure fluctuations that could influence vapor intrusion. The sampling events were performed 182 days apart over weekends on consecutive days, with Building 637 sampled on Saturdays, and Building 200 sampled on Sundays. Each sampling event was coordinated to take place on a 3-day non-working weekend. Heating, ventilation, and air conditioning (HVAC) systems operated on each preceding Friday with minimal impact from personnel, and sampling conditions were excellent. Soil vapor samples were analyzed using EPA Method TO-15-in order to achieve the VIAR objectives_.

In the 200 Area, soil vapor samples were collected from the shallow ports of threein MSVM wells on the west side of Building 200. Indoor samples were collected at locations in Building 200 above the subsurface footprint of the former 200 Area Clean Room Tank HWMU and outdoor air samples were collected adjacent to Building 200. 200 SV-05 at 9 feet (ft) below ground surface (bgs), 200 SV-09 at 19 ft bgs, and MSVGM well 200 LV-150 at 34 ft bgs, all located within 85 ft of the west side of Building 200. In the 600 Area, samples were collected from the shallow ports in two MSVM wells 600 SGW-1 at 12.5 ft bgs, 600 SGW-2 at 12.5 ft bgs, and 600 SGW-5 at 7.5 ft bgs, all located on the west side within 210 ft of Building 637. Indoor and outdoor air samples were collected using eight-hour duration flow controllers operating at the same time. 200 Area indoor samples were collected at locations in Building 200 above and adjacent to the subsurface footprint of the former 200 Area Clean Room Tank HWMU. Outdoor air samples were collected upgradient and adjacent to Building 200. In the 600 Area, I indoor air samples were collected upgradient and adjacent to Building 200. In the 600 Area, I indoor air samples were collected upgradient and adjacent to Building 200. In the 600 Area, I indoor air samples were collected in Building 637 within the single room along with outdoor air samples at adjacent upgradient-locations. The

Building 200 results reflected higher concentrations for COPCs in the vadose zone MSVM wells for the first semi-annual sampling event (August 2017), which was characterized by elevated outdoor temperatures and potentially increased volatization of COPCs in groundwater. Vadose zone trichloroethene (TCE) concentrations from the three wells sampled exceeded the NMED VISL (328 $\mu g/m^3$, NMED, 201922cb) and WSTF RBC at 5 ft bgs (18,000 $\mu g/m^3$, NASA, 2019a) for the August 2017 and February 2018 semi-annual sampling events. Tetrachloroethene (PCE) soil vapor concentrations also exceeded the NMED VISL (6,550 $\mu g/m^3$) in all three wells for the August semi-annual sampling event and were below the WSTF RBC at 5 ft bgs (460,000 $\mu g/m^3$). For the February 2018 sampling event, PCE concentrations exceeded the NMED VISL at 200 LV 150 at 34 ft bgs. Concentrations for outdoor air samples were generally either non-detect or below 1 $\mu g/m^3$ for all COPCs. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017 and February 2018) and 2 Butanone (maximum 3 $\mu g/m^3$ in August 2017) were observed. Concentrations for indoor air samples were generally non-detect or present at trace concentrations for COPCs. No indoor or outdoor air samples exceeded the applicable NMED VISL or WSTF RBC.

Building 637 results indicated that the higher concentrations for COPCs in the MSVM wells fluctuated between the two semi-annual sampling events characterized by significantly different ambient outdoor temperatures. The effect of increased volatization of COPCs in groundwater during the summer may be less pronounced in the 600 Area due to relatively lower concentrations in the 600 Area aquifer. TCE concentrations within soil vapor for well 600 SGW-1-12.5 (480 μ g/m³ in August 2017 and 740 μ g/m³ in February 2018) and well 600 SGW-2-12.5 (330 μ g/m³ in August 2017) exceed the NMED VISL (328 μ g/m³), and were below the WSTF RBC at 5 ft bgs (18,000 μ g/m³). Other COPC maximum concentrations for the August 2017 and February 2018 sampling events were below the respective NMED VISL and WSTF RBC in soil vapor at 5 ft bgs. The concentrations for COPCs for outdoor air samples were generally non-detect or below 1 μ g/m³ for the COPCs. Traces of Freon 11 (maximum 1.2 μ g/m³ in August 2017), 2-Butanone (maximum 2.4 μ g/m³ in August 2017), and acetone (maximum 10 μ g/m³ in August 2017) were reported. The concentrations for specific indoor COPCs were slightly above the contemporaneous outdoor air samples collected, and significantly below the concentrations observed

within soil vapor in the shallow vadose zone reported from MSVM wells. The maximum concentration for indoor air samples were generally non-detect or below $1 \ \mu g/m^3$ for the COPCs. No indoor or outdoor air sample results exceeded the applicable NMED VISL or WSTF RBC.

Vadose zone soil vapor concentrations of PCE and/or TCE at the locations of the 200 West Closure and 600 Area HWMUs exceeded NMED VISLs and updated NMED approved WSTF RBCs as expected; and, as explained in the lines of evidences (Section 6.0), the indoor air exposure pathway is complete for Buildings 200 and 637, though this pathway will not impact the health of industrial workers. The subsurface contribution to indoor VOC levels is below the equivalent indoor air screening levels. From the Decision Rule: "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below the equivalent indoor VOC levels is below risk-based indoor air concentrations shown in Table A 4 of NMED's Soil Screening Guidance for Human Health Risk Assessments VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." No further investigation or corrective actions are recommended for Building 200 and Building 637 due to the lack of health risk for soil vapor COPCs from the vadose zone into the target buildings.

<u>200 and 600 Area soil vapor risk and hazard results were combined with 200 and 600 Area soils risk and hazard from investigations performed in 2014 (200 Area Phase II Investigation [NASA, 2014a]) and 2009 (600 Area Closure Investigation [NASA, 2011a]).200 and 600 Area soil vapor risk and hazard results were combined with previous soils risk and hazard data. Risk screeningassessment evaluations for soil vapor include both carcinogenic and noncarcinogenic toxicity and were performed using ProUCL Version 5.2.</u>

For the 200 and 600 Area vadose zone, TCE concentrations in soil vapor exceed the NMED VISL and in the 200 Area, WSTF RBC as wellat 25 ft bgs for both sampling events. PCE soil vapor concentrations exceed the VISL for both sampling events but are below the RBC at 25 ft bgs. The concentrations for the other remaining COPCs in vadose zone soil vapor are below the VISL (except 1,1-Dichloroethane in the 200 Area) and RBC. Concentrations in Building 200 outdoor and indoor air samples were generally nondetect or below 1 µg/m³ for COPCs and below the VISL and RBC. For the 600 Area, TCE concentrations within soil vapor exceed the VISL but are significantly below the RBC at 10 ft bgs. All other soil vapor concentrations for the remaining COPCs are below the respective VISL and RBC... The concentrations for COPCs for Building 600 outdoor and indoor air samples were generally non-detect or below 1 µg/m³ for the COPCs. No concentrations of indoor air COPCs exceeded the VISL or RBC. Cumulatively, TCE and PCE are the risk drivers for soil vapor. Both individual and cumulative risk was exceeded by TCE concentrations for the residential and industrial scenarios in the 200 Area. Even though risk and hazard targets were exceeded for soil vapor, indoor air risk and hazard were below targets. Separate contaminant suites between indoor air and soil vapor, intact building foundations, robust ventilation systems, a generally increasing contaminant concentration trend with depth provide evidence that vapor intrusion is not a significant contributor to indoor air in Building 200 or Building 637.

From the Decision Rule: "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below risk-based indoor air concentrations..., then current vapor intrusion risks are acceptable." According to NMED Guidance on vapor intrusion pathway designation (NMED, 2022c), there is a complete exposure pathway at the two buildings. Based on this VIAR, NASA concludes that potential vapor intrusion into the buildings does not present a risk of industrial/occupational exposure to personnel, and no additional investigation or vapor intrusion mitigation is required.

The risk screening performed for this VIAR is not intended to be complete at this time, as continued monitoring is planned for the 200 and 600 Areas. NASA will perform continued risk and hazard screening, including soil-to-groundwater and an ecological assessment in accordance with the current

<u>NMED RA Guidance</u>, Volumes I and II at an appropriate time to make corrective action decisions or to seek closure. At that time, NASA will provide a risk report in accordance with the WSTF Permit Section <u>6.5.</u>

Table of	Contents
----------	----------

Executive Summary	iii
Table of Contents	vii
List of Figures and Tables	xii
List of Acronyms	XV
<u>1.0</u> Introduction	<u>1</u>
1.1 Facility Location and Description	<u>1</u>
1.2 WSTF 200 Area and 600 Area Closure Conditions	2
1.3 Regulatory Requirements	2
1.4 Purpose and Method of Vapor Intrusion Assessment	3
1.5 Vapor Intrusion Screening Levels and Risk Based Concentrations	4
1.6 Vapor Intrusion Pathway	<u>5</u>
1.7 Methodologies	6
2.0 Background	<u>6</u>
2.1 Soil Vapor Contamination	6
2.2 Rationale For Selection of Buildings for Vapor Intrusion Assessment	8
2.3 Operational History	9
2.3.1 200 Area Activities	9
2.3.2 600 Area Activities	10
2.4 Environmental Setting	10
2.4.1 200 Area and 600 Area Surface Conditions	10
2.4.2 200 Area and 600 Area Subsurface Conditions	<u>11</u>
2.5 200 Area and 600 Area HWMU Description	12
2.5.1 200 Area Clean Room Tank Location and Use	12
2.5.2 600 Area Surface Impoundments Location and Use	12
2.6 Previous Vadose Zone Investigations Delineating Contaminant Distribution	13
2.7 Contaminants of Potential Concern	
2.8 Site Conceptual Exposure Model	
2.8.1 Contamination Sources	13
2.8.2 Release Mechanisms	13
2.8.3 Potential Exposure Pathways and Receptors	13
3.0 Scope of Activities	14
3.1 Data Quality Objectives	15
3.1.1 Problem Statements	15
3.1.2 Study Goals	16
3.1.3 Information Inputs	16
3.1.4 Spatial Extent of Assessment	16
3.1.5 Decision Rule	17
3.2 Assessment Activities	17
3.2.1 Vadose Zone Soil Vapor Sample Locations and Schedule	
3.2.2 Indoor and Outdoor Air Sample Locations and Schedule	
3.2.3 Sampling Procedures	19
3.2.4 Analytical Tasks	
3.2.5 Health and Safety	
3.2.6 Field Documentation	20
3.2.7 Investigation-Derived Waste Management Plan	21
4.0 Field Data Collection, Assessment, and Review	21
4.1 Project Documentation	
4.2 Building Walkthrough Inspections	
<u>4.2.1 Building 200</u>	

4.2.2 Building 637	
4.3 Preparation of Buildings	
4.4 Field Preparation and Sampling	
4.4.1 Summer Semi-Annual Sampling Event (August 2017)	
4.4.2 Winter Semi-Annual Sampling Event (February 2018)	
4.5 Vapor Intrusion Assessment Sampling	
4.6 Vadose Zone Soil Vapor Sampling	
4.7 Indoor and Outdoor Air Sampling	
4.8 Soil Sampling	
4.9 Off-site Laboratory Data	
4.10 Data Assessment and Review	
5.0 Summary of Soil Vapor, Outdoor Air, and Indoor Air Data	
5.1 200 Area Soil Vapor, Outdoor Air, and Indoor Air Sampling	
5.1.1 200 Area Soil Vapor Analytical Results	
5.1.2 Building 200 Outdoor Air Analytical Results	
5.1.3 Building 200 Indoor Air Analytical Results	
5.1.4 Building 200 Trends and Observations	
5.2 600 Area Soil Vapor, Outdoor Air, and Indoor Air	
5.2.1 600 Area Soil Vapor Analytical Results	
5.2.2 Building 637 Outdoor Air Analytical Results	
5.2.3 Building 637 Indoor Air Analytical Results	32
5.2.4 Building 600 Trends and Observations	33
5.3 Potential Bias due to Field Sampling Conditions	34
6.0 Screening Level Risk Assessment, Uncertainties, and Lines of Evidence	34
6.1 Screening Level Risk Assessment	34
6.1.1 200 Area Screening Risk Assessment	35
6.1.2 600 Area Screening Risk Assessment	38
6.2 Uncertainties	41
6.2.1 Constituents without Published Screening Values	41
6.2.2 Small Sample Sizes	<u>11</u> 41
6.2.3 Industrial Pathway Sample Depths	<u>41</u>
6.2.4 Large Dilution and Elevated Detection Limits	<u></u>
6.3 Lines of Evidence	<u></u> /12
6.3.1 Concervative Rick Using Maximum Concentrations	<u></u>
6.3.2 Soil Vanor Vertical Concentration Profiles	<u></u> <u>42</u>
6.3.2 Integrity of Building Slabs	<u></u> <u>45</u>
6.3.4 Ventilation Systems	<u></u> 45
6.3.5 Personnel Management Practices	<u></u> 45
6.3.6 Indoor Air Quality Pick to Worker	<u></u> 16
6.3.7 Concentration Paties of Detected Constituents in Soil Vener and Indeer Air	<u></u> 40
6.5.7 Concentration Ratios of Delected Constituents in Sont Vapor and Indoor All	
<u>0.4</u> Assessment of worker Risks for Occupants of Bundnigs 200 and 057	<u>40</u> 47
7.0 Summary of Soil Vapor, Outdoor Air, and Indoor Air Sampling and Saraoning Criteri	<u>47</u>
7.1 Summary of Son vapor, Outdoor An, and indoor An Sampling and Screening Criteri	<u>a47</u> 19
7.2 Conclusions	
$\frac{7.2.1}{200}$ Area $\frac{600}{100}$ Area	<u></u>
<u>1.2.2</u> 000 Alta	<u></u>
0.0 Recommendations	<u></u>
9.0 Kelerences	
<u>Figures</u>	
1 ables	
Appendix A Pre-Sampling Building Inspection Forms	A-1

Appendix B Pre-Sampling Building Walkthrough Photographs	B-1
Appendix C Quality Assurance Reports	C-1
Appendix D UCL95 Results for Cumulative Risk Assessment	D-1
Appendix E Soil Vapor Vertical Concentration Profiles	<u>E-1</u>
Executive Summary	iii
Table of Contents	<u><u>v</u>vi</u>
List of Figures and Tables	<u> vii</u> viii
List of Acronyms	<u><u>viii</u>ix</u>
1.0 Introduction	1
1.1—Facility Location and Description	1
1.2 WSTF 200 Area and 600 Area Closure Conditions	<u><u>1</u>2</u>
1.3 Regulatory Requirements	2
1.4—Purpose and Method of Vapor Intrusion Assessment	<u><u>2</u>3</u>
1.5 Vapor Intrusion Screening Levels and Risk Based Concentrations	4
1.6 Vapor Intrusion Pathway	5
1.7 Methodologies	<u><u>5</u>6</u>
2.0 Background	6
2.1 Soil Vapor Contamination	6
2.2 Rationale For Selection of Buildings for Vapor Intrusion Assessment	8
2.3 Operational History	<u> </u>
2.3.1 200 Area Activities	<u> </u>
2.3.2 600 Area Activities	<u><u>9</u>10</u>
2.4 Environmental Setting	
2.4.1 - 200 Area and 600 Area Surface Conditions	
2.4.2 200 Area and 600 Area Subsurface Conditions	
2.5 200 Area and 600 Area HWMU Description	
2.5.1 200 Area Clean Room Tank Location and Use	
2.5.2	
2.0 Previous vacose Zone investigations Defineding Contaminant Distribution	<u><u>12</u>13 1012</u>
2.7 Containinants of Potential Concern	<u><u>12</u>13 12</u>
2.0 Site Conceptual Exposure Model.	
2.8.2 Polooso Machanisms	
2.8.2 Detential Exposure Dathways and Decentors	
3.0 Scope of Activities	
3.1 Data Quality Objectives	
3.1 1 Problem Statements	
3.1.2 Study Goals	1516
3.1.2 Information Inputs	<u>16</u>
3.1.4 Spatial Extent of Assessment	
3.1.5 Decision Rule	1617
3.2 Assessment Activities	<u>17</u>
3.2.1 Vadose Zone Soil Vapor Sample Locations and Schedule	
3.2.2 Indoor and Outdoor Air Sample Locations and Schedule	<u>18</u>
3.2.3 Sampling Procedures.	
3.2.4 Analytical Tasks	<u></u>
3.2.5 Health and Safety	
3.2.6 Field Documentation	<u>2021</u>
3.2.7 Investigation-Derived Waste Management Plan	21
4.0 Field Data Collection, Assessment, and Review	<u><u>21</u>22</u>
4.1—Project Documentation.	

4.2 Building Walkthrough Inspections	
4.2.1 Building 200.	
4.2.2 Building 637	
4.3 Preparation of Buildings	
4.4 Field Preparation and Sampling	24
4.4.1 Summer Semi-Annual Sampling Event (August 2017)	
4.4.2 Winter Semi-Annual Sampling Event (February 2018)	2425
4.5 Vapor Intrusion Assessment Sampling	<u></u>
4.6 Vadose Zone Soil Vanor Sampling	25
4.7 Indoor and Outdoor Air Sampling	2526
4.8 Soil Sampling	<u></u> 20 26
<u>4.9 Offecte Laboratory Data</u>	26
4.10 Data Assessment and Review	20
5.0 Summary of Soil Vapor, Outdoor Air and Indoor Air Data	2027 28
5.1 200 Area Soil Vapor, Outdoor Air, and Indoor Air Sampling	
5.1 200 Area Soil Vapor, Outdoor Ani, and Indoor An Samping	
5.1.2 Puilding 200 Outdoor Air Analytical Posults	<u><u>28</u>28</u> 20
5.1.2 Duilding 200 Undoor Air Analytical Results	<u></u>
5.1.4 Duilding 200 Trends and Observations	<u></u>
5.1.4 Building 200 Trends and Observations	<u><u>29</u>29</u> 20
5.2 - 600 Area Soli Vapor, Outdoor Air, and indoor Air	
5.2.1	<u><u>30</u>31</u>
5.2.2 Building 637 Outdoor Air Analytical Results	
5.2.3 Building 637 Indoor Air Analytical Results	
5.2.4 Building 600 Trends and Observations	<u><u>31</u>31</u>
5.3 Potential Bias due to Field Sampling Conditions	
6.0 Screening Level Risk Assessment and Evaluation of Lines of Evidence	<u><u>32</u>32</u>
6.1 Screening Level Risk Assessment	<u><u>32</u>32</u>
6.1.1 200 Area Screening Risk Assessment	<u><u>33</u>33</u>
6.1.2 600 Area Screening Risk Assessment	<u><u>36</u>35</u>
6.2 Lines of Evidence	<u><u>39</u>37</u>
6.2.1 Conservative Risk Using Maximum Concentrations	<u><u>40</u>37</u>
6.2.2 Soil Vapor Vertical Concentration Profiles	<u><u>40</u>37</u>
6.2.3 Integrity of Building Slabs	<u><u>42</u>39</u>
6.2.4 Ventilation Systems	<u><u>43</u>40</u>
6.2.5 Personnel Management Practices	<u><u>43</u>40</u>
6.2.6 Indoor Air Quality Risk to Worker	<u><u>43</u>40</u>
6.2.7 Concentration Ratios of Detected Constituents in Soil Vapor and Indoor Air	<u><u>44</u>41</u>
6.3 Assessment of Worker Risks for Occupants of Buildings 200 and 637	<u><u>44</u>41</u>
7.0 Summary and Conclusions.	<u><u>45</u>42</u>
7.1—Summary of Soil Vapor, Outdoor Air, and Indoor Air Sampling and Screening Crite	ria <u>45</u> 42
7.2 Conclusions	
7.2.1 200 Area	<u>46</u> 43
7.2.2 600 Area	
8.0 Recommendations	
9.0 References	
Figures	<u>5350</u>
Tables	<u></u>
Appendix A Pre-Sampling Building Inspection Forms	<u> </u>
Appendix B Pre-Sampling Building Walkthrough Photographs	
Appendix C UCL95 Results for Cumulative Risk Assessment	<u> </u>
Appendix D Soil Vapor Vertical Concentration Profiles	<u>E-1D-1</u>
· · · · · · · · · · · · · · · · · · ·	<u></u>

Figure 1.1	WSTF Location Map	57
Figure 1.2	Vapor Intrusion Assessment Building Location Map	
Figure 2.1	Freon 113 Soil Vapor and Groundwater Concentrations (Oct-14)	59
Figure 2.2	Trichloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	60
Figure 2.3	Tetrachloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	61
Figure 2.4	Building 200 Site Conditions	62
Figure 2.5	Building 637 Site Conditions	63
Figure 2.6	Site Conceptual Exposure Model	64
Figure 3.1	West Building 200 Soil Vapor and Air Sampling Locations	65
Figure 3.2	Building 637 Soil Vapor and Air Sampling Locations	66
Figure 5.1	West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results	67
Figure 5.2	Building 637 Soil Vapor and Air Sampling Locations and Analytical Results	68
Figure 6.1	Revised Site Conceptual Exposure Model	69
Figure 6.2	WSTF Background Soil Area Map	70
Figure 6.3	200 Area Soil Boring Locations	<u>71</u>
Figure 6.4	600 Area Soil Boring Locations	72
Figure 1.1	WSTF Location Map	<u><u>54</u>51</u>
Figure 1.2	-Vapor Intrusion Assessment Building Location Map	<u><u>55</u>52</u>
Figure 2.1	-Freon 113 Soil Vapor and Groundwater Concentrations (Oct-14)	<u> <u>56</u>53</u>
Figure 2.2	Trichloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	<u><u>57</u>54</u>
Figure 2.3	Tetrachloroethene Soil Vapor and Groundwater Concentrations (Oct-14)	<u> <u>58</u>55</u>
Figure 2.4	-Building 200 Site Conditions	<u>59</u> 56
Figure 2.5	-Building 637 Site Conditions	<u>60</u> 57
Figure 2.6	Site Conceptual Exposure Model	<u><u>61</u>58</u>
Figure 3.1	West Building 200 Soil Vapor and Air Sampling Locations	<u>62</u> 59
Figure 3.2	-Building 637 Soil Vapor and Air Sampling Locations	<u>63</u> 60
Figure 5.1	-West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results	<u><u>64</u>61</u>
Figure 5.2	Building 637 Soil Vapor and Air Sampling Locations and Analytical Results	<u>65</u> 62
Figure 6.1	WSTF Background Soil Area Map	<u>66</u> 63
Figure 6.2	-200 Area Soil Boring Locations	<u><u>67</u>64</u>
Figure 6.3	- 600 Area Soil Boring Locations	<u><u>68</u>65</u>
Table 1.1	Comparison of Soil Vapor and Air Concentration Guidance Levels	<u>74</u>
Table 3.1	Soil Vapor Monitoring Well Sampling Locations	<u></u>
Table 3.2	Indoor and Outdoor Air Sampling Locations	<u></u>
Table 4.1	Product Inventory Form for 200 Area Building 200 on 6/21/2017	<u>77</u>
Table 4.2	Product Inventory form for 200 Area Building 637 on 6/26/2017	<u>79</u>
Table 4.3	Summary of 200 Area Building 200 and Vicinity Soil Vapor, Outdoor Air, and Ind	<u>.00r</u>
T 11 4 4	Air Analytical Results	<u>80</u>
Table 4.4	Detection Limits Exceeding Screening Levels Well 200-LV-150	<u> 85</u>
Table 5.1	Summary of 600 Area Building 637 and Vicinity Soil Vapor, Outdoor Air, and Ind	<u>.00r</u>
T 11 < 1	<u>Air Analytical Results</u>	<u>91</u>
Table 6.1	200 Area Soil Vapor: Residential Cancer Risk (VISLs)	<u>97</u>
Table 6.2	200 Area Soil Vapor: Industrial Cancer Risk (VISLs)	<u>97</u>
Table 6.5	200 Area Soil Vapor: Residential (Noncancer) Hazard Index (VISLs)	<u>98</u>
Table 6.6	200 Area Soil Vapor: Industrial (Noncancer) Hazard Index (VISLs)	<u> 100</u>
Table 6.7	200 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)	<u> 101</u>
Table 6.9	200 Area Indoor Air: Residential Cancer Risk (VISLs)	102

Table 6.10	200 Area Indoor Air: Industrial Cancer Risk	102
Table 6.11	200 Area Indoor Air: Residential(Noncancer) Hazard Index(VISLs)	104
Table 6.12	200 Area Indoor Air: Industrial (Noncancer) Hazard Index (VISLs)	106
Table 6.13	200 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)	
	Comparison	108
Table 6.14	200 Area Essential Nutrient Soil Maximum Concentrations vs. Background Thresho	old
	Value (BTV) Comparison	109
Table 6.15	Population Comparison of Background and 200 Area Soil Data	109
Table 6.16	200 Area Soil: Residential Cancer Risk	109
Table 6.17	200 Area Soil: Industrial Cancer Risk	109
Table 6.18	200 Area Soil: Residential (Noncancer) Hazard Index	110
Table 6.19	200 Area Soil: Industrial (Noncancer) Hazard Index	110
Table 6.20	200 Area Cumulative Residential Risk and Hazard; All Pathways	111
Table 6.21	200 Area Cumulative Industrial Risk and Hazard; All Pathways	111
Table 6.22	600 Area Soil Vapor: Residential Cancer Risk (VISLs)	112
Table 6.25	600 Area Soil Vapor: Residential (Noncancer) Hazard Index (VISLs)	114
Table 6.27	600 Area Soil Vapor: Residential (Noncancer) Hazard Index (RBCs)	118
Table 6.29	600 Area Indoor Air: Residential Cancer Risk (VISLs)	122
Table 6.31	600 Area Indoor Air: Residential (Noncancer) Hazard Index(VISLs)	123
Table 6.33	600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)	
	Comparison	125
Table 6.34	600 Area Essential Nutrients Soil Maximum Concentrations vs. Background Thresh	old
	Value (BTV) Comparison	127
Table 6.35	Population Comparison of Background and 600 Area Soil Data	128
Table 6.36	600 Area Soil: Residential Cancer Risk	129
Table 6.38	600 Area Soil: Residential (Noncancer) Hazard Index	130
Table 6.40	600 Area Cumulative Residential Risk and Hazard; All Pathways	132
Table 6.41	600 Area Cumulative Industrial Risk and Hazard; All Pathways	132
Table 6.42	Summary of F113 and TCE Vertical Concentration Profiles for Select 200 and 600	Area
	Wells	133
Table 1.1	Comparison of Soil Vapor and Air Concentration Guidance Levels	<u> 70</u> 67
Table 3.1	Soil Vapor Monitoring Well Sampling Locations	<u> 7168</u>
Table 3.2	Indoor and Outdoor Air Sampling Locations	<u>72</u> 69
Table 4.1	Product Inventory Form for 200 Area Building 200 on 6/21/2017	<u>73</u> 70
Table 4.2	Product Inventory form for 200 Area Building 637 on 6/26/2017	<u>75</u> 72
Table 5.1		loor
	Air Analytical Results	8273
Table 5.2	Summary of 600 Area Building 637 and Vicinity Soil Vapor, Outdoor Air, and Ind	loor
	Air Analytical Results	8282
Table 6.1	200 Area Soil Vapor: Residential Cumulative Cancer Risk Assessment	8892
Table 6.2	200 Area Soil Vapor: Residential Cumulative Hazard Assessment	<u>8992</u>
Table 6.3		<u>9193</u>
Table 6.4		<u>9293</u>
Table 6.5	200 Area Indoor Air: Residential Cumulative Hazard Assessment	<u>93</u> 94
Table 6.6	200 Area Soil Background Threshold Value (BTV) Comparison	<u>9795</u>
Table 6.7	- 200 Area Essential Nutrient Soil Background Threshold Value (BTV) Comparison	
Table 6.8	Population Comparison of Background and 200 Area Soil Data	<u>9896</u>
Table 6.9	200 Area Soil: Residential Cumulative Cancer Risk Assessment	<u> 9896</u>
Table 6.10	200 Area Soil: Residential Cumulative Hazard Assessment	<u>9996</u>

Table 6.11	600 Area Soil Vapor: Residential Cumulative Cancer Risk Assessment	<u>00</u> 97
Table 6.12	-600 Area Soil Vapor: Residential Cumulative Hazard Assessment	<u>0298</u>
Table 6.13	-600 Area Soil Vapor: Residential Cumulative Hazard Assessment (RBC)	0599
Table 6.14	-600 Area Indoor Air: Residential Cumulative Cancer Risk Assessment	9100
Table 6.15	-600 Area Indoor Air: Residential Cumulative Hazard Assessment	0100
Table 6.16	-600 Area Soil Background Threshold Value (BTV) Comparison	2101
Table 6.17	-600 Area Essential Nutrients Soil Background Threshold Value (BTV) Comparison	_
	-114103	
Table 6.18	- <u>Population Comparison of Background and 600 Area Soil Data</u>	5104
Table 6.19	-600 Area Soil: Residential Cumulative Cancer Risk Assessment	<u>-</u> 6105
Table 6.20	600 Area Soil: Residential Cumulative Hazard Assessment	7106
Table 6.21	200 Area Cumulative Residential Risk and Hazard Assessment: All Pathways 11	9107
Table 6 22	<u>-600 Area Cumulative Residential Risk and Hazard Assessment: All Pathways</u>	9107
Table 6.22	Summary of F113 and TCE Vertical Concentration Profiles for Select 200 and 600 A	<u>-</u> rea
14010 0.23	Wells 12	0108

List of Acronyms

μg	Microgram
µg/kg	Micrograms per kilogram
µg/L	Micrograms per liter
AOI	Area of Interest
bgs	Below ground surface
BTV	Background Threshold Value
CAP	RCRA Corrective Action Program
CFR	Code of Federal Regulations
CH4	Methane
CO2	Carbon Dioxide
CoC	Chain-of-custody
COPC	Contaminant of Potential Concern
DQOs	Data Quality Objectives
EDD	Electronic Data Deliverable
EPA	Environmental Protection Agency
Freon 11	Trichlorofluoromethane
Freon 113	1,1,2-Trichloro-1,2,2-Trifluoroethane
ft	Feet/foot
GCL	Geosciences Consultants, Ltd.
GMP	Groundwater Monitoring Plan
GSA	Gardner Spring Arroyo
HAZWOPER	Hazardous Waste Operations and Emergency Response
HIS	Historical Information Summary
HVAC	Heating, Ventilation, and Air Conditioning
HWB	Hazardous Waste Bureau
HWMU	Hazardous Waste Management Unit
HWTL	Hazardous Waste Transmission Line
IDW	Investigation-Derived Waste
in.	Inch(es)
IR	Investigation Report
IWP	Investigation Work Plan
JDMB	Jornada del Muerto Basin
m	Meter
MSVGM	Multiport Soil Vapor and Groundwater Monitoring
MSVM	Multiport Soil Vapor Monitoring
NASA	National Aeronautics and Space Administration
NMED	New Mexico Environment Department
O2	Oxygen
ODEQ	Oregon Department of Environmental Quality
OSHA	Occupational Safety and Health Administration
PCC	Post-Closure Care
PCE	Tetrachloroethene
PDF	Portable Document File
PEL	Permissible Exposure Limit(s)
PID	Photoionization Detector
PPE	Personal Protective Equipment
ppm	Part per million
PVC	Polyvinyl Chloride
QA	Quality Assurance

QC	Quality Control
RBC	Risk-Based Concentrations
RCRA	Resource Conservation and Recovery Act
SAM	San Andres Mountains
SCEM	Site Conceptual Exposure Model
SHP	Safety and Health Plan
SOP	Standard Operating Procedure
sq ft	Square foot/feet
SSL	Soil Screening Level
SVE	Soil Vapor Extraction
SWMU	Solid Waste Management Unit
TCE	Trichloroethene
TPH	Total Petroleum Hydrocarbons
TWA	Time Weighted Average
UST	Underground Storage Tank
VIAR	Vapor Intrusion Assessment Report
VIAWP	Vapor Intrusion Assessment Work Plan
VISL	Vapor Intrusion Screening Level
VOC	Volatile Organic Compounds
WSTF	White Sands Test Facility

1.0 Introduction

National Aeronautics and Space Administration (NASA) submitted the results of the 200 Area Phase II Investigation Report (IR; NASA, 2015b) to the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) on June 29, 2015. The IR described the most recent phase of a comprehensive 200 Area vadose zone investigation and included the results of the comprehensive soil vapor sampling event in the 200 and 600 Areas conducted in October 2014. Based on the results of the IR, NASA proposed a quantitative assessment of the potential complete vapor intrusion pathway for the Building 200 foundation near the location of the former Clean Room underground storage tank (UST; also known as the 200 Area West Closure hazardous waste management unit [HWMU]). NMED agreed with NASA's intent to address potential complete vapor intrusion pathways in their approval with modifications for the IR on November 30, 2015 (NMED, 2015b).

The additional assessment of potential vapor intrusion in the 600 Area was proposed following written communications between NASA and NMED. On April 16, 2015, NASA submitted the 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 2 for NMED review (NASA, 2015a). NMED approved the report with modifications on July 15, 2015, and required further investigation of the source of contamination at or near the HWMU (NMED, 2015a). NASA has already performed several investigations at the 600 Area HWMU, and concluded there is not a continuing source of contamination in the vadose zone beneath the HWMU. In a November 25, 2015 letter to NMED (NASA, 2015d), NASA included a summary of the environmental investigations performed at the 600 Area HWMU, the findings of those investigations, and the NMED responses to NASA's conclusions.

Based on the comprehensive sampling of soil, soil vapor, and groundwater, and the strong correlations between groundwater and soil vapor concentrations at the 600 Area HWMU, NASA has demonstrated that the source of soil vapor contaminants beneath and adjacent to the HWMU is the underlying contaminated groundwater. NMED indicated their concurrence with these conclusions based on the approval of these investigation reports. Subsurface vertical concentration profiles are a tool that provide a line of evidence that demonstrates degradation of the contamination source(s) and supports a conclusion for minimal upward diffusion of soil vapor to the site structures and receptors from proximal source areas. Vertical concentration profiles of soil and vapor sampled within the 200 Area and 600 Area HWMU vadose zones and an evaluation relative to concentrations in groundwater are presented and interpreted in Section 6.2.

However, it has yet to be determined whether the presence of volatile organic compounds (VOCs) in soil vapor presents a risk to human health, or if there are complete exposure pathways between the 600 Area HWMU and human receptors. Building 637, located southeast of the Closure, is the closest potential structure that could provide a <u>current</u> pathway for receptor exposure in the 600 Area.

1.1 Facility Location and Description

NASA Johnson Space Center White Sands Test Facility (WSTF) is located at 12600 NASA Road in central Doña Ana County, New Mexico. The site is approximately 12 miles northeast of Las Cruces, New Mexico and 65 miles north of El Paso, Texas (Figure 1.1). The WSTF U.S. Environmental Protection Agency (EPA) Facility Identification Number is NM8800019434. The facility has supported testing of space flight equipment and hazardous materials since 1964. WSTF contains five closed HWMUs that are under post-closure care (PCC) and 37 solid waste management units (SWMUs) within the 200, 300, 400, and 600 Areas. PCC requirements are specified by the NASA WSTF Hazardous Waste Permit (Permit) issued by NMED (202316b). Specific regulatory requirements are discussed in Section 1.3.

1.2 WSTF 200 Area and 600 Area Closure Conditions

The field activities performed for the vapor intrusion assessment did not compromise the integrity of the 200 Area former Clean Room Tank HWMU. The original closure cap was removed when the building extension was constructed in 1991. The 200 Area former Clean Room Tank excavation cannot be accessed as it is located under Building 200 which is still in operation. Multiport soil vapor monitoring (MSVM) well 200-SV-05 and multiport soil vapor and groundwater monitoring (MSVGM) well (200-LV-150) are located adjacent to the building. Their installation and sampling do not affect the closure cap.

Activities in the 600 Area for this assessment also did not compromise the integrity of the 600 Area closure cap. As directed by NMED, MSVM wells 600-SGW-2, 600-SGW-5, and 600-SGW-6 were installed through or adjacent to the cap during previous investigations, and no new wells were installed for this assessment. No unintentional damage to either of the HWMU closures was identified during a post-assessment evaluation of closure conditions.

1.3 Regulatory Requirements

The Permit requires that NASA investigate and address historical releases of hazardous waste and hazardous constituents that may have occurred at sites throughout WSTF as part of the Resource Conservation and Recovery Act (RCRA) corrective action process (CAP). The CAP consists of investigation, characterization, and, if necessary, cleanup. The principal components of the CAP are:

- RCRA Facility Assessment.
- RCRA Facility Investigation.
- Interim Corrective Measures (if necessary).
- Corrective Measures Study (if necessary).
- Corrective Measures Implementation (if necessary).

Sections V.B.6.a.i through V.B.6.a.v of the Permit (NMED, 2016b) address activities related to investigation of the 200 Area and V.B.6.d.i through V.B.6.d.v activities related to the investigation of the 600 Area. These activities have been completed.

NMED guidance requires that a quantitative vapor intrusion pathway assessment be performed where a "complete pathway" category exists (NMED, 201922cb). The Permit (NMED, 202316b) does not include cleanup standards for soil vapor. However, NMED has issued the latest Risk Assessment Guidance for Site Investigations and Remediation Volume I (NMED, 201922cb) and has directed NASA to use this latest guidance to provide specific information on the development of screening levels for soil vapor contaminants and for evaluating exposure pathways and receptors. These are termed WSTF risk-based concentrations (RBCs; NASA, 2019a, 2017a) (Table 1.1).

In the event the assessment indicates a complete pathway and unacceptable risk is present at either of the two target building locations in the 200 and 600 Areas, NASA would be required to work with NMED to perform a corrective measures evaluation in accordance with Section 3.12VII.J of the Permit.

NMED presented the available vapor intrusion screening assessment criteria alternatives in their November 30, 2015, 200 Area Phase II Approval with Modifications (NMED, 2015b). In accordance with an NMED recommendation (NMED, 2015b), NASA updated existing RBCs using available 2018 data in conjunction with the pre-assessment planning and preparation activities for this vapor intrusion

assessment. Updated RBCs were available for use as a component for this vapor intrusion screening assessment.

NASA routinely collects groundwater samples from a comprehensive network of monitoring wells at WSTF in accordance with the NMED-approved Groundwater Monitoring Plan (GMP; NASA, 2017b). Groundwater samples are collected for the analysis of the following primary constituents: VOCs; n-nitrosodimethylamine, bromacil, and metals. In addition to routine groundwater samples required by the GMP, samples for other chemical analyses are frequently collected at many of the groundwater monitoring wells. Because these samples are not a direct requirement of the GMP, the results of these analyses are provided in the appropriate project-specific report. This Vapor Intrusion Assessment Report (VIAR) was prepared in response to NMED's approval (NMED, 2016a) of the 200 Area and 600 Area Vapor Intrusion Assessment Work Plan (VIAWP; NASA, 2016b).

1.4 Purpose and Method of Vapor Intrusion Assessment

The process to assess and remediate vapor intrusion in buildings (if required) involves a tiered approach. Firstly, source area vadose zone soil and groundwater VOC concentrations are compared to available regulatory standards, in this case the NMED Soil Screening Levels (SSLs; NMED, 201922cb) and WSTF groundwater cleanup levels (GMP; NASA, 2017b). Secondly, concentrations of VOCs in soil vapor are compared to the latest NMED Vapor Intrusion Screening Levels (VISLs) (NMED, 201922cb) and WSTF RBCs (NASA, 2019a). Both of these comparisons were performed for the original submittal of this report, *200 Area and 600 Area Vapor Intrusion Assessment Report*, dated June 2018. However, as noted by NMED (NMED, 2019a) in comments to the original submittal, these comparisons did not constitute a complete risk screening for soil vapor because total vapor risk was not calculated for the soil risk (soil results had not been discussed at all in the June 2018 submittal). This revision revisits the risk screening as required by the NMED Risk Assessment Guidance.

Originally, because specific samples in the 200 Area were identified that exceeded soil vapor screening levels during both soil vapor screening processes (NASA, 2015c), NASA and NMED agreed that the next step in the investigation process would be a vapor intrusion assessment focused on the areas of greatest potential concern. The objective of the 2018 200 Area and 600 Area vapor intrusion assessment was to perform an evaluation of the vapor intrusion pathways at the priority locations within the 200 and 600 Areas that present the most likely routes for vapor intrusion based on previous investigations (Figure 1.2). The investigation and 2018 report moved directly to evaluating the potential for vapor to affect industrial/occupational indoor air in specific buildings in accordance with NMED guidance (NMED, 201922cb). It was predicated that a complete vapor intrusion exposure pathway had already been established. These locations can be described specifically as follows.

The 200 Area immediately adjacent to, and below the foundation of Building 200 above the location of the former Clean Room tank HWMU, and adjacent to soil borings 200-SB-05 (MSVM well 200-SV-05), 200-SB-06 (MSVGM well 200-LV-150), and 200-SB-09 (MSVM well 200-SV-09). This location provided the highest soil vapor concentrations in the 200 Area vadose zone for 1,1,2-trichloro-1,2,2-trifluoroethane (Freon^{®1} 113), TCE, and tetrachloroethene (PCE) during the October 2014 comprehensive soil vapor sampling event (NASA, 2015c). According to the NMED Risk Assessment Guidance for Site Investigations and Remediation (NMED, 201922cb), this location exceeded NMED industrial/occupational VISLs for Freon 113,

¹ Freon is a registered trademark of The Chemours Company CF, LLC.

TCE, and PCE, WSTF's RBC for TCE at a location that is immediately adjacent to a building, and falls into the "complete pathway" category for vapor intrusion.

• The 600 Area between the 600 Area HWMU and Building 637, located 150 feet (ft) to the southeast, near soil borings 600-SB-02 (MSVM well 600-SGW-02), 600-SB-05 (MSVM well 600-SGW-05), and 600-SB-06 (MSVM well 600-SGW-06). This location provided the highest soil vapor concentrations in the 600 Area vadose zone for TCE and some of the highest for Freon 113 during the October 2014 comprehensive soil vapor sampling event (NASA, 2015c). Building 637 is the most proximal structure to the southeast side of the 600 Area HWMU. This location also exceeded NMED industrial/occupational soil vapor VISLs for TCE and warrants assessment related to potential vapor intrusion.

Steps 1 through 3 listed below were performed as part of this assessment.

- Step 1: Using historical soil vapor investigation data, compare concentrations for vadose zone soil vapor to the corresponding NMED VISL and NMED-approved WSTF RBC to determine whether the vapor intrusion pathway must be evaluated for industrial workers in 200 or 600 Area buildings. NMED VISLs and RBCs are presented in <u>Table 1.1</u>. This evaluation was performed in the June 2018 submittal of this report.
 - Step 2: Evaluate the vapor intrusion pathway and perform human health risk screening for exposure pathways, including soil and soil vapor, using all COPCs, their additive nature, and the soil and soil vapor additive pathways. This evaluation was performed in the June 2018 submittal of this report, and is presented here. This corresponds to Step 1 of a quantitative soil vapor assessment described in Section 2.5.2.3 of NMED (201922b).
 - Step 3: If a comparison to soil vapor screening criteria indicates potentially unacceptable risk, as was indicated in the June 2018 submittal of this report, obtain additional information and assess potential human health risks based on multiple lines of evidence. Accordingly, activities that were completed in accordance with the VIAR included visual evaluation of the building foundations and determination of any preferential pathways, identification of the building ventilation systems, collection of shallow soil vapor samples in nearby MSVM and MSVGM wells in conjunction with indoor and outdoor air sampling at the two building locations being evaluated, and evaluation of vertical soil vapor concentrations to determine origin and attenuation from vapor sources. Converging lines of evidence are used to determine whether there are potentially unacceptable risks to present-day industrial workers in the buildings. This corresponds to Step 2 of a quantitative soil vapor assessment described in Section 2.5.2.3 of NMED (201922b).
- 1.5 Vapor Intrusion Screening Levels and Risk Based Concentrations

WSTF industrial/occupational workers could be exposed to VOCs derived from the migration of subsurface soil vapor through pore spaces in the vadose zone and building foundations into indoor air. The NMED Risk Assessment Guidance for Investigations and Remediation (NMED, 2022c19b) provides preliminary criteria to determine when vapor intrusion pathways must be evaluated:

- If there are compounds present in subsurface media that are sufficiently volatile and toxic, and
- If there are existing or planned buildings where exposure could occur.

"A chemical is considered to be sufficiently volatile if its Henry's law constant is $1 \times 10-5$ atm-m³/mole or greater and its molecular weight is approximately 200 g/mole or less. A chemical is considered to be sufficiently toxic if the vapor concentration of the pure component poses an incremental life time cancer risk greater than 1E-05 or the non-cancer hazard index is greater than 1.0" (NMED, 201922cb). In order to establish whether adverse human health risk is a factor at the 200 and 600 Areas, a risk screening evaluation in accordance with the RA Guidance is initially required. VISLs are not designed to be used as action standards or cleanup levels, but can be used as a tool for screening potential cumulative risks and/or hazards from exposure to volatile and toxic chemicals and to determine if further evaluation may be needed using site-specific data. NMED (2017) indicates that VISLs can be used as a first tier screening assessment under certain conditions, including; the absence of shallow groundwater, no shallow soil contamination within 10 ft of the foundation base, no buildings with subsurface openings, no significant vadose zone advective transport (from landfills producing methane or industrial sites with applicable vapor density), and no leaking vapors from gas transmission lines. NMED VISLs were used for first tier screening due to the following:

- The 200 and 600 Areas have relatively deep groundwater sources (greater than 100 ft) below the building foundation levels.
- Shallow soil contamination resulting in vapor sources was not identified during previous investigations, although samples are greater than 10 ft from the building foundations. The closest soil sample to Building 200 was in soil boring 200-SB-05 located 18 ft from the building at a depth of 8 to 10 ft below ground surface (bgs). The closest soil sample to Building 637 was collected below the 600 Area Closure cap in soil boring 600-SB-05 located 181 ft from the building at a depth of 8 to 10 ft bgs.
- Buildings do not have significant known openings to the subsurface (no sumps or earthen floors) or other significant preferential pathways.
- No known sources exist for advective transport (no vapor-forming chemicals released within an enclosed space where vapors could migrate downward through cracks and openings in floors and into the vadose zone).
- No known leaking gas transmission lines exist at WSTF.

Annually updated WSTF soil vapor RBCs are preferred relative to the screening and evaluation of soil vapor intrusion (NASA, 2019a). WSTF RBCs represent the maximum VOC concentrations allowed in soil vapor at a given depth for a complete vapor intrusion pathway. A VISL is calculated with a depth at or just below the surface (sub-slab). Since RBCs are more site-specific to WSTF than the generic VISLs and are calculated for multiple depths, using RBCs is preferred at WSTF.

First developed in 2012, these RBCs were based on EPA ambient air regional screening levels. The WSTF RBC calculations were completed for multiple depths in the vadose zone to provide a direct reference against soil vapor samples collected at the equivalent depths. To provide the best understanding of potential exposure, soil vapor and air concentrations were referenced and compared to the latest WSTF RBCs for air contaminants (Table 1.1).

1.6 Vapor Intrusion Pathway

No significant concentrations of VOCs were detected in vadose zone soil samples collected during the 200 Area or 600 Area investigations (NASA, 2015c, 2011a). In the 200 Area, organic compounds with more than one detection in soil samples were limited to traces of toluene and acetone at concentrations several orders of magnitude below the applicable NMED SSLs. Traces of acetone were considered an artifact of the sampling and analytical processes. The random horizontal and vertical distribution of trace concentrations of toluene do not support a vadose zone contaminant source. In the 600 Area, traces of trichlorofluoromethane (Freon 11), Freon 113, TCE, and PCE were rarely reported in soil samples, again at concentrations orders of magnitude below applicable NMED SSLs. NMED approved "No Longer Contained in Determinations" for all soils from the 200 Area and 600 Area investigations (NMED,

2009<u>b</u>, 2011b, 2014<u>b</u>a, 2014<u>c</u>b). Soils were redistributed at the surface in the vicinity of the soil borings from which they were derived (NASA, 2015c, 2011a). However, VOCs were detected above the applicable NMED VISLs in soil vapor and above the TCE cleanup level for groundwater samples collected in conjunction with the soil samples during these previous investigations.

Chemical analytical data were also obtained from two types of sampling performed for the assessment of the vapor intrusion pathway: passive vadose zone soil vapor sampling and active indoor/outdoor air sampling. Passive vadose zone samples from MSVM and MSVGM wells were used to confirm the presence of VOCs and their relative concentrations at specific depths in the vadose zone. Active indoor and outdoor air samples collected within the target buildings are required for quantitative assessments. Chemicals that should be considered for the vapor intrusion pathway include both volatile and toxic constituents (NMED, 2017). For the 200 and 600 Area building assessments, the vapor intrusion pathway options considered were: 1) incomplete and no action required; 2) potentially complete and a qualitative evaluation required; or 3) complete and quantitative evaluation required.

1.7 Methodologies

The VIAR provides specific information on the following activities:

- Project planning and preparation; NASA developed the required internal planning documents and coordinated the assignment of on and off-site resources for the assessment.
- Assessment activities, including soil vapor sample collection from MSVM and MSVGM wells and indoor and outdoor air sample collection at and adjacent to the target buildings.
- Investigation-derived waste (IDW) management as described in the VIAWP IDW Management Plan (NASA, 2016b; Appendix A).
- Data evaluation to determine if there are COPC concentrations above screening levels for vadose zone soil vapor and/or indoor air at the target buildings, as well as in surface soil. If COPCs are detected at concentrations above screening levels, the data can be used to guide remedial action, if necessary.
- Development and submittal of the 200 Area and 600 Area VIAR to NMED.

2.0 Background

2.1 Soil Vapor Contamination

Concentrations of soil vapor contaminants in the WSTF source areas vadose zone are widespread and have been identified and delineated during previous soil vapor surveys (Geosciences Consultants, Ltd. [GCL], 1986; NASA, 2013ba). The first shallow soil vapor survey performed at WSTF (GCL, 1986) incorporated all WSTF source areas and areas topographically and hydrologically downgradient to the west. A strong correlation between the footprint of the groundwater contaminant plume and the overlying soil vapor contaminant plume within the vadose zone was observed. Soil vapor concentrations decreased to the west as the depth to the groundwater table increased from approximately 140 ft bgs in the source areas to more than 400 ft bgs in the Jornada del Muerto Basin (JDMB), which was consistent with a groundwater source.

The most recent 200 Area vadose zone investigation included a soil vapor survey that was performed using a phased approach. Fieldwork and laboratory testing activities were completed between June 2012 and January 2013 (Phase I) and June 2014 through January 2015 (Phase II). NMED requested that NASA report the 200 Area Phase I investigation results separately prior to implementing Phase II of the

investigation (NMED, 2012). This allowed NMED to evaluate the initial Phase I data and review NASA's strategy for the Phase II investigation.

The Phase I field investigation (NASA, 2013ba) included the shallow soil vapor survey, which was performed on a grid across the WSTF 200 Area and portions of the adjacent 100, 600, and 800 Areas in order to derive shallow soil vapor isoconcentration maps and delineate additional areas of interest (AOIs). The survey was conducted in two sub-phases using Gore Modules emplaced at a depth of 2.5 ft bgs in a grid pattern on 250-ft centers to evaluate soil vapor adjacent to and surrounding three HWMUs (former 200 Area USTs and former 600 Area surface impoundments), SWMUs 4 through 9, portions of SWMU 10, SWMUs 19 and 20, and six additional targets identified in the 200 Area Historical Information Summary (HIS; NASA, 2012b). The initial survey incorporated 144 survey points. An additional 38 points were installed within the grid to further evaluate specific areas yielding the highest soil vapor concentrations. Each sample module was analyzed for a total of 45 VOCs using EPA Method 8260. Five VOCs showed consistent detections in the vadose zone: TCE; PCE; Freon 11; Freon 113; and total petroleum hydrocarbons (TPH). NASA submitted the results in the 200 Area Phase I Status Report on January 30, 2013 (NASA, 2013ba). Following NMED review (NMED, 2013a), NASA submitted a revised Phase I IR on August 6, 2013 (NASA, 2013de). The revised report was approved by NMED on October 22, 2013 (NMED, 2013b).

The Phase II field investigation comprised subsurface evaluation of 200 Area HWMUs, SWMUs, AOIs outlined in the Phase I IR, and additional locations required by NMED (2013b). Subsurface drilling with soil and bedrock core sampling was followed by the installation of MSVM or MSVGM wells in the boreholes, and finally soil vapor and groundwater sampling (NASA, 2015c). All targets identified for Phase II were evaluated to the depth of bedrock, with the exception of the two 200 Area HWMUs that were investigated to the upper groundwater table located at depth in fractured rock. Fieldwork and laboratory testing activities were performed between June and November 2014. The final component of the 200 Area Phase II investigation comprised a comprehensive vadose zone soil vapor sampling event (NASA, 2015c).

The concentrations of VOCs in soil vapor within the 200 and 600 Areas have declined since the initiation of soil vapor monitoring at WSTF in 2000 with installation of the first MSVGM wells within the 200 Area (NASA, 2004). Subsequent comprehensive soil vapor sampling incorporating all MSVM and MSVGM wells in the 200 and 600 Areas were performed during four semi-annual events (NASA, 2011b, 2012a, 2012d, 2013cb) required by NMED as a follow up to the 600 Area Closure investigation (NASA, 2011a). Comprehensive soil vapor sampling culminated with the most recent event in October 2014, which was performed as a component of the 200 Area Phase II investigation (NASA, 2015b). A historical data trend analysis to demonstrate the declining concentrations over time between sequential sampling events is included on the vertical concentration profiles provided in Section 6.2 of this vapor intrusion assessment. The vertical concentration profiles demonstrate the decline in soil vapor concentrations over time for two of the primary and most widely distributed contaminants (Freon 113 and TCE) for sampling events performed in August 2010 (NASA, 2011b), March 2013 (NASA, 2013cb), October 2014 (NASA, 2015b), and for this vapor intrusion assessment in August 2017 and February 2018.

Declines in soil vapor concentrations have been observed in conjunction with a corresponding decline in concentrations of the same contaminants in groundwater (NASA, 2016a). The maximum soil vapor concentrations measured during the most recent (October 2014) comprehensive survey, including the newly installed 200 Area Phase II wells, decreased toward the southwest through the area covered by existing 100 and 200 Area wells and into the 600 Area HWMU along the downgradient path for groundwater plume migration and contamination. NASA submitted the results in the 200 Area Phase II IR on June 29, 2015 (NASA, 2015c). The report was approved with modifications by NMED on November 30, 2015 (NMED, 2015b).

NASA compared these maximum soil vapor concentrations to the equivalent WSTF site-specific RBCs (NASA, 2012c; Figure 2.1 through Figure 2.3) during the last comprehensive soil vapor sampling event (NASA, 2015c). Results indicated that the maximum Freon 113 and PCE soil vapor concentrations measured were one to three orders of magnitude lower than the proposed site-specific WSTF RBCs at that time (NASA, 2012c). TCE is the primary soil vapor contaminant with respect to health risk from vapor intrusion in the 200 and 600 Areas (Figure 2.2). The most concentrated soil vapor areas for TCE exceeded both the NMED VISL and the equivalent WSTF RBCs in the 2014 soil vapor sampling event. Nine specific soil vapor points in seven different monitoring wells exceeded the RBCs and the VISL. These were grouped into three specific locations:

- The former Clean Room UST HWMU and surrounding area located adjacent to Apollo Boulevard on the northwest side of the Building 200 Clean Room (three wells: 200-SV-05, 200-LV-150, and 200-SV-09).
- The west side of the former 200 Area Evaporation Treatment Unit near the former 200 Area Burn Pit (SWMU 9) and the hazardous waste transmission lines (HWTLs) temporary tanker location (part of SWMU 10). This location (200-SG-3) is approximately 300 ft from the most proximal building, and as stated above, TCE concentrations decrease in this direction (from the 200 Area southwest to the 600 Area HWMU).
- The 200-D well cluster area immediately surrounding groundwater monitoring wells 200-D-109 and 200-D-240 (three wells: 200-SV-19, 200-SG-1, and 200-SG-4). This location is approximately 1,600 ft from the most proximal building.

Soil vapor concentrations at the 200 Area former Clean Room UST HWMU were of the greatest potential concern because they were the highest measured within the 200 and 600 Areas. VOC concentrations at this location are the most proximal to and potentially below the northwest side of Building 200. The NMED VISLs for Freon 113 and PCE (Figure 2.3) were also exceeded by the concentrations in the soil vapor at this location.

The highest concentrations of TCE at the 600 Area HWMU were identified within the wells located near the southeast boundary of the closure (Figure 2.2), which is in the closest proximity to Building 637 (wells 600-SGW-2, 600-SGW-5, and 600-SGW-6). Although TCE concentration at these wells exceeded the NMED VISL, they did not exceed the VISLs for Freon 11, Freon 113, or PCE. The concentrations of all four of these VOCs were also below the WSTF RBCs (Table 1.1). The closure boundary is located approximately 100 ft northeast of Building 637.

2.2 Rationale For Selection of Buildings for Vapor Intrusion Assessment

Supporting data and evaluations that demonstrate the rationale for the selection of Building 200 and Building 637 as the locations most likely to present a risk from vapor intrusion are documented in several previous investigations referenced within this report. Elevated concentrations of COPCs in shallow soil vapor in the 200 Area vicinity of Building 200 were most recently confirmed by the results of a qualitative shallow soil vapor survey performed on a grid across the 200 Area (discussed in Sections 2.3, 3.2 and 5.1.2 of the 200 Area Phase I Status Report [NASA, 2013ba]). Elevated vadose zone soil vapor concentrations identified within MSVM and MSVGM wells subsequently installed in the 200 Area adjacent to Building 200 were discussed in Section 4.3.2.1 of the 200 Area Phase II Investigation Report (NASA, 2015b). Of particular interest is the soil vapor isopleth map for TCE discussed in Section 6.3.3 that identifies RBC exceedances at the former Clean Room Tank HWMU adjacent to Building 200. The elevated TCE concentrations on the northwest side of Building 200 and a comparison to WSTF RBCs are further discussed in Section 7.3.3. A recommendation in Section 8.3 identified the need for a quantitative

assessment of the vapor pathway for Building 200 near the location of the former Clean Room Tank; also known as the 200 Area West Closure HWMU.

Soil vapor concentrations in the vadose zone below the 600 Area Closure were first evaluated during the 600 Area Closure Investigation (NASA, 2011a). NASA recommended interim vadose zone soil vapor and groundwater monitoring to assist with the upcoming implementation of the 200 Area investigations. Four 200/600 Area Semi-annual Soil Vapor and Groundwater Data Summaries were subsequently provided to NMED, culminating with the fourth sample event in March 2013 (NASA, 2013c). MSVM well 600-SGW-2 located on the south corner of the closure was identified as the location well where a single COPC (TCE) exceeded the WSTF RBC. The maximum soil vapor concentration levels for Freon 11, Freon 113, and TCE in the 600 Area MSVM wells were subsequently identified in the deepest port of well 600-SGW-5 at 137.5 ft. These are discussed in Section 4.3.2.3 of the 200 Area Phase II Investigation Report (NASA, 2015b) and do not exceed WSTF RBCs.

The evaluation of potential vapor intrusion in the 600 Area was added to the VIAWP following communications between NASA and NMED following completion of the 200 area Phase II investigation (NASA, 2015b). Following several vadose zone investigations at the 600 Area HWMU, NASA concluded that the source of soil vapor contaminants beneath the 600 Area HWMU is the underlying groundwater. In a November 25, 2015 letter to NMED (NASA, 2015c), NASA proposed an assessment of the 600 Area Building 637, located southeast of the 600 Area HWMU, as the closest structure and primary potential target for exposure. The approach of utilizing Buildings 200 and 637 for the same assessment ensured consistent evaluation of the vapor intrusion pathway at the 200 West Closure and 600 Area HWMUs.

2.3 Operational History

2.3.1 200 Area Activities

The operational history of the 200 Area is provided in the 200 Area HIS (NASA, 2012b). Descriptions are provided for the two 200 Area East Closure USTs, the two West Closure USTs, and seven SWMUs (SWMUs 4 through 10) as identified in the Permit. Six potential AOIs were identified within the HIS (the Chemistry Laboratory Acid Tank Drain Pipe, an additional Building 203 industrial drain pipe, the Chemical Storage Building 253, the 270 Area Military Transport Vehicle Fire Suppression Test Area, two additional 200 Area historical burn pits, and the 250 Area Possible Septic Tank Drainage Source). These areas were evaluated during the 200 Area Phase I shallow soil vapor field investigation.

The 200 Area became operational in 1964 to support propulsion testing facilities for the Apollo program. The Clean Room was first used for the precision cleaning of equipment in 1967 and began to evaluate flammability and toxicity characteristics of materials used in the Apollo spacecraft. By 1970, the Apollo program focused on materials' testing capability for oxygen and propellant-exposure environments. As materials' testing expanded at WSTF, five test facilities were developed, four within or near the 200 Area: the Chemistry and Metallurgical Laboratories (200 Area), the High-Flow Components Facility (250 Area), Hazardous Hypervelocity and Detonation Facilities (270 and 272 Areas), and the Materials Test Facility (800 Area). The 800 Area Materials Test Facility was completed between 1975 and 1979, the 250 High-Flow Components Area was completed between 1989 and 1990, and the 270 and 272 Hypervelocity and Detonation Areas were completed between 1987 and 1991.

In a pollution abatement report to NASA headquarters in June 1984, NASA proposed constructing aboveground evaporation tanks at WSTF to store hazardous waste in order to cease using the 200 Area USTs and the 600 Area surface impoundments (which were not specifically designed for hazardous waste disposal). In the interim, NASA proposed constructing a hazardous waste drain line that would transport

(by gravity) 200 Area hazardous wastes directly to the 600 Area surface impoundments. On April 22, 1986, it was discovered that the 8-inch (in.) long vertical carbon steel nozzle on the Clean Room tank (II) had corroded away, and there was an elliptical breach approximately 8 in. by 10 in. in the top of the Clean Room tank (II). Both Clean Room tanks were removed, and the remaining tanks were drained in November 1986. During tank removal, it was discovered that the bottom portion of tank I had completely corroded.

2.3.2 600 Area Activities

The operational history of the 600 Area is summarized in the 600 Area Closure Investigation Work Plan (NASA, 2009). In the mid-1960s, the 600 Area surface impoundments were designed to contain the saltwater backwash produced from regenerating the zeolite beds in the WSTF water softening plant located to the south. The impoundments received the saltwater backwash through an 8-in. diameter pipeline from 1964 to 1984.

From 1968 to 1986, 4,000 to 12,000 gallons of hazardous waste were transported by tanker truck from the 200 Area Clean Room and Chemistry Laboratory Tanks to the surface impoundments per week. White Sands Missile Range's High Energy Laser System Test Facility also contributed process waste from September 1983 to June 1984. The Hazardous Waste Transmission Line (SWMU 10) was constructed in May of 1986 to transport waste from the 200 Area Laboratories to the 600 Area surface impoundments. One month later, on June 13, 1986, the 600 Area impoundments were closed in response to an EPA order, and the pipeline was re-routed to nearby stainless steel tankers for transportation of wastes to an off-site RCRA disposal facility.

2.4 Environmental Setting

The topography at WSTF is typical of the Basin and Range physiographic province of the southwestern United States. The area is characterized by late Tertiary extensional tectonism, with linear mountain ranges separated by broad intermontaine basins in a northwest-trending direction. The adjacent San Andres Mountains (SAM) adjacent and east of WSTF represent an uplifted northwest-trending mountain block that is separated from adjacent mountain ranges to the west by the southern JDMB. WSTF is located on the alluvial-covered bedrock pediment slope that separates the eastern foothills of the SAM from the JDMB.

2.4.1 200 Area and 600 Area Surface Conditions

The 200 Area industrial complex is constructed on a pediment of thin alluvium (18 to 50 ft in thickness) overlying Permian limestone bedrock (Figure 2.4) at an elevation of approximately 4,930 ft above mean sea level. Pennsylvanian to Permian limestones crop out approximately 1,000 ft to the east on the east side of Gardner Spring Arroyo (GSA). The 200 Area is located immediately west of and is bound on the south by the GSA drainage as it diverts westward and downgradient toward the axis of the JDMB (Figure 1.2). Gardner Spring is the only natural surface water feature in the area and is located approximately 2,000 ft northeast of the 200 Area industrial complex within GSA. It is an intermittent spring and ceases to flow for long periods of up to several years between rare periods of heavy mountain-front rainfall.

The 600 Area complex in the vicinity of Building 637 is located on top of an alluvial pediment approximately 150 ft thick overlying Tertiary andesitic bedrock (Figure 2.5) at an elevation of approximately 4,755 ft above mean sea level. No significant drainages are present within the immediate area, and GSA is located approximately 1,500 ft north of the 600 Area HWMU as it moves west toward the JDMB.

Soils in the vicinity of the 200 and 600 Areas are classified as Tencee-Nickel Association Gently Sloping and Steep units (United States Department of Agriculture Soil Conservation Service, 1976). The Tencee Series is comprised of shallow, well-drained soils which formed in calcareous gravelly loamy alluvial sediments on old alluvial fans. The soil is slightly hard, dry, and very friable with common interstitial pores. The soil is approximately 30 to 45% caliche and gravel, is strongly calcareous, and has nearly continuous lime coatings on all clasts. The Nickel series soils comprise deep, well-drained soils on old alluvial fans. They are gravelly, medium textured alluvial sediments with gravel contents to 50%. The Tencee-Nickel, Gently Sloping unit is approximately 65% Tencee Very Gravelly Loam and 20% Nickel Fine Sandy Loam. The soil is nearly level to gently sloping and occurs on old alluvial fans. Included within these soils are arroyo bottoms and areas of soils similar to Tencee and Nickel soils except that they contain less than 35% coarse fragments. The Tencee-Nickel, Steep unit is approximately 45% Tencee Very Gravelly Loam and 40% Nickel Fine Sandy Loam.

The area is characterized by a Chihuahuan Desert Shrub climate, with abundant sunshine, low humidity, slight rainfall, and a large day-to-night temperature variance. The adjacent mountainous terrain influences the climate by blocking the incursion of moisture laden maritime air masses. Sparse biotic resources are typical of those found in the arid southwest. The average rainfall of 10 in. per year makes it difficult to support agriculture. As is typical with all deserts and semi-arid areas, the overall species diversity is low. Vegetation includes a combination of woody shrubs and grasses. These shrubs include Louisiana white sage, creosote bush, honey mesquite, tarbush, broom snakeweed, and lotebush. Common grasses include alkali sacaton, side-oats grama, fluff grass, tobosa grass, and purple three awn. Plant species biodiversity is low relative to that in better drained upland slopes. Shrubs provide a microhabitat for warm season grasses and forbs as well as herptiles and small mammals. WSTF is considered to be a low affectability area, with little capacity to be influenced by physical stimuli. The facility receives little use by wildlife species because it has been physically altered by human disturbance.

2.4.2 200 Area and 600 Area Subsurface Conditions

The predominant alluvial lithology across the area is the poorly indurated piedmont slope facies of the Camp Rice Formation (Seager, 1981). Vadose zone alluvium in the 200 Area (Figure 2.4) and 600 Area (Figure 2.5) near the buildings of interest consists of coalescent alluvial fan deposits derived from the adjacent SAM to the east. The alluvium is an unconsolidated to locally cemented, poorly sorted polygenetic pebble to boulder conglomerate. Lenticular sandy to clayey gravels, sandy silt, and silty clays are interbedded with the conglomerate. Clast lithologies include varieties of subrounded to subangular granite, rhyolite, siltstone, and micritic limestone in sand to boulder-size clasts.

2.4.2.1 200 Area

Previous 200 Area vadose zone investigations have identified moderately cemented caliche horizons a few inches thick at depths ranging from 2 ft bgs to 65 ft bgs. Significant barriers to soil vapor migration have not been encountered within 200 or 600 Area soil borings (e.g., NASA, 1996, 2015c). Well-formed drainages like the GSA that drains south and subsequently west between the 200 Area and 600 Area HWMUs host younger piedmont slope alluvium, characterized by unconsolidated silt, sand, gravel, and loam within the arroyo floor. Alluvial fan materials visible in cut sections of the GSA are indicative of irregular channeled morphologies with grain sizes ranging from clay to well-graded sandy gravel.

Alluvium overlies Pennsylvanian to Permian age limestone bedrock, which occurs at variable depths due to faulting in the area and irregular erosion of the pre-alluvial bedrock surface. The 200 Area bedrock has been fractured pervasively, predominantly on an orthogonal system, with one fracture set trending northeast-southwest and the other fracture set trending northwest-southeast. The shallowest bedrock in the industrialized 200 Area is located in the vicinity of SWMU 4, the Clean Room Discharge Pipe (14 ft bgs),

southwest across Road L at well 200-F (17 ft bgs), and at the adjacent 200 Area Clean Room Tank across Apollo Boulevard to the east (18 ft bgs). This accounts for the primary bedrock high in the vicinity of the 200 Area West Closure.

2.4.2.2 600 Area

Alluvium in the vicinity of the 600 Area HWMU is between 140 and 160 ft thick and overlies poorly fractured Tertiary Orejon Andesite bedrock. Fracturing is sparse based on the observation of camera logs recorded in 600 Area HWMU boreholes utilized for groundwater wells, with individual calcite-filled hairline fractures often separated by several tens of feet. Permian limestone is topographically and hydrologically upgradient, juxtaposed against the andesite along the Hardscrabble Hill Fault which lies east of the 600 Area HWMU and Building 637.

- 2.5 200 Area and 600 Area HWMU Description
- 2.5.1 200 Area Clean Room Tank Location and Use

A detailed description of the 200 Area Clean Room Tank located in Building 200 is provided in the HIS (NASA 2012b). Activities in the 200 Area Clean Room included the precision cleaning of propulsion system components using solvents and degreasers. Wastes included dilute solutions of organic solvents, heavy metals, inorganic salts and various formulations of Oakite Brand cleaning solutions. Wastes generated from cleaning activities were gravity fed through single-walled stainless steel pipes to the UST located west of the former front of Building 200, in front of the laboratories complex.

The original carbon steel Clean Room tank (I) had a 2,000-gallon capacity, was 14 ft long by 5 ft in diameter, and was installed in 1964. Drawings for this tank do not show corrosion protection. This original Clean Room tank (I) was used until late 1978 or early 1979 and abandoned in place. A new underground Clean Room tank (II) was installed in late 1978 or early 1979 approximately 50 ft to the west of the original tank (I). This carbon steel tank had a 4,000-gallon capacity and was 19 ft long, 6 ft in diameter with a 5/16-in. thick shell. This new tank is believed to have contained external corrosion protection. Wastes were gravity-drained from 50-gallon sinks and the sump of the outdoor Clean Room pad to the tank using 3-in. diameter, schedule 10, grade 304 stainless steel lines. The tank was connected to the drain lines using 3-in. schedule 40 carbon steel. Prior to 1968, excess wastes from the original Clean Room tank (I) were discharged to grade. This process was discontinued in 1968, and the Clean Room tank was used as temporary storage.

2.5.2 600 Area Surface Impoundments Location and Use

A detailed description of the 600 Area HWMU is provided in the 600 Area Closure Investigation Report (NASA, 2011a). The surface impoundments, constructed in 1964, consisted of two adjacent individual 150 ft x 350 ft x 3 ft deep cells, separated by a narrow central berm, and lined with an 8-mil polyvinyl chloride (PVC) liner. This liner was protected by an overlying layer of rip-rap, consisting of large gravel and wire mesh, and sand. The cells received saltwater backwash through an 8-in. diameter pipeline from 1964 to 1984. There is no indication that this pipeline was used at any time for hazardous waste. HWMU closure activities commenced on November 7, 1988, and following construction of the closure, vent wells were installed on May 26, 1989. Concrete lined drainage ditches were constructed along the north, south and east sides of the cap to support the drainage of surface water.

2.6 Previous Vadose Zone Investigations Delineating Contaminant Distribution

The concentrations and distribution of vadose zone soil vapor contaminants in the 200 and 600 Area HWMUs have been defined by previous comprehensive vadose zone investigations (NASA, 2011a, 2013ba, 2015b) that have all been approved with modifications by NMED (NMED, 2011a, 2013b, 2015a, 2015b). Subsequent monitoring of 200/600 Area soil vapor distribution has been performed through contemporaneous semi-annual sampling of all accessible multiport soil vapor monitoring ports in the 200 and 600 Areas along with groundwater sampling at underlying or nearby locations (NASA, 2012a, 2012d, 2013cb, 2015b). The 200 Area Phase II IR (NASA, 2015b) presented the results of the latest comprehensive soil vapor sampling event in the 200 and 600 Areas conducted in October 2014.

2.7 Contaminants of Potential Concern

The VIAWP (NASA, 2016) presented a list of 13 VOCs known to have been managed in the 200 Area USTs and potentially discharged at SWMUs during historical operations including: TCE; PCE; Freon 11; Freon 113; 2-butanone (methyl ethyl ketone); 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol (isopropyl alcohol). Waste management practices at WSTF have been continually modified and improved through time to effectively minimize, document, store, and dispose of wastes. Wastes generated in the 200 Area were transported to the 600 Area surface impoundments. The VOCs placed in the 600 Area impoundments were the same as those stored in 200 Area USTs.

2.8 Site Conceptual Exposure Model

A preliminary site conceptual exposure model (SCEM) was developed as part of the 200 and 600 Area VIAWP (NASA, 2016b; Figure 2.6) to provide an understanding of the potential for exposure to hazardous contaminants at the site based on the source of contamination, the release mechanism, the exposure pathway, and the potential receptor(s). <u>Please see Section 6.1 for the SCEM revised based on the results of this investigation.</u>

2.8.1 Contamination Sources

The former UST locations at the 200 Area Clean Room tanks and the 600 Area surface impoundments were the primary contaminant sources. Secondary sources include groundwater directly impacted by releases and soil vapor derived from groundwater that filled fractures within bedrock and pore space within the overlying soils. Subsurface vadose zone soils in the 200 and 600 Areas that were once impacted by the releases have been evaluated through sampling extensively. The soils have been shown to be non-hazardous in nature and are not considered a continuing source of contaminants to groundwater (NASA 2015c, 2011a).

2.8.2 Release Mechanisms

Vadose zone contamination at the 200 Area Clean Room HWMU and 600 Area surface impoundments HWMU resulted from the release of hazardous constituents into the vadose zone between 1964 and 1986. Release mechanisms comprised the infiltration of liquid-phase contaminants into the vadose zone, downward to the groundwater table by the hydrodynamic processes of gravity and precipitation, and infiltration of the vadose zone pore space as vapor-phase contamination.

2.8.3 Potential Exposure Pathways and Receptors

Potential present-day receptors identified in the vicinity of the 200 and 600 Area HWMUs are industrial/occupational workers who occupy buildings adjacent to the HWMU areas while performing their daily duties. The primary potential present-day exposure pathway for these WSTF industrial/occupational site personnel in the 200 and 600 Area buildings addressed in this investigation is the inhalation of volatile contaminants derived from soil vapor and potentially present in indoor air. Soil vapor contamination has been identified from past investigations in the vadose zone near WSTF industrial area buildings (NASA, 2015c, 2011a). Additionally, present-day receptors in Buildings 200 and 637 are potentially exposed to residual soil contamination in the vicinity of these buildings.

Building 637 is situated approximately 100 ft away from the 600 Area surface impoundments HWMU that is the source of VOC releases. In the future, if the HWMU closure cap is removed or compromised and a building is situated at that location, building occupants could be exposed to VOCs when entering that building through vapor intrusion. Because Building 200 is adjacent to the former 200 Area West UST that is the source of VOC releases from the 200 Area Clean Room, potential future receptors for this HWMU are identical to present-day receptors.

There are no current or future residential land use scenarios anticipated in the vicinity of the 200 or 600 Area HWMUs. WSTF is a controlled test site located on the U.S. Army White Sands Missile Range. There are no encroaching residential areas and no present or future residential land use scenarios in this SCEM, though contaminants were screened to the most conservative residential levels. A cumulative risk screen evaluation in conformance with Risk Assessment Guidance has been provided in Section 6.1 as a supporting line of evidence for acceptable risk levels.

The groundwater underlying much of the WSTF industrialized source areas is known to be contaminated and its future use and potential risk to receptors are part of ongoing site-wide evaluations and corrective actions. The water supply wells for the 200 and 600 Areas are located several miles to the west of the investigation areas and are not contaminated. These wells are monitored regularly for the presence of known WSTF groundwater contaminants. A groundwater assessment was not conducted specifically as part of the vapor intrusion assessment. Groundwater assessment activities are regularly reported in NASA's quarterly Periodic Monitoring Reports (NASA, 2018a). These data are also available for review in conjunction with results of the VIAR.

3.0 Scope of Activities

The area of concern on the west side of Building 200 is located directly above the footprint of the 200 Area Clean Room Tank HWMU adjacent to MSVM wells 200-SV-05 and 200-SV-09, and MSVGM well 200-LV-150 (Figure 3.1). The area of concern within Building 637 is approximately 100 ft southeast of the southeast margin of the 600 Area HWMU in close proximity to MSVM wells 600-SGW-1, 600-SGW-2, and 600-SGW-5 (Figure 3.2).

The following additional sampling activities were performed as part of this assessment to evaluate the existence of a complete exposure pathway.

- Sample and evaluate VOC concentrations (including COPCs) in soil vapor in the upper vadose zone utilizing MSVM and MSVGM well ports located in the vicinity of the buildings.
- Sample and evaluate VOC concentrations (including COPCs) in indoor air and outdoor air.

The following activities were performed as part of the vapor intrusion assessment. Some of the preliminary required vapor intrusion activities identified in Steps 1 and 2 of Section 1.4 had already been performed as part of previous investigations in the 200 and 600 Areas (NASA, 2013<u>ba</u>, 2015c, 2011a).

- Identification of the appropriate vadose zone soil vapor sampling locations (based on the previous 200 Area HIS, 200 and 600 Area IRs, and soil vapor sampling events in the 200 and 600 Areas).
- Determination of a representative number of soil vapor and air samples, specification of the frequency and duration of sampling, and identification of the sampling and analytical methods to be employed.
- Daily planning sessions and health and safety briefings.
- Field collection of soil vapor samples from the uppermost vadose zone located adjacent to the target buildings.
- Field collection of indoor air samples within the buildings and outdoor samples adjacent and upgradient of the buildings.
- Documentation, management, and shipment of soil vapor and indoor and outdoor air samples (including field quality control [QC] samples).
- Performance of laboratory analyses by an accredited laboratory (including laboratory QC samples), analytical reporting, and data processing using the established WSTF data management system.
- Evaluation and interpretation of technical and analytical data for use in development of a final VIAR.
- 3.1 Data Quality Objectives

The assessment approach was based on "Guidance on Systematic Planning Using the Data Quality Objectives Process" (DQOs; EPA, 2006), the Corrective Action Site Investigations requirements of the Permit (NMED, 202316; Part 3Section VII.H), and Risk Assessment Guidance for Site Investigations and Remediation (NMED, 201922cb). The data acquisition plan (i.e., sampling design) is based on the data quality objective process. The DQOs addressed the qualitative and quantitative nature of the sampling data to ensure that any data collected was appropriate for the intended purpose. Development of the DQOs considers precision, accuracy, representativeness, completeness, comparability of the data, sampling locations, laboratory analyses, detection limits, data quality, and the employment of adequate quality assurance/quality control measures. The VIAR documents the DQO procedures that were followed to assess the potential migration pathway between vadose zone soil vapor contamination and indoor air.

3.1.1 Problem Statements

The 200 Area Clean Room HWMU USTs leaked contaminants to the vadose zone, comprising approximately 18 ft of porous alluvial soil overlying fractured limestone bedrock. The tanks were located at a depth of between 8 and 12 ft bgs. The water table is located at a depth of 140 ft bgs. Soil samples collected during the installation of adjacent soil borings indicated that soil samples did not exceed the regulatory criteria applicable at the time of the investigation and soil remedial action was not required (NASA, 2015c). Groundwater in the area exceeds the NMED cleanup level for TCE. Soil vapor concentrations from samples collected in adjacent MSVM wells and a MSVGM well exceeds NMED VISLs for TCE, PCE, and Freon 113 and the WSTF RBC for TCE. The HWMU is located directly below a northwestern extension of Building 200 that is currently operated by an industrial/occupational labor force. The inaccessible location of this HWMU is the primary constraint to the vapor intrusion assessment (Figure 2.4).

Contaminants from the 600 Area HWMU may have been leaked to the vadose zone characterized by approximately 146 ft of porous alluvial soil overlying poorly-fractured andesite bedrock. A perched (and

potentially temporary) water table is currently encountered at a depth of 143 ft bgs, which may be sourced from groundwater recharge during heavy rainfall and up to this time from the adjacent 600 Area Overflow Lagoons that are currently in the process of being removed. Soil samples collected during the installation of soil borings through the Closure cap to bedrock indicated that soil samples did not exceed the regulatory criteria applicable at the time of the investigation and soil remedial action was not required (NASA, 2011a). Groundwater in the area exceeds the New Mexico cleanup level for TCE. Soil vapor concentrations from samples collected in adjacent MSVM and MSVGM wells historically exceed NMED VISLs for TCE, PCE, and Freon 113. The 600 Area HWMU is located approximately 160 ft from Building 637 that is operated by an industrial/occupational labor force.

3.1.2 Study Goals

The primary decision is whether additional corrective actions are warranted at the 200 and 600 Area targets (identified through previous investigation) as a result of the intrusion of soil vapor VOCs from the vadose zone into nearby buildings affecting the indoor air quality. Alternative actions for the decisions include:

- Consider a "Corrective Action Complete" status determination.
- If required, perform a corrective measures evaluation for the site(s) to identify remedial options for mitigation of source(s) of continuing contamination or human health risk.

3.1.3 Information Inputs

The results of previous investigations performed in the 200 and 600 Areas provide information for this VIAR. The results of these previous investigations are documented within the 200 Area HIS (NASA, 2012b), the 200 Area Phase I Status Report (NASA, 2013ba), the 200 Area Phase II IR (NASA, 2015c), and the 600 Area Closure IR (NASA, 2011a), including:

- Detailed investigation pertinent to the establishment and operational history of the 200 and 600 Area HWMUs.
- Analytical data sets for soil (as part of the risk/hazard screening), soil vapor, and groundwater samples collected during previous investigations at the 200 and the 600 Area HWMUs.

The primary data inputs for the VIAR are the analytical results of soil vapor, indoor air, and outdoor air sampling described in Sections 3.0 and 4.0 of this report.

Two types of soil vapor screening criteria are used as inputs to assess potential risks related to the soil vapor data. These include NMED VISLs (NMED, 201922cb) and WSTF RBCs (NASA, 2019a). NMED VISLs are applicable to soil vapor concentrations present immediately below a building foundation, from where vapors may enter a building. WSTF RBCs are calculated for various depths below a building foundation, and therefore can potentially be applied to assess soil vapor risks from data collected at different depths. Indoor air screening criteria used in this VIAR are taken from NMED (201922cb), and the EPA (EPA, 2019) if no values were provided by NMED. See also Table 1.1 and Section 1.5.

3.1.4 Spatial Extent of Assessment

The horizontal study boundaries are shown in <u>Figure 1.2</u>. The vapor intrusion pathway that is considered a primary potential threat and requires priority assessment is typically for buildings located within 100 ft of the vadose zone soil vapor plume that exceeds established soil vapor RBCs. In this case, NMED VISLs and WSTF RBCs were utilized to identify the targets of greatest concern.
In the 200 Area, soil vapor from the three most proximal MSVM and MSVGM wells located within 85 ft of the former Clean Room Tanks HWMU and air from the most proximal tier of indoor rooms on the west side of Building 200 within a distance of 100 ft of the footprint of the HWMU was evaluated (Figure 2.4). In the 600 Area, soil vapor from the three most proximal MSVM wells within 240 ft of Building 637, and the indoor air within Building 637 (Figure 2.5) were evaluated.

The vertical boundaries of the study are constrained between a maximum depth of 34 ft in the vadose zone as characterized by the maximum depth of upper ports in MSVM and MSVGM wells utilized and the industrial/occupational worker breathing zone of between 3 and 5 ft above ground surface.

3.1.5 Decision Rule

The vapor intrusion assessment addresses COPC soil vapor concentrations within the upper vadose zone surrounding the target buildings and COPC air concentrations inside the buildings. The assessment was performed to determine if a complete pathway is present and whether contaminants are present at concentrations at or above the latest NMED VISLs (NMED, 2019<u>22</u>cb) and WSTF RBCs (NASA, 2019a). Updated RBCs were determined concurrently with the pre-assessment planning and preparation phase for this vapor intrusion assessment. Although Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) are referenced in the VIAR for comparative purposes (<u>Table 1.1</u>), they are not considered appropriate criteria for the final decision process of evaluating the risk associated with vapor intrusion. PELs are intended to regulate an employee's exposure to workplace air contaminants as opposed to air contaminants originating from the subsurface.

Decisions were structured as follows.

- If the subsurface vadose zone VOC contribution to indoor air levels exceeds indoor air NMED VISLs and updated NMED-approved WSTF RBCs as a result of a confirmed complete exposure pathway under the industrial/occupational worker scenario, then there is an unacceptable current and future risk to building occupants. These levels must be specific to vapor intrusion as opposed to an artifact of an alternate process identified within the building. Corrective action, removal and/or remediation are necessary.
- If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable.
- If the vapor intrusion assessment fails to fully determine the nature, source, and extent of indoor air contamination, additional investigative measures may be required.

3.2 Assessment Activities

Two semi-annual sampling events (seasonal events within the summer [August 2017] and winter [February 2018]) were performed to address the potential issue of seasonal building pressure gradients that can influence vapor intrusion into buildings. Indoor and outdoor air pressures were not observed to vary significantly (all readings were approximately 30 in. of mercury for both sampling events). Early morning outside temperatures for the August event (67-70 degrees Fahrenheit) were significantly higher than for the February 2018 event (34 to 37 degrees Fahrenheit), with indoor air temperatures maintained in the vicinity of 70 degrees Fahrenheit for both buildings. VOC levels in ambient air can vary over time and may fluctuate diurnally due to the ebb and flow of industrial/occupational activity, and as a result of atmospheric heating and cooling cycles, air pressure changes, and wind speed. During winter months, heated air rises within buildings and exits through the roof. This reduces indoor air pressure, may draw in soil vapor, and potentially increases vapor intrusion rates.

3.2.1 Vadose Zone Soil Vapor Sample Locations and Schedule

Soil vapor samples were collected from the shallowest soil vapor port within the three MSVM or MSVGM wells located closest to the 200 Area and 600 Area target buildings. In the 200 Area, the three wells are all located within 84 ft of the west side of Building 200. In the 600 Area, the three wells are all located within 260 ft of Building 637. The soil vapor wells and specific ports that were sampled are listed below.

- Adjacent to the 200 Area Clean Room Tank HWMU (Figure 3.1, Table 3.1)
 - o 200-SV-05 at 9 ft
 - o 200-SV-09 at 19 ft
 - o 200-LV-150 at 34 ft
- Nearby the 600 Area HWMU (Figure 3.2, Table 3.1)
 - o 600-SGW-1 at 12.5 ft
 - 600-SGW-2 at 12.5 ft
 - 600-SGW-5 at 7.5 ft

Six vadose zone samples from the vapor monitoring well network and one duplicate sample were collected from the 200 and 600 Area MSVM and MSVGM wells for each soil vapor sampling event. Additional field QC samples are provided in Section 3.2.3. Two consecutive semi-annual sampling events were performed in August 2017] and February 2018. A total of 14 vadose zone soil vapor samples were collected.

3.2.2 Indoor and Outdoor Air Sample Locations and Schedule

The number and locations of indoor and outdoor air samples was established in the VIAWP (NASA, 2016b) based on building size, proximity to the potential intrusion source, the scale of the vadose zone vapor impact, subsurface heterogeneity, and sample purpose. Increased sample density is typical of a nearby spill or release and heterogeneity in the subsurface. Because no releases have been identified in soil, the soils are relatively homogeneous and porous, and a fractured bedrock and groundwater VOC source is inferred, sample densities were compared to standard guidance (e.g., ODEQ, 2010). Typical sample densities in buildings between 1,000 square feet (sq ft) and 10,000 sq ft in size are one sample per 1,500 sq ft. The sample locations identified in this VIAR (Figure 3.1, Figure 3.2) have a greater density than the standard guidance.

Where rooms exceed 500 sq ft in size as in the case of Building 200, samples were collected at a frequency of approximately one sample per 500 sq ft. Samples were collected within the normal breathing zone at a height of between 3 to 5 ft above the building floor. Ambient outdoor air samples were collected at the same time and using the same method as the indoor samples at each of the two building locations. Indoor and outdoor air sample locations are summarized below.

- Building 200 Preparation Building (<u>Figure 3.1</u>, <u>Table 3.2</u>)
 - $\circ~$ Eight indoor air samples within individual rooms in the areas above and adjacent to the subsurface footprint of the former 200 Area Clean Room Tank HWMU.
 - Two outdoor air samples adjacent to Building 200 near the former 200 Area Clean Room Tank HWMU at locations upgradient of the prevailing wind direction on the day of sampling.
 - One sample duplicate.

- Building 637 Groundwater Assessment Building (Figure 3.2, Table 3.2)
 - Four indoor air samples in Building 637 distributed in the four quadrants of the single room building.
 - Two outdoor air samples adjacent to the Building 637 on the northeast side at locations upgradient of the prevailing wind direction on the day of sampling.
 - One sample duplicate.

A total of 16 indoor and outdoor air samples and two duplicate samples were collected for each sampling event performed for a total of 18 samples during each event. Two consecutive semi-annual indoor and outdoor air sampling events were performed in August 2017 and February 2018. A total of 36 indoor and outdoor air samples were collected during vapor intrusion assessment fieldwork.

3.2.3 Sampling Procedures

NASA has developed comprehensive internal procedures for soil vapor sample collection and management. These procedures provide specific information on sample management and related documentation, including instructions for sample custody (internal to NASA and external during shipment), storage, packaging, shipment, delivery tracking, and related recordkeeping. These procedures were followed during this assessment to ensure appropriate sample management. Sampling procedures and the equipment used follows generally accepted EPA guidance (EPA, 2015a). Sample collection techniques and flow rates conformed to the specifications for the appropriate EPA sample collection method. Soil vapor samples from MSVM and MSVGM wells, indoor samples, and outdoor samples for each area was collected contemporaneously on the same day within each area. Samples from the 200 and 600 Areas were collected on consecutive days for both semi-annual sampling events. The two semi-annual sampling events were followed:

- Sampling start times and the initial vacuum gauge readings were recorded in the field sampling logbook and on the internal chain-of-custody (CoC) form.
- For indoor and outdoor air samples, a flow-controller was to be affixed to the canister prior to sampling at a rate pre-set by the laboratory to provide for collection of the samples over an 8-hour period. The indoor and outdoor sampling periods were the same in length, but the outdoor air samples were initiated approximately one hour before starting the indoor samples to reduce potential errors. The EPA estimates that indoor air undergoes a complete exchange every one to two hours. Initiating outdoor air sampling early compensated for this potential lag time.
- Sample valves on each canister were opened to perform sample collection.
- Upon the completion of vadose zone, indoor air, and outdoor air sampling, the valve on the passivated stainless steel canister was closed and the time and ending vacuum pressure recorded in the field sampling logbook and on the internal CoC form.
- Canisters and flow-controllers were shipped back as a single shipment to the analytical laboratory for each of the two semi-annual sampling events.

Disposable gloves were worn to collect soil vapor and indoor air samples and were changed between sampling locations. Gloves and other disposable materials contacting the samples were collected and managed in accordance with the IDW Management Plan in the VIAWP (NASA, 2016b; Appendix A).

Field QC samples were collected to ensure high quality data are generated during the assessment, and were analyzed for the same parameters as the primary samples.

- Indoor and outdoor duplicate samples were collected at a rate of 10% of the project sampling locations (two samples per sampling event).
- Field blanks (one outdoor and one indoor for each of the two target buildings in the 200 Area and 600 Areas at a rate of four samples per sampling event).
- Trip blanks (one per sample shipment).

The samples were managed according to established site procedures that included labeling, CoC documentation, storage, packing, and expedited overnight shipment to the analytical laboratory for analysis.

3.2.4 Analytical Tasks

Soil vapor samples were analyzed using EPA Method TO-15 in order to achieve the assessment DQOs. NASA typically contracts services from off-site National Environmental Laboratory Accreditation Program-accredited analytical laboratories as required to support program and project needs. The analytical tasks required to achieve the project objectives was awarded to the ALS Environmental laboratory. Potential laboratories must respond to a comprehensive statement of work developed to meet the project objectives defined in this VIAR. Analytical standard operating procedures (SOPs), laboratory quality manuals, and other laboratory-specific documentation are provided by the analytical laboratory following award of the contract and are not available in advance. These documents are retained in the project record and are available for NMED review as required.

The overall objective for laboratory analysis is to produce data of known and sufficient quality. Appropriate procedures and QC checks were used so that known and acceptable levels of accuracy and precision are maintained for each data set. All samples were analyzed by a fully qualified laboratory in accordance with the laboratory's Quality Plan, which ensures that the contract laboratory adheres to standardized analytical protocols and reporting requirements and is capable of producing accurate analytical data.

Method blanks and laboratory QC samples are prepared and analyzed in accordance with the laboratory's method-specific SOPs. The analytical results of method blanks were reviewed to evaluate the possibility of contamination caused by analytical procedures. At a minimum, the laboratory analyzed method blanks and laboratory control samples at a frequency of 1 in 20 for all batch runs.

3.2.5 Health and Safety

Field activities were conducted in accordance with requirements of Occupational Safety and Health AdministrationSHA Standards for Hazardous Waste Operations and Emergency Response ([HAZWOPER]; 29 Code of Federal Regulations [CFR] 1910.120 [a] – [o], 2013). The WSTF environmental contractor's corporate-wide Safety and Health Plan (SHP) was augmented with sitespecific Job Hazard Analyses to address potential hazards foreseeable for the project and was followed in accordance with applicable requirements of the standards. The augmented SHP addressed safety and health issues pertaining to work activities, including known and reasonably anticipated hazards associated with project scope of work as well as contingencies for unexpected conditions. Project field personnel were required to be current in HAZWOPER training. The SHP was reviewed and approved by the contractor Health and Safety Manager, and no new hazards were encountered that were not addressed by the SHP.

3.2.6 Field Documentation

The field geologist ensured that activities related to this assessment were documented using a field logbook, field data records, and/or any required site-specific procedural documentation. Logbook entries included, as applicable, information such as:

- Standard Daily Header project name, logbook number, date, weather conditions, team members present and their affiliations (including subcontractors), sample location identification, day's task(s), daily safety meeting topics, required personal protective equipment (PPE), equipment in use, and any calibration information, if applicable.
- Daily activities (time and observations recorded) site arrival and departure, visitors and the purpose of their visit, vapor sampling information, decontamination (i.e., method, equipment cleaned), reference data sheets or maps, if applicable.
- Daily summary action items, materials used, changes or deviations made from planned protocol, plan for next day.
- Signatures (field personnel and logbook reviewer).

At a minimum, field records included observations of environmental conditions, sampling conditions, and sample documentation. For analytical samples, the date, location, depth, sample type, collection method, identification number, sampler, and any circumstances, events, or decisions that could impact sample quality were documented by the on-site geologist in the project field logbook. Even though each case may be unique, the geologist must document any conditions that precipitated any decisions for the unsuitability of samples for analyses. In addition to the field logbook entries for sampling events, CoC forms were completed for analytical samples and maintained with project documentation.

Evidential records for the entire project are maintained in hard copy or electronic form and consist of:

- Project VIAR with NMED modifications or deviations redlined.
- Site-specific internal procedural documentation or plans.
- Project logbooks.
- Field data records.
- Sample CoC forms.
- NMED correspondence.
- Final analytical data packages.
- Reports.
- Miscellaneous related records such as photos, maps, drawings, etc.
- 3.2.7 Investigation-Derived Waste Management Plan

As required in Permit Part 6-Attachment 20 (Section 620.2.13; NMED, 202316b), the IDW Management Plan for this vapor intrusion assessment was provided to NMED in the 200 and 600 Area Vapor Intrusion Assessment Work Plan (NASA, 2016b, Appendix A). The IDW Management Plan provided a description of the potential wastes that could be generated from the 200 and 600 Area as well as procedures for waste management, waste characterization, and waste disposition. Wastes that were generated as part of the assessment comprised: used sampling equipment; PPE; and alcohol free moist wipes used for equipment decontamination.

4.0 Field Data Collection, Assessment, and Review

4.1 Project Documentation

All facets of this assessment were documented in detail by the responsible project personnel. Records are retained in the WSTF Operating Record and can be accessed at any time by authorized WSTF personnel. Sample information and field measurements were recorded in the field logbook by the responsible project field personnel. Records were reviewed by knowledgeable project personnel on a regular basis during the assessment and are retained in the project file. The sample information and field measurements are ultimately archived in the WSTF Records Management System as part of the Operating Record. As required for reporting, these data are also transferred to and archived in operational and historical databases.

4.2 Building Walkthrough Inspections

For most sites, detecting specific COPCs inside a building is not definitive evidence of vapor intrusion since VOCs can also be common contaminants in ambient air and may also have other sources inside buildings. Approximately two weeks prior to collecting the first semi-annual set of indoor and outdoor air samples at Building 200 and Building 637, a pre-sampling inspection was performed to identify conditions that may affect or interfere with the proposed sampling, and where possible to provide temporary mitigation of these conditions. A standard building inspection form (Appendix A; developed from ODEQ, 2010) was used to evaluate the type of structure, floor layout, physical conditions, and airflow of the buildings being studied. The 200 Area building complex includes a network of laboratories and cleaning rooms that contain several of the COPCs identified in Section 2.2 that are commonly used as laboratory chemicals (e.g., acetone, methyl ethyl keytone, isopropyl alcohol).

Potential COPC sources were evaluated within the building by conducting a product inventory and recording the results on the building survey form. The primary objective of the product inventory is to identify potential air sampling interference by characterizing the occurrence and use of chemicals and products throughout the building. This information helped formulate the indoor environment profile. Both Building 200 and Building 637 are single floor structures. Individual rooms were carefully inspected for products and an inventory provided as products stored in another area of the building can affect the air of the room being tested.

An MSA Altair^{®2} 5X photo ionization detector (PID) was used for the indoor and outdoor air screening of potential air contaminants (oxygen, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfur dioxide, ammonia, chlorine, and VOCs) at concentrations as low as 1 part per million (ppm). Dry decontamination followed. An alcohol-free moist wipe was used for the PID between screening readings. Any waste materials removed from the equipment and the wipes used were disposed of as IDW and managed in accordance with the VIAWP (NASA, 2016b; Appendix A).

Portable vapor monitoring equipment readings using the PID and a description of any odors present were used to help evaluate potential indoor sources. Where available, chemical ingredients of interest were recorded for each product as best possible. If the ingredients are not listed on the label, each product's exact and full name, and the manufacturer's name, address and phone number, if available were recorded on product inventory forms (<u>Table 4.1, Table 4.2</u>, <u>Appendix A</u>).

Building walkthrough inspections were performed at Building 200 on June 21, 2017, and at Building 637 on June 26, 2017. The junction between walls and the building foundation of the west side of Building 200 and surrounding 600 Area Building 637 were visually evaluated at this time to the best extent

200 and 600 Area Vapor Intrusion Assessment Report

² Altair is a registered trademark of MSA Technology, LLC.

possible for structural integrity, staining, or any other visible defects. No significant foundation issues were identified at either building.

Walkthrough observations were documented using building inspection forms for each of the two buildings (<u>Appendix A</u>) to support evaluation of the vapor intrusion pathway. Each building inspection form includes a product inventory form listing the specific products found in each building that have the potential to affect air quality. Photographs recorded during and immediately following the initial building inspections on June 28, 2017, are provided in <u>Appendix B</u>: Photographs 1 through 18 were taken at Building 200; and, Photographs 19 through 26 were taken at Building 637.

4.2.1 Building 200

Building 200 is an industrial building used primarily as a laboratory. The northwest side of the building incorporates machine shops, equipment and materials storage, utility rooms, photo lab, garage, and offices (Appendix A). The building is an insulated single floor structure that was constructed in 1965 The portion of Building 200 on the west side that is of interest relative to the vapor intrusion study is approximately 11,000 square feet in size. The building is cooled using forced refrigerated air through a central air system, with outdoor air infiltration restricted to open doors, door thresholds, windows, and potentially any cracks in the structure walls. Above grade construction comprises sealed concrete walls with some metal paneling in the North Highbay. The floor is composed of poured concrete covered with concrete sealant and 9-in. x 9-in. x 1/16-in. vinyl tile. The heating system relies upon hot air circulation generated using natural gas, which is also used to heat water. The heating and cooling systems are typically run 24 hours a day, seven days a week due to operation of the building as a laboratory. Room 206B (Figure 3.1) was constructed directly above the former fenced yard that was the location for the Clean Room tank HWMU installed in the mid-1960s. The machine shop is equipped with a drill, lathe, and a variety of lubricating oils.

The building is a non-smoking facility and is cleaned as required and on a daily basis on workdays (Monday through Friday) using commercial cleaning materials. A cleaning room is also present for advanced equipment cleaning operations that are performed regularly during the work week. Cosmetics and air fresheners are used regularly by employees. No painting had been performed within the six months preceding the first sampling event, and no new textiles had been installed. Several flume hoods are present on the peripheral interior walls and vent to the outside of the building. Pesticides are applied on a quarterly schedule to address problems with stinging insects, spiders, and scorpions. During the walkthrough, it was noted that several odors were present in the building, which is not atypical of a chemical laboratory. Many individual rooms had distinct odors related to the specific supplies stored within the room. Chemical supplies included solvents and volatile chemicals that are components of oils, lubricants, paints, and adhesives. Potable water is provided by the WSTF supply wells located within the JDMB approximately 5 miles to the west. Sewage is managed through the City of Las Cruces public sanitary system that was connected to the building in 2015. Table 4.1 provides a summary of the products contained within Building 200 as listed within the product inventory form of Appendix A. The products included a variety of glues, acids, paints, flammables, oils, and Freon. Photographs 1 through 18 were taken within a variety of rooms during the walkthrough inspection and are provided in Appendix B.

4.2.2 Building 637

Building 637 is a relatively small and isolated industrial building approximately 1,200 square feet in size (<u>Appendix A</u>). It is used by the WSTF Environmental Department for the groundwater assessment program, primarily for the storage and management of soil, soil vapor, and groundwater sampling equipment and laboratory-provided sample containers. The building is a single floor structure with insulated walls that was constructed in 1992 Airflow through the building is generated by forced air

through two evaporative coolers located on the north wall of the building, with outdoor air infiltration through a door and single garage bay door on the northwest side. The above grade construction consists of poured concrete footing and corrugated metal siding sealed with paint. The floor comprises a concrete slab with concrete sealant. Heating is provided by hot air circulation fueled by natural gas. The air conditioning system is typically operated between 7 a.m. to 4 p.m. on workdays on an as-needed basis. The system is usually shut down at weekends when the building is unoccupied. The building contains a workbench with tools and a variety of lubricants in the west corner of the building.

The building is a non-smoking facility. Cleaning products are regularly used to clean work surfaces when required. No cosmetic products are used, no painting had been performed in the six months preceding the first sampling event, no air fresheners are used, and no carpets, drapes, or textiles are present. A pesticide application was performed within a month prior to the building inspection for insects and rodents. Trace odors are present in the building, usually related to chemical preservatives (dilute acids) used for groundwater samples. Potable water is supplied by the WSTF supply wells located within the JDMB approximately five miles to the west. No restroom facilities are present in the building 637 as listed within the product inventory form of <u>Appendix A</u>. The products included dilute acid preservatives, cleaning products, oils, lubricants, compressed gas (nitrogen), and fuel in an adjacent outside storage building (gasoline). Photographs 19 through 26 were taken inside and outside Building 637 during the walkthrough inspection and are included in <u>Appendix B</u>.

4.3 Preparation of Buildings

The pre-sampling inspection provided adequate advance notice to the local workforce to minimize potential background sources prior to air sampling through best management practices. At a minimum, it was ensured that containers were tightly sealed. However, no potential sources were actually removed from Building 200 or Building 637. The inability to eliminate potential interference is considered justification for not testing, especially when testing for similar compounds at low levels. Although Freon was observed to be stored in Room 202 where sample B200-IA-05 was located, sample collection proceeded as planned. Room 202 is the former etching room that has been converted to a storage area for various solvents (Appendix A).

Once interfering background sources were removed or minimized to the extent possible, the building ventilation system in Building 200 continued to operate under normal conditions for approximately 48 hours (Friday and Saturday) prior to testing to eliminate residual contamination in the indoor air. Ventilation was accomplished by operating the building's heating ventilation and air conditioning (HVAC) system. Air samples were intended to represent typical exposure in a mechanically ventilated building, and the operation of HVAC systems during sampling was noted. It was ensured that the building's HVAC system was operating under normal conditions. In addition, steps were taken to avoid any painting, cleaning, pesticide spraying, or air freshening activities at least two weeks prior to air sampling. No exceptions were noted.

4.4 Field Preparation and Sampling

Vapor intrusion assessment fieldwork included preparation of the buildings to be assessed, sample planning and preparation activities, and sample collection and management. Field activities commenced following appropriate planning and preparation activities and NMED approval of the VIAWP (NMED, 2016a). Field assessment activities required approximately six months in order to complete two semi-annual soil vapor sampling events that were performed in consecutive summer (August 2017) and winter (February 2018) seasons.

- 4.4.1 Summer Semi-Annual Sampling Event (August 2017)
- Monday August 21 analytical laboratory sampling equipment and containers shipped to WSTF.
- Friday August 25 non-working day at WSTF. Buildings 200 and 637 experienced minimal occupation or traffic. HVAC system operating normally 24-7 in Building 200 laboratories. Building 637 HVAC system shut off for weekend.
- Saturday August 26 Building 637 sampling event performed starting at 0700 hours, completed at 1700 hours.
- Sunday August 27 Building 200 sampling event performed starting at 0700 hours, completed at 1730 hours.
- Weather conditions at 0700 hours (both days): clear skies, outdoor air pressure approximately 30 in. of mercury, warm with outside temperature 67 to 70 degrees Fahrenheit, trace winds from the northeast at < 2 miles per hour.
- 4.4.2 Winter Semi-Annual Sampling Event (February 2018)
- Tuesday February 20 analytical laboratory sampling equipment and containers shipped to WSTF.
- Friday February 23 non-working day at WSTF. Buildings 200 and 637 experienced minimal occupation or traffic. HVAC system operating normally 24-7 in Building 200 laboratories. Building 637 HVAC system shut off for weekend.
- Saturday February 24 Building 637 sampling event performed starting at 0700 hours, completed at 1630 hours.
- Sunday February 25 Building 200 sampling event performed starting at 0640 hours, completed at 1730 hours.
- Weather conditions at 0700 hours (both days): clear skies, outdoor air pressure approximately 30 in. of mercury, outside temperature 34-37 degrees Fahrenheit, no winds.
- 4.5 Vapor Intrusion Assessment Sampling

The vapor intrusion assessment incorporated soil vapor samples from MSVM and MSVGM wells, outdoor air samples, and indoor air samples. The objective of this sampling was to determine whether indoor air in Building 200 and Building 637 is impacted by intrusion of VOCs from soil vapor. Laboratory containers and analysis were provided by the ALS Environmental Laboratory in Simi Valley, California. Soil vapor grab samples were collected from ports in MSVM and MSVGM wells utilizing 1-liter evacuated canisters provided by the laboratory. Outdoor and indoor air samples for the two buildings targeted for air intrusion analysis (200 Area Building 200 and 600 Area Building 637) were collected in 6-liter canisters equipped with 8-hour flow controllers. All samples were analyzed using EPA Method TO-15 in order to achieve the vapor intrusion assessment DQOs.

4.6 Vadose Zone Soil Vapor Sampling

Soil vapor sampling was conducted following standard site procedures for each of the MSVM or MSVGM well sampling ports. Critical information describing the sampling event was recorded in the field sampling logbooks. Vadose zone soil vapor samples were collected in laboratory-evacuated stainless steel electropolished passivated vessels (passivated stainless steel canisters) certified as clean and provided by the laboratory. The stainless steel construction ensures soil vapor and air samples did not permeate through the vessel wall or degrade due to exposure to light during shipment to the laboratory.

Standard 1-liter canisters were used for soil vapor grab sampling from MSVM and MSVGM wells. These samples were anticipated to be more concentrated than the corresponding indoor and outdoor air samples.

Immediately prior to sampling, the ambient barometric pressure was recorded and vacuum conditions within the passivated stainless steel canisters recorded. Three tubing volumes of air were purged from each sampling port and stainless steel tubing using a LANDTEC^{®3} GEM 2000+ gas analyzer to ensure the removal of stagnant air. The pump on a gas analyzer was used to purge the soil vapor well tubing for a minimum of five minutes per zone to evacuate at least three volumes of the ¼ in. tubing and soil vapor port. During purging, concentrations of methane (CH4), carbon dioxide (CO2), and oxygen (O2) indicator parameters were monitored. Each parameter is required to be stable prior to sampling; additional purging was performed as required. A passivated stainless steel canister was then attached to the sampling port, opened, and filled to capacity (Appendix B, Photograph 27). Field QC samples were collected to ensure high quality data were generated during the assessment (Section 3.3.7).

4.7 Indoor and Outdoor Air Sampling

Passivated stainless steel canisters were utilized for indoor and outdoor air sampling. Six-liter volume canisters were used due to the relatively low concentration of analytes anticipated in the indoor and outdoor samples, the 8-hour sampling duration, preferred sampling flow rate for this type of sample, and the sample volume required for the sampling period. Six-liter canisters are typically used to obtain the integrated time-weighted average ambient air samples at sampling times of up to 24 hours. High quality valves were utilized that resist human error in sample collection activities (e.g., over tightening that potentially could cause leaks). Low-flow precision regulators were used with each of the canisters to ensure a consistent airflow over the designated eight-hour sampling duration.

Sample collection intakes were located to approximate the breathing zone for building occupants at heights of 3 to 5 ft above the building floor. Indoor air samples were collected during typical working hours to be representative of typical exposure in a manner as to minimize disruptions to normal building activities (<u>Appendix B</u>, Photograph 28). Outdoor air samples were collected starting one-hour earlier but otherwise at the same times as the indoor samples (<u>Appendix B</u>, Photograph 29). Sampling technicians did not remain in the immediate area of the canisters when samples were being collected.

4.8 Soil Sampling

For the cumulative soil risk screening, soil data for the 200 Area came from the 200 Area Phase II Investigation Report, Appendix E (NASA, 2015b) and soil data for the 600 Area came from the 600 Area Closure Investigation Report, Appendix 13.B (NASA, 2011a). <u>The soil analytical data used is provided in Excel format and included in Enclosure 4.</u>

4.9 Off-site Laboratory Data

Data packages from the laboratory consisted of two primary components: comprehensive reports submitted as Adobe portable document files (PDF) for review and archiving (provided as an enclosure to this report); and electronic data deliverable (EDD) files to facilitate transfer of chemical analytical data into WSTF's analytical database(s). The PDF reports included the laboratory name, report date, sample-specific information, analyte names and Chemical Abstract Service numbers, analytical results, QC sample results, data qualifiers and narratives, pertinent analytical notes, laboratory reviewer signatures,

³ LANDTEC is a registered trademark of Q.E.D. Environmental Systems, Inc.

and a variety of other information specific to the laboratory and analytical method. The EDD files include the associated electronic data and follow the same review and approval cycle as the PDF report.

4.10 Data Assessment and Review

A quality assurance (QA) specialist evaluated the sample data, field, and laboratory QC results for acceptability with respect to the project quality objectives. Chemical analytical data was compared with the project DQOs and evaluated using the data validation guidelines contained in EPA guidance documents, the latest version of SW-846, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," and industry-accepted QA/QC methods and procedures (EPA, 2013). <u>A QA report for the vapor data and a second report for the previous soil data are provided in Appendix C.</u>

A comprehensive review of sample analytical data was conducted. Prior to conducting the review, the following information (where required and applicable) was compiled and provided.

- The NMED-approved VIAWP.
- Field sampling and geologist logs.
- Laboratory reports.
- Statements of work and the laboratory Quality Management Plan.
- EDD Files.
- SOPs.
- Data tools.

Data review elements included:

Step I: Verification – Verification (review for completeness) is the confirmation by examination and provision of objective evidence that the specified requirements (sampling and analytical) have been completed (EPA, 2005).

Data verification is the process of determining whether data have been collected or generated as required by the project documents. The process consists of the following categories: 1) verifying that field sampling operations were performed as outlined in the vapor intrusion assessment Investigation Work Plan (IWP; NASA 2016b); 2) verifying that the data collection procedures and protocols were followed; 3) verifying completeness to establish that sufficient data necessary to meet project objectives have been collected; and 4) checking that QC sample results meet control limits defined in the analytical methods.

Step II: Validation – Validation is the confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled. Validation is a sampling and analytical process that includes evaluating compliance with method, procedure, or contract requirements and extends to evaluating against criteria based on the quality objectives developed (EPA, 2005).

The purpose of validation is to assess the performance of the sampling and analysis processes to determine the quality of specified data. Data validation consists of the following objectives: 1) verifying that measurements (field and laboratory) meet the user's needs; and 2) providing information to the data user regarding data quality by assignment of individual data qualifiers based on the associated degree of variability. Data management performed data validation in accordance with the requirements in this IWP and existing WSTF procedures.

Step III: Usability Assessment – Usability assessment is the determination of the adequacy of data, based on the results of validation and verification, for the decisions being made. The usability process involves assessing whether the process execution and resulting data meet project quality objectives (EPA, 2005).

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. Data may be qualified as being unusable or rejected (R), as based on established quality review protocols. Data qualified as estimated concentrations (J) are less precise, or less accurate, than unqualified data but are still acceptable for use. The data users, with support from the contractor environmental data management staff, are responsible for assessing the effect of the inaccuracy or imprecision of the qualified data on statistical procedures and other data uses. The data reporting included a discussion of data limitations and their effect on data interpretation activities.

A review of COPC detection limits obtained from the laboratory compared to regulatory screening levels was conducted. Several COPCs in the 200 Area had dilution issues for the soil vapor samples where detection limits reached were higher than regulatory screening levels. The issue arises when there are very high concentrations of a VOC in a sample. For the instruments to read the contaminants, the sample must be diluted, and sometimes diluted by orders of magnitude. However, this can cause other VOCs to be masked, since dilution raises the detection limits for other VOCs. Soil vapor samples from well 200-LV-150 at 34 ft bgs contain high concentrations of VOCs. The August 2017 samples contain a dilution of 6600, and in February 2018, a dilution of 1530 was needed. These dilutions resulted in VOC detection limits greater than VISLs or air RSLs. Detection limits higher than applicable regulatory screening levels are highlighted in yellow on Table 4.3 and provided with dilutions on Table 4.4. COPCs affected include carbon tetrachloride, chloroform, ethylbenzene, heptane, 2-hexanone, 2-propanol, TCE, and 1,2,4-trimethylbenzene.

Examples to illustrate the elevated dilution and detection limits include TCE and chloroform. TCE detection limits were 920 μ g/m³ for August 2017 and 430 μ g/m³ for February 2018. These detection limits are above the residential cancer and noncancer VISLs (69.5 and 147 μ g/m³, respectively) and the industrial noncancer VISL (328 μ g/m³). However, the very high concentrations of TCE detected in the 200-LV-150 samples required the large dilutions (410,000 μ g/m³ and 140,000 μ g/m³). These large dilutions (6600 and 1530) also caused elevated detection limits for other VOCs, such as chloroform. The August 2017 and February 2018 detection limits for chloroform for soil vapor in well 200-LV-150 were 1,100 and 260 μ g/m³, which are above the residential and industrial cancer VISLs of 40.7 μ g/m³ and 199 μ g/m³. Chloroform was not detected in soil vapor samples in 200-LV-150. However, due to the high detection limits, it is not possible to determine if chloroform was present in 200-LV-150 samples above regulatory cancer limits. Table 4.4 provides details of the other six affected constituents.

5.0 Summary of Soil Vapor, Outdoor Air, and Indoor Air Data

The chemical analytical results from the two semi-annual soil vapor sampling events were verified, validated, and used to develop the final VIAR. Laboratory reports for the two semi-annual sampling events (Sampling Event #1 in August 2017 and Sampling Event #2 in February 2018) are provided as an enclosure to this report. A complete set of tabulated analytical results for all soil vapor and air samples is provided as an enclosure to this report.

5.1 200 Area Soil Vapor, Outdoor Air, and Indoor Air Sampling

Figure 5.1 posts the analytical results for soil vapor, indoor air, and outdoor air samples in association with the sample locations within and immediately surrounding Building 200 in the 200 Area. Analytical

results for the four primary COPCs anticipated to be present (TCE, PCE, Freon 11, and Freon 113) are shown for both semi-annual sampling events performed on August 27, 2017 and February 25, 2018.

Table 4.35.1 provides a summary of the maximum observed contaminant concentrations for subsurface soil vapor within wells adjacent to Building 200, the maximum contaminant concentrations for outdoor air adjacent to Building 200, and the maximum contaminant concentrations for indoor air samples. Results are provided for all 13 COPCs identified in Section 2.6 of this report (TCE; PCE; Freon 11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) for the August 2017 and February 2018 semi-annual sampling events. Table 4.35.1 also compares the maximum contaminant concentrations reported to the available vapor intrusion screening levels: NMED VISLs; and WSTF RBCs; and the OSHA PEL TWA (Section 1.5).

5.1.1 200 Area Soil Vapor Analytical Results

Soil vapor grab samples were collected in 1 liter canisters from wells 200-SV-05 at 9 ft bgs, 200-SV-09 at 19 ft bgs, and 200 LV-150 at 34 ft bgs. All three wells are located within 85 ft of the west side of Building 200. Figure 5.1 shows detected TCE concentrations within soil vapor for all three wells for both semi-annual sampling events. For both semi-annual sampling events, the TCE soil vapor concentrations from well 200-LV-150 at 34 ft (410,000 and 140,000 µg/m³), well 200-SV-05 at 9 ft (40,000 and 26,000 µg/m³), and well 200-SV-09 at 19 ft (35,000 and 31,000 µg/m³) significantly exceeded both the NMED residential and industrial VISLs (69.5 µg/m³ noncancer, 147 µg/m³ cancer, 328 µg/m³ noncancer, and 1,120 µg/m³ cancer). For WSTF RBCs, well 200-LV-150 significantly exceeded the appropriate RBCs at 25 ft bgs (residential: 4,900 µg/m³ noncancer and 11,000 µg/m³ cancer; industrial: 84,000 µg/m³ cancer).

For wells 200-SV-05 and 200-SV-09, residential RBCs were exceeded (1,500 μ g/m³ noncancer and 3,400 μ g/m³ cancer at 5 ft bgs; and 2,300 μ g/m³ noncancer and 5,400 μ g/m³ cancer at 10 ft bgs), but not all industrial RBCs were exceeded. In well 200-SV-05 (at 9 ft), concentrations (40,000 and 26,000 μ g/m³) exceeded the industrial noncancer RBC (18,000 μ g/m³ at 5 ft) but not the industrial cancer RBCs (60,000 μ g/m³ at 5 ft). In well 200-SV-09 (at 19 ft), the August 2017 sample (35,000 μ g/m³) exceeded only the industrial noncancer RBC (34,000 μ g/m³ at 10 ft) but not the industrial cancer RBC (120,000 μ g/m³ at 10 ft). In February 2018, the 200-SV-09-19 sample concentration (31,000 μ g/m³) was below both industrial RBCs (34,000 μ g/m³ noncancer and 120,000 μ g/m³ cancer at 10 ft).

<u>Table 4.35.1</u> presents the maximum TCE soil vapor concentrations from MSVGM well 200 LV 150 34 (410,000 µg/m³ in August 2017), which significantly exceeds both the NMED VISL (328 µg/m³) and the WSTF RBC at 5 ft bgs (18,000 µg/m³) for both semi-annual sampling events. This is also the case for the other two MSVM wells 200 SV 05 and 200 SV 09 (Figure 5.1). PCE soil vapor concentrations are also elevated, again most notable in well 200 LV 150 34 (maximum 570,000 µg/m³ in August 2017) and exceed the NMED VISL (6,550 µg/m³) in all three wells for the August 2017 sampling event and in well 200 LV 150 at 34 ft bgs for the February 2018 sampling event (Figure 5.1, Table 4.35.1). The maximum concentrations for PCE are all below the WSTF RBC at 5 ft bgs (460,000 µg/m³) for both semi-annual sampling events.PCE soil vapor concentrations exceeded the NMED residential noncancer and cancer and industrial noncancer VISLs (1,390 µg/m³ noncancer, 3,600 µg/m³ cancer, and 6,550 µg/m³. The industrial cancer VISL (0,550 µg/m³; and 200-SV-09 at 19 ft was 6,600 µg/m³). The industrial cancer VISL (17,600 µg/m³) was exceeded only in well 200-LV-150 in August 2017.

For the February 2018 sampling event, PCE exceeded all the NMED VISLs (residential: $1,390 \,\mu\text{g/m}^3$ noncancer, $3,600 \,\mu\text{g/m}^3$ cancer; industrial: $6,550 \,\mu\text{g/m}^3$ noncancer, $17,600 \,\mu\text{g/m}^3$ cancer) in well 200-LV-

<u>150 (36,000 μ g/m³) and the residential VISLs in 200-SV-05 and 200-SV-09 (5,300 and 5,400 μ g/m³, respectively). February 2018 concentrations of PCE were below industrial VISLs.</u>

Both August 2017 (well 200-LV-150 at 34 ft was 57,000 μ g/m³; well 200-SV-05 at 9 ft was 9,500 μ g/m³; and well 200-SV-09 at 19 ft was 6,600 μ g/m³) and February 2018 concentrations of PCE (well 200-LV-150 at 34 ft was 36,000 μ g/m³; well 200-SV-05 at 9 ft was 5,300 μ g/m³; and well 200-SV-09 at 19 ft was 5,400 μ g/m³) in all soil vapor wells are all below the WSTF RBCs at the appropriate corresponding depths (residential: 340,000 cancer and 130,000 μ g/m³ noncancer at 25 ft bgs; 93,000 cancer and 35,000 μ g/m³ noncancer at 5 ft; and 150,000 cancer and 58,000 μ g/m³ noncancer at 10 ft. Industrial: 2,300,000 μ g/m³ noncancer at 5 ft; and 910,000 μ g/m³ noncancer and 2,400,000 μ g/m³ cancer at 10 ft).

All 11 remaining maximum concentrations for COPCs in vadose zone soil vapor (Freon11; Freon 113; 2butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2propanol) are below the corresponding NMED VISL and WSTF RBC. The maximum concentration identified within the August 2017 and February 2018 semi-annual sampling events are listed along with the corresponding vapor intrusion screening level in <u>Table 4.35.1</u>.

5.1.2 Building 200 Outdoor Air Analytical Results

Outdoor air samples were collected in 6 liter canisters equipped with low flow valves from two locations outside Building 200: 200 OA-1 located adjacent to the outside southwest wall near Room 205, and 200-OA-2 located approximately 35 feet northeast of Room 206 (Figure 5.1). These locations were used for both the August 2017 and February 2018 sampling events.

The concentrations of COPCs in oOutdoor air samples were either non-detect or below $1 \mu g/m^3$ for TCE, PCE, Freon 113, 1,1,1-trichloroethane, chloroform, benzene, ethylbenzene, toluene, xylenes, acetone, and 2-propanol. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017 and February 2018) and 2-Butanone (maximum 3 $\mu g/m^3$ in August 2017) were also detected reported as shown by the maximum concentrations in Table 4.35.1. No specific vapor intrusion screening level is applicable to the outdoor air concentrations, although they are well below the OSHA PEL TWAs.

5.1.3 Building 200 Indoor Air Analytical Results

Indoor air samples were collected in 6 liter canisters equipped with low flow valves from eight locations inside Building 200 (<u>Figure 5.1</u>). The locations represented individual rooms or workspaces within the area immediately above and adjacent to the former Clean Room Tank HWMU (<u>Appendix B</u>, Photos 19 through 22). The same eight locations were used during both the August 2017 and February 2018 semi-annual sampling events. Concentrations of COPCs were generally slightly higher than the contemporaneous outdoor air samples collected, but well below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM and MSVGM wells. No indoor air concentrations exceeded NMED VISLs.

The maximum concentration for indoor air samples were non-detect or below 1 μ g/m³ for four COPCs: PCE; 1,1,1-trichloroethane; chloroform; and, ethylbenzene (Table 4.35.1). Trace concentrations were observed for eight COPCs: TCE (maximum 1.3 μ g/m³ in February 2018); Freon 11 (maximum 22 μ g/m³ in August 2017); 2-Butanone (maximum 8.7 μ g/m³ in August 2017); benzene (maximum 1.6 μ g/m³ in February 2018); toluene (maximum 22 μ g/m³ in August 2017); xylenes (maximum 1.5 μ g/m³ in August 2017); acetone (maximum 29 μ g/m³ in August 2017); and, 2-propanol (maximum 68 μ g/m³ in August 2017). The highestA-low concentration of Freon 113 of 3,200 μ g/m³ of Freon 113 was reported in August 2017 from sample location 200-IA-5. This maximum concentration is <u>one and</u> two orders of magnitude

below the NMED VISL for <u>residential and</u> industrial indoor air of <u>31,300 and</u> 147,000 μ g/m³, <u>respectively</u> and three orders of magnitude below the OSHA PEL TWA of 7,670,000 μ g/m³ (Table 4.35.1).

5.1.4 Building 200 Trends and Observations

The following <u>section describes</u> trends and observations were made for the 200 Area <u>vaporair intrusion</u> analytical results-<u>presented in <u>Table 4.35.1</u></u>.

- Vadose zone TCE concentrations in soil vapor from MSVM wells 200 SV-05 at 9 ft bgs, 200 SV-09 at 19 ft bgs, and 200 LV-150 at 34 ft bgs exceed NMED VISL (328 μg/m³) and WSTF RBC at 5 ft bgs (18,000 μg/m³) for the August 2017 and February 2018 semi-annual sampling events. The shallow WSTF RBC at 5 ft bgs represents the lowest reference concentration in each well and is therefore the most conservative and likely to overestimate risk. PCE soil vapor concentrations exceed the NMED VISL (6,550 μg/m³) in all three wells for the August 2017 sampling event but are below the WSTF RBC at 5 ft bgs (460,000 μg/m³). In February 2018, only the PCE sample from 200 LV-150 at 34 ft bgs exceeded the NMED VISLs. The concentrations for the 11 remaining COPCs in vadose zone soil vapor are below the corresponding NMED VISLs and WSTF RBCs.
- <u>Soil vaporHigher_COPC</u> concentrations <u>were higher infor COPCs in the vadose zone MSVM and MSVGM wells are reported from</u> the first summer semi-annual sampling event (August 2017), characterized by elevated outdoor temperatures, <u>compared to the winter sampling event</u>. This is true for all <u>fourfive WSTF primary</u> COPCs detected in the vadose zone: <u>(TCE, PCE, Freon_11, and Freon 113, and benzene)</u>.
- The <u>highestmaximum</u> concentrations <u>detected in vapor in the investigation were</u> for TCE, PCE, and Freon 113. <u>Maximum concentrations for TCE, PCE, and Freon 113 were in the vadose zone are</u> reported from well 200-LV-150-34, and the maximum concentration for Freon 11 from well 200-SV-05. These wells are both located downgradient of the former Clean Room Tank HWMU with respect to surface topography, bedrock topography, and groundwater flow. From the 200 Area Phase II investigation (NASA, 2015b), residual concentrations of the primary COPCs are present within microfractures of vadose zone bedrock, as demonstrated through core analysis.
- The <u>highestlow</u> indoor air concentration for Freon 113 of 3,200 µg/m³ (in August 2017) was reported from sample location 200-IA-5 within Room 202 (Figure 5.1). The product inventory form (Table 4.1) indicates that steel canisters containing Freon are stored in this secure, unoccupied storage room. Room 202 is used exclusively for materials storage and is utilized periodically for chemical storage and chemical management activities.
- The trace indoor air concentration for 2-propanol of 68 µg/m³ reported in August 2017 is from sample location 200-IA-3 within the equipment storage area of Room 205 (Figure 5.1; Appendix B, Photograph 17). 2-propanol is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants and detergents that are stored in this room. Room 205 is used exclusively for equipment and storage and is occupied only during maintenance activities.
- <u>CIndoor air concentrations of COPCs were generally slightly higher than the contemporaneous</u> outdoor air samples collected, but well below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM and MSVGM wells.
- 5.2 600 Area Soil Vapor, Outdoor Air, and Indoor Air

The analytical results for all soil vapor and air sample locations within and immediately surrounding Building 637 in the 600 Area are provided in <u>Figure 5.2</u>. The concentrations of the primary <u>WSTF</u>

COPCs (TCE, PCE, Freon 11, and Freon 113) are provided for two semi-annual sampling events performed on August 26, 2017 and February 24, 2018.

<u>Table 5.12</u> summarizes the maximum contaminant concentrations observed for subsurface soil vapor within the MSVM wells located closest to Building 637, the maximum contaminant concentrations for outdoor air adjacent to Building 637, and the maximum contaminant concentrations for indoor air samples for both of the semi-annual sampling events. Results are provided for all COPCs identified in Section 2.6 of this report (TCE; PCE; Freon11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) with a comparison to the available vapor intrusion screening levels: NMED VISLs; and WSTF RBCs; and the OSHA PEL TWA (Section 1.5).

5.2.1 600 Area Soil Vapor Analytical Results

Soil vapor grab samples were collected in 1-liter canisters from wells 600-SGW-1 at 12.5 ft bgs, 600-SGW-2 at 12.5 ft bgs, and 600-SGW-5 at 7.5 ft bgs. The three MSVM wells are on the 600 Area HWMU at distances of between 180 ft to 210 ft from Building 637. Figure 5.2 shows TCE concentrations within soil vapor for well 600-SGW-1-12.5 (480 μ g/m³ in August 2017 and 740 μ g/m³ in February 2018) and well 600-SGW-2-12.5 (330 μ g/m³ in August 2017) that exceed the NMED VISL (328 μ g/m³), but are significantly below the WSTF RBC at 5 ft bgs (18,000 μ g/m³)TCE concentrations in well 600-SGW-1 (480 and 740 μ g/m³) exceed-residential VISLs (69.5 and 147 μ g/m³) and the industrial noncancer VISL (328 μ g/m³), but not the industrial cancer VISL (1,120 μ g/m³) for both sampling events. Well 600-SGW-2 TCE concentrations (330 and 270 μ g/m³) exceed the residential VISLs for both sampling events, but only exceed the industrial noncancer VISL for the August 2017 event (330 μ g/m³). TCE concentrations were below the industrial noncancer VISL in February 2018 and the industrial cancer VISL in both 2017 and 2018. TCE soil vapor concentrations were below RBCs at 10 ft bgs (residential: 2,300 μ g/m³ cancer). Well 600-SGW-5 TCE concentrations (44 and 42 μ g/m³) were below all VISLs.

<u>Table 5.12</u> presents the maximum TCE soil vapor concentrations from 600 Area MSVM well 600 SGW-1-12.5. All other maximum concentrations for the 12 remaining COPCs for both the August 2017 and February 2018 sampling events (PCE; Freon_11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) are below the respective NMED VISL<u>s</u> and WSTF RBC<u>s at the appropriate depths</u>in soil vapor at 5 ft bgs.

5.2.2 Building 637 Outdoor Air Analytical Results

Air samples were collected from two outdoor locations using 6-liter canisters equipped with low flow valves from two locations outside Building 637: 600-OA-1 located 20 ft northeast of the north corner of Building 637, and 600-OA-2 located approximately 20 feet northeast of the east corner of Building 637 (Figure 5.2). These locations were sampled during both the August 2017 and February 2018 events.

The concentrations of COPCs in outdoor air samples were either non-detect or below $1 \mu g/m^3$ for 10 of the 13 COPCs (TCE, PCE, Freon 113, 1,1,1-trichloroethane, chloroform, benzene, ethylbenzene, toluene, xylenes, and 2-propanol). Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017), 2-Butanone (maximum 2.4 $\mu g/m^3$ in August 2017), and acetone (maximum 10 $\mu g/m^3$ in August 2017) were <u>also</u> <u>detected</u>reported as shown by the maximum concentrations in <u>Table 5.12</u>, with all outdoor air concentrations well below the OSHA PEL TWAs listed.

5.2.3 Building 637 Indoor Air Analytical Results

Indoor air samples were collected in 6-liter canisters equipped with low flow valves from locations in each of the four corners inside Building 637. Building 637 comprises a single open space with no individual rooms or workspaces (<u>Appendix B</u>, Photos 19 through 22) at a location that represents one of the closest occupied receptors adjacent to the former 600 Area HWMU (<u>Figure 5.2</u>). The four sampling locations were used during both the August 2017 and February 2018 semi-annual sampling events. The concentrations of specific COPCs were slightly above the contemporaneous outdoor air samples collected, but significantly below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM wells.

The maximum concentration for indoor air samples were non-detect or below $1 \mu g/m^3$ for nine of the 13 COPCs: TCE; PCE; Freon 113; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; and, xylenes (Table 5.12). Trace concentrations of three COPCs were also observed: Freon 11 (maximum 1.4 $\mu g/m^3$ in February 2018); 2-Butanone (maximum 5.3 $\mu g/m^3$ in August 2017); acetone (maximum 16 $\mu g/m^3$ in August 2017); and, 2-propanol (maximum 3.4 $\mu g/m^3$ in August 2017). No indoor air concentrations exceeded NMED VISLs.

5.2.4 Building 600 Trends and Observations

The following <u>section describes</u> trends and observations <u>were made from a review of for</u> the 600 Area air <u>intrusionvapor</u> analytical results-<u>presented in Table 5.12</u>.

- TCE concentrations within soil vapor for well 600 SGW-1-12.5 (480 µg/m³ in August 2017 and 740 µg/m³ in February 2018) and well 600 SGW-2-12.5 (330 µg/m³ in August 2017) exceed the NMED VISL (328 µg/m³), but are significantly below the WSTF RBC at 5 ft bgs (18,000 µg/m³). All other maximum concentrations for the remaining COPCs for both the August 2017 and February 2018 sampling events are below the respective NMED VISL and WSTF RBC in soil vapor at 5 ft bgs.
- The concentrations for COPCs for outdoor air samples were generally non-detect or below 1 μg/m³ for the COPCs. Traces of Freon 11 (maximum 1.2 μg/m³ in August 2017), 2-Butanone (maximum 2.4 μg/m³ in August 2017), and acetone (maximum 10 μg/m³ in August 2017) were reported. All outdoor air concentrations well below the OSHA PEL TWAs.
- The indoor air concentrations for specific COPCs were slightly above the contemporaneous outdoor air samples collected, but significantly below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM wells. The maximum concentration for indoor air samples were generally non detect or below 1 μg/m³ for the COPCs. Trace concentrations were observed for three COPCs: Freon 11 (maximum 1.4 μg/m³ in February 2018); 2-Butanone (maximum 5.3 μg/m³ in August 2017); acetone (maximum 16 μg/m³ in August 2017); and, 2-propanol (maximum 3.4 μg/m³ in August 2017). No concentrations of indoor air COPCs exceeded the NMED VISLs.
- The higher concentrations for COPCs in the vadose zone MSVM wells are variable between the summer (August 2017) and winter (February 2018) sampling events characterized by significantly different ambient outdoor temperatures. Of the four primary COCs, TCE and PCE are slightly higher for February 2017, and Freon 11 and Freon 113 are slightly higher for August 2017. This irregularity is true for 12 of the 13 COPCs detected in the vadose zone. The rationale may be related to limited amounts of groundwater available as a source for contaminants within poorly fractured andesite bedrock, and lower concentrations of VOCs in the local aquifer. The effect of increased volatilization during hotter (summer) months is less apparent than higher flow/higher contaminant concentrations areas such as the 200 Area fractured limestone aquifer.
- Analytical results for the four <u>indoor air</u> sample locations are also compatible with each other due to the open nature of the building with no divides or separate offices.

5.3 Potential Bias due to Field Sampling Conditions

The VIAWP was followed at all times including the performance of field sampling, and no potential biases due to field conditions were reported. The same analytical laboratory, sampling containers, and supplies were used for both the August 2017 and February 2018 sampling events. The same facility preparation and sampling protocol was also followed at Buildings 200 and 637 for each of the two events. Climatic conditions remained favorable throughout. The two semi-annual sampling events were performed 182 days apart during the summer and winter seasons as required by the VIAWP.

6.0 Screening Level Risk Assessment, and Evaluation of Uncertainties, and Lines of Evidence

6.1 Screening Level Risk Assessment

This investigation was designed to evaluate whether there was unacceptable risk or hazard to WSTF workers in the most likely location at WSTF for current vapor intrusion, buildings adjacent to the 200 Area west closure HWMU and the 600 Area HWMU. A comprehensive risk/hazard screening assessment was not planned nor originally performed, and no soil borings were planned nor completed for this vapor intrusion investigation. However, in the disapproval of the initial VIAR, NMED requested that NASA perform a combined health risk and hazard screening, including evaluating soil vapor combined with soil data (NMED, 2019a). Since no soil data was collected as part of the vapor intrusion field work, additional data collected prior to 2017 was used for soil risk and hazard screening. The soil data used was collected under NMED-approved work plans (200 Area Investigation – Phase II Investigation Work Plan [NASA, 2013a] and NASA Response to NMED 03/19/09 Comments on the 600 Area Closure Investigation [NASA, 2009]). This additional soil data was also previously included in NMED-approved reports (NASA WSTF 200 Area Phase II Investigation Report [NASA, 2015b] and 600 Area Closure Investigation Report Provided in Response to a NMED Notice of Disapproval [NASA, 2011a]. Soil vapor and indoor air data used in the risk and hazard screening evaluation were collected for this investigation in 2017 and 2018 only. Analytical data used are provided in Excel format in Enclosure 4.

As requested, and Pper NMED Guidance (NMED, 201922cb), a cumulative screening risk assessment is conducted at both the 200 and 600 Areas for the following potential exposure pathways: inhalation of intruding soil vapors, inhalation of indoor air, and the ingestion, dermal contact, or inhalation of chemicals present in soils. Figure 6.1 is the SCEM revised based on the results of this investigation and risk assessment.

Both the VOC inhalation and soil contact exposure pathways are evaluated for carcinogenic and noncarcinogenic effects. Relevant NMED screening levels for each media (NMED, 2019b) are used when available. Consistent with Section 2.8.2 of the NMED Risk Assessment Guidance (201922cb), soil data from samples at any depth within 0 to 10 ft of the ground surface can be screened using residential or construction worker scenarios, whereas data from the 0 to 1 ft interval are applicable for evaluating industrial exposures. However, soil samples for the 200 and 600 Area investigations were not collected in the 0 to 1 ft depth range. The 200 and 600 Area investigations were originally designed to identify the locations of the greatest soil contamination. Samples were obtained where contamination was suspected. Since WSTF sites have been used for multiple purposes over time, surface soils have been disturbed and clean fill added at multiple WSTF sites. Due to the disturbed surface soils and the goal of locating the highest soil contaminant concentrations, surface soils were not collected for the 200 and 600 Area investigations, and the industrial pathway was not initially evaluated. In addition, no soil vapor wells on site at WSTF were designed with ports in the 0 to 1 ft bgs depth range. However, for this revision per NMED comments in the NMED Disapproval (NMED, 2022b), the industrial pathway was evaluated using the shallowest soil and vapor samples collected for the 200 and 600 Area investigations, even though the depths sampled were greater than 1 ft bgs. (The shallowest depths are: 200 Area soils: 8 and

<u>16 ft bgs; 600 Area soils: 3, 4, 6, and 10 ft bgs; 200 Area soil vapor: 9, 19, and 34 ft bgs; and 600 Area soil vapor: 7.5 and 12.5 ft bgs)</u>-Soil data are initially compared to the residential screening levels because they are protective of all land use and support evaluation of data collected from deeper than 0 to 1 ft bgs.

In accordance with NMED Risk Assessment Guidance Section 2.8.4 (NMED, 20<u>1922c</u>b), when a constituent's maximum detected value exceeded or neared NMED screening levels, an exposure point concentration (EPC) can be calculated. If sufficient data are available, EPA's ProUCL software (most recent version EPA, 20<u>22a</u>15a) is used to calculate the constituent's 95 percent Upper Confidence Limit (UCL95) of the mean concentration. Ideally, a minimum of eight samples collected with at least five detections is preferred for calculating statistics. The UCL95 is then compared to the applicable screening level. When a detected constituent has no NMED screening level, EPA screening levels (EPA, 20<u>22b</u>19) are used. Finally, WSTF RBCs (NASA, 20<u>2219a</u>) can be used for soil vapor as screening levels containing more site-specific criteria, and should be compared against if NMED screening targets are not met. If less than eight samples or less than five detections were present for constituents, the maximum concentration was used as the EPC.

The only detected constituents found in indoor air throughout this investigation for which no published inhalation screening level is available are 2,2,4-Trimethylpentane, Ethanol, and Freon 21. For two of the constituents, NASA used a similar chemical that had NMED or EPA screening criteria as surrogates. For Freon 21, NMED screening criteria for Freon 12 was used, and for Ethanol, EPA screening criteria for methanol was used. The organic chemical 2,2,4-Trimethylpentane is a component of gasoline and diesel, but is not associated with any historical operations related to the 200 and 600 Area HWMUs that are the focus of this investigation. The relatively low measured concentrations (0.36 to $0.39 \mu g/m^3$) and few detections (2 of 52 samples, both with J QA flags) indicate that this chemical is unlikely to present significant health risks/hazards.

The cumulative screening risk assessment is performed with <u>vapor</u> analytical data from this investigation, as well as <u>soil data</u> from previous investigations conducted in the 200 and 600 Areas (NASA, 2015b; 2011a). Soil vapor and indoor air quality data collected during this investigation are the most relevant to the goals of this risk <u>screeningassessment</u> and are therefore used as key input parameters in the cumulative screening assessments. No soil data was collected during the course of this investigation, but soil data collected during previous investigations in each area are used to assess potential cumulative risks across all relevant exposure pathways. As discussed in Section 4.5, soil data for the 200 Area comes from the 200 Area Closure Investigation Report, Appendix E (NASA, 2015b), and soil data for the 600 Area comes from the 600 Area Closure Investigation Report, Appendix 13.B (NASA, 2011a).<u>Enclosure 3</u>

6.1.1 200 Area Screening Risk Assessment

6.1.1.1 200 Area – Soil Vapor Cumulative Screening Risk Assessment

For this investigation, soil vapor samples were collected from the shallowest vapor ports in three wells in the 200 Area. Since two separate sampling events (August 2017 and February 2018) were conducted, there is a total of six samples per constituent for the 200 Area. Per NMED (2022c) and EPA (2022a) guidance, six samples are not a sufficient number to perform reliable statistics. Therefore, the maximum concentration per constituent was used in all screening for 200 Area soil vapor.

<u>Table 6.1</u> contains the <u>cumulative 200 Area</u> residential <u>soil vapor</u> cancer risk <u>screening</u> assessment for soil vapor concentrations in the 200 Area compared to NMED VISLs. Benzene, tetrachloroethene (PCE) and trichloroethylene (TCE) is are the only carcinogenic constituents detected. Benzene and has a residential cancer risk of 6.67E-06. PCE and TCE are the risk drivers, each having a cancer risk that exceeds the target if 1E-05 (1.58E-04 and 2.79E-02, respectively). The totalcumulative cancer risk is <u>2.81E-027E-06</u>,

which <u>exceeds</u> below the target of 1E-05 set by the NMED (NMED, 201922cb). The laboratory reports are provided as an enclosure to this report.

Table 6.2 contains the 200 Area industrial soil vapor cancer risk screening compared to NMED VISLs. Like the residential scenario, the industrial scenario risk drivers are PCE and TCE, each exceeding the risk target (3.24E-05 and 3.66E-03, respectively). The total soil vapor industrial risk is 3.69E-03, which exceeds the target of 1E-05.

Since both the residential and industrial pathways exceeded the cancer target compared to NMED VISLs, 200 Area maximum soil vapor concentrations were compared to more site-specific and approved WSTF RBCs (NASA, 2022; NMED, 2022a). Table 6.3 compares the maximum concentration to the RBC at the next shallowest depth. For example, the maximum benzene concentration was detected at 19 ft bgs, and this was compared to the RBC at 10 ft bgs. The risk driver for maximum concentrations compared to WSTF RBCs remains TCE at an individual risk of 3.73E-04. The total risk for 200 Area residential soil vapor is 3.75E-04, which exceeds the risk target of 1E-05. Table 6.4 presents the 200 Areacumulative industrial soil vapor cancer risk screening results compared with WSTF RBCs. TCE is near the target risk level at 1.46E-05, and the total risk is 1.48E-05, which equals or just exceeds the NMED target of 1E-05.

<u>The 200 Area</u> residential <u>soil vapor noncancer hazard screeningassessment for 200 Area soil vapor concentrations</u> comparinged <u>maximum concentrations</u> to NMED VISLs is shown in <u>Table 6.5</u>. Eight constituents are detected, with PCE, TCE, and 1,1-Dichloroethene exceeding their respective NMED VISLs. <u>UCL95 values are calculated for both PCE and TCE. The UCL95 recommended by ProUCL</u> software for 1,1 Dichloroethene exceeds the maximum sample concentration, so the UCL95 value for the 95% bias corrected accelerated (BCa) bootstrap UCL is used for this constituent, as recommended by a statistician intimately familiar with ProUCL (Paul Black of Neptune and Company, Inc.). ProUCL version 5.1 technical guide defines the bootstrap method as "generally superior...for small data sets or where sample distributions are non normal" (EPA, 2015b). The total hazard for 200 Area residential soil vapor is 5.94E+03, which exceeds the NMED hazard indextarget of 1.0E+00 (NMED, 2019b).

Table 6.6 presents the 200 Area maximum soil vapor concentrations compared to industrial noncancer VISLs for the six detected constituents. PCE and TCE exceeded the NMED hazard index of 1 (at 8.70E+00 and 1.25E+03, respectively). The total hazard is 1.26E+03.

Since NMED targets for hazard were exceeded using the <u>generic</u> VISLs, the data are <u>eumulatively</u> compared against more site-specific WSTF RBCs, as shown in <u>Table 6.3Table 6.7</u>. The RBCs take into account site-specific conditions and are expected to better reflect the actual risk to human health and hazard on-site (NASA, 2019a). Constituents are compared against the RBC value at the nearest depth shallower than the sample depth since shallower RBCs are smaller numbers (more conservative; NASA, 202219a). The cumulative hazard is reduced to <u>8.427.8E+01</u>, which still exceeds the respective NMED screening target of 1E+00. TCE is the only constituent <u>thatwhich</u> independently exceeds screening levels, and is a risk driver (at 8.37E+01 individually).

Table 6.8 shows the 200 Area industrial soil vapor hazard screening using WSTF RBCs. TCE still exceeds the NMED target of 1E+00 (at 4.88E+00) and results in a total hazard of 4.91E+00.

6.1.1.2 200 Area - Indoor Air-Cumulative Screening Risk Assessment

<u>Table 6.4Table 6.9</u> contains the <u>cumulative residential</u> cancer risk <u>screening</u> for the 200 Area indoor air assessment. All <u>eightfive</u> detected constituents are below their respective NMED indoor air screening levels. The <u>totalcumulative</u> cancer risk is <u>9E-061.24E-05</u>, which <u>is approximately equalsbelow</u> the target of 1E-05 set by the NMED (NMED, 2019b).

The 200 Area industrial indoor air cancer risk is calculated using maximum concentrations compared to NMED indoor air VISLs in Table 6.10. No individual constituent nor the total combined cancer risk (2.31E-06) exceeds the NMED target of 1E-05.

Table 6.5Table 6.11 contains the cumulative screening residential hazard assessment for the 200 Area indoor air assessment. There are 294 detected constituents, all of which are below their respective NMED indoor air screening levels. Because a sufficient number of samples were present to obtain reliable statistical results, UCL95 values are calculated for 14 constituents. The other 10 constituents did not have enough detections to perform reliable statistics and therefore, the maximum concentrations were used. The output files for UCL95 calculations are provided in Appendix DFreon-113, TCE, and 2 Propanol. The cumulative residential indoor air hazard is 6.09E-01 which is below the target of 1.0E+00 set by the NMED (NMED, 2019b).

Table 6.12 provides the 200 Area industrial indoor air hazard screening. This table uses the same UCL95 calculated concentrations or maximum concentrations as Table 6.11. For the industrial indoor air pathway, no individual or combined hazard (2.73E-01) exceeded the NMED target of 1E+00.

6.1.1.3 200 Area – Soils-Cumulative Screening Risk Assessment

Figure 6.24 shows the WSTF background soil areas. The 200 Area is within WSTF background Area 2. Table 6.6 Table 6.13 shows the 200 Area maximum soil concentrations versus the Area 2 Background Threshold Value (BTV) comparisons that are used to determine what COPCs are initially indicative of WSTF background and are therefore not COPCs in the 200 Area. , and <u>Table 6.7</u> Table 6.14 contains the maximum detected 200 Area soil concentrations for essential nutrients compared to WSTF BTVs for Area 2. If maximum detected values for a constituent are below previously established background concentrations within the same depth range (NASA, 2015d), the constituent is no longer considered to be a COPC. Using maximum 200 Area soil concentrations compared to BTVs, the only COPCs were mercury and nitrate/nitrite. Mercury was detected in one sample in the 200 Area (at 0.003 mg/kg) and must be retained as a COPC because mercury was not detected in background Area 2 in sufficient enough quantity to calculate a BTV or compare populations In WSTF background Area 2 in the 8 to 12 ft depth range, mercury was not detected. Therefore, the single detection of mercury in the 200 Area soil data was retained as a COPC. Using ProUCL software, the populations of nitrate/nitrite were compared between WSTF background Area 2 and the 200 Area soil data. When duplicate data are present, the most conservative value of the sample and duplicate was used. For background soil Area 2, the lower of the two concentrations was used, and the maximum 200 Area investigation soil concentration of the sample and duplicate was used. Nitrate/nitrite in 200 Area soils were not greater than background nitrate/nitrite Area 2 concentrations. Therefore, nitrate/nitrite was not retained as a 200 Area soil COPC (Table 6.8 Table 6.15). The ProUCL data input file is provided as an enclosure and all ProUCL output files are provided in Appendix DC.

Table 6.9Table 6.16 contains the cumulative residential cancer risk screening for the 200 Area soils. Risk was calculated using data from soil borings 200-SB-05 through 200-SB-13, shown in Figure 6.32 (wells 200-SB-6 and 200-SB-7 subsequently renamed 200-LV-150 and 200-KV-150, respectively), at depths between 0-10 ft bgs, except for soil boring 200-SB-10, for which no sample was collected within the 0 to 10 ft interval. For this well, the shallowest sample (collected at 16 ft bgs) was used for the 200 Area risk/hazard screening. All 200 Area soil samples used in this screening were collected during the 200 Area Phase II Investigation-Report (NASA, 2015b). 200 Area soil analytical data from the Phase II investigation are provided in excel format in Enclosure 43. The only COPCs detected in 200 Area soils for the residential scenario were dioxins and furans. The toxicity equivalents were calculated per the NMED Guidance (NMED, 201922cb) and are presented in Appendix DC. For this revision, toxicity equivalents (TEQs) were updated to exclude total dioxin/furan data. Per Section 2.1 of the NMED

<u>Guidance (NMED, 2022c), only individual congeners were evaluated Appendix D.</u> As required, the maximum dioxin/furan TEQ concentration was used for the risk screening and compared to 2,3,7,8-TCDD (Tetrachlorodibenzo –p-dioxin). The resulting <u>totalcumulative</u> cancer risk is 6E-08 (<u>Table 6.16</u>) which is below the respective target of 1E-05 set by the NMED-(<u>NMED, 2019b</u>).

Table 6.17 provides the 200 Area industrial soil cancer risk for dioxins and furans. The risk of 1E-08 does not exceed the NMED target of 1E-05.

<u>Table 6.10</u>Table 6.18 contains the <u>cumulative 200 Area</u> residential <u>soils</u> hazard <u>screening</u> assessment for the 200 Area soils, calculated using the same soil data from the 200 Area Phase II Investigation Report (<u>NASA, 2015bprovided in excel format in Enclosure 4Appendix C</u>). Three COPCs (<u>mercury, toluene</u> and<u>including many</u> dioxins/furans) are detected in these soil samples, all of which are below their respective NMED SSLs. The TEQs for the dioxins/furans were calculated (<u>Appendix DC</u>) and then compared to the NMED residential noncancer SSL. The total hazard is 6.<u>6</u>7E-03 which is below the target of 1.0E+00 set by the NMED (NMED, 201922cb).

Table 6.19 compares the 200 Area maximum soil concentrations of mercury, toluene, and dioxins and furans to the industrial hazard screening levels. The total hazard is 5.47E-04, which is below the target of 1E+00.

6.1.1.4 200 Area – Cumulative Screening Risk Assessment for Residential Exposure

A screening of worker risks related to both indoor inhalation and soil exposure pathways for the 200 Area is provided in this section for here under both the residential and industrial exposure scenarios-to be conservative. Table 6.21. Table 6.20 shows summed cancer risk and hazard for exposure to soil vapor and soil for the residential scenario in the 200 Area. The 200 Area has cumulative cancer risk and hazard for exposure to soil vapor and soil for the industrial scenario in the 200 Area. Table 6.21 shows the summed cancer risk and hazard for exposure to soil vapor and soil for the industrial scenario in the 200 Area. The 200 Area has cumulative cancer risk and hazard for exposure to soil vapor and soil for the industrial scenario in the 200 Area. The 200 Area cumulative industrial cancer risk is 1.48E-05, and the cumulative industrial hazard is 4.91E+00. All cumulative risk and hazard exceed targets.

All analytical data (laboratory reports and an Excel file data summary) for the 200 Area cumulative screening risk assessment are included as an enclosure to this report (vapor laboratory reports are in Enclosure 3 and analytical data in excel format are in Enclosure 4).

6.1.2 600 Area Screening Risk Assessment

6.1.2.1 600 Area – Soil Vapor-Cumulative Screening Risk Assessment

For this investigation, soil vapor samples were collected from the shallowest vapor ports in three wells in the 600 Area (600-SGW-1 at 12.5 ft bgs, 600-SGW-2 at 12.5 ft bgs, and 600-SGW-5 at 7.5 ft bgs). Since two separate sampling events (August 2017 and February 2018) were conducted, there is a total of six samples per constituent for the 600 Area. Per NMED (2022c) and EPA (2022a) guidance, six samples are not a sufficient number to perform reliable statistics. Therefore, the maximum concentration per constituent was used in all screening for 600 Area soil vapor.

The 600 Area risk/hazard screening was performed in the same way that the 200 Area risk/hazard screening was done. 600 Area soil vapor analytical data was compared to NMED VISLs (and EPA RSLs if no VISL was available) as a first screen. Table 6.11Table 6.22 contains the cumulative 600 Area residential soil vapor cancer risk compared to NMED VISLs for the 600 Area soil vapor assessment. There are <u>11eight</u> detected constituents, all of which are below their respective NMED VISLs, except

<u>TCE (5.03E-05)</u>. A UCL95 value was calculated for chloroform. The totalcumulative cancer risk is 9E-066.15E-05, which exceeds is below the NMED target risk of 1E-05 (NMED, 201922cb).

Table 6.23 provides the comparison of the maximum concentrations to industrial VISLs for soil vapor in the 600 Area. All of the 11 detected constituents are below their respective NMED VISLs, and the total 600 Area industrial soil vapor cancer risk of 8.90E-06 is below the NMED target of 1E-05.

Since the total risk for the 600 Area residential soil vapor pathway exceeded the target compared to VISLs, the more site-specific WSTF RBCs were used for comparison to maximum soil vapor concentrations in Table 6.24. The total 600 Area residential soil vapor cancer risk is 2.20E-06, which is below the target cancer risk of 1E-05 (NMED, 2022c).

<u>Table 6.12</u>Table 6.25 contains the <u>cumulative residential</u> hazard assessment for <u>soil vapor in</u> the 600 Area soil vapor assessment. There are 2<u>8</u>3 constituents detected with only TCE exceeding its NMED VISL (1.06E+01). A UCL95 value is calculated for TCE. The total hazard for the 600 Area soil vapor is 7.9E+001.08E+01, which exceeds the NMED target hazard of 1.0E+00 (NMED, 201922cb).

The 600 Area industrial soil vapor hazard is shown in Table 6.26. Like the residential scenario, TCE is the only constituent that exceeded the individual noncancer VISLs (2.26E+00). The total hazard is 2.30E+00, which also exceeds the target of 1E+00 (NMED, 2022c).

The 600 Area soil vapor-cumulative hazard assessment-also usinges WSTF RBCs; is shown in <u>Table 6.13Table 6.27</u>. The RBCs take into account site specific conditions and are expected to better reflect the actual risk to human health on-site thanwhen compared to NMED VISLs (NASA, 2022c19a). Constituents are compared against the RBC value at the nearest depth shallower than the sample depth since shallower RBCs are more conservative. There are no available RBCs for <u>1,2-Dichloroethane</u>, <u>1,4-Dichlorobenzene</u>, Ethylbenzene, Toluene, m,p-Xylene, and o-Xylene, or <u>1,2,4-Trimethylbenzene</u>, so the NMED VISLs were used as screening levels for these constituents. For cis-1,2-dichloroethene and <u>1,2,4-Trimethylbenzene</u>, the EPA RSL for resident air was used since there were no RBCs or NMED VISLs established. The cumulative hazard is reduced to <u>2,53.63</u>E-01, which is below the NMED target hazard of 1.0E+00 (NMED, 201922cb). There are no constituents thatwhich exceed WSTF RBCs.

Table 6.28 presents the 600 Area industrial soil vapor maximum concentrations to WSTF RBCs. All constituents were below the corresponding WSTF RBC for the industrial scenario, and the total hazard for soil vapor is 3.25E-02, also below the target to 1E+00 (NMED, 2022c).

6.1.2.2 600 Area – Indoor Air Cumulative Risk Assessment

<u>Table 6.14</u>Table 6.29 contains the <u>cumulative 600 Area residential indoor air cancer risk screening</u> assessment for the 600 Area indoor air assessment. The <u>fourthree</u> detected constituents are below their respective NMED indoor air screening levels. The <u>totaleumulative</u> cancer risk is <u>32.49</u>E-06 which is below the NMED target risk of 1E-05 (NMED, 201922cb).

Table 6.30 contains the 600 Area industrial indoor air cancer risk screening. All four detected constituents are below their respective NMED indoor air industrial screening levels, and the total cancer risk is 5.09E-07, which is also below the 1E-05 target (NMED, 2022c).

<u>Table 6.15</u>Table 6.31 contains the <u>cumulative residential</u> hazard assessment for the 600 Area indoor air assessment. There are 163 detected constituents, all of which are below their respective NMED indoor air screening levels. The cumulative hazard is $\frac{8.2E-021.05E-01}{1.0E+00}$ which is below the NMED target hazard of 1.0E+00 (NMED, $20\frac{1922cb}{1.0E+00}$).

The 600 Area industrial indoor air hazard screening is presented in Table 6.32. No constituent exceeded any individual VISLs. The total hazard (6.44E-02) also was below the target of 1E+00 (NMED, 2022c).

6.1.2.3 600 Area – Soils-Cumulative Risk Assessment

Figure 6.42 shows the WSTF background soil areas. The 600 Area is within WSTF background Area 4. Table 6.16 Table 6.33 shows BTV comparisons that are used to determine background constituents in the 600 Area. If maximum detected values for a constituent are below previously established background concentrations within the same depth range (NASA, 2015d), the constituent is no longer considered to be a COPC. Using maximum 600 Area soil concentrations compared to BTVs, potential COPCs were antimony, barium, beryllium, boron, cadmium, chromium, cobalt, copper, manganese, mercury, molybdenum, NO₂/NO₃, perchlorate, thallium, tin, and zinc. Essential nutrient maximum concentrations that exceeded BTVs were magnesium, potassium, and sodium (Table 6.17Table 6.34). Following comparison of 600 Area soils data to the WSTF BTVs, the two populations of data were compared for 600 Area soil constituents that had a maximum concentration that exceeded the WSTF BTV. Using ProUCL software (Version 5.2), the populations were compared between WSTF background Area 4 and the 600 Area soil data. When duplicate data are present, the most conservative value between the sample and duplicate was used. (For background soil Area 4, the lower of the two concentrations was used, and the maximum 600 Area investigation soil concentration of the sample and duplicate was used.) Antimony, boron, Ccadmium, chromium, cobalt, manganese, molybdenum, and NO₂/NO₃, perchlorate, thallium, and tin in 600 Area soils were retained as COPCs (Table 6.33 and Table 6.18 Table 6.35). Sodium was also Retained as an essential nutrients included magnesium and sodium (Also shown on Table 6.18 Table 6.35).

<u>Table 6.19</u>Table 6.36 and Table 6.37 contains the cumulative cancer risk screenings for the 600 Area soils, calculated using data from soil borings 600-SB-1 through 600-SB-10, shown in Figure 6.43, collected between 0 to 10 ft bgs in the 600 Area Closure Investigation Report (NASA, 2011a). There are sixeven detected carcinogenic constituents, all of which are below their respective NMED SSLs (residential in Table 6.36 and industrial in Table 6.37). The cumulative cancer risk is 21.80E-06 for residential risk and 3.40E-07 for industrial risk, which are below the NMED target risk of 1E-05 (NMED, 201922cb).

<u>Table 6.20</u>Table 6.38 contains the <u>cumulative residential</u> hazard assessment for the 600 Area soils calculated using data from the 600 Area Closure Investigation Report (NASA, 2011a). There are <u>1925</u> constituents detected in these soil samples, of which thallium is the only analyte to exceed its respective NMED residential SSL (6.63E+00). The <u>totalcumulative</u> residential hazard including thallium is <u>1.0E+016.66E+00</u>, which exceeds the target of 1E+00.

Table 6.39 shows 600 Area industrial soil hazard. All constituents, including and without thallium, are below the target of 1E+00. is 2.5E-012.8E-02. The total industrial hazard is 4.01E-01, which is also below the 1E+00 target (NMED, 2022c). The maximum detected thallium soil concentration (7.6 mg/kg) is, however, below the NMED industrial scenario screening criterion of 13 mg/kg. For industrial land use, the cumulative hazard would be 0.98, indicating adverse health effects are unlikely under present-day and anticipated future industrial land use at WSTF.

6.1.2.4 600 Area – Cumulative Screening Risk Assessment for all Exposure Pathways

A screening of worker risks related to both indoor inhalation and soil exposure pathways for the 600 Area is provided here. Table 6.22Table 6.40 shows summed cancer risk and chemical hazard for exposure to soil vapor and soil in the 600 Area. The 600 Area has a cumulative cancer risk of 1E-054E-06 and a chemical hazard of 1.5E+017E+00.

All analytical data (vapor laboratory reports and an Excel file data summary for vapor and soils) for the 600 Area cumulative screening risk assessment are included as an enclosure to this report. All dData for statistics for the 600 Area cumulative screening risk assessment are provided shown in Appendix DC.

6.2 Uncertainties

6.2.1 Constituents without Published Screening Values

The only detected constituents found in vapor throughout this investigation for which no published inhalation screening level is available are 2,2,4-Trimethylpentane, ethanol, and Freon 21. The organic chemical 2,2,4-Trimethylpentane is a component of gasoline and diesel but is not associated with any historical operations related to the 200 and 600 Area HWMUs that are the focus of this investigation. The relatively low measured concentrations (0.36 to 0.39 μ g/m³) and few detections (2 of 52 samples, both with J QA flags and adjacent to each other in the 200 Area Building [samples 200-IA-3 and 200-IA-4; Figure- 3.1]) indicate that this chemical is unlikely to present significant health risks/hazards.

All three constituents (Ethanol, Freon 12, 2,2,4-Trimethylpentane) were detected in low concentrations (Ethanol: 1.5-9.6 μ g/m³; Freon 21: 0.84-6 μ g/m³ detected 6 out of 52 samples; 2,2,4-Trimethylpentane: 0.36 and 0.39 μ g/m³, detected 2 out of 52 samples), and none were detected in soils, likely indicating there is not a continuous soil source. In addition, the hazard calculations using approved WSTF RBCs included Ethanol (using methanol as a surrogate) and Freon 21 (using Freon 12 as a surrogate). No significant hazard was contributed by either ethanol or Freon 21 (Table 6.27 and Table 6.28).

6.2.2 Small Sample Sizes

The goal of the 200/600 VI investigation was to obtain indoor air, outdoor air, and soil vapor samples at the 200 and 600 Area over two seasonal changes and compare results to NMED VISLs and RBCs (if there were VISL exceedances). This could determine if further evaluation was warranted. Performing a comprehensive health risk was not part of the original scope. However, NASA was directed by NMED to perform health risk for this investigation, which usually involves performing statistical calculations. Both NMED and EPA recommend a minimum of 8 to 10 samples to perform reliable statistics. Only two sets of samples within three soil vapor wells per area were collected for this investigation (resulting in a total of 6 samples per constituent). Therefore, no EPCs such as UCL95 could be calculated for soil vapor. Since the maximum concentrations were used for risk and hazard, this creates uncertainty (biased high) in the risk and hazard results. A receptor is unlikely to be exposed to only the maximum concentrations of constituents, so the risk and hazard are currently conservative and likely do not represent real conditions.

6.2.3 Industrial Pathway Sample Depths

The initial 200 Area Phase II and 600 Area HWMU investigations were not designed specifically for risk assessment. Since they were designed to find the greatest concentrations of contaminants and WSTF soils have historically been disturbed, removed, and clean fill added, neither soil samples nor soil vapor samples were collected from the 0-1 ft bgs depth range for this investigation. The shallowest soils depths sampled and used for this risk screening were 8 and 16 ft bgs for the 200 Area and 3, 4, 6, and 10 ft bgs for the 600 Area. For soil vapor, the 200 Area was sampled at 9, 19, and 34 ft bgs, and the 600 Area was sampled at 7.5 and 12.5 ft bgs. This imparts uncertainty to the risk and hazard for the industrial pathway. Lines of evidence can support risk and hazard conclusions.

6.2.4 Large Dilution and Elevated Detection Limits

When a laboratory needs to dilute a sample a large amount due to very high concentrations of one or more VOCs, this causes the detection limits of other VOCs to be artificially raised. Especially when the detection limits are greater than corresponding regulatory screening levels, this creates uncertainty for the health risk and hazard evaluations. It cannot be stated that the constituent is not present in the sample in greater concentrations than the screening level. This could potentially bias the risk and hazard screening low, meaning there could be more contamination at higher risk and hazards than the risk screening indicates. For this evaluation, eight VOC constituents had detection limits greater than NMED VISLs due to large dilutions for soil vapor samples in well 200-LV-150 (sampled at 34 ft bgs).

6.3 Lines of Evidence

Since there are always uncertainties associated with risk and hazard screenings, lines of evidence can be applied to provide more confidence in the risk and hazard screening conclusions. The following lines of evidence can be applied for this 200/600 Area VIAR.

6.1.36.3.1 Conservative Risk Using Maximum Concentrations

When either an individual COPC or the combined sum exceeds NMED screening levels, risk, or hazard using maximum COPC concentrations, further evaluation is required (NMED, 2019b). As stated in Section 2.8.4 of the NMED Guidance, UCL95 (the 95 percent upper confidence limit of the arithmetic mean) concentration of a contaminant may be calculated to represent an average concentration likely to be contacted over time. However, due to small sample size, UCL95 values could not be calculated for soil vapor. In addition, many constituents were only detected once or only a few times, requiring retaining the maximum concentration as the EPC. Throughout this health risk screening, only constituents considered risk drivers (COPCs that individually exceeded targets or caused the cumulative sum to exceed targets) had their respective UCL95 values calculated. Using UCL95 concentrations for only a few COPCs did result in less risk/hazard than the NMED required targets of 1E-05/1. However, if the UCL95 calculations had been applied to all constituents, the cumulative health risks/hazards would be lower than our results currently show. NASA understands that using mostly maximum concentrations This will result in conservative estimates of risk/hazard.

6.1.46.3.2 Soil Vapor Vertical Concentration Profiles

Soil vapor vertical concentration profiles for 200 and 600 Area wells were constructed to present the distribution of COPCs in the vadose zone and identify any sourcing relationships to the local contaminated groundwater aquifer. The evaluation includes a temporal element with comparison of shallow soil vapor port analytical results generated specifically for the VI assessment to historical soil vapor analytical data collected for previous investigations (NASA, 2011b; NASA, 2013cb; and NASA, 2015b). Historical soil vapor sampling events included all accessible ports within 200 and 600 Area MSVM and MSVGM wells that were sampled collectively as single events in order to provide a results snapshot using soil vapor isopleth maps. Vertical concentration profiles also incorporate soil sample analytical results collected during borehole installation, the soil porosity from geotechnical soil sample analyses, and groundwater analytical results from contemporaneous sampling events performed to support the soil vapor investigations. COPC concentrations in groundwater were used to calculate the equivalent soil vapor concentrations in equilibrium with groundwater using Henry's Coefficient (NMED, 2019). The calculated values are compared to soil vapor concentrations from the most proximal port located above groundwater.

With the exception of TCE, soil vapor analytical results for the majority of COPCs for the VI assessment and historical sampling events (PCE; Freon11; Freon 113; 2-butanone; 1,1,1-trichloroethane; chloroform; benzene; ethylbenzene; toluene; xylenes; acetone; and 2-propanol) are below the respective NMED VISL and WSTF RBC in soil vapor. For the optimum vertical concentration profiling of soil vapor, the COPCs Freon 113 and TCE were selected as they consistently display greater frequency of detection, relatively high concentrations, and more widespread vertical distribution. Freon 113 and TCE also represent two of the primary COPCs known to have been released from historical activities within the 200 and 600 Areas (NASA, 2012b). Vertical concentration profiles for select 200 and 600 Area wells are provided in <u>Appendix ED</u>, with a summary of the profiles presented in <u>Table 6.23Table 6.42</u>.

6.1.4.16.3.2.1 200 Area - Wells 200-SG-2 and 200-SG-3

MSVGM wells 200-SG-2 and 200-SG-3 were utilized for vertical concentration profiles for the 200 Area vadose zone, in lieu of VI assessment wells 200-SV-05 and 200-SV-09 located adjacent to Building 200. Wells 200-SV-05 and 200-SV-09 comprise single port constructions directly above Permian Hueco limestone bedrock at 9 ft and 19 ft respectively, which preclude the ability to plot vertical concentration profiles. VI assessment MSVGM well 200-LV-150 was also not utilized for vertical concentration profiles because the shallow port at 34 ft was blocked during the only comprehensive sampling event performed (NASA, 2015), leaving only two lower ports accessible at 64 ft and 84 ft. The three ports are also all located below shallow alluvium - Permian Hueco Limestone bedrock interface at 18 ft, with bedrock elevated as a geological horst block along two subparallel faults below the industrialized 200 Area. The bedrock vadose zone in this area is not characterized by the high porosity and permeability of the relatively thick vadose zone alluvial section found in other parts of the 200 Area and the 600 Area. The bedrock vadose zone below the former Clean Room Tank HWMU located adjacent to Building 200 has been demonstrated to host residual COPCs within irregular low permeability bedrock fractures sampled in cores (NASA, 2015b).

Wells 200-SG-2 and 200-SG-3 were not utilized for shallow soil vapor sampling as part of the vapor intrusion assessment due to their distance from Building 200 of approximately 1,200 ft and 700 ft, respectively. The wells were installed in 1998 as part of the well 200-D area vadose zone investigation (NASA, 2004), through a thicker section of vadose zone alluvium peripheral to the industrialized 200 Area. Well 200-SG-2 was installed south of the industrialized 200 Area within a borehole drilled to a depth of 240 ft bgs. The borehole intercepted Permian Hueco Limestone bedrock at 90 ft bgs, and groundwater was initially identified at 230 ft bgs during drilling. The confined groundwater subsequently increased in elevation to a depth of 83 ft bgs. Three soil vapor ports were positioned at depths of 30 ft, 60 ft, and 84 ft bgs. The first two ports are located within the alluvial vadose zone, and the deep port is located within bedrock comprising interbedded limestone, shale, and sandstone. A screened groundwater monitoring zone is present at a depth of 85 ft to 100 ft bgs. Because confined groundwater increased in elevation above the bottom port, it became submerged and non-operational. The middle soil vapor port positioned approximately 23 ft above the local water table is now utilized as the deep port.

MSVGM well 200-SG-3 was installed south of the 200 Area buildings in the vicinity of the former hazardous waste evaporation tanks within a borehole drilled to a depth of 250 ft bgs. The borehole intercepted Permian Hueco Limestone bedrock at 80 ft bgs, and groundwater at 190 ft bgs during drilling. The groundwater table subsequently increased in elevation to a depth of 164 ft bgs. Five soil vapor ports were located at depths of 30 ft, 60 ft, 90 ft, 120 ft (reported as blocked following installation), and 154 ft bgs. The shallow two ports are located within the alluvial vadose zone, and the three deeper ports are located within bedrock comprising interbedded limestone, shale, and sandstone. A screened groundwater monitoring zone is present between 155 ft and 170 ft bgs, with the deep soil vapor port located 10 ft above the local groundwater table.

Evaluation of the vertical concentration profiles in the 200 Area at wells 200-SG-2 and 200-SG-3 (<u>Appendix ED</u>, <u>Table 6.23Table 6.42</u>) indicate variable and complex relationships between soil vapor in the vadose zone and groundwater. Proximal to Building 200, residual COPCs sourced from the former

Clean Room Tank HWMU characterize fractured Permian Hueco limestone bedrock. Relatively low and variable permeability in the fractured interbedded limestone, sandstone, and shale comprises the majority of the vadose zone along and within the horst block. Adjacent to the industrialized 200 Area where the alluvial vadose zone is thicker, shallower soil vapor ports located within alluvium or proximal to the upper bedrock section (well 200-SG-3, port at 90 ft) display generally increasing trends with depth, that are characteristic of the vadose zone at the 600 Area Closure (Section 6.2.2).

Soil vapor ports within the fractured limestone section do not display the same increasing COPC concentration trend as the alluvial vadose zone and are more irregular in profile. This trend could potentially be attributed to irregular vadose zone sources in the fractured bedrock vadose zone and local groundwater aquifer. Localized sources in these areas may be sourced by the infiltration of COPCs observed at surface (NASA, 2012b) through the alluvial soil to the bedrock interface, with subsequent migration down dip along relatively low permeability bedding planes or within bedding plane solution channels saturated below the local groundwater table. Vertical concentration profiles generally demonstrate declining soil vapor concentrations over time since the inception of soil vapor sampling in this area, which coincides with declining COPC trends in groundwater (NASA, 2019a). Where COPC concentrations in groundwater were used to calculate the equivalent equilibrium soil vapor concentrations, the results for the deep port in the respective well were within one order of magnitude for Freon 113 and the same order of magnitude for TCE.

6.1.4.26.3.2.2 600 Area - Wells 600-SGW-1 and 600-SGW-5

600 Area MSVM wells 600-SGW-1 and 600-SGW-5 were utilized for vertical concentration profiles in the vicinity of Building 637. The shallow port in each well (12.5 ft and 7.5 ft, respectively) was used to collect shallow soil vapor samples as part of the VI assessment. Well 600-SGW-1 was installed in 2009 as part of a closure investigation through the 600 Area closure cap within a borehole drilled to 135 ft bgs. The borehole was not advanced to the projected depth of bedrock (anticipated at between 160 ft and 170 ft) due to drilling difficulties with the sonic drilling method. Three soil vapor ports were located at 12.5 ft, 57.5 ft, and 117.5 ft bgs. Well 600-SGW-1 is located 184 ft from Building 637, and all vapor ports within the well have been sampled several times during previous investigations, providing a record of historical vertical profiles.

MSVM well 600-SGW-5 was also installed as part of the closure investigation immediately adjacent to the east corner of the 600 Area closure cap within a borehole drilled to 156 ft bgs. The well comprises four soil vapor ports located at 7.5 ft, 52.5 ft, 102.5 ft, and 137.5 ft. During borehole installation, perched groundwater was encountered at 144 ft on top of the alluvium-poorly fractured Tertiary Orejon andesite interface at 148 ft bgs. Well 600-SGW-5 is the most proximal well to building 637 at a distance of 181 ft, and was historically sampled as part of the same events as well 600-SGW-1. Because of the identification of perched groundwater in the borehole, the well was twinned with monitoring well 600-G-138 in 2011 to evaluate the perched groundwater. The results for Freon 113 and TCE for groundwater samples collected from 600-G-138 within the same timeframe as the soil vapor samples from well 600-SGW-5 are used to compare the soil vapor COPC concentration in equilibrium with groundwater to soil vapor in the deepest port at 137.5 ft.

The vertical concentration profiles in the 600 Area evaluated for wells 600-SGW-1 and 600-SGW-5 (Appendix ED, Table 6.23Table 6.42) indicate a relationship between soil vapor in the vadose zone and groundwater. Both wells are located within an area characterized by an alluvial vadose zone with high porosity and permeability. The spectrum of soil vapor ports in these wells show consistently increasing COPC concentrations with depth and proximity to either perched groundwater or the local groundwater table. Vertical concentration profiles also demonstrate declining soil vapor concentrations over time since the inception of soil vapor sampling in this area that coincides with local declines in COPC

concentrations in groundwater. Where COPC concentrations in groundwater at well 600-G-138 were used to calculate the equivalent equilibrium soil vapor concentrations, the results were comparable and within the same order of magnitude for the deep port in well 600-SG-5 located 7 ft above perched groundwater.

6.1.56.3.3 Integrity of Building Slabs

Building 200 was constructed in 1964 as a semi-permanent structure with a reinforced concrete floor (NASA, 1994). The concrete slab floor is 6 in. in thickness. The facility was intended for its present use as a laboratory with offices and is fully suitable for this use. Details of the Building 200 construction characteristics identified through the building inspection performed for the vapor intrusion assessment are provided in <u>Appendix A</u>. The floor is composed of a poured concrete slab covered with concrete sealant and 9-in. x 9-in. x 1/16-in. vinyl tiling. No significant cracks were observed in the concrete foundation slab during the building inspection around the outside periphery of Building 200 or inside within areas of exposed concrete floor. Therefore, known vapor intrusion routes of entry through the foundation slab are limited to diffusion through the concrete slab.

Building 637 was built in 1991 as a semi-permanent structure with a reinforced concrete floor (NASA, 1994). The concrete slab floor is 6 in. in thickness. The facility was intended for its present use for sample storage and is fully suitable for this use. Details of the Building 637 construction characteristics are provided in <u>Appendix A</u>. The floor comprises a poured concrete slab covered with concrete sealant. No significant cracks were observed in the concrete foundation during the building inspection around the outside periphery of the building or within the interior concrete floor. Therefore, known vapor intrusion routes of entry through the foundation slab are limited to diffusion through the concrete slab.

6.1.66.3.4 Ventilation Systems

Building 200 comprises a single floor structure. Airflow is through cycled air, and outdoor air infiltration can enter the building through open doors, door thresholds, and air ducts in the roof. Heating is through hot air circulation sourced by natural gas, and air conditioning is provided through central air. The HVAC systems run constantly throughout the day in order to preserve the laboratory environment (<u>Appendix A</u>).

Building 637 comprises a single floor structure. During summer months, airflow is through forced central air generated by evaporative coolers located on the ground on the north side of the building. Outdoor air infiltration could potentially be generated through the evaporative cooler intakes or on occasions when the bay door on the west side of the building is open. Heating is through hot air circulation sourced by natural gas. The HVAC systems run intermittently due to the irregular usage of the building on working days (Appendix A).

6.1.76.3.5 Personnel Management Practices

The practices for chemical storage and chemical waste management in Buildings 200 and 637 have been continually modified and improved through time at WSTF as part of the ongoing health, safety, and environmental culture. Personnel management practices have effectively promoted the minimization, documentation, storage, and disposal of wastes. These practices include: the training of WSTF employees operating within the target buildings to manage potential chemical sources of vapors appropriately; communication of best practices for chemicals management from managers through supervisors to workers; communication of the safety culture awareness; establishing chemical best management policies; and, providing constant supervision and monitoring of the work environment. Development and streamlining of the personnel management practices has helped minimize the potential for vapor intrusion into the buildings and vapor circulation within the buildings.

6.1.86.3.6 Indoor Air Quality – Risk to Worker

In Building 200, the concentration of $3,200 \ \mu g/m^3$ of Freon 113 reported in August 2017 from sample location 200-IA-5 within Room 202 is two orders of magnitude below the NMED VISL for industrial indoor air of 147,000 $\mu g/m^3$ and three orders of magnitude below the OSHA PEL TWA of 7,670,000 $\mu g/m^3$ (Table 4.35.1). The product inventory form (Table 4.1) indicates that steel canisters containing Freon are stored in this secure, unoccupied storage room. A trace indoor air concentration for 2-propanol of 68 $\mu g/m^3$ reported in August 2017 from sample location 200-IA-3 within Room 205 is <u>onefour</u> orders of magnitude below the <u>residential and industrial RSLs</u> <u>OSHA PEL TWA of 984,000 $\mu g/m^3$ (Table 4.35.1)</u>. 2-propanol is a common ingredient in chemicals such as antiseptics, disinfectants and detergents that are stored in this room. Room 205 is used exclusively for equipment and storage and is occupied only during maintenance activities. The workers are protected under this scenario.

In Building 637, a trace indoor air concentration for acetone of $16 \,\mu g/m^3$ reported in August 2017 from sample location 600-IA-2 is four orders of magnitude below the NMED VISL for industrial indoor air of 152,000 $\mu g/m^3$ and five orders of magnitude below the OSHA PEL TWA of 2,380,000 $\mu g/m^3$ (Table 5.12). Acetone is a common solvent used for cleaning tools occasionally used in the building. The workers are protected under this scenario.

6.1.96.3.7 Concentration Ratios of Detected Constituents in Soil Vapor and Indoor Air

If vapor intrusion impacted indoor air quality in Building 200 or 637 one would expect to see a similar detection pattern and ratio of constituent concentrations for indoor air and soil vapor samples. However, analytical results from the two semi-annual indoor air and soil vapor sampling events show that the types and concentrations of VOCs in indoor air in Buildings 200 and 637 are unrelated to soil vapor measurements in those areas. This supports a conclusion that any constituents detected in indoor air samples did not enter the building through vapor intrusion from the vadose zone. The trace level constituents present within the buildings are not unexpected due to the inventoried storage of chemicals within the Building 200 laboratories and Building 637 sample storage areas (see Section 6.6 and <u>Appendix A</u>).

TCE, PCE, and 1,1-Dichloroethene were the three primary risk drivers which exceeded screening levels in the 200 Area soil vapor samples as follows:

- TCE was detected in all eight of the vadose zone soil vapor samples collected. Of the 18 indoor air samples, TCE was only detected in eight of the samples.
- PCE was again detected in all eight of the vadose zone soil vapor samples collected. There was only one detection of PCE within the 18 indoor air samples, and the detection was a trace amount (0.28 ug/m³).
- 1,1-Dichloroethene was detected again in all eight of the soil vapor samples, while the constituent was non-detect for all 18 indoor air samples.

6.26.4 Assessment of Worker Risks for Occupants of Buildings 200 and 637

The three constituents which exceed NMED screening levels in 200 Area soil vapor coexist in all of the soil vapor samples. This same correlation between these constituents does not exist in indoor air samples, indicating that soil vapor is not the source of the trace indoor detections.

The primary risk driver that exceeded NMED VISLs in the 600 area was TCE. TCE was detected in each of the eight soil vapor samples collected within the 600 Area during this investigation. However, TCE was not detected in any of the ten indoor air samples that were collected in Building 637. The absence of

TCE in indoor air samples is a strong line of evidence that TCE in soil vapor in the 600 Area does not present a risk to present-day workers.

Industrial/occupational workers at WSTF who occupy buildings in the vicinity of the former 200 Area Clean Room Tank HWMU and the 600 Area HWMU while performing their daily duties are the primary potential receptors for COPC vapor intrusion. RA Guidance Section 2.5.2.1 (NMED, 201922cb) states that the vapor intrusion pathway may only be considered incomplete if all soil vapor sample concentrations results are 100 percent non-detect. A cumulative health risk assessment was requested as part of the vapor intrusion investigation by the NMED (NMED, 201922cb). The assessment was included in the revised report, and was completed in accordance with the RA Guidance to evaluate the pathway between soil vapor in the 200 and 600 Area vadose zones and indoor air in the vicinity of adjacent Buildings 200 and 637. Lines of evidence considered include:

- A cumulative screening level risk assessment.
- Evaluation of vertical concentration profiles within the 200 and 600 Areas.
- The results of the visual inspection of the buildings including the integrity of the building foundations, quality of the ventilation systems, and an evaluation of personnel management practices.
- Quantitative screening assessment of vadose zone soil vapor, outdoor air, and indoor air laboratory results with comparison to available vapor intrusion soil vapor screening levels and industrial exposure scenario air screening levels.

Evaluation of the lines of evidence support the conclusion that no additional investigation or vapor intrusion mitigation is required in Building 200 or Building 637.

Although vadose zone soil vapor concentrations of PCE and/or TCE at the locations of the 200 West Closure and 600 Area HWMUs exceeded NMED VISLs and updated NMED-approved WSTF RBCs as expected, indoor air exposure within Buildings 200 and 637 presents no unacceptable risk. The subsurface contribution to indoor VOC levels is below the equivalent indoor air screening levels.

<u>Table 6.21</u> Table 6.20, and <u>Table 6.22</u> Table 6.21, <u>Table 6.40</u>, and <u>Table 6.41</u> show the cumulative risk of soil and soil vapor within the 200 and 600 Areas, respectively. This calculation does not include results from indoor air sampling and is therefore representative of future risk. The same risk drivers remain present in this assessment.

7.0 Summary and Conclusions

7.1 Summary of Soil Vapor, Outdoor Air, and Indoor Air Sampling and Screening Criteria

The investigation reported in this VIAR used a tiered approach to evaluate the potential for vapor intrusion in the WSTF 200 and 600 Areas. The vapor intrusion pathway between soil vapor in the vadose zone and industrial/occupational indoor air at two locations identified through previous investigations was evaluated by comparing the maximum detected concentrations to the corresponding NMED VISLs, and WSTF RBCs. Additional lines of evidence were reviewed including evaluation of the building foundations and ventilation systems, and evaluation of the results of indoor and outdoor air sampling at these locations.

Adjacent to the 200 Area Clean Room Tank HWMU, soil vapor samples were collected from shallow soil vapor ports in MSVM wells 200-SV-05 at 9 ft bgs, 200-SV-09 at 19 ft bgs, and MSVGM well 200-LV-150 at 34 ft bgs. All three wells are located within 85 ft of the west side of Building 200. Air samples were collected simultaneously with the vadose zone samples. Indoor air samples were collected at

locations in Building 200 above and adjacent to the subsurface footprint of the former 200 Area Clean Room Tank HWMU along with outdoor air samples adjacent to Building 200.

In the 600 Area, soil vapor samples were collected from shallow soil vapor ports in MSVM wells 600-SGW-1 at 12.5 ft bgs, 600-SGW-2 at 12.5 ft bgs, and 600-SGW-5 at 7.5 ft bgs, all located within 210 ft of Building 637. Indoor air samples were collected in Building 637 within the single room of the building, along with outdoor air samples at adjacent locations.

Sample collection activities at both locations were performed as two single semi-annual events in the summer (August 2017) and winter (February 2018) to address potential seasonal differences in HVAC performance and related air pressure fluctuations that could affect vapor intrusion. Vadose zone, indoor air, and outdoor air samples were collected over non-working three-day weekends on the same day within each area, and on consecutive days for both sampling events. Indoor and outdoor air sampling procedures were performed to assess the potential contribution of background levels of VOCs in ambient air to measured VOC concentrations in indoor air. Soil vapor samples were analyzed using EPA Method TO-15 in order to achieve the project DQOs. 202217 NMED VISLs and 202218 WSTF RBCs (submitted to NMED for review DecemberJune 149, 202118; final-memorandum approved with modification by NMED on FebruaryDecember 117, 202218, and resubmitted May 10, 2022), which incorporate new toxicity data and exposure factors, as well as the effects of mutagenicity, were used for screening soil vapor data. Potential health effects related to inhalation of indoor air data were screened using NMEDs air screening levels-and OSHA PELs. NMED industrial soil screening levels were used to support the all-pathways cumulative screening assessment.

7.2 Conclusions

7.2.1 200 Area

7.2.1.1 Vadose Zone Soil Vapor

The shallow soil vapor port within three wells adjacent to Building 200 (and the location of the former Clean Room Tank HWMU) were utilized for the air intrusion evaluation. All three wells (200-LV-150-34, 200-SV-05, and 200-SV-09) have historically shown TCE soil vapor concentrations that exceed WSTF RBCs (NASA, 2015, Phase II report). Vadose zone TCE concentrations in soil vapor from MSVM wells 200-SV-05 at 9 ft bgs, 200-SV-09 at 19 ft bgs, and 200-LV-150 at 34 ft bgs exceed NMED VISL (11,000 and 280,000 μ g/m³ cancer and 69.5 and 328 μ g/m³ noncancer) and WSTF RBC at 25 ft bgs (4.900 and 1884,000 μ g/m³ noncancer) for the August 2017 and February 2018 semi-annual sampling events performed for this vapor intrusion assessment. PCE soil vapor concentrations exceed the NMED VISL (3,600 and 17,600 μ g/m³ cancer and 1,390 and 6,550 μ g/m³ noncancer) in all three wells for the August 2017 sampling event but are below the WSTF RBC at 25 ft bgs (460,000340,000 and 6,000,000 cancer and 130,000 and 2,300,000 μ g/m³ noncancer). In February 2018, only the PCE sample from 200-LV-150 at 34 ft bgs exceeded the NMED VISLs. The concentrations for the other11 remaining COPCs in vadose zone soil vapor are below the corresponding NMED VISLs (except 1,1-Dichloroethane) and WSTF RBCs.

7.2.1.2 Outdoor Air

Concentrations in Building 200 outdoor air samples were generally either non-detect or below $1 \mu g/m^3$ for COPCs. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017 and February 2018) and 2-Butanone (maximum $3 \mu g/m^3$ in August 2017) were observed. Concentrations of COPCs are below OSHA PEL TWAs at all outdoor air sampling locations. Based on this <u>simple</u> comparison, NASA concludes that

outdoor air does not present a significant risk of industrial/occupational exposure and no additional investigation or mitigation is required at this time.

7.2.1.3 Indoor Air

Concentrations in Building 200 indoor air samples were generally non-detect or present at trace concentrations for COPCs. One low concentration of Freon 113 of 3,200 μ g/m³ was reported in August 2017 at location 200-IA-5. This concentration is two orders of magnitude below the NMED VISL for industrial indoor air (147,000 μ g/m³) and three orders of magnitude below the OSHA PEL TWA (7,670,000 μ g/m³). All indoor air concentrations for all COPCs were well below NMED VISLs. As stated in the NMED Risk Assessment Guidance for Site Investigations and Remediation (NMED, 201922cb), the "application of the VISLs is appropriate as a first-tier screening assessment." Although the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs.

The Decision Rule from the approved work plan (provided in Section 3.1.4) states that "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." Based on the results of a visual inspection of the structural stability WSTF Building 200, an evaluation of personnel management practices, and the quantitative assessment of soil vapor and air sample laboratory results with comparison to available vapor intrusion screening levels including NMED VISLs and WSTF RBC, NASA concludes the following:

- According to NMED Guidance on vapor intrusion pathway designation (NMED, 201922cb), there is a complete exposure pathway in the 200 Area.
- Potential vapor intrusion into Building 200 does not present a risk of industrial/occupational exposure to personnel working in the building.
- No additional investigation or vapor intrusion mitigation is required in Building 200.

7.2.2 600 Area

7.2.2.1 Vadose Zone Soil Vapor

The shallow soil vapor port<u>s</u> within three wells located on the 600 Area HWMU adjacent to Building 637 were sampled as part the air intrusion evaluation. Well 600-SGW-2 has periodically yielded concentrations of TCE that have exceeded WSTF site-specific RBCs (NASA, 2013<u>c</u> 200/600 semi-annual fourth report), although TCE concentrations remained below the RBC for the last sampling event (NASA, 2015 Phase II report). TCE concentrations within soil vapor for well 600-SGW-1-12.5 (480 µg/m³ in August 2017 and 740 µg/m³ in February 2018) and well 600-SGW-2-12.5 (330 µg/m³ in August 2017) exceed the NMED VISL (<u>69.5 and 328 µg/m³</u>), but are significantly below the WSTF RBC at <u>105</u> ft bgs (<u>18,0005,400</u> µg/m³). All other maximum concentrations for the remaining COPCs for both the August 2017 and February 2018 sampling events are below the respective NMED VISL and WSTF RBC in soil vapor <u>at 5 ft bgs</u>. Based on the historical soil vapor data and soil vapor results presented in the VIAR, NASA concludes that activities related to the ongoing 600 Area Perched Groundwater Extraction Pilot Test (NASA, 2018b) and upcoming 600 Area Perched Groundwater Investigation (NMED, 2017b) will address concerns related to the presence of VOCs in soil vapor in the area.

7.2.2.2 Outdoor Air

The concentrations for COPCs for Building 600 outdoor air samples were generally non-detect or below $1 \ \mu g/m^3$ for the COPCs. Traces of Freon 11 (maximum 1.2 $\mu g/m^3$ in August 2017), 2-butanone (maximum 2.4 $\mu g/m^3$ in August 2017), and acetone (maximum 10 $\mu g/m^3$ in August 2017) were reported. All outdoor air concentrations well below the OSHA PEL TWAs. Based on this comparison, NASA concludes that outdoor air does not present a significant risk of industrial/occupational exposure and no additional investigation or mitigation is required at this time.

7.2.2.3 Indoor Air

The Building 600 indoor air concentrations for specific COPCs were slightly above the contemporaneous outdoor air samples collected, but significantly below the concentrations observed within soil vapor in the shallow vadose zone reported from MSVM wells. The maximum concentration for indoor air samples were generally non detect or below 1 μ g/m³ for the COPCs. Trace concentrations were observed for three COPCs: Freon 11 (maximum 1.4 μ g/m³ in February 2018); 2-Butanone (maximum 5.3 μ g/m³ in August 2017); acetone (maximum 16 μ g/m³ in August 2017); and 2-propanol (maximum 3.4 μ g/m³ in August 2017). No concentrations of indoor air COPCs exceeded the NMED VISLs.

The Decision Rule from the approved work plan (provided in Section 3.1.4) states that "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below indoor air NMED VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." Based on the results of a visual inspection of the structural stability WSTF Building 637, an evaluation of personnel management practices, and the quantitative assessment of soil vapor and air sample laboratory results with comparison to available vapor intrusion screening levels including NMED VISLs and WSTF RBC, NASA concludes the following:

- According to NMED Guidance on vapor intrusion pathway designation (NMED, 20<u>22c19b</u>), there is a complete exposure pathway in the 600 Area.
- Potential vapor intrusion into Building 637 does not present a risk of industrial/occupational exposure to personnel working in the building.
- No additional investigation or vapor intrusion mitigation is required in Building 637.

8.0 Recommendations

Based on the background data presented in this report, the comparison of analytical results to applicable regulatory screening level criteria, and the performance of a cumulative screening level risk assessment, NASA concludes that there is a complete vapor intrusion pathway within the 200 and 600 areas, but there is no unacceptable impact to human health within Building 200 and 637, respectively.

From the Decision Rule: "If the vadose zone soil vapor concentrations exceed NMED VISLs and updated NMED-approved WSTF RBCs, but the subsurface contribution to indoor VOC levels is below risk-based indoor air concentrations shown in Table A-4 of NMED's Soil Screening Guidance for Human Health Risk Assessments VISLs and WSTF RBCs, then current vapor intrusion risks are acceptable." No further soil vapor investigation or corrective actions are recommended for Building 200 and Building 637 due to the lack of unacceptable health risk of soil vapor COPCs from the vadose zone into the target buildings.

The risk screening performed for this VIAR is not intended to be complete at this time, as continued monitoring is planned for the 200 and 600 Areas. NASA will perform continued risk and hazard screening, including soil-to-groundwater and an ecological assessment in accordance with the current NMED RA Guidance, Volumes I and II at an appropriate time to make corrective action decisions or to

seek closure. At that time, NASA will provide a risk report in accordance with the WSTF Permit Attachment 20Section 6.5.

In accordance with Permit Sections 2.3, 7.3.5, and Attachment 5 \vee (NMED, 202316b), NASA will continue to perform the necessary post-closure care inspections and activities at both the 200 Area and 600 Area closures. Planned activities include continued groundwater monitoring in accordance with Permit Section 3.3, 4.3, and 7.3.4 \vee .B.2, surface impoundment requirements of Section 7.3.5.1 \vee .B.3, landfill requirements of Section 7.3.5.2 \vee .B.4, and the security measures described in Section 7.3.5.4 \vee .B.5. NASA will continue to perform inspections and maintenance as specified in Permit Attachment 5Section \vee .C.

9.0 References

- EPA. (2005, March). Evaluating, Assessing, and Documenting Environmental Data Collection and Use Programs. Final Version 1. Uniform Federal Policy for Quality Assurance Project Plans. Part 1: UFP-QAPP Manual. United States Environmental Protection Agency Publication Number EPA-505-B-04-900A. Intergovernmental Data Quality Task Force, Washington DC. Retrieved from http://www.epa.gov/fedfac/pdf/ufp_qapp_v1_0305.pdf
- EPA. (2006, February). Guidance on Systematic Planning Using the Data Quality Objectives Process. Environmental Protection Agency QA/G-4, Washington, DC.
- EPA. (2013, June). SW-846-Test Methods for Evaluating Solid Wastes Physical/Chemical Methods. Environmental Protection Agency. Retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/online/
- EPA. (2015a, June). Oswer Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. U. S. Environmental Protection Agency Office of Solid Waste and Emergency Response, Washington, DC. Retrieved from <u>http://www.epa.gov/sites/production/files/2015-09/documents/oswer-vaporintrusion-technical-guide-final.pdf</u>
- EPA. (2015b, October). *ProUCL Version 5.1.00 Technical Guide (Draft)*. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. <u>https://www.epa.gov/land-research/proucl-software</u>
- EPA. (2022a, June 14). *ProUCL Version 5.2.00 Technical Guide*. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. https://www.epa.gov/landresearch/proucl-software
- EPA. (2019, November). Regional Screening Level (RSL) Summary Table. Retrieved from https://semspub.epa.gov/work/HQ/199626.pdfEPA. (2022b, November). Regional Screening Level (RSL) Summary Table. Retrieved from https://semspub.epa.gov/work/HQ/403628.pdf
- Geoscience Consultants, Ltd. (1986, December 22). Shallow Soil Gas Investigation at the NASA-Johnson Space Center White Sands Test Facility Interim Report. Las Cruces, NM.

Hazardous waste operations and emergency response, 29 C.F.R. § 1910.120 (2013). Retrieved from

NASA Johnson Space Center White Sands Test Facility. (1989, May 11). Certification of Closures, 200 and 400 Areas. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (1996, May 2). Draft RCRA Facility Investigation (RFI) and Corrective Measures Study (CMS) for NASA WSTF. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2004, May 19). Well 200-D Area Vadose Zone Investigation Report NASA White Sands Test Facility. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2009, April 17). NASA Response to NMED 03/19/09 Comments on the 600 Area Closure Investigation Work Plan HWB-NASA-08-007. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2011a, March 30). 600 Area Closure Investigation Report Provided in Response to a NMED Notice of Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2011b, May 9). Fee Assessment for 200/600 Area Soil Gas and Groundwater Data Evaluation Report (NMED Invoice Number HWB-NASA-11-003). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2012a, March 1). 200/600 Area Semi-Annual Soil Gas and Groundwater Data for NASA WSTF November 2011. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility, (2012b, March 28). 200 Area Investigation Work Plan and 200 Area Historical Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2012c, June 1). Development of Site-specific Risk-based Regulatory Criteria for Soil Vapor. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2012d, November 1). 200/600 Area Semi-Annual Soil Vapor and Groundwater Data for NASA WSTF - June 2012 Data. Las Cruces, NM.

NASA Johnson Space Center White Sands Test Facility. (2013a, January 30). 200 Area Investigation -Phase II Investigation Work Plan. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2013ba, January 30). 200 Area Investigation Phase I Status Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013<u>c</u>b, June 14). 200/600 Area Semi-annual Soil Vapor and Groundwater Data Summary (Fourth Report - March 2013 Data). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2013de, August 28). 200 Area Investigation Phase I Geophysical Data, Notice of Disapproval (NOD) Response, and Phase II Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015a, April 16). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report - Project Year 2. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015b, June 29). NASA WSTF 200 Area Phase II Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015c, November 25). Response to NMED Request for 600 Area Vadose Zone IWP. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2015d, September). Soil Background Study Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016a, January 27). NASA WSTF Periodic Monitoring Report - Fourth Quarter 2015. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016b, February 25). 200 and 600 Area Vapor Intrusion Assessment Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017a, January 26). NASA White Sands Test Facility (WSTF) Updated Soil Vapor Risk-Based Concentrations (RBCs) Memorandum. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017b, April 27). NASA WSTF Groundwater Monitoring Plan Update for 2017. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018a, January 27). NASA WSTF Periodic Monitoring Report - Fourth Quarter 2018. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018b, May 3). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 5. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019a, February 6). NASA WSTF (White Sands Test Facility) 2018 Soil Vapor RBC (Risk Based Concentrations) Memorandum NMED Approval with Modifications Response. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, April 29). NASA WSTF Periodic Monitoring Report – First Quarter 2019. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022, May 10). NASA White Sands Test Facility (WSTF) 2022 Soil Vapor Risk Based Concentrations (RBC) Memorandum. Las Cruces, NM.
- <u>NMED Hazardous Waste Bureau. (2009a, May 6). Notice of Approval 600 Area Closure Investigation</u> <u>Work Plan. Santa Fe, NM.</u>
- NMED Hazardous Waste Bureau. (2009<u>b</u>, December 16). Approval of "Contained-In" Determination Request - 600 Area Closure Investigation-Derived Waste Soil and Debris. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2011a, June 9). Approval with Modifications: 600 Area Closure Investigation Report and 200/600 Area Soil Gas and Groundwater Data Evaluation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2011b, December 2). Approval of No Longer "Contained-In" Determination 200/600 Area Drilling Investigation-Derived Waste. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2012, May 22). Disapproval 200 Area Closure Investigation Work Plan and 200 Area Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013a, May 8). Notice of Disapproval for 200 Area Investigation -Phase I Status Report. Santa Fe, NM.

NMED Hazardous Waste Bureau. (2013b, October 22). Approval with Modifications for 200 Area Investigation - Phase I Status Report. Santa Fe, NM.

NMED Hazardous Waste Bureau. (2014a, January 22). Approval for 200 Area Phase II Investigation Work Plan. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2014<u>b</u>a, August 27). Approval of Request for a No Longer Contained-In Determination (NLCID) for Investigation Derived Waste (IDW) from the 200 Area Phase II Investigation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2014<u>c</u>b, September 10). Approval of Request for a No Longer Contained-In Determination (NLCID) for Investigation Derived Waste (IDW) from the 200 Area Phase II Investigation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2015a, July 15). Approval with Modifications 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report - Project Year 2. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2015b, November 30). Approval with Modification 200 Area Phase II Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2016a, May 27). Approval 200 Area and 600 Area Vapor Intrusion Assessment Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2016b, November 10). Administrative Completeness and Fee Assessment Transmittal of Class 1 Permit Modification Without Prior Approval. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2017a, March). Risk Assessment Guidance for Site Investigations and Remediation Volume II Soil Screening Guidance for Ecological Risk Assessments. Santa Fe, NM
- NMED Hazardous Waste Bureau. (2017b, March 31). Approval Abbreviated Investigation Work Plan for 600 Area Perched Groundwater. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019a, June 5). Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- <u>NMED Hazardous Waste Bureau. (2020, November 9). Approval Soil Vapor Risk-Based</u> <u>Concentrations Memorandum. Santa Fe, NM.</u>
- NMED Hazardous Waste Bureau. (2022a, February 11). Approval with Modifications NASA White

 Sands Test Facility (WSTF) 2022 Soil Vapor Risk Based Concentrations (RBC) Memorandum

 Update. Santa Fe, NM.
- <u>NMED Hazardous Waste Bureau. (2022b, September 20). Disapproval 200 and 600 Area Vapor Intrusion</u> <u>Assessment Report. Santa Fe, NM</u>
- NMED Hazardous Waste Bureau. (2019b, June 19). Risk Assessment Guidance for Site Investigations and Remediation Volume I Soil Screening Guidance for Human Health Risk Assessments. Santa Fe, NM.Hazardous Waste Bureau. (2022c, November). Risk Assessment Guidance for Site Investigations and Remediation Volume I Soil Screening Guidance for Human Health Risk Assessments. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2023, April 27). Hazardous Waste Permit No. NM8800019434. Santa Fe, NM.
- Occupational Health & Safety Administration. (n.d.). Permissible Exposure Limits Annotated Tables website. Retrieved from https://www.osha.gov/dsg/annotated-pels/index.html
- ODEQ (2010, March 25). Guidance for Assessing and Remediating Vapor Intrusion in Buildings. Portland, OR.
- Seager, W. R. (1981, May). Geology of Organ Mountains and Southern San Andres Mountains, New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 36. Socorro, NM.
- United States Department of Agriculture Soil Conservation Service, United States Department of the Army White Sands Missile Range, and New Mexico Agricultural Experimental Station. (1976, January). Soil Survey of White Sands Missile Range, New Mexico Parts of Dona Ana, Lincoln, Otero, Sierra, and Socorro Counties. Las Cruces, NM.

Figures

Figure 1.1

Figure 1.2 Vapor Intrusion Assessment Building Location Map

Figure 2.1 Freon 113 Soil Vapor and Groundwater Concentrations (Oct-14)

Figure 2.2Trichloroethene Soil Vapor and Groundwater Concentrations (Oct-14)

Figure 2.3Tetrachloroethene Soil Vapor and Groundwater Concentrations (Oct-14)

Figure 2.4

Figure 2.5

Building 637 Site Conditions

Figure 2.6

Site Conceptual Exposure Model

Figure 3.1 West Building 200 Soil Vapor and Air Sampling Locations

Figure 3.2 Building 637 Soil Vapor and Air Sampling Locations

Figure 5.1 West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results

1			Contraction of the second		a fitter		A	CA YE	Charles - 1-	
and the second	200-SV-09-19	Results	200-5V-09		200	-OA-2 Results	P	MAN II -		
Contraction in the	Analyte Aug-17 F	eb-18 Units	• •		Analyte Au	17 Eab 18	Units	SUDE . I		
- 1- 2 M 2 / 7-	TCE 35,000 3	1 000 ug/m ³	ALL		TCE N	g-17 Feb-18	ug/m ³			and any state
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1,000 ug/m ³		The second second	ICE N	D ND	ug/III			
A COLUMN TO THE	FCE 0,000 .	0,400 ug/III	The stand	States and Ash	PCE N	D ND	ug/m ³			
and the second	Freon II ND	ND ug/m ³	1 5 - 3 To 9 7 1-2	the strain	Freon 11 1.2	2 A 1.2	ug/m ³			
	Freon 113 16,000 1	2,000 ug/m ³	The second states	all and the second	Freon 113 0.7	5 J 0.49 J	ug/m ³			All Hills
11			12 38 3 1 5 T	Al Starley		Contraction of	V			· / >
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	ALC: NO	And a second			1 / / / / / / / / / / / / / / / / / / /
	11 1		200-IA-1	Results	12					
A	STATISTICS AND	1	Analyte Aug-17	Feb-18 Units	B200-04-	2				
Ser and a series of the series	200-LV-150-34 Results	RE	TCE ND	ND ug/m ³			-			
Analyte	Aug-17 Feb-18	Units	PCE ND	ND ug/m ³		· //5				
TCE	410,000 140,000 D	ug/m ³	Freon 11 1.4 A	1.4 ug/m ³			•			
PCE	57,000 36,000	ug/m ³	Freon 113 1 J	0.64 J ug/m ³	200-IA-3 Res		30.			
Freon 11	ND ND	ug/m ³	and the second	Analy	te Aug-17 Fe	b-18 Units	1 Aug.	200-IA-8 Results		
Freon 11	3 470,000 140,000 D	ug/m ³	200-LV	-150 TCE	0.4 J 0.	48J ug/m ³	Ana	lyte Aug-17 Feb-18 Un	its	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10,000 D	No.		PCE	ND N	ND ug/m ³	TCH	E ND ND ug/	m ³	
No. A.	A DI LU	5A # 3		Freon	11 22 A QD	4.4 ug/m ³	© PCE	ND ND ug/	m ³	
A MAL		No. Ca	200-IA-2 Results	Freon	113 120 QD	24 ug/m ³	Free	on 11 1.7 A FB 1.5 FB ug/	$\frac{1}{m^3}$	
a the test	N AL A	Analyte	Aug-17 Feb-18 Units	a l	TIMOT		Free	on 113 1.2 FB 24 FB ug/		
	The start	TCE	ND ND ug/m ³	7	DAMA					
- TONOS	ACCORD OF THE	PCE	ND ND ug/m ³		L. I.	2 Prof	200.	JA-7 Results	6	
200	-SV-05-9 Results	Freen 11	1 13 13		A		nalvte Aug	17 Loh 10 Units		
Analyte A	ug-17 Feb-18 Unit	From 11	2 0.07 0.52 J ug/m ³	- BRINARAL			CE NI	$\frac{17}{\text{Feb-18}} = \frac{1}{10000000000000000000000000000000000$		
TCE 40	0,000 26,000 ug/m ²		5 0.97 0.55 J ug/II					$\frac{1}{\sqrt{2}}$ ND $\frac{1}{\sqrt{2}}$		
PCE 9	,500 5,300 ug/m ²	3	10000 TA 2/					D ND ug/m		
Freon 11 4	90 A ND ug/m ²	3	B200-IA-2		501 < 31.	Fi	reon 11 1.6 A	FB 1.4 ug/m ³		
Freon 113 44	,000 28,000 ug/m ²	3	2001			Fi	reon 113 1.4 F	B 11 ug/m ³		
and the second	A star a			BAUGHAR IB			5 //		1.11	
	March Rais	20	D-SV-05		1	11	200-IA-5	Results 🔊		
CALLER X	A THE STATE			\$ /= { \		Analy	te Aug-17	Feb-18 Units	1.1	
10-39/2	North Star	S and the second		S B2001	145	TCE	ND	ND ug/m ³	134	
2 112 11			B200-004-1		10, 90,	PCE	ND	ND ug/m ³		
19-1-2	L'and and		DENO-WASH	Nº B200-IA-A	Y X	Freon	11 ND	1.3 ug/m ³		10000000
15 Jack	1 million					Freon	113 3,200	730 D ug/m ³		All the second
1 th water	1/Dr	1 Mars	200-OA-1 Results	102 104	10	13. 1/A		br · · ·	1	
		Analyte	Aug-17 Feb-18 Units	ROMHIA-6	100	200	-IA-4 Results			and the second second
Con State		TCE	ND ND ug/m ³			Analyte Aug	-17 Feb-18	Units		
	11	PCE	ND ND ug/m ³	-10· ·· · · · · · · ·		ГСЕ 0.39)J 0.33 J	ug/m ³		AND THE REAL PROPERTY OF
	~11	Freon 11	1.2 A 1.2 ug/m ³	104 105		PCE NI	D ND	ug/m ³	Andrea	
	112	Freon 113	0.67 J T B 0.47 J T B ug/m ³	to la		Freon 11 20	A 4.3	ug/m ³		As At 2 to not
	\sim ())			200-IA-6 Res	ults	Freon 113 100) 21	ug/m ³		and the second
The States	$(A \land)$			Analyte Aug-17 Fe	b-18 Units		(T	- wg	K	A State State State
				1 TCE 0.86J 1	.3 ug/m ³	N K	1		1 9/20	
				Y ≠ PCE ND 0.2	28J ug/m ³		122			The second
-16	A RULE LEDS			Freon 11 6.3 A 2	.7 ug/m ³		¢ /			
1131	A States	State State		Freon 113 31	14 ug/m ³		5/			AIIIIA
\mathcal{D}						-14-1			1000	ALLINES
AL			6.1			1	11		11	A NEWS
FA 1	CHERT AND THE IT			L V				Acres 1	-	

 \bigstar

Concentration exceeds NMED VISL

West Building 200 Soil Vapor and Air Sampling Locations and Analytical Results

MSVGM Well Sample

10,000

Concentration exceeds NMED VISL and WSTF RBC

0

Notes: 100 Concentration below NMED VISL and WSTF RBC See Table 5.1 for Data Flags (A,D,FB,J,TB)

 \bigcirc

MSVM Sample

1,000

Air Sample Location

100 Feet

25

Figure 5.2 Building 637 Soil Vapor and Air Sampling Locations and Analytical Results

600-OA-1 Results

600-SGW-1

\sim						
\bigotimes	600-SGW-1-12.5 Results					
\otimes	Analyte	Aug-17	Feb-18	3 Units		
\otimes	TCE	480 D	740 D	ug/m3		
\bigotimes	PCE	3.4	3.5	ug/m3		
\bigotimes	Freon 11	84 A	14	ug/m3		
\bigotimes	Freon 113	290	370	ug/m3		

Building 637 Soil Vapor and Air Sampling Locations and Analytical Results

10,000

Air Sample Location

MSVM Well Sample

Perched GW Monitoring Well

HWMU

Notes: 100 Concentration below NMED VISL and WSTF RBC See Table 5.1 for Data Flags (A,D,FB,J)

 \bigcirc

Concentration exceeds NMED VISL

 \bigcirc

1,000

Concentration exceeds NMED VISL270 D and WSTF RBC

And Distances in the local distance in the l				
GW-5-7.5 Results				
g-17	Feb-18	Units		
44	42	ug/m3		
٨D	0.6 J	ug/m3		
20 A	2.7	ug/m3		
D Q D	310	ug/m3		

600-OA-2 Results				
Analyte	Aug-17	Feb-18	Units	
TCE	ND	ND	ug/m3	
PCE	ND	ND	ug/m3	
Freon 11	1.2 A	1.1	ug/m3	
Freon 113	0.48 J	0.5 J	ug/m3	

600-IA-4 Results					
nalyte	Aug-17	Feb-18	Units		
CE	ND	ND	ug/m3		
CE	ND	ND	ug/m3		
reon 11	1.2 A	1.4	ug/m3		
reon 113	0.48 J	0.56 J	ug/m3		

June 2018

25

50

100 Feet

Figure 6.1 WSTF Background Soil Area MapRevised Site Conceptual Exposure Model

Figure 2.2	Site Conceptual Exposur	e Model 200 and	600 Areas	Vapor	Intrusion
------------	-------------------------	-----------------	-----------	-------	-----------

LEGEND				
Flow-chart stops here; incomplete pathway				
	Flowchart continues; potentially complete pathway			
•	Potential pathway			
0	Incomplete pathway			

Figure 6.2 <u>WSTF Background Soil Area Map</u>200 Area Soil Boring Locations

Figure 6.3 <u>200 Area Soil Boring Locations</u>600 Area Soil Boring Locations

Figure 6.4

600 Area Soil Boring Locations

Tables

		Table 1.1	Comp	parison of Soil Vapo	or and Air Concent	ration Guidance	Levels				
	NMED	O VISLs ¹		WSTF	RBCs ^{2,3}	OSHA STANDARDS					
Chemical	Indu Occupatio A (µg	strial/ onal Indoor Air g/m ³)		Commercial Worker @ 5-ft bgs (µg/m ³)	Commercial Worker @ 10-ft bgs (µg/m ³)	Commercial Worker @ 10-ft bgs (µg/m ³)	Limits for Air Contaminants PEL TWA ⁴ (ppm)	Limits for Air Contaminants PEL TWA ⁴ (µg/m ³)			
TCE	9.83	328		$ 18,000^{2} (8,800^{3}) $	$34,000^2$ (14,000 ³)	100	537	537,000			
PCE	197	6,550		$460,000^{2}$ (210,000 ³)	910,000 ² (350,000)	100	678	,000			
Freon 11	3,440	115,000		$6,400,000^{2}$ $(130,000,000^{3})$	$ \begin{array}{r} 13,000,000^2 \\ (210,000,000^3) \end{array} $	1,000	5,60),000			
Freon 113	147,000	4,920,000		$\frac{440,000,000^2}{(180,000,000^3)}$	900,000,000 ² (310,000,000 ³)	1,000	7,600),000			

. .

 1 = NMED, 201922cb.

 2 = NASA, 2019a (NASA WSTF NMED-approved Soil Vapor RBCs for 2018)

³ = NASA, 2017a (NASA WSTF NMED-approved Soil Vapor RBCs for 2017). ⁴ = OSHA (n.d.) Personal Exposure Limit (PEL) 8 hour time weighted average (TWA).

Well ID	Location Description	WellSoil Vapor Sample PortO Sample PortTypeLocations (ft bgs)O		Groundwater Sample Location (ft bgs)	Horizontal Distance to Building (ft)	Concentrations for Primary Contaminants from Oct-14 (µg/m ³)
	200 Area in the vicinity	of the Clea	n Room Tank HWM	IU Located Below the	East Side of Buildin	g 200
200-SV-05	West side of B. 200 southwest of the former Clean Room Tank location	MSVM	9		28	Freon 11 = 160 (J) Freon 113 = 54,000 TCE = 47,000 PCE = 8,300 (J)
200-LV-150	Immediately west and adjacent to B. 200 at the former Clean Room Tank location	MSVGM	34, 64, 84	150 - 170	18	Freon 11 = ND Freon 113 = 6,600,000 TCE = 380,000 PCE = 42,000
200-SV-09	Across Apollo Boulevard to the west of B. 200 at location for former Clean Room Discharge pipe	MSVM	19		84	Freon 11 = ND Freon 113 = 14,000 TCE = 23.000 PCE = 3,700
	600 Area in the	Vicinity of t	he Southeast Side of	the 600 Area Closure	Near Building 637	-
600-SGW-1	Northwest of B. 637 within southeast cell of former 600 Area surface impoundments	MSVM	12.5, 57.5, 117.5		184	Freon 11 = ND Freon 113 = 43,000 TCE = 3,800 PCE = ND
600-SGW-2	West of B. 637 along southwest side of southeast cell of former 600 Area surface impoundments	MSVM	12.5, 47.5, 107.5, 150		260	Freon 11 = ND Freon 113 = 200,000 TCE = 10,300 PCE = ND
600-SGW-5	North of B. 637 at east corner of southeast cell of former 600 Area Surface Impoundments	MSVM	7.5, 52.5, 102.5, 137.5		181	Freon 11 = 1,200 (J) Freon 113 = 280,000 TCE = 15,000 PCE = 1.4

 Table 3.1
 Soil Vapor Monitoring Well Sampling Locations

(J) = Estimated value is less than the quantitation limit, but greater than or equal to the detection limit.

MSVM = Multiport Soil Vapor Monitoring, MSVGM = Multiport Soil Vapor and Groundwater Monitoring

- Two semi-annual sampling rounds are proposed to provide seasonal samples. Indoor and outdoor air pressure will be monitored during sampling.

- Approximately seven vadose zone samples (one duplicate) per semi-annual sampling event and 14 samples total.

Indoor Air (IA)/ Outdoor Air (OA) Sample ID	Horizontal Distance from Primary Vadose Zone Vapor Source* (ft)	Sample Type and Frequency	Indoor/ Outdoor Air Sample Collection Location	Sample Collection Strategies	Sample Container and Analysis	Sample Notes
	Build	ing 200 (West Side	200 Area) in the	Vicinity of the Clean Room Tank HWMU	T	
B200-IA-01	13					
B200-IA-02	4			Indoor complex will be collected with outer		
B200-IA-03	0	Indoor/outdoor		wall windows and doors closed to		
B200-IA-04	12	air grab sample.	3 to 5 ft above	minimize any contribution from outside air	3-Liter	Flow
B200-IA-05	22	Two semi-annual	ground surface in typical breathing zone	and will be distributed through rooms as	stainless steel	controller over 8- hour period
B200-IA-06	40	sampling events		applicable.	canister,	
B200-IA-07	24	and winter		Outdoor air samples from a representative	TO-15	
B200-IA-08	60	seasons.		upwind location away from any wind		
B200-OA-01	33					
B200-OA-02	23					
]	Building 637 in the	Vicinity of the S	outheast Side of the 600 Area Closure		
B637-IA-01	92	Indoor/outdoor		Indoor samples will be collected with outer		
B637-IA-02	93	air grab sample.		minimize any contribution from outside air	3-Liter	Flow
B637-IA-03	118	Two semi-annual	3 to 5 ft above	and will be distributed through rooms as	passivated	controller
B637-IA-04	118	sampling events	in typical	applicable.	canister,	over 8-
B637-OA-01	100	in the summer	breathing zone	Outdoor air samples from a representative	analysis by	period
B637-OA-02	100	seasons.		upwind location away from any wind obstructions.	10-15	-

 Table 3.2
 Indoor and Outdoor Air Sampling Locations

* = Primary elevated vapor source in the 200 Area is the footprint of the former Clean Room Tank excavation (HWMU). Primary elevated vapor source in the 600 Area is MSVM well 600-SGW-05.

- Two semi-annual sampling rounds are proposed to provide seasonal samples. Indoor and outdoor air pressure will be monitored during sampling.

- Approximately 18 indoor and outdoor air samples (two duplicates) per semi-annual sampling event and 36 samples total.

Room Location/ (Sample Location)	Product Description	Size (units)	Condition	Chemical Ingredients	MSA Altair 5X PID Reading (ppm)	Photo Y/N
	Glue Paper		In Use	Heat-activated Adhesive	0	
Photo Lab	Flammables Cabinet	$\sim 3 \text{ ft}^3$	In Use	Various chemicals	1	
Rm 102	Fire Extinguisher		Unopened	Possible fluorocarbon propelling agent	0	Y
(B200-IA-06)	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Hand Sanitizer	2 liters	In Use	Ethyl Alcohol	0	
	Fire Extinguisher		Ready to Use	Possible fluorocarbon propelling agent	0	
Photo Lab Room 203	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	Y
	Gator Board		In Use	Adhesive Backing	0	
Photo Lab Room 204.	Adhesive Tape	50 ft roll	Open & Unopened	Adhesive Backing	0	
Storage Shelves	Dry Erase Markers		Unopened	Solvent (ethanol ?)	0	Y
(B200-IA-04)	Kodak Lens Cleaner		Unopened		0	
Room 202	Sure Coat	5 gal buckets	Unopened & Used	Ероху	0	Y
(B200-IA-05)	Freon	Steel canisters	Unopened	Freon	0	
B _{com} 201	FilterMate Vapor Extractor	Machine	In Use	?	0	V
K00III 201	Hydraulic Drill Press	Machine	In Use	Lubes/Oils	0	I
Room 111	Cleaners	Open Vats	In Use	Oakite, oxidizers, sulfuric acids	0	Y
Room 201	drain to sanitary sewer (outside room 111)	Utility Sink	In Use	?	0	
(B200-IA-08) (B200-IA-07)	Flammable Cabinets #2 & #3	1 large, 1 small	In Use	Alcohols, chlorinated solvents, Rustoleum spray paints, WD-40	0	Y
(2200 11 07)	Flammable Cabinet #1	Small	In Use	Paints, solvents, lubes	0	

Table 4.1	Product Inventory Form for 200 Area Building 200 on 6/21/2017	
-----------	---	--

Room Location/ (Sample Location)	n/ Product Size e Description (units) Condition Chemical Ingredients n)		MSA Altair 5X PID Reading (ppm)	Photo Y/N		
Room 216 Assembly Room	Krytox		In Use	?	0	Y
Room 206 (CSS HighBay) (B200-IA-01)) Several products		In Use	Oakite, IPA, Acids, Satellite Accumulation Area containing chemical ingredients identified for other rooms.	0	Y
Room 206B Workbench Area (B200-IA-02)	Marker Pens Oils used for assembly	Small	In Use	?	0	Y
Room 205 Utility Room	Active Drain to Sewer		In Use	Citric acid anhydrous	0	Y
(B200-IA-03)	Bags of water softening pellets					
Room 204	Various		In Use	Full of petrochemicals, acids, corrosives, vacuum pump oils.	0	Y

Room Location/ (Sample Location)	Product Description	Size (units)	Condition	Chemical Ingredients	MSA Altair 5X PID Reading (ppm)	Photo Y/N
Building 637 (B637-IA-1	Sample Bottles (with Preservative)	40 mL - 1 L	Unopened	Dilute hydrochloric acid, sulfuric acid, sodium hydroxide	0	
B637-IA-2 B637-IA-3	Fire Extinguisher	0.5 cu ft	Unopened	Possible fluorocarbon propelling agent	0	Y
B037-IA-4)	Hand Sanitizer	1 L	In Use	Ethyl Alcohol	0	
	Flammables Cabinet	0.25 L - 1 L	In Use	Silicone spray, isopropyl alcohol, gasoline, Rustoleum products	0	
	Corrosives Cabinet	14 oz	In Use	Sodium hydroxide	0	
	Generators	8 cu ft	In Use	Gasoline and oil	0	
Building T-637A	Steam Cleaners	8 cu ft	In Use	Gasoline and oil	0	Y
	Oils/Lubricants	1 L	Unopened	Various motor oils and lubricants (WD40)	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
Building T-637B	Groundwater Sampling Equipment Electronics	50 ft – 500 ft reels	In Use		0	Y
Compressed Nitrogen Storage Area Adjacent to B637	Compressed Gas Cylinders	1.5 cu ft	In Use	Nitrogen	0	N

Table 4.2Product Inventory form for 200 Area Building 637 on 6/26/2017

COPCSample Type $\frac{8/27/17}{Sample}$ EventSample Location $\frac{Method}{Limit}$ (µg/m³) $\frac{Method}{Sample}$ Event $\frac{Method}{Method}$ Detection $\frac{NMED}{VISL or}$ RSL* Residential Indoor Air nc/c (µg/m³) $\frac{NMED VISL}{Ndustrial}$ $\frac{NMED VISL}{Industrial}$ $\frac{NMED VISL}{Industri$	STF RBC ndustrial ft bgs nc / c (µg/m³)2Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)84,000 / 84,000 /Yes: Res risk VISLs (2.79E-02) Res risk RBCs (3.73E-04) Res haz VISLs (5.90E+03) Res haz RBCs (8.37E+01) Indus risk VISLs (3.66E-03) Indus haz VISLs (1.25E+03) Indus haz RBCs (4.88E+00)NANA
TCE Soil Vapor (MSVM Well) Maximum 410,000 200-LV- 150-34 920 140,000 (D) 200-LV- 150-34 430 69.5 / 147 NA 328 / 1,120 NA 4.900 / 11,000 84.00	Yes: Res risk VISLs (2.79E-02) Res risk RBCs (3.73E-04) Res haz VISLs (5.90E+03) Res haz RBCs (8.37E+01) Indus risk VISLs (3.66E-03) Indus haz VISLs (1.25E+03) Indus haz RBCs (4.88E+00)NANA
	<u>NA</u> <u>NA</u>
<u>B200 Outdoor Air</u> <u>Maximum</u> < <u>0.26 200-OA-1 0.26 <0.21 200-OA-1 0.21 NA NA NA NA NA NA NA NA</u>	NT4 NT
<u>B200</u> Indoor Air Maximum 0.86 200-IA-6 0.27 1.3 200-IA-6 0.20 NA 2.09/4.42 NA 9.83/33.6 NA NA	<u>NA</u> <u>No</u>
$\frac{PCE}{\underbrace{Soil Vapor (MSVM}{Well) Maximum}} \underbrace{57,000}_{150-34} \underbrace{\frac{200-LV-}{150-34}}_{920} \underbrace{36,000}_{150-34} \underbrace{\frac{200-LV-}{150-34}}_{210} \underbrace{\frac{1,390}{3,600}}_{1,300} \underbrace{NA}_{1,7,600} \underbrace{\frac{6,550}{17,600}}_{NA} \underbrace{\frac{130,000}{340,000}}_{2,300,} \underbrace{\frac{2,300}{6,000}}_{1,000} \underbrace{NA}_{1,000} \underbrace{\frac{130,000}{340,000}}_{1,000} \underbrace{\frac{1}{2},300}_{1,000} \underbrace{\frac{1}{2},$	Yes: 300,000 / Res risk VISLs (1.58E-04) .000,000 Res haz VISLs (4.10E+01) Indus risk VISLs (3.24E-05) Indus haz VISLs (8.70E+00)
$\frac{B200 \text{ Outdoor Air}}{Maximum} \leq 0.26 \underline{200\text{-}OA\text{-}1} \underline{0.26} \underline{<0.21} \underline{200\text{-}OA\text{-}1} \underline{0.21} \underline{NA} N$	<u>NA</u> <u>NA</u>
$\frac{B200}{Indoor Air Maximum} \frac{ND}{Indoor Air Maximum} \frac{200-IA-6}{ID} \frac{0.27}{(J)} \frac{0.28}{(J)} \frac{200-IA-6}{D} \frac{0.20}{D} \frac{NA}{D} \frac{41.7/108}{100} \frac{NA}{D} \frac{197/529}{D} \frac{NA}{D} \frac{NA}{D} \frac{100}{D} \frac{100}{D} \frac{NA}{D} \frac{100}{D} \frac{100}$	<u>NA</u> <u>No</u>
$\frac{\text{Freon 11}}{\text{Well}) \text{ Maximum}} \frac{\text{Soil Vapor (MSVM}}{\text{(A)}} \frac{490}{9} \underline{200\text{-}SV\text{-}05\text{-}}}{9} \underline{94} \underline{<52} \frac{200\text{-}SV\text{-}05\text{-}}{9} \underline{52} \underline{24,300/} \underline{NA} \underline{115,000/} \underline{NA} \underline{530,000/} \underline{6,400,00} \underline{115,000/} \underline{NA} \underline{530,000/} \underline{115,000/} \underline{NA} 115,000/\text{$	<u>+00,000 / -</u> <u>No</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>NA</u> <u>NA</u>
B200 22 200-IA-3 0.32 4.4 200-IA-3 0.26 NA 730/ NA 3.440/ NA NA	<u>NA</u> <u>No</u>
Freen 113 Soil Vapor (MSVM Well) Maximum $470,000$ $200-LV_{-}$ $140,000$ $200-LV_{-}$ 520 $1.040,000/ NA$ $4.920,000/ NA$ $120,000,000/ 2.300,00/-$ Well) Maximum $470,000$ $150-34$ 1.00 $1000,000/ 100-LV_{-}$ $100/ 100/-$	<u>00,000,00</u> <u>0 /</u> <u>No</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>NA</u> <u>NA</u>
B200 Indoor Air Maximum 3.200 200-IA-5 6.6 730 (D) 200-IA-5 2.7 NA 31,300 / NA 147,000 / NA NA	<u>NA</u> <u>No</u>
$\frac{2-\text{Butanone}}{\text{Well}) \text{ Maximum}} \leq 1,400 \frac{200-\text{LV}-}{150-34} 1,400 <320 \frac{200-\text{LV}-}{150-34} 320 174,000/\dots \text{ NA} \underline{819,000/\dots} \underline{NA} \underline{9,600,000/\dots} \frac{160,00}{\sqrt{-100}} \leq 100,000/\dots \text{ NA}$	<u>0,000,000</u> <u>No</u>
$\frac{B200 \text{ Outdoor Air}}{Maximum} \frac{3}{(J, TB)} \underline{200\text{-}OA\text{-}1} \underline{0.39} \underline{0.42} \underline{200\text{-}OA\text{-}2} \underline{0.32} \underline{NA} N$	<u>NA</u> <u>NA</u>
$\frac{B200}{Indoor Air Maximum} = \underbrace{8.7}_{200-IA-3} \underbrace{0.30}_{(J)} = \underbrace{\frac{2}{(J)}}_{200-IA-2} \underbrace{0.36}_{0.36} = \underbrace{NA}_{5,210/} = \underbrace{NA}_{24,600/} = \underbrace{NA}_{4,600/} = \underbrace{NA}_{4,600/$	<u>NA</u> <u>No</u>
$\frac{1.1.1}{\text{trichloroethane}} \xrightarrow{\text{Soil Vapor (MSVM}}{\text{Well) Maximum}} \leq 1.100 \xrightarrow{200-LV-}{150-34} 1.100 \leq 260 \xrightarrow{200-LV-}{150-34} 260 \xrightarrow{174.000/}{NA} \xrightarrow{819.000/}{NA} \xrightarrow{13.000.000/}{220.00} \xrightarrow{220.00}{-}$	<u>0.000,000</u> <u>No</u>
B200 Outdoor Air <0.32 200-OA-1 0.32 <0.25 200-OA-1 0.25 NA	<u>NA</u> <u>NA</u>

ч	
~	

<u>COPC</u>	Sample Type	<u>8/27/17</u> <u>Sample</u> <u>Event</u> (µg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (μg/m ³)	<u>2/25/18</u> <u>Sample</u> <u>Event</u> (µg/m ³)	<u>Sample</u> Location	<u>Method</u> Detection Limit (µg/m ³)	<u>NMED</u> <u>VISL or</u> <u>RSL*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c</u> (μg/m ³) ¹	<u>NMED VISL</u> or RBC* <u>Residential</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or RSL* <u>Industrial</u> Soil Vapor <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or <u>RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>WSTF RBC</u> <u>Residential</u> <u>ft bgs</u> <u>nc / c</u> (μg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	<u>Exceeds Risk / Hazard?</u> (Calculated risk or hazard <u>exceeded)</u>
<u>1,1,1-</u> trichloroethane	<u>B200</u> Indoor Air Maximum	<u><0.38</u>	<u>200-IA-1</u>	<u>0.38</u>	<u><0.27</u>	<u>200-IA-1</u>	0.27	<u>NA</u>	5,210 /	NA	24,600 /	<u>NA</u>	NA	No
Chloroform	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><260</u>	<u>200-LV-</u> <u>150-34</u>	<mark>260</mark>	<u>3,410 / <mark>40.7</mark></u>	<u>NA</u>	<u>16,100/<mark>199</mark></u>	<u>NA</u>	<u>210,000 /</u> <u>2,500</u>	<u>3,700,000 /</u> <u>46,000</u>	No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	$\frac{0.35}{(J)}$	<u>200-OA-1</u>	0.32	<u>ND</u>	<u>200-OA-1</u>	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B200</u> Indoor Air Maximum	<u>0.33</u> (J)	<u>200-IA-3</u>	<u>0.25</u>	<u>0.39</u> (J)	<u>200-IA-3</u>	<u>0.26</u>	<u>NA</u>	<u>102 / 1.22</u>	NA	<u>5.98 / 5.98</u>	<u>NA</u>	NA	No
Benzene	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u>80</u> (J)	<u>200-SV-09-</u> <u>19</u>	<u>67</u>	<u><52</u>	<u>200-SV-09-</u> <u>19</u>	<u>52</u>	<u>1,040 / 120</u>	<u>NA</u>	<u>4,920 / 588</u>	<u>NA</u>	29,000 / 3,400	<u>400,000 /</u> <u>49,000</u>	No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u><0.27</u>	<u>200-OA-2</u>	<u>0.27</u>	<u>0.3</u> (J)	<u>200-OA-2</u>	<u>0.24</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B200</u> Indoor Air Maximum	<u>1.1</u>	<u>200-IA-4</u>	<u>0.29</u>	<u>1.6</u>	<u>200-IA-8</u>	0.27	<u>NA</u>	<u>31.3 / 3.60</u>	NA	<u>17.6 / 17.6</u>	<u>NA</u>	<u>NA</u>	No
<u>Ethylbenzene</u>	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><240</u>	<u>200-LV-</u> <u>150-34</u>	<u>240</u>	<u>34,800 / <mark>374</mark></u>	<u>NA</u>	<u>164,000 /</u> <u>1,840</u>	<u>NA</u>			No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u><0.30</u>	<u>200-OA-1</u>	<u>0.30</u>	<u><0.24</u>	<u>200-OA-1</u>	<u>0.24</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA
	<u>B200</u> Indoor Air Maximum	<u>0.47</u> <u>(J)</u>	<u>200-IA-3</u>	<u>0.23</u>	<u><0.30</u>	<u>200-IA-3</u>	<u>0.30</u>	<u>NA</u>	<u>1,040 / 11.2</u>	<u>NA</u>	<u>55.1 / 55.1</u>	<u>NA</u>	<u>NA</u>	<u>No</u>
Toluene	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><260</u>	<u>200-LV-</u> <u>150-34</u>	<u>260</u>	174,000 /	NA	<u>819,000 /</u>	<u>NA</u>			No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u>0.39</u> (J, TB)	<u>200-OA-1</u>	<u>0.32</u>	<u><0.25</u>	<u>200-OA-1</u>	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B200</u> Indoor Air Maximum	$\frac{7.2}{(J)}$	<u>200-IA-5</u>	<u>6.6</u>	<u>1.1</u>	<u>200-IA-3</u>	<u>0.26</u>	<u>NA</u>	<u>5,210 /</u>	NA	24,600 /	<u>NA</u>	<u>NA</u>	No
<u>Xylenes</u>	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><2,000</u>	<u>200-LV-</u> <u>150-34</u>	<u>2,000</u>	<u><460</u>	<u>200-LV-</u> <u>150-34</u>	<u>460</u>	<u>3,480 /</u>	<u>NA</u>	<u>16,400 /</u>	<u>NA</u>			No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u><0.56</u>	<u>200-OA-1</u>	0.56	<u><0.44</u>	<u>200-OA-1</u>	<u>0.44</u>	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>1.5</u>	<u>200-IA-3</u>	<u>0.44</u>	<u><0.47</u>	<u>200-IA-3</u>	<u>0.47</u>	<u>NA</u>	<u>104 /</u>	NA	492 /	<u>NA</u>	<u>NA</u>	No
Acetone	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><5,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>5,100</u>	<u><1,200</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,200</u>	<u>1,080,000 / -</u> 	<u>NA</u>	<u>5,080,000 /</u> =	<u>NA</u>	<u>53,000,000 /</u> <u>-</u>	<u>860,000,000</u> <u>/</u>	<u>No</u>
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u>13</u> (TB)	<u>200-OA-1</u>	<u>1.4</u>	<u>2.4</u>	<u>200-OA-2</u>	<u>1.2</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA
	<u>B200</u> Indoor Air Maximum	<u>29</u> (QD)	<u>200-IA-3</u>	<u>1.4</u>	<u>8.7</u>	<u>200-IA-2</u>	<u>1.3</u>	<u>NA</u>	32,300 /	<u>NA</u>	<u>152,000 /</u>	NA	<u>NA</u>	No
<u>2-propanol³</u>	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><2,800</u>	<u>200-LV-</u> <u>150-34</u>	<u>2,800</u>	<u><640</u>	<u>200-LV-</u> <u>150-34</u>	<mark>640</mark>	210*/	NA	<u>880</u> * /	NA	350,000 /	<u>5,600,000 / -</u>	No
	<u>B200 Outdoor Air</u> <u>Maximum</u>	<u>4.3</u>	<u>200-OA-2</u>	<u>0.71</u>	<u><0.66</u>	<u>200-OA-2</u>	<u>0.66</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA	NA

<u>COPC</u>	<u>Sample Type</u>	<u>8/27/17</u> <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> <u>Location</u>	<u>Method</u> <u>Detection</u> <u>Limit</u> (µg/m ³)	<u>2/25/18</u> <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (µg/m ³)	<u>NMED</u> <u>VISL or</u> <u>RSL*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c</u> (μg/m ³) ¹	<u>NMED VISL</u> or RBC* <u>Residential</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or RSL* Industrial Soil Vapor nc / c (µg/m ³) ¹	<u>NMED VISL</u> or <u>RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	WSTF RBC <u>Residential</u> <u>ft bgs</u> <u>nc / c</u> (μg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	<u>Exceeds Risk / Hazard?</u> (Calculated risk or hazard <u>exceeded)</u>
<u>2-propanol</u>	<u>B200</u> Indoor Air Maximum	<u>68</u> (QD)	<u>200-IA-3</u>	<u>0.61</u>	<u>4.3</u>	<u>200-IA-1</u>	<u>0.67</u>	<u>NA</u>	210* /	<u>NA</u>	<u>880* /</u>	<u>NA</u>	NA	No
1,1-Dichloroethene	Soil Vapor (MSVM Well) Maximum	12,000	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u>7,500</u>	<u>200-LV-</u> <u>150-34</u>	<u>260</u>	<u>6,950 /</u>	<u>NA</u>	32,800 /	NA	400,000 /	<u>6,700,000 / -</u> 	<u>Yes:</u> <u>Res haz VISLs (1.73E+00)</u>
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.32</u>	<u>200-OA-1</u>	<u>0.32</u>	<u><0.25</u>	<u>200-OA-1</u>	<u>0.25</u>	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u><0.38</u>	<u>200-IA-1</u>	0.38	<u><0.27</u>	<u>200-IA-1</u>	0.27	<u>NA</u>	209 /	NA	<u>983 /</u>	<u>NA</u>	NA	No
<u>1,2,4-Trimethy-</u> lbenzene ³	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><990</u>	<u>200-LV-</u> <u>150-34</u>	<u>990</u>	<u><230</u>	<u>200-LV-</u> <u>150-34</u>	<u>230</u>	<mark>63</mark> /	NA	<u>260</u> /	NA			No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.28</u>	<u>200-OA-1</u>	<u>0.28</u>	<u><0.22</u>	<u>200-OA-1</u>	0.22	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>0.92</u>	<u>200-IA-3</u>	<u>0.22</u>	<u>ND</u>	<u>200-IA-1</u>	<u>0.24</u>	<u>NA</u>	<u>63 /</u>	<u>NA</u>	<u>260 /</u>	<u>NA</u>	<u>NA</u>	No
2,2,4-Trimethyl- pentane	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><990</u>	<u>200-LV-</u> <u>150-34</u>	<u>990</u>	<u><230</u>	<u>200-LV-</u> <u>150-34</u>	<u>230</u>		NA		<u>NA</u>			No
•	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.28</u>	<u>200-OA-1</u>	0.28	<u><0.22</u>	<u>200-OA-1</u>	0.22	NA	NA	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>0.39</u> (J)	<u>200-IA-3</u>	0.28	<u><0.24</u>	<u>200-IA-1</u>	0.24	<u>NA</u>	<u></u>	NA	<u></u>	NA	NA	No
<u>2-Hexanone³</u>	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><240</u>	<u>200-LV-</u> <u>150-34</u>	<mark>240</mark>	<u>31</u> * /	NA	<u>130</u> -*/	NA	7,1000 /	<u>1,200,000 / -</u> 	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u>0.62</u> (J)	<u>200-OA-1</u>	0.30	<u><0.24</u>	<u>200-OA-1</u>	0.24	NA	NA	NA	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>1.1</u>	<u>200-IA-3</u>	<u>0.30</u>	<u>0.39</u> (J)	<u>200-IA-2</u>	<u>0.28</u>	<u>NA</u>	<u>31* /</u>	<u>NA</u>	<u>130* /</u>	<u>NA</u>	<u>NA</u>	No
<u>4-Methyl-2-</u> pentanone (methyl isobutyl ketone)	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><240</u>	<u>200-LV-</u> <u>150-34</u>	<u>240</u>	<u>104,000 /</u>	<u>NA</u>	<u>492,000 /</u>	<u>NA</u>	<u>7,200,000 /</u>	<u>120,000,000</u> /	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u>0.42</u>	<u>200-OA-1</u>	<u>0.30</u>	<u><0.24</u>	<u>200-OA-1</u>	<u>0.24</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>24</u>	<u>200-IA-3</u>	<u>0.23</u>	<u><0.25</u>	<u>200-IA-1</u>	<u>0.25</u>	<u>NA</u>	<u>3,130 /</u>	NA	<u>14,700 /</u>	<u>NA</u>	<u>NA</u>	<u>No</u>
Carbon Disulfide	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u>64</u> (J)	<u>200-SV-09-</u> <u>19</u>	<u>63</u>	<u><230</u>	<u>200-LV-</u> <u>150-34</u>	<u>230</u>	<u>24,300 /</u>	<u>NA</u>	<u>115,000 /</u>	<u>NA</u>	<u>610,000 /</u> <u>1,200,000 /</u>	<u>8,100,000 / -</u> 19,000,000 <u>/</u>	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u>0.73</u> (J A TB)	<u>200-OA-1</u>	<u>0.28</u>	<u><0.22</u>	<u>200-OA-1</u>	0.22	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>0.47</u> (J A)	<u>200-IA-1</u>	0.33	<0.24	<u>200-IA-1</u>	0.24	NA	730 /	NA	<u>3,440 /</u>	NA	NA	No
<u>Carbon</u> Tetrachloride	Soil Vapor (MSVM Well) Maximum	<u><990</u>	<u>200-LV-</u> 150-34	<u>990</u>	<u><230</u>	<u>200-LV-</u> 150-34	<u>230</u>	<u>3,480 / 156</u>	NA	<u> 16,400 / <mark>765</mark></u>	NA			No
	B.200 Outdoor Air Maximum	<u>0.41</u>	<u>200-OA-2</u>	0.25	<u>0.4</u>	<u>200-OA-1</u>	0.22	NA	NA	NA	NA	NA	NA	NA

<u>COPC</u>	<u>Sample Type</u>	<u>8/27/17</u> <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (μg/m ³)	<u>2/25/18</u> <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (µg/m ³)	<u>NMED</u> <u>VISL or</u> <u>RSL*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>or RSL*</u> <u>Industrial</u> <u>Soil Vapor</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	WSTF RBC <u>Residential</u> <u>ft bgs</u> <u>nc / c</u> (μg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
	<u>B.200</u> Indoor Air Maximum	<u>0.45</u>	<u>200-IA-1</u>	<u>0.33</u>	<u>0.41</u>	<u>200-IA-3</u>	<u>0.23</u>	<u>NA</u>	104 / 4.68	<u>NA</u>	22.9 / 22.9	<u>NA</u>	NA	No
Chloromethane	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><990</u>	<u>200-LV-</u> 150-34	<u>990</u>	<u><230</u>	<u>200-LV-</u> 150-34	<u>230</u>	<u>3,130 / 520</u>	NA	<u>14,700 /</u> 2,550	NA	<u>140,000 /</u> 22,000	<u>2,100,000 /</u> <u>370,000</u>	No
	<u>B.200 Outdoor Air</u> Maximum	<u>0.42</u> (J TB)	<u>200-OA-1</u>	<u>0.28</u>	<u>0.57</u> (J)	<u>200-OA-2</u>	<u>0.23</u>	NA	NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>0.37</u> (J)	<u>200-IA-6</u>	0.29	<u>0.6</u> (J)	<u>200-IA-3</u>	<u>0.23</u>	NA	93.9 / 15.6	NA	76.5 / 76.5	<u>NA</u>	NA	No
<u>Ethanol</u>	<u>Soil Vapor (MSVM</u> Well) <u>Maximum</u>	<5,300	<u>200-LV-</u> 150-34	<u>5,300</u>	<1,200	<u>200-LV-</u> 150-34	<u>1,200</u>		NA		NA	26,000,000 /	<u>400,000,000</u> /	No
	<u>B.200 Outdoor Air</u> Maximum	<u>56</u>	<u>200-OA-1</u>	<u>1.5</u>	<u><1.2</u>	<u>200-OA-1</u>	<u>1.2</u>	NA	NA	NA	NA	<u>NA</u>	NA	<u>NA</u>
	B.200 Indoor Air Maximum	<u>23</u>	<u>200-IA-3</u>	<u>1.2</u>	<u>11</u>	<u>200-IA-1</u>	<u>1.3</u>	NA		NA		<u>NA</u>	NA	No
Freon 12 (Dichloro-difluoro-	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><1,100</u>	<u>200-LV-</u> 150-34	<u>1,100</u>	<u>1,200</u>	<u>200-LV-</u> 150-34	<u>260</u>	<u>3,480 /</u>	NA	<u>16,400 /</u>	NA	220,000 /	<u>3,800,000 / -</u> 	No
methane)	B.200 Outdoor Air Maximum	<u>2.3</u> (TB)	<u>200-OA-1</u>	<u>0.32</u>	<u>2.4</u>	<u>200-OA-1</u>	<u>0.25</u> (TB)	NA	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>
	<u>B.200</u> Indoor Air Maximum	<u>2.7</u>	<u>200-IA-4</u>	<u>0.31</u>	<u>2.7</u>	<u>200-IA-3</u>	<u>0.26</u>	NA	104 /	<u>NA</u>	492 /	<u>NA</u>	NA	No
Freon 21 (Dichloro-	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><1,600</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,600</u>	<u><370</u>	<u>200-LV-</u> <u>150-34</u>	<u>370</u>		NA		NA	220,000 /	<u>4,300,000 / -</u> _	No
fluoromethane)	B.200 Outdoor Air Maximum	<u><0.45</u>	<u>200-OA-1</u>	<u>0.45</u>	<u><0.35</u>	<u>200-OA-1</u>	<u>0.35</u>	NA	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>3.5</u>	<u>200-IA-3</u>	<u>0.45</u>	<u><0.38</u>	<u>200-IA-1</u>	<u>0.38</u>	NA		<u>NA</u>		<u>NA</u>	NA	No
Heptane ³	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<u><260</u>	<u>200-LV-</u> <u>150-34</u>	<u>260</u>	<mark>420</mark> * /	NA	<u>1,800* /</u>	NA	<u>1,000,000 /</u>	<u>18,000,000 /</u> 	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.32</u>	<u>200-OA-1</u>	<u>0.32</u>	<u><0.25</u>	<u>200-OA-1</u>	<u>0.25</u>	NA	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>0.33</u> (J)	<u>200-IA-3</u>	<u>0.25</u>	<u><0.27</u>	<u>200-IA-1</u>	0.27	NA	420* /	<u>NA</u>	<u>1,800* /</u>	<u>NA</u>	NA	No
Hexane	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><990</u>	<u>200-LV-</u> <u>150-34</u>	<u>990</u>	<u><230</u>	<u>200-LV-</u> <u>150-34</u>	<u>230</u>	24,300 /	NA	115,000 /	NA	1,600,000 /	<u>28,000,000 /</u> 	No
	B.200 Outdoor Air Maximum	<u>0.35</u> (J TB)	<u>200-OA-1</u>	<u>0.28</u>	<u><0.22</u>	<u>200-OA-1</u>	<u>0.22</u>	NA	NA	NA	NA	<u>NA</u>	NA	<u>NA</u>
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>1.2</u>	<u>200-IA-3</u>	0.22	<u>1.1</u>	<u>200-IA-3</u>	0.25	NA	730 /	NA	<u>3,440 /</u>	NA	NA	No
Methylene Chloride	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,100</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,100</u>	<260	<u>200-LV-</u> <u>150-34</u>	<u>260</u>	<u>20,900 /</u> <u>33,800</u>	NA	<u>98,300 /</u> <u>459,000</u>	NA	<u>1,100,000 /</u> <u>1,700,000</u>	<u>18,000,000 /</u> <u>79,000,000</u>	No
	B.200 Outdoor Air Maximum	<u><0.32</u>	200-OA-1	0.32	<u>0.42</u> (J)	200-OA-2	<u>0.26</u>	NA	NA	NA	NA	NA	NA	NA
	B.200 Indoor Air Maximum	<u>1.6</u>	<u>200-IA-4</u>	<u>0.31</u>	<u>0.43</u> (J)	<u>200-IA-2</u>	<u>0.29</u>	NA	<u>626 / 1,010</u>	NA	<u>2,950 / 13,800</u>	<u>NA</u>	NA	No

<u>COPC</u>	Sample Type	8/27/17 <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (μg/m ³)	<u>2/25/18</u> <u>Sample</u> <u>Event</u> (μg/m ³)	<u>Sample</u> Location	<u>Method</u> <u>Detection</u> <u>Limit</u> (µg/m ³)	<u>NMED</u> <u>VISL or</u> <u>RSL*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c</u> (µg/m ³⁾¹	<u>NMED VISL</u> or RBC* <u>Residential</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or RSL* <u>Industrial</u> Soil Vapor <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or RBC* <u>Industrial</u> <u>Indoor Air</u> <u>nc / c</u> (µg/m ³) ¹	<u>WSTF RBC</u> <u>Residential</u> <u>ft bgs</u> <u>nc / c</u> (μg/m ³) ²	WSTF RBC Industrial ft bgs nc / c (µg/m ³) ²	<u>Exceeds Risk / Hazard?</u> (Calculated risk or hazard <u>exceeded)</u>
<u>Styrene</u>	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><990</u>	<u>200-LV-</u> <u>150-34</u>	<u>990</u>	<u><230</u>	<u>200-LV-</u> <u>150-34</u>	<u>230</u>	<u>34,800 /</u>	<u>NA</u>	<u>164,000 /</u>	<u>NA</u>			No
	B.200 Outdoor Air Maximum	<u><0.28</u>	<u>200-OA-1</u>	<u>0.28</u>	<u><0.22</u>	<u>200-OA-1</u>	0.22	NA	NA	NA	NA	NA	NA	NA
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>1.9</u>	<u>200-IA-3</u>	0.22	<u><0.24</u>	<u>200-IA-1</u>	<u>0.24</u>	NA	<u>1,040 /</u>	NA	4,920 /	NA	NA	No
Tetrahydro-furan ³	<u>Soil Vapor (MSVM</u> <u>Well) Maximum</u>	<u><1,300</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,300</u>	<u><310</u>	<u>200-LV-</u> <u>150-34</u>	<u>310</u>	<u>2,100* /</u>	<u>NA</u>	<u>1,800* /</u>	NA	3,600,000 /	<u>59,000,000 /</u> 	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.38</u>	<u>200-OA-1</u>	<u>0.38</u>	<u>1.2</u>	<u>200-OA-2</u>	<u>0.30</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>0.29</u> (J)	<u>200-IA-3</u>	<u>0.29</u>	<u><0.32</u>	<u>200-IA-1</u>	<u>0.32</u>	<u>NA</u>	<u>2,100* /</u>	NA	<u>1,800* /</u>	<u>NA</u>	NA	No
<u>trans-1,2-</u> Dichloroethene	<u>Soil Vapor (MSVM</u> Well) Maximum	<u><1,300</u>	<u>200-LV-</u> <u>150-34</u>	<u>1,300</u>	<u><290</u>	<u>200-LV-</u> <u>150-34</u>	<u>290</u>	<u>1,390 /</u>	<u>NA</u>	<u>6,550 /</u>	NA		<u></u>	No
	<u>B.200 Outdoor Air</u> <u>Maximum</u>	<u><0.36</u>	<u>200-OA-1</u>	<u>0.36</u>	<u><0.28</u>	<u>200-OA-1</u>	<u>0.28</u>	<u>NA</u>	<u>NA</u>	NA	NA	<u>NA</u>	NA	<u>NA</u>
	<u>B.200 Indoor Air</u> <u>Maximum</u>	<u>2.2</u> (FB)	<u>200-IA-8</u>	0.36	<u>1.8</u> (FB)	<u>200-IA-8</u>	0.32	NA	41.7 /	NA	<u>197 /</u>	NA	NA	No

Red = VISL or RBC exceeded.

Yellow = Detection limit exceeds VISL or RBC.

Flags = (D) reported result is from a dilution, (J) result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit, (A) result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits, (QD) relative percent difference for a field duplicate was outside standard limits, (FB) analyte was detected in the trip blank.

---- = Not available. NA = Not applicable.

nc / c = noncancer / cancer

 $\frac{1}{2} = \text{NMED VISLs taken from Risk Assessment Guidance for Site Investigations and Remediation November 2022 (NMED, 2022c).}$ $\frac{2}{2} = \text{WSTF RBCs for soil vapor taken from NASA WSTF NMED-approved Soil Vapor RBCs for 2022 (NASA, 2022), approved with modification February 11, 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next$ shallowest depth to the sample depth was chosen to be conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used. $*^3 = No NMED VISL was listed, so EPA RSL for air was used (EPA, 2022b).$

Table 4	.4 Dete	<u>ction Limits Exc</u>	ceeding Screening Levels Well 200-LV	<u>/-150</u>
Constituent	Detected?	<u>Detection</u> <u>Limit</u>	Screening Level Exceeded (µg/m ³)	Dilution
<u>Carbon</u> <u>tetrachloride</u>	No	<u>990 and 230</u> 990	Residential cancer VISL 156; Industrial cancer VISL 765	<u>6600 and 1530</u>
Chloroform	No	<u>1,100 and 260</u>	Resident cancer VISL 40.7; Industrial cancer VISL 199	6600 and 1530
Ethylbenzene	No	<u>1,100</u>	Residential cancer VISL 374	<u>6600</u>
<u>Heptane</u>	<u>No</u>	<u>1,100</u>	Residential air (noncancer) RSL 420	<u>6600</u>
2-Hexanone	<u>No</u>	1,100 and 240	Residential air (noncancer) RSL 31; Industrial air (noncancer) RSL 130	6600 and 1530
<u>2-Propanol</u> (Isopropanol)	No	2,800 and 640 2,800	Residential air (noncancer) RSL 210; Industrial air (noncancer) RSL 880	<u>6600 and 1530</u>
<u>Trichloroethylene</u> (TCE)	Yes	920 and 430	Residential noncancer VISL 69.5; Residential cancer VISL 147; Industrial noncancer VISL 328	6600 and 3060
<u>1,2,4-</u> <u>Trimethylbenzene</u>	No	<u>990 and 230</u> <u>990</u>	Residential air (noncancer) RSL 63; Industrial air (noncancer) RSL 260	6600 and 1530

Note: Well was sampled at 34 ft bgs.

-

		-	Fable 5.1	<u>Summary of</u>	200 Area Bu	ilding 200 and	l Vicinity S	Soil Vapor, Ot	utdoor Air, and	l Indoor Air A r	nalytical Resul	ts		
COPC	Sample Type	8/27/17 Sample Event (μg/m³)	Sample Location	Method Detection Limit (μg/m³)	2/25/18 Sample Event (μg/m³)	Sample Location	Method Detectio n Limit (µg/m³)	<u>NMED</u> <u>VISL</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc/c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>Residential</u> <u>Indoor Air</u> <u>ne/e</u> (<u>µg/m³)¹</u>	NMED VISL Industrial Soil Vapor <u>ne/e</u> (µg/m ³) ¹	NMED VISL Industrial Indoor Air <u>nc/c</u> (µg/m ³) ¹	WSTF RBC ResidentialSoi I Vapor in@ 5 ft bgs <u>nc/c</u> (µg/m ³) ²	WSTF RBC Industrial in ft bgs <u>ft bgs</u> <u>ne/e</u> (<u>µg/m³)²</u>	OSHA PEL TWA (8-Hr) (µg/m³) <u>Exceeds Risk / Hazard?</u>
ŦŒ	Soil Vapor (MSVM Well) Maximum	410,000	200 LV- 150-34	920	140,000 (D)	200 LV- 150-34	<mark>430</mark>	<u>69.5 / 147</u>	<u>NA</u>	<mark>328<u>/1,120</u></mark>	NA	<u>4,900 /</u> <u>11,000</u> 18,000	<u>84,000 /</u> <u>280,000</u>	<u>Yes:</u> <u>Res risk (2.79E 02) VISLs</u> <u>Res risk (3.73E 04) RBCs</u> <u>Res haz (5.90E+03) VISLs</u> <u>Res haz (8.37E+01)</u> <u>RBCsNA</u> <u>Indus risk (3.66E-03) VISLs</u> <u>Indus haz (1.25E+03) VISLs</u> <u>Indus haz (4.88E+00) RBCs</u>
	B200 Outdoor Air Maximum	ND	200 OA 1	0.26	NÐ	200 OA 1	0.21	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 537,000
	B200 Indoor Air Maximum	0.86	200 IA 6	0.27	1.3	200 IA 6	0.20	<u>NA</u>	<u>2.09 / 4.42</u>	NA	9.83<u> / 33.6</u>	NA	NA	<u>No</u> 537,000
PCE	Soil Vapor (MSVM Well) Maximum	57,000	200 LV- 150 34	920	36,000	200 LV- 150 3 4	210	<u>1,390 /</u> <u>3,600</u>	<u>NA</u>	6,550<u>/</u> <u>17,600</u>	NA	<u>130,000 /</u> <u>340,000</u> 460,00 θ	<u>2,300,000 /</u> <u>6,000,000</u>	<u>Yes:</u> NA <u>Res risk (1.58E 04) VISLs</u> <u>Res haz (4.10E+01) VISLs</u> <u>Indus risk (3.24E 05) VISLs</u> <u>Indus haz (8.70E+00) VISLs</u>
	B200 Outdoor Air Maximum	ND	200 OA 1	0.26	ND	200 OA 1	0.21	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 678,000
	B200 Indoor Air Maximum	NÐ	200 IA 6	0.27	0.28 (J)	200 IA 6	0.20	<u>NA</u>	<u>41.7 / 108</u>	NA	197<u>/529</u>	NA	NA	<u>No</u> 678,000
Freon 11	Soil Vapor (MSVM Well) Maximum	490 (A)	200 SV 05_ 9	94	ND	200 SV 05_ 9	52	<u>24,300 /</u>	NA	115,000<u>/</u>	NA	<u>530,000 /</u> 6,400,000	6,400,000 / 	<u>No</u> NA
	B200 Outdoor Air Maximum	$\frac{1.2}{(A)}$	200 OA 1	0.32	1.2	200 OA 1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA5,620,000</u>
	B200 Indoor Air Maximum	22 (A, QD)	200 IA 3	0.32	4.4	200 IA 3	0.26	<u>NA</u>	730/	NA	3,440<u>/</u>	NA	<u>NA</u>	<u>No</u> 5,620,000
Freon 113	Soil Vapor (MSVM Well) Maximum	470,000	200 LV 150 34	1,100	140,000 (D)	200-LV- 150-34	520	<u>1,040,000 /</u> =	<u>NA</u>	4 ,920,000<u>/</u> =	NA	<u>120,000,000 /_</u> 440,000,000	<u>2,300,000,00</u> <u>0/</u>	<u>No</u> NA
	B200 Outdoor Air Maximum	0.76 (J)	200 OA 2	0.29	0.49 (J)	200 OA 2	0.26	<u>NA</u>	NA	NA	NA	NA	NA	<u>NA</u> 7,670,000
Freon 113 (cont.)	B200 Indoor Air Maximum	3,200	200 IA 5	6.6	730 (D)	200 IA 5	2.7	<u>NA</u>	31,300 /	NA	147,000 <u>/</u>	NA	NA	<u>No</u> 7,670,000
2 Butanone	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 34	1,400	NÐ	200 LV 150 34	320	174,000 /	<u>NA</u>	819,000<u>/</u>	NA	<u>9,600,000 /</u>	<u>160,000,000</u> ,∕	<u>No</u> NA
	B200 Outdoor Air Maximum	3 (J, TB)	200 OA 1	0.39	0.42	200 OA 2	0.32	NA	NA	NA	NA	NA	NA	<u>NA</u> 590,000
	B200 Indoor Air Maximum	8.7	200 IA 3	0.30	2 (J)	200 IA 2	0.36	<u>NA</u>	<u>5,210 /</u>	NA	24,600<u>/</u>	NA	NA	<u>No</u> 590,000
1,1,1 - trichloroethane	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 34	1,100	NÐ	200 LV 150 34	260	174,000 /	<u>NA</u>	819,000<u>/</u>	NA	<u>13,000,000 / </u>	<u>220,000,000</u> ∕	<u>No</u> NA

COPC	Sample Type	8/27/17 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (µg/m³)	Sample Location	Method Detectio n Limit (µg/m³)	<u>NMED</u> <u>VISL</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc/c</u> (µg/m ³) [‡]	<u>NMED VISL</u> <u>Residential</u> <u>Indoor Air</u> <u>nc/c</u> (µg/m ³) ¹	NMED VISL Industrial Soil Vapor <u>nc/c</u> (µg/m ³) ¹	NMED VISL Industrial Indoor Air <u>nc/c</u> (µg/m ³) ¹	WSTF-RBC <u>ResidentialSoi</u> 1 Vapor <u>in@ 5</u> ft bgs <u>ne/e</u> (µg/m ³) ²	WSTF RBCIndustrial inIt bgsnc/cnc/c(µg/m³)²	OSHA PEL TWA (8-Hr) (μg/m³) <u>Exceeds Risk / Hazard?</u>
	B200 Outdoor Air Maximum	ND	200 OA 1	0.32	ND	200 OA 1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 1,911,000
	B200 Indoor Air Maximum	ND	200 IA 1	0.38	NÐ	200 IA 1	0.27	<u>NA</u>	<u>5,210/</u>	NA	24,600<u>/</u>	NA	<u>NA</u>	<u>No1,911,000</u>
Chloroform	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 34	<mark>1,100</mark>	NÐ	200 LV 150 34	<mark>260</mark>	3,410 / <mark>40.7</mark>	<u>NA</u>	<mark>199</mark> / 3,200	NA	2 <u>10,000 /</u> 2,5009,800	<u>3,700,000 /</u> <u>46,000</u>	<u>No</u> NA
	B200 Outdoor Air Maximum	0.35 (J)	200 OA 1	0.32	ND	200 OA 1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 244,000
	B200 Indoor Air Maximum	0.33 (J)	200-IA-3	0.25	0.39 (J)	200-IA-3	0.26	<u>NA</u>	<u> 102 / 1.22</u>	NA	<u>5.98 / 5.98</u>	NA	<u>NA</u>	<u>No</u> 244,000
Benzene	Soil Vapor (MSVM Well) Maximum	80 (J)	200-SV-09- 19	67	NÐ	200-SV-09- 19	52	<u>1,040 / 120</u>	<u>NA</u>	<u>4,920 / 588</u>	NA	<u>29,000 /</u> <u>3,400</u> 26,000	<u>400,000 /</u> <u>49,000</u>	<u>No</u> NA
	B200 Outdoor Air Maximum	ND	200 OA 2	0.27	0.3 (J)	200 OA 2	0.24	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 3,190
	B200 Indoor Air Maximum	1.1	200-IA-4	0.29	1.6	200-IA-8	0.27	<u>NA</u>	<u> 31.3 / 3.60</u>	NA	17.6<u>/17.6</u>	NA	<u>NA</u>	<u>No</u> 3,190
Ethylbenzene	Soil Vapor (MSVM Well) Maximum	ND	200-LV- 150-3 4	<mark>1,100</mark>	ND	200-LV- 150-3 4	240	<u>34,800 / <mark>374</mark></u>	<u>NA</u>	<u>164,000 /</u> 1,840	NA	—	=	<u>No</u> NA
	B200 Outdoor Air Maximum	ND	200 OA 1	0.30	ND	200 OA 1	0.24	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 434,000
	B200 Indoor Air Maximum	0.47 (J)	200 IA 3	0.23	ND	200 IA 3	0.30	<u>NA</u>	<u> 1,040 / 11.2</u>	NA	55.1<u> / 55.1</u>	NA	<u>NA</u>	<u>No</u> 434,000
Toluene	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 34	1,100	ND	200 LV 150 34	260	174,000 /	<u>NA</u>	819,000<u>/</u>	NA		=	<u>No</u> NA
	B200 Outdoor Air Maximum	0.39 (J, TB)	200 OA 1	0.32	NÐ	200 OA 1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 754,000
	B200 Indoor Air Maximum	7.2 (J)	200 IA 5	6.6	1.1	200 IA 3	0.26	<u>NA</u>	<u>5,210/</u>	NA	24,600<u>/</u>	NA	NA	<u>No</u> 754,000
Xylenes	Soil Vapor (MSVM Well) Maximum	ND	200 LV 150 34	2,000	NÐ	200 LV 150 34	460	<u>3,480 /</u>	<u>NA</u>	16,400<u>/</u>	NA	_	=	<u>No</u> NA
	B200 Outdoor Air Maximum	ND	200 OA 1	0.56	ND	200 OA 1	0.44	<u>NA</u>	<u>NA</u>	NA	NA	NA	NA	<u>NA</u> 434,000
Xylenes (cont.)	B.200 Indoor Air Maximum	1.5	200 IA 3	0.44	ND	200 IA 3	0.47	<u>NA</u>	<u> 104 /</u>	NA	4 <u>92 /</u>	NA	NA	<u>No</u> 434,000
Acetone	Soil Vapor (MSVM Well) Maximum	NÐ	200-LV- 150-3 4	5,100	NÐ	200-LV- 150-34	1,200	<u>+,080,000 / -</u> =	<u>NA</u>	5,080,000<u>/</u> =	NA	<u>53,000,000 /</u> _200,000,000	<u>860,000,000</u> /	<u>No</u> NA
	B200 Outdoor Air Maximum	13 (TB)	200 OA 1	1.4	2.4	200 OA 2	1.2	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 2,380,000
	B200 Indoor Air Maximum	29 (QD)	200 IA 3	1.4	8.7	200 IA-2	1.3	<u>NA</u>	<u>32,300 /</u>	NA	152,000<u>/</u>	NA	<u>NA</u>	<u>No</u> 2,380,000
2 propanol³	Soil Vapor (MSVM Well) Maximum	ND	200 LV 150 34	<mark>2,800</mark>	NÐ	200 LV 150 34	<mark>640</mark>	<mark>210</mark> /	NA	880 /	NA	<u>350,000 /</u> 1,300,000	<u>5,600,000 /</u> =	<u>No</u> NA

COPC	Sample Type	8/27/17 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (μg/m³)	Sample Location	Method Detectio n Limit (μg/m ³)	<u>NMED</u> <u>VISL</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc/c</u> (µg/m ³) [‡]	NMED VISL Residential Indoor Air <u>nc/c</u> (µg/m ³) ¹	NMED VISL Industrial Soil Vapor <u>nc/c</u> (µg/m ³) ¹	NMED VISL Industrial Indoor Air <u>ne/e</u> (µg/m ³) ¹	WSTF RBC ResidentialSoi I Vapor in@ 5 ft bgs <u>ne / e</u> (µg/m ³) ²	WSTF RBC Industrial in ft bgs <u>nc/c</u> (µg/m ³) ²	OSHA PEL TWA (8-Hr) (μg/m³) Exceeds Risk / Hazard?
	B200 Outdoor Air Maximum	4 .3	200 OA 2	0.71	ND	200 OA 2	0.66	NA	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 984,000
	B200 Indoor Air Maximum	68 (QD)	200-IA-3	0.61	4.3	200-IA-1	0.67	<u>NA</u>	210/	NA	<u>880 /</u>	NA	<u>NA</u>	<u>No</u> 984,000
1,1-Dichloroethene	Soil Vapor (MSVM Well) Maximum	12,000	200-LV- 150-34	1,100	7,500	200-LV- 150-34	260	<u>6,950 /</u>	<u>NA</u>	<u>32,800 /</u> 2,870	NA	<u>400,000 /</u> 130,000	<u>6,700,000 / -</u> =	<u>¥es:NA</u> <u>Res haz (1.73E+00) VISLs</u>
	B.200 Outdoor Air Maximum	NÐ	200-0A-1	0.32	NÐ	200-0A-1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 405,000
	B.200 Indoor Air Maximum	ND	200 IA 1	0.38	NÐ	200 IA 1	0.27	<u>NA</u>	209 /	NA	<u>983 /86</u>	NA	<u>NA</u>	<u>No</u> 405,000
1,2,4 Trimethy_ lbenzene³	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 3 4	<mark>990</mark>	NÐ	200 LV 150 3 4	<mark>230</mark>	<mark>63</mark> /	<u>NA</u>	<mark>260</mark> /	NA		=	<u>No</u> NA
	B.200 Outdoor Air Maximum	NÐ	200 OA 1	0.28	NÐ	200 OA 1	0.22	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u>
1,2,4 Trimethyl_ benzene ³	B.200 Indoor Air Maximum	0.92	200 IA 3	0.22	ND	200 IA 1	0.24	<u>NA</u>	<u>63 /</u>	NA	<u>260 /</u>	NA	<u>NA</u>	<u>No</u>
2,2,4 Trimethyl_ pentane	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150-34	990	ND	200 LV 150-34	230	=	<u>NA</u>	_	NA	_	=	<u>No</u> NA
	B.200 Outdoor Air Maximum	ND	200 OA 1	0.28	NÐ	200 OA 1	0.22	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u>
	B.200 Indoor Air Maximum	0.39 (J)	200 IA 3	0.28	ND	200 IA 1	0.24	<u>NA</u>	—	NA		NA	<u>NA</u>	No
2-Hexanone ³	Soil Vapor (MSVM Well) Maximum	ND	200-LV- 150-34	<mark>1,100</mark>	NÐ	200-LV- 150-34	<mark>240</mark>	<u>31</u> /	<u>NA</u>	<u>130</u> /	NA	7,1000 / 250,000	<u>1,200,000 / -</u> =	<u>No</u> NA
	B.200 Outdoor Air Maximum	0.62 (J)	200-0A-1	0.30	NÐ	200-OA-1	0.24	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 410,000
	B.200 Indoor Air Maximum	4.1	200 IA 3	0.30	0.39 (J)	200 IA-2	0.28	<u>NA</u>	<u>31 /</u>	NA	<u>130 /</u>	NA	<u>NA</u>	<u>No</u> 410,000
4 Methyl 2- pentanone <u>(methyl</u> isobutyl ketone)	Soil Vapor (MSVM Well) Maximum	ND	200 LV 150-34	1,100	ND	200 LV 150-34	240	<u>104,000 /</u>	<u>NA</u>	<u>492,000 /</u>	NA	7,200,000 / 26,000,000	<u>120,000,000</u> ∠	<u>No</u> NA
	B.200 Outdoor Air Maximum	0.42	200 OA 1	0.30	NÐ	200 OA 1	0.24	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 410,000
	B.200 Indoor Air Maximum	24	200-IA-3	0.23	ND	200-IA-1	0.25	<u>NA</u>	3,130/	NA	<u> 14,700 /</u>	NA	<u>NA</u>	<u>No</u> 410,000
Carbon Disulfide	Soil Vapor (MSVM Well) Maximum	64 (J)	200 SV 09- 19	63	NÐ	200 LV- 150-34	230	24,300 /	<u>NA</u>	115,000<u>/</u>	NA	<u>610,000 /</u> <u>1,200,000 /</u> 4,400,000	<u>8,100,000 /-</u> 	<u>No</u> NA
	B.200 Outdoor Air Maximum	0.73 (J A TB)	200 OA 1	0.28	NÐ	200 OA 1	0.22	<u>NA</u>	NA	NA	NA	NA	<u>NA</u>	<u>NA62,000</u>
	B.200 Indoor Air Maximum	0.47 (J-A)	200 IA 1	0.33	NÐ	200 IA 1	0.24	<u>NA</u>	730/	NA	3,440<u>/</u>	NA	<u>NA</u>	<u>No</u> 62,000
Carbon Tetrachloride	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150-34	<mark>990</mark>	NÐ	200 LV 150-34	<mark>230</mark>	3,480 / <mark>156</mark>	<u>NA</u>	<u> 16,400 / <mark>765</mark></u>	NA	_	=	<u>No</u> NA

200 and 600 Area Vapor Intrusion Assessment Report

COPC	Sample Type	8/27/17 Sample Event (µg/m³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (µg/m³)	Sample Location	Method Detectio n Limit (µg/m ³)	NMED VISL Residential Soil Vapor <u>nc/c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>Residential</u> <u>Indoor Air</u> <u>nc/c</u> (<u>µg/m³)¹</u>	NMED VISL Industrial Soil Vapor <u>nc/-e</u> (µg/m ³) [‡]	NMED VISL Industrial Indoor Air <u>nc/c</u> (µg/m ³) [‡]	WSTF RBC <u>ResidentialSoi</u> 1 Vapor <u>in@ 5</u> ft bgs <u>ne/e</u> (µg/m ³) ²	WSTF RBC Industrial in ft bgs <u>nc/c</u> (µg/m ³) ²	OSHA PEL TWA (8-Hr) (μg/m³) <u>Exceeds Risk / Hazard?</u>
	B.200 Outdoor Air Maximum	0.41	200-0A-2	0.25	0.4	200-0A-1	0.22	NA	<u>NA</u>	NA	NA	NA	NA	<u>NA</u> 63,000
	B.200 Indoor Air Maximum	0.45	200 IA 1	0.33	0.41	200 IA 3	0.23	<u>NA</u>	<u> 104 / 4.68</u>	NA	<u>22.9 / 22.9</u>	NA	<u>NA</u>	<u>No</u> 63,000
Chloromethane	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV- 150 34	990	NÐ	200 LV 150 34	230	<u>3,130 / 520</u>	<u>NA</u>	<u>14,700 /</u> 2,550	NA	<u>140,000 /</u> <u>22,000</u> 87,000	<u>2,100,000 /</u> <u>370,000</u>	<u>No</u> NA
	B.200 Outdoor Air Maximum	0.42 (J TB)	200 OA 1	0.28	0.57 (J)	200 OA 2	0.23	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 207,000
	B.200 Indoor Air Maximum	0.37 (J)	200 IA 6	0.29	0.6 (J)	200 IA 3	0.23	<u>NA</u>	<u>93.9 / 15.6</u>	NA	76.5<u> / 76.5</u>	NA	<u>NA</u>	<u>No</u> 207,000
Ethanol	Soil Vapor (MSVM Well) Maximum	ND	200 LV 150-34	5,300	NÐ	200 LV 150-34	1,200	=	<u>NA</u>	_	NA	98,000,000<u>26.</u> 000,000 /	<u>400,000,000</u> <u>∕</u>	<u>No</u> NA
	B.200 Outdoor Air Maximum	56	200 OA 1	1.5	NÐ	200 OA 1	1.2	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 1,884,000
Ethanol (cont.)	B.200 Indoor Air Maximum	23	200-IA-3	1.2	++	200-IA-1	1.3	<u>NA</u>	=	NA		NA	<u>NA</u>	<u>No</u> 1,884,000
Freon 12 (Dichloro difluoro-	Soil Vapor (MSVM Well) Maximum	ND	200-LV- 150-34	1,100	1,200	200-LV- 150-34	260	<u>3,480 /</u>	<u>NA</u>	16,400<u>/</u>	NA	220,000 / 810,000	3,800,000 / - =	<u>No</u> NA
<u>methane)</u>	B.200 Outdoor Air Maximum	2.3 (TB)	200 OA 1	0.32	2.4	200 OA 1	0.25 (TB)	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 4,495,000
	B.200 Indoor Air Maximum	2.7	200 IA 4	0.31	2.7	200 IA 3	0.26	<u>NA</u>	<u>104 /</u>	NA	4 92<u>/</u>	NA	<u>NA</u>	<u>No</u> 4,495,000
Freon 123a	Soil Vapor (MSVM Well) Maximum	6,600 (TIC)	200 LV 150 34	NA	3,000 (TIC)	200 LV 150 34	NA				NA	240,000,000		<u>No</u> NA
	B.200 Outdoor Air Maximum	ND (*)	200 OA 1	NA	ND (*)	200 OA 1	NA			NA	NA	NA		<u>NA</u>
	B.200 Indoor Air Maximum	ND (*)	200 IA 1	NA	ND (*)	200 IA 1	NA			NA		NA		<u>No</u>
Freon 21 (Dichloro-	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150-34	1,600	NÐ	200 LV 150-34	370	—	<u>NA</u>		NA	910,000 <u>220,00</u> 0/	<u>4,300,000 / </u>	<u>No</u> NA
fluoromethane)	B.200 Outdoor Air Maximum	NÐ	200 OA 1	0.45	ND	200 OA 1	0.35	<u>NA</u>	<u>NA</u>	NA	NA	NA	NA	<u>NA</u> 4,209,000
	B.200 Indoor Air Maximum	3.5	200-IA-3	0.45	NÐ	200-IA-1	0.38	<u>NA</u>	=	NA		NA	<u>NA</u>	<u>No</u> 4,209,000
Heptane ³	Soil Vapor (MSVM Well) Maximum	ND	200-LV- 150-34	<mark>1,100</mark>	NÐ	200-LV- 150-34	260	<u>420 /</u>	<u>NA</u>	<u>1,800 /</u>	NA	1,000,000 / 3,800,000	<u>18,000,000 ∕</u> 	<u>No</u> NA
<u>^</u>	B.200 Outdoor Air Maximum	NÐ	200-OA-1	0.32	NÐ	200-OA-1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 2,049,000
Heptane ³ (cont.)	B.200 Indoor Air Maximum	0.33 (J)	200 IA 3	0.25	ND	200 IA 1	0.27	<u>NA</u>	<u>420 /</u>	NA	<u>1,800 /</u>	NA	<u>NA</u>	<u>No</u> 2,049,000
Hexane	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150 34	990	NÐ	200 LV 150 34	230	24,300 /	NA	115,000<u>/</u>	NA	<u>1,600,000 /</u> 5,900,000	28,000,000 / 	<u>No</u> NA
	B.200 Outdoor Air Maximum	0.35 (J TB)	200 OA 1	0.28	NÐ	200 OA 1	0.22	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 1,759,000
	B.200 Indoor Air Maximum	1.2	200 IA 3	0.22	1.1	200 IA 3	0.25	<u>NA</u>	730/	NA	3,440<u>/</u>	NA	NA	<u>No</u> 1,759,000

COPC	Sample Type	8/27/17 Sample Event (μg/m³)	Sample Location	Method Detection Limit (µg/m³)	2/25/18 Sample Event (µg/m³)	Sample Location	Method Detectio n Limit (μg/m³)	<u>NMED</u> <u>VISL</u> <u>Residential</u> <u>Soil Vapor</u> <u>ne/e</u> (µg/m ³) [‡]	NMED-VISL Residential Indoor Air <u>ne/-e</u> (µg/m ³) ¹	NMED VISL Industrial Soil Vapor <u>nc/-c</u> (µg/m ³) [‡]	NMED VISL Industrial Indoor Air <u>nc/-c</u> (µg/m ³) [‡]	WSTF RBC <u>ResidentialSoi</u> 1 Vapor <u>in</u>@ 5 ft bgs <u>ne/e</u> (µg/m ³) ²	WSTF RBC Industrial in ft bgs <u>nc/c</u> (µg/m ³) ²	OSHA PEL TWA (8-Hr) (μg/m³) Exceeds Risk / Hazard?
Methylene Chloride	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV 150-34	1,100	NÐ	200 LV 150 34	260	<u>20,900 /</u> <u>33,800</u>	<u>NA</u>	98,300<u>/</u> <u>459,000</u>	NA	<u>1,100,000 /</u> <u>1,700,000</u> 3,90 0,000	18,000,000 / 79,000,000	<u>No</u> NA
	B.200 Outdoor Air Maximum	ND	200-0A-1	0.32	0.42 (J)	200-OA-2	0.26	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 87,000
	B.200 Indoor Air Maximum	1.6	200 IA 4	0.31	0.43 (J)	200 IA 2	0.29	<u>NA</u>	<u>626 / 1,010</u>	NA	2,950<u>/13,800</u>	NA	<u>NA</u>	<u>No</u> 87,000
Styrene	Soil Vapor (MSVM Well) Maximum	NÐ	200 LV- 150-34	990	ND	200 LV 150-34	230	<u>34,800 /</u>	<u>NA</u>	164,000<u>/</u>	NA	—	=	<u>No</u> NA
	B.200 Outdoor Air Maximum	NÐ	200 OA 1	0.28	ND	200 OA 1	0.22	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 426,000
	B.200 Indoor Air Maximum	1.9	200-IA-3	0.22	NÐ	200-IA-1	0.24	<u>NA</u>	1,040 /	NA	4,920<u>/</u>	NA	<u>NA</u>	<u>No</u> 426,000
Tetrahydro_furan ³	Soil Vapor (MSVM Well) Maximum	ND	200-LV- 150-34	1,300	NÐ	200-LV- 150-34	310	<u>2,100 /</u>	<u>NA</u>	<u> 1,800 /</u>	NA	3,600,000 / 13,000	59,000,000 / —	<u>No</u> NA
	B.200 Outdoor Air Maximum	ND	200-0A-1	0.38	1.2	200-OA-2	0.30	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 590,000
	B.200 Indoor Air Maximum	0.29 (J)	200 IA 3	0.29	NÐ	200 IA 1	0.32	<u>NA</u>	2,100 /	NA	<u>1,800 /</u>	NA	<u>NA</u>	<u>No</u> 590,000
t rans 1,2 Dichloroethene	Soil Vapor (MSVM Well) Maximum	ND	200 LV 150 34	1,300	NÐ	200 LV 150 34	290	<u>1,390 /</u>	<u>NA</u>	6,550 / 9,380	NA	—	=	<u>No</u> NA
	B.200 Outdoor Air Maximum	ND	200 OA 1	0.36	NÐ	200 OA 1	0.28	NA	<u>NA</u>	NA	NA	NA	NA	<u>NA</u>
	B.200 Indoor Air Maximum	2.2 (FB)	200 IA 8	0.36	1.8 (FB)	200 IA 8	0.32	<u>NA</u>	41.7/	NA	<u>197 /295</u>	NA	<u>NA</u>	<u>No</u>

Red = Concentration exceeds quantitative standard screening level.

Green = Concentration is below quantitative standard screening level.

Yellow = Detection limit exceeds quantitative standard screening level.

Flags = (D) reported result is from a dilution, (J) result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit, (A) result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification verification (CCV) was outside standard limits, (QD) relative percent difference for a field duplicate was detected in the trip blank, (FB) analyte was detected in the field blank.

---- = Not available.

NA = Not applicable.

 $\frac{nc}{c} = \frac{noncancer}{cancer}$

⁴ = NMED VISLs taken from Risk Assessment Guidance for Site Investigations and Remediation November 2022June, 2019 (NMED, 201922cb).

² = WSTF RBCs for soil vapor taken from NASA WSTF NMED approved Soil Vapor RBCs for 202218 (NASA, 202219a), approved with modification February 11, 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next shallowest depth to the sample depth was chosen to be conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used.

³ = <u>No NMED VISL was listed, so EPA RSL for air was used (EPA, 2022b)</u>.OSHA PEL TWAs taken Pocket Guide to Chemical Hazards September 2010 Edition (NIOSH, 2010).

			Table 5.	. <u>21</u> Sun	nmary of 6	00 Area Bui	lding 637 ar	nd Vicinity Soil V	apor, Outdoor/	· Air, and Indoo	r Air Analytica	l Results		
СОРС	Sample Type	8/27/17 Sample Event (µg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> or RBC* <u>Residential</u> <u>Soil Vapor</u> nc / c (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	NMED VISL <u>or RBC*</u> Industrial Soil Vapor <u>nc / c (</u> µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / с (µg/m³)¹</u>	WSTF RBC <u>ResidentialSoil</u> <u>Vapor@ 5</u> ft bgs <u>nc /c</u> (µg/m ³) ²	<u>WSTF RBC</u> <u>Industrial</u> <u>ft bgs</u> <u>nc /c</u> (μg/m ³) ²	OSHA PEL TWA (8-Hr) (µg/m ³)Exceeds Risk / Hazard? (Calculated risk or hazard <u>exceeded)</u>
TCE	Soil Vapor (MSVM Well) Maximum	480 (D)	600-SGW- 1-12.5	5.8	740 (D)	600-SGW- 1-12.5	5.3	<u>69.5 / 147</u>	<u>NA</u>	328 <u>/1,120</u>	<u>NA</u>	<u>2,300 /</u> <u>5,400</u> 18,800	<u>34,000 / 120,000</u>	<u>Yes:</u> <u>Res cancer VISLs (5.03E-05)</u> <u>Res nonc VISLs (1.06E+01)</u> <u>Indus nonc VISLs</u> (2.26E+00) NA
	B637 Outdoor Air Maximum	<u><0.29</u> ND	600-OA-1	0.29	<u><0.21</u> ₩ ₽	600-OA-1	0.21	NA	<u>NA</u>	NA	NA	NA	NA	<u>NA</u> 537,000
	B637 Indoor Air Maximum	<u><0.24</u> ND	600-IA-1	0.24	<u><0.22</u> ₩ ₽	600-IA-1	0.22	NA	2.09 / 4.42	NA	<u>9.83 / 33.6</u>	NA	NA	<u>No</u> 537,000
PCE	Soil Vapor (MSVM Well) Maximum	3.4	600-SGW- 1-12.5	0.58	5.2	600-SGW- 2-12.5	0.53	<u>1,390 / 3,600</u>	<u>NA</u>	6,550 <u>/17,600</u>	<u>NA</u>	<u>58,000 /</u> <u>150,000</u> 460,000	<u>910,000 /</u> 2,400,000	<u>No</u> NA
	B637 Outdoor Air Maximum	<u><0.29</u> ND	600-OA-1	0.29	<u><0.21</u> ₩ ₽	600-OA-1	0.21	NA	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 678,000
	B637 Indoor Air Maximum	<u><0.24</u> ND	600-IA-1	0.24	<u><0.22</u> ₽ ₽	600-IA-1	0.22	NA	<u>41.7 / 108</u>	NA	<u>197 / 529</u>	NA	<u>NA</u>	<u>No</u> 678,000
Freon 11	Soil Vapor (MSVM Well) Maximum	1,400 (A)	600-SGW- 2-12.5	18	14	600-SGW- 1-12.5	0.65	24,300 /	<u>NA</u>	115,000 <u>/</u>	<u>NA</u>	<u>840,000 /</u> 6,400,000	31,000,000 /	<u>No</u> NA
	B637 Outdoor Air Maximum	1.2 (A)	600-OA-2	0.31	1.1	600-OA-1	0.25	NA	<u>NA</u>	NA	NA	NA	NA	<u>NA</u> 5,620,000
	B637 Indoor Air Maximum	1.2 (A)	600-IA-2	0.29	1.4	600-IA-2	0.26	NA	<u>730 /</u>	NA	<u>3,440 /</u>	NA	NA	<u>No</u> 5,620,000
Freon 113	Soil Vapor (MSVM Well) Maximum	8,200	600-SGW- 2-12.5	18	5,300 (D)	600-SGW- 2-12.5	17	<u>1,040,000 /</u>	<u>NA</u>	4,920,000 <u>/</u>	<u>NA</u>	<u>55,000,000 /</u> 440,000,000	900,000,000 /	<u>No</u> NA
Freon 113 (cont.)	B637 Outdoor Air Maximum	0.48 (J)	600-OA-2	0.31	0.51 (J)	200-OA-2	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 7 ,670,000
	B637 Indoor Air Maximum	0.49 (J)	600-IA-2	0.29	0.59 (J)	600-IA-2	0.26	NA	<u>31,300 /</u>	NA	<u>147,000 /</u>	NA	NA	<u>No</u> 7,670,000
2-Butanone	Soil Vapor (MSVM Well) Maximum	12 (J, FB)	600-SGW- 1-12.5	0.87	5 (J)	600-SGW- 5-7.5	0.81	174,000 /	<u>NA</u>	819,000 <u>/</u>	<u>NA</u>	<u>4,800,000 /</u> <u>3,200,000 /</u> 35,000,000	<u>66,000,000 /</u> <u>35,000,000 /</u>	<u>No</u> NA
	B637 Outdoor Air Maximum	2.4 (J)	600-OA-1	0.44	0.42 (J)	600-OA-2	0.31	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	NA	<u>NA</u> 590,000
	B637 Indoor Air Maximum	5.3 (J)	600-IA-4	0.44	0.52 (J, FB)	600-IA-1	0.34	NA	5,210 /	NA	24,600 /	NA	NA	<u>No</u> 590,000
1,1,1- trichloroethane	Soil Vapor (MSVM Well) Maximum	0.76 (J)	600-SGW- 1-12.5	0.70	3.6	600-SGW- 2-12.5	0.65	174,000 /	<u>NA</u>	819,000 <u>/</u>	<u>NA</u>	<u>6,100,000 /</u> 46,000,000	<u>90,000,000 /</u>	<u>No</u> NA
	B637 Outdoor Air Maximum	<u><0.36</u> ND	600-OA-1	0.36	<u><0.25</u> ₩ ₽	600-OA-1	0.25	NA	NA	NA	<u>NA</u>	NA	NA	<u>NA</u> 1,911,000

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> or RBC* <u>Residential</u> Soil Vapor nc / c (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	NMED VISL <u>or RBC*</u> Industrial Soil Vapor <u>nc / c</u> (μg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	WSTF RBC <u>ResidentialSoil</u> Vapor@-5 ft bgs <u>nc /c</u> (µg/m ³) ²	WSTF RBC Industrial ft bgs nc/c (µg/m ³) ²	OSHA PEL TWA (8-Hr) (µg/m³)Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
	B.637 Indoor Air Maximum	<u><0.29</u> ND	600-IA-1	0.29	<u><0.29</u> ₩ ₽	600-IA-1	0.29	NA	<u>5,210 /</u>	NA	24,600 /	NA	<u>NA</u>	<u>No</u> 1,911,000
Chloroform	Soil Vapor (MSVM Well) Maximum	31	600-SGW- 1-12.5	0.70	41	600-SGW- 1-12.5	0.65	<u>3,410 / 40.7</u>	<u>NA</u>	199 <u>/3,200</u>	<u>NA</u>	<u>100,000 /</u> <u>1,200</u> 9,800	<u>1,500,000 /</u> <u>19,000</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.36</u> ND	600-OA-1	0.36	<u><0.25</u> ₩ ₽	600-OA-1	0.25	<u>NA</u>	<u>NA</u>	NA	NA	NA	<u>NA</u>	<u>NA</u> 244,000
	B.637 Indoor Air Maximum	<u><0.29</u> ND	600-IA-1	0.29	<u><0.27</u> ₩ ₽	600-IA-1	0.27	NA	<u>102 / 1.22</u>	NA	<u>5.98 / 5.98</u>	NA	NA	<u>No</u> 244,000
Benzene	Soil Vapor (MSVM Well) Maximum	3.2 (FB)	600-SGW- 1-12.5	0.66	1.3 (J, FB)	600-SGW- 1-12.5	0.61	<u>1,040 / 120</u>	<u>NA</u>	<u>4,920 /</u> 588	<u>NA</u>	<u>29,000 /</u> <u>3,400</u> 26,000	<u>400,000 / 49,000</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	0.25 (J)	600-OA-2	0.24	NA	NA	NA	<u>NA</u>	NA	NA	<u>NA</u> 3,190
	B.637 Indoor Air Maximum	0.33 (J)	600-IA-4	0.26	0.4 (J)	600-IA-1	0.26	<u>NA</u>	31.3 / 3.60	NA	17.6 / 17.6	NA	NA	<u>No</u> 3,190
Ethylbenzene	Soil Vapor (MSVM Well) Maximum	1.6 (J)	600-SGW- 1-12.5	0.66	<u><0.61</u> ₩ ₽	600-SGW- 1-12.5	0.61	<u>34,800 / 374</u>	<u>NA</u>	<u>164,000 /</u> 1,840	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-2	0.24	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 434,000
	B.637 Indoor Air Maximum	<u><0.28</u> ₩Ð	600-IA-1	0.28	<u><0.26</u> ₩ ₽	600-IA-1	0.26	NA	<u>1,040 / 11.2</u>	NA	<u>55.1 / 55.1</u>	NA	<u>NA</u>	<u>No</u> 434,000
Toluene	Soil Vapor (MSVM Well) Maximum	0.87 (J)	600-SGW- 5-7.5	0.67	<u><0.65</u> ₩ ₽	600-SGW- 1-12.5	0.65	<u>174,000 /</u>	<u>NA</u>	819,000 <u>/</u>	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	0.35 (J)	600-OA-2	0.31	<u><0.25</u> ₩ ₽	600-OA-1	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 754,000
	B.637 Indoor Air Maximum	0.6 (J)	600-IA-4	0.36	0.32 (J)	600-IA-4	0.25	<u>NA</u>	<u>5,210 /</u>	NA	<u>24,600 /</u>	NA	<u>NA</u>	<u>No</u> 754,000
Xylenes	Soil Vapor (MSVM Well) Maximum	<u><1.1</u> ND	600-SGW- 1-12.5	1.1	<u><32</u> ND	600-SGW- 1-12.5	32	<u>3,480 /</u>	<u>NA</u>	16,400 <u>/</u>	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.63</u> ND	600-OA-1	0.63	<u><0.44</u> ₩ ₽	600-OA-1	0.44	NA	<u>NA</u>	NA	<u>NA</u>	NA	NA	<u>NA</u> 434,000
Xylenes (cont.)	B.637 Indoor Air Maximum	<u><0.52</u> ND	600-IA-1	0.52	<u><0.48</u> ₩ ₽	600-IA-1	0.48	<u>NA</u>	<u>104 /</u>	NA	492 /	NA	<u>NA</u>	<u>No</u> 434,000
Acetone	Soil Vapor (MSVM Well) Maximum	22	600-SGW- 5-7.5	3.0	27	600-SGW- 5-7.5	3.0	<u>1,080,000 /</u>	NA	5,080,000 <u>/</u>	NA	<u>19,000,000 /</u> 200,000,000	200,000,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	10 (J)	600-OA-1	1.6	2.2 (J)	600-OA-1	1.1	NA	NA	NA	NA	NA	NA	<u>NA</u> 2,380,000

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c (µg/m³)¹</u>	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	NMED VISL <u>or RBC*</u> Industrial Soil Vapor <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	WSTF RBC <u>ResidentialSoil</u> Vapor@ 5 ft bgs <u>nc /c</u> (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (µg/m ³) ²	OSHA PEL TWA (8-Hr) (μg/m³) <u>Exceeds Risk /</u> <u>Hazard?</u> (Calculated risk or hazard <u>exceeded)</u>
	B.637 Indoor Air Maximum	28	600-IA-4	1.2	4.7 (J, FB)	600-IA-1	1.1	NA	<u>32,300 /</u>	NA	152,000 /	NA	<u>NA</u>	<u>No</u> 2,380,000
2-propanol (Isopropanol or Isopropyl alcohol)	Soil Vapor (MSVM Well) Maximum	<u><1.6</u> ND	600-SGW- 1-12.5	1.6	<u><45</u> ND	600-SGW- 2-12.5	45	<u>210* /</u>	<u>NA</u>	<u>880* /</u>	<u>NA</u>	<u>180,000 /</u> 1,300,000	<u>2,400,000 /</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.88</u> ND	600-OA-1	0.88	0.66 (J)	600-OA-2	0.62	<u>NA</u>	NA	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 984,000
	B.637 Indoor Air Maximum	3.4	600-IA-4	0.88	1.1 (J)	600-IA-4	0.62	<u>NA</u>	<u>210* /</u>	NA	<u>880* /</u>	NA	<u>NA</u>	<u>No</u> 984,000
1,1-Dichloroethane	Soil Vapor (MSVM Well) Maximum	5.7	600-SGW- 1-12.5	0.66	5.2	600-SGW- 1-12.5	0.61	<u> / 585</u>	<u>NA</u>	<u></u> 2,870	<u>NA</u>	<u> /</u> <u>17,000</u> 130,000	<u> / 250,000</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-1	0.24	NA	NA	NA	<u>NA</u>	NA	NA	<u>NA</u> 4 05,000
	B.637 Indoor Air Maximum	<u><0.28</u> ND	600-IA-1	0.28	<u><0.27</u> ₩ ₽	600-IA-1	0.27	<u>NA</u>	<u> / 17.5</u>	NA	<u> / 86</u>	NA	NA	<u>No</u> 4 05,000
1,2,4-Trimethyl <u>-</u> benzene ³	Soil Vapor (MSVM Well) Maximum	0.92 (J)	600-SGW- 1-12.5	0.62	<u><0.57</u> ₩ ₽	600-SGW- 1-12.5	0.57	<u>63 /</u>	<u>NA</u>	<u>260 /</u>	<u>NA</u>			<u>No</u> NA
1,2,4-Trimethyl-	B.637 Outdoor Air Maximum	<u><0.32</u> ND	600-OA-1	0.32	<u><0.22</u> ₩ ₽	600-OA-1	0.22	NA	NA	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> —
benzene<u>3</u> (cont.)	B.637 Indoor Air Maximum	<u><0.26</u> ND	600-IA-1	0.26	<u><0.26</u> ₩ ₽	600-IA-1	0.26	NA	<u>63 /</u>	NA	260 /	NA	NA	<u>No</u>
1,2-Dichloroethane	Soil Vapor (MSVM Well) Maximum	0.73 (J)	600-SGW- 1-12.5	0.66	<u><0.61</u> ₩ ₽	600-SGW- 1-12.5	0.61	<u>243 / 36</u>	<u>NA</u>	<u>1,150 /</u> 176	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-1	0.24	NA	NA	NA	<u>NA</u>	NA	NA	<u>NA</u> 202,000
	B.637 Indoor Air Maximum	<u><0.28</u> ND	600-IA-1	0.28	<u><0.27</u> ₩ ₽	600-IA-1	0.27	NA	7.30 / 1.08	NA	5.29 / 5.29	NA	<u>NA</u>	<u>No</u> 202,000
1,4- Dichlorobenzene	Soil Vapor (MSVM Well) Maximum	1.9 (J)	600-SGW- 1-12.5	0.58	<u><0.58</u> ₩ ₽	600-SGW- 1-12.5	0.58	<u>27,800 / 85.1</u>	<u>NA</u>	<u>131,000 / </u> 417	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.29</u> ND	600-OA-1	0.29	<u><0.29</u> ₩ ₽	600-OA-1	0.29	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 4 51,000
	B.637 Indoor Air Maximum	<u><0.24</u> ND	600-IA-1	0.24	<u><0.24</u> ₩ ₽	600-IA-1	0.24	NA	<u>834 / 2.55</u>	NA	<u>12.5 / 12.5</u>	NA	NA	<u>No</u> 451,000
2-Hexanone	Soil Vapor (MSVM Well) Maximum	<u><0.66</u> ND	600-SGW- 1-12.5	0.66	1 (J)	600-SGW- 5-7.5	0.62	<u>31*/</u>	NA	<u>130* /</u>	<u>NA</u>	<u>34,000 /</u> <u>22,000 /</u> 250,000	490,000 /	NoNA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-1	0.24	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 410,000

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c (µg/m³)¹</u>	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	NMED VISL <u>or RBC*</u> Industrial Soil Vapor <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	WSTF RBC <u>ResidentialSoil</u> Vapor@ 5 ft bgs <u>nc /c</u> (µg/m ³) ²	WSTF RBC Industrial ft bgs nc/c (µg/m ³) ²	OSHA PEL TWA (8-Hr) (µg/m ³)Exceeds Risk / Hazard? (Calculated risk or hazard <u>exceeded)</u>
	B.637 Indoor Air Maximum	1.1	600-IA-4	0.26	<u><0.27</u> ₩ ₽	600-IA-1	0.27	NA	31*/	NA	<u>130* /</u>	NA	<u>NA</u>	<u>No</u> 410,000
4-Methyl-2- pentanone <u>methyl</u> isobutyl ketone)	Soil Vapor (MSVM Well) Maximum	<u><0.66</u> ND	600-SGW- 1-12.5	0.66	<u><0.61</u> ₩ ₽	600-SGW- 1-12.5	0.61	<u>104,000 /</u>	<u>NA</u>	<u>492,000 /</u>	<u>NA</u>	<u>3,500,000 /</u> 26,000,000	51,000,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-1	0.24	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 410,000
	B.637 Indoor Air Maximum	0.5 (J)	600-IA-4	0.34	<u><0.27</u> ₩ ₽	600-IA-1	0.27	NA	<u>3,130 /</u>	NA	<u>14,700 /</u>	NA	<u>NA</u>	<u>No</u> 410,000
Bromodichloromet hane	Soil Vapor (MSVM Well) Maximum	0.62 (J)	600-SGW- 1-12.5	0.62	0.59 (J)	600-SGW- 1-12.5	0.57	<u> / 25.3</u>	<u>NA</u>	<u> / </u> 124	<u>NA</u>	<u> / 980</u> 7 ,900	<u> / 15,000</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.32</u> ND	600-OA-1	0.32	<u><0.22</u> ₩ ₽	600-OA-1	0.22	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>
	B.637 Indoor Air Maximum	<u><0.26</u> ND	600-IA-1	0.26	<u><0.26</u> ₩ ₽	600-IA-1	0.26	NA	<u> / 0.759</u>	NA	3.72/3.72	NA	<u>NA</u>	<u>No</u> —
Carbon Disulfide	Soil Vapor (MSVM Well) Maximum	86 (A FB)	600-SGW- 1-12.5	0.62	<u><0.57</u> ₩ ₽	600-SGW- 1-12.5	0.57	<u>24,300 /</u>	<u>NA</u>	115,000 <u>/</u>	<u>NA</u>	<u>610,000 /</u> 4,400,000	8,100,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.32</u> ND	600-OA-1	0.32	<u><0.22</u> ₩ ₽	600-OA-1	0.22	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 62,000
	B.637 Indoor Air Maximum	<u><0.26</u> ND	600-IA-1	0.26	<u><0.26</u> ₽ ₽	600-IA-1	0.26	NA	<u>730 /</u>	NA	<u>3,440 /</u>	NA	<u>NA</u>	<u>No</u> 62,000
Carbon Tetrachloride	Soil Vapor (MSVM Well) Maximum	<u><0.62</u> ND	600-SGW- 1-12.5	0.62	<u><0.57</u> ₩ ₽	600-SGW- 1-12.5	0.57	<u>3,480 / 156</u>	<u>NA</u>	<u>16,400 / </u> 765	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	0.41 (J)	600-OA-1	0.32	0.4 (J)	600-OA-1	0.22	NA	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 63,000
Carbon Tetrachloride	B.637 Indoor Air Maximum	0.41 (J)	600-IA-1	0.26	0.45 (J)	600-IA-1	0.24	<u>NA</u>	<u>104 / 4.68</u>	NA	<u>22.9 / 22.9</u>	NA	<u>NA</u>	<u>No</u> 63,000
Chloroethane (Ethyl chloride)	Soil Vapor (MSVM Well) Maximum	2 (J)	600-SGW- 1-12.5	0.70	1.7 (J)	600-SGW- 1-12.5	0.65	348,000 /	<u>NA</u>	<u>1,640,000 / </u> —	<u>NA</u>	<u>8,900,000 /</u> 64,000,000	120,000,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.36</u> ND	600-OA-1	0.36	<u>≤ND0.2</u> <u>5</u>	600-OA-1	0.25	NA	<u>NA</u>	NA	<u>NA</u>	NA	NA	<u>NA</u> 2,638,000
	B.637 Indoor Air Maximum	<u><0.29</u> ND	600-IA-1	0.29	<u><0.27</u> ₩ ₽	600-IA-1	0.27	NA	<u>10,400 /</u>	NA	<u>49,200 /</u>	NA	<u>NA</u>	<u>No</u> 2,638,000
Chloromethane	Soil Vapor (MSVM Well) Maximum	1.5 (J FB)	600-SGW- 1-12.5	0.62	1.2 (J FB)	600-SGW- 1-12.5	0.57	3,130 / 520	NA	<u>14,700 / </u> 2,550	NA	<u>72,000 /</u> <u>12,000</u> 87,000	<u>900,000 /</u> <u>160,000</u>	NoNA
	B.637 Outdoor Air Maximum	0.39 (J)	600-OA-1	0.32	0.63 (J)	600-OA-1	0.22	NA	NA	NA	NA	NA	NA	<u>NA</u> 207,000
	B.637 Indoor Air Maximum	0.33 (J)	600-IA-4	0.32	0.65 (J)	600-IA-4	0.22	NA	93.9 / 15.6	NA	76.5 / 76.5	NA	NA	<u>No</u> 207,000

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c (µg/m³)¹</u>	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	NMED VISL <u>or RBC*</u> Industrial Soil Vapor <u>nc / c</u> (μg/m ³) ¹	<u>NMED VISL</u> <u>or RBC*</u> <u>Industrial</u> <u>Indoor Air</u> <u>nc / c (μg/m³)¹</u>	WSTF RBC <u>ResidentialSoil</u> Vapor@ 5 ft bgs <u>nc /c</u> (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (µg/m ³) ²	OSHA PEL TWA (8-Hr) (µg/m³)Exceeds Risk / Hazard? (Calculated risk or hazard exceeded)
cis-1,2- Dichloroethene	Soil Vapor (MSVM Well) Maximum	0.82 (J)	600-SGW- 1-12.5	0.66	<u><0.61</u> ₩ ₽	600-SGW- 1-12.5	0.61	42* /	<u>NA</u>	<u>180* /</u>	<u>NA</u>			<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.34</u> ND	600-OA-1	0.34	<u><0.24</u> ₩ ₽	600-OA-1	0.24	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u>
	B.637 Indoor Air Maximum	<u><0.28</u> ND	600-IA-1	0.28	<u><0.26</u> ₩ ₽	600-IA-1	0.26	NA	42* /	NA	<u>180* /</u>	NA	<u>NA</u>	<u>No</u> —
Ethanol	Soil Vapor (MSVM Well) Maximum	9.6 (J FB)	600-SGW- 1-12.5	3.3	<u><3.0</u> ND	600-SGW- 1-12.5	3.0	<u>NE</u>	<u>NA</u>	<u>NE</u> —	<u>NA</u>	<u>15,000,000 /</u> 98,000,000	170,000,000 /	<u>No</u> NA
Ethanol	B.637 Outdoor Air Maximum	3.5 (J)	600-OA-2	1.5	2.6 (J)	600-OA-2	1.2	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 1,884,000
(cont.)	B.637 Indoor Air Maximum	20	600-IA-4	1.7	4.2 (J FB)	600-IA-1	1.3	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>No</u> 1,884,000
Freon 12 (Dichlorodifluorom ethane)	Soil Vapor (MSVM Well) Maximum	2.4	600-SGW- 5-7.5	0.67	2.2 (FB)	600-SGW- 1-12.5	0.65	<u>3,480 /</u>	<u>NA</u>	16,400 <u>/</u>	<u>NA</u>	<u>70,000 /</u> <u>110,000 /</u> 810,000	<u>810,000 /</u> <u>1,600,000 /</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	2.3	600-OA-1	0.36	2.1	600-OA-1	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 4,495,000
_	B.637 Indoor Air Maximum	2.3 (FB)	600-IA-1	0.29	2.3 (FB)	600-IA-1	0.27	<u>NA</u>	<u>104 /</u>	NA	492 /	NA	<u>NA</u>	<u>No</u> 4,495,000
Freon 21 (Dichlorofluoro- methane)	Soil Vapor (MSVM Well) Maximum	10	600-SGW- 1-12.5	0.99	6	600-SGW- 1-12.5	0.91	<u>NE</u>	<u>NA</u>	<u>NE</u>	<u>NA</u>	<u>120,000/</u> 910,000	<u>1,800,000 /</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.50</u> ND	600-OA-1	0.50	<u><0.35</u> ₽ ₽	600-OA-1	0.35	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 4,209,000
	B.637 Indoor Air Maximum	<u><0.41</u> ND	600-IA-1	0.41	<u><0.38</u> ₩ ₽	600-IA-1	0.38	<u>NA</u>	NA	NA	<u>NA</u>	NA	<u>NA</u>	<u>No</u> 4,209,000
Heptane	Soil Vapor (MSVM Well) Maximum	<u><0.70</u> ND	600-SGW- 1-12.5	0.70	<u><0.65</u> ₩ ₽	600-SGW- 1-12.5	0.65	420* /	<u>NA</u>	<u>1,800* /</u>	<u>NA</u>	<u>490,000 /</u>	7,300,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	<u><0.36</u> ND	600-OA-1	0.36	<u><0.25</u> ₩ ₽	600-OA-1	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 2,049,000
	B.637 Indoor Air Maximum	0.3 (J)	600-IA-4	0.28	<u><0.27</u> ₩ ₽	600-IA-1	0.27	<u>NA</u>	420* /	NA	<u>1,800* /</u>	NA	<u>NA</u>	<u>No</u> 2,049,000
Hexane	Soil Vapor (MSVM Well) Maximum	1.5 (J FB)	600-SGW- 1-12.5	0.62	<u><0.57</u> ₩ ₽	600-SGW- 1-12.5	0.57	<u>24,300 /</u>	<u>NA</u>	115,000 <u>/</u>	<u>NA</u>	<u>780,000 /</u> 5,900,000	<u>11,000,000 /</u>	<u>No</u> NA
	B.637 Outdoor Air Maximum	0.82 (J)	600-OA-1	0.32	<u><0.22</u> ₩ ₽	600-OA-1	0.22	NA	NA	NA	<u>NA</u>	NA	NA	<u>NA</u> 1,759,000
	B.637 Indoor Air Maximum	0.79 (J)	600-IA-4	0.32	<u><0.24</u> ₩ ₽	600-IA-1	0.24	NA	730 /	NA	3,440 /	NA	NA	<u>No</u> 1,759,000
Methylene Chloride	Soil Vapor (MSVM Well) Maximum	24	600-SGW- 1-12.5	0.70	24	600-SGW- 1-12.5	0.65	20,900 / 33,800	NA	98,300 <u>/</u> <u>459,000</u>	NA	<u>550,000 /</u> <u>870,000</u> 3,900,0 00	<u>7,400,000 /</u> <u>33,000,000</u>	NoNA

СОРС	Sample Type	8/27/17 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	2/25/18 Sample Event (μg/m ³)	Sample Location	Method Detection Limit (µg/m ³)	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Soil Vapor</u> <u>nc / c (μg/m³)¹</u>	<u>NMED VISL</u> <u>or RBC*</u> <u>Residential</u> <u>Indoor Air</u> nc / c (μg/m ³) ¹	NMED VISL or RBC* Industrial Soil Vapor <u>nc / c</u> (µg/m ³) ¹	<u>NMED VISL</u> or RBC* <u>Industrial</u> <u>Indoor Air</u> nc / c (μg/m ³) ¹	WSTF RBC <u>ResidentialSoil</u> Vapor@ 5 ft bgs <u>nc /c</u> (µg/m ³) ²	WSTF RBC Industrial ft bgs nc /c (μg/m ³) ²	OSHA PEL TWA (8-Hr) (µg/m³)Exceeds Risk / Hazard? (Calculated risk or hazard <u>exceeded)</u>
	B.637 Outdoor Air Maximum	<u><0.36</u> ND	600-OA-1	0.36	0.43 (J)	600-OA-2	0.25	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	<u>NA</u>	<u>NA</u> 87,000
	B.637 Indoor Air Maximum	<u><0.29</u> ND	600-IA-1	0.29	0.55 (J FB)	600-IA-1	0.27	<u>NA</u>	626 / 1,010	NA	<u>2,950 / 13,800</u>	NA	<u>NA</u>	<u>No</u> 87,000
Tetrahydrofuran	Soil Vapor (MSVM Well) Maximum	0.85 (J)	600-SGW- 1-12.5	0.83	<u><0.76</u> ₩ ₽	600-SGW- 1-12.5	0.76	<u>2,100* /</u>	<u>NA</u>	<u>1,800* /</u>	<u>NA</u>	<u>1,800,000 /</u> 13,000	24,000,000 /	<u>No</u> NA
	B.637 Outdoor Air Maximum	1.1	600-OA-1	0.42	<u><0.29</u> ₩ ₽	600-OA-1	0.29	<u>NA</u>	<u>NA</u>	NA	<u>NA</u>	NA	NA	<u>NA</u> 590,000
Tetrahydro_furan³ (cont.)	B.637 Indoor Air Maximum	<u><0.34</u> ND	600-IA-1	0.34	<u><0.32</u> ₩ ₽	600-IA-1	0.32	<u>NA</u>	<u>2,100*/</u>	NA	<u>1,800* /</u>	NA	<u>NA</u>	<u>No</u> 590,000

Notes: $\frac{\text{Red}}{\text{Red}} = \frac{\text{VISL or RBC exceeded}}{\text{NISL or RBC exceeded}}.$

Flags = (D) reported result is from a dilution, (J) result is an estimated value less than the quantitation limit, (A) result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits, (QD) relative percent difference for a field duplicate was outside standard limits, (TB) analyte was detected in the trip blank, (FB) analyte was detected in the field blank.

--- = Not available.

NA = Not applicable. <u>NE = Not Established</u>

¹ = NMED VISLs taken from Risk Assessment Guidance for Site Investigations and Remediation June, 2019November 2022 (NMED, 201922cb). ² = WSTF RBCs for soil vapor taken from NASA WSTF NMED-approved Soil Vapor RBCs for 202218 (NASA, 202219a), approved with modification February 2022 (NMED, 2022a). The RBC listed corresponds to the closest depth bgs the sample was collected. For each sample, the next shallowest depth to the sample depth was chosen to be conservative, e.g., sampled at 34 ft bgs, the 25 ft RBC depth was used

*³ = No NMED VISL was listed, so EPA RSL for air was used (EPA, 2022b). OSHA PEL TWAs taken Pocket Guide to Chemical Hazards September 2010 Edition (NIOSH, 2010).

1 able 0.1 200 Al	ea Son vapor. Residential-	unitative Calicel Kisk	(VISLS) Assessment		
Constituent	Maximum Concentration (µg/m³)	VISL- Screening Level ² (µg/m ³)	Cancer Risk ¹		
Benzene	8.00E+01	1.20E+02	6.67E-06		
PCE	<u>5.70E+04</u>	<u>3.60E+03</u>	<u>1.58E-04</u>		
<u>TCE</u>	<u>4.10E+05</u>	<u>1.47E+02</u>	<u>2.79E-02</u>		
Total 200 Area Residential Soil VaporCancer Risk2.81E-027E-06					

Tabla 6 1 200 Area Soil Vanar: Residential Cumulative Cancer Rick (VISLs) Assessment

Notes:

¹ Cancer Risk <u>ealculated by</u> (Maximum Concentration/Screening Level) * 1E-05.

²Table A-4, NMED Residential Vapor Intrusion Screening Levels (NMED, 201922cb)

Table 6.2	200 Area Soil Vapor:	Industrial Cancer Risl	<u>k (VISLs)</u>
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(µg/m³)</u>	$\frac{\text{VISL}^2}{(\mu g/m^3)}$	Cancer Risk ¹
Benzene	<u>8.00E+01</u>	<u>5.88E+02</u>	<u>1.36E-06</u>
PCE	<u>5.70E+04</u>	<u>1.76E+04</u>	<u>3.24E-05</u>
<u>TCE</u>	<u>4.10E+05</u>	<u>1.12E+03</u>	<u>3.66E-03</u>
Total 200 Area Industrial	3.69E-03		

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (NMED, 2022c)

Bold values indicate an exceedance of screening levels.

<u>Table 6.3</u>	200 Area Soil Vapor: Residential Cancer Risk (RBCs)					
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u>	<u>Depth</u> <u>Maximum</u> <u>Detected</u>	<u>RBC²</u>	<u>RBC</u> <u>Depth</u> <u>Used</u>	Cancer Risk ¹	
	<u>(µg/m³)</u>	(ft bgs)	<u>(µg/m³)</u>	<u>(ft bgs)</u>		
Benzene	<u>8.00E+01</u>	<u>19</u>	<u>3.40E+03</u>	<u>10</u>	<u>2.35E-07</u>	
PCE	<u>5.70E+04</u>	<u>34</u>	<u>3.40E+05</u>	<u>25</u>	<u>1.68E-06</u>	
<u>TCE</u>	<u>4.10E+05</u>	<u>34</u>	<u>1.10E+04</u>	<u>25</u>	<u>3.73E-04</u>	
Total 200 Area Residenti	<u>3.75E-04</u>					

Notes:

¹Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

Bold values indicate an exceedance of screening levels.

RBC - WSTF Risk Based Concentration

<u>Table 6.4</u>	<u>200 Area So</u>	200 Area Soil Vapor: Industrial Cancer Risk (RBCs)				
Constituent	<u>Maximum</u> <u>Concentration</u>	<u>Depth</u> <u>Maximum</u> <u>Detected</u>	<u>RBC²</u>	<u>RBC</u> <u>Depth</u> <u>Used</u>	Cancer Risk ¹	
	<u>(µg/m³)</u>	<u>(ft bgs)</u>	<u>(µg/m³)</u>	<u>(ft bgs)</u>		
Benzene	<u>8.00E+01</u>	<u>19</u>	<u>4.90E+04</u>	<u>10</u>	<u>1.63E-08</u>	
PCE	<u>5.70E+04</u>	<u>34</u>	<u>6.00E+06</u>	<u>25</u>	<u>9.50E-08</u>	
<u>TCE</u>	<u>4.10E+05</u>	<u>34</u>	<u>2.80E+05</u>	<u>25</u>	<u>1.46E-05</u>	
Total 200 Area Industria	Total 200 Area Industrial Soil Vapor Cancer Risk					

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022).

Bold values indicate an exceedance of screening levels.

RBC – WSTF Risk Based Concentration

	Assessment		
Constituent	Maximum Concentration Or UCL95 (µg/m ³)	VISL- Screening Level ² (µg/m ³)	Hazard <u>Quotient</u> ¹
Benzene	<u>8.00E+01</u>	<u>1.04E+03</u>	<u>7.69E-02</u>
Carbon disulfide	6.40E+01	2.43E+04	2.63E-03
Freon-12 (Dichlorodifluoromethane)	1.20E+03	3.48E+03	3.45E-01
1,1-Dichloroethene	<u>1.20E+04</u> 7.35E+03 ^{3,4}	6.95E+03	1.06<u>1.73</u>E+00
Tetrachloroethene_PCE	35 .70E+04 ^{3,4}	1.39E+03	2.664.10E+01
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	4.70E+05	1.04E+06	4.5 <u>2</u> +E-01
Trichloroethylene_TCE	3.84.10E+05 ³	6.95E+01	5.51<u>5.90</u>E+03
Freon-11 (Trichlorofluoromethane)	4.90E+02	2.43E+04	2.02E-02
Freon 123a (1,2 Dichloro- 1,1,2 trifluoroethane)	6.60E+03	1.04E+06 ⁵	6.35E-03
Total 200 Area Residential S	oil Vapor Hazard <u>Index</u>		5.5 4 <u>5.94</u> E+03

Table 6.52 200 Area Soil Vapor: Residential-Cumulative (Noncancer) Hazard Index (VISLs)

Notes:

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Residential Vapor Intrusion Screening Levels (NMED, 201922cb), unless otherwise noted.

³ These entries are UCL95 values calculated using ProUCL software.

⁴The UCL95 ProUCL software recommended was higher than the maximum concentration, so the UCL95 used was from BCa Bootstrap.

⁵ No NMED or EPA screening level for Freon 123a is available, so Freon 113 NMED screening level was used.

Bold values indicate an exceedance of **NMED** screening levels or target hazard.

I

Table 6.6 200 Ai	<u>ea Soil Vapor: Industrial (Non</u>	cancer) Hazard In	<u>ndex (VISLs)</u>					
<u>Constituent</u>	<u>Maximum Concentration</u> <u>(μg/m³)</u>	$\frac{\text{VISL}^2}{(\mu g/m^3)}$	Hazard Quotient ¹					
Benzene	<u>8.00E+01</u>	<u>4.92E+03</u>	<u>1.63E-02</u>					
Carbon disulfide	<u>6.40E+01</u>	<u>1.15E+05</u>	<u>5.57E-04</u>					
Freon-12 (Dichlorodifluoromethane)	<u>1.20E+03</u>	<u>1.64E+04</u>	<u>7.32E-02</u>					
1,1-Dichloroethene	<u>1.20E+04</u>	<u>3.28E+04</u>	<u>3.66E-01</u>					
<u>PCE</u>	<u>5.70E+04</u>	<u>6.55E+03</u>	<u>8.70E+00</u>					
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	<u>4.70E+05</u>	<u>4.92E+06</u>	<u>9.55E-02</u>					
TCE	<u>4.10E+05</u>	<u>3.28E+02</u>	<u>1.25E+03</u>					
Freon-11 (Trichlorofluoromethane)	<u>4.90E+02</u>	<u>1.15E+05</u>	<u>4.26E-03</u>					
Total 200 Area Industrial So	Total 200 Area Industrial Soil Vapor Hazard Index1.26E+03							

Notes: ¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00. ² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (NMED, 2022c), unless otherwise noted. **Bold** values indicate an exceedance of screening levels.

	(R	BC <mark>s</mark>)			
Constituent	Maximum Concentration Or UCL95 (µg/m ³)	Depth Maximum Detected (ft bgs)	RBC ² (µg/m ³)	<u>RBC</u> <u>Depth</u> <u>Used</u> (ft bgs)	Hazard <u>Quotient</u> ¹
Benzene	<u>8.00E+01</u>	<u>19</u>	<u>2.90E+04</u>	<u>10</u>	<u>2.76E-03</u>
Carbon disulfide	6.40E+01	<u>19</u>	6.10E+05	<u>10</u>	1.05E-04
Freon-12 (Dichlorodifluoromethane)	1.20E+03	<u>34</u>	2.20E+05	<u>25</u>	5.45E-03
1,1-Dichloroethene	<u>1.20E+04</u> 7.35E+03 ^{2,3}	<u>34</u>	4.00E+05	<u>25</u>	1.84<u>3.00</u>E-02
Tetrachloroethene_PCE	3.<u>5.</u>70E+04^{2,3}	<u>34</u>	1.30E+05	<u>25</u>	2.85 <u>4.38</u> E-01
Freon-113 (1,1,2- Trichloro-1,2,2- trifluoroethane)	4.70E+05	<u>34</u>	1.20E+08	<u>25</u>	3.92E-03
Trichloroethylene_TCE	3.83<u>4.10</u>E+05²	<u>34</u>	4.90E+03	<u>25</u>	7.828.37E+01
Freon-11 (Trichlorofluoromethane)	4.90E+02	<u>9</u>	5.30E+05	<u>5</u>	9.25E-04
Freon-123a (1,2-Dichloro- 1,1,2-trifluoroethane)	6.60E+03		6.60E+07		1.00E-04
Total 200 Area Residentia	<u>l Soil Vapor</u> Hazard <u>In</u>	dex			7.9 <u>8.42</u> E+01

Table 6. <u>7</u> 3	200 Area Soil Vapor: Residential-Cumulative (Noncancer) Hazard Index Assessment
	(RBCs)

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).² These entries are UCL95 values calculated using ProUCL software.

³ The UCL95 ProUCL software recommended was higher than the maximum concentration, so the UCL95 used was from BCa Bootstrap.

Bold values indicate an exceedance of NMED screening levels or target hazard.

RBC - WSTF Risk Based Concentration

Table 6.8 200 Area Soil Vapor: Industrial (Noncancer) Hazard Index (RBCs)						
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(μg/m³)</u>	<u>Depth</u> <u>Maximum</u> <u>Detected</u> <u>(ft bgs)</u>	<u>RBC²</u> (μg/m ³)	<u>RBC</u> <u>Depth</u> <u>Used</u> (ft bgs)	<u>Hazard</u> Quotient ¹	
Benzene	<u>8.00E+01</u>	<u>19</u>	<u>4.00E+05</u>	<u>10</u>	<u>2.00E-04</u>	
Carbon disulfide	<u>6.40E+01</u>	<u>19</u>	<u>8.10E+06</u>	<u>10</u>	<u>7.90E-06</u>	
<u>Freon-12</u> (Dichlorodifluoromethane)	<u>1.20E+03</u>	<u>34</u>	<u>3.80E+06</u>	<u>25</u>	<u>3.16E-04</u>	
1,1-Dichloroethene	<u>1.20E+04</u>	<u>34</u>	<u>6.70E+06</u>	<u>25</u>	<u>1.79E-03</u>	
<u>PCE</u>	<u>5.70E+04</u>	<u>34</u>	<u>2.30E+06</u>	<u>25</u>	<u>2.48E-02</u>	
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	<u>4.70E+05</u>	<u>34</u>	<u>2.30E+09</u>	<u>25</u>	<u>2.04E-04</u>	
TCE	4.10E+05	<u>34</u>	8.40E+04	<u>25</u>	4.88E+00	

<u>Freon-11</u> (Trichlorofluoromethane)	<u>4.90E+02</u>	<u>9</u>	<u>6.40E+06</u>	<u>5</u>	<u>7.66E-05</u>	
Total 200 Area Industrial Soil Vapor Hazard Index						
Notes:						
1 Hazard = (Maximum Concentration/Screening Level) * 1E+00.						
2 Table 20 Derivation of Vapor	² Table 20. Derivation of Vanag Disk Decod Concentrations, Commercial Worker (NASA 2022)					

² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022). **Bold** values indicate an exceedance of screening levels.

RBC - WSTF Risk Based Concentration

Table 6. <mark>94</mark>	200 Area Indoor	Air: Residential	Cumulative	-Cancer Risk	(VISLs)-Assessment
--------------------------	-----------------	------------------	-------------------	--------------	--------------------

Constituent	Maximum Concentration (µg/m³)	Indoor Air <u>VISL</u> Screening Level ² (µg/m ³)	Cancer Risk ¹
Benzene	1.60E+00	3.60E+00	4.44E-06
Carbon tetrachloride	4.50E-01	4.68E+00	9.62E-07
Chloroform	3.90E-01	1.22E+00	3. <u>20</u> 19E-06
Chloromethane	6.00E-01	1.56E+01	3.85E-07
Ethylbenzene	4.70E-01	1.12E+01	4. <u>20</u> 18E-07
Methylene chloride	<u>1.60E+00</u>	<u>1.01E+03</u>	<u>1.58E-08</u>
PCE	<u>2.80E-01</u>	<u>1.08E+02</u>	<u>2.59E-08</u>
TCE	<u>1.30E+00</u>	<u>4.42E+00</u>	<u>2.94E-06</u>
Total 200 Area Resident	<u>1.24E-05</u> 9E 06 or 1E- 05		

Notes:

¹ Cancer Risk <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E-05. ² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, $20\frac{19}{22c}$).

	Table 6.10200 Area Indoor A		
<u>Constituent</u>	<u>Maximum Concentration</u> <u>(µg/m³)</u>	<u>Indoor Air VISLs²</u> (μg/m³)	Cancer Risk ¹
Benzene	<u>1.60E+00</u>	<u>1.76E+01</u>	<u>9.09E-07</u>
Carbon tetrachloride	<u>4.50E-01</u>	<u>2.29E+01</u>	<u>1.97E-07</u>
<u>Chloroform</u>	<u>3.90E-01</u>	<u>5.98E+00</u>	<u>6.52E-07</u>
Chloromethane	<u>6.00E-01</u>	<u>7.65E+01</u>	<u>7.84E-08</u>
Ethylbenzene	<u>4.70E-01</u>	<u>5.51E+01</u>	<u>8.53E-08</u>
Methylene chloride	<u>1.60E+00</u>	<u>1.38E+04</u>	<u>1.16E-09</u>

PCE	<u>2.80E-01</u>	<u>5.29E+02</u>	<u>5.29E-09</u>
<u>TCE</u>	<u>1.30E+00</u>	<u>3.36E+01</u>	<u>3.87E-07</u>
Total 200 Area Industrial Ind	<u>oor Air Cancer Risk</u>		<u>2.31E-06</u>

Notes: ¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05. ² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c).

	(VIDLS) Assessment		
Constituent	Max imum<u>.</u> Concentration Or UCL95	Indoor Air Screening LevelVISLs ²	Hazard <u>Quotient</u> 1
	$(\mu g/m^2)$	$(\mu g/m^2)$	
Acetone	2.90<u>1.21</u>E+01	3.23E+04	8.97 <u>3.76</u> E-04
Benzene ³	<u>7.05E-01</u>	<u>3.13E+01</u>	<u>2.25E-02</u>
2-Butanone (Methyl ethyl ketone) ^{$\frac{3}{2}$}	8.70<u>2.75</u>E+00	5.21E+03	<u>5.28E-04</u> 1.67E- 03
Carbon disulfide	4.70E-01	7.30E+02	6.44E-04
Carbon tetrachloride ³	<u>4.11E-01</u>	<u>1.04E+02</u>	<u>3.95E-03</u>
<u>Chloroform</u>	<u>3.90E-01</u>	<u>1.02E+02</u>	<u>3.82E-03</u>
Chloromethane ³	<u>5.27E-01</u>	<u>9.39E+01</u>	<u>5.61E-03</u>
Ethylbenzene	<u>4.70E-01</u>	<u>1.04E+03</u>	4.52E-04
Freon-12 (<u>Dichlorodifluoromethane</u> 1,2- Dichloro 1,1,2 trifluoroethane) ³	<u>2.702.50</u> E+00	1.04E+02	<u>2.592.41</u> E-02
trans-1,2-Dichloroethene	2.20E+00	6.26<u>4.17</u>E+01	3.52<u>5.28</u>E-02
n-Hexane ³	<u>6.24E-01</u> 1.20E+00	7.30E+02	<u>8.55E-04</u> 1.64E- 03
<u>4-Methyl-2-pentanone (</u> Methyl isobutyl ketone)	2.40E+01	3.13E+03	7.67E-03
Methylene chloride ^{3}	<u>5.84E-01</u> 1.60E+00	6.26E+02	<u>9.33E-04</u> 2.56E- 03
Styrene	1.90E+00	1.04E+03	1.8 <mark>32</mark> E-03
Tetrachloroethene_PCE	2.80E-01	4.17E+01	6.71E-03
Toluene ³	7.20<u>2.68</u>E+00	5.21E+03	<u>5.14E-04</u> 1.38E- 03
Freon-113 (1,1,2-Trichloro-1,2,2-trifluoroethane) ^{3}	<u>6.19E+02</u> 2.26E+03 ³	3.13E+04	7.23<u>1.98</u>E-02
Trichloroethylene_TCE ³	5.21E-01 ^{3,4}	2.09E+00	2.49E-01
Freon-11 (Trichlorofluoromethane) ³	<u>7.57E+00</u> 2.20E+01	7.30E+02	3.01<u>1.04</u>E-02
m,p-Xylene	1.50E+00	1.04E+02	1.44E-02
o-Xylene	6.00E-01	1.04E+02	5.75E-03
1,2,4-Trimethylbenzene ⁴	9.20E-01	6.30E+01 ⁴	1.46E-02
2,2,4-Trimethylpentane	3.90E-01	N <u>E</u> ∕A ^₅	N / A
2-Hexanone ⁴	1.10E+00	3.10E+01 ⁴	3.55E-02
2-Propanol (Isopropanol) ^{3,4}	$3.062.63E+01^{3}$	$2.10E+02^{4}$	1.46<u>1.25</u>E-01
Ethanol ³	8.64E+002.30E+01	<u>NE2.10E+04</u> ⁶	<u>NA1.10E-03</u>
Freon-21 (Dichlorofluoromethane)	3.50E+00	<u>NE</u> 1.04E+02 ⁷	<u>NA</u> 3.37E-02
Heptane ⁴	3.30E-01	$4.20E+02^{4}$	7.86E-04

Table 6. <u>11</u> 5	200 Area Indoor Air: Residential-Cumulative(Noncancer) Hazard Index
	(VISLs)Accossmont

Tetrahydrofuran ⁴	2.90E-01	2.10E+03 ⁴	1.38E-04
Total 200 Area Residential Indo		6. <mark>0</mark> 9E-01	

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 201922cb), unless otherwise noted.

³ These entries are UCL95 values calculated using ProUCL software.

⁴ EPA Regional Screening Level Residential <u>Indoor</u> Air (EPA, 2022) used when NMED screening levels are unavailable.

<u>NA – Not Applicable</u>

<u>NE – Not Established⁵ No screening level available for this constituent.</u>

⁶ No NMED or EPA screening level for Freon 21 is available, so Freon 12 NMED screening level was used.

<u>Table 6.12</u> 200 Area	Indoor Air: Industrial (Nonc	cancer) Hazard Index	<u>(VISLs)</u>
<u>Constituent</u>	<u>Maximum Concentration</u> <u>Or UCL95</u> (μg/m ³)	<u>Indoor Air</u> <u>VISLsScreening <u>Level²</u> (µg/m³)</u>	Hazard Quotient ¹
<u>Acetone³</u>	<u>1.21E+01</u>	<u>1.52E+05</u>	<u>7.99E-05</u>
Benzene ³	<u>7.05E-01</u>	<u>1.76E+01</u>	<u>4.01E-02</u>
$\frac{2\text{-Butanone (Methyl ethyl}}{\text{ketone})^3}$	<u>2.75E+00</u>	<u>2.46E+04</u>	<u>1.12E-04</u>
Carbon disulfide	<u>4.70E-01</u>	<u>3.44E+03</u>	<u>1.37E-04</u>
Carbon Tetrachloride ³	<u>4.11E-01</u>	<u>2.29E+01</u>	<u>1.79E-02</u>
Chloroform	<u>3.90E-01</u>	<u>5.98E+00</u>	<u>6.52E-02</u>
Chloromethane ³	<u>5.27E-01</u>	<u>7.65E+01</u>	<u>6.89E-03</u>
Ethylbenzene	<u>4.70E-01</u>	<u>5.51E+01</u>	<u>8.53E-03</u>
$\frac{\text{Freon-12}}{(\text{Dichlorodifluoromethane})^3}$	<u>2.50E+00</u>	<u>4.92E+02</u>	<u>5.09E-03</u>
trans-1,2-Dichloroethene	<u>2.20E+00</u>	<u>1.97E+02</u>	<u>1.12E-02</u>
<u>n-Hexane³</u>	<u>6.24E-01</u>	<u>3.44E+03</u>	<u>1.81E-04</u>
<u>4-Methyl-2-pentanone (Methyl</u> isobutyl ketone)	<u>2.40E+01</u>	<u>1.47E+04</u>	<u>1.63E-03</u>
Methylene chloride ³	<u>5.84E-01</u>	<u>2.95E+03</u>	<u>1.98E-04</u>
Styrene	<u>1.90E+00</u>	<u>4.92E+03</u>	<u>3.86E-04</u>
PCE	<u>2.80E-01</u>	<u>1.97E+02</u>	<u>1.42E-03</u>
Toluene ³	<u>2.68E+00</u>	<u>2.46E+04</u>	<u>1.09E-04</u>
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane) ³	<u>6.19E+02</u>	<u>1.47E+05</u>	<u>4.21E-03</u>
$\underline{\text{TCE}^{3}}$	<u>5.21E-01</u>	<u>9.83E+00</u>	<u>5.30E-02</u>
$\frac{\text{Freon-11}}{(\text{Trichlorofluoromethane})^3}$	<u>7.57E+00</u>	<u>7.30E+02</u>	<u>1.04E-02</u>
<u>m,p-Xylene</u>	<u>1.50E+00</u>	<u>4.92E+02</u>	<u>3.05E-03</u>
<u>o-Xylene</u>	<u>6.00E-01</u>	<u>4.92E+02</u>	<u>1.22E-03</u>
<u>1,2,4-Trimethylbenzene⁴</u>	<u>9.20E-01</u>	<u>2.60E+02</u>	<u>3.54E-03</u>
2,2,4-Trimethylpentane	<u>3.90E-01</u>	<u>NE</u>	<u>NA</u>
<u>2-Hexanone⁴</u>	<u>1.10E+00</u>	<u>1.30E+02</u>	<u>8.46E-03</u>
2-Propanol (Isopropanol) ^{3,4}	<u>2.63E+01</u>	<u>8.80E+02</u>	<u>2.99E-02</u>
Ethanol ³	<u>8.64E+00</u>	<u>NE</u>	NA
Freon-21 (Dichlorofluoromethane)	<u>3.50E+00</u>	NE	NA
Heptane ⁴	<u>3.30E-01</u>	<u>1.80E+03</u>	<u>1.83E-04</u>
Tetrahydrofuran ⁴	<u>2.90E-01</u>	<u>8.80E+03</u>	<u>3.30E-05</u>

⁷ No NMED or EPA screening level for Ethanol is available, so Methanol EPA screening level was used.

Total 200 Area Industrial Indoor Air Hazard Index

2.73E-01

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.

 ³ These entries are UCL95 values calculated using ProUCL software.
 ⁴ EPA Regional Screening Level Industrial Air (EPA, 2022) used when NMED screening levels are unavailable. NA – Not Applicable

NE - Not Established

Comparison					
Constituent	Depth Range (ft)	200 Area Max. Detected Concentration (mg/kg)	Soil Background Area 2 BTV (95% UTL) 8-12 ft (mg/kg)	Conclusion	
Aluminum, Total	8-10	6,460	12,577	Below background	
Antimony, Total	8-10	1.2	1.77	Below background	
Arsenic, Total	8-10	13.7	14.2	Below background	
Barium, Total	8-10	108	137	Below background	
Beryllium, Total	8-10	0.49	0.609	Below background	
Cadmium, Total	8-10	0.95	1.42	Below background	
Chromium, Hex	8-10	0.04	3.78	Below background	
Chromium, Total	8-10	9.26	9.41	Below background	
Cobalt, Total	8-10	5.35	5.49	Below background	
Copper, Total	8-10	8.21	8.29	Below background	
Iron, Total	8-10	19,300	39,313	Below background	
Lead, Total	8-10	13	21.6	Below background	
Manganese, Total	8-10	321	404	Below background	
Mercury, Total	8-10	0.003	N <u>E</u> A	Include as COPC	
Molybdenum, Total	8-10	1.8	3.65	Below background	
Nickel, Total	8-10	11	17.1	Below background	
NO ₂ /NO ₃	8-10	7.4	3.1	Compare populations	
Strontium, Total	8-10	250	896	Below background	
Titanium, Total	8-10	111	273	Below background	
Uranium, Total	8-10	1.76	3.26	Below background	
Vanadium, Total	8-10	42.2	50.1	Below background	
Zinc, Total	8-10	68	96.5	Below background	

Table 6. <u>13</u> 6	200 Area Soil Maximum	Concentrations	vs. Background	Threshold	Value (l	BTV)
		C				

 $N\underline{E}A = Not Applicable. Not Established.$ Constituent was not detected in sufficient samples to establish a BTV.
Constituent	Depth Range (ft)	200 Area Max. Detected Concentration (mg/kg)	Soil Background Area 2 BTV (95% UTL) 8-12 ft (mg/kg)	Conclusion
Calcium, Total	8-16 ¹	108,000	109,364	Below background
Chloride	8-10	16	579	Below background
Magnesium, Total	8-10	28,400	47,233	Below background
Potassium, Total	8-10	1,870	2,942	Below background
Sodium, Total	8-10	200	796	Below background

Table 6.147200 Area Essential Nutrient Soil Maximum Concentrations vs. BackgroundThreshold Value (BTV) Comparison

Notes:

¹ No analytical samples were collected between 0-10 ft bgs for 200-SB-10, so the shallowest sample was used for that soil boring (16 ft bgs).

⁺ No analytical samples were collected between 0-10 ft bgs for 200 SB-10, so the shallowest sample was used for that soil boring (16 ft bgs).

Table 6. <mark>15</mark> 8	Population Comparison of Background and 200 Area Soil Data		
Constituent	Area 2	Conclusion	
NO ₂ /NO ₃	BG >= 200 Area	200 Area soil data is no more than Background data. Delete as COPC.	

Table 6. <u>16</u> 9	200 Area Soil: Residential Cumulative Cancer Risk Assessment
----------------------	--

Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Cancer Risk ¹
Dioxins/Furans	<u>3.112.99</u> E-07	$4.90E-05^3$	<u>6.356.10</u> E-08
Total 200 Area Resident	<u>ial Soil</u> Cancer Risk		6E-08

Notes:

¹ Cancer Risk <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Residential Soil Screening Levels (NMED, $20\frac{1922cb}{}$).

³ Per NMED Guidance (<u>NovemberJune</u>, 20<u>22</u>19), dioxin/furan concentrations were compared to 2,3,7,8-TCDD (Tetrachlorodibenzo-p-dioxin).

	Table 6.17 200 Area 5	Soil: Industrial Cancer Risk	
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(mg/kg)</u>	Soil Screening Level ² (mg/kg)	<u>Cancer Risk¹</u>
Dioxins/Furans	<u>2.99E-07</u>	<u>2.38E-04³</u>	<u>1.26E-08</u>
Total 200 Area Industrial Soil Cancer Risk1E-08			

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05. ² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c). ³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD (Tetrachlorodibenzo-p-dioxin).

Table 6.1 <mark>8</mark> 0	200 Area Soil: Residential-Cun	Area Soil: Residential-Cumulative (Noncancer) Hazard Index-Assessment		
Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Hazard <u>Quotient</u> 1	
Mercury (elementa	al) 3.00E-03	2.38E+01	1.26E-04	
Toluene	2.10E+00	5.23E+03	4.02E-04	
Dioxins/Furans	3.11E-07	$5.06E-05^3$	6.15E-03	
Total <u>200 Area Residential Soil</u> Hazard <u>Index</u>			6.7E-03	

Notes:

¹ Hazard <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 201922cb).

³ Per NMED Guidance (<u>NovemberJune</u> 20<u>22</u>19), dioxin/furan concentrations were compared to 2,3,7,8-TCDD (Tetrachlorodibenzo-p-dioxin).

Table 6.19 200 Area Soil: Industrial (Noncancer) Hazard Index			Index
Constituent	<u>Maximum</u> <u>Concentration</u> <u>(mg/kg)</u>	Soil Screening Level ² (mg/kg)	Hazard Quotient ¹
Mercury (elemental)	<u>3.00E-03</u>	<u>2.35E+01</u>	<u>1.28E-04</u>
<u>Toluene</u>	<u>2.10E+00</u>	<u>6.13E+04</u>	<u>3.43E-05</u>
Dioxins/Furans	<u>3.11E-07</u>	$8.08E-04^{3}$	<u>3.85E-04</u>
Total 200 Area Industrial Soil Hazard Index5.47E-04			<u>5.47E-04</u>

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c).

³ Per NMED Guidance (November 2022), dioxin/furan concentrations were compared to 2,3,7,8-TCDD (Tetrachlorodibenzo-p-dioxin).

<u>Table 6.</u>	20 200 Area Cum	ulative Residential	<u>Risk and Hazard; All Pathways</u>
Pathway	Cancer Risk	<u>Hazard</u>	<u>Source</u> <u>Risk / Hazard</u>
Soil Vapor	<u>3.75E-04</u>	<u>8.42E+01</u>	Table 6.3 (RBCs) / Table 6.7 (RBCs)
<u>Soil</u>	<u>6.35E-08</u>	<u>6.67E-03</u>	Table 6.16 / Table 6.18
<u>Total</u>	<u>3.75E-04</u>	<u>8.42E+01</u>	

Notes: Bold values indicate exceedance of NMED target.

<u>Table 6</u>	.21 200 Area Cum	ulative Industrial R	<u>isk and Hazard; All Pathways</u>
<u>Pathway</u>	Cancer Risk	Hazard	<u>Source</u> <u>Risk / Hazard</u>
Soil Vapor	<u>1.48E-05</u>	<u>4.91E+00</u>	Table 6.4 (RBCs) / Table 6.8 (RBCs)
Soil	<u>1.31E-08</u>	<u>5.47E-04</u>	Table 6.17 / Table 6.19
<u>Total</u>	<u>1.48E-05</u>	<u>4.91E+00</u>	

Notes:

Bold values indicate exceedance of NMED target.

Constituent	Maximum Concentration Or UCL95 (µg/m³)	VISLs <mark>Screening Level</mark> ² (µg/m ³)	Cancer Risk ¹
Benzene	3.20E+00	1.20E+02	2.67E-07
Bromodichloromethane	6.20E-01	2.53E+01	2.45E-07
Chloroform	3.204.10E+01 ³	4.07E+01	<u>1.01E-05</u> 7.86E-06
Chloromethane	1.50E+00	5.20E+02	2.88E-08
1,4-Dichlorobenzene	1.90E+00	8.51E+01	2.23E-07
1,1-Dichloroethane	5.70E+00	5.85E+02	9.74E-08
1,2-Dichloroethane	7.30E-01	3.60E+01	2.03E-07
Ethylbenzene	1.60E+00	3.74E+02	4.287E-08
Methylene chloride	<u>2.40E+01</u>	<u>3.38E+04</u>	<u>7.10E-09</u>
PCE	<u>5.20E+00</u>	<u>3.60E+03</u>	<u>1.44E-08</u>
TCE	<u>7.40E+02</u>	<u>1.47E+02</u>	<u>5.03E-05</u>
Total 600 Area Residenti		<u>6.15E-059E-06</u>	

Table 6. <u>22</u> 11	600 Area Soil Vapor: Residential Cumulative Cancer Risk (VISLs) Asses	ssment
-----------------------	---	-------------------

¹ Cancer Risk <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Residential Vapor Intrusion Screening Levels (VISLs; NMED, 201922cb).

Bold values indicate an exceedance of screening levels.³ These entries are UCL95 values calculated using ProUCL software.

<u>Table 6.2.</u>	e 6.23 <u>600 Area Soil Vapor: Industrial Cancer Risk (VISLs)</u>			
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(μg/m³)</u>	<u>VISLs²</u> (µg/m ³)	<u>Cancer Risk¹</u>	
Benzene	<u>3.20E+00</u>	<u>5.88E+02</u>	<u>5.44E-08</u>	
Bromodichloromethane	<u>6.20E-01</u>	<u>1.24E+02</u>	<u>5.00E-08</u>	
<u>Chloroform</u>	<u>4.10E+01</u>	<u>1.99E+02</u>	<u>2.06E-06</u>	
Chloromethane	<u>1.50E+00</u>	<u>2.55E+03</u>	<u>5.88E-09</u>	
1,4-Dichlorobenzene	<u>1.90E+00</u>	<u>4.17E+02</u>	<u>4.56E-08</u>	
1,1-Dichloroethane	<u>5.70E+00</u>	<u>2.87E+03</u>	<u>1.99E-08</u>	
1,2-Dichloroethane	<u>7.30E-01</u>	<u>1.76E+02</u>	<u>4.15E-08</u>	
Ethylbenzene	<u>1.60E+00</u>	<u>1.84E+03</u>	<u>8.70E-09</u>	
Methylene chloride	<u>2.40E+01</u>	<u>4.59E+05</u>	<u>5.23E-10</u>	
PCE	<u>5.20E+00</u>	<u>1.76E+04</u>	<u>2.95E-09</u>	
TCE	<u>7.40E+02</u>	<u>1.12E+03</u>	<u>6.61E-06</u>	
Total 600 Area Industrial	<u>8.90E-06</u>			
Notes:				

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (VISLs; NMED, 2022c).

Table 6.24	<u>600 Area So</u>	600 Area Soil Vapor: Residential Cancer Risk (RBCs)					
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(μg/m³)</u>	<u>Depth</u> <u>Maximum</u> <u>Detected</u> <u>(ft bgs)</u>	<u>RBC²</u> (μg/m ³)	<u>RBC Depth</u> <u>Used</u> (ft bgs)	<u>Cancer</u> <u>Risk¹</u>		
Benzene	<u>3.20E+00</u>	<u>12.5</u>	<u>3.40E+03</u>	<u>10</u>	<u>9.41E-09</u>		
Bromodichloromethane	<u>6.20E-01</u>	<u>12.5</u>	<u>9.80E+02</u>	<u>10</u>	<u>6.33E-09</u>		
Chloroform	<u>4.10E+01</u>	<u>12.5</u>	<u>1.20E+03</u>	<u>10</u>	<u>3.42E-07</u>		
<u>Chloromethane</u>	<u>1.50E+00</u>	<u>12.5</u>	<u>1.20E+04</u>	<u>10</u>	<u>1.25E-09</u>		
<u>1,4-Dichlorobenzene³</u>	<u>1.90E+00</u>	<u>12.5</u>	<u>8.51E+01</u>	<u>10</u>	<u>2.23E-07</u>		
1,1-Dichloroethane	<u>5.70E+00</u>	<u>12.5</u>	<u>1.70E+04</u>	<u>10</u>	<u>3.35E-09</u>		
<u>1,2-Dichloroethane³</u>	<u>7.30E-01</u>	<u>12.5</u>	<u>3.60E+01</u>	<u>10</u>	<u>2.03E-07</u>		
Ethylbenzene ³	<u>1.60E+00</u>	<u>12.5</u>	<u>3.74E+02</u>	<u>10</u>	<u>4.28E-08</u>		
Methylene chloride	<u>2.40E+01</u>	<u>12.5</u>	<u>8.70E+05</u>	<u>10</u>	<u>2.76E-10</u>		
<u>PCE</u>	<u>5.20E+00</u>	<u>12.5</u>	<u>1.50E+05</u>	<u>10</u>	<u>3.47E-10</u>		
TCE	<u>7.40E+02</u>	<u>12.5</u>	5.40E+03	<u>10</u>	<u>1.37E-06</u>		
Total 600 Area Residential Soil Vapor Cancer Risk 2.20E-06							

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

³ NMED screening level (Table A-4 NMED VISLs; NMED 2022c) used when WSTF RBC screening levels are unavailable.

RBC - WSTF Risk Based Concentration

	Maximum Concentration	<u>VISLsScreening</u>		
Constituent	Or UCL95	Level ²	Hazard <u>Quotient</u> ¹	
	(μg/m ³)	(μg/m ³)	2 505 05	
Acetone	2.70E+01	1.08E+06	2.50E-05	
Benzene	<u>3.20E+00</u>	<u>1.04E+03</u>	<u>3.08E-03</u>	
2-Butanone (Methyl ethyl ketone)	1.20E+01	1.74E+05	6.90E-05	
Carbon disulfide	8.60E+01	2.43E+04	3.54 <mark>3</mark> E-03	
<u>Chloroform</u>	<u>4.10E+01</u>	<u>3.41E+03</u>	<u>1.20E-02</u>	
Chloromethane	<u>1.50E+00</u>	<u>3.13E+03</u>	<u>4.79E-04</u>	
Cis-1,2-dichloroethene ³	8.20E-01	<u>4.20E+01</u> NA ³	<u>1.95E-02</u> NA	
1,2-Dichloroethane	<u>7.30E-01</u>	<u>2.43E+02</u>	<u>3.00E-03</u>	
<u>1,4-Dichlorobenzene</u>	<u>1.90E+00</u>	<u>2.78E+04</u>	<u>6.83E-05</u>	
Ethylbenzene	<u>1.60E+00</u>	<u>3.48E+04</u>	<u>4.60E-05</u>	
Freon-12 (Dichlorodifluoromethane)	2.40E+00	3.48E+03	6.90E-04	
Ethyl chloride (Chloroethane)	2.00E+00	3.48E+05	5.75E-06	
n-Hexane	1.50E+00	2.43E+04	6.17 <mark>6</mark> E-05	
Methylene chloride	2.40E+01	2.09E+04	1.15E-03	
Tetrachloroethene_PCE	5.20E+00	1.39E+03	3.74E-03	
Toluene	2.90E+00	1.74E+05	1.67E-05	
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	8.20E+03	1.04E+06	7.88 6 E-03	
1,1,1-Trichloroethane	3.60E+00	1.74E+05	2.07E-05	
Trichloroethylene_TCE	5.38<u>7.40</u>E+02³⁴	6.95E+01	<u>1.06E+01</u> 7.74E+00 ⁶	
Freon-11 (<u>FT</u> richlorofluoromethane)	1.40E+03	2.43E+04	5.76 <mark>5</mark> E-02	
m,p-Xylene	2.90E+00	3.48E+03	8.33E-04	
o-Xylene	1.10E+00	3.48E+03	3.16E-04	
1,2,4-Trimethylbenzene ³	9.20E-01	2.10 <u>6.30</u> E+01	4.38 <u>1.46</u> E-02	
2-Hexanone ³	1.00E+00	3.10E+01 ⁵	3.23E-02	
2-Propanol <u>(Isopropyl alcohol or</u> <u>Isopropanol)³</u>	4.30E+00	2.10E+02 ⁵	2.05E-02	
Ethanol	9.60E+00	<u>NE2.10E+04⁶</u>	<u>NA</u> 4.57E-04	
Freon 123a (1,2-Dichloro 1,1,2- trifluoroethane)	2.00E+03	1.04E+06 ⁷	1.92E-03	
Freon 21 (Dichlorofluoromethane)	1.00E+01	<u>NE</u> 3.48E+03 ⁸	<u>NA2.87E-03</u>	
Tetrahydrofuran ³	8.50E-01	2.10E+03 ⁵	4.05E-04	
Total 600 Area Residential Soil V	<mark>apor</mark> Hazard <u>Index</u>		1.08E+017.9E+00	

Table 6. <u>25</u> 12	600 Area Soil Vapor: Residential-Cumulative (Noncancer) Hazard Index (VISLs)
	Assessment

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00. ² Table A-4, NMED Residential Vapor Intrusion Screening Levels (<u>VISLs;</u> NMED, 201922cb), unless otherwise noted.

³No screening level available for this constituent.

⁴ These entries are UCL95 values calculated using ProUCL software.

²⁵ EPA Regional Screening Level Residential Air used when NMED screening levels are unavailable.

⁶ No NMED or EPA screening level for Ethanol is available, so Methanol EPA screening level was used.

⁷No NMED or EPA screening level for Freon 123a is available, so Freon 113 NMED screening level was used.

⁸ No NMED or EPA screening level for Freon 21 is available, so Freon 12 NMED screening level was used.

Bold values indicate an exceedance of **NMED** screening levels.

NA = Not applicable

<u>NE – Not Established</u>

Constituent	<u>Maximum</u> <u>Concentration</u> <u>(µg/m³)</u>	VISLs ² (µg/m ³)	Hazard Quotient ¹
Acetone	<u>2.70E+01</u>	<u>5.08E+06</u>	<u>5.31E-06</u>
Benzene	<u>3.20E+00</u>	<u>4.92E+03</u>	<u>6.50E-04</u>
2-Butanone (Methyl ethyl ketone)	<u>1.20E+01</u>	<u>8.19E+05</u>	<u>1.47E-05</u>
Carbon disulfide	<u>8.60E+01</u>	<u>1.15E+05</u>	<u>7.48E-04</u>
Chloroform	<u>4.10E+01</u>	<u>1.61E+04</u>	<u>2.55E-03</u>
Chloromethane	<u>1.50E+00</u>	<u>1.47E+04</u>	<u>1.02E-04</u>
cis-1,2-dichloroethene ³	<u>8.20E-01</u>	<u>1.80E+02</u>	<u>4.56E-03</u>
1,2-Dichloroethane	<u>7.30E-01</u>	<u>1.15E+03</u>	<u>6.35E-04</u>
1,4-Dichlorobenzene	<u>1.90E+00</u>	<u>1.31E+05</u>	<u>1.45E-05</u>
Ethylbenzene	<u>1.60E+00</u>	<u>1.64E+05</u>	<u>9.76E-06</u>
Freon-12 (Dichlorodifluoromethane)	<u>2.40E+00</u>	<u>1.64E+04</u>	<u>1.46E-04</u>
Ethyl chloride (Chloroethane)	<u>2.00E+00</u>	<u>1.64E+06</u>	<u>1.22E-06</u>
<u>n-Hexane</u>	<u>1.50E+00</u>	<u>1.15E+05</u>	<u>1.30E-05</u>
Methylene chloride	<u>2.40E+01</u>	<u>9.83E+04</u>	<u>2.44E-04</u>
PCE	<u>5.20E+00</u>	<u>6.55E+03</u>	<u>7.94E-04</u>
Toluene	<u>2.90E+00</u>	<u>8.19E+05</u>	<u>3.54E-06</u>
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluorooethane)	<u>8.20E+03</u>	<u>4.92E+06</u>	<u>1.67E-03</u>
1,1,1-Trichloroethane	<u>3.60E+00</u>	<u>8.19E+05</u>	<u>4.40E-06</u>
TCE	<u>7.40E+02</u>	<u>3.28E+02</u>	<u>2.26E+00</u>
<u>Freon-11</u> (Trichlorofluoromethane)	<u>1.40E+03</u>	<u>1.15E+05</u>	<u>1.22E-02</u>
<u>m,p-Xylene</u>	<u>2.90E+00</u>	<u>1.64E+04</u>	<u>1.77E-04</u>
<u>o-Xylene</u>	<u>1.10E+00</u>	<u>1.64E+04</u>	<u>6.71E-05</u>
<u>1,2,4-Trimethylbenzene³</u>	<u>9.20E-01</u>	<u>2.60E+02</u>	<u>3.54E-03</u>
2-Hexanone ³	<u>1.00E+00</u>	<u>1.30E+02</u>	<u>7.69E-03</u>
<u>2-Propanol (Isopropyl alcohol or Isopropanol)³</u>	<u>4.30E+00</u>	<u>8.80E+02</u>	<u>4.89E-03</u>
Ethanol	<u>9.60E+00</u>	<u>NE</u>	NA
<u>Freon 21</u> (Dichlorofluoromethane)	<u>1.00E+01</u>	NE	<u>NA</u>
Tetrahydrofuran ³	<u>8.50E-01</u>	<u>8.80E+03</u>	<u>9.66E-05</u>
Total 600 Area Industrial Soil Va	<u>2.30E+00</u>		
Notes: ¹ Hazard – (Maximum Concentration/	Screening Level) * 1F±0	0	

 Table 6.26
 600 Area Soil Vapor: Industrial (Noncancer) Hazard Index (VISLs)

² Table A-4, NMED Industrial Vapor Intrusion Screening Levels (VISLs; NMED, 2022c), unless otherwise noted.

³ EPA Regional Screening Level Industrial Air used when NMED screening levels are unavailable.

Bold values indicate an exceedance of screening levels.

NA - Not Applicable

NE - Not Established

	71550551	(KDC <u>s</u>)			
Constituent	Maximum Concentration Or UCL95 (ug/m ³)	<u>Depth</u> <u>Maximum</u> <u>Detected</u> (ft bgs)	RBC ² (µg/m ³)	<u>RBC</u> <u>Depth</u> <u>Used</u> (ft bgs)	Hazard <u>Quotient</u> ¹
Acetone	2.70E+01	7.5	1 90F+07	<u>(It 655)</u> 5	1 42E-06
Renzene	3 20E+01	12.5	2 90E+04	<u> </u>	1.42E-00
2-Butanone (Methyl ethyl	<u>3.20L+00</u>	12.5	<u>2.90L+04</u>	10	<u>1.10L-04</u>
ketone)	1.20E+01	<u>12.5</u>	4.80E+06	<u>10</u>	2.50E-06
Carbon disulfide	8.60E+01	<u>12.5</u>	6.10E+05	<u>10</u>	1.41E-04
<u>Chloroform</u>	<u>4.10E+01</u>	<u>12.5</u>	<u>1.00E+05</u>	<u>10</u>	<u>4.10E-04</u>
Chloromethane	<u>1.50E+00</u>	<u>12.5</u>	<u>7.20E+04</u>	<u>10</u>	2.08E-05
Cis-1,2-dichloroethene ⁴	8.20E-01	<u>12.5</u>	<u>4.20E+01</u> NA ²	<u>10</u>	<u>1.95E-02</u> NA
1,2-Dichloroethane ³	<u>7.30E-01</u>	<u>12.5</u>	2.43E+02	<u>10</u>	<u>3.00E-03</u>
1,4-Dichlorobenzene ³	<u>1.90E+00</u>	12.5	2.78E+04	<u>10</u>	<u>6.83E-05</u>
Ethylbenzene ³	<u>1.60E+00</u>	12.5	<u>3.48E+04</u>	10	4.60E-05
Freon-12 (Dichloro <u>-</u> difluoromethane)	2.40E+00	7.5	7.00E+04	<u>5</u>	3.43E-05
Ethyl chloride (Chloroethane)	2.00E+00	<u>12.5</u>	8.90E+06	<u>10</u>	2.25E-07
n-Hexane	1.50E+00	<u>12.5</u>	7.80E+05	<u>10</u>	1.92E-06
Methylene chloride	2.40E+01	<u>12.5</u>	5.50E+05	<u>10</u>	4.36E-05
Tetrachloroethene-PCE	5.20E+00	<u>12.5</u>	5.80E+04	<u>10</u>	8.97E-05
Toluene ³	2.90E+00	12.5	1.74E+05 ³	<u>10</u>	1.67E-05
Freon-113 (1,1,2- Trichloro-1,2,2- trifluoroethane)	8.20E+03	<u>12.5</u>	5.50E+07	<u>10</u>	1.49E-04
1,1,1-Trichloroethane	3.60E+00	12.5	6.10E+06	10	5.90E-07
Trichloroethylene_TCE	<u>7.40E+02</u> 5.38E+02 ³	12.5	2.30E+03	<u>10</u>	2.34<u>3.22</u>E- 01
Freon-11 (Trichlorofluoromethane)	1.40E+03	<u>12.5</u>	8.40E+05	<u>10</u>	1.67E-03
m,p-Xylene ³	2.90E+00	<u>12.5</u>	3.48E+03 ⁴	<u>10</u>	8.33E-04
o-Xylene ³	1.10E+00	<u>12.5</u>	3.48E+03 ⁴	<u>10</u>	3.16E-04
1,2,4-Trimethylbenzene ⁴	9.20E-01	<u>12.5</u>	6.30E+01 ⁵	<u>10</u>	1.46E-02
2-Hexanone	1.00E+00	7.5	2.20E+04	<u>5</u>	4.55E-05
2-Propanol <u>(Isopropyl</u> alcohol)	4.30E+00	<u>12.5</u>	1.80E+05	<u>10</u>	2.39E-05
Ethanol	9.60E+00	<u>12.5</u>	1.50E+07	<u>10</u>	6.40E-07
Freon 123a (1,2-Dichloro- 1,1,2-trifluoroethane)	2.00E+03		3.20E+07		6.25E-05
Freon 21 (Dichlorofluoromethane)	1.00E+01	<u>12.5</u>	1.20E+05	<u>10</u>	8.33E-05
Tetrahydrofuran	8.50E-01	<u>12.5</u>	1.80E+06	<u>10</u>	4.72E-07
Total <u>600 Area Residentia</u>	<u>l Soil Vapor</u> Hazard <u>I</u>	ndex			2.5 <u>3.63</u> E-01

Table 6. <u>27</u> 13	600 Area Soil Vapor: Residential-Cumulative (Noncancer) Hazard Index
	Accessment (RBCs)

¹ Hazard <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table 2a, Derivation of Vapor Risk-Based Concentrations: Resident (NASA, 2022).

²No screening level available for this constituent.³ These entries are UCL95 values calculated using ProUCL software.³⁴ NMED screening level (<u>Table A-4 VISLs; NMED, 2022c</u>) used when WSTF RBC screening levels are unavailable.

 45 EPA screening level used when WSTF RBC and NMED screening level are unavailable. <u>RBC – WSTF Risk Based Concentration</u>NA = Not applicable

<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> <u>(μg/m³)</u>	Depth Maximum Detected (ft bgs)	<u>RBC²</u> (µg/m ³)	<u>RBC</u> <u>Depth</u> <u>Used</u> (ft bgs)	<u>Hazard</u> Quotient ¹
Acetone	<u>2.70E+01</u>	<u>7.5</u>	2.00E+08	<u>5</u>	<u>1.35E-07</u>
Benzene	<u>3.20E+00</u>	<u>12.5</u>	4.00E+05	<u>10</u>	<u>8.00E-06</u>
2-Butanone (Methyl ethyl ketone)	<u>1.20E+01</u>	12.5	<u>6.60E+07</u>	<u>10</u>	<u>1.82E-07</u>
Carbon disulfide	<u>8.60E+01</u>	12.5	<u>8.10E+06</u>	<u>10</u>	<u>1.06E-05</u>
<u>Chloroform</u>	<u>4.10E+01</u>	<u>12.5</u>	<u>1.50E+06</u>	<u>10</u>	<u>2.73E-05</u>
Chloromethane	<u>1.50E+00</u>	<u>12.5</u>	<u>9.00E+05</u>	<u>10</u>	<u>1.67E-06</u>
cis-1,2-dichloroethene ⁴	<u>8.20E-01</u>	<u>12.5</u>	<u>1.80E+02</u>	<u>10</u>	<u>4.56E-03</u>
<u>1,2-Dichloroethane³</u>	<u>7.30E-01</u>	<u>12.5</u>	<u>1.15E+03</u>	<u>10</u>	<u>6.35E-04</u>
1,4-Dichlorobenzene ³	<u>1.90E+00</u>	12.5	1.31E+05	<u>10</u>	<u>1.45E-05</u>
Ethylbenzene ³	<u>1.60E+00</u>	<u>12.5</u>	<u>1.64E+05</u>	<u>10</u>	<u>9.76E-06</u>
Freon-12 (Dichlorodifluoromethane)	<u>2.40E+00</u>	<u>7.5</u>	<u>8.10E+05</u>	<u>5</u>	<u>2.96E-06</u>
Ethyl chloride (Chloroethane)	<u>2.00E+00</u>	12.5	1.20E+08	<u>10</u>	<u>1.67E-08</u>
<u>n-Hexane</u>	<u>1.50E+00</u>	12.5	<u>1.10E+07</u>	<u>10</u>	<u>1.36E-07</u>
Methylene chloride	<u>2.40E+01</u>	<u>12.5</u>	<u>7.40E+06</u>	<u>10</u>	<u>3.24E-06</u>
PCE	<u>5.20E+00</u>	<u>12.5</u>	<u>9.10E+05</u>	<u>10</u>	<u>5.71E-06</u>
<u>Toluene³</u>	<u>2.90E+00</u>	<u>12.5</u>	<u>8.19E+05</u>	<u>10</u>	<u>3.54E-06</u>
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluorooethane)	<u>8.20E+03</u>	<u>12.5</u>	<u>9.00E+08</u>	<u>10</u>	<u>9.11E-06</u>
1,1,1-Trichloroethane	<u>3.60E+00</u>	<u>12.5</u>	<u>9.00E+07</u>	<u>10</u>	<u>4.00E-08</u>
TCE	<u>7.40E+02</u>	<u>12.5</u>	<u>3.40E+04</u>	<u>10</u>	<u>2.18E-02</u>
<u>Freon-11</u> (Trichlorofluoromethane)	<u>1.40E+03</u>	<u>12.5</u>	<u>8.40E+05</u>	<u>10</u>	<u>1.67E-03</u>
<u>m,p-Xylene³</u>	<u>2.90E+00</u>	<u>12.5</u>	<u>1.64E+04</u>	<u>10</u>	<u>1.77E-04</u>
<u>o-Xylene³</u>	<u>1.10E+00</u>	12.5	<u>1.64E+04</u>	<u>10</u>	<u>6.71E-05</u>
1,2,4-Trimethylbenzene ⁴	<u>9.20E-01</u>	<u>12.5</u>	<u>2.60E+02</u>	<u>10</u>	<u>3.54E-03</u>
2-Hexanone	<u>1.00E+00</u>	<u>7.5</u>	2.50E+05	<u>5</u>	<u>4.00E-06</u>
2-Propanol (Isopropyl alcohol)	<u>4.30E+00</u>	<u>12.5</u>	<u>2.40E+06</u>	<u>10</u>	<u>1.79E-06</u>
<u>Ethanol</u>	<u>9.60E+00</u>	<u>12.5</u>	<u>1.70E+08</u>	<u>10</u>	5.65E-08
Freon 21 (Dichlorofluoromethane)	<u>1.00E+01</u>	<u>12.5</u>	<u>1.80E+06</u>	<u>10</u>	<u>5.56E-06</u>
<u>Tetrahydrofuran</u>	<u>8.50E-01</u>	<u>12.5</u>	2.40E+07	<u>10</u>	<u>3.54E-08</u>
Total 600 Area Industrial Soil	<u>3.25E-02</u>				
Notes:					

Table 6.28 600 Area Soil Vapor: Industrial (Noncancer) Hazard Index (RBCs)

 ¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.
 ² Table 3a, Derivation of Vapor Risk-Based Concentrations: Commercial Worker (NASA, 2022).
 ³ NMED screening level (Table A-4 VISLs; NMED, 2022c) used when WSTF RBC screening levels are unavailable.

⁴ EPA screening level used when WSTF RBC and NMED screening level are unavailable. RBC – WSTF Risk Based Concentration

Constituent	Maximum Concentration (µg/m ³)	<u>VISLs</u> Screening Level ² (µg/m ³)	Cancer Risk ¹	
Benzene	4.00E-01	3.60E+00	1.11E-06	
Carbon tetrachloride	4.50E-01	4.68E+00	9.62E-07	
Chloromethane	6.50E-01	1.56E+01	4.17E-07	
Methylene chloride	<u>5.50E-01</u>	<u>1.01E+03</u>	<u>5.45E-09</u>	
Total 600 Area Residential Indoor Air Cancer Risk2.4932.493E-06				

Table 6.2914 600 Area Indoor Air: Residential-Cumulative Cancer Risk (VISLs)-Assessment

Notes:

¹ Cancer Risk \equiv calculated by (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 201922cb).

<u>Table 6.30</u>	600 Area Indoor Air: Industrial Cancer Risk (VISLs)			
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u>	VISLs ²	Cancer Risk ¹	
	<u>(µg/m³)</u>	<u>(µg/m³)</u>		
Benzene	<u>4.00E-01</u>	<u>1.76E+01</u>	<u>2.27E-07</u>	
Carbon tetrachloride	<u>4.50E-01</u>	<u>2.29E+01</u>	<u>1.97E-07</u>	
Chloromethane	<u>6.50E-01</u>	<u>7.65E+01</u>	<u>8.50E-08</u>	
Methylene chloride	<u>5.50E-01</u>	<u>1.38E+04</u>	<u>3.99E-10</u>	
Total 600 Area Industrial Indoor Air Cancer Risk5.09E-07				

Notes:

¹Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c).

<u>(VISLS)</u> ASSESSMENT					
Constituent	Maximum Concentration (µg/m ³)	<u>VISLs</u> Screening Level ² (µg/m ³)	Hazard <u>Quotient</u> ¹		
Acetone	2.80E+01	3.23E+04	8.67E-04		
Benzene	<u>4.00E-01</u>	<u>3.13E+01</u>	<u>1.28E-02</u>		
2-Butanone (Methyl ethyl ketone)	5.30E+00	5.21E+03	1.02E-03		
Carbon tetrachloride	<u>4.50E-01</u>	<u>1.04E+02</u>	<u>4.33E-03</u>		
Chloromethane	<u>6.50E-01</u>	<u>9.39E+01</u>	<u>6.92E-03</u>		
Freon-12 (Dichlorodifluoromethane)	2.30E+00	1.04E+02	2.21E-02		
n-Hexane	7.90E-01	7.30E+02	1.08E-03		
4-Methyl-2-pentanone (Methyl isobutyl ketone)	5.00E-01	3.13E+03	1.60E-04		
Methylene chloride	5.50E-01	6.26E+02	8.79E-04		
Toluene	6.00E-01	5.21E+03	1.15E-04		
Freon-113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	5.90E-01	3.13E+04	1.88E-05		
Freon-11 (Trichlorofluoromethane)	1.40E+00	7.30E+02	1.92E-03		
2-Hexanone ³	1.10E+00	3.10E+01 ³	3.55E-02		
2-Propanol ³	3.40E+00	$2.10E+02^{3}$	1.62E-02		
Ethanol ⁴	2.00E+01	<u>NE2.10E+04</u> ⁴	<u>NA</u> 9.52E-04		
Heptane ³	3.00E-01	$4.20E+02^{3}$	7.14E-04		
Total 600 Area Residential Indoor	1.05 8.2 E-01 2				

Table 6. <u>31</u> 15	600 Area Indoor Air: Residential-Cumulative (Noncancer) Hazard Index
	(VISLs)Accessment

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00.
 ² Table A-4, NMED Residential Indoor Air Screening Levels (NMED, 2019<u>22c</u>b), unless otherwise noted.

³ EPA Regional Screening Level (EPA, 2022) used when NMED screening levels and WSTF RBCs are unavailable.

NA - Not Applicable

<u>NE – Not Established</u>⁴ No NMED or EPA screening level for Ethanol is available, so Methanol EPA screening level was used.

<u>Constituent</u>	<u>Maximum</u> Concentration	VISLs ²	Hazard Quotient ¹		
	<u>(µg/m³)</u>	<u>(µg/m³)</u>			
Acetone	<u>2.80E+01</u>	<u>1.52E+05</u>	<u>1.84E-04</u>		
Benzene	<u>4.00E-01</u>	<u>1.76E+01</u>	<u>2.27E-02</u>		
2-Butanone (Methyl ethyl ketone)	<u>5.30E+00</u>	<u>2.46E+04</u>	<u>2.15E-04</u>		
Carbon tetrachloride	<u>4.50E-01</u>	<u>2.29E+01</u>	<u>1.97E-02</u>		
Chloromethane	<u>6.50E-01</u>	<u>7.65E+01</u>	<u>8.50E-03</u>		
Freon-12 (Dichlorodifluoromethane)	<u>2.30E+00</u>	<u>4.92E+02</u>	<u>4.67E-03</u>		
<u>n-Hexane</u>	<u>7.90E-01</u>	<u>3.44E+03</u>	<u>2.30E-04</u>		
4-Methyl-2pentanone (Methyl isobutyl ketone)	<u>5.00E-01</u>	<u>1.47E+04</u>	<u>3.40E-05</u>		
Methylene chloride	<u>5.50E-01</u>	<u>2.95E+03</u>	<u>1.86E-04</u>		
Toluene	<u>6.00E-01</u>	<u>2.46E+04</u>	<u>2.44E-05</u>		
Freon-113 (1,1,2-Trichloro- 1,2,2-trifluoroethane)	<u>5.90E-01</u>	<u>1.47E+05</u>	<u>4.01E-06</u>		
Freon-11 (Trichlorofluoroethane)	<u>1.40E+00</u>	<u>3.44E+03</u>	<u>4.07E-04</u>		
<u>2-Hexanone³</u>	<u>1.10E+00</u>	<u>3.10E+02</u>	<u>3.55E-03</u>		
2-Propanol ³	<u>3.40E+00</u>	<u>8.80E+02</u>	<u>3.86E-03</u>		
Ethanol	<u>2.00E+01</u>	<u>NE</u>	NA		
Heptane ³	<u>3.00E-01</u>	<u>1.80E+03</u>	<u>1.67E-04</u>		
Total 600 Area Industrial Indoor Air Hazard Index 6.44E-02					

Table 6.32600 Area Indoor Air: Industrial (Noncancer) Hazard Ind	ex (VISLs)
---	-----------------------	------------

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-4, NMED Industrial Indoor Air Screening Levels (NMED, 2022c), unless otherwise noted.

³ EPA Regional Screening Level (EPA, 2022) used when NMED screening levels and WSTF RBCs are unavailable.

<u>NA – Not Applicable</u>

NE - Not Established

		600 A mag		
Constituent	Depth Range (ft)	Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion
	0-4	9,480	17,681	
Aluminum, Total	4-8	11.600	12.154	Below background
,	8-10	4,650	13,653	U
	0-4	<0.5ND ¹	NE ²	
Antimony, Total	4-8	<0.5ND ¹	NE^2	Include as COPC
5.	8-10	0.4	NE^2	
	0-4	8.3	11.1	
Arsenic, Total	4-8	10.1	12.6	Below background
,	8-10	6.76	11.9	U
	0-4	191	215	~
Barium, Total	4-8	240	398	Compare
	8-10	338	310	Populations
	0-4	0.56	1.1	~
Beryllium, Total	4-8	0.72	0.713	Compare
- ,	8-10	0.37	0.814	Populations
	0-4	3	NE^2	
Boron, Total	4-8	<2ND ¹	NE^2	Include as COPC
,	8-10	4	NE^2	
	0-4	0.2	0.696	Include as
Cadmium, Total	4-8	0.36	NE^2	COPC Compare
,	8-10	0.27	NE^2	Populations
	0-4	0.4	1.2	•
Chromium, Hex	4-8	0.21	6.94	Below background
,	8-10	< 0.21ND ¹	1.23	U
	0-4	16.7	11.1	~
Chromium, Total	4-8	15.4	11.7	Compare
	8-10	7.2	11.3	Populations
	0-4	6.8	5.35	G
Cobalt, Total	4-8	5.4	5.35	Compare
	8-10	2.2	5.28	Populations
	0-4	7.7	11.7	C
Copper, Total	4-8	10.4	9.2	Compare
	8-10	6.8	13.5	Populations
	0-4	13,800	39,911	
Iron, Total	4-8	12,600	15,794	Below background
	8-10	8,140	18,759	-
	0-4	8.8	15.9	
Lead, Total	4-8	9.5	10.3	Below background
	8-10	5.7	15.6	C
	0-4	187	444	C
Manganese, Total	4-8	325	296	Compare
	8-10	253	393	Populations

Table 6. <u>33</u> 16	600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)
	Comparison

		Compar	15011	
Constituent	Depth Range (ft)	600 Area Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion
	0-4	0.012	0.0709	a
Mercury, Total	4-8	0.099	0.0576	Compare
·	8-10	0.005	0.0302	Populations
N 1 1 1	0-4	3.2	1.33	C
Molybdenum,	4-8	1.8	2.85	Compare
Total	8-10	1.4	1.98	Populations
	0-4	14.9	15.4	
Nickel, Total	4-8	11.4	12.3	Below background
	8-10	7.2	14.1	C
	0-4	54.6	6.39	a
NO ₂ /NO ₃	4-8	55.4	2.84	Compare
	8-10	14.9	4.82	Populations
	0-4	0.00086	<u>0.0</u> 11 . 2	Include as
Perchlorate	4-8	< 0.0005 ¹ 0.03	0.004-95	COPC Below
	8-10	0.03 ND ⁺	0.003-37	background
	0-4	0.4	1.96	
Selenium, Total	4-8	<0.4ND ¹	1.7	Below background
,	8-10	0.5	2.45	U
	0-4	5.9	NE^2	
Thallium, Total	4-8	7. 16	NE^2	Include as COPC
·	8-10	7.6 4.6	NE^2	
	0-4	7	NE^2	
Tin, Total	4-8	10	NE^2	Include as COPC
	8-10	6	NE^2	
	0-4	211	359	
Titanium, Total	4-8	213	352	Below background
·	8-10	130	330	C
-	0-4	26	33.9	
Vanadium, Total	4-8	32.6	56.3	Below background
	8-10	19.7	42.4	C
-	0-4	38.6	59.7	<i>a</i>
Zinc, Total	4-8	43.7	40.8	Compare
·	8-10	23.2	52.9	Populations

Table 6. <u>33</u> 16	600 Area Soil Maximum Concentrations vs. Background Threshold Value (BTV)
	Comparison

Notes:¹ Not Detected above laboratory detection limit ² Not Established

Bold font indicates concentration exceeds BTV.

Constituent	Depth Range (ft)	600 Area Max. Detected Concentration (mg/kg)	Soil Background Area 4 BTV (95% UTL) (mg/kg)	Conclusion
	0-4	177,000	302,460	
Calcium, Total	4-8	200,000	214,770	Below background
	8-10	145,000	332,558	
Magnagium	0-4	19,800	14,149	Compose
Magnesium, Total	4-8	21,800	31,298	Dopulations
Total	8-10	15,600	33,658	ropulations
	0-4	2,020	4,151	Commons
Potassium, Total	4-8	3,130	3,038	Compare
	8-10	1,090	3,125	Populations
	0-4	280	643	0
Sodium	4-8	12,900	1,242	Compare
	8-10	1,260	1,297	i opulations

Table 6. <u>34</u> 17	600 Area Essential Nutrients Soil Maximum Concentrations vs. Background
	Threshold Value (BTV) Comparison

Bold font indicates maximum concentration exceeds BTV.

Constituent	Area 4	Conclusion
Barium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Beryllium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Cadmium	BG < 600 Area	600 Area soil data exceeds Background data. Retain as COPC.
Chromium	BG < 600 Area	600 Area soil data exceeds Background data. Retain as COPC.
Cobalt	BG <u><≥=</u> 600 Area	600 Area soil data may exceed is no more than Background data. <u>RetainDelete</u> as COPC.
Copper	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Manganese	BG <u><≥=</u> 600 Area	600 Area soil data may exceedis no more than Background data. RetainDelete as COPC.
Mercury	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Molybdenum	BG <u><≥=</u> 600 Area	600 Area soil data exceedsis no more than Background data. RetainDelete as COPC.
NO ₂ /NO ₃	BG < 600 Area	600 Area soil data exceeds Background data. Retain as COPC.
Zinc	BG >= 600 Area	600 Area soil data is no more than Background data. Delete as COPC.
Essential Nutrients		
Magnesium	BG <u><≥=</u> 600 Area	600 Area soil data exceedsis no more than Background data. RetainDelete nutrient.
Potassium	BG >= 600 Area	600 Area soil data is no more than Background data. Delete nutrient.
Sodium	BG < 600 Area	600 Area soil data may exceed Background data. Retain nutrient.

Table 6.3518 Population Comparison of Background and 600 Area Soil Data

Constituent	Maximum Concentration (mg/kg)	Soil_Screening Level ² (mg/kg)	Cancer Risk ¹
Benzo(a)anthracene	4.80E-03	1.53E+00	3.14E-08
Bis(2-ethylhexyl)phthalate	1.40E+00	3.80E+02	3.68E-08
Cadmium	3.60E-01	8.59E+04	4.19E-11
Chromium (Total)	1.67E+01	9.66E+01	1.73E-06
Chrysene	4.40E-03	1.53E+02	2.8 <mark>8</mark> 7E-10
Cobalt	$4.25E+00^{3}$	1.72E+04	2.47E-09
Trichloroethylene	4.90E-04	1.55E+01	3.1 <u>6</u> 7E-10
Total 600 Area Residential S	oil Cancer Risk		<u>1.80</u> 2E-06

Table 6.3619 600 Area Soil: Residential Cumulative Cancer Risk Assessment

Notes:

¹ Cancer Risk <u>=ealculated by</u> (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 201922cb).

³ These entries are UCL95 values calculated using ProUCL software.

<u>Table 6.37</u>	<u>600 Area Soil: I</u>	ndustrial Cancer Risk	
Constituent	<u>Maximum</u> <u>Concentration</u> (<u>mg/kg)</u>	<u>Soil Screening</u> Level ² (mg/kg)	Cancer Risk ¹
Benzo(a)anthracene	<u>4.80E-03</u>	<u>3.23E+01</u>	<u>1.49E-09</u>
Bis(2-ethylhexyl)phthalate	<u>1.40E+00</u>	<u>1.83E+03</u>	<u>7.65E-09</u>
<u>Cadmium</u>	<u>3.60E-01</u>	<u>4.17E+05</u>	<u>8.63E-12</u>
Chromium (Total)	<u>1.67E+01</u>	<u>5.05E+02</u>	<u>3.31E-07</u>
Chrysene	<u>4.40E-03</u>	<u>3.23E+03</u>	<u>1.36E-11</u>
Trichloroethylene	<u>4.90E-04</u>	<u>1.12E+02</u>	<u>4.38E-11</u>
Total 600 Area Industrial Soil Can	cer Risk		<u>3.40E-07</u>

Notes:

¹ Cancer Risk = (Maximum Concentration/Screening Level) * 1E-05.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c).

Constituent	Maximum Concentration (mg/kg)	Soil Screening Level ² (mg/kg)	Hazard <u>Quotient</u> ¹
Acetone	8.70E-02	6.63E+04	1.31E-06
Antimony	4.00E-01	3.13E+01	1.28E-02
Benzyl Alcohol ³	3.20E-01	6.30E+03 ³	5.08E-05
Bis(2-ethylhexyl)phthalate	1.40E+00	1.23E+03	1.14E-03
Boron	4.00E+00	1.56E+04	2.56E-04
2-Butanone (Methyl ethyl ketone)	7.00E-03	3.74E+04	1.87E-07
Cadmium	3.60E-01	7.05E+01	5.1 <u>1</u> 0E-03
Carbon disulfide	8.10E-04	1.55E+03	5.2 <mark>3</mark> 4E-07
Chromium (Total)	1.67E+01	4.52E+04	3. <u>69</u> 70E-04
Cobalt	$4.25E+00^4$	2.34E+01	1.81E-01
Manganese	3.25E+02	1.05E+04	3.08E-02
Mercury	9.90E-02	2.38E+01	4.16E-03
Methyl isobutyl ketone	1.10E-03	5.81E+03	1.89E-07
Molybdenum	3.20E+00	3.91E+02	8.18E-03
Nitrite	5.54E+01	7.82E+03	7.08E-03
Perchlorate	<u>3.00E-02</u>	<u>5.48E+01</u>	<u>5.47E-04</u>
Thallium ⁴	5.41<u>5.19</u>E+00⁴	7.82E-01	<mark>9.72<u>6.63</u>E+00</mark>
Toluene	6.00E-04	5.23E+03	1.15E-07
Freon-113	1.40E-01	5.08E+04	2.76E-06
TrichloroethyleneTCE	4.90E-04	6.77E+00	7.2 <mark>4</mark> 3E-05
Tetrahydrofuran ³	1.70E-03	1.80E+04 ³	9.44E-08
Tin, Total $\frac{3.4}{2}$	1.00E+01	$4.70E+04^{3}$	2.13E-04
2-Propanol ³	1.80E-02	5.60E+03 ³	3.21E-06
Zine	4.37E+01	2.35E+04	1.86E-03
Total <u>600 Area Residential Soil</u> Ha	azard <u>Index</u>		<u>6.66</u> 1.0E+00
Essential Nutrients			
Magnesium	2.18E+04	1.56E+07	
Sodium	1.29E+04	7.82E+06	

1 able 0.58 20 000 Area Soll: Kesidential Cumulative (Noncancer) Hazard Index-Assess
--

¹ Hazard <u>=calculated by</u> (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Residential Soil Screening Levels (NMED, 201922cb), unless otherwise noted.

³ EPA screening level, (EPA, 2022) used when NMED screening levels are unavailable.

⁴ These entries are UCL95 values calculated using ProUCL software.

Bold values indicate an exceedance of **NMED** screening levels.

Table 6.39 600 A	<u>rea Soil: Industrial (</u>	Noncancer) Hazard	l Index			
<u>Constituent</u>	<u>Maximum</u> <u>Concentration</u> (mg/kg)	Soil Screening Level ² (mg/kg)	Hazard Quotient ¹			
Acetone	<u>8.70E-02</u>	<u>9.60E+05</u>	<u>9.06E-08</u>			
Antimony	<u>4.00E-01</u>	<u>5.19E+02</u>	<u>7.71E-04</u>			
Benzyl Alcohol ³	<u>3.20E-01</u>	<u>8.20E+04</u>	<u>3.90E-06</u>			
Bis(2-ethylhexyl)phthalate	<u>1.40E+00</u>	<u>1.83E+04</u>	<u>7.65E-05</u>			
Boron	<u>4.00E+00</u>	<u>2.59E+05</u>	<u>1.54E-05</u>			
2-Butanone (Methyl ethyl ketone)	<u>7.00E-03</u>	<u>4.11E+05</u>	<u>1.70E-08</u>			
<u>Cadmium</u>	<u>3.60E-01</u>	<u>1.11E+03</u>	<u>3.24E-04</u>			
Carbon disulfide	<u>8.10E-04</u>	<u>8.54E+03</u>	<u>9.48E-08</u>			
Chromium (Total)	<u>1.67E+01</u>	<u>3.14E+05</u>	<u>5.32E-05</u>			
Methyl isobutyl ketone	<u>1.10E-03</u>	<u>8.16E+04</u>	<u>1.35E-08</u>			
<u>Nitrite</u>	<u>5.54E+01</u>	<u>1.30E+05</u>	<u>4.26E-04</u>			
Perchlorate	<u>3.00E-02</u>	<u>9.08E+02</u>	<u>3.30E-05</u>			
<u>Thallium⁴</u>	<u>5.19E+00</u>	<u>1.30E+01</u>	<u>3.99E-01</u>			
Toluene	<u>6.00E-04</u>	<u>6.13E+04</u>	<u>9.79E-09</u>			
Freon-113	<u>1.40E-01</u>	<u>2.43E+05</u>	<u>5.76E-07</u>			
<u>TCE</u>	<u>4.90E-04</u>	<u>3.65E+01</u>	<u>1.34E-05</u>			
<u>Tetrahydrofuran³</u>	<u>1.70E-03</u>	<u>9.50E+04</u>	<u>1.79E-08</u>			
<u>Tin, Total³</u>	<u>1.00E+01</u>	<u>7.00E+05</u>	<u>1.43E-05</u>			
<u>2-Propanol³</u>	<u>1.80E-02</u>	<u>2.40E+04</u>	<u>7.50E-07</u>			
Total 600 Area Industrial Soil Haz	Total 600 Area Industrial Soil Hazard Index 4.01E-01					

Notes:

¹ Hazard = (Maximum Concentration/Screening Level) * 1E+00.

² Table A-1, NMED Industrial Soil Screening Levels (NMED, 2022c), unless otherwise noted.

³ EPA screening level (EPA, 2022) used when NMED screening levels are unavailable.

⁴ These entries are UCL95 values calculated using ProUCL software.

Table 6.21 200 Area Cumulative Residential Risk and Hazard Assessment; All Pathways Pathway	Cancer Risk	Hazard
Soil Vapor	7E-06	8.0E+01 ¹
Soil	6E-08	6.7E-03
Total	7E-06	8.0E+01

⁴-Value from Table 6.3: cumulative risk using RBCs **Bold** values indicate exceedance of NMED target.

Table 6.4022	600 Area Cumulative Residential Risk and Hazard-Assessment; All Pathways

Pathway	Cancer Risk	Hazard	<u>Source</u> <u>Risk / Hazard</u>
Soil Vapor	9<u>2.20</u>E-06	<u>3.63E-01</u> 7.9E+00 [±]	Table 6.24 (RBCs) / Table 6.27 (RBCs)
Soil	<u>21.80</u> E-06	<u>6.66E+007.1E+00</u>	Table 6.36 / Table 6.38
Total	<u> 14.00</u> E-0 <u>6</u> 5	<u>7.02E+00</u> 1.5E+01	_

Notes:

⁴ Value from Table 6.13: cumulative risk using RBCs

Bold value indicates exceedance of NMED target.

Table 6.41	600 Area Cumulative Industrial Risk and Hazard: All Pathways
	ovo Arca Cumulative muustriar Misk and Hazaru, An Fatiways

Pathway	Cancer Risk	Hazard	<u>Source</u> <u>Risk / Hazard</u>
Soil Vapor	<u>8.90E-06</u>	<u>3.25E-02</u>	Table 6.23 (VISLs) / Table 6.28 (RBCs)
<u>Soil</u>	<u>3.40E-07</u>	<u>4.01E-01</u>	Table 6.37 / Table 6.39
<u>Total</u>	<u>9.24E-06</u>	<u>4.34E-01</u>	

	1 able 0. <u>42</u> 4	Summary of F113	and ICE vertical Co	ncentration Promes	for Select 200 and 0	buu Area wells
СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
			MSVGM W	ell 200-SG-2		
Freon 113	F113 in soil non-detect (<11.0 µg/kg) for soil sample at 80 ft bgs. Vadose zone soil porosity not reported (insufficient sample for geotechnical analysis [@]).	Increasing F113 in soil vapor with depth by one order of magnitude from shallow port (30 ft) to middle port (60 ft). Deep port submerged in aquifer. Significant concentration increase with depth by one order of magnitude.	Steadily decreasing trend for F113 in deep soil vapor port over time for historical sampling events from 169,000 μ g/m ³ to 110,000 μ g/m ³ .	Latest equivalent soil vapor in equilibrium with groundwater is 2,592,000 µg/m ³ on 10/22/14.	Soil vapor concentration in middle port (deep port submerged) at 110,000 μ g/m ³ is one order of magnitude below equivalent soil vapor in equilibrium with groundwater.	The increasing F113 in soil vapor with depth is coincident with proximity to the local confined groundwater aquifer. The deep port is located 23 ft above groundwater Decreasing F113 soil vapor concentrations over time are coincident with declining F113 groundwater concentrations (<u>Appendix ED</u> and NASA, 2019b).*
TCE	TCE in soil non-detect $(<5.3 \mu g/kg)$ for soil sample at 80 ft bgs. Vadose zone porosity not reported (insufficient sample for geotechnical analyses [@]).	Generally increasing TCE in soil vapor with depth (within the same order of magnitude) from shallow (30 ft) to middle (60 ft) port located. Deep port submerged in aquifer.	Irregular TCE trend in deep soil vapor port over time for relatively low concentrations within the same order of magnitude for historical sampling events.	Latest equivalent soil vapor in equilibrium with groundwater is 485 µg/m ³ on 10/22/14.	Soil vapor concentration in middle port at 800 µg/m ³ is within the same order of magnitude as equivalent soil vapor in equilibrium with groundwater.	The increasing TCE in soil vapor with port depth is coincident with proximity to groundwater. The deep port is located 23 ft above groundwater. Fluctuating TCE soil vapor concentrations over time are within the same order of magnitude and are consistent with the relatively stable low level groundwater concentrations of between

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
						1.2 μg/L and 1.6 μg/L (<u>Appendix ED</u> and NASA, 2019b).*
			MSVGM W	ell 200-SG-3		
Freon 113	F113 in soil non-detect (<11.0 μg/kg) for soil samples at 30 ft, 50 ft, and 60 ft bgs. Vadose zone soil porosity reported as between 24% and 46% at the same sampling intervals. [@]	Increasing F113 in soil vapor with port depth by one order of magnitude for the upper 3 ports located at 30 ft, 60 ft, and 90 ft within vadose zone alluvium and shallow bedrock. Concentrations subsequently decline within the deep bedrock port at 154 ft.	Steadily decreasing trend for F113 in soil vapor ports over time for historical sampling events.	Equivalent soil vapor in equilibrium with groundwater is 1,922,400 µg/m ³ on 10/21/14.	Soil vapor for the deep port (110,000 µg/m ³) is one order of magnitude lower than equivalent soil vapor in equilibrium with groundwater.	Increasing F113 in soil vapor with depth for the ports at 30 ft, 60 ft, & 90 ft located within either permeable alluvium or shallow bedrock. Decreasing F113 soil vapor concentrations occur within the port at depth (154 ft) located 10 ft above groundwater within a sedimentary bedrock sequence with irregular permeability. Decreasing F113 trend in soil vapor over time is coincident with declining groundwater concentrations in the local 200 Area aquifer (Appendix ED and NASA, 2019b).*

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
TCE	TCE in soil non-detect (<5.3 μg/kg) for soil samples at 30 ft, 50 ft, and 60 ft bgs. Vadose zone soil porosity reported as between 24% to 46% at the same sampling intervals. [@]	Increasing TCE in soil vapor with port depth within the same order of magnitude for the upper 3 ports located at 30 ft, 60 ft, and 90 ft within vadose zone alluvium and shallow bedrock. Concentrations subsequently decline within deep port at 154 ft.	Decreasing TCE in soil vapor ports over time for historical sampling events.	Equivalent soil vapor in equilibrium with groundwater is 1,697 µg/m ³ on 10/21/14.	Soil vapor for the deep port (4,200 $\mu g/m^3$) is within the same order of magnitude as equivalent soil vapor in equilibrium with groundwater.	Increasing TCE in soil vapor with depth for the ports at 30 ft, 60 ft, & 90 ft) located within relatively permeable alluvium or shallow bedrock. Decreasing TCE soil vapor concentrations within the accessible port at depth (154 ft) located 10 ft above groundwater within a sedimentary bedrock sequence with irregular permeability. Decreasing TCE trend in soil vapor over time is consistent with declining groundwater concentrations in the local 200 Area aquifer (Appendix ED and NASA, 2019b).*
			MSVM Well	600-SGW-1		
F113	F113 in soil 140 and non- detect (<0.76 µg/kg) at 10 - 12 ft, and non-	Steadily increasing F113 in soil vapor with depth in ports located at 12.5 ft, 57.5 ft, and 117.5 ft.	Steadily decreasing F113 in soil vapor ports over time for all historical sampling events	No groundwater sample available for this well.	No direct comparison performed.	The increasing F113 trend in soil vapor with port depth is coincident with proximity to the projected fractured bedrock depth at 160 ft) and

2010 - 2014. The

ft sampled for the

shallow port at 12.5

200 and 600 Area Vapor Intrusion Assessment Report

Concentrations

remain within the

detect (<0.79

 $\mu g/kg$) for the

soil sample at

projected groundwater

aquifer depth at 170 ft.

Although no groundwater

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
	72.5 - 75 ft. vadose zone soil porosity reported as 32% at $10 -12$ ft and $47%at 72.5 - 75ft.#$	same order of magnitude.	vapor intrusion assessment display continuation of this declining trend.			sample is available for this well, decreasing F113 soil vapor concentrations over time correspond to declining F113 concentrations in the local 600 Area groundwater aquifer (<u>Appendix ED</u> and NASA, 2019b).*
TCE	TCE in soil 0.49 and non- detect (<0.41 μ g/kg) at 10 – 12 ft, and non- detect (<0.43 μ g/kg) for the soil sample at 72.5 – 75 ft. Vadose zone soil porosity reported as 32% at 10 – 12 ft and 47% at 72.5 – 75 ft. [#]	Steadily increasing TCE in soil vapor with depth in ports located at 12.5 ft, 57.5 ft, and 117.5 ft. Concentrations remain within the same order of magnitude.	Steadily decreasing TCE in all soil vapor ports over time for all historical sampling events 2010 - 2014. Shallow port at 12.5 ft sampled for VI assessment events continued the declining vapor concentration trend.	No groundwater sample available for this well.	No direct comparison performed.	Increasing TCE trend in soil vapor with port depth coincident with proximity to projected fractured bedrock (depth 160 ft) and projected groundwater aquifer (depth 170 ft). Although no groundwater sample is available for this well, decreasing TCE soil vapor concentrations over time are coincident with declines for TCE concentrations in local 600 Area groundwater aquifer (Appendix ED and NASA, 2019b).*
		MSVM Well	600-SGW-5 (Twinned	l with Monitoring W	ell 600-G-138)	
Freon 113	F113 in soil non-detect for the soil	Increasing F113 in soil vapor with port depth by two orders	Decreasing F113 in all soil vapor ports over time for	Latest equivalent soil vapor concentration in	Soil vapor concentration in the lower port	Increasing F113 in soil vapor with depth and significant increase in deep port at

СОРС	Soil Analytical Data (Drilling Phase) and Soil Porosity (Geotechnical Samples)	Soil Vapor Vertical Concentration Trends with Depth	Soil Vapor Sampling Event Trends Over Timeframe 2010 – 2018 ^{#&} (µg/m ³)	Soil Vapor (Deep Port) Equivalent Concentration in Equilibrium with Groundwater	Relationship Between Soil Vapor (Deep Port) and Groundwater	Comments
	samples at 4 ft (<0.71 μ g/kg) and 77 (<0.65 μ g/kg) ft. Vadose zone soil porosity reported as 34% at 4 – 6 ft. [#]	of magnitude. Significant increase in deep port at 137.5 ft.	historical sampling events 2010 – 2014.	equilibrium with groundwater from twinned well 600- G-138 is 280,800 µg/m ³ on 11/20/14.	(280,000 µg/m ³ on 10/9/14) is within the same order of magnitude and has excellent correlation to the equivalent soil vapor in equilibrium with groundwater.	137.5 ft located 7 ft above perched groundwater on top of bedrock. Irregular F113 soil vapor concentrations over time within the deep port are associated with irregularly fluctuating F113 concentrations in perched groundwater at 600 Area well 600-G-136 (<u>Appendix ED</u> and NASA, 2019b).*
TCE	TCE in soil non-detect for soil samples at 4 ft (< 0.39 µg/kg) and 77 (< 0.35 µg/kg) ft. Vadose zone soil porosity reported as 34% at 4 – 6 ft. [#]	Increasing TCE in soil vapor with port depth by two orders of magnitude. Significant increase in deep port at 137.5 ft.	Decreasing TCE in upper 3 soil vapor ports over time for historical sampling events. Deep port relatively consistent at between 13,800 and 16,000 µg/m ³ .	Latest equivalent soil vapor concentration in equilibrium with groundwater from twinned well 600- G-138 is 26,260 µg/m ³ on 11/20/14.	Soil vapor concentration in the lower port $(15,000 \ \mu g/m^3 \ on 10/9/14)$ is within the same order of magnitude and has strong correlation to the equivalent soil vapor in equilibrium with groundwater.	Increasing TCE in soil vapor with depth and significant increase in deep port at 137.5 ft located 7 ft above perched groundwater on top of bedrock. Irregular TCE soil vapor concentrations over time within the deep port are associated with irregularly fluctuating TCE concentrations in perched groundwater at twinned 600 Area well 600-G-136 (<u>Appendix ED</u> and NASA, 2019b).*

Notes: [@] = Soil analytical data from NASA, 2004.

- * = Soil and soil vapor analytical data (August 2010) from NASA, 2010.
 & = Soil vapor data sets: March 2013 (NASA, 2013c); October 2014 (NASA, 2015c4); and the VI assessment (August 2017 and February 2018).
 * = Vertical concentration profiles (Appendix ED) and Periodic Monitoring Report Time-Concentration maps and table (Appendix E of NASA, 2019b).

Appendix A Pre-Sampling Building Inspection Forms

Complete This	<u>s Form For Each Buil</u>	ding Involved In Indoor Air Testing/Sampling ZOO 6850
	and plates	200 Mich 15:200
Preparer's Nan	ne: GEOFF	GILES Date/Time Prepared: 6/21/17 /2000 HRS
Preparer's Affi	liation: NAVALLO RE	Work Phone: 575-524-5352
Purpose of Inve	estigation: LOHPONE	VT OF 200 AREA AND LOD AREA MAD R
1. OCCUPANT:	INTRUSI	ON ASSESSMENT WORK PLAN
Interviewed:	es or No	
Last Name:	PINA ARPIN	First Name: CHRISTINA
Address: 12 d	500 NASA ROA:	
County: D	DÃA AUA	, s. 200, CTS UNICES, NM 83012
Work Phone: 5	75-524-5-195	Alternate Phone
Number of occup	pants at location:	
Age of occupant	s: 20-60	IFAIL
2 OWNED OD I		
Interviewed Y	N N Check if	same as occupant)
Last Name:		First Name:
Address:		
County:		
Work Phone:		Alternate Phone:
3. BUILDING CHA	RACTERISTICS:	
Type of Building	: (Circle appropriate res	ponse)
Residential	School Com	mercial/Multi-use
Industrial	Church Othe	r: WSTE TR 200 ARM
If the property is	residential, type? (Cire	cle appropriate response)
Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouse/Condos
Modular	Log Home	Other:
Note : JUM MCC THE COM	LULOUGH @ 575-	524-5287 (200 ALCA ENGINEER) PROVIDED ASSISTANCE WITH

1

If multiple units, how many?
If the property is commercial, type?
Business Type(s) LABORATOLY - PHOTOLAB MARLITINE SHOP TO HUMAN FAN
Does it include residences (i.e., multi-use)? Yes or No) If yes, how many?
Other characteristics:
Number of floors: Building Age: 53 Ven
Is the building insulated Yes or No How air tight? Tight Average Not Tight
4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns & qualitatively describe
Airflow between floors:
SINGLE FLOOR
Airflow near source:
FORCED REFRIDGERATED AIR (USING WATER-FILLED CONVERS)
Outdoor air infiltration:
THROUGH DOOR THRESHOLDS, CRACKS DEN DOORS ITT
Infiltration into air ducts:
DUCT LEAKAGE THROUGH AIR DUCTS IN ROOF
5. BASEMENT & CONSTRUCTION CHARACTERISTICS (Circle all that and b)
Above grade construction: wood frame concrete) stone brick (SOME METAL SHEET PANEL
Basement type: full crawlspace slab other:
Basement floor: concrete dirt stone other:
Basement floor: unsealed sealed
Covered with:
Concrete floor: unsealed sealed
Sealed with: CONCRETE SEALANT COVERED WITH 9"×9" MINUT
Foundation walls: poured block stone other:
Foundation walls: unsealed sealed
Sealed with: CONCRETE SEALANT COVERED WITH FAINT
The basement is: wet damp dry moldy (N/K)

,
-

The basement is:	finished	unfinished partially finished
Sump present? Yes	or No	Franki, Habiled
Basement/Lowest	level depth below grad	de: foot
Water in sump? Y Identify potential drains).	Yes No Not Applica soil vapor entry points	ble & approximate size (e.g., cracks, utility ports,
6. HEATING, VENTI Type of heating system	NG & AIR CONDITION em(s) used in this buildin	NING (Circle all that apply) ng: (circle all that apply – note primary)
Hot air circulation	Heat pump	Hot water baseboard
Space heaters	Steam radiation	Radiant floor
Electric baseboard Other:	Wood stove	Outdoor wood boiler
The primary type of	fuel used is:	
Natural gas	Fuel oil	Kerosene
Electric	Propane	Solar
Wood	Coal	
Domestic hot water ta Boiler/furnace located Other:	ank fueled by: <u>NAT</u>	Outdoors Main Floor (NORTH HIGHBAY)
Air conditioning: Are there air distribu	Central air Window tion ducts present? Yes	vunits Open windows (LOCALIZED EXCEPTIONS 1) SMALL REFREEMENT UNIT @ PHOTOLARS AND 203 AND 204. 2) SMALL REFRICEDANCED UNIT FOR ROOM 2068
Describe the supply & there is a cold air retu diagram. HVAC SISTEM	Heat Pu cold air return ductwor rn & tightness of duct jo RUNS 24 e 7	Mp None Rk & its condition where visible, including whether bints. Indicate the locations on the floor plan DUE TO LABORATORY ENVIRONMENT
A NUTE NOON ZO	US WIS SULT DUE	LTHE PENCED-IN YALD THAT WAS THE LOCATION FOR

THE CLERN ROOM TANKS IN THE 1960'S.

7. OCCUPANCY Is basement/lowest lever occupied? Full-time Occasionally Seldom Almost never Level General use of each floor (e.g., family room, bedroom, lowedry, marked by the second	
Basement: N/A	
1st Floor: PHOTOGRAPHY LAB, MACHINE, SHOPE FOR PUR - 1111-PUR - PARE	
2nd Floor: NA	LITY ROOMS.
3rd Floor: N/A	
4th Floor: N/A	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY	
Is there an attached garage? Yes or No	
Does the garage have a separate heating unit? Vec. No or Net Arelia 11	
Are petroleum-powered machines or vehicles stored in the server 2 (
Yes or No. Please specify:	
Has the building ever had a fire? Yes or No When?	
Is a kerosene or unvented gas snace heater present? Ves or No	
Where & Type?	
Is there a workshop or hobby/craft area? Yesor No	
Where & Type? MACHINE SHOP WITH NAILY ATHE LUBRICATION	
Is there smoking in the building? Yes or No? Frequency?	
Have cleaning products been used recently? Yes or No	
When and What Type? JANITOR CLEARIS THILL DIALE AS PODULED (100 11/1 Am	
Have cosmetic products been used recently? Yes or No	OHEILATIONS,
When and What Type? LOSHETIC PLODENTS USED DALLY BY DORE WE	
Has painting/staining been done in the last 6 months? Yes or No	
Where and When?	
Is there new carpet, drapes or other textiles? Yes or No	
Where and When?	
Have air fresheners been used recently? (Yes)or No	
When and What Type? FEBREEZE IN RATHRANS	
Is there a kitchen exhaust fan? (Yes or No	

If yes, where vented? Southan FUME HODS VENTED ON ADJACENT WALL TO OUTSIDE
Is there a bathroom exhaust fan? Yes or No
If yes, where vented? ADJACONT WALL TO ROOF AREA.
Is there a clothes dryer? Yes or No If yes, is it vented outside? (Yes) or No (VALVE SHOP AREA)
Has there been a pesticide application? Yes or No
When and Type? ON A QUARTERLY SLITEDULE - POTENTIALY TODAY (6/21/17).
Are there odors in the building? Yes or No
If yes, please describe: <u>BUILDING MET OF CHEMISTRY LAB - EACH ROOM HAS A DIFFICIENT ODOR</u> LEATED TO SUPPLIES. Do any of the building occupants use solvents or volatile chemicals at work ? Yes or No (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide applicator, cosmetologist, carpet installer)
If yes, what type of solvents are used? <u>CHEMICAL MASUFACTURISE, LABORATORY SOLVENTS, OILS E</u> LUBRICANTS IN If yes, are their clothes washed at work? (Yes) or No
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle one) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service No
Unknown
Is there a radon mitigation system for the building/structure? Yes or No
Date of Installation:
Is the system active or passive? Active or Passive
9. WATER & SEWAGE
Water Supply: Public water Drilled well Driven well Dug well
Other: WATER SUPPLIED FROM DRIVED WELLS LOLATED SMILES TO THE LIEST
Sewage Disposal: Public sewer Septic tank Leach field Dry well
Other: CITY OF LAS CRUCES PUBLIC SANITARY SYSTEM
10. RELOCATION INFORMATION (for oil spill residential emergence)
a. Provide reasons why relocation is recommended:
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Yes or No

ć –
d. Relocation package provided & explained to residents? Yes or No

11. FLOOR PLANS

Draw a plan view sketch of the basement & first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

First Floor:	SEE	ATTACHED	SHEET	WEST	BUILDING	200)
					J L	

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc), outdoor air sampling location(s) & PID meter readings.

Also indicate compass direction, wind direction & speed during sampling, the locations of the well & septic system, if applicable, & a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Preliminary walk-through conducted on 6/21/2017 P. Egan and G. Giles, Navarro

Make & Model of field instrument used: MSA Altair 5X PID

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (ppm)	Photo** Y / N
Photo Lab	Glue Paper		In Use	Heat-activated Adhesive	0	Y
Rm 102	Flammables Cabinet	$\sim 3 \mathrm{ft}^3$	In Use	Various chemicals	1	
D200-1A-00	Fire Extinguisher		Unopened	Possible fluorocarbon propelling agent	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Hand Sanitizer	2 liters	In Use	Ethyl Alcohol	0	
Photo Lab Room	Fire Extinguisher		Ready to Use	Possible fluorocarbon propelling agent	0	Y
203	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
	Gator Board		In Use	Adhesive Backing	0	
Photo Lab Room 204	Adhesive Tape	50' roll	Open & Unopened	Adhesive Backing	0	Y
(Storage (Shelves)	Dry Erase Markers		Unopened	Solvent (ethanol ?)	0	
B200-IA-04	Kodak Lens Cleaner		Unopened		0	
Room 202 B200-IA-05	Sure Coat	5 gal buckets	Unopened & Used	Ероху	0	Y
	Freon	Steel canisters	Unopened	Freon	0	
Room 201	FilterMate Vapor Extractor	machine	In Use	?	0	Y
	Hydraulic Drill Press	machine	In Use	Lubes/Oils	0	
Room 111	Cleaners	Open Vats	In Use	Oakite, oxidizers, sulfuric acids	0	Y
Room 201 B200-IA-08	drain to sanitary sewer (outside room 111)	Utility Sink	In Use	?	0	Y
B200-IA-07	Flammable Cabinets #2 & #3	1 large, 1 small	In Use	Alcohols, chlorinated solvents, Rustoleum spray paints, WD-40	0	
	Flammable Cabinet #1	small	In Use	Paints, solvents, lubes	0	

Room 216 Assembly Room	Krytox		In Use	?	0	Y
Room 206 (CSS HiBay) B200-IA-01	Several products		In Use	Oakite, IPA, Acids, Sat Accum Area, full of stuff!	0	Y
Room 206B Workbench Area B200-IA-02	Marker Pens Oils used for assembly	small	In Use	?	0	Y
Room 205 Utility Room	Active Drain to Sewer		In Use	Citric acid anhydrous	0	Y
B200-IA-03	Bags of water softening pellets					
Room 204	Various		In Use	Full of petrochemicals, acids, corrosives, vacuum pump oils.	0	Y

*Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) **Photographs of the front & back of the product containers can replace the hand written list of chemical ingredients. However, the photographs must be of good quality & ingredient labels must be legible.

Complete This Form For Each Building Involved In Indoor Air Testing/Sampling 600 AREA B.63	37						
Preparer's Name: GEOFF GIVES Date/Time Prepared: 6/26/17 1400 HLS							
Preparer's Affiliation: NAVARED RESEALCH Work Phone: 575-524 -5352							
Purpose of Investigation: COMPONENT OF 200 AREA AND 600 AREA VAPOR							
1. OCCUPANT: Interviewed: Yes or No							
Last Name: DEL FERRARO First Name: CRAIG							
Address: 12600 NASA ROAD, B.637, LAS CRUES, NM 88012							
County: DONA ANA							
Work Phone: 575-524-5399 Alternate Phone:							
Number of occupants at location: $\simeq 8$							
Age of occupants: 20-60 YEARS							
2. OWNER OR LANDLORD: (Check if same as occupant)							
Last Name: First Name:							
Address:							
County:							
Work Phone: Alternate Phone:							
3. BUILDING CHARACTERISTICS:							
Type of Building: (Circle appropriate response)							
Residential School Commercial/Multi-use							
Industrial Church Other: WSTF B.637 ALEA (1200 SQFF BUILDING)							
If the property is residential, type? (Circle appropriate response)							
Ranch 2-Family 3-Family							
Raised Ranch Split Level Colonial							
Cape Cod Contemporary Mobile Home							
Duplex Apartment House Townhouse/Condos							
Modular Log Home Other:							

	If multiple units, how many?
	If the property is commercial, type?
	Business Type(s) GROUND WARER ASSESSMENT BUILDING -SAMPLING EDUIPHENT
	Does it include residences (i.e., multi-use)? Yes on No If yes, how many?
	Other characteristics:
	Number of floors: Building Age: ZG /EALS
	Is the building insulated? Yes or No How air tight? Tight / Average / Not Tight
4.	AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns & qualitatively describe:
	Airflow near source:
	FORTED DUR THE SUICE STATE RELEASE
	Outdoor air infiltration
	THROUGH Done THRESHOLDS OPEN DORES (1)- 1000
	Infiltration into air ducts:
	VIA SWAMP (DY FR) STATE AL SPACE AND AN INTER STATE
	PASEMENT & CONCEPTION OF THE AND ON NOMIN SIDE OF 8,637
э.	BASEMENT & CONSTRUCTION CHARACTERISTICS (Circle all that apply)
	Above grade construction: wood frame concrete stone brick Collubated METAL SIDING
	Basement type: full crawlspace slab other:
	Basement floor: concrete dirt stone other:
	Basement floor: unsealed sealed
	Covered with:
	Concrete floor: unsealed sealed
	Sealed with: LONLANT SEALANT
	Foundation walls: poured block stone other: Poures concrete FOOTING
	Foundation walls: unsealed sealed COLRUGATED METAL SIJING
	Sealed with: DAINT
	The basement is: wet damp dry moldy N/A

The basement is:	finished	unfinished	partially finished	(N/A)				
Sump present? Yes	s or No			\bigcirc				
Basement/Lowest	Basement/Lowest level depth below grade:							
Water in sump? Identify potential drains).	Water in sump? Yes No Not Applicable Identify potential soil vapor entry points & approximate size (e.g., cracks, r drains).							
6. HEATING, VENTI Type of heating sys	NG & AIR CONI tem(s) used in this	DITIONING (Circle all building: (circle all th	l that apply) at apply – note prima	ry)				
Hot air circulation	Heat pump	Hot v	vater baseboard					
Space heaters	Steam radiati	ion Radia	ant floor					
Electric baseboard	Wood stove	Outdo	oor wood boiler					
Other:								
The primary type of	f fuel used is:							
Natural gas	Fuel oil	Kerosene						
Electric	Propane	Solar						
Wood	Coal							
Domestic hot water	tank fueled by: _	N/A						
Boiler/furnace locat	ed in: Baseme	ent Outdoors	Main Floor					
Other:								
Air conditioning:	Central air	Window units Open v	vindows					
Are there air distrib	ution ducts presen	nt? Yes or No						
		Heat Pump None						
Describe the supply there is a cold air re diagram.	& cold air return turn & tightness o	ductwork & its conditi f duct joints. Indicate (ion where visible, inclu the locations on the flo	uding whether oor plan				
SWAMP COOLET	USUALLY S	HUT DOWN AT	WEEKEND WH	EN BULDING				

IS UNOLLUPIED

7. OCCUPANCY

	Is basement/lowest lever occupied? Full-time Occasionally Seldom Almost never
	Level General use of each floor (e.g., family room, bedroom, laundry, workshop, storage)
	Basement: N/A
	IST FLOOR: SAMILE EQUIPMENT STOLAGE AND SAMPLE MANAGEMENT IN SINGLE ROOM WALEHOUSE,
	2nd Floor: N/A
	3rd Floor: N/A
	4th Floor: N/A
8.	FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY
	Is there an attached garage? Yes or No NEARBY (10 FT) MOREM ZUILDING (T-637A) ON SOUTHWEST CORNER, CONTAINS GENERATORS, STEAM CLEANERS, FLAMMABLES - SILICONE SPAN, SOUTHWEST CORNER,
	Does the garage have a separate heating unit? Yes, No or Not Applicable
	Are petroleum-powered machines or vehicles stored in the garage? (e.g., lawnmower, ATV, car)
	Yes or No. Please specify:
	Has the building ever had a fire? Yes of No When?
	Is a kerosene or unvented gas space heater present? Yes or No
	Where & Type?
	Is there a workshop or hobby/craft area? Yes or No
	Where & Type? WORKBENCH WITH TOOLS & LUBALLANTS IN SOUTHNEST COLNER OF BUILDING.
	Is there smoking in the building? Yes on N? Frequency?
	Have cleaning products been used recently? Yes or No
	When and What Type? TELHNICIANS CLEAN WOLF SULFACES W/CHEORINATED WIRES WHEN LEOUINED.
	Have cosmetic products been used recently? Yes or No
	When and What Type?
	Has painting/staining been done in the last 6 months? Yes or No
	Where and When?
	Is there new carpet, drapes or other textiles? Yes or No
	Where and When?
	Have air fresheners been used recently? Yes or No
	When and What Type?
	Is there a kitchen exhaust fan? Yes or No

Is there a bathroom exhaust fan? Yes or No
If yes, where vented?
Is there a clothes dryer? Yes or No If yes, is it vented outside? Yes or No
Has there been a pesticide application? Yes or No
When and Type? WITHIN LAST MONTH FOR INSELTS & for ENTS,
Are there odors in the building? Yes or No
If yes, please describe: <u>CHEMICAL MEEDIATIVES FOR WATER SAMPLES</u> (DILUTE ALD: Do any of the building occupants use solvents or volatile chemicals at work ? Yes or No (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide applicator, cosmetologist, carpet installer)
If yes, what type of solvents are used? LABORATORY MESCHATIVES, CLEANING FOR OS-
If yes, are their clothes washed at work? Yes or No.
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle one) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Unknown
Is there a radon mitigation system for the building/structure? Yes or No
Date of Installation:
Is the system active or passive? Active or Passive
9. WATER & SEWAGE
Water Supply: Public water Drilled well Driven well Dug well
Other: WATER SUPPLIED FROM DRIVED WELLS LOCATED 4 MILES TO THE WEST
Sewage Disposal: Public sewer Septic tank Leach field Dry well
Other:
10. RELOCATION INFORMATION (for oil spill residential emergency)
a. Provide reasons why relocation is recommended:

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Yes or No

d. Relocation package provided & explained to residents? Yes or No

11. FLOOR PLANS

Draw a plan view sketch of the basement & first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

N/A Basement:

'irst Floor:	SEE	ATTACHED	SHEET	(BOILDING OS . 1
	_			
				+++++++++++++++++++++++++++++++++++++++
	-			
	_			

First Floor: SEE ATTACHED SHEET (BUILDING 637)

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc), outdoor air sampling location(s) & PID meter readings.

Also indicate compass direction, wind direction & speed during sampling, the locations of the well & septic system, if applicable, & a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Preliminary walk-through conducted on 6/26/2017 G. Giles, Navarro

Make & Model of field instrument used: MSA Altair 5X PID

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (ppm)	Photo** Y / N
Building 637	Sample Bottles (with Preservative)	40 mL – 1 Liter	Unopened	Dilute hydrochloric acid, sulfuric acid, sodium hydrozide	0	Y
	Fire Extinguisher	0.5 cuft	Unopened	Possible fluorocarbon propelling agent	0	
	Hand Sanitizer	1 Liter	In Use	Ethyl Alcohol	0	
Building T-637A	Flammables Cabinet	0.25L – 1 Liter	In Use	Silicone spray, isopropyl alcohol, gasoline, Rustoleum products	0	Y
	Corrosives Cabinet	14 oz	In Use	Sodium hydroxide	0	
	Generators	8 cuft	In Use	Gasoline and oil	0	
	Steam Cleaners	8 cuft	In Use	Gasoline and oil	0	
	Oils/Lubricants	1 Liter	Unopened	Various motor oils and lubricants (WD40)	0	
	Aero Duster	14 oz	In Use	1,1,1,2,tetrafuoroethane	0	
Building T-637B	Groundwater Sampling Equipment Electronics	50' – 500' reels	In Use		0	Y
Compressed Nitrogen Storage Area Adjacent to B. 637	Compressed Gas Cylinders	1.5 cuft	In Use	Nitrogen	0	N

List specific products found in the residence that have the potential to affect indoor air quality.

*Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) **Photographs of the front & back of the product containers can replace the hand written list of chemical ingredients. However, the photographs must be of good quality & ingredient labels must be legible.

Appendix B Pre-Sampling Building Walkthrough Photographs

Photograph 2 Building 200, Room 102 (Photographic Laboratory) – 06/28/2017

Photograph 4 Building 200, Room 108 (Photographic Laboratory Office) – 06/28/2017

Photograph 6

Building 200, Room 203 (Photographic Laboratory) – 06/28/2017

Photograph 8 Building 200, Room 201 (Technical Facility Store Room) – 06/28/2017

Photograph 10

Building 200, Room 201 (Machine Shop) – 06/28/2017

 Photograph 12
 Building 200, Room 206 (Technical Facility Chemical Storage) – 06/28/2017

Photograph 14 Building 200, Room 206 (Technical Facility Chemical Storage) – 06/28/2017

Photograph 16

Building 200, Room 205 (Equipment Room) - 06/28/2017

Photograph 18 Building 200, Room 204 (Equipment Room Storage) – 06/28/2017

Photograph 20 Building 637 Northwest Corner (Groundwater Assessment Building) – 06/28/2017

Photograph 22 Building 637 Southeast Corner (Groundwater Assessment Building) – 06/28/2017

Photograph 24 Building T-637A (Morgan Building for Flammable Storage) – 06/28/2017

Photograph 26 Building T-637B (Morgan Building for Miscellaneous Equipment Storage) – 06/28/2017

Photograph 28 Building 200, Room 102 (6L Indoor Air Sample) – 02/25/2018

<u>Appendix C</u> <u>Quality Assurance Reports</u> National Aeronautics and Space Administration

Quality Assurance Report for White Sands Test Facility 200 and 600 Area Vapor Intrusion Assessment Report Soils Analytical Data

April 2023

NM 8800019434

Report Submitted: Report Prepared by: Will Teas Navarro Research and Engineering, Inc.

1.0 Introduction

The 200 and 600 Area Vapor Intrusion Assessment Work Plan requires the preparation of an investigation report that includes soil analytical data reported. The Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which soil samples were collected in April and October 2017.
- The quantity and type of quality control samples collected or prepared in April and October 2017.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of duplicate samples and their relative percent differences (RPD)
- A summary table of blank sample detections.

2.0 Data Quality

2.1 Notable Anomalies

Soil analytical data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report were used to perform a cumulative risk screening assessment. The soil data includes equipment blanks, field blanks, duplicates, trip blanks, in accordance with the approved work plan.

3.0 Data Tables

<u>Table 1</u> summarizes the soil sample events in September 2009, November 2009, December 2009, January 2010, June 2014, and July 2014. This report is based on data quality issues related to the sample events listed in Table 1.

<u>Table 2</u> through <u>Table 5</u> contain information related to the sample events identified in <u>Table 1</u>. As specified by the Vapor Intrusion Assessment Work Plan, Section 5.4, specific quality control samples are utilized to assess the quality of analytical data. <u>Table 2</u> presents the quantity of quality control samples collected for each analytical method. <u>Table 3</u> compares the quality control sample percentages collected to the requirements in the respective investigation work plan. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in <u>Table 4</u>. <u>Table 5</u> presents the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. <u>Table 6</u> provides the RPD between duplicate samples. Samples associated with qualified data are identified by bold text in <u>Table 6</u>. <u>Table 7</u> provides all detections found in trip blank and field blank samples. All data affected by blank sample detections are appropriately qualified.

4.0 Usability Assessment

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. This QAR qualifies as the completed assessment for the soil data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report in addition to the August 2017 and February 2018 sample events performed for the 200 and 600 Area Vapor Intrusion Assessment Report. No data was rejected (R) based on established quality review protocols.

Location Sample ID	Sample Motriv	Event Date
200-SB-5 (8 ft bgs)	Soil	6/15/2014
200-SB-6 (8 ft bgs)	Soil	6/14/2014
200-SB-7 (8 ft bgs)	Soil	6/11/2014
200-SB-7 (18 ft bgs)	Soil	6/11/2014
200-SB-7 (38 ft bgs)	Soil	6/12/2014
200-SB-8 (8 ft bgs)	Soil	7/13/2014
200-SB-8 (28 ft bgs)	Soil	6/13/2014
200-SB-8 (43 ft bgs)	Soil	6/13/2014
200-SB-9 (8 ft bgs)	Soil	6/30/2014
200-SB-10 (16 ft bgs)	Soil	6/28/2014
200-SB-10 (26 ft bgs)	Soil	6/28/2014
200-SB-10 (36 ft bgs)	Soil	6/28/2014
200-SB-11 (8 ft bgs)	Soil	7/1/2014
200-SB-11 (28 ft bgs)	Soil	7/1/2014
200-SB-13 (8 ft bgs)	Soil	6/16/2014
200-SB-13 (28 ft bgs)	Soil	6/16/2014
600-SB-01 (6 ft bgs)	Soil	11/13/2009
600-SB-01 (72 ft bgs)	Soil	11/16/2009
600-SB-02 (3 ft bgs)	Soil	1/26/2010
600-SB-02 (8 ft bgs)	Soil	1/26/2010
600-SB-02 (75 ft bgs)	Soil	1/27/2010
600-SB-02A (3 ft bgs)	Soil	11/19/2009
600-SB-02A (8 ft bgs)	Soil	11/19/2009
600-SB-03 (6 ft bgs)	Soil	11/19/2009
600-SB-03 (10 ft bgs)	Soil	11/19/2009
600-SB-03 (75 ft bgs)	Soil	1/13/2010
600-SB-04 (6 ft bgs)	Soil	11/20/2009
600-SB-04 (10 ft bgs)	Soil	11/20/2009
600-SB-04 (75 ft bgs)	Soil	1/20/2010
600-SB-05 (4 ft bgs)	Soil	11/23/2009
600-SB-05 (77 ft bgs)	Soil	12/17/2009
600-SB-05 (144 ft bgs)	Soil	12/21/2009
600-SB-06 (4 ft bgs)	Soil	11/23/2009
600-SB-06 (75 ft bgs)	Soil	1/6/2010
600-SB-07 (6 ft bgs)	Soil	11/20/2009
600-SB-07 (78 ft bgs)	Soil	12/2/2009
600-SB-07 (158 ft bgs)	Soil	12/2/2009
600-SB-08 (6 ft bgs)	Soil	11/20/2009
600-SB-08 (85 ft bgs)	Soil	12/10/2009
600-SB-08 (150 ft bgs)	Soil	12/14/2009
600-SB-10 (01 ft bgs)	Soil	9/18/2009
600-SB-10 (10 ft bgs)	Soil	9/21/2009
600-SB-10 (20 ft bgs)	Soil	9/22/2009

Table 1 – Soil Sample Events

Quality Assurance Report – Soil Data from 2009, 2010, and 2014

Matrix	Method	Total Samples	Non-QA Samples	Equipment Blanks	Field Blanks	Duplicates	Trip Blanks
Soil	353.2M	44	23	16		5	
Soil	607M	72	41	25		6	
Soil	6010	3	3				
Soil	6010B	46	23	17	1	5	
Soil	6010C	26	16	8		2	
Soil	6011C		0				
Soil	6020A		0				
Soil	6056A		0				
Soil	6850	47	35	8		4	
Soil	7196a	10	1	8		1	
Soil	7199	37	21	13		3	
Soil	8260B	65	26	20	1	5	13
Soil	8260C	34	16	8		2	8
Soil	8270C	44	23	16		5	
Soil	8270D	25	15	8		2	
Soil	8290A	26	16	8		2	
Total		479	259	155	2	42	21

 Table 2 Quantity of Quality Control Samples

Table 3 – Quality Control Sample Percentages (Soil)

Method	Quality Control Requirement	Sample Quantity	QC Quantity	QC %
	Equipment Blanks	60	16	27
252 214	Field Blanks	44	0	0
555.2IVI	Duplicates	49	5	10
	Trip Blanks	44	0	0
	Equipment Blanks	97	25	26
607M	Field Blanks	72	0	0
607M	Duplicates	78	6	8
	Trip Blanks	72	0	0
	Equipment Blanks	3	0	0
6010	Field Blanks	3	0	0
0010	Duplicates	3	0	0
	Trip Blanks	3	0	0
	Equipment Blanks	63	17	27
6010B	Field Blanks	47	1	2
0010D	Duplicates	51	5	10
	Trip Blanks	46	0	0
	Equipment Blanks	34	8	24
6010C	Field Blanks	26	0	0
0010C	Duplicates	28	2	7
	Trip Blanks	26	0	0
	Equipment Blanks	55	8	15
	Field Blanks	47	0	0
6850	Duplicates	51	4	8
	Trip Blanks	47	0	0
	Equipment Blanks	18	8	44
7196a	Field Blanks	10	0	0
/190a	Duplicates	11	1	9
	Trip Blanks	10	0	0

Quality Assurance Report – Soil Data from 2009, 2010, and 2014

Method	Quality Control Requirement	Sample Quantity	QC Quantity	QC %
	Equipment Blanks	50	13	26
7100	Field Blanks	37	0	0
/199	Duplicates	40	3	8
Method 7199 8260B 8260C 8270C 8270D 8290D	Trip Blanks	37	0	0
	Equipment Blanks	85	20	24
8260D	Field Blanks	66	1	2
8200B	Duplicates	70	5	7
	Trip Blanks	78	13	17
	Equipment Blanks	42	8	19
8260C	Field Blanks	34	0	0
8260C	Duplicates	36	2	6
	Trip Blanks	42	8	19
	Equipment Blanks	60	16	27
8270C	Field Blanks	44	0	0
8270C	Duplicates	49	5	10
	Trip Blanks	44	0	0
	Equipment Blanks	33	8	24
8270D	Field Blanks	25	0	0
8270D	Duplicates	27	2	7
	Trip Blanks	25	0	0
	Equipment Blanks	34	8	24
82000	Field Blanks	26	0	0
0230D	Duplicates	28	2	7
	Trip Blanks	26	0	0

Table 4 – Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
Α	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
Т	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

СОРС	FB	EB	TB	Q	QD	SP	R	*	Α	AD	G	RB	Т	D	i	J	TIC
2-Butanone (Methyl																	
ethyl ketone)												2				19	
2-Propanol		1														2	
Acetone		9	1									13				16	
Antimony						1						18				19	
Benzo(a)anthracene																	
Benzyl Alcohol												12				14	
Bis(2- ethylhexyl)phthalate									2								
Boron																3	
Cadmium																38	
Carbon disulfide						1										2	
Chromium (Total)					2	1											
Chrysene																1	
Cobalt						1										18	
Freon-113																	
Manganese					2	3											
Mercury												2				22	
Methyl isobutyl ketone																1	
Molybdenum									8			3				31	
Nitrate+Nitrite as																	
Nitrogen					5							3				27	
Tetrahydrofuran												8				11	
Thallium																1	
Tin, Total																19	
Toluene									3							10	
Trichloroethylene																4	
Zinc					2												

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records (Soil)

Table 6 – Duplicate Sample Relative Percent Difference

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-SB-5-8	6/15/2014	Antimony	10.5		J RB
200-SB-5-8	6/15/2014	Cadmium	31.6		J
200-SB-5-8	6/15/2014	Chromium	8.0		
200-SB-5-8	6/15/2014	Cobalt	1.3		
200-SB-5-8	6/15/2014	Manganese	10.3		
200-SB-5-8	6/15/2014	Molybdenum	11.8		J
200-SB-5-8	6/15/2014	Nitrate+Nitrite as Nitrogen	13.3		J
200-SB-5-8	6/15/2014	Zinc	0.3		
200-SB-8-8	7/13/2014	Antimony	18.2		J RB
200-SB-8-8	7/13/2014	Cadmium	18.2		J
200-SB-8-8	7/13/2014	Chromium	5.6		
200-SB-8-8	7/13/2014	Cobalt	20.8		
200-SB-8-8	7/13/2014	Manganese	8.8		
200-SB-8-8	7/13/2014	Molybdenum	24.0		J
200-SB-8-8	7/13/2014	Nitrate+Nitrite as Nitrogen	0.0		J
200-SB-8-8	7/13/2014	Zinc	14.7		
600-SB-01-006	11/13/2009	Freon 113	24.0		

Quality Assurance Report – Soil Data from 2009, 2010, and 2014

NASA White Sands Test Facility

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
600-SB-01-006	11/13/2009	2-Butanone (MEK)	33.3		J
600-SB-01-006	11/13/2009	Acetone	27.6		
600-SB-01-006	11/13/2009	Benz(a)anthracene	NA*		
600-SB-01-006	11/13/2009	Bis(2-ethylhexyl) Phthalate	17.6		Α
600-SB-01-006	11/13/2009	Cadmium	2.8		J
600-SB-01-006	11/13/2009	Carbon Disulfide	NA*		J
600-SB-01-006	11/13/2009	Chromium	3.6		
600-SB-01-006	11/13/2009	Chrysene	NA*		
600-SB-01-006	11/13/2009	Cobalt	16.0		J
600-SB-01-006	11/13/2009	Manganese	17.0		
600-SB-01-006	11/13/2009	Mercury	11.1		J
600-SB-01-006	11/13/2009	Nitrate+Nitrite as Nitrogen	15.4		J
600-SB-01-006	11/13/2009	Thallium	70.0		
600-SB-01-006	11/13/2009	Tin, Total	22.2		J
600-SB-01-006	11/13/2009	Trichloroethene (TCE)	4.2		J
600-SB-01-006	11/13/2009	Zinc	11.6		
600-SB-02A-003	11/19/2009	2-Butanone (MEK)	24.0		J
600-SB-02A-003	11/19/2009	Benzyl Alcohol	32.7		J RB
600-SB-02A-003	11/19/2009	Cadmium	0.0	25	J
600-SB-02A-003	11/19/2009	Chromium	25.7	25	QD
600-SB-02A-003	11/19/2009	Cobalt	34.5	25	
600-SB-02A-003	11/19/2009	Manganese	13.3	25	
600-SB-02A-003	11/19/2009	Mercury	18.2	25	J
600-SB-02A-003	11/19/2009	Molybdenum	37.0	25	Α
600-SB-02A-003	11/19/2009	Nitrate+Nitrite as Nitrogen	93.2	25	QD
600-SB-02A-003	11/19/2009	Thallium	56.0	25	J
600-SB-02A-003	11/19/2009	Zinc	35.4	25	QD
600-SB-05-004	11/23/2009	2-Butanone (MEK)	11.6	25	J
600-SB-05-004	11/23/2009	2-Propanol	NA*	25	J EB
600-SB-05-004	11/23/2009	Acetone	14.1	25	J RB
600-SB-05-004	11/23/2009	Benzyl Alcohol	33.3	25	J RB
600-SB-05-004	11/23/2009	Cadmium	66.7	25	J
600-SB-05-004	11/23/2009	Chromium	17.1	25	
600-SB-05-004	11/23/2009	Cobalt	27.5	25	J
600-SB-05-004	11/23/2009	Manganese	50.3	25	QD
600-SB-05-004	11/23/2009	Mercury	28.6	25	J
600-SB-05-004	11/23/2009	Nitrate+Nitrite as Nitrogen	85.9	25	QD
600-SB-05-004	11/23/2009	Tetrahydrofuran	NA*	25	
600-SB-05-004	11/23/2009	Thallium	18.5	25	
600-SB-05-004	11/23/2009	Tin	0.0	25	J
600-SB-05-004	11/23/2009	Zinc	20.8	25	

¹RPD could not be calculated due to one of the duplicate samples being non-detect

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
200-SB-11-8	7/1/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	9.40E-01	μg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Chromium, Total	2.00E-03	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Manganese	3.00E-03	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	3.00E-02	mg/L	J EB
200-SB-11-8	7/1/2014	Equipment Blank	Zinc	8.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Chromium, Total	2.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Manganese	5.00E-03	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Mercury	1.00E-04	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.90E-02	mg/L	J EB
200-SB-13-8	6/16/2014	Equipment Blank	Zinc	6.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Acetone	2.60E+00	μg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1 30F+00	ug/I	IFR
200-SB-5-8	6/15/2014	Equipment Blank	Chromium Total	3.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Manganese	6.00E-03	mg/L	J EB
200-SB-5-8	6/15/2014	Equipment Blank	Molybdenum	2 00E-03	mg/L	J EB
200 SD 5 0	(15/2014		Nitrate+Nitrite as	2.005.02	/1	
200-SB-5-8	6/15/2014	Equipment Blank	Nitrogen	2.90E-02	mg/L	JEB
200-SB-5-8	6/15/2014	Equipment Blank	Zinc	6.00E-03	mg/L	JEB
200-SB-6-8	6/14/2014	Equipment Blank	Acetone	2.00E+00	μg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Antimony Bis(2-ethylhexyl)	3.00E-04	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Phthalate	1.50E+01	μg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Chromium, Total	1.10E-02	mg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Manganese	1.70E-02	mg/L	EB
200-SB-6-8	6/14/2014	Equipment Blank	Molybdenum	5.00E-03	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.40E-02	mg/L	J EB
200-SB-6-8	6/14/2014	Equipment Blank	Zinc	1.40E-02	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Acetone	1.60E+00	μg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Antimony	2.00E-04	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Carbon Disulfide	6.80E-01	μg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Manganese	6.00E-03	mg/L	J RB EB
200-SB-7-8	6/11/2014	Equipment Blank	Molybdenum	2.00E-03	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	4.30E-02	mg/L	J EB
200-SB-7-8	6/11/2014	Equipment Blank	Zinc	9.00E-03	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Acetone	1.50E+00	μg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Antimony	2.00E-04	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.10E+01	μg/L	EB
200-SB-8-8	7/13/2014	Equipment Blank	Chromium, Total	1.00E-02	mg/L	EB
200-SB-8-8	7/13/2014	Equipment Blank	Manganese	1.70E-02	mg/L	EB

Table 7 – Blank Sample Detections

Quality Assurance Report – Soil Data from 2009, 2010, and 2014

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
200-SB-8-8	7/13/2014	Equipment Blank	Molybdenum	7.00E-03	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.10E-02	mg/L	J EB
200-SB-8-8	7/13/2014	Equipment Blank	Zinc	1.00E-02	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Acetone	1.60E+00	μg/L	J RB EB A
200-SB-9-8	6/30/2014	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.80E+00	μg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Manganese	7.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Molybdenum	2.00E-03	mg/L	J EB
200-SB-9-8	6/30/2014	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.90E-02	mg/L	J EB
600-SB-01-072	11/16/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.40E+00	μg/L	J RB EB
600-SB-01-072	11/16/2009	Equipment Blank	Thallium	5.00E-04	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.00E+00	μg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Boron	6.00E-02	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-02-003	1/26/2010	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-02-075	1/27/2010	Equipment Blank	Bis(2-ethylhexyl) Phthalate	6.70E-01	μg/L	J
600-SB-02-075	1/27/2010	Equipment Blank	Chromium, Total	5.00E-03	mg/L	J EB
600-SB-02-075	1/27/2010	Equipment Blank	Manganese	1.60E-02	mg/L	EB
600-SB-02-075	1/27/2010	Equipment Blank	Zinc	1.00E-02	mg/L	J EB
600-SB-02A-003	11/19/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Acetone	3.40E+00	μg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Chromium, Total	3.00E-03	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Manganese	5.00E-03	mg/L	J EB
600-SB-03-006	11/19/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.00E-02	mg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Acetone	1.70E+00	μg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Manganese	1.00E-03	mg/L	J EB
600-SB-03-075	1/13/2010	Equipment Blank	Nitrate+Nitrite as Nitrogen	7.00E-03	mg/L	J RB EB
600-SB-03-075	1/13/2010	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Acetone	2.40E+00	μg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-04-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as	9.00E-03	mg/L	LEB
600-SB-04-075	1/20/2010	Equipment Blank	Acetone	1 90E+00	μσ/L	I TR ER
600-SB-05-004	11/23/2009	Equipment Blank	2-Propanol	1.90E+00	<u>μ</u> σ/L	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.10E+00	μσ/Γ	JEB
600-SB-05-004	11/23/2009	Equipment Blank	Manganese	4 00F-03	<u>µg/L</u>	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Molyhdenum	4 00E-03	mg/L	IFR
600-SB-05-004	11/23/2009	Equipment Blank	Thallium	1.30E-03	mg/L	J EB

Quality Assurance Report - Soil Data from 2009, 2010, and 2014

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-SB-05-077	12/17/2009	Equipment Blank	Acetone	2.80E+00	μg/L	J TB EB
600-SB-06-075	1/6/2010	Equipment Blank	Acetone	2.90E+00	μg/L	J TB EB
600-SB-07-006	11/20/2009	Equipment Blank	Acetone	2.80E+00	μg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	2.50E-01	μg/L	J RB EB
600-SB-07-006	11/20/2009	Equipment Blank	Manganese	3.00E-03	mg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Mercury	2.00E-05	mg/L	J EB
600-SB-07-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	3.00E-03	mg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	2-Propanol	3.60E+01	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Acetone	5.50E+00	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.30E-01	μg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Manganese	7.00E-03	mg/L	J RB EB
600-SB-07-078	12/2/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.40E-02	mg/L	J EB
600-SB-07-078	12/2/2009	Equipment Blank	Zinc	5.00E-03	mg/L	J EB
600-SB-07-158	12/2/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	3.00E-01	μg/L	J EB
600-SB-07-158	12/2/2009	Equipment Blank	Manganese	3.00E-03	mg/L	J RB EB
600-SB-07-158	12/2/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.70E-02	mg/L	J RB EB
600-SB-07-158	12/2/2009	Equipment Blank	Zinc	3.00E-03	mg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Acetone	3.30E+00	μg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	4.30E-01	μg/L	J EB RB
600-SB-08-006	11/20/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-08-006	11/20/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	5.00E-03	mg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	4.60E+00	μg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Manganese	2.00E-03	mg/L	J EB
600-SB-08-085	12/10/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	1.80E-02	mg/L	J RB EB
600-SB-08-085	12/10/2009	Equipment Blank	Zinc	4.00E-03	mg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Acetone	2.20E+00	μg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.30E+00	μg/L	J EB
600-SB-10-001	9/18/2009	Equipment Blank	Manganese	2.20E-02	mg/L	EB
600-SB-10-001	9/18/2009	Equipment Blank	Zinc	1.30E-02	mg/L	J RB EB
600-SB-10-010	9/21/2009	Equipment Blank	Bis(2-ethylhexyl) Phthalate	1.60E+00	μg/L	J EB
600-SB-10-010	9/21/2009	Equipment Blank	Manganese	5.00E-03	mg/L	J EB FB
600-SB-10-010	9/21/2009	Equipment Blank	Nitrate+Nitrite as Nitrogen	6.00E-03	mg/L	J EB
600-SB-10-010	9/21/2009	Equipment Blank	Zinc	4.00E-03	mg/L	J EB FB
600-SB-10-020	9/22/2009	Equipment Blank	Acetone	2.70E+01	μg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Antimony	9.00E-04	mg/L	J RB EB
600-SB-10-020	9/22/2009	Equipment Blank	Cadmium	3.00E-04	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Chromium, Total	2.68E-01	mg/L	EB

Quality Assurance Report – Soil Data from 2009, 2010, and 2014

NASA White Sands Test Facility

Sample Location*	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-SB-10-020	9/22/2009	Equipment Blank	Cobalt	5.00E-03	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Manganese	3.68E-01	mg/L	EB
600-SB-10-020	9/22/2009	Equipment Blank	Molybdenum	6.00E-03	mg/L	J EB
600-SB-10-020	9/22/2009	Equipment Blank	Zinc	1.21E-01	mg/L	EB
600-SB-10-010	9/21/2009	Field Blank	Antimony	4.00E-04	mg/L	J RB FB
600-SB-10-010	9/21/2009	Field Blank	Chromium, Total	2.60E-02	mg/L	FB
600-SB-10-010	9/21/2009	Field Blank	Manganese	4.00E-02	mg/L	EB FB
600-SB-10-010	9/21/2009	Field Blank	Zinc	1.45E-01	mg/L	FB
600-SB-01-072	11/16/2009	Trip Blank	Acetone	1.90E+00	μg/L	J TB
600-SB-04-006	11/20/2009	Trip Blank	Carbon Disulfide	1.20E+00	μg/L	TB
600-SB-04-075	1/20/2010	Trip Blank	2-Propanol	2.30E+01	μg/L	J TB
600-SB-04-075	1/20/2010	Trip Blank	Acetone	3.60E+00	μg/L	J TB EB
600-SB-05-077	12/17/2009	Trip Blank	Acetone	5.30E+00	μg/L	J TB EB
600-SB-06-075	1/6/2010	Trip Blank	Acetone	2.00E+00	μg/L	J TB EB
600-SB-10-001	9/18/2009	Trip Blank	Carbon Disulfide	1.80E+00	μg/L	TB
600-SB-10-010	9/21/2009	Trip Blank	Acetone	1.80E+00	μg/L	J TB

National Aeronautics and Space Administration

Quality Assurance Report for White Sands Test Facility 200 and 600 Area Vapor Intrusion Assessment Report Vapor Analytical Data

April 2023

NM 8800019434

Report Submitted: Report Prepared by: Will Teas Navarro Research and Engineering, Inc.

1.0 Introduction

The 200 and 600 Area Vapor Intrusion Assessment Work Plan requires the preparation of an investigation report that includes soil analytical data reported. The Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which soil samples were collected in April and October 2017.
- The quantity and type of quality control samples collected or prepared in April and October 2017.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of duplicate samples and their relative percent differences (RPD)
- A summary table of blank sample detections.

2.0 Data Quality

2.1 Notable Anomalies

In the 200 and 600 areas, samples collected during this investigation include soil vapor samples, indoor air samples, and outdoor air samples. These sample sets include field blanks, duplicates, trip blanks, and matrix spikes in accordance with the approved work plan.

3.0 Data Tables

<u>Table 1</u> summarizes the soil vapor, indoor air, and outdoor air sample events in August 2017 and February 2018. This report is based on data quality issues related to the sample events listed in <u>Table 1</u>.

Table 2 through Table 6 contain information related to the sample events identified in Table 1. As specified by the Vapor Intrusion Assessment Work Plan Section 5.4, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the respective investigation work plan. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 presents the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 6 provides the RPD between duplicate samples. Samples associated with qualified data are identified by bold text in Table 6. Table 7 provides all detections found in trip blank and field blank samples. All data affected by blank sample detections are appropriately qualified.

4.0 Usability Assessment

The goal of the usability assessment is to determine the quality of each data point and to identify data that are not acceptable to support project quality objectives. This QAR qualifies as the completed assessment for the soil data from samples collected for the 200 Area Phase II Investigation Report and the 600 Area Closure Investigation Report in addition to the August 2017 and February 2018 sample events performed for the 200 and 600 Area Vapor Intrusion Assessment Report. There were ten Freon 123a soil vapor detections that included a tentatively identified compound (TIC) QA flag which were excluded from the dataset. No data was rejected (R) based on established quality review protocols.

5.0 References

Table 1 – Soil Vapor,	Indoor Air, and Outdoor	Air Sample Events
-----------------------	-------------------------	-------------------

Location Sample ID	Sample Matrix	Event Date
		8/27/2017
200-IA-1	Air	2/25/2018
		8/27/2017
200-IA-2	Air	2/25/2018
		8/27/2017
200-IA-3	Air	2/25/2018
		8/27/2017
200-IA-4	Air	2/25/2018
		8/27/2017
200-IA-5	Air	2/25/2018
		8/27/2017
200-IA-6	Air	2/25/2018
		8/27/2017
200-IA-7	Air	2/25/2018
		8/27/2017
200-IA-8	Air	2/25/2018
		8/27/2017
200-OA-1	Air	2/25/2018
		8/27/2017
200-OA-2	Air	2/25/2018
		8/26/2017
600-IA-1	Air	2/24/2018
		8/26/2017
600-IA-2	Air	2/24/2018
		8/26/2017
600-IA-3	Air	2/24/2018
		8/26/2017
600-IA-4	Air	2/24/2018
		8/26/2017
600-OA-1	Air	2/24/2018
		8/26/2017
600-OA-2	Air	2/24/2018
		8/27/2017
200-LV-150 (34 ft bgs)	Soil Vapor	2/25/2018
		8/27/2017
200-SV-05 (9 ft bgs)	Soil Vapor	2/25/2018
		8/27/2017
200-SV-09 (19 ft bgs)	Soil Vapor	2/25/2018
		8/26/2017
600-SGW-1 (12.5 ft bgs)	Soil Vapor	2/24/2018
		8/26/2017
600-SGW-2 (12.5 ft bgs)	Soil Vapor	2/24/2018

Location Sample ID	Sample Matrix	Event Date
		8/26/2017
600-SGW-5 (7.5 ft bgs)	Soil Vapor	2/24/2018

Table 2 – Quantity of Quality Control Samples (Soil Vapor, Indoor Air, and Outdoor Air)

Matrix	Method	Total Samples	Non-QA Samples	Field Blanks	Duplicates	Trip Blanks	Matrix Spikes
Indoor/Outdoor Air	TO-15	74	32	4	4	2	32
Soil Vapor	TO-15	32	12	4	4	0	12
Total		106	44	8	8	2	44

Table 3 – Quality Control Sample Percentages (Soil Vapor, Indoor Air, and Outdoor Air)

Quality Control Requirement	IWP Requirement	Sample Quantity	QC Quantity	QC %
Air, Field Blanks	4	40	8	20
Air, Trip Blanks	1 per shipment	34	2	6
Air, Duplicates	10%	40	8	20
Air, Matrix Spikes		64	32	50
Soil Vapor, Field Blanks	4	12	4	33
Soil Vapor, Trip Blanks	1 per shipment	12		0
Soil Vapor, Duplicates	10%	12	4	33
Soil Vapor, Matrix Spikes		24	12	50

Table 4 – Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
А	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing
	calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The
	presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
Т	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

СОРС	Method	Total Records	FB	EB	ТВ	0	QD	SP	R	*	Α	AD	G	RB	Т	D	i	J	TIC
1,1,1-Trichloroethane	TO-15	52																2	
1,1-Dichloroethene	TO-15	52																	
1,2,4- Trimethylbenzene	TO-15	52																4	
1,2-Dichloroethane	TO-15	52																1	
1,4-Dichlorobenzene	TO-15	52																1	
2,2,4-Trimethylpentane	TO-15	52																2	
2-Butanone (Methyl Ethyl Ketone)	TO-15	52	9		2													39	
2-Hexanone	TO-15	52	2															7	
2-Propanol	TO-15	52	2		1		2											7	
4-Methyl-2-pentanone	TO-15	52					2											4	
Acetone	TO-15	52	12		2		4			1								23	
Benzene	TO-15	52	2															22	
Bromodichloromethane	TO-15	52																2	
Carbon Disulfide	TO-15	52	2		1						6							7	
Carbon Tetrachloride	TO-15	52	2															36	
Chloroethane	TO-15	52																2	
Chloroform	TO-15	52	4															10	
Chloromethane	TO-15	52	8		2													37	
cis-1,2-Dichloroethene	TO-15	52																1	
Ethanol	TO-15	52	7		1		2											21	
Ethyl Benzene	TO-15	52																4	
Freon 11	TO-15	52	9				2				22								
Freon 113	TO-15	52	7		2		4									4		21	
Freon 12	TO-15	52	12		2														
Freon 123a	TO-15	52	4							26									10
Freon 21	TO-15	52																1	
Heptane	TO-15	52																4	
Hexane	TO-15	52	1		1													14	
m,p-Xylene	TO-15	52	1															4	
Methylene Chloride	TO-15	52	4		1													21	
o-Xylene	TO-15	52																4	
Styrene	TO-15	52																	
Tetrachloroethene	TO-15	52	1															2	
Tetrahydrofuran	TO-15	52																3	
Toluene	TO-15	52	5		1													17	
trans-1,2- Dichloroethene	TO-15	52	2															4	
Trichloroethene	TO-15	52	4	1												4		7	

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records (Soil Vapor, Indoor Air, and Outdoor Air)

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-IA-3	8/27/2017	1,2,4-Trimethylbenzene	104.1	25	
200-IA-3	8/27/2017	2,2,4-Trimethylpentane	NA ¹	25	
200-IA-3	8/27/2017	2-Butanone (Methyl Ethyl Ketone)	43.4	25	
200-IA-3	8/27/2017	2-Hexanone	89.5	25	J
200-IA-3	8/27/2017	2-Propanol	120.0	25	QD
200-IA-3	8/27/2017	4-Methyl-2-pentanone	193.1	25	QD
200-IA-3	8/27/2017	Acetone	63.6	25	QD
200-IA-3	8/27/2017	Benzene	20.2	25	J
200-IA-3	8/27/2017	Carbon Tetrachloride	2.4	25	J
200-IA-3	8/27/2017	Chloroform	NA ¹	25	J
200-IA-3	8/27/2017	Chloromethane	8.7	25	J
200-IA-3	8/27/2017	Ethanol	48.6	25	QD
200-IA-3	8/27/2017	Ethyl Benzene	NA ¹	25	J
200-IA-3	8/27/2017	Freon 11	58.8	25	A QD
200-IA-3	8/27/2017	Freon 113	33.0	25	QD
200-IA-3	8/27/2017	Freon 12	4.1	25	
200-IA-3	8/27/2017	Freon 21	74.5	25	
200-IA-3	8/27/2017	Heptane	NA ¹	25	J
200-IA-3	8/27/2017	Hexane	23.3	25	
200-IA-3	8/27/2017	m,p-Xylene	69.1	25	
200-IA-3	8/27/2017	Methylene Chloride	NA ¹	25	J
200-IA-3	8/27/2017	o-Xylene	55.3	25	J
200-IA-3	8/27/2017	Styrene	NA^1	25	
200-IA-3	8/27/2017	Tetrahydrofuran	NA ¹	25	J
200-IA-3	8/27/2017	Toluene	26.7	25	
200-IA-3	8/27/2017	trans-1,2-Dichloroethene	24.8	25	J
200-IA-3	8/27/2017	Trichloroethene	2.5	25	J
200-SV-05-9	8/27/2017	1,1-Dichloroethene	2.3	25	
200-SV-05-9	8/27/2017	Freon 11	NA ¹	25	Α
200-SV-05-9	8/27/2017	Freon 113	0.0	25	

Table 6 –	Duplicate	Sample	Relative	Percent	Difference
-----------	-----------	--------	----------	---------	------------

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-SV-05-9	8/27/2017	Tetrachloroethene	3.2	25	
200-SV-05-9	8/27/2017	Trichloroethene	2.5	25	
600-IA-4	8/26/2017	2-Butanone (Methyl Ethyl Ketone)	33.0	25	J
600-IA-4	8/26/2017	2-Hexanone	11.5	25	
600-IA-4	8/26/2017	2-Propanol	30.5	25	
600-IA-4	8/26/2017	4-Methyl-2-pentanone	0.0	25	J
600-IA-4	8/26/2017	Acetone	43.5	25	QD
600-IA-4	8/26/2017	Benzene	NA ¹	25	J
600-IA-4	8/26/2017	Carbon Tetrachloride	15.8	25	J
600-IA-4	8/26/2017	Chloromethane	3.1	25	J
600-IA-4	8/26/2017	Ethanol	121.3	25	J
600-IA-4	8/26/2017	Freon 11	0.0	25	Α
600-IA-4	8/26/2017	Freon 113	4.3	25	J
600-IA-4	8/26/2017	Freon 12	4.4	25	
600-IA-4	8/26/2017	Heptane	NA ¹	25	J
600-IA-4	8/26/2017	Hexane	5.2	25	J
600-IA-4	8/26/2017	Toluene	47.4	25	J
600-SGW-5-7.5	8/26/2017	2-Butanone (Methyl Ethyl Ketone)	51.9	25	J FB
600-SGW-5-7.5	8/26/2017	Acetone	31.6	25	J FB
600-SGW-5-7.5	8/26/2017	Carbon Disulfide	NA ¹	25	J A FB
600-SGW-5-7.5	8/26/2017	Chloroform	12.5	25	J FB
600-SGW-5-7.5	8/26/2017	Ethanol	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Freon 11	177.7	25	A FB
600-SGW-5-7.5	8/26/2017	Freon 113	26.5	25	QD FB
600-SGW-5-7.5	8/26/2017	Freon 12	4.3	25	FB
600-SGW-5-7.5	8/26/2017	Methylene Chloride	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Toluene	NA ¹	25	
600-SGW-5-7.5	8/26/2017	Trichloroethene	9.5	25	FB
200-IA-3	2/25/2018	2-Butanone (Methyl Ethyl Ketone)	106.0	25	J
200-IA-3	2/25/2018	2-Propanol	13.3	25	

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
200-IA-3	2/25/2018	Acetone	61.5	25	J
200-IA-3	2/25/2018	Benzene	2.7	25	J
200-IA-3	2/25/2018	Carbon Tetrachloride	7.6	25	J
200-IA-3	2/25/2018	Chloroform	13.7	25	J
200-IA-3	2/25/2018	Chloromethane	5.1	25	J
200-IA-3	2/25/2018	Ethanol	7.4	25	J
200-IA-3	2/25/2018	Freon 11	2.3	25	
200-IA-3	2/25/2018	Freon 113	13.3	25	
200-IA-3	2/25/2018	Freon 12	7.7	25	
200-IA-3	2/25/2018	Hexane	9.5	25	
200-IA-3	2/25/2018	Methylene Chloride	4.8	25	J
200-IA-3	2/25/2018	Toluene	0.0	25	
200-IA-3	2/25/2018	Trichloroethene	20.7	25	J
200-SV-05-9	2/25/2018	1,1-Dichloroethene	3.8	25	
200-SV-05-9	2/25/2018	Freon 113	3.6	25	
200-SV-05-9	2/25/2018	Tetrachloroethene	1.9	25	
200-SV-05-9	2/25/2018	Trichloroethene	3.9	25	
600-IA-1	2/24/2018	2-Butanone (Methyl Ethyl Ketone)	18.9	25	J FB
600-IA-1	2/24/2018	Acetone	13.6	25	J FB
600-IA-1	2/24/2018	Benzene	5.1	25	J
600-IA-1	2/24/2018	Carbon Tetrachloride	6.9	25	J
600-IA-1	2/24/2018	Chloromethane	12.2	25	J FB
600-IA-1	2/24/2018	Ethanol	54.5	25	J FB
600-IA-1	2/24/2018	Freon 11	7.4	25	FB
600-IA-1	2/24/2018	Freon 113	1.8	25	J
600-IA-1	2/24/2018	Freon 12	4.4	25	FB
600-IA-1	2/24/2018	Methylene Chloride	3.7	25	J FB
600-IA-1	2/24/2018	Toluene	NA ¹	25	
600-SGW-5-7.5	2/24/2018	2-Butanone (Methyl Ethyl Ketone)	77.8	25	J FB
600-SGW-5-7.5	2/24/2018	2-Hexanone	NA ¹	25	J FB

NASA White Sands Test Facility

Sample Location	Sample Date	Analyte	RPD (%)	RPD Upper Acceptance Limit (%)	QA Flag
600-SGW-5-7.5	2/24/2018	Acetone	34.8	25	FB
600-SGW-5-7.5	2/24/2018	Chloroform	0.0	25	J FB
600-SGW-5-7.5	2/24/2018	Freon 11	3.8	25	FB
600-SGW-5-7.5	2/24/2018	Freon 113	0.0	25	FB
600-SGW-5-7.5	2/24/2018	Freon 12	0.0	25	FB
600-SGW-5-7.5	2/24/2018	Tetrachloroethene	NA ¹	25	J FB
600-SGW-5-7.5	2/24/2018	Trichloroethene	2.4	25	FB

¹RPD could not be calculated due to one of the duplicate samples being non-detect

Table 7 – Blank Sample Detections

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
200-IA-7	8/27/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	19	UG/M3	I FB
200-IA-7	8/27/2017	Field Blank	2-Propanol	14.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Acetone	17.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Chloromethane	0.6	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Ethanol	15.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Freon 11	3.9	UG/M3	A FB
200-IA-7	8/27/2017	Field Blank	Freon 113	25.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Freon 12	2.8	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Tetrachloroethene	0.6	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Tetrahydrofuran	45.0	UG/M3	FB
200-IA-7	8/27/2017	Field Blank	Toluene	1.0	UG/M3	J FB
200-IA-7	8/27/2017	Field Blank	Trichloroethene	2.7	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	2.3	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	2-Propanol	0.8	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Acetone	12.0	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	Benzene	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Carbon Tetrachloride	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Ethanol	1.6	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Freon 11	1.0	UG/M3	A FB
200-SV-09-19	8/27/2017	Field Blank	Freon 113	0.5	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Freon 12	2.0	UG/M3	FB
200-SV-09-19	8/27/2017	Field Blank	Hexane	0.4	UG/M3	J FB
200-SV-09-19	8/27/2017	Field Blank	Tetrahydrofuran	3.9	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	1,4-Dioxane	1.5	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	2-Butanone (Methyl Ethyl Ketone)	5.9	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	2-Hexanone	0.9	UG/M3	J FB

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
600-IA-1	8/26/2017	Field Blank	Acetone	62.0	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	Carbon Disulfide	130.0	UG/M3	A FB
600-IA-1	8/26/2017	Field Blank	Chloromethane	0.8	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	Ethanol	9.1	UG/M3	J FB
600-IA-1	8/26/2017	Field Blank	Freon 11	1.2	UG/M3	J A FB
600-IA-1	8/26/2017	Field Blank	Freon 12	2.3	UG/M3	FB
600-IA-1	8/26/2017	Field Blank	Tetrahydrofuran	0.9	UG/M3	J FB
			2-Butanone (Methyl			
600-SGW-1-12.5	8/26/2017	Field Blank	Ethyl Ketone)	4.2	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Acetone	23.0	UG/M3	FB
600-SGW-1-12.5	8/26/2017	Field Blank	Benzene	1.0	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Carbon Disulfide	13.0	UG/M3	J A FB
600-SGW-1-12.5	8/26/2017	Field Blank	Chloromethane	0.7	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Cyclohexane	2.1	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Ethanol	4.6	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 11	1.2	UG/M3	J A FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 113	0.8	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Freon 12	2.3	UG/M3	FB
600-SGW-1-12.5	8/26/2017	Field Blank	Hexane	1.4	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	m,p-Xylene	1.9	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Styrene	0.8	UG/M3	J FB
600-SGW-1-12.5	8/26/2017	Field Blank	Toluene	6.2	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	2-Propanol	2.7	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Acetone	5.9	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Carbon Tetrachloride	0.4	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Chloromethane	0.6	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Ethanol	1.8	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Freon 11	1.9	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Freon 113	12.0	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Freon 12	2.4	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Methylene Chloride	0.4	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	Toluene	0.5	UG/M3	J FB
200-IA-8	2/25/2018	Field Blank	trans-1,2- Dichloroethene	1.6	UG/M3	FB
200-IA-8	2/25/2018	Field Blank	Trichloroethene	0.4	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Acetone	8.1	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Chloromethane	1.1	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Freon 11	1.2	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Freon 113	6.9	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Freon 12	2.4	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Methylene Chloride	0.7	UG/M3	J FB
200-SV-09-19	2/25/2018	Field Blank	Tetrachloroethene	2.7	UG/M3	FB
200-SV-09-19	2/25/2018	Field Blank	Trichloroethene	15.0	UG/M3	FB

NASA White Sands Test Facility

Sample Location ¹	Sample Date	QA Sample Type	Analyte Detected	Concentration	Units	QA Flag
			2-Butanone (Methyl			
600-IA-1	2/24/2018	Field Blank	Ethyl Ketone)	0.9	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Acetone	14.0	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Carbon Disulfide	2.6	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Chloromethane	1.1	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Ethanol	5.1	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Freon 11	1.4	UG/M3	J FB
600-IA-1	2/24/2018	Field Blank	Freon 12	2.3	UG/M3	FB
600-IA-1	2/24/2018	Field Blank	Methylene Chloride	0.9	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	2-Butanone (Methyl Ethyl Ketone)	3.6	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	2-Propanol	9.1	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Acetone	14.0	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Benzene	2.6	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Carbon Disulfide	6.3	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Chloromethane	1.0	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Cyclohexane	9.5	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Ethanol	9.1	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 11	1.2	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 113	0.9	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Freon 12	2.3	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Heptane	2.1	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Hexane	5.9	UG/M3	FB
600-SGW-1-12.5	2/24/2018	Field Blank	Methylene Chloride	1.3	UG/M3	J FB
600-SGW-1-12.5	2/24/2018	Field Blank	Toluene	20.0	UG/M3	FB
200-OA-1	2/25/2018	Trip Blank	2-Propanol	15.0	UG/M3	TB
200-OA-1	2/25/2018	Trip Blank	Freon 113	2.4	UG/M3	J TB
200-OA-1	2/25/2018	Trip Blank	Freon 12	2.4	UG/M3	J TB
200-OA-1	2/25/2018	Trip Blank	o-Xylene	1.4	UG/M3	J TB

¹There were no detections in the Trip Blank (200-IA-7) collected on August 27, 2017.

Appendix CAppendix D UCL95 Results for Cumulative Risk Assessment

	A	Т	В	С	D	E	F	G	Н	I	J	K	L
1					Goodness-o	of-Fit Test S	tatistics for	Jncensored	Full Data Se	ts without No	on-Detects		
2		Us	er Seleo	cted Options									
3	[ate/Ti	me of Co	omputation	ProUCL 5.2	4/2/2023 10):03:59 PM						
4				From File	UCL95_inpu	ut_Revised.>	kls						
5			Fu	Il Precision	OFF								
6		Cor	nfidence	Coefficient	0.95								
7													
8													
9	200_Soil	_NO2/	NO3										
10													
11				Raw S	tatistics								
12				Num	ber of Valid C	bservations)	8						
13				Number	r of Distinct C	bservations)	8						
14						Minimum	0.6						
15						Maximum	n 7.4						
16					Mean	of Raw Data	2.9						
17				Standa	rd Deviation	of Raw Data	2.479						
18						Khat	t 1.594						
19						Theta hat	t 1.82						
20						Kstar	1.079						
21						Theta star	2.687						
22				Mean	of Log Trans	formed Data	0.719						
23			Standa	rd Deviation	of Log Trans	formed Data	0.909						
24													
25				Normal GOF	Test Result	s							
26													
27					Correlation (Coefficient R	0.925						
28				S	hapiro Wilk T	est Statistic	0.847						
29				Shapiro	Wilk Critical	(0.05) Value	0.818						
30				Approxim	ate Shapiro \	Wilk P Value	e 0.11						
31					Lilliefors 7	est Statistic	0.296						
32	.	-		Lillie	etors Critical	(0.05) Value	0.283						
33	Data app	ear Ap	proxima	ite Normal at	t (0.05) Signi	ficance Lev	el						
34													
35			(Jamma GOF	- Test Result	IS							
36					O a mal ti d	D	0.070						
37							0.9/2						
38					A-D I	est Statistic	0.421						
39					A-D Critical	(U.U5) Value	0.728						
40					K-S I	est Statistic	0.236						
41	Deta				K-S Critical(U.U5) Value	0.299						
42	Data app	ear Ga	amma D	Istributed at	(0.05) Signif	ICANCE LEVE							
43													

200_Background_GOF.xlsx

	А	B	C	D	E	F	G	Н	I	J	К	L
44 45		L	ognormal GO	F Test Resu	Its							
46				Correlation C	Coefficient R	0.974						
47			S	hapiro Wilk T	est Statistic	0.932						
48			Shapiro	Wilk Critical ((0.05) Value	0.818						
49			Approxima	ate Shapiro V	Vilk P Value	0.677						
50				Lilliefors T	est Statistic	0.194						
51			Lillie	fors Critical	(0.05) Value	0.283						
52	Data appea	r Lognorma	al at (0.05) Sig	nificance Le	vel	I						
53												
54	200_BG2_N	NO2/NO3										
55												
56			Raw St	atistics								
57			Numb	er of Valid O	bservations	36						
58			Number	of Distinct O	bservations	15						
59					Minimum	0.5						
60					Maximum	3.1						
61				Mean	of Raw Data	1.225						
62			Standar	d Deviation of	of Raw Data	0.533						
63					Khat	7.222						
64					Theta hat	0.17						
65					Kstar	6.638						
66					Theta star	0.185						
67			Mean	of Log Transf	ormed Data	0.132						
68		Standa	ard Deviation	of Log Transf	ormed Data	0.364						
69												
70			Normal GOF	Test Result	S							
71												
72				Correlation C	Coefficient R	0.882						
73			S	hapiro Wilk T	est Statistic	0.792						
74			Shapiro	Wilk Critical ((0.05) Value	0.935						
75			Approxima	ate Shapiro V	Vilk P Value	2.2301E-6						
76				Lilliefors T	est Statistic	0.191						
77			Lillie	fors Critical ((0.05) Value	0.145						
78	Data not No	ormal at (0.	05) Significan	ce Level								
79												
80			Gamma GOF	Test Result	s							
81												
82				Correlation C	Coefficient R	0.938						
83				A-D T	est Statistic	1.244						
84				A-D Critical ((0.05) Value	0.749						
85				K-S T	est Statistic	0.184						
86				K-S Critical(0.05) Value	0.147						
87	Data not Ga	amma Distr	ibuted at (0.0	5) Significan	ce Level							
88												

200_Background_GOF.xlsx

	А	В	С	D	E	F	G	Н	J	K	L
89		Lo	ognormal GC	F Test Resu	llts						
90											
91				Correlation C	Coefficient R	0.964					
92			S	hapiro Wilk T	est Statistic	0.941					
93			Shapiro	Wilk Critical	(0.05) Value	0.935					
94			Approxim	ate Shapiro V	Vilk P Value	0.0699					
95				Lilliefors T	est Statistic	0.169					
96			Lillie	fors Critical	(0.05) Value	0.145					
97	Data appea	r Approxima	te_Lognorm	al at (0.05) S	Significance	Level					

200_NO2NO3_BG2_pop2pop_Gehan

	Δ	B	C	D	F	F	G	н		I 1	ĸ	1
1			Gehan S	ample 1 vs \$	Sample 2 C	omparison H	ypothesis T	est for Data	Sets with No	n-Detects	I IX	
2												
3		User Sel	ected Options	;								
4	Da	te/Time of C	Computation	ProUCL 5.2	3/6/2023 1:	49:38 AM						
5			From File	UCL95_inpu	ut_Revised.	xls						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	S	elected Null	l Hypothesis	Sample 1 M	lean/Median	<= Sample 2	2 Mean/Med	lian (Form 1)				
9		Alternative	e Hypothesis	Sample 1 M	lean/Median	> Sample 2	Mean/Media	an				
10									1	T	1	T
11												
12	Sample 1 L	Data: 200_S	501_NO2/NO3	5								
13	Sample 2 L	Data: 200_B	3G2_NU2/NU	3								
14				Dow Statiatia	<u> </u>							
15			ſ		Sampla 1	Sampla 2						
16			Number of V	Valid Data		36						
17			Number of No	n-Detects	1	0						
18			Number of D	etect Data	7	36						
19			Minimum N	lon-Detect	0.6	N/A						
20			Maximum N	Ion-Detect	0.6	N/A						
21			Percent No	on-detects	12.50%	0.00%						
22			Minim	um Detect	0.8	0.5						
23			Maxim	um Detect	7.4	3.1						
25			Mean	of Detects	3.229	1.225						
26			Median	of Detects	1.8	1						
27			SD	of Detects	2.482	0.533						
28				KM Mean	2.9	1.225						
29				KM SD	2.319	0.533						
30					<u> </u>							
31			Sample 1 v	vs Sample 2	Gehan Test	t						
32												
33	HU: Mean/M	viedian of S	ample 1 <= N	lean/Median	of backgrou	una						
34			Caban	- Teet \/elue	1 600							
35			Genan	z rest value	1.028							
36			CII	R Value	0.0518							
37				F-Value	0.0518							
38	Conclusion	with Alnha	= 0.05									
39	Do Not F		i – 0.00 Conclude Sem	nle 1 <= Sa	mple 2							
40	P-Value	>= alnha (0)										
41		- aipiia (0	,,									
42												

200_NO2NO3_BG2_pop2pop_Tarone-Ware

	Δ		В	C	D	F	F	G	н	1		ĸ	L 1
1		-	0	Tarone-Wa	re Sample 1	vs Sample 2	2 Comparisor	Hypothesis	Test for Da	ta Sets with	Non-Detects	3	
2													
3			User Sele	cted Options	6								
4	D	ate/	Time of C	omputation	ProUCL 5.2	3/6/2023 1:	50:46 AM						
5				From File	UCL95_inpt	ut_Revised.	ds						
6			Fu	II Precision	OFF								
7		С	onfidence	Coefficient	95%								
8	Ċ,	Sele	cted Null	Hypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9		A	ternative	Hypothesis	Sample 1 M	lean/Median	> Sample 2 I	Mean/Median	1				
10													
11													
12	Sample 1	Dat	a: 200_So	oil_NO2/NO	3								
13	Sample 2	Dat	a: 200_B	G2_NO2/NC)3								
14					<u> </u>								
15					Raw Statistic	S O a manda 1	0 0						
16				Number of	Valid Data	Sample I	Sample 2						
17				Number of N		0	30						
18			I	Number of No	of Detects	7	36						
19				Minimum	lon Detects	,	50 N/A						
20				Maximum N		0.0	N/A						
21				Percent N		12 50%	0.00%						
22				Minim	um Detect	0.8	0.0070						
23				Maxim	num Detect	7.4	3.1						
24				Mean	of Detects	3.229	1.225						
25				Median	of Detects	1.8	1						
20				SD	of Detects	2.482	0.533						
27					KM Mean	2.9	1.225						
20					KM SD	2.319	0.533						
30													
31			S	ample 1 vs S	Sample 2 Tar	one-Ware T	est						
32													
33	H0: Mean	/Me	dian of Sa	ample 1 <= N	/lean/Median	of Sample 2	2						
34													
35					TW Statistic	1.539							
36				TW Critical	Value (0.05)	1.645							
37					P-Value	0.0619							
38													
39	Conclusio	n wi	ith Alpha	= 0.05									
40	Do Not	Rej	ect H0, C	onclude San	nple 1 <= Sai	mple 2							
41	P-Value) >=	alpha (0.	05)									
42													

	A B C	D	E	F	G	Н		J	К	L
1	t-Test	Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Data	Sets without	ut NDs		
2										
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	2:18:04 AM						
5	From File	UCL95_inpu	ut_Revised.	xls						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Substantial Difference (S)	0.000								
9	Selected Null Hypothesis	Sample 1 M	ean <= San	nple 2 Mean (Form 1)					
10	Alternative Hypothesis	Sample 1 M	ean > the S	ample 2 Mear	า					
11										
12										
13	Sample 1 Data: 600 Barium 0-10									
14	Sample 2 Data: 600 BG4 Barium 0-7	12								
15										
16										
17	F	Raw Statistic								
18			Sample 1							
19	Number of Valid Ob	servations	15	36						
20	Number of Distinct Ob	servations	15	33						
21		Minimum	36.4	42.2						
22		Maximum	338	383						
23		Mean	142.4	114.1						
24		Median	151	94.85						
25		SD	77.81	67.71						
26	S	E of Mean	20.09	11.28						
27										
28	Sample 1 vs Sa	ample 2 Two	-Sample t-	Test						
29										
30	HU: Mean of Sample 1 - Mean of Sa	mple 2 <= 0								
31			t-lest	Critical						
32	Method	DF	P-Value							
33	Pooled (Equal Variance)	49	1.299	1.677	0.100					
34	Welch-Satterthwaite (Unequal Varian	23.3	1.226	1.714	0.116					
35	Pooled SD /0./43									
36	Conclusion with Alpha = 0.050									
37	Student t (Pooled) Test: Do Not Rej	ect H0, Conc	lude Sampl	e 1 <= Sampl	e2					
38	Welch-Satterthwaite Test: Do Not R	eject H0, Co	nclude Sarr	nple 1 <= Sam	ple 2					
39										
40										

Ba_BG4_pop2pop_t-test

	А	В	С	D	E	F	G	Н	I	J	K	L
41			Test of	Equality of V	ariances							
42												
43			Variance o	f Sample 1	6055							
44			Variance o	f Sample 2	4584							
45												
46	Numer	ator DF	Denomi	nator DF	F-Tes	t Value	P-Value					
47	1	4	3	35	1.3	321	0.490					
48	Conclusion	with Alpha =	0.05									
49	Two variand	ces appear t	o be equal									
50												

Ba_BG4_pop2pop_Wil-Mann-Whit

	A B C	D	E	F	G	Н	I	J	К	L
1	Wilcoxon-Mann-Whitn	ey Sarr	nple 1 vs Sa	mple 2 Com	parison Test	for Uncens	or Full Data	Sets without	NDs	
2										
3	User Selected Options									
4	Date/Time of Computation ProU	ICL 5.2	3/6/2023 12	2:21:18 AM						
5	From File UCLS	95_inpu	t_Revised.x	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000)								
9	Selected Null Hypothesis Sam	ple 1 Me	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sam	ple 1 Me	ean/Median	> Sample 2	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Barium 0-10									
14	Sample 2 Data: 600 BG4 Barium 0-12									
15										
16	Raw S	Statistic	S							
17			Sample 1	Sample 2						
18	Number of Valid Observat	tions	15	36						
19	Number of Distinct Observat	tions	15	33						
20	Minir	num	36.4	42.2						
21	Maxir	num	338	383						
22	N	lean	142.4	114.1						
23	Me	dian	151	94.85						
24		SD	77.81	67.71						
25	SE of N	lean	20.09	11.28						
26										
27	Wilcoxon-Mann-W	/hitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/M	Nedian	of Sample 2	2						
30										
31	Sample 1 Rank Sum	W-Stat	457							
32	Standardized WMW	U-Stat	1.375							
33	Me	ean (U)	270							
34	SD(U) - A	48.37								
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted fo	or Ties)	0.0846							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sample 1	<= San	nple 2							
40	P-Value >= alpha (0.05)									
41										

Background_GOF

	Δ	B	C	D	F	F	G	Ц			ĸ	
1	~	<u> </u>		Goodness-	of-Fit Test	Statistics for	Uncensored	Full Data Se	ts without N	lon-Detects		<u> </u>
2		User Selec	cted Options									
3	Dat	e/Time of Co	omputation	ProUCL 5.2	3/6/2023 1	2:09:56 AM						
4			From File	UCL95_inpu	ut_Revised	xls						
5		Fu	Il Precision	OFF								
6		Confidence	Coefficient	0.95								
7				•								
8												
9	600 Barium	0-10										
10												
11			Raw S	tatistics								
12			Num	ber of Valid C	Observation	s 15						
13			Numbe	r of Distinct C	Observation	s 15						
14					Minimu	n 36.4						
15					Maximu	n 338						
16				Mean	of Raw Dat	a 142.4						
17			Standa	rd Deviation	of Raw Dat	a 77.81						
18					Kha	at 3.575						
19					Theta ha	at 39.82						
20					Ksta	ar 2.904						
21					Theta sta	ar 49.01						
22			Mean	of Log Trans	formed Dat	a 4.812						
23		Standa	rd Deviation	of Log Trans	formed Dat	a 0.582						
24												
25			Normal GOF	Test Result	S							
26												
27				Correlation (Coefficient	R 0.951						
28			S	Shapiro Wilk T	Fest Statist	c 0.914						
29			Shapiro	Wilk Critical	(0.05) Valu	e 0.881						
30			Approxim	ate Shapiro \	Wilk P Valu	e 0.14						
31				Lilliefors 7	l est Statist	c 0.166						
32	_		Lilli	efors Critical	(0.05) Valu	e 0.22						
33	Data appea	r Normal at	(0.05) Signif	icance Level								
34					-							
35		(Gamma GO	- Test Result	ts							
36				<u> </u>	0 (7)							
37				Correlation (۲ U.9/9						
38				A-D 1	est Statist	c 0.366						
39				A-D Critical	(U.U5) Valu	e 0./42						
40				K-S T	est Statist	c 0.184						
41	Data	- 0		K-S Critical(U.U5) Valu	e 0.223						
42	uata appea	r Gamma Di	istributed at	(U.U5) Signifi	ICANCE LEV	ei						
43												

Background_GOF

	А	В	С	D	E	F	G	Н	J	K	L
44		L	ognormal GC	OF Test Resu	lits						
45											
46				Correlation (Coefficient R	0.976					
47			S	hapiro Wilk T	Fest Statistic	0.957					
48			Shapiro	Wilk Critical	(0.05) Value	0.881					
49			Approxim	ate Shapiro \	Wilk P Value	0.597					
50				Lilliefors T	Fest Statistic	0.211					
51			Lillie	efors Critical	(0.05) Value	0.22					
52	Data appea	r Lognorma	al at (0.05) Sig	gnificance Le	evel						
53											
54	600 BG4 Ba	arium 0-12									
55											
56			Raw S	tatistics							
57			Numi	ber of Valid C	bservations	36					
58			Number	r of Distinct C	bservations	33					
59					Minimum	42.2					
60					Maximum	383					
61			0	Mean	of Raw Data	114.1					
62			Standa	rd Deviation	of Raw Data	67.71					
63					Khat	4.383					
64					I heta hat	26.04					
65					Kstar	4.036					
66					I heta star	28.27					
67	-		Mean	of Log Transf	formed Data	4.619					
68		Standa	ard Deviation	of Log Trans	formed Data	0.465					
69											
70			Normal GOF	l est Result	S						
71				0 1 1 1		0.047					
72			-	Correlation C		0.847					
73			Oh a mina			0.736					
74			Snapiro		(0.05) Value	0.935					
75			Approxim	ate Snapiro V		8.1232E-8					
76			1 :0:.			0.219					
77	Data nat Na	www.al.at.(0.)			(0.05) value	0.145					
78		ormai at (U.	Jo) Significan								
79			0	Test Desuk	1 4						
80			Gamma GOF		lS						
81				Correlation	Coofficient D	0.024					
82						1.924					
83						0.752					
84						0.702					
85				K S Critical		0.143					
86	Data follow	Appr Com	ma Distributi		Significance	0.147					
87		Appr. Gam		วท ลเ (0.05) จ	Significance	Level					
88											

Background_GOF

	A	В	C	D	E	F	G	Н	I	J	K	L
89		L	ognormal GC	OF Test Resu	lits							
90				0 1 1 1		0.070						
91						0.973						
92			Ohanina			0.952						
93			Snapiro	Wilk Critical		0.935						
94			Approxim	ate Snapiro V		0.159						
95			. :0:			0.108						
96	Data annas				(0.05) value	0.145						
97	Data appea	r Lognorma	al at (0.05) Si	gnificance Le	evei							
98	600 Dendlin											
99		IM 0-10										
100			Dows	tatiatiaa								
101			Num		beenvetione	15						
102			Numbo	r of Dictinct C	beenvetions	10						
103			Number		Minimum	0.24						
104					Movimum	0.34						
105				Maan		0.72						
106			Standa		of Raw Data	0.45						
107			Stanua		U Raw Data	0.103						
108						23.3						
109					Kotor	19 60						
110					Kstar	0.0241						
111			Moon	of Log Transf	formed Date	0.0241						
112		Stand			formed Data	-0.02						
113		Stariu		or Log Transi		0.21						
114			Normal COE	Tost Posult								
115					5							
116				Corrolation (Coofficient P	0.037						
117			9	Correlation C		0.937						
118			Shaniro	Wilk Critical		0.002						
119			Approvim	ate Shaniro V	0.001							
120			Аррголіпі		0.0455							
121			l illia	efors Critical	(0.05) Value	0.107						
122	Data annea	r Normal a	t (0.05) Signif		(0.00) Value	0.22						
123												
124			Gamma GOF	Test Result	e							
125				Test Result								
126				Correlation (Coefficient R	0.962						
127					est Statistic	0.382						
128				A-D Critical	(0.05) Value	0.735						
129				K-S T	est Statistic	0,139						
130				K-S Critical	0.05) Value	0.221						
131	Data annea	r Gamma I	Distributed at	(0.05) Signifi	cance I evel	5. <i>LL</i> 1						
132	Jaia appea											
133												
	L	ognormal GC	r iest kesu	Its								
-----------	------------------------	---	---	--	--	--	---	---	---	---	---	
			0 1 1 0		0.000							
			Correlation C		0.969							
		Oh a mina			0.937							
		Snapiro			0.001							
		Approxim		VIIK P Value	0.30							
		1 :0:.	Lillietors I	est Statistic	0.126							
oto onnoo					0.22							
ata appea	Lognorma	li al (0.05) Sij	ynincance Le									
00 BC4 Ba	ndlium 0.1	<u>າ</u>										
	ayıllum 0-1.	2										
		Dow S	tatietice									
		Num		beenvations	36							
		Number		beenvations	27							
		Number	Of Distinct O	Minimum	0.17							
				Maximum	0.17							
			Mean	of Raw Data	0.72							
		Standa	rd Deviation (of Raw Data	0.471							
		Otanda		Khat	13.66							
				Theta hat	0.0345							
				Kstar	12 54							
				Theta star	0.0376							
		Mean	of Log Transf	formed Data	-0 789							
	Standa	ard Deviation	of Log Transf	ormed Data	0.292							
	otanac			onnoù Dulu	0.202							
		Normal GOF	Test Results	5								
				-								
			Correlation C	Coefficient R	0.992							
		S	hapiro Wilk T	est Statistic	0.986							
		Shapiro	Wilk Critical ((0.05) Value	0.935							
		Approxim	ate Shapiro V	Vilk P Value	0.943							
			Lilliefors T	est Statistic	0.106							
		Lillie	efors Critical ((0.05) Value	0.145							
ata appea	r Normal at	(0.05) Signif	icance Level									
		Gamma GOF	Test Result	s								
			Correlation C	Coefficient R	0.975							
			A-D T	est Statistic	0.529							
			A-D Critical ((0.05) Value	0.748							
			K-S T	est Statistic	0.116							
			K-S Critical(0.05) Value	0.147							
ata appea	r Gamma D	istributed at	(0.05) Signifi	cance Level								
	ata appea 00 BG4 Be	ata appear Lognorma D0 BG4 Beryllium 0-1	S Shapiro Approxim Lillie ata appear Lognormal at (0.05) Sig D0 BG4 Beryllium 0-12 Raw S Numl Number Standard Number Standard Deviation Mean Standard Deviation Lillie ata appear Normal at (0.05) Signif	Correlation C Shapiro Wilk Critical Approximate Shapiro V Lilliefors T Lilliefors Critical ata appear Lognormal at (0.05) Significance Le 00 BG4 Beryllium 0-12 Raw Statistics Number of Valid C Number of Distinct C Number of Distinct C Mean of Standard Deviation of Standard Deviation of Standard Deviation of Log Transf Standard Deviation of Log Transf Standard Deviation of Log Transf Standard Deviation of Log Transf Correlation O Shapiro Wilk Critical Approximate Shapiro V Lilliefors T Lilliefors Critical ata appear Normal at (0.05) Significance Level Gamma GOF Test Result Correlation C A-D T A-D Critical K-S Critical K-S Critical	Correlation Coefficient R Shapiro Wilk Test Statistic Shapiro Wilk Critical (0.05) Value Approximate Shapiro Wilk P Value Lilliefors Test Statistic Lilliefors Critical (0.05) Value ata appear Lognormal at (0.05) Significance Level D0 BG4 Beryllium 0-12 Raw Statistics Number of Valid Observations Number of Distinct Observations Number of Distinct Observations Minimum Maximum Mean of Raw Data Standard Deviation of Raw Data Khat Theta hat Kstar Theta star Mean of Log Transformed Data Standard Deviation of Log Transformed Data Correlation Coefficient R Shapiro Wilk Test Statistic Shapiro Wilk Critical (0.05) Value Lilliefors Test Statistic Lilliefors Critical (0.05) Value ata appear Normal at (0.05) Significance Level Correlation Coefficient R A-D Test Statistic A-D Critical (0.05) Value K-S Critical(0.05) Value ata appear Gamma Distributed at (0.05) Significance Level	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level 00 BG4 Beryllium 0-12 Raw Statistics Number of Valid Observations 36 Number of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Mean of Raw Data 0.119 Khat 13.66 Theta hat 0.0345 Kstar 12.54 Theta star 0.0376 Mean of Log Transformed Data 0.292 Normal GOF Test Results Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.05) Value 0.933 Approximate Shapiro Wilk P Value 0.943 Lilliefors Critical (0.05) Value 0.145 ata appear Normal at (0.05) Significance Level Correlation Coefficient R 0.992 A-D Critical (0.05) Value 0.147 ata appear Gamma Distributed at (0.05) Significance Level	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level 0.22 ata appear Lognormal at (0.05) Significance Level 0.22 Minimum 0.72 0.27 Raw Statistics 0.17 Mumber of Valid Observations 27 Minimum 0.72 0.411 Maximum 0.72 0.411 Maximum 0.72 0.411 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Standard Deviation of Log Transformed Data 0.0376 Mean of Log Transformed Data 0.0376 Mean of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.292 Standard Deviation of Log Transformed Data 0.992 Shapiro Wilk Test Statistic 0.996 <td>Correlation Coefficient R 0.969 Shapiro Wilk Critical (0.05) Value 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Raw Statistics Number of Valid Observations 7 Number of Past Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Correlation Coefficient R 0.992 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>Correlation Coefficient R 0.969 Shapiro Wilk Cest Statistic 0.937 Approximate Shapiro Wilk P Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significence Level 0.22 Wilk Critical (0.05) Value 0.22 Number of Valid Observations 36 Number of Valid Observations 27 Minimum 0.17 Maximum 0.72 Mean of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.411 Standard Deviation of Raw Data 0.471 Katar 12.54 Theta tat 0.0376 Katar 12.54 Mean of Log Transformed Data 0.292 Standard Deviation of Cog Transformed Data 0.292 Shapiro Wilk Critical (0.05) Value 0.935 Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.</td> <td>Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Rew Statistics Number of Valid Observations 36 Number of Valid Observations 27 Maintimum 0.17 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Mean of Log Transformed Data 0.376 Theta hat 0.0376 Mean of Log Transformed Data 0.789 Standard Deviation of Cefficient R 0.992 Mean of Log Transformed Data 0.789 Standard Deviation of Log Transformed Data 0.992 Correlation Coefficient R 0.992 Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Test Statistic 0.986 Correlation Coefficient R 0.992</td> <td>Correlation Coefficient R 0.969 </td>	Correlation Coefficient R 0.969 Shapiro Wilk Critical (0.05) Value 0.937 Shapiro Wilk Critical (0.05) Value 0.881 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Raw Statistics Number of Valid Observations 7 Number of Past Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Normal GOF Test Results 7 Correlation Coefficient R 0.992 7 Correlation Coefficient R 0.992 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Correlation Coefficient R 0.969 Shapiro Wilk Cest Statistic 0.937 Approximate Shapiro Wilk P Value 0.881 Approximate Shapiro Wilk P Value 0.36 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significence Level 0.22 Wilk Critical (0.05) Value 0.22 Number of Valid Observations 36 Number of Valid Observations 27 Minimum 0.17 Maximum 0.72 Mean of Distinct Observations 27 Minimum 0.17 Maximum 0.72 Standard Deviation of Raw Data 0.471 Standard Deviation of Raw Data 0.411 Standard Deviation of Raw Data 0.471 Katar 12.54 Theta tat 0.0376 Katar 12.54 Mean of Log Transformed Data 0.292 Standard Deviation of Cog Transformed Data 0.292 Shapiro Wilk Critical (0.05) Value 0.935 Correlation Coefficient R 0.992 Shapiro Wilk Critical (0.	Correlation Coefficient R 0.969 Shapiro Wilk Test Statistic 0.937 Approximate Shapiro Wilk P Value 0.36 Lilliefors Test Statistic 0.126 Lilliefors Critical (0.05) Value 0.22 ata appear Lognormal at (0.05) Significance Level Rew Statistics Number of Valid Observations 36 Number of Valid Observations 27 Maintimum 0.17 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Mean of Raw Data 0.471 Standard Deviation of Raw Data 0.471 Mean of Log Transformed Data 0.376 Theta hat 0.0376 Mean of Log Transformed Data 0.789 Standard Deviation of Cefficient R 0.992 Mean of Log Transformed Data 0.789 Standard Deviation of Log Transformed Data 0.992 Correlation Coefficient R 0.992 Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Test Statistic 0.986 Correlation Coefficient R 0.992	Correlation Coefficient R 0.969	

	A	В	С	D	E	F	G	Н	I	J	K	L
179			Lognormal GC	F Test Resu	lits							
180				0 1 1 1		0.050						
181				Correlation C		0.953						
182			S			0.919						
183			Shapiro	Wilk Critical	(0.05) Value	0.935						
184			Approxim	ate Shapiro V	Wilk P Value	0.0138						
185				Lilliefors I	est Statistic	0.112						
186	_		Lillie	efors Critical	(0.05) Value	0.145						
187	Data appea	ar Approxin	nate_Lognorm	al at (0.05) S	Significance	Level						
188												
189	600 Cadmii	um 0-10										
190												L
191			Raw S	tatistics		· -						L
192			Numl	ber of Valid C	bservations	15						
193			Number	r of Distinct C	bservations	13						L
194					Minimum	0.09						
195					Maximum	0.36						
196				Mean	of Raw Data	0.187						
197			Standa	rd Deviation of	of Raw Data	0.0727						
198					Khat	7.519						
199					Theta hat	0.0248						
200					Kstar	6.059						
201					Theta star	0.0308						
202			Mean	of Log Transf	formed Data	-1.746						
203		Stand	ard Deviation	of Log Transf	formed Data	0.381						
204												
205			Normal GOF	Test Result	s							
206												
207				Correlation C	Coefficient R	0.968						
208			S	hapiro Wilk T	Fest Statistic	0.939						
209			Shapiro	Wilk Critical	(0.05) Value	0.881						
210			Approxim	ate Shapiro V	Nilk P Value	0.363						
211				Lilliefors T	Fest Statistic	0.124						
212			Lillie	efors Critical	(0.05) Value	0.22						
213	Data appea	ar Normal a	t (0.05) Signif	icance Level								
214												
215			Gamma GOF	Test Result	ts							
216												
217				Correlation C	Coefficient R	0.991						
218				A-D T	est Statistic	0.187						
219				A-D Critical	(0.05) Value	0.738						
220				K-S T	est Statistic	0.124						
221				K-S Critical(0.05) Value	0.222						
222	Data appea	ar Gamma	Distributed at	(0.05) Signifi	icance Level							
223												

	А	В	С	D	E	F	G	Н	J	K	L
224		L	ognormal GC	OF Test Resu	lits						
225											
226				Correlation (Coefficient R	0.994					
227			S	hapiro Wilk T	Fest Statistic	0.985					
228			Shapiro	Wilk Critical	(0.05) Value	0.881					
229			Approxim	ate Shapiro \	Wilk P Value	0.989					
230				Lilliefors T	Fest Statistic	0.113					
231			Lillie	efors Critical	(0.05) Value	0.22					
232	Data appea	r Lognorma	l at (0.05) Sig	gnificance Le	evel						
233											
234	600 BG4 Ca	admium 0-1	2								
235											
236			Raw S	tatistics							
237			Numl	ber of Valid C	Observations	36					
238			Number	r of Distinct C	Observations	10					
239					Minimum	0.06					
240					Maximum	0.21					
241				Mean	of Raw Data	0.0847					
242			Standa	rd Deviation	of Raw Data	0.0365					
243					Khat	8.066					
244					Theta hat	0.0105					
245					Kstar	7.413					
246					Theta star	0.0114					
247			Mean	of Log Transt	formed Data	-2.532					
248		Standa	ard Deviation	of Log Transt	formed Data	0.331					
249											
250			Normal GOF	Test Result	S						
251											
252				Correlation (Coefficient R	0.779					
253			S	hapiro Wilk T	Fest Statistic	0.615					
254			Shapiro	Wilk Critical	(0.05) Value	0.935					
255			Approxim	ate Shapiro \	Wilk P Value	1.578E-10					
256				Lilliefors T	Fest Statistic	0.434					
257			Lillie	efors Critical	(0.05) Value	0.145					
258	Data not No	ormal at (0.0	05) Significan	ce Level							
259											
260			Gamma GOF	Test Result	ts						
261											
262				Correlation (Coefficient R	0.855					
263				A-D T	Fest Statistic	5.712					
264				A-D Critical	(0.05) Value	0.749					
265				K-S T	Fest Statistic	0.435					
266				K-S Critical(0.05) Value	0.147					
267	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
268											

	A	В	С	D	E	F	G	Н	I	J	K	L
269			.ognormal GC	F Test Resu	llts							
270												
271				Correlation (Coefficient R	0.824						
272			S	hapiro Wilk T	est Statistic	0.679						
273			Shapiro	Wilk Critical	(0.05) Value	0.935						
274			Approxim	ate Shapiro \	Wilk P Value	3.7477E-9						
275				Lilliefors T	est Statistic	0.428						
276			Lillie	efors Critical	(0.05) Value	0.145						
277	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
278												
279	Non-param	etric GOF	Fest Results									
280												
281	Data do not	t follow a di	scernible dist	ribution at (0	.05) Level of	Significance						
282												
283	600 Chromi	ium 0-10										
284												
285			Raw S	tatistics								
286			Numl	per of Valid C	bservations	15						
287			Numbe	of Distinct C	bservations	14						
288					Minimum	4.88						
289					Maximum	16.7						
290				Mean	of Raw Data	8.633						
291			Standa	rd Deviation	of Raw Data	3.716						
292					Khat	7.17						
293					Theta hat	1.204						
294					Kstar	5.78						
295					Theta star	1.493						
296			Mean	of Log Trans	formed Data	2.084						
297		Stand	ard Deviation	of Log Transt	formed Data	0.373						
298												
299			Normal GOF	Test Result	S							
300												
301				Correlation (Coefficient R	0.884						
302			S	hapiro Wilk T	est Statistic	0.779						
303			Shapiro	Wilk Critical	(0.05) Value	0.881						
304			Approxim	ate Shapiro \	Wilk P Value	0.00173						
305				Lilliefors T	est Statistic	0.28						
306			Lillie	efors Critical	(0.05) Value	0.22						
307	Data not No	ormal at (0.	05) Significan	ce Level								
308												
000								1	1	1	1	1

	А	В	С	D	E	F	G	Н	J	K	L
309			Gamma GOF	F Test Result	S						
310											
311				Correlation (Coefficient R	0.93					
312				A-D T	est Statistic	1.101					
313				A-D Critical	(0.05) Value	0.738					
314				K-S 1	est Statistic	0.238					
315				K-S Critical(0.05) Value	0.222					
316	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
317											
318		L	ognormal GC	OF Test Resu	llts						
319						0.007					
320						0.937					
321			<u> </u>			0.873					
322			Shapiro	Wilk Critical	(0.05) Value	0.881					
323			Approxim	ate Shapiro \	Wilk P Value	0.0408					
324						0.212					
325	D.I.		Lillie	efors Critical	(0.05) Value	0.22					
326	Data appea	ar Approxima	ate_Lognorm	al at (0.05) S	Significance	Level					
327			10								
328	600 BG4 C	hromium 0-	12								
329											
330			Raw S	tatistics							
331			Numl	per of Valid C	bservations	36					
332			Number	r of Distinct C	bservations	36					
333					Minimum	3.44					
334					Maximum	9.8					
335				Mean	of Raw Data	6.296					
336			Standa	rd Deviation	of Raw Data	1.607					
337					Khat	15.1					
338					Theta hat	0.417					
339					Kstar	13.86					
340					Theta star	0.454					
341			Mean	of Log Trans	formed Data	1.806					
342		Standa	ard Deviation	of Log Trans	formed Data	0.267					
343											
344			Normal GOF	Test Result	S						
345											
346				Correlation (Coefficient R	0.986					
347			S	napiro Wilk T	est Statistic	0.962					
348			Shapiro	VVIIK Critical	(U.U5) Value	0.935					
349			Approxim	ate Shapiro \	VIIK P Value	0.315					
350				Lillietors T	est Statistic	0.113					
351				etors Critical	(0.05) Value	0.145					
352	Data appea	ar Normal at	(U.U5) Signif	icance Level							
353											

	А	В	С	D	E	F	G	Н	J	K	L
354			Gamma GOF	F Test Result	ls						
355											
356				Correlation (Coefficient R	0.983					
357				A-D 1	est Statistic	0.614					
358				A-D Critical	(0.05) Value	0.747					
359				K-S 1	Fest Statistic	0.129					
360				K-S Critical(0.05) Value	0.147					
361	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
362											
363		L	ognormal GC	F Test Resu	lits						
364											
365				Correlation (Coefficient R	0.981					
366			S	hapiro Wilk 1	est Statistic	0.952					
367			Shapiro	Wilk Critical	(0.05) Value	0.935					
368			Approxim	ate Shapiro	Wilk P Value	0.161					
369				Lilliefors I	est Statistic	0.143					
370			Lillie	efors Critical	(0.05) Value	0.145					
371	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
372		0.10									
373	600 Cobalt	0-10									
374											
375			Raw S	tatistics		· -					
376			Num	per of Valid C	bservations	15					
377	-		Numbe	r of Distinct C	bservations	14					
378					Minimum	1.8					
379					Maximum	6.8					
380				Mean	of Raw Data	3.58					
381			Standa	rd Deviation	of Raw Data	1.4/2					
382					Khat	6.759					
383					I heta hat	0.53					
384					Kstar	5.451					
385				() T	Theta star	0.657					
386		0	Mean	of Log Trans	formed Data	1.2					
387		Standa	ard Deviation	of Log Trans	formed Data	0.401					
388				Test							
389			Normal GOF	Test Result	S						
390				Correlation	De officient D	0.000					
391						0.902					
392			Shanira			0.92					
393			Δοριτογία	ate Shanire V		0.001					
394			Ahhioxim			0.210					
395			1.005			0.174					
396	Doto onno	r Normal -+			(0.05) value	0.22					
397	Data appea	ii inormai at	(u.us) signif	ICATICE LEVE	l						
398											

	А	В	С	D	E	F	G	Н	J	K	L
399			Gamma GOF	Test Result	ls						
400											
401				Correlation (Coefficient R	0.987					
402				A-D 1	est Statistic	0.306					
403				A-D Critical	(0.05) Value	0.738					
404				K-S 1	Fest Statistic	0.121					
405				K-S Critical(0.05) Value	0.222					
406	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
407											
408		L	ognormal GC	F Test Resu	lits						
409				Correlation	De officient D	0.096					
410				Correlation C		0.986					
411			Chamina			0.90					
412			Snapiro	vviik Critical		0.881					
413			Арргохіті			0.757					
414			1.102			0.114					
415	Data annos	ar Lognorma				0.22					
416	Data appea		ii al (0.00) Si								
417	600 BG4 C	obalt 0_12									
418											
419			Pow S	latietice							
420			Num	per of Valid (hearvations	37					
421			Number		bservations	34					
422			Number		Minimum	2 12					
423					Maximum	4.6					
424				Mean	of Raw Data	3.329					
425			Standa	rd Deviation	of Raw Data	0.727					
426			e tantaa		Khat	20.88					
427					Theta hat	0.159					
428					Kstar	19.2					
429					Theta star	0.173					
430			Mean	of Log Trans	formed Data	1.179					
431		Standa	ard Deviation	of Log Trans	formed Data	0.225					<u> </u>
432											
433			Normal GOF	Test Result	s						
435											
436				Correlation (Coefficient R	0.978					
437			S	hapiro Wilk 1	est Statistic	0.935					
438			Shapiro	Wilk Critical	(0.05) Value	0.936					
439			Approxim	ate Shapiro V	Wilk P Value	0.0428					
440				Lilliefors 7	est Statistic	0.106					
441			Lillie	efors Critical	(0.05) Value	0.144					
442	Data appea	ar Approxim	ate Normal a	t (0.05) Signi	ificance Leve	əl					
443											

	А	В	С	D	E	F	G	Н	J	K	L
444			Gamma GOF	- Test Result	IS						
445											
446				Correlation (Coefficient R	0.971					
447				A-D T	Fest Statistic	0.736					
448				A-D Critical	(0.05) Value	0.747					
449				K-S 1	est Statistic	0.117					
450				K-S Critical(0.05) Value	0.145					
451	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level						
452											
453		L	ognormal GC	F Test Resu	lits						
454											
455				Correlation (Coefficient R	0.976					
456			S	hapiro Wilk T	est Statistic	0.932					
457			Shapiro	Wilk Critical	(0.05) Value	0.936					
458			Approxim	ate Shapiro \	Wilk P Value	0.0338					
459				Lilliefors T	est Statistic	0.128					
460	_		Lillie	efors Critical	(0.05) Value	0.144					
461	Data appea	ar Approxim	ate_Lognorm	al at (0.05) S	Significance	Level					
462											
463	600 Coppe	r 0-10									
464											
465			Raw S	tatistics							
466			Numl	per of Valid C	Observations	15					
467			Numbe	r of Distinct C	bservations	15					
468					Minimum	2.2					
469					Maximum	10.4					
470				Mean	of Raw Data	4.84					
471			Standa	rd Deviation	of Raw Data	2.546					
472					Khat	4.258					
473					Theta hat	1.137					
474					Kstar	3.451					
475					Theta star	1.402					
476			Mean	of Log Trans	formed Data	1.455					
477		Standa	ard Deviation	of Log Trans	formed Data	0.505					
478											
479			Normal GOF	Test Result	S						
480											
481				Correlation (Coefficient R	0.939					
482			S	hapiro Wilk T	est Statistic	0.872					
483			Shapiro	Wilk Critical	(0.05) Value	0.881					
484			Approxim	ate Shapiro \	VIIK P Value	0.0422					
485				Lilliefors T	est Statistic	0.22					
486			Lillie	etors Critical	(0.05) Value	0.22					
487	Data not No	ormal at (0.0	05) Significan	ce Level							
488											

	А	В	С	D	E	F	G	Н	I	J	K	L
489			Gamma GOF	Test Result	ts							
490												
491				Correlation (Coefficient R	0.974						
492				A-D 1	est Statistic	0.585						
493				A-D Critical	(0.05) Value	0.74						
494				K-S 1	est Statistic	0.167						
495				K-S Critical(0.05) Value	0.222						
496	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level							
497												
498		L	ognormal GC	F Test Resu	llts							
499												
500				Correlation (Coefficient R	0.97						
501			S	hapiro Wilk I	est Statistic	0.924						
502			Shapiro	Wilk Critical	(0.05) Value	0.881						
503			Approxim	ate Shapiro \		0.283						
504						0.153						
505	Data anna			efors Critical	(0.05) Value	0.22						
506	Data appea	ar Lognorma	ai at (0.05) Sig	gnificance Le	evei							
507	000 504 0											
508	600 BG4 C	opper 0-12										
509			Daw 0									
510			Raw S									
511			Numi	per of Valid C	bservations	36						
512			Number	r of Distinct C	observations	35						
513					Mawimum	3.73						
514				Maaa		9.53						
515			Ctanda		of Raw Data	0.009						
516			Stanua		UI Raw Dala	12.0						
517						0.422						
518					Ketor	12 76						
519					Thota star	0.459						
520			Mean	of Log Trans	formed Data	1 732						
521		Standa			formed Data	0.271						
522		Stanua				0.271						
523			Normal GOF	Test Result	\$							
524				TOST ROSUL								
525				Correlation (Coefficient R	0,964						
526			S	hapiro Wilk T	est Statistic	0.913						
527			Shapiro	Wilk Critical	(0.05) Value	0.935						
528			Approxim	ate Shapiro \	Nilk P Value	0.00897						
529			r P	Lilliefors T	est Statistic	0.133						
530			Lillie	efors Critical	(0.05) Value	0.145						
531	Data appea	ar Approxim	ate Normal at	t (0.05) Siani	ficance Leve							
532				() 								
533												

	А	В	С	D	E	F	G	Н	J	K	L
534			Gamma GOF	Test Result	S						
535											
536				Correlation (Coefficient R	0.98					
537				A-D T	est Statistic	0.712					
538				A-D Critical	(0.05) Value	0.748					
539				K-S 1	est Statistic	0.123					
540				K-S Critical(0.05) Value	0.147					
541	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	cance Level						
542											
543		L	ognormal GC	F Test Resu	lts						
544											
545				Correlation (Coefficient R	0.979					
546			S	hapiro Wilk T	est Statistic	0.939					
547			Shapiro	Wilk Critical	(0.05) Value	0.935					
548			Approxim	ate Shapiro \	Wilk P Value	0.062					
549				Lilliefors T	est Statistic	0.112					
550			Lillie	efors Critical	(0.05) Value	0.145					
551	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
552											
553	600 Manga	nese 0-10									
554											
555			Raw S	tatistics							
556			Numl	per of Valid C	bservations	15					
557			Number	of Distinct C	bservations	13					
558					Minimum	102					
559					Maximum	325					
560				Mean	of Raw Data	175.9					
561			Standa	rd Deviation	of Raw Data	65.42					
562					Khat	8.6					
563					Theta hat	20.45					
564					Kstar	6.924					
565					Theta star	25.4					
566			Mean	of Log Trans	formed Data	5.11					
567		Standa	ard Deviation	of Log Trans	formed Data	0.35					
568											
569			Normal GOF	Test Result	S						
570											
571				Correlation (Coefficient R	0.943					
572			S	hapiro Wilk T	est Statistic	0.884					
573			Shapiro	Wilk Critical	(0.05) Value	0.881					
574			Approxim	ate Shapiro \	VIIK P Value	0.0611					
575				Lilliefors T	est Statistic	0.231					
576			Lillie	etors Critical	(0.05) Value	0.22					
577	Data appea	ar Approxim	ate Normal at	: (0.05) Signi	ficance Leve						
578											

	А	В	С	D	E	F	G	Н	J	K	L
579			Gamma GOF	- Test Result	IS						
580											
581				Correlation (Coefficient R	0.973					
582				A-D 1	est Statistic	0.579					
583				A-D Critical	(0.05) Value	0.738					
584				K-S 1	est Statistic	0.221					
585				K-S Critical(0.05) Value	0.222					
586	Data appea	ar Gamma D	Distributed at	(0.05) Signif	icance Level						
587											
588		L	ognormal GC	F Test Resu	lits						
589											
590				Correlation (Coefficient R	0.969					
591			S	hapiro Wilk 1	est Statistic	0.929					
592			Shapiro	Wilk Critical	(0.05) Value	0.881					
593			Approxim	ate Shapiro \	Wilk P Value	0.312					
594				Lilliefors 1	est Statistic	0.204					
595	_		Lillie	efors Critical	(0.05) Value	0.22					
596	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
597											
598	600 BG4 M	anganese ()-12								
599											
600			Raw S	tatistics							
601			Numl	per of Valid C	Observations	36					
602			Number	r of Distinct C	bservations	33					
603					Minimum	74					
604					Maximum	320					
605				Mean	of Raw Data	178.2					
606			Standa	rd Deviation	of Raw Data	61.62					
607					Khat	8.503					
608					I heta hat	20.96					
609					Kstar	/.813					
610				<u> </u>	I heta star	22.81					
611			Mean	of Log Trans	formed Data	5.123					
612		Standa	ard Deviation	of Log Trans	formed Data	0.358					
613			N 1005								
614			Normal GOF	l est Result	s						
615				0 1 1 1		0.00					
616					Loefficient R	0.98					
617			S Obseri			0.951					
618			Snapiro	oto Sharing '		0.935					
619			Approxim			0.148					
620			1			0.145					
621	Data arra i			eiors Critical	(0.05) Value	0.145					
622	Data appea	ir Approxim	ate Normal at	(0.05) Signi	TICANCE Leve)					
623											

	А	В	С	D	E	F	G	Н	J	K	L
624			Gamma GOF	- Test Result	IS						
625											
626				Correlation (Coefficient R	0.988					
627				A-D T	Fest Statistic	0.425					
628				A-D Critical	(0.05) Value	0.749					
629				K-S 1	est Statistic	0.125					
630				K-S Critical(0.05) Value	0.147					
631	Data appea	ar Gamma D	istributed at	(0.05) Signifi	icance Level						
632											
633		L	ognormal GC	DF Test Resu	lits						
634											
635				Correlation (Coefficient R	0.985					
636			S	hapiro Wilk T	est Statistic	0.962					
637			Shapiro	Wilk Critical	(0.05) Value	0.935					
638			Approxim	ate Shapiro \	Wilk P Value	0.326					
639				Lilliefors T	est Statistic	0.102					
640	_		Lillie	efors Critical	(0.05) Value	0.145					
641	Data appea	ar Lognorma	ll at (0.05) Sig	gnificance Le	evel						
642											
643	600 Mercur	γ 0-10									
644											
645			Raw S	tatistics							
646			Num	ber of Valid C	bservations	15					
647			Numbe	r of Distinct C	Observations	11					
648					Minimum	0.001					
649					Maximum	0.099					
650				Mean	of Raw Data	0.0155					
651			Standa	rd Deviation	of Raw Data	0.0268					
652					Khat	0.764					
653					Theta hat	0.0202					
654					Kstar	0.656					
655					Theta star	0.0236					
656			Mean	of Log Transt	formed Data	-4.951					
657		Standa	ard Deviation	of Log Transt	formed Data	1.152					
658											
659			Normal GOF	Test Result	s						
660											
661				Correlation (Coefficient R	0.71					
662			S	hapiro Wilk T	est Statistic	0.527					
663			Shapiro	Wilk Critical	(0.05) Value	0.881					
664			Approxim	ate Shapiro \	Wilk P Value	1.4244E-6					
665				Lilliefors T	est Statistic	0.418					
666			Lillie	efors Critical	(0.05) Value	0.22					
667	Data not No	ormal at (0.0	05) Significan	ce Level							
668											

	А	В	С	D	E	F	G	Н	J	K	L
669			Gamma GOF	F Test Result	ls						
670											
671				Correlation (Coefficient R	0.92					
672				A-D T	est Statistic	1.576					
673				A-D Critical	(0.05) Value	0.774					
674				K-S 1	est Statistic	0.314					
675				K-S Critical(0.05) Value	0.23					
676	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
677											
678		L	ognormal GC	F Test Resu	lits						
679											
680				Correlation (Coefficient R	0.944					
681			S	hapiro Wilk T	est Statistic	0.904					
682			Shapiro	Wilk Critical	(0.05) Value	0.881					
683			Approxim	ate Shapiro \	Wilk P Value	0.0914					
684				Lilliefors T	est Statistic	0.217					
685	_		Lillie	efors Critical	(0.05) Value	0.22					
686	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
687											
688	600 BG4 M	ercury 0-12									
689											
690			Raw S	tatistics							
691			Numl	per of Valid C	Observations	36					
692			Numbe	r of Distinct C	bservations	11					
693					Minimum	0.006					
694					Maximum	0.025					
695				Mean	of Raw Data	0.00897					
696			Standa	rd Deviation	of Raw Data	0.00517					
697					Khat	4.787					
698					I heta hat	0.00187					
699					Kstar	4.406					
700					I heta star	0.00204					
701			Mean	of Log Transf	formed Data	-4.822					
702		Standa	ard Deviation	of Log Trans	formed Data	0.427					
703			N 1005								
704			Normal GOF	l est Result	s						
705				0 1 1 1		0 700					
706						0.792					
707			S Ob and			0.628					
708			Snapiro	vviik Critical		0.935					
709			Approxim	ate Snapiro \		2.94/E-10					
710			1 :00			0.303					
711	Data				(0.05) Value	0.145					
712	Data not No	ormai at (0.0	uo) Significan	ce Level							
713											

	A	В	С	D	E	F	G	Н	J	K	L
714			Gamma GOF	Test Result	s						
715											
716				Correlation C	Coefficient R	0.887					
717				A-D T	est Statistic	4.493					
718				A-D Critical	(0.05) Value	0.751					
719				K-S T	est Statistic	0.259					
720				K-S Critical(0.05) Value	0.147					
721	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
722											
723		L	ognormal GO	F Test Resu	lts						
724											
725				Correlation C	Coefficient R	0.851					
726			S	hapiro Wilk T	est Statistic	0.716					
727			Shapiro	Wilk Critical	(0.05) Value	0.935					
728			Approxim	ate Shapiro V	Vilk P Value	2.7161E-8					
729				Lilliefors T	est Statistic	0.245					
730			Lillie	efors Critical	(0.05) Value	0.145					
731	Data not Lo	gnormal at	(0.05) Signifi	cance Level		I					
732											
733	Non-param	etric GOF T	est Results								
734											
735	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	f Significanc					
736											
737	600 Molybd	lenum 0-10									
738											
739			Raw St	tatistics							
740			Numb	per of Valid C	bservations	15					
741			Number	of Distinct C	bservations	7					
742					Minimum	0.4					
743					Maximum	3.2					
744				Mean	of Raw Data	0.887					
745			Standa	rd Deviation of	of Raw Data	0.784					
746					Khat	2.054					
747					Theta hat	0.432					
748					Kstar	1.688					
749					Theta star	0.525					
750			Mean	of Log Transf	ormed Data	-0.383					
751		Standa	ard Deviation of	of Log Transf	ormed Data	0.698					
752											
753			Normal GOF	Test Result	3						
754											
755				Correlation C	Coefficient R	0.824					
756			S	hapiro Wilk T	est Statistic	0.691					
757			Shapiro	Wilk Critical	(0.05) Value	0.881					
758			Approxim	ate Shapiro V	Vilk P Value	1.1009E-4					
759				Lilliefors T	est Statistic	0.289					
760			Lillie	efors Critical	(0.05) Value	0.22					
761	Data not No	ormal at (0.0)5) Significan	ce Level							
762											

	А	В	С	D	Е	F	G	Н	I	J	K	L
763			Gamma GOF	Test Result	s							
764												
765				Correlation C	Coefficient R	0.947						
766				A-D T	est Statistic	1.573						
767				A-D Critical	(0.05) Value	0.747						
768				K-S T	est Statistic	0.31						
769				K-S Critical(0.05) Value	0.224						
770	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
771												
772		L	ognormal GC	F Test Resu	lts							
773												
774				Correlation C	Coefficient R	0.885						
775			S	hapiro Wilk T	est Statistic	0.774						
776			Shapiro	Wilk Critical	(0.05) Value	0.881						
777			Approxim	ate Shapiro V	Vilk P Value	0.00163						
778				Lilliefors T	est Statistic	0.311						
779			Lillie	efors Critical	(0.05) Value	0.22						
780	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
781												
782	Non-param	etric GOF T	est Results									
783												
784	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	Significanc						
785												
786	600 BG4 M	olybdenum	0-12									
787												
788			Raw St	tatistics								
789			Num	per of Valid C	bservations	36						
790			Number	of Distinct C	bservations	11						
791					Minimum	0.2						
792	-				Maximum	1.9						
793				Mean	of Raw Data	0.661						
794			Standa	rd Deviation of	of Raw Data	0.428						
795					Khat	2.862						
796					Theta hat	0.231						
797					Kstar	2.642						
798					Theta star	0.25						
799			Mean	of Log Transf	ormed Data	-0.599						
800		Standa	ard Deviation	of Log Transf	ormed Data	0.614						
801												
802			Normal GOF	Test Result	S							
803												
804				Correlation C	Coefficient R	0.926						
805			S	hapiro Wilk T	est Statistic	0.853						
806			Shapiro	Wilk Critical	(0.05) Value	0.935						
807			Approxim	ate Shapiro V	Vilk P Value	1.1553E-4						
808				Lilliefors T	est Statistic	0.178						
809			Lillie	efors Critical	(0.05) Value	0.145						
810	Data not No	ormal at (0.0	05) Significan	ce Level								
811												

	A	В	C	D	E	F	G	Н	I	J	K	L
812			Gamma GOF	- Test Result	(S							
813												
814				Correlation (Coefficient R	0.983						
815				A-D	est Statistic	0.675						
816				A-D Critical	(0.05) Value	0.755						
817				K-S T	est Statistic	0.14						
818	_			K-S Critical	0.05) Value	0.148						
819	Data appea	ir Gamma I	Distributed at	(0.05) Signif	icance Level							
820					. Ia .							
821		L	ognormal GO	F Test Rest	lits							
822				O a ma la tí a m (D = = # := : = = + D	0.082						
823						0.963						
824			Chanira			0.95						
825			Approvim	oto Shoniro V		0.935						
826			Approxim			0.135						
827						0.145						
828	Data annoa		Lillit			0.145						
829	Data appea											
830		03 0-10										
831	000 1102/11	000-10										
832			Raw St	tatistics								
833			Num	her of Valid (hservations	15						
834			Number	r of Distinct (bservations	15						
835					Minimum	0.7						
836					Maximum	55.4						
837				Mean	of Raw Data	16.21						
838			Standa	rd Deviation	of Raw Data	20.26						
839					Khat	0.72						
040					Theta hat	22.53						
841					Kstar	0.62						
04Z					Theta star	26.14						
843			Mean	of Log Trans	formed Data	1.949						
845		Standa	ard Deviation	of Log Trans	formed Data	1.407						
846												
847			Normal GOF	Test Result	s							
848												
849				Correlation (Coefficient R	0.856						
850			S	hapiro Wilk	est Statistic	0.721						
851			Shapiro	Wilk Critical	(0.05) Value	0.881						
852			Approxim	ate Shapiro	Wilk P Value	3.3924E-4						
853				Lilliefors 7	est Statistic	0.342						
854			Lillie	efors Critical	(0.05) Value	0.22						
855	Data not No	ormal at (0.	05) Significan	ce Level								
856												

	А	В	С	D	E	F	G	Н	J	K	L
857			Gamma GOF	Test Result	S						
858											
859				Correlation (Coefficient R	0.933					
860				A-D T	est Statistic	0.819					
861				A-D Critical	(0.05) Value	0.777					
862				K-S 1	est Statistic	0.25					
863				K-S Critical(0.05) Value	0.231					
864	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
865											
866		L	ognormal GC	F Test Resu	llts						
867											
868				Correlation (Coefficient R	0.973					
869			S	hapiro Wilk T	est Statistic	0.932					
870			Shapiro	Wilk Critical	(0.05) Value	0.881					
871			Approxim	ate Shapiro \	Wilk P Value	0.356					
872				Lilliefors T	est Statistic	0.168					
873	_		Lillie	efors Critical	(0.05) Value	0.22					
874	Data appea	ar Lognorma	ıl at (0.05) Sig	gnificance Le	evel						
875											
876	600 BG4 N	O2/NO3 0-1	2								
877											
878			Raw S	tatistics							
879			Numl	per of Valid C	bservations	40					
880			Number	r of Distinct C	bservations	18					
881					Minimum	0.3					
882					Maximum	3.3					
883				Mean	of Raw Data	0.95					
884			Standa	rd Deviation	of Raw Data	0.784					
885					Khat	1.891					
886					Theta hat	0.502					
887					Kstar	1.766					
888					Theta star	0.538					
889			Mean	of Log Trans	ormed Data	-0.338					
890		Standa	ard Deviation	of Log Trans	formed Data	0.75					
891											
892			Normal GOF	Test Result	S						
893											
894				Correlation (coefficient R	0.897					
895			S	napiro Wilk T	est Statistic	0.799					
896			Shapiro	VVIIK Critical		0.94					
897			Approxim	ate Shapiro \	VIIK P Value	0.9488E-/					
898				Lillietors T	est Statistic	0.204					
899				etors Critical	(0.05) Value	0.139					
900	Data not No	ormai at (0.0	J5) Significan	ce Level							
901											

	A	В	С	D	E	F	G	Н	J	K	L
902			Gamma GOF	Test Result	s						
903											
904				Correlation C	Coefficient R	0.982					
905				A-D T	est Statistic	1.429					
906				A-D Critical	(0.05) Value	0.76					
907				K-S T	est Statistic	0.156					
908				K-S Critical(0.05) Value	0.141					
909	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
910											
911		L	ognormal GO	F Test Resu	lts						
912											
913				Correlation C	Coefficient R	0.961					
914			S	hapiro Wilk T	est Statistic	0.899					
915			Shapiro	Wilk Critical	(0.05) Value	0.94					
916			Approxim	ate Shapiro V	Vilk P Value	0.00153					
917				Lilliefors T	est Statistic	0.151					
918			Lillie	efors Critical	(0.05) Value	0.139					
919	Data not Lo	gnormal at	(0.05) Signifi	cance Level							
920											
921	Non-parame	etric GOF T	est Results								
922											
923	Data do not	follow a dis	scernible dist	ribution at (0	.05) Level of	Significance					
924											
925	600 Zinc 0- ⁻	10									
926											
927			Raw St	tatistics							
928			Numb	per of Valid C	bservations	15					
929			Number	r of Distinct C	bservations	15					
930					Minimum	15.8					
931					Maximum	43.7					
932				Mean	of Raw Data	23.89					
933			Standa	rd Deviation of	of Raw Data	8.72					
934					Khat	9.577					
935					Theta hat	2.494					
936					Kstar	7.706					
937					Theta star	3.1					
938			Mean	of Log Transf	ormed Data	3.12					
939		Standa	ard Deviation of	of Log Transf	ormed Data	0.325					
940											
941			Normal GOF	Test Result	S						
942											
943				Correlation C	Coefficient R	0.907					
944			S	hapiro Wilk T	est Statistic	0.817					
945			Shapiro	Wilk Critical	(0.05) Value	0.881					
946			Approxim	ate Shapiro V	Vilk P Value	0.00615					
947				Lilliefors T	est Statistic	0.265					
948			Lillie	efors Critical	(0.05) Value	0.22					
949	Data not No	ormal at (0.0	05) Significan	ce Level							
950											

	А	В	С	D	E	F	G	Н	J	K	L
951			Gamma GOF	- Test Result	IS						
952											
953				Correlation (Coefficient R	0.948					
954				A-D 1	est Statistic	0.839					
955				A-D Critical	(0.05) Value	0.737					
956				K-S 1	est Statistic	0.226					
957				K-S Critical(0.05) Value	0.222					
958	Data not Ga	amma Distri	ibuted at (0.0	5) Significan	ce Level						
959					-						
960		L	ognormal GC	F Test Resu	llts						
961				0		0.045					
962						0.945					
963			<u> </u>		est Statistic	0.882					
964			Shapiro	Wilk Critical	(0.05) Value	0.881					
965			Approxim	ate Shapiro V		0.0613					
966					est Statistic	0.204					
967	D.I.			efors Critical	(0.05) Value	0.22					
968	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
969											
970	600 BG4 Zi	Inc 0-12									
971											
972			Raw S	tatistics							
973			Numl	per of Valid C	bservations	36					
974			Number	r of Distinct C	bservations	32					
975					Minimum	12.7					
976					Maximum	44.8					
977				Mean	of Raw Data	27.5					
978			Standa	rd Deviation	of Raw Data	7.299					
979					Khat	13.57					
980					Theta hat	2.027					
981					Kstar	12.46					
982					Theta star	2.208					
983			Mean	of Log Trans	formed Data	3.277					
984		Standa	ard Deviation	of Log Trans	formed Data	0.285					
985											
986			Normal GOF	Test Result	S						
987											
988				Correlation (Coefficient R	0.992					
989			S	hapiro Wilk 1	est Statistic	0.981					
990			Shapiro	Wilk Critical	(0.05) Value	0.935					
991			Approxim	ate Shapiro	VIIK P Value	0.834					
992				Lilliefors 7	est Statistic	0.0865					
993			Lillie	etors Critical	(0.05) Value	0.145					
994	Data appea	ar Normal at	(0.05) Signif	icance Level							
995											

	A	В	С	D	E	F	G	Н	J	K	L
996			Gamma GOF	F Test Result	ls						
997											
998				Correlation (Coefficient R	0.987					
999				A-D 1	est Statistic	0.346					
1000				A-D Critical	(0.05) Value	0.748					
1001				K-S T	est Statistic	0.0982					
1002				K-S Critical(0.05) Value	0.147					
1003	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	icance Level						
1004											
1005		L	ognormal GC	F Test Resu	llts						
1006											
1007				Correlation (Coefficient R	0.979					
1008			S	hapiro Wilk T	est Statistic	0.956					
1009			Shapiro	Wilk Critical	(0.05) Value	0.935					
1010			Approxim	ate Shapiro \	Wilk P Value	0.219					
1011				Lilliefors T	est Statistic	0.0973					
1012			Lillie	efors Critical	(0.05) Value	0.145					
1013	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
1014											
1015	600 Magne	sium 0-10									
1016											
1017			Raw S	tatistics							
1018			Numl	per of Valid C	Observations	15					
1019			Number	r of Distinct C	Observations	15					
1020					Minimum	3460					
1021					Maximum	21800					
1022				Mean	of Raw Data	11429					
1023			Standa	rd Deviation	of Raw Data	5270					
1024					Khat	4.567					
1025					Theta hat	2503					
1026					Kstar	3.698					
1027					Theta star	3091					
1028			Mean	of Log Trans	formed Data	9.23					
1029		Standa	ard Deviation	of Log Trans	formed Data	0.519					
1030											
1031			Normal GOF	Test Result	s						
1032											
1033				Correlation (Coefficient R	0.985					
1034			S	hapiro Wilk T	est Statistic	0.964					
1035			Shapiro	Wilk Critical	(0.05) Value	0.881					
1036			Approxim	ate Shapiro \	Wilk P Value	0.78					
1037				Lilliefors T	est Statistic	0.124					
1038			Lillie	efors Critical	(0.05) Value	0.22					
1039	Data appea	ar Normal at	: (0.05) Signif	icance Level							
1040											

	А	В	С	D	E	F	G	Н	J	K	L
1041			Gamma GOF	F Test Result	S						
1042											
1043				Correlation (Coefficient R	0.988					
1044				A-D 1	est Statistic	0.207					
1045				A-D Critical	(0.05) Value	0.739					
1046				K-S 1	est Statistic	0.116					
1047				K-S Critical(0.05) Value	0.222					
1048	Data appea	ar Gamma D	Distributed at	(0.05) Signifi	cance Level						
1049											
1050		L	ognormal GC	OF Test Resu	llts						
1051						0.070					
1052				Correlation (Coefficient R	0.978					
1053			S	hapiro Wilk I	est Statistic	0.954					
1054			Shapiro	Wilk Critical	(0.05) Value	0.881					
1055			Approxim	ate Shapiro \	Wilk P Value	0.585					
1056				Lilliefors T	est Statistic	0.149					
1057	_		Lillie	efors Critical	(0.05) Value	0.22					
1058	Data appea	ar Lognorma	al at (0.05) Sig	gnificance Le	evel						
1059											
1060	600 BG4 M	lagnesium 0)-12								
1061											
1062			Raw S	tatistics							
1063			Numl	per of Valid C	bservations	36					
1064			Number	r of Distinct C	bservations	35					
1065					Minimum	4000					
1066					Maximum	18000					
1067				Mean	of Raw Data	8765					
1068			Standa	rd Deviation	of Raw Data	4012					
1069					Khat	5.165					
1070					Theta hat	1697					
1071					Kstar	4.753					
1072					Theta star	1844					
1073			Mean	of Log Trans	formed Data	8.979					
1074		Standa	ard Deviation	of Log Trans	formed Data	0.453					
1075											
1076			Normal GOF	Test Result	s						
1077											
1078				Correlation (Coefficient R	0.954					
1079			S	hapiro Wilk T	est Statistic	0.894					
1080			Shapiro	Wilk Critical	(0.05) Value	0.935					
1081			Approxim	ate Shapiro \	Wilk P Value	0.00218					
1082				Lilliefors T	est Statistic	0.2					
1083	_	-	Lillie	efors Critical	(0.05) Value	0.145					
1084	Data not No	ormal at (0.0	05) Significan	ce Level							
1085											

	А	В	С	D	E	F	G	Н	I	J	K	L
1086			Gamma GOF	Test Result	S							
1087												
1088				Correlation C	Coefficient R	0.978						
1089				A-D T	est Statistic	1.012						
1090				A-D Critical	(0.05) Value	0.75						
1091				K-S T	est Statistic	0.181						
1092				K-S Critical(0.05) Value	0.147						
1093	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
1094												
1095		L	ognormal GO	F Test Resu	llts							
1096												
1097				Correlation C	Coefficient R	0.973						
1098			S	hapiro Wilk T	est Statistic	0.925						
1099			Shapiro	Wilk Critical	(0.05) Value	0.935						
1100			Approxim	ate Shapiro V	Wilk P Value	0.0213						
1101				Lilliefors T	est Statistic	0.163						
1102			Lillie	efors Critical	(0.05) Value	0.145						
1103	Data not Lo	gnormal at	(0.05) Signifi	cance Level								
1104												
1105	Non-param	etric GOF T	est Results									
1106												
1107	Data do not	t follow a dis	scernible dist	ribution at (0	.05) Level of	f Significanc						
1108												
1109	600 Potass	ium 0-10										
1110												
1111			Raw St	tatistics								
1112			Numb	per of Valid C	bservations	15						
1113			Number	of Distinct C	bservations	14						
1114					Minimum	830						
1115	-				Maximum	3130						
1116				Mean	of Raw Data	1371						
1117			Standa	rd Deviation	of Raw Data	614.5						
1118					Khat	7.247						
1119					Theta hat	189.1						
1120					Kstar	5.842						
1121					Theta star	234.6						
1122			Mean	of Log Transf	formed Data	7.152						
1123		Standa	ard Deviation	of Log Transf	formed Data	0.364						
1124												
1125			Normal GOF	Test Result	S							
1126												
1127				Correlation C	Coefficient R	0.858						
1128			S	hapiro Wilk T	est Statistic	0.75						
1129			Shapiro	Wilk Critical	(0.05) Value	0.881						
1130			Approxim	ate Shapiro V	Wilk P Value	5.9501E-4						
1131				Lilliefors T	est Statistic	0.282						
1132	l		Lillie	efors Critical	(0.05) Value	0.22						
1132	Data not No	ormal at (0.0)5) Significan	ce Level		I						
1134												

	А	В	С	D	E	F	G	Н	I	J	K	L
1135			Gamma GOF	Test Result	S							
1136												
1137				Correlation C	Coefficient R	0.925						
1138				A-D T	est Statistic	1.094						
1139				A-D Critical	(0.05) Value	0.738						
1140				K-S T	est Statistic	0.264						
1141				K-S Critical(0.05) Value	0.222						
1142	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level							
1143												
1144		L	ognormal GO	F Test Resu	llts							
1145												
1146				Correlation C	Coefficient R	0.926						
1147			S	hapiro Wilk T	est Statistic	0.862						
1148			Shapiro	Wilk Critical	(0.05) Value	0.881						
1149			Approxim	ate Shapiro V	Wilk P Value	0.0242						
1150				Lilliefors T	est Statistic	0.244						
1151			Lillie	efors Critical	(0.05) Value	0.22						
1152	Data not Lo	ognormal at	(0.05) Signifi	cance Level								
1153												
1154	Non-param	etric GOF T	est Results									
1155												
1156	Data do not	t follow a dis	scernible disti	ribution at (0	.05) Level of	f Significanc	4					
1157												
1158	600 BG4 P	otassium 0-	12									
1159												
1160			Raw St	tatistics								
1161			Numb	per of Valid C	bservations	36						
1162			Number	of Distinct C	bservations	34						
1163					Minimum	920						
1164					Maximum	2770						
1165				Mean	of Raw Data	1801						
1166			Standa	rd Deviation	of Raw Data	539.8						
1167					Khat	10.73						
1168					Theta hat	167.9						
1169					Kstar	9.854						
1170					Theta star	182.8						
1171			Mean	of Log Transf	formed Data	7.449						
1172		Standa	ard Deviation of	of Log Transf	formed Data	0.32						
1173												
1174			Normal GOF	Test Result	S							
1175												
1176				Correlation C	Coefficient R	0.988						
1177			S	hapiro Wilk T	est Statistic	0.955						
1178			Shapiro	Wilk Critical	(0.05) Value	0.935						
1179			Approxim	ate Shapiro V	Wilk P Value	0.198						
1180				Lilliefors T	est Statistic	0.109						
1181			Lillie	efors Critical	(0.05) Value	0.145						
1182	Data appea	ar Normal at	(0.05) Signifi	icance Level		1						
1183												

	А	В	С	D	E	F	G	Н	J	K	L
1184			Gamma GOF	F Test Result	S						
1185											
1186				Correlation (Coefficient R	0.979					
1187				A-D T	est Statistic	0.409					
1188				A-D Critical	(0.05) Value	0.748					
1189				K-S 1	est Statistic	0.0904					
1190				K-S Critical(0.05) Value	0.147					
1191	Data appea	ar Gamma D	istributed at	(0.05) Signifi	cance Level						
1192											
1193		L	ognormal GC	DF Test Resu	llts						
1194											
1195				Correlation (Coefficient R	0.981					
1196			S	hapiro Wilk T	est Statistic	0.943					
1197			Shapiro	Wilk Critical	(0.05) Value	0.935					
1198			Approxim	ate Shapiro \	Nilk P Value	0.0833					
1199				Lilliefors T	est Statistic	0.0996					
1200			Lillie	efors Critical	(0.05) Value	0.145					
1201	Data appea	ar Lognorma	l at (0.05) Sig	gnificance Le	evel						
1202											
1203	600 Sodiun	n 0-10									
1204											
1205			Raw S	tatistics							
1206			Num	ber of Valid C	bservations)	15					
1207			Numbe	r of Distinct C	bservations)	14					
1208					Minimum	140					
1209					Maximum	12900					
1210				Mean	of Raw Data	1615					
1211			Standa	rd Deviation	of Raw Data	3352					
1212					Khat	0.585					
1213					Theta hat	2761					
1214					Kstar	0.512					
1215					Theta star	3152					
1216			Mean	of Log Transt	formed Data	6.327					
1217		Standa	ard Deviation	of Log Transt	formed Data	1.309					
1218											
1219			Normal GOF	Test Result	s						
1220											
1221				Correlation (Coefficient R	0.677					
1222			S	hapiro Wilk T	est Statistic	0.484					
1223			Shapiro	Wilk Critical	(0.05) Value	0.881					
1224			Approxim	ate Shapiro \	Wilk P Value	5.1804E-7					
1225				Lilliefors T	est Statistic	0.409					
1226			Lillie	efors Critical	(0.05) Value	0.22					
1227	Data not No	ormal at (0.0	05) Significan	ce Level							
1228											

	А	В	С	D	E	F	G	Н	J	K	L
1229			Gamma GOF	F Test Result	S						
1230											
1231				Correlation (Coefficient R	0.924					
1232				A-D 1	est Statistic	1.538					
1233				A-D Critical	(0.05) Value	0.787					
1234				K-S T	est Statistic	0.276					
1235				K-S Critical(0.05) Value	0.233					
1236	Data not Ga	amma Distri	buted at (0.0	5) Significan	ce Level						
1237											
1238		L	ognormal GC	F Test Resu	lits						
1239											
1240				Correlation (Coefficient R	0.938					
1241			S	hapiro Wilk T	est Statistic	0.878					
1242			Shapiro	Wilk Critical	(0.05) Value	0.881					
1243			Approxim	ate Shapiro \	Wilk P Value	0.0461					
1244				Lilliefors T	est Statistic	0.152					
1245			Lillie	efors Critical	(0.05) Value	0.22					
1246	Data appea	ar Approxim	ate_Lognorm	al at (0.05) S	Significance I	Level					
1247											
1248	600 BG4 S	odium 0-12									
1249											
1250			Raw S	tatistics							
1251			Numl	per of Valid C	bservations	36					
1252			Number	r of Distinct C	bservations	32					
1253					Minimum	30					
1254					Maximum	800					
1255				Mean	of Raw Data	286.6					
1256			Standa	rd Deviation	of Raw Data	210.5					
1257					Khat	1.732					
1258					Theta hat	165.4					
1259					Kstar	1.606					
1260					Theta star	178.4					
1261			Mean	of Log Transt	formed Data	5.342					
1262		Standa	ard Deviation	of Log Transt	formed Data	0.875					
1263											
1264			Normal GOF	Test Result	S						
1265											
1266				Correlation (Coefficient R	0.959					
1267			S	hapiro Wilk T	est Statistic	0.907					
1268			Shapiro	Wilk Critical	(0.05) Value	0.935					
1269			Approxim	ate Shapiro \	Wilk P Value	0.00554					
1270				Lilliefors T	est Statistic	0.155					
<u>12</u> 71			Lillie	efors Critical	(0.05) Value	0.145					
1272	Data not No	ormal at (0.0)5) Significan	ce Level							
1273											

	А	В	С	D	E	F	G	Н	J	K	L
1274		(Gamma GOF	Test Resul	ts						
1275											
1276				Correlation (Coefficient R	0.985					
1277				A-D	Fest Statistic	0.252					
1278				A-D Critical	(0.05) Value	0.763					
1279				K-S	Fest Statistic	0.0893					
1280				K-S Critical	0.05) Value	0.149					
1281	Data appea	r Gamma D	istributed at	(0.05) Signif	icance Level						
1282											
1283		Lo	ognormal GC	DF Test Resu	ults						
1284											
1285				Correlation (Coefficient R	0.983					
1286			S	hapiro Wilk	Fest Statistic	0.953					
1287			Shapiro	Wilk Critical	(0.05) Value	0.935					
1288			Approxim	ate Shapiro	Wilk P Value	0.172					
1289				Lilliefors	Fest Statistic	0.093					
1290			Lilli	efors Critical	(0.05) Value	0.145					
1291	Data appea	r Lognorma	l at (0.05) Si	gnificance Le	evel						

	А	В	С	D	E	F	G	Н		J	K	L	
1			t-Test	Sample 1 v	s Sample 2 (Comparison	for Uncenso	ored Full Da	ta Sets with	out NDs			
2													_
2		User Sele	cted Options										
3	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 12	:28:23 AM							
4			From File	UCL95 inpu	ut Revised.x	ls							
5		Fu	Il Precision	OFF		-							
6		Confidence	Coefficient	95%									
7	S.	ubstantial Diff	ference (S)	0.000									
8	00			Comple 1 M	loon <= Com	nla 2 Maan (Form 1)						
9	5		Hypotnesis		lean <= Sam	pie z Mean (Form I)						
10		Alternative I	Hypothesis	Sample 1 M	lean > the Sa	imple 2 Meai	1						
11								1			T	·	
12													
13	Sample 1 D	Data: 600 Be	ryllium 0-10										
14	Sample 2 D)ata: 600 BG	4 Beryllium (0-12									
15				-									
16												1	
17			F	Raw Statistic	s							1	_
18					Sample 1	Sample 2						1	
19		Numbe	er of Valid Ob	servations	15	36						1	
20		Number of	of Distinct Ob	servations	13	27							
20				Minimum	0.34	0.17							
21				Maximum	0.72	0.72							
22				Mean	0.45	0.471							
23				Median	0.43	0.48							
24				SD	0.103	0.119							
20			S	E of Mean	0.0265	0.0199							
20													
27		Sa	ample 1 vs Sa	ample 2 Two	o-Sample t-T	est							
28			•	•	•								
29	H0: Mean o	of Sample 1 -	Mean of Sa	mple 2 <= 0									
30					t-Test	Critical							
31	Method			DF	Value	t (0.05)	P-Value						_
32	Pooled (Fa	al Variance)	1	49	-0.607	1 677	0 727						
33	Welch-Satt	erthwaite (I In	equal Varian	30.3	-0.646	1 697	0 738						
34	Pooled SD	0 115		00.0	0.010		5.750					+	_
35	Conclusion	with Alpha =	0.050									+	-
36	Student + /			act HO Cono	luda Samala	1 <= Some	- 2					<u> </u>	
37													
38	Weich-Sat												
39													
40			Tast -//		larian								
41			lest of l	Equality of V	ariances								
42	2 Variance of Sample 1 0.0105											<u> </u>	
43			variance of	r Sample 1	0.0105				_			<u> </u>	
44			Variance of	r Sample 2	0.0142							<u> </u>	
45			1		1		_						
46	Numer	ator DF	Denomi	nator DF	F-Tes	t Value	P-Value						
47	3	35	1	4	1.:	350	0.559						
48	Conclusion	with Alpha =	0.05										
49	Two varian	ces appear t	o be equal										
50													

	А	В	C	D	E	F	G	Н		J	K		L
1			t-Test	Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Dat	a Sets witho	ut NDs			
2													
3		User Sele	cted Options										
4	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:	14:02 AM							-
5			From File	UCL95_inp	ut_Revised.>	xls							
6		Fu	Il Precision	OFF									
7		Confidence	Coefficient	95%									
	Si	ubstantial Diff	ference (S)	0.000									
ð	S	elected Null I	Hypothesis	Sample 1 M	lean <= Sarr	nole 2 Mean (Form 1)						
9		Alternative I	Hypothesis	Sample 1 M	lean > the Sa	ample 2 Mea	n						
10			.)pellieele	oumpio i n		ap.oou							
11												Τ	
12	Sample 1 [Data: 600 Co	balt 0-10										
13	Sample 2 [)ata: 600 BG	4 Cobalt 0-1	2								<u> </u>	
14				2									
15												<u> </u>	
16				Daw Statietic								+	
17			r		Samplo 1	Sample 2						<u> </u>	
18		Numbe	ar of Valid Oh	servations	15	37	1						
19		Number			14	3/							
20		Number		Minimum	14	0 10							
21				Movimum	1.0	2.12							
22				Maan	0.0	4.0							
23				Madian	3.58						<u> </u>		
24				wedian	3.5						<u> </u>		
25				SD	1.472	0.727							
26			5	E of Mean	0.38	0.12							
27		0.		omale O Tur	. Oomela t	Feet						<u> </u>	
28		36	imple 1 vs 5	ample 2 1 wo	5-Sample t-	lesi							
29	HO: Moon o	f Comple 1	Moon of So										
30	HU: Mean C	o sample 1 -			4 T 1	Oritical							
31					t-rest	Critical	D.V.I						
32					value	t (0.05)	P-value						
33	Poolea (Eq			50	0.825	1.070	0.207						
34	Welch-Satt	erthwaite (Un	lequal Varian	16.8	0.629	1.740	0.269						
35	Pooled SD	0.994	0.050										
36	Conclusion	with Alpha =	0.050			1 . 0	0						
37	Student t (Pooled) Test	.: Do Not Reje	ect HU, Cond	lude Sample	e 1 <= Sampl	e 2						
38	Welch-Sat	tterthwaite le	est: Do Not R	eject H0, Co	nclude Sam	ple 1 <= Sam	ple 2						
39													
40												<u> </u>	
41			l est of l	Equality of V	ariances								
42					0.40-							<u> </u>	
43			Variance o	t Sample 1	2.16/							<u> </u>	
44			Variance of	t Sample 2	0.529							<u> </u>	
45												<u> </u>	
46	Nume	rator DF	Denomi	nator DF	F-Tes	st Value	P-Value					<u> </u>	
47		14	3	86	4.	.101	0.001					<u> </u>	
48	Conclusion	with Alpha =	0.05									<u> </u>	
49	Two varian	ices are not e	equal										
50													

Co_BG4_pop2pop_Wil-Mann-Whit

	A B C D	E	F	G	Н		J	К	L
1	Wilcoxon-Mann-Whitney Sar	nple 1 vs Sa	ample 2 Com	parison Tes	t for Uncens	or Full Data	Sets without	NDs	
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.2	3/6/2023 1:	15:08 AM						
5	From File UCL95_inpl	ut_Revised.	xls						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Substantial Difference 0.000								
9	Selected Null Hypothesis Sample 1 M	lean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sample 1 M	lean/Median	> Sample 2	Mean/Media	n				
11									
12									
13	Sample 1 Data: 600 Cobalt 0-10								
14	Sample 2 Data: 600 BG4 Cobalt 0-12								
15									
16	Raw Statistic	s							
17		Sample 1	Sample 2						
18	Number of Valid Observations	15	37						
19	Number of Distinct Observations	14	34						
20	Minimum	1.8	2.12						
21	Maximum	6.8	4.6						
22	Mean	3.58	3.329						
23	Median	3.5	3.47						
24	SD	1.472	0.727						
25	SE of Mean	0.38	0.12						
26									
27	Wilcoxon-Mann-Whitney	(WMW) Te	st						
28									
29	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample 2	2						
30									
31	Sample 1 Rank Sum W-Stat	398.5							
32	Standardized WMW U-Stat	0.0101							
33	Mean (U)	277.5							
34	SD(U) - Adj ties	49.5							
35	Approximate U-Stat Critical Value (0.05)	1.645							
36	P-Value (Adjusted for Ties)	0.496							
37									
38	Conclusion with Alpha = 0.05								
39	Do Not Reject H0, Conclude Sample 1 <= Sa	mple 2							
40	P-Value >= alpha (0.05)								
41									

Cr_BG4_pop2pop_Wil-Mann-Whit

			F	F	G	н	I		ĸ	1
1	Wilcoxon-Mann-Whitne	-∕ ∋y Sam	ple 1 vs Sa	mple 2 Com	parison Test	for Uncenso	or Full Data	Sets without		
2										
3	User Selected Options									
4	Date/Time of Computation ProUC	CL 5.2 3	3/6/2023 12	:33:49 AM						
5	From File UCL9	5_input	_Revised.>	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000									
9	Selected Null Hypothesis Samp	le 1 Me	an/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Samp	le 1 Me	an/Median	> Sample 2 I	Mean/Mediar	ı				
11	· · · ·									
12										
13	Sample 1 Data: 600 Chromium 0-10									
14	Sample 2 Data: 600 BG4 Chromium 0-12									
15										
16	Raw St	tatistics	;							
17		ę	Sample 1	Sample 2						
18	Number of Valid Observation	ons	15	36						
19	Number of Distinct Observation	ons	14	36						
20	Minim	num	4.88	3.44						
21	Maxim	num	16.7	9.8						
22	Me	ean	8.633	6.296						
23	Med	dian	7.2	6.6						
24		SD	3.716	1.607						
25	SE of Me	ean	0.959	0.268						
26										
27	Wilcoxon-Mann-Wi	hitney (WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/M	ledian o	of Sample 2	2						
30				1	I					
31	Sample 1 Rank Sum V	V-Stat	492							
32	Standardized WMW L	U-Stat	2.098							
33	Mea	an (U)	270							
34	SD(U) - A	dj ties	48.37							
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted for	r Ties)	0.0179							
37										
38	Conclusion with Alpha = 0.05									
39	Reject H0, Conclude Sample 1 > Sampl	le 2								
40	P-Value < alpha (0.05)									
41										

Cu_BG4_pop2pop_Wil-Mann-Whit

	A B C I	D	E	F	G	Н	I	J	K	L
1	Wilcoxon-Mann-Whitne	ey Sam	ple 1 vs Sa	mple 2 Com	parison Tesi	for Uncens	or Full Data	Sets without	NDs	
2										
3	User Selected Options									
4	Date/Time of Computation ProU	CL 5.2 3	3/6/2023 12	:35:27 AM						
5	From File UCL9	95_input	_Revised.x	ds						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Substantial Difference 0.000)								
9	Selected Null Hypothesis Samp	ole 1 Me	an/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Samp	ole 1 Me	an/Median	> Sample 2 I	Mean/Mediar	ı				
11										
12										
13	Sample 1 Data: 600 Copper 0-10									
14	Sample 2 Data: 600 BG4 Copper 0-12									
15										
16	Raw S	tatistics	;							
17		5	Sample 1	Sample 2						
18	Number of Valid Observati	ions	15	36						
19	Number of Distinct Observati	ions	15	35						
20	Minim	num	2.2	3.73						
21	Maxim	num	10.4	9.53						
22	М	ean	4.84	5.859						
23	Med	dian	4	5.675						
24		SD	2.546	1.641						
25	SE of M	ean	0.657	0.274						
26										
27	Wilcoxon-Mann-W	'hitney (WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Mean/W	ledian c	of Sample 2	2						
30										
31	Sample 1 Rank Sum V	N-Stat	287							
32	Standardized WMW	U-Stat	-2.14							
33	Me	an (U)	270							
34	SD(U) - A	dj ties	48.37							
35	Approximate U-Stat Critical Value	(0.05)	1.645							
36	P-Value (Adjusted for	r Ties)	0.984							
37		I								
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sample 1	<= Sam	ple 2							
40	P-Value >= alpha (0.05)									
41										

	А	В	С	D	E	F	G	Н		J	К	L
1		<u> </u>	Gehan S	Sample 1 vs S	Sample 2 Co	omparison Hy	pothesis T	est for Data S	Sets with No	n-Detects		_
2												
2		User Sele	ected Options	6								
1	Da	te/Time of C	Computation	ProUCL 5.2	3/6/2023 12	::38:15 AM						
5			From File	UCL95_inpt	ut_Revised.>	ds						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	S	elected Null	Hypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Med	ian (Form 1)				
9		Alternative	Hypothesis	Sample 1 M	lean/Median	> Sample 2 M	Mean/Media	in				
10				1								
11												
12	Sample 1 [Data: 600 M	lercury 0-10									
13	Sample 2 [Data: 600 B	G4 Mercury 0)-12								
14												
15				Raw Statistic	s							
16					Sample 1	Sample 2						
17			Number of	Valid Data	15	36						
18			Number of No	on-Detects	1	17						
19			Number of D	etect Data	14	19						
20			Minimum N	Ion-Detect	0.001	0.006						
21			Maximum N	Ion-Detect	0.001	0.006						
22			Percent N	on-detects	6.67%	47.22%						
23			Minim	um Detect	0.002	0.007						
24			Maxim	um Detect	0.099	0.025						
25			Mean	of Detects	0.0165	0.0116						
26			Median	of Detects	0.007	0.009						
27			SD	of Detects	0.0274	0.00602						
28				KM Mean	0.0155	0.00897						
29				KM SD	0.0258	0.0051						
30												
31			Sample 1	vs Sample 2	Gehan Test							
32												
33	H0: Mean/I	Median of S	ample 1 <= N	/lean/Median	of backgrou	Ind						
34												
35			Gehan	z Test Value	0.0109							
36			Cr	itical z (0.05)	1.645							
37				P-Value	0.496							
38												
39	Conclusion	with Alpha	= 0.05									
40	Do Not F	Reject H0, C	Conclude San	nple 1 <= Sai	mple 2							
41	P-Value	>= alpha (0).05)									
42												

		D	-		0					
-	Tarone-Wai	re Sample 1	ı⊏ vs Sample 2	Comparisor	G Hypothesis	⊓ Test for Da	ta Sets with	Non-Detects	<u> </u>	L
1		-	•	•						
2	User Selected Options	;								
3	Date/Time of Computation	ProUCL 5.2	3/6/2023 2:0	00:42 AM						
4	From File	UCL95_inpt	ut_Revised.>	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
, 8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 M	/lean/Mediar	1				
10										
11										
12	Sample 1 Data: 600 Mercury 0-10									
13	Sample 2 Data: 600 BG4 Mercury 0	-12								
14										
15		Raw Statistic	s							
16			Sample 1	Sample 2						
17	Number of	Valid Data	15	36						
18	Number of No	on-Detects	1	17						
19	Number	of Detects	14	19						
20	Minimum N	Ion-Detect	0.001	0.006						
21	Maximum N	Ion-Detect	0.001	0.006						
22	Percent N	on-detects	6.67%	47.22%						
23	Minim	um Detect	0.002	0.007						
24	Maxim	um Detect	0.099	0.025						
25	Mean	of Detects	0.0165	0.0116						
26	Median	of Detects	0.007	0.009						
27	SD	of Detects	0.0274	0.00602						
28		KM Mean	0.0155	0.00897						
29		KM SD	0.0258	0.0051						
30										
31	Sample 1 vs S	Sample 2 Tar	one-Ware T	est						
32										
33	H0: Mean/Median of Sample 1 <= M	lean/Median	of Sample 2	2						
34		<u></u>	0.1.10							
35	7.0.0.1	TW Statistic	0.148							
36	I W Critical	Value (0.05)	1.645							
37		P-Value	0.441							
38	Conclusion with Alaka COF									
39	Conclusion with Alpha = 0.05	ania 1 4- 0	male 0							
40	DO NOT REJECT HU, CONCLUDE San	npie i <= Sar	TIPIE 2							
41	P-value >= alpha (0.05)									
42										

$K_BG4_pop2pop_Wil-Mann-Whit$

	A B C	П	F	F	G	Ц	1	1	ĸ	
1	Wilcoxon-Mann-V	Whitney Sam	nple 1 vs Sa	mple 2 Com	parison Test	t for Uncense	or Full Data	Sets without	NDs	
2										
2	User Selected Options									
1	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	:48:02 AM						
5	From File	UCL95_inpu	It_Revised.x	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
, 8	Substantial Difference	0.000								
9	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 I	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Potassium 0-10)								
14	Sample 2 Data: 600 BG4 Potassium	n 0-12								
15										
16	F	Raw Statistic	s							
17			Sample 1	Sample 2						
18	Number of Valid Obs	servations	15	36						
19	Number of Distinct Obs	servations	14	34						
20		Minimum	830	920						
21		Maximum	3130	2770						
22		Mean	1371	1801						
23		Median	1110	1795						
24		SD	614.5	539.8						
25	SI	E of Mean	158.7	89.96						
26										
27	Wilcoxon-Ma	ann-Whitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= M	lean/Median	of Sample 2	2						
30	A 1 1 - 1	<u> </u>		1	[ļ
31	Sample 1 Rank	Sum W-Stat	259							
32	Standardized V	VMW U-Stat	-2.719							
33		Mean (U)	270							
34	SD((U) - Adj ties	48.37							
35	Approximate U-Stat Critical	Value (0.05)	1.645							
36	P-Value (Adjus	sted for Ties)	0.997							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sam	pie 1 <= Sar	nple 2							
40	P-Value >= alpha (0.05)									
41										

Mg_BG4_pop2pop_Wil-Mann-Whit

	A B	С	D	E	F	G	Н		J	K	L
1		t-Tes	t Sample 1 v	s Sample 2	Comparison	for Uncenso	red Full Dat	ta Sets with	out NDs		
2											
3	User S	Selected Options	5								
4	Date/Time of	of Computation	ProUCL 5.2	3/6/2023 12	2:36:55 AM						
5		From File	UCL95_inp	ut_Revised.>	ds						
6		Full Precision	OFF								
7	Confide	nce Coefficient	95%								
8	Substantia	Difference (S)	0.000								
9	Selected N	Iull Hypothesis	Sample 1 N	lean <= Sam	ple 2 Mean (Form 1)					
10	Alternat	ive Hypothesis	Sample 1 N	lean > the Sa	ample 2 Mea	n					
11											
12											
13	Sample 1 Data: 600	Manganese 0-	10								
14	Sample 2 Data: 600	BG4 Mangane	se 0-12							-	
15											
16											
17			Raw Statistic	s						1	
18				Sample 1	Sample 2						
19	Nu	mber of Valid Ol	oservations	15	36						
20	Numl	per of Distinct Ob	oservations	13	33						
21			Minimum	102	74						
22			Maximum	325	320						
23			Mean	175.9	178.2						
24			Median	142	156.5						
25			SD	65.42	61.62						
26		Ş	SE of Mean	16.89	10.27						
27											
28		Sample 1 vs S	ample 2 Two	o-Sample t-1	ſest						
29										-	
30	H0: Mean of Sample	e 1 - Mean of Sa	ample 2 <= 0								
31				t-Test	Critical						
32	Method		DF	Value	t (0.05)	P-Value					
33	Pooled (Equal Varia	nce)	49	-0.122	1.677	0.548					
34	Welch-Satterthwaite	(Unequal Variar	n 24.9	-0.119	1.708	0.547					
35	Pooled SD 62.728										
36	Conclusion with Alph	na = 0.050									
37	Student t (Pooled)	Test: Do Not Rej	ect H0, Conc	lude Sample	e 1 <= Sample	e 2					
38	Welch-Satterthwait	e Test: Do Not F	Reject H0, Co	nclude Sam	ole 1 <= Sam	ple 2					
39											
40											
41		Test of	Equality of V	ariances							
42											
43		Variance o	of Sample 1	4280						+	
44		Variance o	of Sample 2	3797						1	<u> </u>
45				1	1	1				+	
46	Numerator DF	Denom	inator DF	F-Tes	t Value	P-Value				+	+
47	14		35	1.	127	0.740				+	
48	Conclusion with Alph	na = 0.05		1		1				+	+
40	Two variances appe	ear to be equal								+	+
50										+	+
Mn_BG4_pop2pop_Wil-Mann-Whit

				Г	C			1	K	
1	Wilcoxon-Mann-W	/hitney Sarr	 ple 1 vs Sa	I F Imple 2 Com	parison Test	t for Uncens	or Full Data	Sets without	NDs	Ĺ
- I - 2		-	-	•	-					
∠ 3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.2	3/6/2023 12	::37:34 AM						
5	From File	JCL95_inpu	t_Revised.x	ds						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Substantial Difference	0.000								
9	Selected Null Hypothesis	Sample 1 Me	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis	Sample 1 Me	ean/Median	> Sample 2	Mean/Mediar	า				
11										
12										
13	Sample 1 Data: 600 Manganese 0-10)								
14	Sample 2 Data: 600 BG4 Manganese	9-12								
15										
16	Ra	aw Statistic	S							
17			Sample 1	Sample 2						
18	Number of Valid Obse	ervations	15	36						
19	Number of Distinct Obse	ervations	13	33						
20	1	Minimum	102	74						
21	N	laximum	325	320						
22		Mean	175.9	178.2						
23		Median	142	156.5						
24		SD	65.42	61.62						
25	SE	of Mean	16.89	10.27						
26										
27	Wilcoxon-Mar	nn-Whitney	(WMW) Tes	st						
28										
29	H0: Mean/Median of Sample 1 <= Me	an/Median	of Sample 2	2						
30										
31	Sample 1 Rank S	Sum W-Stat	366.5							
32	Standardized W	MW U-Stat	-0.496							
33		Mean (U)	270							
34	SD(L	J) - Adj ties	48.37							
35	Approximate U-Stat Critical V	'alue (0.05)	1.645							
36	P-Value (Adjuste	ed for Ties)	0.69							
37										
38	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Samp									
40	P-Value >= alpha (0.05)	P-Value >= alpha (0.05)								
41										

Mo_BG4_pop2pop_Gehan

-								-		
	A B C Geban Samo	D la 1 vs 9	E Sample 2 Cr	F F	G Vnothesis Te	H et for Data S	 Sets with No.	J n-Detects	K	L
1				ompanson n	ypoulesis re			-Delecia		
2	User Selected Options									
3	Date/Time of Computation Prol		3/6/2023 11	0.30.20 AM						
4		95 inn								
5	Full Precision OFF	-90_mpt	ut_iteviseu.	×13						
6	Confidence Coefficient 95%	<u>,</u>								
7	Selected Null Hypothesis	, nnla 1 M	lean/Median	<= Sample (Mean/Media	an (Form 1)				
8	Alternative Hypothesis San		lean/Median	\sim Sample 2	Mean/Mediar					
9						•				
10										
11	Sample 1 Data: 600 Molybdenum 0-10									
12	Sample 2 Data: 600 BG4 Molybdenum 0	-12								
13										
14	Baw	Statistic	s							
15			Sample 1	Sample 2						
10	Number of Valid	Data	15	36						
12	Number of Non-De	etects	7	0						
10	Number of Detect	Data	8	36						
20	Minimum Non-D	etect	0.4	N/A						
21	Maximum Non-D	etect	0.4	N/A						
22	Percent Non-de	etects	46.67%	0.00%						
23	Minimum D	etect	0.4	0.2						
24	Maximum D	etect	3.2	1.9						
25	Mean of De	etects	1.313	0.661						
26	Median of De	etects	1.1	0.55						
27	SD of De	etects	0.885	0.428						
28	KMI	Mean	0.887	0.661						
29	KI	MSD	0.757	0.428						
30										
31	Sample 1 vs Sa	mple 2	Gehan Test	t						
32										
33	H0: Mean/Median of Sample 1 <= Mean/	Median	of backgrou	und						
34			1		1					
35	Gehan z Tes	st Value	-0.242							
36	Critical	z (0.05)	1.645							
37	I	P-Value	0.596							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1	ı <= Saı	mple 2							
41	P-value >= alpha (0.05)									
42										

Mo_BG4_pop2pop_Tarone-Ware

				_	-		0				14	г.,
	A	В	C Tarone-War	e Sample 1 v	l ⊢ vs Sample 2	Comparisor	G Hypothesis	H Test for Da	ta Sets with	Non-Detects	K S	L
1											-	
2		Lisor Solor	ted Ontions									
3	Dat	to/Time of Co		DrollCL 5.2	2/6/2022 24	10.42 AM						
4	Dal			FIDUCE 5.2	3/0/2023 2.							
5		E.J.			ul_Revised.	us						
6		Fu										
7		Confidence		95%				· (=)				
8	Se	elected Null F	lypothesis	Sample 1 M	lean/Median	<= Sample 2	Mean/Media	in (Form 1)				
9		Alternative F	lypothesis	Sample 1 M	lean/Median	> Sample 2 I	Mean/Median					
10										1	1	1
11												
12	Sample 1 D	oata: 600 Mo	lybdenum 0-	-10								
13	Sample 2 D)ata: 600 BG	4 Molybden	um 0-12								
14												
15			F	Raw Statistic	s							
16					Sample 1	Sample 2						
17			Number of V	Valid Data	15	36						
18		N	lumber of No	on-Detects	7	0						
19			Number	of Detects	8	36						
20			Minimum N	on-Detect	0.4	N/A						
21			Maximum N	on-Detect	0.4	N/A						
22			Percent No	on-detects	46.67%	0.00%						
23			Minim	um Detect	0.4	0.2						
24			Maxim	um Detect	3.2	1.9						
25			Mean	of Detects	1.313	0.661						
26			Median	of Detects	1.1	0.55						
27			SD	of Detects	0.885	0.428						
28				KM Mean	0.887	0.661						
29				KM SD	0.757	0.428						
30												
31		Sa	ample 1 vs S	ample 2 Tar	one-Ware T	est						
32												
33	H0: Mean/M	ledian of Sa	mple 1 <= M	lean/Median	of Sample 2	2						
34												
35				TW Statistic	-0.375							
36			TW Critical	Value (0.05)	1.645							
37				P-Value	0.646							
38												
39	Conclusion	with Alpha =	= 0.05									
40	Do Not Reject H0, Conclude Sample 1 <= Sample 2											
41	P-Value >	>= alpha (0.0	05)									
42												

		Α		В	С	D	F	F	G	Н			к	1
1	,		1	<u> </u>	Wilcoxon-I	Mann-Whitney	Sample 1 v	vs Sample 2	Comparison	Test for Da	a Sets with	Non-Detects		-
2														
3			U	ser Sele	cted Option	s								
4		Da	ite/Ti	me of C	omputation	ProUCL 5.2	3/6/2023 12	::40:28 AM						
5					From File	UCL95_inpu	t_Revised.>	ds						
6				Fu	II Precision	OFF								
7			Cor	nfidence	Coefficient	95%								
8		S	elect	ed Null	Hypothesis	Sample 1 Me	ean/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9			Alte	ernative	Hypothesis	Sample 1 Me	ean/Median	> Sample 2	Mean/Median	1				
10											I	1	I	I
11					<u> </u>									
12	Samp	ole 1 E	Data	600 Mc	olybdenum (0-10								
13	Samp	ole 2 L	Jata	600 BC	i4 Molybder	num 0-12								
14						Daw Otatiatia								
15						Raw Statistics	Somela 1	Sample 2						
16					Number of	Valid Data		Sample 2						
17					Number of N	valid Data	15	30						
18				I		OII-Delects	2	36						
19					Minimum I		0.4	50 N/A						
20					Maximum I	Non-Detect	0.4	N/A						
21					Percent N	lon-detects	46.67%	0.00%						
22					Minin	num Detect	0.4	0.2						
23					Maxin	num Detect	3.2	1.9						
24					Mean	of Detects	1.313	0.661						
25					Median	of Detects	1.1	0.55						
20					SD	of Detects	0.885	0.428						
28														
29					Wilcoxon-M	lann-Whitney	(WMW) Te	st						
30														
31	H0: N	/lean/l	Vedi	an of Sa	ample 1 <= I	Mean/Median (of Sample 2	2						
32														
33				Sa	mple 1 Ranl	K Sum W-Stat	388.5							
34				S	tandardized	WMW U-Stat	-0.0432							
35						Mean (U)	270							
36					SI	D(U) - Adj ties	48.3							
37		Ap	pro	timate U	-Stat Critica	l Value (0.05)	1.645							
38				P	-Value (Adju	sted for Ties)	0.517							
39														
40	Conc	lusion	ı witl	n Alpha	= 0.05									
41	Do Not Reject H0, Conclude Sample 1 <= Sample 2													
42	P-\	Value	>= e	lpha (0.	05)									
43														

Na_BG4_pop2pop_Wil-Mann-Whit

	A B C	D	E	F	G	Н			J	К	L
1	Wilcoxon-Mann-W	hitney Sam	nple 1 vs Sa	mple 2 Com	parison Te	est for Un	censor	Full Data	Sets without	NDs	
2											
3	User Selected Options										
4	Date/Time of Computation P	ProUCL 5.2	3/6/2023 12	::49:32 AM							
5	From File U	JCL95_inpu	t_Revised.x	ds							
6	Full Precision C	DFF									
7	Confidence Coefficient 9	95%									
8	Substantial Difference 0	0.000									
9	Selected Null Hypothesis S	Sample 1 Me	ean/Median	<= Sample 2	2 Mean/Me	dian (Forr	m 1)				
10	Alternative Hypothesis S	Sample 1 Me	ean/Median	> Sample 2	Mean/Med	ian					
11											
12											
13	Sample 1 Data: 600 Sodium 0-10										
14	Sample 2 Data: 600 BG4 Sodium 0-12	2									
15											
16	Ra	w Statistic	S								
17			Sample 1	Sample 2							
18	Number of Valid Obse	ervations	15	36							
19	Number of Distinct Obse	ervations	14	32							
20	N	<i>l</i> inimum	140	30							
21	М	laximum	12900	800							
22		Mean	1615	286.6							
23		Median	580	217.5							
24		SD	3352	210.5							
25	SE	of Mean	865.5	35.09							
26											
27	Wilcoxon-Man	n-Whitney	(WMW) Tes	st							
28											
29	H0: Mean/Median of Sample 1 <= Mea	an/Median	of Sample 2	2							
30				1	-						
31	Sample 1 Rank S	um W-Stat	510.5								
32	Standardized WM	MW U-Stat	2.482								
33		Mean (U)	270								
34	SD(U	J) - Adj ties	48.36								
35	Approximate U-Stat Critical Va	alue (0.05)	1.645								
36	P-Value (Adjuste	ed for Ties)	0.00654								
37											
38	Conclusion with Alpha = 0.05	-									
39	Reject H0, Conclude Sample 1 > Sa	ample 2									
40	P-Value < alpha (0.05)										
41											

	А	В	С	D	E	F	G	Н	I	J	K	L
1			Wilcoxon-M	ann-Whitney	Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects	5	
2												
3		User Selec	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 12	2:42:41 AM						
5			From File	UCL95_inpu	ut_Revised.>	ds						
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Se	elected Null H	lypothesis	Sample 1 M	ean/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9		Alternative H	lypothesis	Sample 1 M	ean/Median	> Sample 2	Mean/Mediar	ו				
10												
11												
12	Sample 1 D	ata: 600 NO	2/NO3 0-10									
13	Sample 2 D	ata: 600 BG	4 NO2/NO3	0-12								
14												
15			F	Raw Statistic	s	1						
16					Sample 1	Sample 2						
17			Number of \	/alid Data	15	40						
18		N	lumber of No	n-Detects	0	7						
19		١	Number of De	etect Data	15	33						
20			Minimum N	on-Detect	N/A	0.3						
21			Maximum N	on-Detect	N/A	0.3						
22			Percent No	on-detects	0.00%	17.50%						
23			Minimu	um Detect	0.7	0.3						
24			Maximu	um Detect	55.4	3.3						
25			Mean	of Detects	16.21	1.088						
26			Median	of Detects	5.5	0.8						
27			SD o	of Detects	20.26	0.799						
28												
29			Wilcoxon-Ma	nn-Whitney	(WMW) Te	st						
30												
31	HU: Mean/N	iedian of Sa	mple 1 <= M	ean/Median	of Sample 2	2						
32		-		0	600		1					
33		Sar	nple 1 Rank	Sum W-Stat	683							
34		Sta	andardized V	VIVIVV U-Stat	4.984							
35				Mean (U)	300							
36	۸		SD((U) - Adj ties	52.88							
37	Ар	proximate U-		$\frac{1}{10000000000000000000000000000000000$	1.045							
38		P-	value (Adjus	ted for TIES)	3.110/E-/							
39	Conducian	with Alaba -	- 0.05									
40	Delect		- U.UO	Somela 0								
41		v, Conclude	sample i > :	Sample 2								
42	P-value	< aipna (0.05)									
43												

Zn_BG4_pop2pop_Wil-Mann-Whit

	A B C D	F	F	G	Н		J	к	
1	Wilcoxon-Mann-Whitney Sar	nple 1 vs Sa	ample 2 Com	parison Test	for Uncens	or Full Data	Sets without	NDs	
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.2	3/6/2023 12	2:44:58 AM						
5	From File UCL95_inpu	ut_Revised.>	xls						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Substantial Difference 0.000								
9	Selected Null Hypothesis Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
10	Alternative Hypothesis Sample 1 M	ean/Median	> Sample 2	Mean/Mediar	ı				
11									
12									
13	Sample 1 Data: 600 Zinc 0-10								
14	Sample 2 Data: 600 BG4 Zinc 0-12								
15									
16	Raw Statistic	s							
17		Sample 1	Sample 2						
18	Number of Valid Observations	15	36						
19	Number of Distinct Observations	15	32						
20	Minimum	15.8	12.7						
21	Maximum	43.7	44.8						
22	Mean	23.89	27.5						
23	Median	22.7	27.05						
24	SD	8.72	7.299						
25	SE of Mean	2.251	1.217						
26									
27	Wilcoxon-Mann-Whitney	(WMW) Te	st						
28									
29	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample 2	2						
30		000							
31	Sample 1 Rank Sum W-Stat	300							
32	Standardized WMW U-Stat	-1.8/1							
33	Mean (U)	270							
34	SD(U) - Adj ties	48.37							
35	Approximate U-Stat Critical Value (0.05)	1.645							
36	P-Value (Adjusted for Lies)	0.969							
37									
38	Conclusion with Alpha = 0.05	male 0							
39	Do Not Reject HU, Conclude Sample 1 <= Sal	TIPIE 2							
40	P-value >= alpha (0.05)								
41									

	Α	В	С	D	E	F	G	Н		J	K	L
1					UCL Statis	tics for Data	a Sets with N	lon-Detects				
2												
3		User Sele	cted Options	i								
4	Dat	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:4	3:03 PM						
5			From File	UCL95_inpu	ut_Revised.x	ls						
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Tran	ns-1,2-Dichlo	proethene									
11												
12						General	Statistics					
13			Total	Number of C	bservations	16			Numbe	r of Distinct (Observations	14
14				Numbe	er of Detects	5				Number of	Non-Detects	11
15			N	umber of Dist	tinct Detects	5			Numb	er of Distinct	Non-Detects	9
16				Mini	mum Detect	0.51				Minimum	n Non-Detect	0.27
17				Maxi	mum Detect	2.2				Maximum	n Non-Detect	7.3
18				Varia	nce Detects	0.592				Percent	Non-Detects	68.75%
19				М	ean Detects	1.18					SD Detects	0.769
20				Med	dian Detects	0.8					CV Detects	0.652
21				Skewn	ess Detects	0.676				Kurl	tosis Detects	-2.378
22				Mean of Log	ged Detects	-0.00958				SD of Log	gged Detects	0.661
23						I						
24					Norm	nal GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.846			Shapiro W	ilk GOF Test	t	
26			1% S	hapiro Wilk C	critical Value	0.686	De	etected Data	appear Nor	mal at 1% Sig	gnificance Lev	/el
27				Lilliefors T	est Statistic	0.289			Lilliefors	GOF Test		
28			1	% Lilliefors C	critical Value	0.396	De	etected Data	appear Nor	mal at 1% Sig	gnificance Lev	/el
29				Det	tected Data	appear Norr	nal at 1% Sig	gnificance L	evel			
30				Note	e GOF tests	may be unro	eliable for sm	nall sample :	sizes			
31												
32			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	Critical Value	s and other	Nonparame	tric UCLs		
33					KM Mean	0.573			KI	VI Standard E	Frror of Mean	0.169
34					90KM SD	0.585				95% KN	/I (BCA) UCL	0.869
35				95%	KM (t) UCL	0.869			95% KM (F	Percentile Bo	otstrap) UCL	0.849
36				95%	KM (z) UCL	0.851				95% KM Boo	otstrap t UCL	1.046
37				90% KM Chel	byshev UCL	1.08				95% KM Che	byshev UCL	1.309
38			97	.5% KM Chel	byshev UCL	1.627				99% KM Che	ebyshev UCL	2.252
39						1	1					
40				G	iamma GOF	Tests on De	etected Obse	ervations Or	nly			
41				A-D T	est Statistic	0.45		A	nderson-Da	rling GOF Te	est	
42				5% A-D C	ritical Value	0.683	Detected	d data appea	ar Gamma D	istributed at {	5% Significan	ce Level
43				K-S T	est Statistic	0.268		I	Kolmogorov	Smirnov GC)F	
44				5% K-S C	ritical Value	0.359	Detected	d data appea	ar Gamma D	istributed at {	5% Significan	ce Level
45				Detected	data appea	r Gamma Di	stributed at {	5% Significa	nce Level			
46				Note	e GOF tests	may be unro	eliable for sm	nall sample :	sizes			
40								-				

Boring Number	Depth bgs (ft)	Sample Number	Analyte	Result	Original Units	Concentration (mg/kg)	TEF	Concentration x TEF	TEQ
			1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	0.0729	ng/Kg	7.29E-08	0.1	7.29E-09	
		1406151129	Octachlorodibenzo-p-dioxin (OCDD)	0.643	ng/Kg	6.43E-07	0.0003	1.93E-10	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.159	ng/Kg	1.59E-07	0.01	1.59E-09	9.07E-09
	-		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.157	ng/Kg	1.57E-07	0.1	1.57E-08	
200-SB-05	8		1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	2.35	ng/Kg	2.35E-06	0.01	2.35E-08	
200 50 05	0		Octachlorodibenzo-p-dioxin (OCDD)	23.7	ng/Kg	2.37E-05	0.0003	7.11E-09	
		1406151145	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.133	ng/Kg	1.33E-07	0.1	1.33E-08	
			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.123	ng/Kg	1.23E-07	0.1	1.23E-08	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.309	ng/Kg	3.09E-07	0.01	3.09E-09	
			Octachlorodibenzofuran (OCDF)	0.534	ng/Kg	5.34E-07	0.0003	1.60E-10	7.52E-08
200-SB-6	8	1406141704	Octachlorodibenzo-p-dioxin (OCDD)	0.8	ng/Kg	8.00E-07	0.0003	2.40E-10	
200 50 0	0	1100111701	1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	0.182	ng/Kg	1.82E-07	0.01	1.82E-09	2.06E-09
200-SB-7	8	1406111503	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	1.37	ng/Kg	1.37E-06	0.01	1.37E-08	
200 55 7	Ũ	1100111203	Octachlorodibenzo-p-dioxin (OCDD)	17.1	ng/Kg	1.71E-05	0.0003	5.13E-09	1.88E-08
200-SB-8	8 -	1406130804	Octachlorodibenzo-p-dioxin (OCDD)	1.46	ng/Kg	1.46E-06	0.0003	4.38E-10	4.38E-10
	-	1406130814	Octachlorodibenzo-p-dioxin (OCDD)	1.24	ng/Kg	1.24E-06	0.0003	3.72E-10	3.72E-10
			1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.0476	ng/Kg	4.76E-08	0.1	4.76E-09	
200-SB-09	8	1406301549	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.0653	ng/Kg	6.53E-08	0.01	6.53E-10	
200 55 07	Ũ	1100201219	Octachlorodibenzo-p-dioxin (OCDD)	0.475	ng/Kg	4.75E-07	0.0003	1.43E-10	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.0413	ng/Kg	4.13E-08	0.01	4.13E-10	5.97E-09
200-SB-10	16	1406281022	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxins (HpCDD)	0.263	ng/Kg	2.63E-07	0.01	2.63E-09	
200-50-10	10	1400201022	Octachlorodibenzo-p-dioxin (OCDD)	1.75	ng/Kg	1.75E-06	0.0003	5.25E-10	3.16E-09
			2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	0.282	ng/Kg	2.82E-07	1	2.82E-07	
			1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.192	ng/Kg	1.92E-07	0.01	1.92E-09	
			Octachlorodibenzo-p-dioxin (OCDD)	0.843	ng/Kg	8.43E-07	0.0003	2.53E-10	
200-SB-11	8	1407011414	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	0.0392	ng/Kg	3.92E-08	0.1	3.92E-09	
200 50 11	0	140/011414	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.0418	ng/Kg	4.18E-08	0.1	4.18E-09	
			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.0479	ng/Kg	4.79E-08	0.1	4.79E-09	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.201	ng/Kg	2.01E-07	0.01	2.01E-09	
			Octachlorodibenzofuran (OCDF)	0.23	ng/Kg	2.30E-07	0.0003	6.90E-11	2.99E-07
			1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	0.105	ng/Kg	1.05E-07	0.1	1.05E-08	
			1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	0.107	ng/Kg	1.07E-07	0.1	1.07E-08	
			1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	0.202	ng/Kg	2.02E-07	0.01	2.02E-09	
200-SB-13	8	1406161404	Octachlorodibenzo-p-dioxin (OCDD)	10	ng/Kg	1.00E-05	0.0003	3.00E-09	
200-50-15	0	1400101404	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	0.0506	ng/Kg	5.06E-08	0.1	5.06E-09	
			1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	0.0843	ng/Kg	8.43E-08	0.1	8.43E-09	
			1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	0.0604	ng/Kg	6.04E-08	0.01	6.04E-10	
			1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	0.0664	ng/Kg	6.64E-08	0.01	6.64E-10	4.10E-08

|--|

			Calculation of Toxicity Equivalents (TE	Q) ¹ for D	oioxins/Fu	rans			
Boring Number	Depth bgs (ft)	Sample Number	Analyte	Result	Original Units	Concentration (mg/kg)	TEF	Concentration x TEF	TEQ

 1 = TEQs calculated per NMED RA Guidance (June 2019) Section 2.1. Dioxin and furan congeners were assessed using the 2005 World Health Organization's (WHO) toxicity equivalency factors (TEF) applied to the analytical results and summed for each sample location. The sum, or toxicity equivalent (TEQ), is compared to the NMED SSL for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in the risk screening evaluation for carcinogens and noncarcinogens.

bgs = below ground surface

UCL95_200_IA_1,2-Dichloroethene

	А	В	С	D	E	F	G	Н	I	J	K	L
48					Gamma	Statistics or	n Detected D	Data Only				
49					k hat (MLE)	3.012			k	star (bias cor	rected MLE)	1.338
50				TI	heta hat (MLE)	0.392			Theta	star (bias cor	rrected MLE)	0.882
51					nu hat (MLE)	30.12				nu star (bia	as corrected)	13.38
52				I	Mean (detects)	1.18						
53												
54					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
55			GROS ma	y not be use	ed when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs		
56		GROS mag	y not be use	d when ksta	ar of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
57			F	or such situ	ations, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
58					This is espec	ially true whe	en the sample	e size is sma	III.			
59		For gar	mma distribu	ited detecte	ed data, BTVs a	and UCLs ma	ay be comput	ted using gar	nma distribu	tion on KM e	stimates	
60					Minimum	0.01					Mean	0.376
61					Maximum	2.2					Median	0.01
62					SD	0.687					CV	1.828
63					k hat (MLE)	0.313			k	star (bias cor	rected MLE)	0.296
64				TI	heta hat (MLE)	1.201			Theta	star (bias cor	rected MLE)	1.27
65					nu hat (MLE)	10.01				nu star (bia	as corrected)	9.465
66			Adjuste	d Level of S	Significance (β)	0.0335						
67		Ap	oproximate C	Chi Square '	Value (9.46, α)	3.61			Adjusted C	hi Square Va	alue (9.46, β)	3.209
68			95% (Gamma App	proximate UCL	0.985			95	% Gamma A	djusted UCL	1.108
69												
70					Estimates of C	amma Para	meters using	g KM Estima	tes			
71					Mean (KM)	0.573					SD (KM)	0.585
72					Variance (KM)	0.342				SE o	f Mean (KM)	0.169
73					k hat (KM)	0.962					k star (KM)	0.823
74					nu hat (KM)	30.78					nu star (KM)	26.34
75					theta hat (KM)	0.596				the	eta star (KM)	0.697
76			80'	% gamma p	percentile (KM)	0.935			909	% gamma pei	rcentile (KM)	1.385
77			95	% gamma p	percentile (KM)	1.841			999	% gamma pei	rcentile (KM)	2.916
78												
79					Gamn	na Kaplan-M	eier (KM) St	atistics				
80		App	proximate Ch	ni Square V	alue (26.34, α)	15.64			Adjusted Ch	i Square Val	ue (26.34, β)	14.71
81			95% KM A	Approximate	e Gamma UCL	0.965			95% K	M Adjusted (Gamma UCL	1.027
82												
83					Lognormal GC	DF Test on D	etected Obs	servations O	nly			
84			ç	Shapiro Wil	k Test Statistic	0.88			Shapiro Wi	lk GOF Test		
85			10% S	Shapiro Will	c Critical Value	0.806	Dete	ected Data ap	opear Logno	rmal at 10% \$	Significance L	evel
86				Lilliefor	s Test Statistic	0.227			Lilliefors	GOF Test		
87			1(0% Lilliefors	s Critical Value	0.319	Dete	ected Data ap	opear Logno	rmal at 10% \$	Significance L	evel
88				De	tected Data ap	pear Lognor	mal at 10%	Significance	Level			
89				N	ote GOF tests	may be unre	eliable for sn	nall sample s	sizes			
90												

UCL95_200_IA_1,2-Dichloroethene

	А	В	С	D	E	F	G	Н		J	K	L
91				L	ognormal RO	S Statistics	Using Impu	ted Non-Detec	cts			
92				Mean in C	Driginal Scale	0.441				Mean	in Log Scale	-1.597
93				SD in C	Driginal Scale	0.651				SD	in Log Scale	1.199
94		95% t L	JCL (assume	es normality	of ROS data)	0.726			95%	Percentile Bo	ootstrap UCL	0.731
95				95% BCA B	ootstrap UCL	0.808				95% Boo	otstrap t UCL	1.147
96				95% H-UC	CL (Log ROS)	1.059						
97												
98			Stati	stics using h	KM estimates	on Logged	Data and As	ssuming Logn	ormal Distri	bution		
99				KM M	lean (logged)	-0.876				K	M Geo Mean	0.416
100				KM	I SD (logged)	0.701			95% (Critical H Val	ue (KM-Log)	2.282
101			KM Standa	rd Error of M	lean (logged)	0.202				95% H-U0	CL (KM -Log)	0.805
102				KM	I SD (logged)	0.701			95% (Critical H Val	ue (KM-Log)	2.282
103			KM Standa	rd Error of M	lean (logged)	0.202						
104												
105						DL/2 S	tatistics					
106			DL/2	Normal					DL/2 Log-1	ransformed		
107				Mean in C	Driginal Scale	0.698				Mean	in Log Scale	-1.068
108				SD in C	Driginal Scale	1.004				SD	in Log Scale	1.124
109			95% t	UCL (Assum	es normality)	1.138				95%	H-Stat UCL	1.498
110			DL/2	is not a reco	ommended m	ethod, provi	ded for com	parisons and	historical re	easons		
111												
112					Nonparamo	etric Distribu	tion Free U	CL Statistics				
113				Detecte	d Data appea	ar Normal Di	stributed at	1% Significan	ce Level			
114												
115						Suggested	UCL to Use	9				
116				959	% KM (t) UCL	0.869						
117												
118		Note: Sugge	stions regard	ding the sele	ction of a 95%	6 UCL are pr	ovided to he	elp the user to	select the n	nost appropri	ate 95% UCL	
119		Recom	mendations	are based u	pon data size	, data distrib	ution, and s	kewness using	g results fro	m simulation	studies.	
120	Hc	wever, simu	lations resul	ts will not co	ver all Real V	Vorld data se	ts; for additi	onal insight the	e user may	want to cons	ult a statistici	an.
101												

			-		
1		UCL Statis	⊢ tics for Data	Sets with Non-Detects	L
2					
3	User Selected Options	s			
4	Date/Time of Computation	ProUCL 5.2 3/6/2023 1:3	3:24 PM		
5	From File	UCL95_input_Revised.xl	S		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	200 IA 2-Butanone (MEK)				
11					
12			General	Statistics	
13	Tota	I Number of Observations	16	Number of Distinct Observations	13
14		Number of Detects	15	Number of Non-Detects	1
15	N	lumber of Distinct Detects	12	Number of Distinct Non-Detects	1
16		Minimum Detect	0.36	Minimum Non-Detect	8.1
17		Maximum Detect	8.7	Maximum Non-Detect	8.1
18		Variance Detects	4.008	Percent Non-Detects	6.25%
19		Mean Detects	1.921	SD Detects	2.002
20		Median Detects	1.8	CV Detects	1.042
21		Skewness Detects	3.048	Kurtosis Detects	10.84
22		Mean of Logged Detects	0.292	SD of Logged Detects	0.892
23					
24		Norm		t on Detects Univ	
25	10/ 0	Shapiro Wilk Test Statistic	0.589	Snapiro Wilk GOF Test	1
26	1% 5		0.835	Lilliofere COE Test	
27		Lilliefors Critical Value	0.390	Detected Data Net Normal et 1% Significance Lova	1
28		Detected Date	0.200	Lat 1% Significance Level	
29					
30	Kanlan	-Meier (KM) Statistics usir	ng Normal C	tritical Values and other Nonnarametric LICLs	
31		KM Mean	1 89	KM Standard Error of Mean	0 49
32		90KM SD	1.884	95% KM (BCA) UCI	2.848
33		95% KM (t) UCL	2.749	95% KM (Percentile Bootstrap) UCL	2.727
34		95% KM (z) UCL	2.696	95% KM Bootstrap t UCL	3.549
35		90% KM Chebyshev UCL	3.36	95% KM Chebyshev UCL	4.026
30 27	9	7.5% KM Chebyshev UCL	4.95	99% KM Chebyshev UCL	6.765
3/		-		· · · · · · · · · · · · · · · · · · ·	
30		Gamma GOF	Tests on De	etected Observations Only	
40		A-D Test Statistic	1.236	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.753	Detected Data Not Gamma Distributed at 5% Significance	Level
42		K-S Test Statistic	0.284	Kolmogorov-Smirnov GOF	
43		5% K-S Critical Value	0.225	Detected Data Not Gamma Distributed at 5% Significance	Level
44		Detected Data Not C	Gamma Dist	ributed at 5% Significance Level	
45					

UCL95_200_IA_2-ButanoneMEK

_		1		1	-			r	1	-		
46	A	В	С	D	E Gamma	F Statistics or	G Detected D	l <u>H</u> Data Only		J	K	L
40					k hat (MLE)	1.531			k	star (bias co	prrected MLE)	1.269
48				The	eta hat (MLE)	1.254			Theta	star (bias co	orrected MLE)	1.513
49					nu hat (MLE)	45.93				nu star (b	ias corrected)	38.08
50				М	ean (detects)	1.921						
51												
52					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS may	y not be used	d when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DL	S	
54		GROS mag	y not be used	d when kstar	of detects is a	small such a	s <1.0, espe	cially when t	he sample s	ize is small	(e.g., <15-20)	
55			Fo	or such situa	tions, GROS I	method may	yield incorre	ect values of	UCLs and B	TVs		
56					This is especi	ally true whe	en the sample	e size is sma	all.			
57		For gar	mma distribu	ited detected	data, BTVs a	ind UCLs ma	ay be comput	ted using ga	mma distribu	ition on KM	estimates	
58					Minimum	0.36					Mean	1.886
59					Maximum	8.7					Median	1.75
60					SD	1.939					CV	1.028
61					k hat (MLE)	1.611			k	star (bias co	orrected MLE)	1.351
62				The	eta hat (MLE)	1.171			Theta	star (bias co	orrected MLE)	1.396
63					nu hat (MLE)	51.55				nu star (b	ias corrected)	43.22
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		App	proximate Ch	ni Square Va	lue (43.22, α)	29.15			Adjusted Ch	ni Square Va	alue (43.22, β)	27.83
66			95% 0	Gamma Appr	oximate UCL	2.796			95	5% Gamma	Adjusted UCL	2.928
67												
68				E	stimates of G	amma Para	meters using	g KM Estima	ites		05 ((0.0)	4 00 4
69					Mean (KM)	1.89					SD (KM)	1.884
70				V	ariance (KM)	3.551				SE	of Mean (KM)	0.49
71					k hat (KM)	1.006					k star (KM)	0.859
72					nu hat (KM)	32.2					nu star (KM)	27.5
73				ti	neta hat (KM)	1.878				tr	neta star (KM)	2.2
74			809	% gamma pe	ercentile (KM)	3.076			909	% gamma pe	ercentile (KM)	4.518
75			955	% gamma pe	ercentile (KM)	5.977			999	% gamma pe	ercentile (KM)	9.404
76					0							
77		A	wavimata Ok			a Kapian-M	eler (KM) St	atistics			(07 E0 0)	15 50
78		App		ni Square va	$\frac{100}{27.50}$	16.54				II Square va	alue $(27.50, \beta)$	15.58
79			95% KIVI A	Approximate	Gamma UCL	3.143			95% r	IM Adjusted	Gamma UCL	3.338
80					ognormal CC	E Tost on F	otacted Obc	on/otions O	nhv			
81			c	L Shaniro Wilk	Test Statistic			oci valions U	Shaniro W		et	
82			10% S	Shapiro Wilk	Critical Value	0.023	De	tected Data	Not Lognor	nal at 10% S	Significance Lev	
83			10 /0 3		Test Statistic	0.301	De			GOF Teet		
84			10		Critical Value	0.200	De	tected Data	Not Lognorn	nal at 10% 9	Significance Le	vel
85					tected Data	lot Lognorm	al at 10% Si					
86				De			a a 10 /0 31	Sumeance r				
87												

UCL95_200_IA_2-ButanoneMEK

	А		В	С		D	E		F	G		Н			,			K	T	L
88						Lo	ognormal	ROS	Statistics	Using Imput	ted N	on-Dete	ects							
89					Me	an in C	original S	cale	1.877						1	Nean	in L	og Scal	е	0.286
90					S	SD in C	original S	cale	1.942							SD	in L	og Scal	е	0.862
91			95% t U	ICL (assum	ies nor	mality of	of ROS d	lata)	2.728					95% I	Percent	ile Bo	otst	rap UC	L	2.698
92					95% E	BCA Bo	ootstrap l	UCL	3.249						959	% Boc	otstra	ap t UC	L	3.585
93					95%	6 H-UC	L (Log R	OS)	3.367											
94																				
95				Stat	istics u	using K	M estimation	ates c	on Logged	Data and As	ssum	ng Logi	normal	Distri	ibution					
96						KM M	lean (logo	ged)	0.284							KI	ИG	eo Mea	n	1.328
97						KM	SD (logo	ged)	0.855				1	95% (Critical	H Val	ue (KM-Loç	3)	2.488
98				KM Stand	ard Err	or of M	lean (logo	ged)	0.226						95%	H-UC	CL (ł	<m -log<="" th=""><th>3)</th><th>3.312</th></m>	3)	3.312
99						KM	SD (logo	ged)	0.855				1	95% (Critical	H Val	ue (KM-Loç	3)	2.488
100				KM Stand	ard Err	or of M	lean (logo	ged)	0.226											
101																				
102									DL/2 S	tatistics										
103				DL/2	Norm	al							DL/2	Log-1	Transfo	rmed				
104					Me	an in C	riginal S	cale	2.054						I	Mean	in L	og Scal	е	0.361
105					5	SD in C	riginal S	cale	2.006							SD	in L	og Scal	е	0.905
106				95% t	UCL (/	Assum	es norma	ality)	2.933							95%	5 H-S	Stat UC	L	3.932
107				DL/2	? is not	a reco	ommende	ed me	thod, provi	ded for com	paris	ons and	1 histor	ical re	easons					
108																				
109							Nonpa	ramet	ric Distribu	tion Free U	CL S	atistics								
110							Data	do no	ot follow a D	Discernible [Distri	oution								
111																				
112								;	Suggested	UCL to Use	Э									
113						95%	% KM (t) l	UCL	2.749											
114																				
115			The ca	Iculated UC	CLs are	e based	d on assi	umpti	ons that the	e data were	colle	cted in a	a rando	om an	d unbia	ased r	man	ner.		
116						Pleas	se verify	the da	ata were co	ollected from	n rano	dom loc	ations.							
117					If the	data w	vere colle	ected	using judg	mental or ot	ther n	on-rand	lom me	thods	8,					
118						th	en conta	ict a s	tatistician	to correctly	calcu	late UC	Ls.							
119																				
120		Note:	Sugges	stions rega	ding th	ne seleo	ction of a	95%	UCL are pr	ovided to he	elp the	e user to	select	the m	nost ap	oropri	ate	95% U	CL.	
121			Recom	mendations	s are ba	ased up	pon data	size,	data distrib	ution, and sl	kewn	ess usir	ng resul	lts froi	m simu	ation	stuc	lies.		
122	H	oweve	er, simul	ations resu	Its will	not cov	ver all Re	eal Wo	orld data se	ts; for additi	onal i	nsight tl	he user	may	want to	cons	ult a	ı statisti	ciar	1.
123																				

	А	В	С	D	E LICI Static	F	G	H Data Sata	I	J	K		L
1					UCL Statis		ensoreu Fuil	Data Sets					
2		User Se	lected Option	s									
3	Di	ate/Time of		ProUCL 5.2	3/6/2023 1:3	30:01 PM							
4			From File	UCL95 inpu	t Revised.x	ls							
5		F	Full Precision	OFF									
6 7		Confidenc	e Coefficient	95%									
/ 0	Number	of Bootstra	p Operations	2000									
o Q			· ·										
10													
11	200 IA 2-F	ropanol											
12													
13						General	Statistics						
14			Tota	al Number of O	bservations	16			Numbe	r of Distinct C	bservations	s .	15
15									Numbe	r of Missing C	bservations)	5	0
16					Minimum	0.95					Mean	۰ ۱	17.48
17					Maximum	68					Median	ı	7.65
18					SD	20.08				Std. E	rror of Mean	ı	5.021
19				Coefficient	of Variation	1.149					Skewness	5	1.292
20													
21						Normal (GOF Test						
22			10/ /	Shapiro Wilk T	est Statistic	0.813			Shapiro W	ilk GOF Test	<u> </u>		
23			1% \$	Shapiro Wilk C	ritical Value	0.844		Data No	ot Normal at	1% Significan	ice Level		
24				Lilliefors I	est Statistic	0.244		Data ann		GOF lest			
25				Data		U.240	rmal at 1% S						
26				Data	appear vpp			biginicance	Level				
27					As	sumina Nor	mal Distribut	ion					
28			95% N	Iormal UCL		g		95%	UCLs (Adju	usted for Ske	wness)		
29				95% Stud	lent's-t UCL	26.28			95% Adjust	ed-CLT UCL (Chen-1995)		27.47
30									95% Modifi	ed-t UCL (Joł	nnson-1978)		26.55
31 22													
32 33						Gamma	GOF Test						
34				A-D T	est Statistic	0.685		Ande	rson-Darling	Gamma GO	F Test		
35				5% A-D C	ritical Value	0.776	Detected	d data appea	ar Gamma D	istributed at 5	% Significa	nce L	evel
36				K-S T	est Statistic	0.221		Kolmog	jorov-Smirn	ov Gamma G	OF Test		
37				5% K-S C	ritical Value	0.224	Detected	d data appea	ar Gamma D	istributed at 5	% Significa	nce L	evel
38				Detected	data appea	r Gamma Di	stributed at 5	5% Significa	ince Level				
39													
40						Gamma	Statistics						
41					k hat (MLE)	0.732			k	star (bias cor	rected MLE))	0.637
42				Thet	a hat (MLE)	23.87			Theta	star (bias cor	rected MLE)) 2	27.45
43				n	u hat (MLE)	23.43				nu star (bia	s corrected)) 2	20.37
44			Ν	ILE Mean (bias	s corrected)	17.48			A	MLE Sd (bia	s corrected)) 2	21.91
45			A		Diami#	0.0005			Approximate	e Chi Square	value (0.05))	11.13
46			Adju	isted Level of S	Significance	0.0335			A	ajusted Chi S	quare Value		10.35
47													

	А		В	C	,	D	E	F	G	. н		J	К	L
48				01			As	suming Gam	ima Distribut	ion	0		0	24.20
49				9	5% A	pproximate (Jamma UCL	32			95	5% Adjusted	Gamma UCL	34.39
50								Lognorma	GOE Test					
51					9	haniro Wilk	Foot Statistic		IGOF Test	Sha	piro Wilk Lo	anormal GO	E Toet	
52				10	0% SI	napiro Wilk (ritical Value	0.911		Data annea		at 10% Sign	ificance Level	
53					0 /0 01		Test Statistic	0.196						
54					10	% Lilliefors (Critical Value	0.196		Data Not I		t 10% Signifi	cance Level	
55					10	Data a	ppear Approx	cimate Loan	ormal at 10%	5 Significan	ce Level			
56										g				
5/								Lognorma	I Statistics					
50					1	Minimum of	Logged Data	-0.0513				Mean of	f logged Data	2.041
60					N	laximum of	Logged Data	4.22				SD of	f logged Data	1.442
61														
62							Assu	uming Logno	ormal Distribu	ution				
63							95% H-UCL	78.32			90%	Chebyshev	(MVUE) UCL	43.53
64				9	95% (Chebyshev (MVUE) UCL	54.46			97.5%	Chebyshev	(MVUE) UCL	69.62
65				ę	99% (Chebyshev (MVUE) UCL	99.41						
66									I				I	
67							Nonparame	etric Distribu	tion Free UC	L Statistics				
68							Data appea	r to follow a	Discernible	Distribution				
69														
70							Nonpa	rametric Dis	tribution Free	e UCLs				
71						95	5% CLT UCL	25.74				95% BCA B	ootstrap UCL	26.85
72					95%	Standard Bo	otstrap UCL	25.4				95% Bo	otstrap-t UCL	30.33
73					9	5% Hall's Bo	otstrap UCL	29.27			95%	Percentile B	ootstrap UCL	25.42
74				90	% Ch	ebyshev(Me	an, Sd) UCL	32.54			95% C	hebyshev(Me	ean, Sd) UCL	39.36
75				97.5	% Ch	ebyshev(Me	an, Sd) UCL	48.84			99% C	hebyshev(Me	∋an, Sd) UCL	67.44
76								0						
77						050/ 04		Suggested	UCL to Use					
78						95% Stu	dent's-t UCL	26.28						
79			The er			a ara basa		ions that the	dete wore e	ollogtod in	o rondom o	nd unbiogod	monnor	
80			The Ca	liculated			on assumpt	lons unat une	lected from		atione			
81						lf the data w			mental or oth	er non-ranc	lom method	e		
82						th	en contact a	statistician t		alculate UC		3,		
83														
84					When	a data set f	ollows an app	proximate dis	tribution pas	sina onlv on	e of the GO	F tests.		
85				it	is su	a acted to u	se a UCL bas	ed upon a d	istribution pas	ssing both (GOF tests in	ProUCL		
86						59				g				
0/ 00		Note	e: Sugge	stions re	egard	ing the seled	tion of a 95%	UCL are pr	ovided to help	p the user to	select the i	most appropr	iate 95% UCL.	
00 80			Recorr	nmendat	tions a	are based up	oon data size,	, data distrib	ution, and ske	ewness usir	ng results fro	om simulation	studies.	
90	Н	lowe	ver, simu	lations r	result	s will not cov	ver all Real W	/orld data se	ts; for additio	nal insight t	he user may	want to cons	sult a statisticia	an.
91														

	А	В	С	D	E	F	G	Н		J	К	L
1					UCL Statis	stics for Unc	ensored Full	Data Sets				
2				1								
3		User Sele	cted Options		0/0/0000 1 0	0.40 514						
4	Da	ate/Time of Co		ProUCL 5.2	3/6/2023 1:3	2:42 PM						
5		F	From File		it_Revised.x	IS						
6		Fu	Il Precision									
7	Numerie en	Confidence		95%								
8	Number	of Bootstrap	Operations	2000								
9												
10	200 IA Ace	atone										
11												
12						General	Statistics					
13			Total	Number of C	bservations	16			Numbe	r of Distinct (Observations	14
14									Numbe	of Missing (Observations	0
15					Minimum	2.4				g	Mean	10.48
16					Maximum	30					Median	9.35
17					SD	8.196				Std. E	Error of Mean	2.049
18				Coefficient	of Variation	0.782					Skewness	1.652
19												
20						Normal (GOF Test					
21			S	Shapiro Wilk T	est Statistic	0.785			Shapiro Wi	Ik GOF Test	t	
22			1% S	hapiro Wilk C	ritical Value	0.844		Data No	t Normal at	1% Significa	nce Level	
23				Lilliefors T	est Statistic	0.254			Lilliefors	GOF Test		
25			1	% Lilliefors C	ritical Value	0.248		Data No	t Normal at	1% Significa	nce Level	
26					Data Not	Normal at 1	% Significar	nce Level				
27												
28					As	suming Nori	mal Distribut	ion				
29			95% N	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	
30				95% Stu	dent's-t UCL	14.07			95% Adjuste	ed-CLT UCL	(Chen-1995)	14.75
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	14.21
32												
33						Gamma	GOF Test					
34				A-D T	est Statistic	0.477		Ande	rson-Darling	Gamma GC	OF Test	
35				5% A-D C	ritical Value	0.75	Detected	d data appea	ar Gamma D	stributed at	5% Significan	ice Level
36				K-S T	est Statistic	0.165		Kolmog	jorov-Smirno	ov Gamma G	GOF Test	
37				5% K-S C	ritical Value	0.218	Detected	d data appea	ar Gamma D	stributed at	5% Significan	ice Level
38				Detected	data appear	r Gamma Di	stributed at 5	5% Significa	nce Level			
39							• •••••					
40						Gamma	Statistics					4 754
41				-	κ nat (MLE)	2.104			k	star (bias co	rrected MLE)	1.751
42				Ine		4.979			Ineta	star (bias co		5.982
43			N A	r I E Moon (hi-		10 49						20.04 7.016
44			IVI	LE IVIean (DIA	s corrected)	10.48			Approvimet			1.910
45			۰۰۰۰۰ ۲۰۰۰	stad Loval of	Significance	0 0335			Approximate			30.00
46			Aajus		Significance	0.0335			A	ajusteu Chi S		J0.2Ŏ
47												

	А	В	—	С	1	D	Т	F	F		G		н	T		1		J			К	T	
48				<u> </u>		2		As	suming G	amr	ma Distril	butio	on			-							
49				95% A	pprox	imate	Gam	ma UCL	. 14.74							959	% Ac	juste	d Ga	amm	na UCL	-	15.33
50									-1														
51									Lognor	mal	GOF Tes	st											
52				S	Shapiro	o Wilk	Test	Statistic	0.944	Ļ			ŝ	Shap	iro Wi	lk Log	norn	nal G	OF 1	Test	t		
53				10% SI	hapiro	o Wilk	Critic	al Value	0.906	6		D	ata ap	pear	Logno	ormal a	at 10	% Sig	gnific	canc	e Leve	el	
54					Lill	liefors	Test	Statistic	0.138	3				Lilli	iefors	Logno	orma	I GO	F Te	st			
55				10)% Lill	iefors	Critic	al Value	0.196	6		D	ata ap	pear	Logno	ormal a	at 10	% Się	gnific	anc	e Leve	el	
56							Data	appear	Lognorm	al at	t 10% Sig	nifi	cance	Leve									
57																							
58									Lognor	mal	Statistics	S											
59					Minim	num of	Logg	ed Data	0.875	5							I	Nean	of lo	gge	d Data	1	2.093
60				Ν	Maxim	num of	Logg	ed Data	3.401									SD	of lo	gge	d Data	1	0.746
61																							
62								Ass	uming Lo	gnor	rmal Dist	ribut	tion									T	
63							95%	H-UCL	. 16.79							90%	Chet	yshe	:v (M	VUE	E) UCL	-	16.71
64				95%	Cheby	yshev	(MVL	JE) UCL	. 19.54						9	7.5% (Chet	yshe	:v (M`	VUE	E) UCL	-	23.46
65				99%	Cheby	yshev	(MVL	JE) UCL	. 31.15														
66																							
67							No	nparam	etric Distr	ibuti	ion Free	UCL	. Statis	tics									
68							Da	ta appe	ar to follow	va[Discernib	le D	istribu	tion									
69																							
70								Nonpa	arametric l	Distr	ribution F	ree	UCLs										
71						9	5% C	LT UCL	. 13.85							9	95%	BCA	Boot	tstra	ap UCL		14.63
72				95%	Stand	dard B	ootst	rap UCL	. 13.73								9	5% E	loots	strap	o-t UCL	-	17.39
73				9	95% H	lall's B	ootst	rap UCL	. 36.36							95% F	Perce	entile	Boot	tstra	ap UCL		13.89
74			9	0% Ch	nebysł	hev(Me	ean, S	Sd) UCL	. 16.62						95	5% Ch	ebys	hev(Mear	n, So	d) UCL	-	19.41
75			97.	5% Ch	nebysł	hev(Me	ean, S	Sd) UCL	. 23.27						99	9% Ch	ebys	hev(l	Mear	n, So	d) UCL	-	30.86
76																							
77									Suggest	ed L	JCL to U	se											
78				95	% Adj	justed	Gam	ma UCL	. 15.33														
79																							
80		Note: Sugge	estions	regard	ding th	ne sele	ction	of a 959	% UCL are	pro	wided to h	nelp	the us	er to	select	the m	iost a	appro	priate	e 95	5% UC	L.	
81		Recor	mmenda	ations	are ba	ased u	pon c	lata size	e, data dist	ribu	tion, and	ske	wness	using	g resu	lts fror	n sin	nulati	on st	tudie	es.		
82	Нс	wever, sim	ulations	s result	ts will	not co	ver a	ll Real V	Vorld data	sets	s; for add	ition	al insig	ht th	e use	may	want	to co	onsul	tas	statistic	ian.	
83																							

	Δ	B			F	F	G	н	1		ĸ	1	
1	~	0			UCL Statis	tics for Data	Sets with No	on-Detects					
2													
3		User Sele	ected Options										
4	Dat	e/Time of C	omputation	ProUCL 5.2	3/6/2023 1:3	4:36 PM							
5			From File	UCL95_input	t_Revised.x	ls							
6		Fu	III Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number o	of Bootstrap	Operations	2000									
9													
10	200 IA Acet	one											
11													
12						General	Statistics						
13			Total	Number of Ol	bservations	16			Numbe	r of Distinct (Observations	14	
14				Number	r of Detects	15				Number of	Non-Detects	1	
15			N	umber of Disti	nct Detects	13			Numbe	er of Distinct	Non-Detects	1	
16				Minin	num Detect	2.4				Minimun	Non-Detect	30	
17				Maxin	num Detect	29				Maximun	Non-Detect	30	
18		Variance Detects 42.93 Percent Non-Detects Mean Detects 9.173 SD Detects											
19		Mean Detects 9.173 SD Detects											
20				Med	ian Detects	8.7					CV Detects	0.714	
21				Skewne	ess Detects	2.015				Kur	tosis Detects	5.829	
22				Mean of Logg	ged Detects	2.006				SD of Log	ged Detects	0.682	
23													
24					Norm	al GOF Tes	t on Detects	Only					
25			S	hapiro Wilk Te	est Statistic	0.796			Shapiro W	ilk GOF Test	!		
26			1% S	hapiro Wilk Cr	ritical Value	0.835	C	etected Data	a Not Norm	al at 1% Sigr	ificance Leve	el	
27				Lilliefors Te	est Statistic	0.213			Lilliefors	GOF Test			
28			1	% Lilliefors Cr	ritical Value	0.255	De	tected Data	appear Nor	mal at 1% Sig	jnificance Le	vel	
29				Detected D	Data appear	Approximat	e Normal at	1% Significa	nce Level				
30													
31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Values	s and other l	Nonparame	tric UCLs		1 000	
32					KM Mean	9.1/3			KI	V Standard E	rror of Mean	1.692	
33				05%	90KM SD	6.33			050/ 1/14/	95% KN	1 (BCA) UCL	12.21	
34				95%		12.14			95% KM (F	vercentile Bo	otstrap) UCL	10.00	
35				95% 1		11.96				95% KM Boo		13.62	
36			07		ysnev UCL	14.25				95% KM Che	bysnev UCL	16.55	
37			97	.5% KIVI Cheb	ysnev UCL	19.74				99% KIVI Che	bysnev UCL	20.01	
38						Tooto on Di	tootod Obe-	notions 0-	h.z				
39					amma GUF				y domon D-		oct		
40				5% A D C	ritical Value	0.411	Datastad				5% Significan		
41				J /0 A-D U	nucal value	0.740	Delected			Smirnov CC			
42				ר-ט 10 5% ג-פ רי	ritical Value	0.147	Detectod	A conne eteb l	r Gamma D	istributed at l	5% Significar		
43				Detected	data annea	Gamma Di	stributed at 5						
44				Derected	uara ahheai			no Significar					
45													

UCL95_200_IA_Acetone_NDs

	А	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	n Detected E	Data Only				
47					k hat (MLE)	2.528			k s	star (bias cor	rected MLE)	2.067
48				The	eta hat (MLE)	3.628			Theta s	star (bias cor	rected MLE)	4.438
49					nu hat (MLE)	75.85				nu star (bia	as corrected)	62.01
50				Me	ean (detects)	9.173						
51												
52					Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
53			GROS may	y not be used	l when data s	et has > 50%	6 NDs with n	nany tied obs	ervations at	multiple DLs		
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
55			Fo	or such situat	tions, GROS	method may	yield incorre	ect values of	UCLs and B	rVs		
56				-	This is espec	ially true whe	en the sampl	e size is sma	II.			
57		For gar	nma distribu	ted detected	data, BTVs a	and UCLs ma	ay be compu	ted using gar	nma distribu	tion on KM e	stimates	
58					Minimum	2.4					Mean	9.108
59					Maximum	29					Median	8.413
60					SD	6.335					CV	0.696
61					k hat (MLE)	2.682			k s	star (bias cor	rected MLE)	2.221
62				The	eta hat (MLE)	3.396			Theta s	star (bias cor	rected MLE)	4.101
63					nu hat (MLE)	85.82				nu star (bia	as corrected)	71.06
64			Adjusted	d Level of Sig	gnificance (β)	0.0335				-		
65		Арр	proximate Ch	ii Square Val	ue (71.06, α)	52.65			Adjusted Ch	i Square Val	ue (71.06, β)	50.85
66			95% G	Bamma Appro	oximate UCL	12.29			95	% Gamma A	djusted UCL	12.73
67							<u> </u>		-			
68				E	stimates of G	iamma Para	meters using	g KM Estima	tes			0.00
69					Mean (KM)	9.173				05	SD (KM)	6.33
70				V	ariance (KM)	40.07				SE 0	f Mean (KM)	1.692
71					k hat (KM)	2.1					k star (KM)	1.748
72					nu hat (KM)	67.2					nu star (KM)	55.94
73			0.00	tr	neta hat (KM)	4.368			000	, the	eta star (KM)	5.248
74			805	% gamma pe		13.95			90%	o gamma per	rcentile (KIVI)	18.42
75			955	∞ gamma pe	rcentile (KM)	22.72			99%	o gamma per	centile (KM)	32.33
76					0	o Korlen M	olor (KM) O					
77		۸	rovimete Ch				eiei (r\ivi) Si	ausucs	Adjusted Ch	Caucia Val		20.2
78		Арр		n Square var	1000000000000000000000000000000000000	39.75				A diveted ($ue(55.94, \beta)$	38.2
79			90% KIVI A	vpproximate (Gamma UCL	12.91			90% K	w Aujusted (aamina UCL	13.43
80					ognormal CC	E Test on D	latacted Ob	envetione O	nlv			
81			c	L(Tost Statistic			SCI VALIONS O	Shaniro \//i			
82			10% 0		Critical Value	0.943	Detr	acted Data ar			Significance !	ovol
83			10% 5			0.901	Dete				Significance L	
84			10		ritical Value	0.139	Detr	acted Data ar		mal at 100/ 9	Significance	ovol
85							mal at 10%	Significance		mai at 10 /0 ·		
86				Dete	степ рага ар	pear Lugrior		Signincance	Level			
87												

UCL95_200_IA_Acetone_NDs

	А	В		С		D	ognorn	E nal PO	F S Statistics	G	moute	d Nor	- Detec	 te		J		K		L
88					Mc				0.064		mpute		-Delec	13		Mc	on ir			2 006
89					IVIC	SD in	Original		6 345							ivic				0.659
90		95% † 1	ICI (a	ssum	es no	rmality		Aata)	11 85					c)5% F	ercentile		tetran LIC		11.86
91		557010		Joguin	95%		Rootstra		12.63						70 /0 1	95%		stran t LIC	1	13.26
92					959	<u>ж н-Ці</u>			13.49							5570		3000100	-	10.20
93								g1100)	10.40											
94				Stati	istics	usina	KM esti	imates	on Logged	Data ar	nd Ass	umin		rmal I	Distril	oution				
95				otati		KM	Mean (lo		2 006				Logino		olotin		KM	Geo Mea	n	7 431
96						K			0.659					c	95% C	ritical H	Valu		1)	2 229
97			KMS	Standa	ard Fr		Mean (le		0.000						<i>10 /0</i> C	95% H			און און	13.49
98						K			0.170					c	95% C	ritical H	Valu		ש) רב	2 229
99			KMS	Standa	ard Fr		Mean (lo		0.176						<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		vara		3/	2.220
100							mean (it	oggeu)	0.170											
101									DI /2 S	tatistics	\$									
102				DI /2	Norm	nal								1 2/ IO	T-DO	ransform	hed			
103					Me	an in	Original	l Scale	9.538							Me	an ir	n Log Scal	е	2.05
104						SD in	Original	l Scale	6.495								SD ir	n Log Scal	e	0.682
105			ç	95% t	UCL	Assur	nes nor	mality)	12.38							ç)5%	H-Stat UC	L	14.58
105				DL/2	is no	t a rec	commer	nded m	ethod, provi	ded for	comp	arisor	ns and h	nistori	cal re	asons				
107									· •		•									
108							Non	parame	etric Distribu	tion Fre	ee UC	L Sta	istics							
109				De	etecte	d Data	a appea	ar Appr	oximate No	mal Dis	stribut	ed at	1% Sigi	nificar	nce Le	vel				
111							••	••												
112									Suggested	UCL to	Use									
112						95	5% KM (t) UCL	12.14											
114																				
115				Whe	n a da	ata set	follows	an app	oroximate di	stributio	n pas	sing o	nly one	of the	GOF	tests,				
116				it is sı	ugges	ted to	use a U	JCL bas	sed upon a c	listributi	on pa	ssing	both GC)F test	ts in F	roUCL				
117																				
118		Note: Sugge	stions	regar	ding t	he sele	ection o	of a 95%	6 UCL are p	ovided	to hel	p the ı	iser to s	elect	the m	ost appro	opria	te 95% UC	CL.	
119		Recorr	nmenda	ations	are b	ased u	upon da	ata size	, data distrib	ution, a	nd ske	ewnes	s using	result	s fron	n simulat	ion s	tudies.		
120	Hc	wever, simu	lations	s resu	lts wil	l not co	over all	Real W	/orld data se	ts; for a	additio	nal ins	ight the	user	may v	vant to c	onsu	lt a statisti	ician	
121																				

		1		1						1		
1	A	В	C	D	UCL Statis	F tics for Data	G Gets with No	H Detects	Ι	J	K	L
2												
3		User Sele	ected Option	S								
4	Dat	e/Time of C	Computation	ProUCL 5.2	2 3/6/2023 1:3	5:23 PM						
5			From File	UCL95_inp	out_Revised.xl	s						
6		Fi	ull Precision	OFF								
7		Confidence	e Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Benz	zene										
11						Osmanal	Otatiatiaa					
12			Tota	Number of	Obconvotions		Statistics		Numbo	r of Dictinct	Observations	12
13			TOLE		or of Dotocts	0			Numbe	Number of		12
14			Ν		stinct Detects	8			Numb	Pr of Distinct	Non-Detects	6
15				Mir	nimum Detect	0.23				Minimur	n Non-Detect	0.25
16				Мах	kimum Detect	1.6				Maximur	n Non-Detect	6.2
17				Vari	ance Detects	0.227				Percent	Non-Detects	43.75%
10				Ν	Aean Detects	0.55					SD Detects	0.477
20				Me	edian Detects	0.31					CV Detects	0.867
20				Skew	ness Detects	1.796				Kur	tosis Detects	2.368
22				Mean of Log	gged Detects	-0.844				SD of Log	gged Detects	0.684
23												
24					Norm	al GOF Tes	t on Detects	Only				
25				Shapiro Wilk	Test Statistic	0.703			Shapiro W	ilk GOF Tes	t	
26			1% \$	Shapiro Wilk	Critical Value	0.764	D	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	
27				Lilliefors	Test Statistic	0.328			Lilliefors	GOF Test		
28				1% Lilliefors	Critical Value	0.316	D	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	
29					Detected Data	Not Norma	al at 1% Signi	ficance Leve	əl			
30			Kanlan	Maion (KM)	Otatiatian wais			and athen b				
31			Kapian	-Meler (KM)	Statistics usir		ntical values	and other r	vonparame		Fror of Moon	0 104
32						0.427						0.104
33				959	901(W 3D	0.58			95% KM (F	Percentile Bo	otstran) UCL	0.003
34				95%	6 KM (z) UCL	0.598				95% KM Bo	otstrap t UCL	1.224
35				90% KM Che	ebvshev UCL	0.739				95% KM Che	ebvshev UCL	0.88
30			9	7.5% KM Che	ebyshev UCL	1.077				99% KM Che	ebyshev UCL	1.462
37												
30					Gamma GOF	Tests on De	etected Obse	rvations Onl	у			
40				A-D	Test Statistic	0.966		Ar	nderson-Da	rling GOF T	est	
41				5% A-D	Critical Value	0.729	Detecte	d Data Not (Gamma Dis	tributed at 5°	% Significanc	e Level
42				K-S	Test Statistic	0.278		К	olmogorov	Smirnov GC	DF	
43				5% K-S	Critical Value	0.282	Detected	data appear	Gamma D	istributed at	5% Significan	ce Level
44				Detected d	ata follow Ap	or. Gamma	Distribution a	t 5% Signific	cance Leve			
45				No	te GOF tests	may be unre	eliable for sma	all sample s	izes			
46												

UCL95_200_IA_Benzene

		-					1	-	1	T	· · · · ·	
47	A	В	C	D	E Gamma	F Statistics or	G n Detected D	H Data Only		J	K	L
47					k hat (MLE)	2.187		•	k	star (bias co	rrected MLE)	1.532
40				The	eta hat (MLE)	0.251			Theta	star (bias co	rrected MLE)	0.359
50					nu hat (MLE)	39.37				nu star (bi	as corrected)	27.58
51				М	ean (detects)	0.55						
52							J.				L	
53				I	Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
54			GROS may	y not be used	d when data se	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs	3	
55		GROS may	/ not be use	d when kstar	of detects is s	small such a	is <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
56			Fo	or such situa	tions, GROS r	method may	yield incorre	ect values of	UCLs and B	TVs		
57					This is especi	ally true whe	en the sample	e size is sma	all.			
58		For gan	nma distribu	ited detected	data, BTVs a	nd UCLs ma	ay be compu	ted using gai	mma distribu	tion on KM e	estimates	
59					Minimum	0.01					Mean	0.353
60					Maximum	1.6					Median	0.255
61					SD	0.422					CV	1.196
62					k hat (MLE)	0.909				star (bias co	rrected MLE)	0.781
63				Ine	eta hat (MLE)	0.388			Ineta	star (bias co		0.452
64			Adjuctor	d Loval of Sid	nu nat (MLE)	29.1				nu star (bi	as corrected)	24.98
65		٨٥٥				14.6			Adjusted Ch	i Squaro Val		13.7
66		Арр	95% (amma Annr	rovimate LICI	0.604				% Gamma A	diusted UCI	0.643
67			3578 0	даннна дррг		0.004					lujusted UCL	0.043
68				E	stimates of G	amma Para	meters usin	a KM Estima	ites			
69 70					Mean (KM)	0.427					SD (KM)	0.38
70				V	ariance (KM)	0.144				SEC	of Mean (KM)	0.104
71					k hat (KM)	1.261					k star (KM)	1.066
72					nu hat (KM)	40.36					nu star (KM)	34.13
73				tł	neta hat (KM)	0.338				th	eta star (KM)	0.4
74			809	% gamma pe	ercentile (KM)	0.683			90%	6 gamma pe	rcentile (KM)	0.967
76			959	% gamma pe	ercentile (KM)	1.249			99%	% gamma pe	rcentile (KM)	1.902
77												
78					Gamm	a Kaplan-M	eier (KM) St	atistics				
79		Арр	oroximate Ch	ni Square Va	lue (34.13, α)	21.77			Adjusted Ch	i Square Val	lue (34.13, β)	20.65
80			95% KM A	Approximate	Gamma UCL	0.669			95% K	M Adjusted	Gamma UCL	0.705
81												
82				L	ognormal GO	F Test on D	etected Obs	servations O	nly			
83			5	Shapiro Wilk	Test Statistic	0.824			Shapiro Wi	lk GOF Tes	t	
84			10% S	Shapiro Wilk	Critical Value	0.859	De	etected Data	Not Lognorm	nal at 10% S	ignificance Le	vel
85				Lilliefors	Test Statistic	0.24			Lilliefors	GOF Test		
86			10	0% Lilliefors	Critical Value	0.252	Dete	ected Data a	opear Lognoi	rmal at 10%	Significance L	evel
87				Detected D	ata appear A	pproximate	Lognormal a	at 10% Signif	icance Leve			
88				No	te GOF tests	may be unre	eliable for sn	nall sample :	SIZES			
89												

UCL95_200_IA_Benzene

	•		-		1		-	-	-	1	0							<u> </u>			
90	A	В		U		<u> </u>	Lognorr	nal RO	I	Using	Impute	d Non	-Detec	ts		J		r	\	L	
91					Me	ean in	Origina	I Scale	0.405							M	ean in l	Log	Scale	-1.15	5
92						SD in	Origina	I Scale	0.389								SD in I	Log	Scale	0.6	31
93		95% t	UCL	(assum	nes no	rmality	of RO	S data)	0.575					9	5% P	ercentil	e Boots	strap	o UCL	0.5	81
94					95%	BCA B	Bootstra	ap UCL	0.639							95%	Bootst	trap	t UCL	1.0	8
95					959	% H-U	CL (Log	g ROS)	0.553												
96																					
97				Stat	istics	using	KM est	timates	on Logged	Data a	and As	suming	Logno	rmal C	Distrib	ution					
98						KM	Mean (I	ogged)	-1.076								KMC	Geo	Mean	0.3	41
99						K	M SD (I	ogged)	0.577					9	5% C	ritical H	Value	(KN	1-Log)	2.1	33
100			KM	Stand	ard Er	ror of	Mean (I	ogged)	0.159							95% H	I-UCL	(KM	-Log)	0.5	53
101						K	M SD (I	ogged)	0.577					9	5% C	ritical H	Value	(KN	1-Log)	2.1	33
102			KM	Stand	ard Er	ror of	Mean (I	ogged)	0.159												
103			N	ote: KN	UCL	s may	be bia	sed lov	v with this d	ataset.	Other	substit	ution n	nethod	l reco	mmend	ed				
104																					
105									DL/2 \$	Statisti	cs										
106				DL/2	Norm	nal								DL/2 L	.og-Tr	ansforr	ned				
107					Me	ean in	Origina	I Scale	0.558							M	ean in l	Log	Scale	-1.13	31
108						SD in	Origina	I Scale	0.788								SD in I	Log	Scale	0.9	52
109				95% t	UCL	(Assur	mes nor	rmality)	0.903								95% H	-Sta	t UCL	0.9	7
110				DL/2	2 is no	t a rec	comme	nded m	ethod, prov	ided fo	or comp	arison	s and r	istorio	cal rea	asons					
111							New		atala Distaila				-								
112				D			NON	param				LStat	Stics								
113				D	electe	a Data	a appea	ar Appr	oximate Ga	mma L	vistridu	ted at :	o% Sigi	nifican		evei					
114									Suggostor												
115				05%		liuctor	1 Comm			JUCL	lo Use			05%		Adjuct	ad Car	<u></u>		0.6	12
116				95 %		Jusiec	Gamin		0.705					95 /6 0	anua	Aujusi	eu Gai		3 UCL	0.0	43
117				W/bc	n a d	ata sot	tfollows	an an	provimate di	istributi	ion nas	sina or	ly one	of the	COF	tasts					
118				itice						distribu	ition na	sing of			e in P						
119				11 13 3	uyyes					uistribu	luon pa	SSING L			5 11 1	IUUUL					
120		Note: Suga	estion	s rena	rdina t	he sel	ection c	of a 95%	6 UCL are n	rovide	to hel	n the u	ser to s	elect t	he mo	ost annr	onriate	95			
121		Reco	mmer	dation	s are h	based	upon da	ata size	. data distrit	oution	and sk	ewness	s usina	results	s from	simula	tion st	udie	 S.		
122	Но	wever. sim	nulatio	ns resu	Its wil	I not c	over all	Real V	Vorld data se	ets; for	additio	nal ins	ght the	userr	nav w	ant to c	onsult	a st	atistici	ian.	
123		,								-,			5		- , .						
124																					

	٨	1	D				_	0		<u>г г</u>	<u> </u>	L/	
1	A		D			UCL Statis	tics for Data	Sets with N	on-Detects		J	ĸ	L
2													
3		Us	er Sele	cted Options	s								
4	D	ate/Tin	ne of Co	omputation	ProUCL 5.2	2 3/6/2023 1:3	36:19 PM						
5				From File	UCL95_inp	ut_Revised.x	ls						
6			Ful	I Precision	OFF								
7		Conf	idence	Coefficient	95%								
8	Number	of Boo	otstrap (Operations	2000								
9													
10	200 IA Ca	rbon T	etrachl	oride									
11													
12							General	Statistics					
13				Tota	I Number of (Observations	16			Numbe	r of Distinct (Observations	8
14					Numb	er of Detects	15				Number of	Non-Detects	1
15				N	lumber of Dis	stinct Detects	7			Numbe	er of Distinct	Non-Detects	1
16					Min	imum Detect	0.37				Minimum	n Non-Detect	5.8
17					Max	timum Detect	0.45				Maximum	n Non-Detect	5.8
18					Varia	ance Detects	6.2857E-4				Percent	Non-Detects	6.25%
19					N	lean Detects	0.4					SD Detects	0.0251
20					Me	edian Detects	0.39					CV Detects	0.0627
21					Skew	ness Detects	0.628				Kurl	tosis Detects	-0.587
22					Mean of Log	gged Detects	-0.918				SD of Log	gged Detects	0.0618
23													
24						Norn	nal GOF Tes	t on Detects	Only				
25					Shapiro Wilk	Test Statistic	0.908			Shapiro Wi	lk GOF Test	1	
26				1% S	Shapiro Wilk (Critical Value	0.835	De	etected Data	appear Norr	nal at 1% Sig	gnificance Lev	vel
27					Lilliefors	Test Statistic	0.188			Lilliefors	GOF Test		
28				1	1% Lilliefors (Critical Value	0.255	De	etected Data	appear Norr	nal at 1% Sig	gnificance Lev	vel
29					De	etected Data	appear Norn	nal at 1% Sig	inificance L	evel			
30													
31				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	ritical Value	s and other	Nonparamet			
32						KM Mean	0.4			KN	A Standard E	rror of Mean	0.00647
33						90KM SD	0.0242			050/ 1/14/15	95% KN	I (BCA) UCL	0.411
34					95%		0.411			95% KM (P		otstrap) UCL	0.41
35					95%		0.411					Distrap t UCL	0.413
36				0		ebysnev UCL	0.419					bysnev UCL	0.428
37				9/			U.44	taaat Othar	aubatitution	mothed ree		ebysnev UCL	0.464
38							v wiut this da	iaset. Uther	SUDSTITUTION	method lec	ommended		
39							Tooto on D	tootod Ohaa	notione Or				
40					(Tost Statiatia						oct	
41					A-D		0.301	Dotooto		anderson-Da		5% Significan	
42					5% A-D (Tost Statiatia	0.734	Detected			Smirnov CC	s /o significan	Ce Level
43					۲۵ ۲% ۲ ۵ ۱	Critical Value	0.190	Detector	I sonne eteb t	ar Gamma Di	istributed at 1	n 5% Significan	
44					Detector			etributed at f	uala appea				
45					Delecte	u uata appea				IICE LEVEI			
46													

UCL95_200_IA_Carbon_Tetrachloride

	А	В	С	D	E	F	G	Н		J	K	L
47					Gamma	Statistics or	Detected D	ata Only				
48					k hat (MLE)	278.1			k :	star (bias cor	rected MLE)	222.6
49				The	ta hat (MLE)	0.00144			Theta	star (bias cor	rected MLE)	0.0018
50				r	nu hat (MLE)	8344				nu star (bia	as corrected)	6677
51				Me	an (detects)	0.4						
52												
53				G	amma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
54			GROS may	not be used	when data s	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs		
55		GROS may	not be used	when kstar of	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
56			Fo	r such situati	ons, GROS	method may	yield incorre	ct values of	UCLs and B	ΓVs		
57				T	his is espec	ially true whe	en the sample	e size is sma	all.			
58		For gan	nma distribut	ed detected	data, BTVs a	and UCLs ma	y be comput	ed using ga	mma distribu	tion on KM e	stimates	
59					Minimum	0.37					Mean	0.4
60					Maximum	0.45					Median	0.395
61					SD	0.0242					CV	0.0606
62					k hat (MLE)	296.7			k	star (bias cor	rected MLE)	241.1
63				The	ta hat (MLE)	0.00135			Theta	star (bias cor	rected MLE)	0.00166
64				r	nu hat (MLE)	9494				nu star (bia	as corrected)	7715
65			Adjusted	Level of Sig	nificance (β)	0.0335						
66		Ap	oproximate C	hi Square Va	alue (N/A, α)	7512			Adjusted C	Chi Square V	alue (N/A, β)	7489
67			95% G	amma Appro	ximate UCL	0.411			95	% Gamma A	djusted UCL	0.412
68												
69				Es	timates of G	amma Para	meters using	g KM Estima	ites			
70					Mean (KM)	0.4					SD (KM)	0.0242
71				Va	ariance (KM)	5.8667E-4				SE o	f Mean (KM)	0.00647
72					k hat (KM)	272.7					k star (KM)	221.6
73					nu hat (KM)	8727					nu star (KM)	7092
74				the	eta hat (KM)	0.00147				the	eta star (KM)	0.0018
75			80%	6 gamma per	centile (KM)	0.422			90%	6 gamma pe	rcentile (KM)	0.435
76			95%	6 gamma per	centile (KM)	0.445			99%	6 gamma pe	rcentile (KM)	0.465
77												
78					Gamn	na Kaplan-M	eier (KM) St	atistics				
79		Ap	oproximate C	hi Square Va	alue (N/A, α)	6897			Adjusted C	Chi Square V	alue (N/A, β)	6876
80			95% KM A	pproximate G	Gamma UCL	0.411			95% K	M Adjusted (Gamma UCL	0.413
81			Note: KM	UCLs may b	e biased low	v with this da	taset. Other	substitution	method rec	ommended		
82												
83				Lo	gnormal GC	OF Test on D	etected Obs	ervations O	nly			
84			S	hapiro Wilk T	est Statistic	0.914			Shapiro Wi	lk GOF Test		
85			10% SI	napiro Wilk C	critical Value	0.901	Dete	ected Data a	opear Lognoi	mal at 10%	Significance I	_evel
86				Lilliefors T	est Statistic	0.188			Lilliefors	GOF Test		
87			10	% Lilliefors C	critical Value	0.202	Dete	ected Data a	opear Lognoi	rmal at 10%	Significance I	_evel
88				Detec	cted Data ap	pear Lognor	mal at 10%	Significance	Level			
89												

UCL95_200_IA_Carbon_Tetrachloride

	А	В	С	Т	D		E	F	G		Н	Τ			J		K		L
90					L	ognorm	al RO	S Statistics	Using Im	pute	d Non-	Deteo	cts						
91				М	ean in (Original	Scale	0.4							Me	an ir	n Log Sc	ale	-0.918
92					SD in (Original	Scale	0.0242								SD ir	n Log Sc	ale	0.0597
93		95% t L	JCL (assun	nes no	ormality	of ROS	data)	0.411						95% I	Percentil	e Boc	otstrap U	CL	0.41
94				95%	BCA B	Bootstrap	p UCL	0.411							95%	Boot	strap t U	CL	0.412
95				95	% H-U0	CL (Log	ROS)	N/A								-			
96																		1	
97			Sta	tistics	using l	KM esti	mates	on Logged	Data and	l Ass	uming	Logn	ormal	Distri	bution				
98					KMN	Mean (lo	gged)	-0.918								KM	Geo Me	ean	0.399
99					K١	VI SD (lo	gged)	0.0597					1	95% (Critical H	Valu	e (KM-L	og)	N/A
100			KM Stand	Jard E	rror of N	Mean (lo	gged)	0.016							95% H	-UCI	_ (KM -L	og)	N/A
101					K١	M SD (lo	gged)	0.0597					1	95% (Critical H	Valu	e (KM-L	og)	N/A
102			KM Stand	Jard E	rror of N	Mean (lo	gged)	0.016											
103								·											
104								DL/2 S	tatistics										
105			DL/2	2 Norr	nal								DL/2	Log-1	ransform	ned			
106				М	ean in (Original	Scale	0.556							Me	ean ir	n Log Sc	ale	-0.794
107					SD in (Original	Scale	0.625								SD ir	n Log Sc	ale	0.499
108			95%	t UCL	(Assum	nes norr	nality)	0.83							9)5% I	H-Stat U	CL	0.667
109			DL/:	2 is no	ot a rec	ommen	ded m	ethod, provi	ded for c	omp	arisons	and	histor	ical re	asons				
110																			
111						Nonp	parame	etric Distribu	tion Free	e UC	L Statis	stics							
112				ļ	Detecte	ed Data	appea	ar Normal Di	stributed	at 1	% Sign	ifican	ce Le	vel					
113																			
114								Suggested	UCL to l	Jse									
115					959	% KM (t) UCL	0.411											
116																			
117	1	Note: Sugge:	stions rega	arding ¹	the sele	ection of	a 95%	6 UCL are pr	ovided to	o help	the us	ser to	select	the m	nost appr	opria	te 95% l	JCL	
118		Recom	mendation	is are	based u	upon dat	ta size	, data distrib	ution, and	d ske	wness	using	g resul	ts froi	n simula	tion s	tudies.		
119	Но	wever, simu	lations res	ults wi	ll not co	over all F	Real V	/orld data se	ts; for ad	ditior	nal insię	ght th	e user	may	want to c	onsu	lt a stati	sticia	an.
120																			

	А	В	С	D	F	F	G	Н		J	к	
1					UCL Statis	tics for Data	Sets with N	on-Detects		, ů	~	-
2												
3		User Sele	ected Options	6								
4	Da	te/Time of C	computation	ProUCL 5.2	3/6/2023 1:3	37:22 PM						
5			From File	UCL95_inp	ut_Revised.x	ls						
6		Fι	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10	200 IA Chie	oromethane										
11												
12						General	Statistics					
13			Tota	I Number of C	Observations	16			Numbe	r of Distinct (Observations	11
14				Numb	er of Detects	15				Number of	Non-Detects	1
15			N	umber of Dis	tinct Detects	10			Numbe	er of Distinct	Non-Detects	1
16				Min	imum Detect	0.29				Minimum	n Non-Detect	5.8
17				Max	imum Detect	0.6				Maximum	n Non-Detect	5.8
18				Varia	ance Detects	0.0164				Percent	Non-Detects	6.25%
19				N	lean Detects	0.469					SD Detects	0.128
20				Me	dian Detects	0.56					CV Detects	0.273
21				Skewr	ness Detects	-0.213				Kur	tosis Detects	-2.077
22				Mean of Log	ged Detects	-0.796				SD of Log	ged Detects	0.29
23					Norm		t on Dotooto	Only				
24			c	Shanira Wilk	NOTI			Uniy	Shanira Wi		•	
25			10/ 9			0.701	г		Shapilo wi	al at 1% Sign	vificanco Lovo	
26			1/0 3			0.000	L			GOE Test		1
27					ritical Value	0.295	г	Detected Dat	a Not Norm:	al at 1% Sign	vificance Leve	1
28					Detected Date	a Not Norma	l at 1% Sign	ificance Lev				1
29									CI			
30			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
31			. apian		KM Mean	0.469			KN	/ Standard E	rror of Mean	0.0331
32					90KM SD	0.124				95% KN	I (BCA) UCL	0.518
33				95%	6 KM (t) UCL	0.527			95% KM (F	ercentile Bo	otstrap) UCL	0.519
34				95%	KM (z) UCL	0.523				95% KM Boo	otstrap t UCL	0.524
36				90% KM Che	byshev UCL	0.568				95% KM Che	byshev UCL	0.613
30			97	.5% KM Che	byshev UCL	0.675				99% KM Che	byshev UCL	0.798
32			Note: KM	UCLs may b	e biased low	with this da	taset. Other	substitution	method rec	ommended		
39												
40				G	amma GOF	Tests on De	etected Obse	ervations On	ly			
41				A-D	Test Statistic	1.547		Α	nderson-Da	rling GOF T	est	
42				5% A-D C	Critical Value	0.736	Detect	ed Data Not	Gamma Dis	tributed at 5%	% Significance	e Level
43				K-S	Test Statistic	0.31		ŀ	Kolmogorov-	Smirnov GC)F	
44				5% K-S C	Critical Value	0.221	Detect	ed Data Not	Gamma Dis	tributed at 5%	% Significance	e Level
45				Detecte	ed Data Not	Gamma Dist	ributed at 5%	6 Significan	ce Level			
46												

UCL95_200_IA_Chloromethane

	А	В	С	D	E	F	G	Н		J	K	L
47					Gamma	Statistics or	n Detected D	Data Only				
48					k hat (MLE)	13.41			k	star (bias cor	rrected MLE)	10.78
49				The	ta hat (MLE)	0.0349			Theta	star (bias cor	rrected MLE)	0.0435
50				r	nu hat (MLE)	402.4				nu star (bia	as corrected)	323.3
51				Me	ean (detects)	0.469						
52												
53				C	Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
54			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	servations at	multiple DLs		
55		GROS may	not be used	when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	ə.g., <15-20)	
56			Fo	r such situati	ions, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
57				Т	his is especi	ally true whe	en the sample	e size is sma	all.			
58		For gan	nma distribut	ed detected	data, BTVs a	and UCLs ma	ay be compu	ted using ga	mma distribu	tion on KM e	stimates	
59					Minimum	0.29					Mean	0.468
60					Maximum	0.6					Median	0.51
61					SD	0.124					CV	0.264
62					k hat (MLE)	14.29			k	star (bias cor	rrected MLE)	11.65
63				The	ta hat (MLE)	0.0328			Theta	star (bias cor	rrected MLE)	0.0402
64				r	nu hat (MLE)	457.4				nu star (bia	as corrected)	372.9
65			Adjusted	Level of Sig	nificance (β)	0.0335						
66		Appro	oximate Chi	Square Value	e (372.95, α)	329.2		ŀ	Adjusted Chi	Square Valu	e (372.95, β)	324.5
67			95% G	amma Appro	oximate UCL	0.53			95	% Gamma A	djusted UCL	0.538
68												
69				Es	stimates of G	iamma Para	meters using	g KM Estima	ites			
70					Mean (KM)	0.469					SD (KM)	0.124
71				Va	ariance (KM)	0.0153				SE o	of Mean (KM)	0.0331
72					k hat (KM)	14.34					k star (KM)	11.69
73					nu hat (KM)	458.8					nu star (KM)	374.1
74				th	eta hat (KM)	0.0327				the	eta star (KM)	0.0401
75			80%	6 gamma per	centile (KM)	0.578			90%	6 gamma pe	rcentile (KM)	0.651
76			95%	6 gamma per	centile (KM)	0.715			99%	6 gamma pe	rcentile (KM)	0.845
77												
78					Gamm	na Kaplan-M	eier (KM) St	atistics			(0=1,1=,0)	
79		Appro	oximate Chi	Square Value	e (3/4.15, α)	330.3		A	Adjusted Chi	Square Valu	e (3/4.15, β)	325.6
80			95% KM A	pproximate (Jamma UCL	0.531			95% K	M Adjusted (Gamma UCL	0.538
81			Note: KM	UCLs may b	e blased low	with this da	taset. Other	[•] substitution	method rec	ommended		
82												
83					ognormal GC	PF lest on D		servations O	nly			
84			S	hapiro Wilk	l est Statistic	0.791			Shapiro Wi	IK GOF Test		
85			10% S	napıro Wilk C	ritical Value	0.901	De	etected Data	Not Lognorm	nal at 10% Si	gnificance Le	vel
86					est Statistic	0.305	-		Lilliefors		i c i i	
87			10	% Lillietors C	ritical Value	0.202	De	etected Data		nai at 10% Si	gnificance Le	vel
88				Det	ected Data	NOT LOGNORM	iai at 10% S	ignificance L	.evel			
89												

UCL95_200_IA_Chloromethane

	А		В	С	D)	E	F	G			H				J		K		L
90						Logno	rmal RO	S Statistics	Using Imp	oute	ed No	on-Dete	ects							
91					Mear	n in Origir	nal Scale	0.468								Mean	1 in Lo	og Scale) -	0.796
92					SD	D in Origin	nal Scale	0.124								SD) in Lo	og Scale	;	0.28
93		g	95% t U	JCL (assum	es norm	ality of R	OS data)	0.522						95%	Percen	tile B	ootst	rap UCL	-	0.517
94					95% BC	CA Bootst	rap UCL	0.514							959	% Bo	otstra	эр t UCL	-	0.523
95					95% H	H-UCL (L	og ROS)	0.537												
96																				
97				Stati	stics us	ing KM e	stimates	on Logged	Data and	Ass	sumir	ng Logr	norma	l Distr	ibution					
98					ŀ	KM Mean	(logged)	-0.796								K	(M Ge	eo Mean	1	0.451
99						KM SD	(logged)	0.28						95%	Critical	H Va	ilue (l	KM-Log))	1.855
100				KM Standa	ard Error	r of Mean	(logged)	0.0748							95%	H-U	CL (k	(M -Log))	0.537
101						KM SD	(logged)	0.28						95%	Critical	H Va	ilue (l	KM-Log))	1.855
102				KM Standa	ard Error	r of Mean	(logged)	0.0748												
103				Note: KM	UCLs n	nay be bi	ased low	/ with this da	taset. Otl	her	subs	titution	meth	od rec	commer	nded				
104																				
105								DL/2 S	tatistics											
106				DL/2	Normal								DL/2	2 Log-	Transfo	rmed	tt			
107					Mear	n in Origir	nal Scale	0.621								Mean	ו in Lo	og Scale	; -	0.679
108					SD	D in Origir	nal Scale	0.62								SD) in Lo	og Scale	;	0.543
109				95% t	UCL (As	ssumes n	ormality)	0.892								95%	% H-S	Stat UCL	-	0.788
110				DL/2	is not a	recomm	ended m	ethod, provi	ded for co	omp	arisc	ons and	l histo	rical r	easons	1				
111																				
112						No	onparame	etric Distribu	tion Free	UC	L Sta	atistics								
113							Data do n	ot follow a [Discernible	e D	istrib	ution								
114																				
115								Suggested	UCL to U	se										
116						95% KN	1 (t) UCL	0.527												
117																				
118		Note: \$	Sugges	stions regar	ding the	selection	of a 95%	6 UCL are pi	ovided to	hel	p the	user to	selec	t the r	nost ap	propr	riate 9	95% UC	L.	
119		F	Recom	mendations	are bas	sed upon	data size	, data distrib	ution, and	ske	ewne	ss usin	g resi	ults fro	m simu	lation	1 stuc	lies.		
120	н	lowever	r, simul	lations resu	Its will no	ot cover a	all Real V	/orld data se	ts; for add	litio	nal ir	nsight th	ne use	er may	want to) cons	sult a	statistic	;ian.	
121																				

	-	_	-					T				
1	A	В	C		E ICL Statis	F tics for Dat	G a Sets with N	On-Detects		J	K	L
2												
3		User Sele	cted Option	s								
4	Dat	e/Time of C	omputation	ProUCL 5.2 3/6	6/2023 1:3	8:05 PM						
5			From File	UCL95_input_	Revised.xl	s						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	200 IA Etha	nol										
11												
12			 .			General	Statistics					45
13			lota	al Number of Obs	ervations	16			Numbe	r of Distinct (Observations	15
14					of Detects	12			Niumala	Number of	Non-Detects	4
15				Number of Distinc		12			NUMDe	Ainimum	Non-Detects	4
16				Movimu	Im Detect	1.0				Moximun	n Non-Detect	1.4
17				Variano		23				Percent	Non-Detects	25%
18				Mea	n Detects	7 225				Tercent	SD Detects	5 756
19				Media	n Detects	6.1					CV Detects	0.797
20				Skewnes	s Detects	2.025				Kur	tosis Detects	5.237
21				Mean of Logge	d Detects	1.719				SD of Lo	aged Detects	0.771
22											55	
23					Norm	al GOF Te	st on Detects	Only				
24				Shapiro Wilk Tes	t Statistic	0.798		-	Shapiro Wi	lk GOF Tes	t	
25			1%	Shapiro Wilk Criti	cal Value	0.805	[Detected Data	Not Norma	al at 1% Sigr	nificance Leve	əl
27				Lilliefors Tes	t Statistic	0.259			Lilliefors	GOF Test		
28				1% Lilliefors Criti	cal Value	0.281	De	etected Data a	ppear Norr	nal at 1% Si	gnificance Le	vel
29				Detected Da	ta appear	Approxima	te Normal at	1% Significa	nce Level			
30												
31			Kaplar	n-Meier (KM) Sta	tistics usir	ng Normal (Critical Value	s and other N	lonparame	tric UCLs		
32					KM Mean	6.067			KN	A Standard E	Error of Mean	1.469
33				9	90KM SD	5.447				95% KN	/ (BCA) UCL	8.65
34				95% KI	M (t) UCL	8.642			95% KM (F	Percentile Bo	otstrap) UCL	8.447
35				95% KN	/I (z) UCL	8.483				95% KM Bo	otstrap t UCL	10.02
36				90% KM Chebys	shev UCL	10.47			(95% KM Che	byshev UCL	12.47
37			ç	7.5% KM Chebys	shev UCL	15.24			ç	99% KM Che	byshev UCL	20.68
38				0	005	T			_			
39								ervations Only	demon D-			
40						0.323	Dotoctor				5% Significar	
41					t Statistic	0.741	Delected			Smirnov CC		
42				5% K-S Criti	cal Value	0.100	Detector	d data annear	Gamma Di	istributed at	5% Significar	ice Level
43				Detected da	ta annear	Gamma D	istributed at P	5% Significan	ce Level			
44					appear	aanina D		eiginnoan				
45												

UCL95_200_IA_Ethanol

	А	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	n Detected D	ata Only				
47					k hat (MLE)	2.086			k	star (bias cor	rected MLE)	1.62
48				The	eta hat (MLE)	3.464			Theta	star (bias cor	rected MLE)	4.461
49				I	nu hat (MLE)	50.05				nu star (bia	as corrected)	38.87
50				Me	ean (detects)	7.225						
51												
52				(Gamma ROS	Statistics u	sing Imputed	l Non-Detec	ts			
53			GROS may	y not be used	I when data so	et has > 50%	6 NDs with m	any tied obs	ervations a	multiple DLs		
54		GROS may	/ not be used	d when kstar	of detects is s	small such a	is <1.0, espe	cially when t	he sample s	ize is small (e	e.g., <15-20)	
55			Fo	or such situat	tions, GROS r	method may	yield incorre	ct values of	UCLs and E	STVs		
56				7	This is especi	ally true whe	en the sample	e size is sma	III.			
57		For gan	nma distribu	ted detected	data, BTVs a	nd UCLs ma	ay be comput	ed using gar	mma distrib	ution on KM e	stimates	
58					Minimum	0.01					Mean	5.694
59					Maximum	23					Median	5.15
60					SD	5.723					CV	1.005
61					k hat (MLE)	0.517			k	star (bias cor	rected MLE)	0.462
62				lhe	eta hat (MLE)	11.01			Iheta	star (bias cor	rected MLE)	12.33
63					nu hat (MLE)	16.55				nu star (bia	as corrected)	14.78
64			Adjusted	Level of Sig	inificance (β)	0.0335					(1170.0)	0.540
65		Арр	proximate Ch	ii Square Val	ue (14.78, α)	/.112			Adjusted C	ni Square Val	ue (14.78, β)	6.513
66			95% 6	iamma Appro	oximate UCL	11.84			9	5% Gamma A	djusted UCL	12.92
67					atimates of O	ommo Doro			•••			
68				E	stimates of G		meters using	J KM Estima	tes			E 447
69					Mean (KM)	0.007				<u>ور</u>	SD (KM)	5.447
70				V	k hot (KM)	29.07				5E 0	r Mean (KM)	1.409
71					K hat (KNI)	1.241					K Star (KIVI)	1.05
72				+6	nu nat (KNI)	39.7				th	nu star (KM)	5 79
73			000	u //		4.09			00			0.70 12.0
74			007		reentile (KM)	9.725			90		reentile (KM)	13.0
75			90.	⁄o yamma pe		17.07			99	% yamma per		21.21
76					Gamm	a Kanlan-M	oior (KM) St	atistics				
77		Ann	provimate Ch	ni Square Val	(33 59 m)	21 33		81131153	Adjusted C	ni Square Val	up (33 59 R)	20.23
78		700	95% KM A		Gamma LICI	9 551			95% I	M Adjusted (Gamma LICI	10.07
79			00701007			0.001			00701			10.07
80				I	ognormal GO	F Test on D	etected Obs	ervations O	nlv			
81			ç	hapiro Wilk	Test Statistic	0.953			Shapiro W	ilk GOF Test		
82			10% S	hapiro Wilk (Critical Value	0.883	Dete	cted Data ar	opear Logno	rmal at 10%	Significance I	evel
83				Lilliefors	Test Statistic	0.169	2010		Lilliefors	GOF Test		
84			10)% Lilliefors (Critical Value	0.223	Dete	cted Data ar	opear Loand	ormal at 10%	Significance L	_evel
85				Dete	cted Data ap	pear Loanor	mal at 10% s	Significance	Level			-
86								3				
8/												

UCL95_200_IA_Ethanol

	A B C D I									F	G			H		I	J			K	L
88							L	.ognorm	al RO	S Statistics	Using Im	pute	ed No	n-Dete	cts						
89						N	lean in (Original	Scale	5.874							М	ean i	in Log	Scale	1.388
90							SD in (Original	Scale	5.53								SD i	in Log	Scale	0.94
91			95% t	UCL	. (assum	nes no	ormality	of ROS	data)	8.298						95% I	Percentil	le Bo	otstra	p UCL	8.325
92						95%	BCA E	Bootstrap	UCL	8.902							95%	Boo	otstrap	t UCL	9.72
93						95	% H-U0	CL (Log	ROS)	11.74											
94																					
95					Stat	tistics	using	KM estir	mates	on Logged	Data and	Ass	sumin	g Logn	ormal	Distri	bution				
96							KM	Mean (lo	gged)	1.447								KN	/I Geo	Mean	4.25
97							KN	M SD (lo	gged)	0.856						95% (Critical H	l Valı	ue (KN	M-Log)	2.49
98				KI	M Stand	ard E	rror of N	Mean (lo	gged)	0.231							95% H	H-UC	CL (KN	1 -Log)	10.62
99							KN	M SD (lo	gged)	0.856						95% (Critical H	l Valı	ue (KN	M-Log)	2.49
100				KI	M Stand	ard E	rror of N	Mean (lo	gged)	0.231											
101																					•
102										DL/2 S	statistics										
103					DL/2	2 Nor	nal								DL/2	Log-T	ransfor	med			
104						N	lean in (Original	Scale	6.534							М	ean i	in Log	Scale	1.414
105							SD in (Original	Scale	6.054								SD i	in Log	Scale	1.088
106					95% t	UCL	(Assun	nes norn	nality)	9.188								95%	H-Sta	at UCL	16.5
107					DL/2	2 is n	ot a rec	ommeno	ded m	ethod, provi	ded for c	omp	ariso	ns and	histor	rical re	asons				
108																					
109								Nonp	arame	etric Distribu	ition Free	OU e	L Sta	tistics							
110					D	etect	ed Data	a appear	Appr	oximate Nor	mal Distr	ribut	ed at	1% Sig	Inifica	nce L	evel				
111																					
112										Suggested	UCL to U	Jse									
113							95	% KM (t)) UCL	8.642											
114																					
115					Whe	en a c	lata set	follows	an app	proximate di	stribution	pas	sing c	only one	e of the	e GOF	tests,				
116					it is s	ugge	sted to	use a UC	CL bas	sed upon a d	listributior	n pas	ssing	both G	OF te	sts in l	ProUCL				
117																					
118		Not	e: Sugg	estio	ons rega	rding	the sele	ection of	a 95%	6 UCL are p	ovided to	help	p the	user to	select	t the m	lost app	ropria	ate 95	% UCL	
119			Reco	mme	endations	s are	based ι	upon dat	a size	, data distrib	ution, and	d ske	ewne	ss usiną	g resu	lts from	n simula	ation	studie	es.	
120	ŀ	lowe	ver, sim	ulati	ons resu	ults w	ill not co	over all F	Real W	/orld data se	ets; for add	ditio	nal in	sight th	e use	may	want to o	cons	ult a s	tatistic	ian.
121																					

UCL95_200_IA_Freon11

	٨	Р						Ц				
-	A	D		U	□ UCL Statis	tics for Data	a Sets with No	on-Detects	1	J	n.	
2		User Sele	cted Options	6								
3	Da	te/Time of Co	omputation	ProUCL 5.2	3/6/2023 1:3	9:03 PM						
4			From File	UCI 95 inpu	t Revised x	s						
5		Fu	Il Precision	OFF								
6		Confidence	Coefficient	95%								
7	Number	of Bootstran	Operations	2000								
8			oporatione									
9	200 IA Fred	on 11										
10												
10						General	Statistics					
12			Tota	I Number of O	bservations	16			Numbe	r of Distinct	Observations	12
14				Numbe	r of Detects	15				Number of	Non-Detects	1
14			N	umber of Disti	inct Detects	11			Numbe	er of Distinct	Non-Detects	1
16				Minir	num Detect	1.3				Minimun	n Non-Detect	6.6
17				Maxir	num Detect	22				Maximun	n Non-Detect	6.6
18				Variar	nce Detects	45.44				Percent	Non-Detects	6.25%
19				Me	ean Detects	4.84					SD Detects	6.741
20				Med	ian Detects	1.6					CV Detects	1.393
21				Skewne	ess Detects	2.199				Kur	tosis Detects	3.725
22				Mean of Log	ged Detects	1.004				SD of Log	gged Detects	0.975
23												1
24					Norm	al GOF Tes	t on Detects	Only				
25			S	Shapiro Wilk T	est Statistic	0.578			Shapiro W	lk GOF Tes	t	
26			1% S	hapiro Wilk C	ritical Value	0.835	C	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	əl
27				Lilliefors T	est Statistic	0.326			Lilliefors	GOF Test		
28			1	% Lilliefors C	ritical Value	0.255	C	etected Data	a Not Norm	al at 1% Sigr	nificance Leve	əl
29				De	etected Data	a Not Norma	al at 1% Signi	ficance Leve	el			
30												
31			Kaplan-	Meier (KM) S	tatistics usir	ng Normal C	Critical Values	s and other N	Nonparame	tric UCLs		1
32					KM Mean	4.685			KI	A Standard E	Error of Mean	1.645
33					90KM SD	6.346				95% KN	/I (BCA) UCL	7.475
34				95%	KM (t) UCL	7.569			95% KM (F	Percentile Bo	otstrap) UCL	7.412
35				95%	KM (z) UCL	7.391				95% KM Bo	otstrap t UCL	14.48
36				90% KM Cheb	yshev UCL	9.621				95% KM Che	ebyshev UCL	11.86
37			97	v.5% KM Cheb	byshev UCL	14.96				99% KM Che	ebyshev UCL	21.06
38						Tasta an D			L -			
39				G			elected Obse		y domen D-		t	
40					ritical Value	0.763	Dotoct	AI	Gamma Dia	tributed at 50	vol	
41				5 /0 A-D U		0.703	DeleCte			Smirnov CC		
42				5% K-S C	ritical Value	0.000	Detecte	A Data Not	Gamma Die	tributed at 50	% Significant	
43				Detected	d Data Not (Jamma Diel	ributed at 5%					
44				Delecter				, Significant				
45												

UCL95_200_IA_Freon11

	А	В	С	D	E	F	G	Н	I	J	K	L	
46		Gamma Statistics on Detected Data Only											
47					k hat (MLE)	1.007	k star (bias corrected MLE)					0.85	
48				The	ta hat (MLE)	4.806	Theta star (bias corrected MLE)					5.693	
49				I	nu hat (MLE)	30.21	nu star (bias corrected)					25.5	
50				Me	ean (detects)	4.84							
51													
52		Gamma ROS Statistics using Imputed Non-Detects											
53	GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs												
54	GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)												
55	For such situations, GROS method may yield incorrect values of UCLs and BTVs												
56	This is especially true when the sample size is small.												
57	For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates												
58					Minimum	1.3	Mean					4.669	
59	Maximum					22		Median					
60					SD	6.548		CV					
61					k hat (MLE)	1.039		k star (bias corrected MLE)				0.886	
62	Theta hat (MLE)					4.493		Theta star (bias corrected MLE)				5.27	
63	nu hat (MLE)					33.25	nu star (bias corrected)				28.35		
64	Adjusted Level of Significance (β)					0.0335							
65	Approximate Chi Square Value (28.35, α)					17.2		Adjusted Chi Square Value (28.35, β)				16.22	
66			95% G	Samma Appro	oximate UCL	7.695			95	% Gamma A	djusted UCL	8.162	
67													
68	Estimates of Gamma Parameters using KM Estimates												
69					Mean (KM)	4.685				05 -	SD (KM)	6.346	
70	Variance (KM)					40.27	SE of Mean (KM)					1.645	
71	K hat (KM)					0.545	k star (KM)					0.484	
72	nu hat (KM)					17.44		thota star (KM)					
73	unera nat (KM)					8.596							
74	80% gamma percentile (KM)					7.682		90% gamma percentile (KM)					
75			95%	% gamma pe	rcentile (KIM)	18.2			99%	₆ gamma per	centile (KIVI)	31.62	
76													
77		Gamma Kaplan-Meier (KM) Statistics											
78		Арр		n Square var	1000000000000000000000000000000000000	0.54				Adjusted (Le $(15.50, \beta)$	10.39	
79			93% KIVI A	opproximate o		9.54			95% K	ivi Aujusteu (10.39	
80													
81		Lognormal GOF Test on Detected Observations Only											
82		10% Shapiro Wilk Critical Value 0.901 Detocted Data Not Leanormal at 10% Significance La									vol		
83		Lilliefors Test Statistic 0.286											
84		10% Lilliefors Critical Value 0.202 Detected Data Not Lognormal at 10% Significance L										vol	
85		Detected Data Not Lognormal at 10% Significance Level											
86				Dei			iai al 1076 S	igninicance L					
87													
UCL95_200_IA_Freon11

	А	В	С	D	E	F	G	ŀ	1	I		J		К	L
88					Lognormal RC	S Statistics	Using Impu	ted Non	-Detec	ts					
89				Mean in	Original Scale	4.68						Me	an in L	_og Scale	0.993
90				SD in	Original Scale	6.543						S	SD in L	_og Scale	0.943
91		95% t l	JCL (assum	es normality	y of ROS data)	7.548				95	5% Pe	ercentile	Boots	strap UCL	7.397
92				95% BCA	Bootstrap UCL	. 8.299						95% E	Bootst	rap t UCL	15.21
93				95% H-U	ICL (Log ROS)	7.966									
94															
95			Stat	istics using	KM estimates	on Logged	Data and As	ssuming	Logno	ormal Di	istrib	ution			
96				KM	Mean (logged)	0.985							KM G	Geo Mean	2.677
97				K	M SD (logged)	0.925				95	5% Cr	itical H `	Value	(KM-Log)	2.591
98			KM Stand	ard Error of	Mean (logged)	0.242						95% H-	-UCL ((KM -Log)	7.623
99				K	M SD (logged)	0.925				95	5% Cr	itical H	Value	(KM-Log)	2.591
100			KM Stand	ard Error of	Mean (logged)	0.242									
101															
102						DL/2 S	tatistics								
103			DL/2	Normal						DL/2 Lo	og-Tra	ansform	ed		
104				Mean in	Original Scale	4.744						Me	an in L	_og Scale	1.016
105				SD in	Original Scale	6.523						5	SD in L	_og Scale	0.943
106			95% t	UCL (Assu	mes normality)	7.603						9	5% H-	-Stat UCL	8.154
107			DL/2	is not a re	commended m	nethod, provi	ded for corr	parison	s and I	nistorica	al rea	sons			
108															
109					Nonparam	etric Distribu	ition Free U	CL Stat	istics						
110					Data do I	not follow a [Discernible	Distribu	tion						
111															
112						Suggested	UCL to Use	Ð							
113				9	5% KM (t) UCL	7.569									
114															
115		The ca	alculated U	CLs are bas	ed on assump	tions that the	e data were	collecte	ed in a	random	n and	unbiase	ed mai	nner.	
116				Ple	ase verify the	data were co	ollected from	n rando	m locat	ions.					
117				If the data	were collecte	d using judg	mental or of	ther non	-rando	m meth	iods,				
118					then contact a	statistician	to correctly	calculat	te UCL	s.					
119															
120	I	Note: Sugge	stions rega	ding the sel	lection of a 959	% UCL are pr	ovided to he	elp the u	ser to s	select th	ne mo	st appro	opriate	95% UC	L.
121		Recom	nmendations	s are based	upon data size	e, data distrib	ution, and s	kewnes	s using	results	from	simulati	ion stu	idies.	
122	Ho	wever, simu	lations resu	lts will not c	over all Real V	Vorld data se	ts; for additi	ional ins	ight the	e user m	nay w	ant to co	onsult	a statistic	ian.
123															

	А	В	3	С	D	E	F	G	Н		J	К		L
1						UCL Statis	tics for Data	a Sets with N	on-Detects					_
2														
3		User	Sele	cted Option	s									
4	Da	ate/Time	of Co	omputation	ProUCL 5.2	2 3/6/2023 1:4	0:06 PM							
5				From File	UCL95_inp	ut_Revised.x	ls							
6			Ful	II Precision	OFF									
7		Confid	ence	Coefficient	95%									
8	Number	of Boots	strap (Operations	2000									
9														
10	200 IA Fre	on 12												
11							0	04-41-41-5						
12				Tata	I Niumbar of (<u>Obe em retiene</u>		Statistics		Numera	e of Distingt	Ohaamiatiama		-
13				lota		Joservations	10			NUMDe		Observations		5
14				Ν		tinct Detects	15			Numbr	number of	Non-Delects		1
15				ľ		imum Dotoot	+ 22			NULLIDE	Minimur			6.6
16					Max	imum Detect	2.3				Maximun	n Non-Detect		6.6
17					Varia	ance Detects	0.0155				Percent	Non-Detects		6.25%
18					N	lean Detects	2 447					SD Detects		0.125
19					Me	dian Detects	24					CV Detects	(0.0509
20					Skewi	ness Detects	0.982				Kur	tosis Detects		0.648
21					Mean of Log	ged Detects	0.894				SD of Lo	gged Detects	(0.05
22														
23						Norn	nal GOF Tes	t on Detects	Only					
25				:	Shapiro Wilk	Test Statistic	0.848			Shapiro Wi	lk GOF Tes	t		
26				1% 5	Shapiro Wilk (Critical Value	0.835	De	tected Data	appear Norr	nal at 1% Si	gnificance Le	vel	
27					Lilliefors	Test Statistic	0.246			Lilliefors	GOF Test			
28					1% Lilliefors (Critical Value	0.255	De	tected Data	appear Norr	nal at 1% Si	gnificance Le	vel	
29					De	tected Data	appear Norn	nal at 1% Sig	nificance Le	evel				
30														
31				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	Critical Values	s and other l	Nonparame	tric UCLs			
32						KM Mean	2.447			KN	/ Standard E	Error of Mean	(0.0322
33						90KM SD	0.12				95% KN	M (BCA) UCL	Ν	I/A
34					95%	6 KM (t) UCL	2.503			95% KM (F	Percentile Bo	otstrap) UCL	N	I/A
35					95%	KM (z) UCL	2.5				95% KM Bo	otstrap t UCL	N	I/A
36					90% KM Che	byshev UCL	2.543			ę	95% KM Che	ebyshev UCL		2.587
37				9	7.5% KM Che	byshev UCL	2.648			(99% KM Che	ebyshev UCL		2.767
38							T			• -				
39					(etected Obse	ervations On	ly ndorcer D		loot.		
40					A-D	rition	0.915	Detect		Comme Dia		est	<u></u>	vol
41					5% A-D (0.734	Detecte			Smirnov OC		e Le	vei
42					۲-۵ ۲% ۲ ۵ ۲	ritical Value	0.24ð	Dotoct	Mater Not	Gamma Dia	tributed at 5	∕ı- % Significana		
43					J /o K-O (ad Data Not	Gamma Diet	ributed at 5%			anduteu al o		e Le	
44					Delecti				Significant					
45														

UCL95_200_IA_Freon12

	Α	В	С	D	E	F	G	Н	I	J	K	L
46					Gamma	Statistics or	Detected D	ata Only				
47					k hat (MLE)	424.1			k	star (bias co	orrected MLE)	339.3
48				The	eta hat (MLE)	0.00577			Theta	star (bias co	orrected MLE)	0.00721
49					nu hat (MLE)	12723				nu star (bi	as corrected)	10179
50				М	ean (detects)	2.447						
51												
52					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS mag	y not be use	d when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DL	S	
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when the the second s	ne sample si	ize is small ((e.g., <15-20)	
55			Fo	or such situa	tions, GROS	method may	yield incorre	ect values of	JCLs and B	TVs		
56					This is espec	ially true whe	en the sample	e size is sma	II.			
57		For gar	nma distribu	ted detected	I data, BTVs a	and UCLs ma	ay be comput	ted using gar	nma distribu	tion on KM e	estimates	1
58					Minimum	2.3					Mean	2.447
59					Maximum	2.7					Median	2.4
60					SD	0.12					CV	0.0492
61					k hat (MLE)	452.3			k	star (bias co	prrected MLE)	367.6
62				The	eta hat (MLE)	0.00541			Theta	star (bias co	prrected MLE)	0.00666
63					nu hat (MLE)	14475				nu star (bi	as corrected)	11762
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		Aj	pproximate (Chi Square \	/alue (N/A, α)	11511			Adjusted (Chi Square V	/alue (N/A, β)	11483
66			95% C	Gamma Appr	oximate UCL	2.5			95	% Gamma A	Adjusted UCL	2.506
67												
68				E	stimates of C	amma Para	meters using	g KM Estima	tes			A 10
69					Mean (KM)	2.447					SD (KM)	0.12
70				V	ariance (KM)	0.0145				SE	of Mean (KM)	0.0322
71					k hat (KM)	413.2					k star (KM)	335.7
72					nu hat (KM)	13221					nu star (KM)	10743
73				t	heta hat (KM)	0.00592				th	eta star (KM)	0.00729
74			809	% gamma pe	ercentile (KM)	2.558			909	% gamma pe	ercentile (KM)	2.619
75			959	% gamma pe	ercentile (KM)	2.67			999	% gamma pe	ercentile (KM)	2.768
76												
77				<u></u>	Gamn	na Kaplan-M	eier (KM) St	atistics				10170
78		A	pproximate (Chi Square V	/alue (N/A, α)	10503			Adjusted (Chi Square V	/alue (N/A, β)	10476
79			95% KM A	Approximate	Gamma UCL	2.503			95% K	M Adjusted	Gamma UCL	2.509
80									- h -			
81					ognormal GC			servations O	niy Ohonim 114		•	
82			100/ 0			0.858	D		Snapiro w		i t	
83			10% S			0.901	De	elected Data			oignificance Le	evei
84				LIIIIefors		0.241		to atc d D - to			ionifican '	
85			10	1% LIIIIefors	Critical Value	0.202	De De			nai at 10% S	oignificance Le	evei
86				De	etected Data		aı at 10% Si	ignificance L	evel			
87												

UCL95_200_IA_Freon12

	Α	В	С		D		F	F	G		Н	Τ				I		К	1
88	7	D	Ū		L	ognorm	nal RO	S Statistics	Using Im	npute	d Non	Detec	cts		Ű	-		IX.	
89				M	ean in C	Original	Scale	2.446							М	ean ii	n Lo	og Scale	0.894
90					SD in C	Original	Scale	0.12								SD i	n Lo	g Scale	0.0483
91		95% t L	JCL (assum	nes no	rmality	of ROS	6 data)	2.499						95% I	Percentil	e Boo	otstr	ap UCL	2.499
92				95%	BCA B	ootstra	p UCL	2.505							95%	Boot	tstra	pt UCL	2.515
93				959	% H-UC	CL (Log	ROS)	N/A											
94								1											
95			Stat	tistics	using k	KM esti	mates	on Logged	Data and	d Ass	uming	Logn	ormal	Distri	bution				
96					KM N	/lean (lo	ogged)	0.894								KN	1 Ge	eo Mean	2.444
97					KN	/I SD (Ic	ogged)	0.0483					1	95% (Critical H	Valu	le (K	(M-Log)	N/A
98			KM Stand	lard Er	ror of N	/lean (lo	ogged)	0.0129							95% H	I-UC	L (K	M -Log)	N/A
99					KN	/I SD (Ic	ogged)	0.0483					1	95% (Critical H	Valu	ıe (K	(M-Log)	N/A
100			KM Stand	lard Er	ror of N	/lean (lo	ogged)	0.0129											
101								1											
102								DL/2 S	tatistics										
103			DL/2	2 Norn	nal								DL/2	Log-1	ransfori	ned			
104				M	ean in C	Original	Scale	2.5							М	ean ii	n Lo	og Scale	0.912
105					SD in C	Original	Scale	0.245								SD ii	n Lo	og Scale	0.0893
106			95% t	t UCL	(Assum	nes nori	mality)	2.607								95%	H-S	tat UCL	N/A
107			DL/2	2 is no	ot a reco	ommen	ded m	ethod, provi	ded for c	comp	arison	s and	histor	ical re	asons				
108																			
109						Nonp	baram	etric Distribu	tion Free	e UC	L Stati	stics							
110				[Detecte	ed Data	appea	ar Normal Di	stributed	l at 1	% Sigr	nifican	ce Le	vel					
111																			
112								Suggested	UCL to	Use									
113					959	% KM (1	t) UCL	2.503											
114																			
115	1	Note: Sugge	stions rega	rding t	he sele	ection of	f a 95%	6 UCL are pr	ovided to	o help	the us	ser to	select	the m	lost appl	opria	ate 9	95% UCL	
116		Recom	mendation	s are t	based u	ipon da	ta size	, data distrib	ution, an	ld ske	wness	using	resul	ts froi	n simula	tion s	studi	ies.	
117	Но	wever, simu	lations resu	ults wil	l not co	over all	Real V	Vorld data se	ts; for ad	ditior	nal insi	ght th	e user	may	want to o	consu	ulta	statistici	an.
118									-	-					-			-	

	А	В	С	D	E	F	G	Н		J	К	L
1					UCL Statis	stics for Unc	ensored Full	Data Sets				
2												
3		User Sele	ected Options	6								
4	Dat	e/Time of C	omputation	ProUCL 5.2 3	/6/2023 1:3	39:34 PM						
5			From File	UCL95_input_	_Revised.x	ls						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10												
11	200 IA Freo	n 113										
12												
13						General	Statistics					
14			Tota	I Number of Ob	servations	16			Numbe	r of Distinct	Observations	15
15									Numbe	r of Missing	Observations	0
16					Minimum	0.53					Mean	267.5
17					Maximum	3200					Median	17.5
18					SD	802.3				Std.	Error of Mean	200.6
19				Coefficient o	f Variation	2.999					Skewness	3.704
20						I						I
21						Normal (GOF Test					
22			5	Shapiro Wilk Te	st Statistic	0.38			Shapiro W	ilk GOF Tes	st	
23			1% S	hapiro Wilk Cri	tical Value	0.844		Data Not	t Normal at	1% Significa	ance Level	
24				Lilliefors Te	st Statistic	0.448			Lilliefors	GOF Test		
25			1	% Lilliefors Cri	tical Value	0.248		Data Not	t Normal at	1% Significa	ance Level	
26					Data Not	t Normal at 1	% Significan	ce Level				
27												
28					As	suming Nor	mal Distributi	on				
29			95% N	ormal UCL				95%	UCLs (Adjı	usted for Sk	ewness)	
30				95% Stude	ent's-t UCL	619.2		ę	95% Adjuste	ed-CLT UCL	. (Chen-1995)	795.9
31									95% Modifi	ed-t UCL (J	ohnson-1978)	650.1
32												
33						Gamma	GOF Test					
34				A-D Te	st Statistic	1.49		Anders	son-Darling	Gamma G	OF Test	
35				5% A-D Cri	tical Value	0.866	Da	ata Not Gam	ma Distribu	ted at 5% Si	gnificance Lev	vel
36				K-S Te	st Statistic	0.285		Kolmog	orov-Smirne	ov Gamma	GOF Test	
37				5% K-S Cri	tical Value	0.236	Da	ata Not Gam	ma Distribu	ted at 5% Si	gnificance Lev	/el
38				Data	Not Gam	ma Distribut	ed at 5% Sig	nificance Le	vel			
39												
40						Gamma	Statistics					
41				k	hat (MLE)	0.238			k	star (bias co	orrected MLE)	0.235
42				Theta	hat (MLE)	1123			Theta	star (bias co	prrected MLE)	1138
43				nu	hat (MLE)	7.621				nu star (b	ias corrected)	7.525
44			Μ	LE Mean (bias	corrected)	267.5				MLE Sd (b	ias corrected)	551.7
45								1	Approximate	e Chi Squar	e Value (0.05)	2.463
46			Adju	sted Level of Si	gnificance	0.0335			A	djusted Chi	Square Value	2.146
47												

	А	В	С		D	E	F	G	Н			J		К	L
48		-	-	-		-	Assuming Gar	nma Distribu	tion	-					
49			95% A	Approxi	imate (Gamma U(CL 817.3			!	95%	6 Adjusted	d Gar	nma UCL	938.1
50															
51							Lognorma	al GOF Test							
52			Ś	Shapiro	o Wilk ⁻	Test Statis	tic 0.922		Sha	piro Wilk L	.ogr	normal GO	OF Te	est	
53			10% S	Shapiro	Wilk C	Critical Val	ue 0.906		Data appea	r Lognorm	al a	t 10% Sig	nifica	ince Level	
54				Lilli	iefors -	Test Statis	tic 0.182		Li	lliefors Log	gno	rmal GOF	Tes	t	
55			1(0% Lilli	efors (Critical Val	ue 0.196		Data appea	r Lognorm	al a	t 10% Sig	nifica	ince Level	
56						Data appe	ar Lognormal	at 10% Signi	ificance Lev	el					
57															
58							Lognorm	al Statistics							
59				Minim	um of I	Logged Da	ta -0.635					Mean	of log	ged Data	2.583
60				Maxim	um of l	Logged Da	ta 8.071					SD	of log	ged Data	2.591
61						-									
62						A	ssuming Logn	ormal Distrib	ution		0/ 0		(1.0.)		050.0
63			050/	0		95% H-U	L 16209			90	% C	nebysnev			650.8
64			95%	Cheby	/shev (L 853.5			97.5	% C	hebyshev	/ (MV	UE) UCL	1135
65			99%	Cheby	/snev (MVUE) UG	L 1688								
66						Managara	es stels Distelle								
67						Nonpara			Distribution						
68						Data app	ear to follow a	a Discernible	Distribution						
69						Non	parametric Di	stribution Ero							
70					QF						Q	5% BCA	Roote	tran LICI	900 9
71			95%	6 Stand	lard Bo	otstran U	CL 588.3				5	95% B	ootstr	an-t UCI	5866
72				95% Ha	all's Bo	otstrap U	CI 4024			959	% P	ercentile	Boots	trap UCI	651
73			90% C	hebvsh	nev(Me	an. Sd) U	CL 869.3			95%	Che	ebvshev(N	lean.	Sd) UCL	1142
74			97.5% C	hebysh	nev(Me	an, Sd) U	CL 1520			99%	Che	byshev(N	lean,	Sd) UCL	2263
75				-	•									,	
70							Suggested	UCL to Use							
78				95	5% Stu	dent's-t U	CL 619.2								
79															
80		The ca	alculated UC	CLs are	based	d on assur	nptions that th	e data were	collected in	a random :	and	unbiased	d mar	nner.	
81					Pleas	e verify th	e data were c	ollected from	random loc	ations.					
82				If the	data w	ere collec	ted using judg	mental or oth	ner non-rand	lom metho	ods,				
83					th	en contac	a statistician	to correctly o	calculate UC	CLs.					
84															
85		Note: Sugge	estions regar	ding the	e selec	ction of a 9	5% UCL are p	rovided to he	lp the user to	o select the	e mo	ost approp	oriate	95% UCL	
86		Recon	nmendations	are ba	ased up	oon data si	ze, data distrit	oution, and sk	ewness usir	ng results f	rom	simulatio	on stu	dies.	
87	He	owever, simu	ulations resu	lts will r	not cov	/er all Rea	World data se	ets; for additio	onal insight t	he user ma	ay w	ant to co	nsult	a statistici	an.
88															

	A	В	С	D	E	F	G	Н	I	J	К	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	ected Options	6								
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 1:4	1:03 PM						
5			From File	UCL95_inpu	It_Revised.xl	s						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
7 8	Number	of Bootstrap	Operations	2000								
0 0												
10	200 IA Hex	kane										
11												
12						General	Statistics					
13			Tota	I Number of C	bservations	16			Numbe	r of Distinct (Observations	14
14				Numbe	er of Detects	8				Number of	Non-Detects	8
15			Ν	umber of Dist	inct Detects	7			Numbe	er of Distinct	Non-Detects	7
16				Mini	mum Detect	0.3				Minimun	n Non-Detect	0.22
17				Maxi	mum Detect	1.2				Maximun	n Non-Detect	5.8
18				Varia	nce Detects	0.159				Percent	Non-Detects	50%
19				М	ean Detects	0.659					SD Detects	0.399
20				Мес	dian Detects	0.46					CV Detects	0.606
21				Skewn	ess Detects	0.574				Kur	tosis Detects	-2.107
22				Mean of Log	ged Detects	-0.58				SD of Log	ged Detects	0.607
23												
24					Norm	al GOF Tes	t on Detects	Only				
25			5	Shapiro Wilk T	est Statistic	0.777			Shapiro Wi	lk GOF Test	t	
26			1% S	hapiro Wilk C	ritical Value	0.749	De	etected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
27				Lilliefors T	est Statistic	0.28			Lilliefors	GOF Test		
28			1	% Lilliefors C	ritical Value	0.333	De	etected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
29				Det	tected Data a	appear Norr	nal at 1% Sig	gnificance Lo	evel			
30				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
31												
32			Kaplan-	Meier (KM) S	Statistics usin	ng Normal C	Critical Value	s and other	Nonparame	tric UCLs		
33					KM Mean	0.455			KN	/I Standard E	Error of Mean	0.0964
34					90KM SD	0.349				95% KN	I (BCA) UCL	0.618
35				95%	KM (t) UCL	0.624			95% KM (F	Percentile Bo	otstrap) UCL	0.617
36				95%	KM (z) UCL	0.614				95% KM Boo	otstrap t UCL	0.662
37				90% KM Chel	byshev UCL	0.745			ę	95% KM Che	ebyshev UCL	0.875
38			97	7.5% KM Chel	byshev UCL	1.057			ę	99% KM Che	ebyshev UCL	1.414
39												
40				G	amma GOF	Tests on De	etected Obse	ervations Or	ly			
41				A-D T	est Statistic	0.789		A	nderson-Da	rling GOF T	est	
42				5% A-D C	ritical Value	0.721	Detect	ed Data Not	Gamma Dis	tributed at 59	% Significanc	e Level
43				K-S T	est Statistic	0.257		ŀ	Kolmogorov-	Smirnov GC)F	
44				5% K-S C	ritical Value	0.296	Detecte	d data appea	ir Gamma Di	stributed at	5% Significan	ice Level
45				Detected da	ta follow Ap	pr. Gamma	Distribution	at 5% Signifi	cance Leve			
46				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
47												

UCL95_200_IA_Hexane

		1	-	-				-	1	T		
40	A	В	С	D	E Gamma	F Statistics or	G n Detected D	H Data Only		J	К	L
48					k hat (MLE)	3.228			k	star (bias co	rrected MLE)	2.101
49 50				The	eta hat (MLE)	0.204			Theta	star (bias co	rrected MLE)	0.314
50					nu hat (MLE)	51.65				nu star (bi	as corrected)	33.62
51				М	ean (detects)	0.659						
52												
54					Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
55			GROS ma	y not be used	d when data se	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs	;	
56		GROS may	y not be use	d when kstar	of detects is s	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
57			Fo	or such situa	tions, GROS r	method may	yield incorre	ct values of	UCLs and B	TVs		
58					This is especi	ally true whe	en the sample	e size is sma	all.			
59		For gar	mma distribu	ited detected	l data, BTVs a	nd UCLs ma	ay be comput	ed using gai	mma distribu	tion on KM e	estimates	
60					Minimum	0.01					Mean	0.347
61					Maximum	1.2					Median	0.26
62					SD	0.425					CV	1.222
63					k hat (MLE)	0.477			k :	star (bias co	rrected MLE)	0.429
64				The	eta hat (MLE)	0.729			Theta	star (bias co	rrected MLE)	0.81
65					nu hat (MLE)	15.25				nu star (bi	as corrected)	13.73
66			Adjusted	d Level of Sig	gnificance (β)	0.0335						
67		Арр	proximate Ch	ni Square Va	lue (13.73, α)	6.384			Adjusted Ch	i Square Val	lue (13.73, β)	5.822
68			95% (Jamma Appr	roximate UCL	0.747			95	% Gamma A	djusted UCL	0.819
69					ation of O	D						
70				E	stimates of G		meters using	J KM Estima	ites			0.240
71					Mean (KM)	0.400				<u>ور</u>	SD (KM)	0.349
72				V		1 702				5E (1 425
73					K Hat (KW)	54.40					K Star (KM)	1.420
74				+1	hota bat (KM)	0.267				th	nu star (KM)	45.01
75			809	w w damma ne	arcentile (KM)	0.207			909		rcentile (KM)	0.52
76			959	% gamma pe	ercentile (KM)	1 207			909	6 gamma pe	rcentile (KM)	1 764
77				/o gamma pe		1.207						1.704
/8					Gamm	a Kaplan-M	eier (KM) Sta	atistics				
/9		App	proximate Ch	ni Square Va	lue (45.61, α)	31.11			Adjusted Ch	i Square Val	ue (45.61, β)	29.75
8U 01			95% KM A	Approximate	Gamma UCL	0.668			95% K	M Adjusted	Gamma UCL	0.698
01 02												
02 92				L	.ognormal GO	F Test on D	etected Obs	ervations O	nly			
84			5	Shapiro Wilk	Test Statistic	0.821			Shapiro Wi	lk GOF Tes	t	
85			10% S	Shapiro Wilk	Critical Value	0.851	De	tected Data	Not Lognorm	nal at 10% S	ignificance Le	vel
86				Lilliefors	Test Statistic	0.242			Lilliefors	GOF Test		
87			10	0% Lilliefors	Critical Value	0.265	Dete	cted Data a	opear Lognoi	rmal at 10%	Significance L	.evel
88				Detected D	ata appear A	pproximate	Lognormal a	t 10% Signif	ficance Leve	1		
89				No	te GOF tests	may be unre	eliable for sm	nall sample :	sizes			
90												

UCL95_200_IA_Hexane

								-				
┝─┥	А	В	С	<u> </u>		F S Statistics	G	H H		J	K	L
91					ynormal KO	S Statistics	using impu		CIS			1 007
92				Mean in O	riginal Scale	0.401				Mean	In Log Scale	-1.287
93				SD in O	riginal Scale	0.383				SD	in Log Scale	0.868
94		95% t l	JCL (assume	es normality o	of ROS data)	0.569			95%	Percentile Bo	potstrap UCL	0.564
95				95% BCA Bo	ootstrap UCL	0.591				95% Boo	otstrap t UCL	0.621
96				95% H-UC	L (Log ROS)	0.706						
97												
98			Statis	stics using K	M estimates	on Logged	Data and As	ssuming Log	normal Distr	ibution		
99				KM M	ean (logged)	-1.011				K	M Geo Mean	0.364
100				KM	SD (logged)	0.621			95%	Critical H Val	lue (KM-Log)	2.184
101			KM Standa	rd Error of M	ean (logged)	0.172				95% H-U0	CL (KM -Log)	0.626
102				KM	SD (logged)	0.621			95%	Critical H Val	lue (KM-Log)	2.184
103			KM Standa	rd Error of M	ean (logged)	0.172						
104												I
105						DL/2 S	tatistics					
106			DL/2	Normal					DL/2 Log-	Fransformed		
107				Mean in O	riginal Scale	0.565				Mean	in Log Scale	-1.137
108				SD in O	riginal Scale	0.73				SD	in Log Scale	1.044
109			95% t l	UCL (Assume	es normality)	0.885				95%	6 H-Stat UCL	1.169
110			DL/2	is not a reco	mmended m	ethod, provi	ded for com	parisons and	d historical r	easons		
111												
112					Nonparame	etric Distribu	tion Free U	CL Statistics				
113				Detected	l Data appea	r Normal Di	stributed at	1% Significa	nce Level			
114												
115						Suggested	UCL to Use)				
116				95%	6 KM (t) UCL	0.624						
117												
118	I	Note: Sugge	stions regard	ding the seled	ction of a 95%	6 UCL are pr	ovided to he	elp the user to	select the n	nost appropri	iate 95% UCI	
119		Recom	mendations	are based up	oon data size	, data distrib	ution, and sl	kewness usir	ng results fro	m simulation	studies.	
120	Но	wever, simu	lations resul	ts will not cov	/er all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to cons	ult a statistic	ian.
121												

	А		В		С	D	F	F	G	Н	1	J	К	
1			-		-		UCL Statis	tics for Data	Sets with N	on-Detects	•			_
2														
3			User Sele	ected	Options	1								
4		Date	Time of C	Compu	utation	ProUCL 5.2	3/6/2023 1:4	1:36 PM						
5				Fro	m File	UCL95_inpu	ut_Revised.xl	S						
6			Fı	ull Pre	ecision	OFF								
7		С	onfidence	e Coef	fficient	95%								
8	Num	ber of	Bootstrap	Oper	ations	2000								
9														
10	200 IA	Methy	lene Chlo	oride										
11														
12					- -			General	Statistics				<u></u>	10
13					lotal	Number of C	bservations	16			Numbe	r of Distinct (Observations	12
14					N		er of Detects	10			Numb	Number of	Non-Detects	5
15					IN		mum Dotoct	/			Numbe	Minimun	Non-Delects	03
16						Maxi	mum Detect	1.6				Maximun	n Non-Detect	6.6
17						Varia	nce Detects	0.148				Percent	Non-Detects	37.5%
18						M	ean Detects	0.516					SD Detects	0.384
19						Med	dian Detects	0.41					CV Detects	0.744
20						Skewn	ess Detects	3.059				Kur	tosis Detects	9.562
21						Mean of Log	ged Detects	-0.797				SD of Log	gged Detects	0.469
22														
23							Norm	al GOF Tes	t on Detects	Only				
25					S	hapiro Wilk T	est Statistic	0.47			Shapiro W	lk GOF Tes	t	
26					1% S	hapiro Wilk C	ritical Value	0.781	C	Detected Data	a Not Norm	al at 1% Sigr	nificance Leve	el
27						Lilliefors T	est Statistic	0.489			Lilliefors	GOF Test		
28					1	% Lilliefors C	ritical Value	0.304	C	Detected Data	a Not Norm	al at 1% Sigr	nificance Leve	el
29						D	etected Data	a Not Norma	l at 1% Signi	ificance Leve	əl			
30														
31					Kaplan-	Meier (KM) S	Statistics usir	ng Normal C	ritical Values	s and other l	Nonparame	tric UCLs		
32							KM Mean	0.431			KI	A Standard E	Error of Mean	0.0874
33							90KM SD	0.321				95% KN	M (BCA) UCL	0.665
34						95%	KM (t) UCL	0.584			95% KM (F	Percentile Bo	otstrap) UCL	0.597
35						95%	KM (z) UCL	0.574				95% KM Bo	otstrap t UCL	0.87
36						90% KM Che	byshev UCL	0.693				95% KM Che	ebyshev UCL	0.812
37					97		uysnev UCL	0.970					ebysnev UCL	1.3
38						<u> </u>	amma COF	Tests on D	atented Oben	nyatione On	V			
39						ם ם-מ	est Statistic	2 232			v nderson-Da	rling GOF T	est	
40						5% A-D C	ritical Value	0.73	Detecte	ed Data Not	Gamma Dis	tributed at 5	% Significanc	e Level
41						K-S T	est Statistic	0.469	20000	K	olmogorov	Smirnov GC)F	
42						5% K-S C	critical Value	0.268	Detecte	ed Data Not	Gamma Dis	tributed at 5°	% Significanc	e Level
43						Detecte	ed Data Not C	Gamma Dist	ributed at 5%	6 Significanc	e Level		-	
44										-				

UCL95_200_IA_Methylene_Chloride

	А	В	С	D	E	F	G	Н		J	K	L
46	-				Gamma	Statistics or	n Detected D	ata Only			•	_
47					k hat (MLE)	3.866			k	star (bias co	rrected MLE)	2.773
48				The	eta hat (MLE)	0.133			Theta	star (bias co	rrected MLE)	0.186
49				I	nu hat (MLE)	77.32				nu star (bia	as corrected)	55.46
50				Me	ean (detects)	0.516						
51												
52				(Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
53			GROS may	y not be used	l when data s	et has > 50%	6 NDs with m	any tied obs	ervations at	multiple DLs	i	
54		GROS may	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e.g., <15-20)	
55			Fo	or such situat	tions, GROS	method may	yield incorre	ct values of	UCLs and B	TVs		
56					This is especi	ally true whe	en the sample	e size is sma	II.			
57		For gar	mma distribu	ted detected	data, BTVs a	and UCLs ma	ay be comput	ed using gar	nma distribu	tion on KM e	estimates	
58					Minimum	0.01					Mean	0.364
59					Maximum	1.6					Median	0.395
60					SD	0.365					CV	1.003
61					k hat (MLE)	1.196			k :	star (bias co	rrected MLE)	1.013
62				The	eta hat (MLE)	0.305			Theta	star (bias co	rrected MLE)	0.36
63				I	nu hat (MLE)	38.26				nu star (bia	as corrected)	32.42
64			Adjusted	d Level of Sig	gnificance (β)	0.0335						
65		Арр	proximate Ch	ii Square Val	ue (32.42, α)	20.4			Adjusted Ch	i Square Val	ue (32.42, β)	19.32
66			95% 0	Gamma Appro	oximate UCL	0.579			95	% Gamma A	djusted UCL	0.611
67												
68				E	stimates of G	iamma Para	meters using	g KM Estima	tes			
69					Mean (KM)	0.431					SD (KM)	0.321
70				V	ariance (KM)	0.103				SE d	of Mean (KM)	0.0874
71					k hat (KM)	1.799					k star (KM)	1.504
72					nu hat (KM)	57.58					nu star (KM)	48.12
73				tr	neta hat (KM)	0.239				th	eta star (KM)	0.286
74			809	% gamma pe	rcentile (KM)	0.666			90%	% gamma pe	rcentile (KM)	0.897
75			955	% gamma pe	rcentile (KM)	1.121			99%	% gamma pe	rcentile (KM)	1.627
76												
77					Gamm	na Kaplan-M	eier (KM) St	atistics	<u> </u>		(40,40,0)	04 70
78		Арр	proximate Ch	ii Square Val	ue (48.12, α)	33.2			Adjusted Ch	i Square Val	ue (48.12, β)	31.79
79			95% KM A	opproximate (Gamma UCL	0.624			95% K	M Adjusted	Gamma UCL	0.652
80									h -			
81					ognormal GC		etected Obs	ervations O				
82			100/ 0			0.604		tested Det	Snapiro Wi			
83			10% S			0.869	De	elected Data			ignificance Le	vei
84			40		rest Statistic	0.44	D -	tootod Data			anificance L	vol
85			10			U.241				iai at 10% S	ignificance Le	vei
86				De		NOT LOGNORM	iai at 10% Si	gnificance L	evei			
87												

UCL95_200_IA_Methylene_Chloride

	А	В	С		D	E		F	G		H					J		K	L
88						Lognorma	al RO	S Statistics	Using Im	pute	d Non-	Detec	cts						
89				N	lean in	Original	Scale	0.417								Mea	in in	Log Scale	-1.022
90					SD in	Original	Scale	0.327								S	D in	Log Scale	0.485
91		95% t l	JCL (assu	mes no	ormality	y of ROS	data)	0.56						95%	6 Per	centile	Boo	tstrap UCL	0.571
92				95%	5 BCA I	Bootstrap	UCL	0.652								95% B	oots	strap t UCL	0.796
93				95	5% H-U	ICL (Log I	ROS)	0.522											
94																			
95			Sta	atistics	susing	KM estin	nates	on Logged	Data and	l Ass	uming	Logn	ormal	Dist	tribu	tion			
96					KM	Mean (log	gged)	-0.98									KM	Geo Mean	0.375
97				<u> </u>	K	M SD (log	gged)	0.446						95%	6 Crit	tical H V	alue	e (KM-Log)	1.997
98			KM Stan	dard E	rror of	Mean (log	gged)	0.122							9	95% H-l	JCL	. (KM -Log)	0.522
99					K	M SD (log	gged)	0.446						95%	6 Crit	ical H V	alue	e (KM-Log)	1.997
100			KM Stan	dard E	rror of	Mean (log	gged)	0.122											
101			Note: K		Ls may	be biase	ed low	with this da	itaset. O	ther :	substit	ution	methe	od re	ecom	mende	d		
102																			
103				<u></u>				DL/2 S	tatistics						_		<u> </u>		
104			DL	2 Nori	mal	<u></u>		0.50					DL/2	Log	-Tra	nstorme	d.		0.007
105				N	lean in	Original	Scale	0.58								Mea	in in	Log Scale	-0.987
106			0.50/		SD in	Original	Scale	0.801								S	D in	Log Scale	0.836
107			95%	t UCL	(Assu	mes norm	nality)	0.931					L. 1 . 4			95	9% F	1-Stat UCL	0.899
108			DL	/2 is n	ot a rec	commend	ied m	etnoa, provi	ded for c	omp	arisons	sand	nistoi	rical	reas	ons			
109						Nam		tala Distalka	Han Fran		0.01								
110						Nonpa	arame					STICS							
111						Data	a do n	ot follow a L	viscernid		stridut	on							
112								Queseeted											
113					01	-0/ IZNA (+)		Suggested		Use									
114					95	5% KIVI (t)	UCL	0.584											
115		Noto: Suggo	ationa rag	ordina	the cel	action of	- 0E%		ovided to	hole	****	orto		+ +b a		tonnror	riot		
116		Pooc~			hasad			data distrib					Selec		inos				
117	<u></u> ц,		lations rec		ill not o			, uala uistriid	te: for ad		al inci			r mar			neul	t a statistici	an
118									15, 101 80	unior		yn di	e use	i ilia	y wa		iisul		an.
119																			

	А	В	С	D	E	F	G	Н		J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele			0/6/2022 1.4	4.00 DM						
4	Da	ate/ I ime of Co		PIOUCE 5.2 3	5/0/2023 1:4	4:08 PIN						
5		Eu				15						
6		Confidence		95%								
7	Number	of Bootstrap	Operations	2000								
8				2000								
9	200 IA TO	CE										
10												
12						General	Statistics					
13			Total	Number of Ot	oservations	16			Numbe	r of Distinct (Observations	13
14				Number	of Detects	6				Number of	Non-Detects	10
15			N	umber of Disti	nct Detects	6			Numbe	er of Distinct	Non-Detects	7
16				Minin	num Detect	0.33				Minimum	n Non-Detect	0.2
17				Maxin	num Detect	1.3				Maximum	n Non-Detect	5.4
18				Variar	ice Detects	0.145				Percent	Non-Detects	62.5%
19				Ме	an Detects	0.627					SD Detects	0.381
20				Medi	ian Detects	0.44					CV Detects	0.608
21				Skewne	ess Detects	1.434				Kurl	tosis Detects	1.163
22				Mean of Logg	ed Detects	-0.598				SD of Log	ged Detects	0.536
23												
24			0		Norm		t on Detects	Only	Oh austana Ma			
25			10/ 0			0.803		to ato d Data	Snapiro wi			
26			1% 5			0.713	De	etected Data	appear Non	GOE Tost	Julicance Le	vei
27			1		itical Value	0.317	De	stected Data	annear Nor	nal at 1% Sid	nificance Le	vol
28				Dete	ected Data	appear Norr	nal at 1% Sic					
29				Note	GOF tests	may be unre	eliable for sm	nall sample	sizes			
30					ue. 10010							
31			Kaplan-	Meier (KM) St	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32			-		KM Mean	0.371			KI	/I Standard E	Fror of Mean	0.0858
34					90KM SD	0.303				95% KN	I (BCA) UCL	0.548
35				95%	KM (t) UCL	0.521			95% KM (F	ercentile Bo	otstrap) UCL	0.522
36				95% ł	KM (z) UCL	0.512				95% KM Boo	otstrap t UCL	0.651
37			ę	0% KM Cheb	yshev UCL	0.628			!	95% KM Che	byshev UCL	0.745
38			97	.5% KM Cheb	yshev UCL	0.906				99% KM Che	byshev UCL	1.224
39												
40				Ga	amma GOF	Tests on De	etected Obse	ervations Or	nly			
41				A-D Te	est Statistic	0.548		A	nderson-Da	rling GOF T	est	
42				5% A-D Cr	itical Value	0.7	Detected	d data appea	ar Gamma D	stributed at	5% Significar	ice Level
43				K-S Te	est Statistic	0.299		 	Kolmogorov-	Smirnov GC)F	
44				5% K-S Cr	itical Value	0.334	Detected	data appea	ar Gamma D	stributed at \$	o% Significar	ice Level
45						r Gamma Di	stributed at t	om Significa				
46				Note	GUF TESTS	may be unre	madie for sm	iali sample	SIZES			
47												

UCL95_200_IA_TCE

		-						-	-	-			
40	A	В	С	D	E Ga	<u>.</u> amma	F Statistics o	G n Detected I	H Data Only	I	J	К	L
48 10					k hat ((MLE)	3.981			k	star (bias co	rrected MLE)	2.102
50				T	Theta hat ((MLE)	0.157			Theta	star (bias co	rrected MLE)	0.298
51					nu hat ((MLE)	47.77				nu star (bia	as corrected)	25.22
52					Mean (de	tects)	0.627						
53								1				l	
54					Gamma	a ROS	Statistics u	sing Impute	ed Non-Detec	cts			
55			GROS may	y not be us	sed when	data se	et has > 50%	% NDs with r	many tied obs	servations at	multiple DLs	;	
56		GROS may	y not be use	d when kst	tar of dete	cts is s	small such a	is <1.0, espe	ecially when	the sample s	ize is small (e.g., <15-20)	
57			Fo	or such site	uations, G	ROS r	method may	yield incorr	ect values of	UCLs and B	TVs		
58					This is e	especi	ally true whe	en the samp	le size is sma	all.			
59		For gar	mma distribu	ited detect	ed data, E	BTVs a	nd UCLs ma	ay be compu	uted using ga	mma distribu	ition on KM e	stimates	
60					Min	imum	0.01					Mean	0.241
61					Max	imum	1.3					Median	0.01
62						SD	0.379						1.5/
63					k hat ((MLE)	0.393			K	star (bias co	rrected MLE)	0.361
64				I	neta nat (12 57			Ineta	star (blas co		0.669
65			Adjusto	d l aval of			0.0225				nu star (bia	as corrected)	11.54
66		۸pr				ce(p)	4 028			Adjusted Ck		up (11 54 B)	1 115
67		Ahh	95% (Tamma An		34, u) ≥ UCI	0.565				ii Square vai	diusted UCI	0.627
68			5570 0		proximate	, 00L	0.000						0.027
69					Estimate	s of G	amma Para	meters usin	a KM Estima	ates			
70					Mean	(KM)	0.371		.ge			SD (KM)	0.303
71					Variance	e (KM)	0.092				SE d	of Mean (KM)	0.0858
72					k hat	t (KM)	1.493					k star (KM)	1.255
73					nu hat	t (KM)	47.79					nu star (KM)	40.16
75					theta hat	t (KM)	0.248				th	eta star (KM)	0.295
76			809	% gamma	percentile	e (KM)	0.584			909	% gamma pe	rcentile (KM)	0.807
77			959	% gamma	percentile	e (KM)	1.026			999	% gamma pe	rcentile (KM)	1.526
78								1				l	
79					(Gamm	a Kaplan-M	leier (KM) S	tatistics				
80		Арр	proximate Ch	ni Square \	Value (40.	16, α)	26.64			Adjusted Ch	ni Square Val	ue (40.16, β)	25.39
81			95% KM A	Approximat	te Gamma	a UCL	0.559			95% k	M Adjusted	Gamma UCL	0.586
82													
83					Lognorm	nal GO	F Test on D	Detected Ob	servations C	only			
84			5	Shapiro Wi	ilk Test St	atistic	0.871			Shapiro W	ilk GOF Tes	t	
85			10% S	Shapiro Wil	lk Critical	Value	0.826	Det	ected Data a	ppear Logno	rmal at 10%	Significance L	.evel
86					rs Test St	atistic	0.267		ented Data	Lilliefors	GUF Test	Olemificano I	
87			1(J% Lilliefor	rs Critical	value	0.298	Det	ected Data a	ppear Logno	rmai at 10%	Significance L	.evei
88				De		ata ap	pear Lognol	mai at 10%	Significance				
89				Г	NOTE GOF	IESIS	may be unr	enable for S	maii sample	SIZES			
90													

UCL95_200_IA_TCE

	٨	Р			<u> </u>	<u>г</u>	-	F	C					1	1	-	—	V	I	
01	A	D	U U	L	Lo	gnorm	⊏ nal RO	S Statistics	Using Im	pute	n ∎d Non	-Dete	ects	1		J		ĸ		L
91				Меа	n in O	riginal	Scale	0.303		-						Mea	n in	Log Sca	le	-1.651
92				SI	D in O	riginal	Scale	0.341								SI) in	Log Sca	le	0.943
93		95% t L	JCL (assume	es norm	nality c	of ROS	data)	0.452						95%	Perce	entile E	3oot	strap UC	CL	0.455
94			-	95% B	CA Bo	otstrap	p UCL	0.491							9	5% Bo	oots	trap t UC	CL	0.601
95				95%	H-UCI	L (Log	ROS)	0.566												
90																				
97			Stati	stics us	sing K	M esti	mates	on Logged I	Data and	Ass	uming	Logr	orma	l Distr	ibutio	n				
99					KM Me	ean (lo	gged)	-1.205								ł	KM (Geo Mea	an	0.3
100					KM	SD (lo	gged)	0.584						95%	Critica	al H Va	alue	(KM-Lo	g)	2.142
101			KM Standa	ard Erro	r of Me	ean (lo	gged)	0.165							959	% H-L	JCL	(KM -Lo	g)	0.491
102					KM	SD (lo	gged)	0.584						95%	Critica	al H Va	alue	(KM-Lo	g)	2.142
102			KM Standa	ard Erro	r of Me	ean (lo	gged)	0.165												
100																				
105								DL/2 S	tatistics											
106			DL/2	Norma	I								DL/2	2 Log-	Trans	forme	d			
107				Mea	n in O	riginal	Scale	0.473								Mea	n in	Log Sca	le	-1.349
108				SI	D in O	riginal	Scale	0.68								S) in	Log Sca	le	1.021
109			95% t	UCL (A	ssume	es norn	nality)	0.771								95	% H	-Stat UC	L	0.9
110			DL/2	is not a	a reco	mmen	ded m	ethod, provi	ded for co	omp	arison	s and	histo	orical r	easor	าร				
111																				
112						Nonp	barame	etric Distribu	tion Free	UC	L Stati	stics								
113				De	tected	l Data	appea	r Normal Di	stributed	at 1	% Sigr	nifica	nce L	evel						
114																				
115								Suggested	UCL to U	Jse										
116					95%	6 KM (t) UCL	0.521												
117																				
118	1	Note: Sugge	stions regard	ding the	e selec	ction of	a 95%	6 UCL are pr	ovided to	help	o the us	ser to	sele	ct the r	nost a	pprop	riate	e 95% U	CL.	
119		Recom	mendations	are bas	sed up	oon dat	ta size	, data distrib	ution, and	d ske	ewness	s usin	g res	ults fro	m sim	nulatio	n stı	udies.		
120	Но	wever, simu	lations resul	lts will n	ot cov	/er all F	Real W	/orld data se	ts; for add	ditio	nal insi	ght th	ne use	er may	want	to cor	sult	a statis	ticia	n.

			_		
1	АВС	UCL Statis	⊢ tics for Data	G H I J K I	L
2					
3	User Selected Options	3			
4	Date/Time of Computation	ProUCL 5.2 3/6/2023 1:4	2:22 PM		
5	From File	UCL95_input_Revised.xl	s		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	200 IA Toluene				
11			Canaral	Statiation	
12	Tata	Number of Observations		Statistics	15
13		Number of Detects	10	Number of Distinct Observations	3
14	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	3
15		Minimum Detect	0.25	Minimum Non-Detect	0.29
16		Maximum Detect	7.2	Maximum Non-Detect	0.38
1/		Variance Detects	3.402	Percent Non-Detects	18.75%
10		Mean Detects	1.285	SD Detects	1.844
20		Median Detects	0.64	CV Detects	1.436
21		Skewness Detects	3.18	Kurtosis Detects	10.71
22		Mean of Logged Detects	-0.238	SD of Logged Detects	0.907
23					
24		Norm	al GOF Tes	t on Detects Only	
25	5	Shapiro Wilk Test Statistic	0.544	Shapiro Wilk GOF Test	
26	1% S	hapiro Wilk Critical Value	0.814	Detected Data Not Normal at 1% Significance Level	
27		Lilliefors Test Statistic	0.313	Lilliefors GOF Test	
28	1	% Lilliefors Critical Value	0.271	Detected Data Not Normal at 1% Significance Level	
29		Detected Data	a Not Norma	I at 1% Significance Level	
30	Kanlan	Maiar (I/M) Otatiatian wei		without Maluan and other Nonneumatric LIOLs	
31	Kapian-				0.420
32			1.092		1.025
33		95% KM (t) LICI	1 843	95% KM (Percentile Rootstrap) UCL	1 864
34		95% KM (7) UCI	1.797	95% KM Bootstrap t UCL	3.447
35		90% KM Chebvshev UCL	2.378	95% KM Chebyshev UCL	2.96
36	97	7.5% KM Chebyshev UCL	3.768	99% KM Chebyshev UCL	5.356
3/ 22					
39		Gamma GOF	Tests on De	etected Observations Only	
40		A-D Test Statistic	0.907	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.755	Detected Data Not Gamma Distributed at 5% Significance	Level
42		K-S Test Statistic	0.208	Kolmogorov-Smirnov GOF	
43		5% K-S Critical Value	0.242	Detected data appear Gamma Distributed at 5% Significance	ce Level
44		Detected data follow Ap	pr. Gamma I	Distribution at 5% Significance Level	
45					

UCL95_200_IA_Toluene

	А	В	С	D	E	F	G	Н		J	K	L
46					Gamma	Statistics or	n Detected D	Data Only				
47					k hat (MLE)	1.163			k	star (bias cor	rected MLE)	0.946
48				The	ta hat (MLE)	1.105			Theta	star (bias cor	rected MLE)	1.358
49				r	nu hat (MLE)	30.23				nu star (bia	is corrected)	24.59
50				Me	ean (detects)	1.285						
51												
52					Jamma ROS	Statistics u		d Non-Detec	ts			
53		0.000	GROS may	/ not be used	when data se	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs	.15.00)	
54		GROS may	/ not be used	a when kstar	of detects is s	mall such a	s <1.0, espe	cially when t	ne sample si	ze is small (e	e.g., <15-20)	
55			FC	or such situat	ions, GROS r	nethod may	yield incorre			IVS		
56		For cor	nma diatribu	l hotostad	dete BTVe e	ally true whe	en the sample	e size is sma	II.	tion on KM o	atimataa	
57		For gar	nma distribu		data, BTVS a		ay be compu	ted using gar	nma distribu		stimates	1.046
58					Maximum	0.01					Median	0.615
59					iviaximum D	1 720					Median	1.652
60					SD	0.566			k.	star (bias aar		0.502
61				The	K Hat (IVILE)	1 947			Thoto	star (bias cor		2.095
62					au hot (MLE)	1047			meld	nu star (bia		16.05
63			Adjustor			0.0335				nu stat (bia	is corrected)	10.05
64		٨٥٩	Aujusieu		(16.05 c)	7 008			Adjusted Ch	i Squaro Vali	16 05 B)	7 358
65		Ahh	95% 0		ue (10.05, u)	2 008					diusted UCI	2 281
66			3370 C			2.030						2.201
67				Es	stimates of G	amma Para	meters using	o KM Estima	tes			
68					Mean (KM)	1.092					SD (KM)	1.647
69				Va	ariance (KM)	2.712				SE o	f Mean (KM)	0.429
70					k hat (KM)	0.44					k star (KM)	0.399
71					nu hat (KM)	14.07					nu star (KM)	12.76
72				th	eta hat (KM)	2.484				the	eta star (KM)	2.738
73			80%	% gamma per	rcentile (KM)	1.762			90%	6 gamma per	centile (KM)	3.086
74			95%	% gamma per	rcentile (KM)	4.542			99%	6 gamma per	centile (KM)	8.203
75												
70					Gamm	a Kaplan-M	eier (KM) St	atistics				
78		Арр	proximate Ch	i Square Val	ue (12.76, α)	5.734			Adjusted Ch	i Square Valı	ue (12.76, β)	5.207
79			95% KM A	pproximate (Gamma UCL	2.431			95% K	M Adjusted C	Gamma UCL	2.677
80							1					
81				Lo	ognormal GO	F Test on D	etected Obs	servations O	nly			
82			S	Shapiro Wilk	Test Statistic	0.92			Shapiro Wi	lk GOF Test		
83			10% S	hapiro Wilk C	Critical Value	0.889	Dete	ected Data ap	opear Lognoi	mal at 10% S	Significance L	evel
84				Lilliefors 7	Test Statistic	0.129			Lilliefors	GOF Test		
85			10	% Lilliefors C	Critical Value	0.215	Dete	ected Data ap	opear Lognoi	mal at 10% s	Significance L	evel
86				Deteo	cted Data ap	pear Lognor	mal at 10%	Significance	Level			
87												

UCL95_200_IA_Toluene

	А	В	С		D	E		F	G		Н		I		J		K		L
88					L	ognormal	ROS	Statistics	Using Imp	outed	Non-[Detec	ts						
89					Mean in	Original So	cale	1.077							Me	ean in	Log So	ale	-0.522
90					SD in	Original So	cale	1.709								SD in I	Log So	ale	1.019
91		95% t	UCL (ass	umes i	normality	y of ROS d	ata)	1.826					9	95% P	ercentil	e Boots	strap L	JCL	1.83
92				95	% BCA E	Bootstrap L	JCL	2.296							95%	Bootst	rap t L	JCL	3.46
93				ç	95% H-U	CL (Log R	OS)	2.046											
94																			
95			S	Statistic	s using	KM estima	ates or	n Logged	Data and	Assu	ming L	_ogno	rmal [Distrit	oution				
96					KM	Mean (logg	jed)	-0.448								KM (Geo M	ean	0.639
97					K	M SD (logg	jed)	0.9					9	95% C	ritical H	Value	(KM-L	.og)	2.554
98			KM Sta	andard	Error of	Mean (logg	jed)	0.234							95% H	I-UCL	(KM -L	.og)	1.735
99					K	M SD (logg	jed)	0.9					9	95% C	ritical H	Value	(KM-L	.og)	2.554
100			KM Sta	andard	Error of	Mean (logg	jed)	0.234											
101																			
102								DL/2 S	tatistics										
103			D	L/2 No	rmal								DL/2 L	.og-Ti	ansform	ned			
104					Mean in	Original So	cale	1.074							Me	ean in l	Log So	ale	-0.536
105					SD in	Original So	cale	1.711								SD in I	Log So	ale	1.036
106			959	% t UC	L (Assur	mes norma	lity)	1.824							9	95% H	-Stat L	JCL	2.094
107			D	L/2 is	not a rec	commende	d meth	hod, provi	ded for co	mpa	risons	and h	nistorio	cal re	asons				
108																			
109						Nonpar	ametri	ic Distribu	ition Free	UCL	Statis	tics							
110				Detec	ted Data	a appear A	pproxi	imate Gar	nma Distr	ibute	d at 5%	% Sig	nificar	nce Le	evel				
111																			
112							5	uggested	UCL to U	se									
113			95	5% KM	Adjusted	d Gamma L	JCL	2.677											
114																			
115		I he ca	alculated	UCLS	are bas	ed on assu		ns that the	e data we	re co			randoi	m and	undias	ed ma	nner.		
116				16 4	Plea	ase verity i	the dat	ta were co		om ra	Indom	locat	ions.						
117				ITI		were colle	cted u	ising juagi	mental or	otnei	non-r	ando	m met	noas,					
118					1	then conta	ct a sta	atistician	to correct	y cai	culate	UCL	S.						
119				A /l	-l-4 4	. f. II							- 6 41	005					
120			V	vnen a	data set	t tollows an	appro	oximate dis	stribution	bassi	ng only	y one	of the	GOF					
121			it i	s sugg	ested to	use a UCL	. pased	u upon a d	IISTRIDUTION	pass	ing bo	nn GC	r test	is in P	TOUCL				
122							050/ 1	101					-1				050/		
123		Note: Sugge	estions re	garding	y the sel	ection of a	95% L		ovided to	nelp	ine use	er to s		ine m	ost appr	opriate	95%	UUL	•
124		Recon	nmendati	ons are	e based	upon data	size, d	ata distrib	ution, and	SKEV	vness i	using	result	s trom	i simula	uon stu	ales.	-+: ·	
125	Ho	wever, simi	ulations re	esults \	will not c	over all Re	al Wor	nd data se	ets; for add	litiona	ai insig	int the	user	may v	ant to c	onsult	a stati	Sticia	an.
126																			

	А	В	С	D	E	F	G	Н	I	J	К	L
1		-	-	I	UCL Statis	tics for Unc	ensored Full	Data Sets		-	-	
2												
3		User Sele	cted Options									
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 2:2	2:15 PM						
5			From File	UCL95_inpu	It_Revised.xl	ls						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
/	Number	of Bootstrap	Operations	2000								
8			•									
9												
10	600 IA 2-B	utanone (ME	К)									
11			,									
12						General	Statistics					
13			Total	Number of O	bservations	8			Numbe	r of Distinct (Observations	7
14			10101			0			Numbe	r of Missing (Observations	,
15					Minimum	0.37			Numbe		Moon	2 080
16					Movimum	E 2					Madian	2.009
17						1.095				Ctd C		0.702
18				0	SD af Mariatian	1.985				5td. E		0.702
19				Coefficient	of variation	0.95					Skewness	0.677
20			<u> </u>									
21		Note: Sa	mple size is	small (e.g., <	(10), if data a	are collected	l using incre	mental samp	oling metho	lology (ISM)	approach,	
22			refer also t	o ITRC Tech	Reg Guide o	on ISM (ITR	C 2020 and	ITRC 2012)	for addition	al guidance,		
23		Ł	out note that	ITRC may re	commend th	e t-UCL or 1	he Chebysh	ev UCL for s	mall sampl	e sizes (n < :	7).	
24				The Cheby	/shev UCL o	ften results	in gross ove	restimates o	f the mean.			
25			Ret	er to the Pro	UCL 5.2 Tec	hnical Guid	e for a discu	ssion of the	Chebyshev	UCL.		
26												
27						Normal (GOF Test					
28			S	hapiro Wilk T	est Statistic	0.836			Shapiro W	ilk GOF Test	1	
29			1% S	hapiro Wilk C	ritical Value	0.749		Data appe	ear Normal a	at 1% Signific	ance Level	
30				Lilliefors T	est Statistic	0.285			Lilliefors	GOF Test		
31			1	% Lilliefors C	ritical Value	0.333		Data appe	ear Normal a	at 1% Signific	ance Level	
32					Data appea	ar Normal a	t 1% Signific	ance Level				
33				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
34												
35					As	suming Nor	mal Distribut	ion				
36			95% No	ormal UCL				95%	UCLs (Adj	usted for Ske	wness)	
37				95% Stud	dent's-t UCL	3.418			95% Adjust	ed-CLT UCL	(Chen-1995)	3.423
38									95% Modif	ed-t UCL (Jo	hnson-1978)	3.446
39												
40						Gamma	GOF Test					
41				A-D T	est Statistic	0.673		Ander	son-Darling	Gamma GC	F Test	
42				5% A-D C	ritical Value	0.734	Detecte	d data appea	r Gamma D	istributed at	5% Significan	ice Level
42				K-S T	est Statistic	0.296		Kolmog	orov-Smirn	ov Gamma G	OF Test	
11				5% K-S C	ritical Value	0.301	Detected	d data appea	r Gamma D	istributed at	5% Significan	ce Level
44				Detected	data appear	Gamma Di	stributed at {	5% Significa	nce Level			
40				Note	GOF tests	may be unre	eliable for sm	nall sample s	sizes			
40								•				
4/												

UCL95_600_IA_2-ButanoneMEK

	А	В	С	D	E	F	G	Н	I	J	К	L
48					k hot (MLE)	1 077	Sidustics		k	star (bias cor	roctod MLE)	0 756
49				The	ta hat (MLE)	1.077			Theta	star (bias cor	rected MLE)	2 762
50					nu hat (MLE)	17.23				nu star (bia	as corrected)	12.1
51			М	E Mean (bia	as corrected)	2.089				MLE Sd (bia	as corrected)	2.402
52					,				Approximate	Chi Square	Value (0.05)	5.293
53			Adjus	sted Level of	Significance	0.0195			Ac	djusted Chi S	quare Value	4.211
55			-		-					-		
56					Ass	uming Gam	nma Distribu	tion				
57			95% A	pproximate (Gamma UCL	4.775			95	% Adjusted (Gamma UCL	6.001
58												
59						Lognorma	I GOF Test					
60			S	hapiro Wilk	Fest Statistic	0.823		Sha	piro Wilk Log	normal GOF	- Test	
61			10% S	hapiro Wilk C	Critical Value	0.851		Data Not I	_ognormal at	10% Signific	cance Level	
62				Lilliefors	Fest Statistic	0.269		Lil	liefors Logno	ormal GOF 1	est	
63			10	% Lilliefors C	Critical Value	0.265		Data Not I	_ognormal at	10% Signific	cance Level	
64					Data Not Lo	gnormal at	10% Signific	cance Level				
65						•						
66				Minimum - 61		Lognorma	I Statistics				la sua d Data	0.005
67					Logged Data	-0.994				Mean of	logged Data	0.205
68			ľ	naximum of i	Logged Data	1.008				50 01	logged Data	1.17
69					٨٥٩		rmal Dietrib	ution				
70					95% H-UCI	13.4			90%	Chebyshev (MVUE) UCL	4 888
71			95%	Chebvshev (MVUE) UCL	6.125			97.5%	Chebyshev (MVUE) UCL	7.842
72			99%	Chebyshev (MVUE) UCL	11.21						
73					- /							
74					Nonparame	tric Distribu	tion Free UC	CL Statistics				
76					Data appea	r to follow a	Discernible	Distribution				
77												
78					Nonpar	ametric Dis	tribution Fre	e UCLs				
79				95	5% CLT UCL	3.243			1	95% BCA Bo	ootstrap UCL	3.396
80			95%	Standard Bo	otstrap UCL	3.187				95% Boo	otstrap-t UCL	3.727
81			9	5% Hall's Bo	otstrap UCL	3.332			95% I	Percentile Bo	ootstrap UCL	3.236
82			90% Ch	ebyshev(Me	an, Sd) UCL	4.194			95% Ch	ebyshev(Me	an, Sd) UCL	5.148
83			97.5% Ch	ebyshev(Me	an, Sd) UCL	6.472			99% Ch	ebyshev(Me	an, Sd) UCL	9.072
84												
85						Suggested	UCL to Use					
86				95% Stu	dent's-t UCL	3.418						
87												
88		Note: Sugge	estions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	Ip the user to	select the m	lost appropri	ate 95% UCL	
89		Recom	Internetions	are based up	on data size,	aata distrib	ution, and sk	ewness usir	ng results from	n simulation	STUDIES.	
90	H	owever, simu	nations result	S WIII NOT CO	ver all Real W	unu data se	is; for additio	niai insight ti	ne user may	want to cons	uit a statisticia	al).
91												

	А	В	С	D	E	F	G	Н		J	К	L
1					JCL Statis	tics for Unc	ensored Full	Data Sets	-	1 1		
2												
3		User Sele	ected Options	6								
1	Date	e/Time of C	omputation	ProUCL 5.2 3/6	6/2023 2:2	6:35 PM						
5			From File	UCL95_input_	Revised.xl	s						
6		Fu	III Precision	OFF								
7	(Confidence	Coefficient	95%								
/	Number of	f Bootstrap	Operations	2000								
8 0												
9												
10	600 IA Aceto	one										
10												
12						General	Statistics					
13			Tota	I Number of Obs	ervations	8			Numbe	er of Distinct	Observations	7
14						•			Numbe	er of Missing	Observations	0
15					Minimum	3.8					Mean	11 84
16					Maximum	28					Median	7 85
17						9 555				Std	Error of Mean	3 378
18				Coofficient of	Variation	0.807				Olu.	Skownoss	0.846
19				Coemcient of	variation	0.807					SKEWHESS	0.040
20		Noto: So	mala aiza ia) if data a	ro colloctor	lucing increa	montol comm	ling mother) opproach	
21		Note: Sa	mple size is), il uata a				ing meuro) approach,	
22					ey Guide C						, 7)	
23			but note that	The Chebyek				ev UCL for s	mail sampl	e sizes (n <	7).	
24			De									
25					L 3.2 Tec				Chebyshev	UCL.		
26						Normal						
27				Shaniro Wilk Tes	t Statistic	0.832			Shaniro W		et	
28			1% 9	Shapiro Wilk Criti		0.002		Data anne	ar Normal a	at 1% Signifi		
29			170 C		t Statistic	0.743						
30			· · · ·	1% Lilliefors Criti	cal Value	0.333		Data anne	ar Normal a	at 1% Signifi	cance Level	
31)ata annea	ar Normal a	t 1% Signific:	ance I evel				
32				- Note G	OF tests i	may be unr	eliable for sm	all sample s	izes			
33												
34					Ass	sumina Nor	mal Distribut	ion				
35			95% N	ormal UCI				95%	UCI s (Adii	usted for Sk	ewness)	
36				95% Studer	nt's-t UCI	18 24			95% Adjust	ed-CLT UCI	(Chen-1995)	18 47
37									95% Modifi	ied-t UCL (J	ohnson-1978)	18.41
38												
39						Gamma	GOF Test					
40				A-D Tes	t Statistic	0.626		Ander	son-Darling	1 Gamma G	OF Test	
41				5% A_D Criti	cal Value	0 726	Detector	data annea	r Gamma D	istributed at	5% Significar	
42				K-S Tes	t Statistic	0.720	Delecter	Kolmog	orov-Smirn	ov Gamma		
43				5% K_S Criti	cal Value	0.201	Detector	1 data annea	r Gamma D	istributed at	5% Significar	
44				Detected do		Gamma Di	stributed at 5	Significa			. 570 Olyrillical	
45				Noto C			aliable for or					
46				NOLE G		nay be unn		ian sample s	1203			
47												

UCL95_600_IA_Acetone

	А	В	С	D		E	F	G	н			J		К	ΤL	
48				•			Gamma	Statistics	•	•						
49					k	hat (MLE)	1.796				k s	tar (bias	corre	cted MLE) 1.20	06
50					Theta	hat (MLE)	6.589			The	eta s	tar (bias	corre	cted MLE) 9.81	14
51					nu	hat (MLE)	28.74					nu star (bias	corrected) 19.3	\$
52			М	LE Mean	n (bias	corrected)	11.84					MLE Sd (bias	corrected) 10.73	8
53										Approxin	nate	Chi Squa	are V	alue (0.05) 10.3	4
54			Adju	sted Leve	el of Si	ignificance	0.0195				Ad	justed Ch	ni Sq	uare Valu	e 8.72	26
55																
56						As	suming Gan	nma Distribut	tion							
57			95% A	Approxima	ate Ga	amma UCL	22.1				959	% Adjuste	ed Ga	amma UC	_ 26.18	8
58																
59							Lognorma	I GOF Test								
60			S	Shapiro W	Vilk Te	st Statistic	0.843		Sha	oiro Wilk	Log	normal G	OF 1	Fest		
61			10% S	shapiro W	/ilk Cri	tical Value	0.851		Data Not L	ognorma	al at	10% Sign	nifica	nce Level		
62				Lillief	ors Te	st Statistic	0.27		Lil	liefors Lo	ogno	ormal GO	FTe	st		
63			10)% Lilliefo	ors Cri	tical Value	0.265		Data Not L	ognorma	al at	10% Sigr	nifica	nce Level		
64						Data Not L	ognormal at	10% Signific	cance Level							
65							•									
66							Lognorma	al Statistics							0.10	
67				Minimum		gged Data	1.335					Mean	of lo	gged Dat	3 2.16	38 4
68				waximum	n of Lo	gged Data	3.332					5D	OT IO	gged Dat	1 0.84	+
69						٨٥٩	ming Logn	ormal Dietrib	ution							-
70					Q	5% H_UCI	32 65		uuon	Q	0% (hohycho			22.4	8
71			95%	Chebysh	nev (M		27.32			97	5% (Chebyshe	w (M		34.0	14
72			99%	Chebysh	nev (M		47.25			07.	0 /0 (Shebyshe		102,00		_
73			0070	Chebyon		102,002	47.20								_	
/4					1	Nonparame	etric Distribu	ition Free UC	CL Statistics							
75					[Data appea	r to follow a	Discernible	Distribution							
70																
78						Nonpa	rametric Dis	tribution Fre	e UCLs							
70					95%	CLT UCL	17.39				ç	95% BCA	Boo	tstrap UC	_ 18.5	5
80			95%	Standar	d Boot	tstrap UCL	17.13					95% E	Boots	trap-t UC	_ 20.09	19
81			ę	95% Hall'	's Boot	tstrap UCL	18.15			95	5% F	Percentile	Boo	tstrap UC	_ 17.3	9
82			90% Cł	nebyshev	/(Mear	n, Sd) UCL	21.97			95%	5 Ch	ebyshev(Mear	n, Sd) UC	26.50	6
83			97.5% Cł	nebyshev	/(Mear	n, Sd) UCL	32.94			99%	5 Ch	ebyshev(Mear	n, Sd) UC	45.4	5
84																
85							Suggested	UCL to Use								
86				95%	Stude	ent's-t UCL	18.24									
87								·								
88		Note: Sugge	stions regard	ding the s	selectio	on of a 95%	UCL are pr	ovided to hel	p the user to	select th	ne m	ost appro	priat	e 95% UC	;L.	
89		Recom	nmendations	are base	ed upo	n data size	, data distrib	ution, and sk	ewness usin	ng results	fron	n simulati	on st	udies.		
90	F	lowever, simu	llations resul	ts will not	t cove	r all Real W	/orld data se	ets; for additio	onal insight th	ne user m	nay v	want to co	onsul	t a statisti	cian.	
91																

		-		-		-					-		
1	A	1	В	С	D	UCL Statis	F tics for Data	G Sets with No	H on-Detects	Ι	J	К	L
2													
3		U	ser Sele	cted Option	s								
4	Da	te/Ti	me of Co	omputation	ProUCL 5.2	2 3/6/2023 2:2	7:19 PM						
5				From File	UCL95_inp	out_Revised.x	ls						
6			Fu	II Precision	OFF								
7		Con	fidence	Coefficient	95%								
8	Number	of Bo	otstrap	Operations	2000								
9													
10	600 IA Ben	zene)										
11							-	-					
12							General	Statistics					-
13				Tota	al Number of	Observations	8			Numbe	r of Distinct (Observations	6
14					Numb	er of Detects	/			Niccoste	Number of	Non-Detects	1
15				٦	Numper of Dis	SUNCE Detects	0.00			Numbe		Non-Detects	0.00
16					IVIII		0.28				IVIINIMUM	Non-Detect	0.28
17					Ivia) Vori	anaa Detect	0.00246				Doroont	Non-Detect	0.28
18					Vall		0.00240				Feiceni	SD Dotocts	0.0496
19					л Ма	dian Detects	0.333					CV Detects	0.0490
20					Skew		-0 537				Kur	tosis Detects	-1.68
21					Mean of Lo	aged Detects	-1.051				SD of Loc	aed Detects	0.146
22						9904 2 010010						<u>, , , , , , , , , , , , , , , , , , , </u>	
23		N	lote: Sai	mple size is	small (e.g.,	<10), if data a	are collected	using increr	nental samp	ling method	lology (ISM)	approach,	
24				refer also	to ITRC Tec	h Reg Guide	on ISM (ITR	C 2020 and I	TRC 2012) 1	for additiona	al guidance,		
25			t	out note that	t ITRC may r	ecommend th	e t-UCL or t	he Chebyshe	ev UCL for s	mall sample	e sizes (n <)	7).	
20					The Chet	oyshev UCL o	ften results	in gross over	restimates o	f the mean.			
28				Re	efer to the Pr	oUCL 5.2 Tec	hnical Guid	e for a discus	ssion of the	Chebyshev	UCL.		
29													
30						Norm	al GOF Tes	t on Detects	Only				
31				:	Shapiro Wilk	Test Statistic	0.874			Shapiro Wi	lk GOF Test	:	
32				1% \$	Shapiro Wilk	Critical Value	0.73	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
33					Lilliefors	Test Statistic	0.207			Lilliefors	GOF Test		
34					1% Lilliefors	Critical Value	0.35	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	vel
35					D	etected Data	appear Norn	nal at 1% Sig	nificance Le	evel			
36					No	te GOF tests	may be unre	liable for sm	all sample s	izes			
37										-			
38				Kaplan	-Meier (KM)	Statistics usi	ng Normal C	ritical Values	s and other l	Nonparamet	tric UCLs		
39						KM Mean	0.344			KN	A Standard E	Fror of Mean	0.0188
40					05/	90KM SD	0.0492				95% KN		0.3/3
41					959	70 KIVI (t) UCL	0.379			95% KM (P		otstrap) UCL	0.3/3
42					95%	o KIVI (Z) UCL	0.3/5				90% KIVI BO		0.3//
43							0.4						0.420
44				9	7.3% KIVI UN		0.401					bysnev UCL	0.531
45													

	Δ	B		C C	I	D	1	F	F		2	н		-		1		ĸ	1	
46		D	1	0			Gamm	a GOF	Tests on D	etecte	d Obse	rvations	Only					IX.		
47						A-D	Test S	Statistic	0.48				And	erson	-Darlin	g GOF	Test			
48					5	% A-D	Critica	l Value	0.708	D	etected	l data ap	pear G	amm	a Distr	ibuted a	at 5%	Significar	ice Lev	vel
49						K-S	Test S	Statistic	0.228				Kol	mogo	rov-Sn	nirnov (GOF			
50					5	% K-S	Critica	l Value	0.311	D	etected	l data ap	pear G	amm	a Distr	ibuted a	at 5%	Significar	ice Lev	vel
51					D)etecte	d data	appea	r Gamma Di	istribul	ed at 5	% Signi	ficance	e Leve	əl					
52						No	te GO	F tests	may be unr	eliable	for sm	all sam	ole size	es						
53																				
54							Ģ	amma	Statistics o	n Dete	cted D	ata Only	/							
55							k hat	t (MLE)	56.44						k sta	r (bias o	correc	ted MLE)	32.	.34
56						The	eta hat	t (MLE)	0.00625					The	eta sta	r (bias o	correc	ted MLE)	0.0)109
57							nu hat	t (MLE)	790.1						r	nu star (bias c	orrected)	452.	.8
58						Μ	lean (d	etects)	0.353											
59							_													
60			0.00				Gamm		Statistics u	Ising Ir	nputed	Non-De	etects			1. L D				
61		0000	GRO	S may	/ not l	be use	d wher	n data s	set has > 50%	6 NDs	with m	any tied	observ	ations	s at mu	iltiple D		.45.00)		
62		GROS may	y not b	e used	1 whe	en Kstar	of det		small such a	is <1.0	, espec	ally wh	en the	sampi		is smai	I (e.g.	, <15-20)		
63				FO	or suc	n situa	This is	GRUS	method may					Ls an	u BIV	5				
64			mma di	iotribut	tod d	otootoo				en the	sample	size is	small.	o diat	ributio	n on KN	Lootin			
65		For gar	mma di	Istribui	tea a	elecled		BIVSa		ау ре с	omput	ea using	gamm	a dist	ributio		estin	Maan	0.4	220
66							IVII Ma	vinum	0.243									Modion	0.	228
67							IVIa		0.4										0.	33 177
68							k hot		0.0001						k ata	r (hiaa			0.	1//
69						Th			0.0000					Th	K Sld		corroc		21.	.49
70							nu hat		547.9						ra sia		hias c		343	8
71			Ad	liusted	1 eve	el of Si	anifica	nce (ß)	0.0195										040.	.0
72		Appr	roximat	e Chi	Saua	re Valu	ue (343	(q) 380 (α)	301.8				Adiı	isted (Chi Sa	uare Va	alue (3	43.80 B)	291	9
73			(95% G	amm	na Appr	roxima	te UCL	0.386				, luje		95%	Gamma	Adiu:	sted UCL	0.4	4
74																				
75						E	stimat	es of G	amma Para	meters	s using	KM Est	imates	;						
70							Меа	ın (KM)	0.344		-							SD (KM)	0.0)492
78						V	/arianc	e (KM)	0.00242							SE	E of M	ean (KM)	0.0)188
70							k ha	at (KM)	48.76								k	star (KM)	30.	.56
80							nu ha	at (KM)	780.1								nu	star (KM)	488.	.9
81						t	heta ha	at (KM)	0.00705								theta	star (KM)	0.0)112
82				80%	% gar	nma pe	ercentil	le (KM)	0.395						90% g	amma	percer	ntile (KM)	0.4	425
83				95%	% gar	nma pe	ercentil	le (KM)	0.452						99% g	amma	percer	ntile (KM)	0.5	505
84									1	1									1	
85								Gamn	na Kaplan-M	leier (ł	(M) Sta	tistics								
86		Appr	roximat	e Chi	Squa	ire Valu	ue (488	3.92, α)	438.6				Adju	usted (Chi Sq	uare Va	alue (4	-88.92, β)	426.	.5
87			95%	KM A	pprox	ximate	Gamm	na UCL	0.383					959	% KM /	Adjuste	d Gan	nma UCL	0.3	394
88																				

UCL95_600_IA_Benzene

	A B	С	D	E	F	G	Н	1	1		J		К	T	L
89			Lo	ognormal GC	F Test on D	etected	Observatio	ons On	y						
90			Shapiro Wilk	Test Statistic	0.869			:	Shapiro	Wilk	GOF Te	est			
91		10% S	Shapiro Wilk C	Critical Value	0.838		Detected Da	ata app	ear Log	gnorma	al at 10%	% Sign	ificance	Leve	el
92			Lilliefors	Test Statistic	0.222				Lillief	ors G	OF Test				
93		1(0% Lilliefors C	Critical Value	0.28	l	Detected Da	ata app	ear Log	gnorma	al at 10%	% Sign	ificance	Leve	el
94			Deteo	cted Data ap	pear Lognor	mal at 1	0% Signific	ance L	.evel						
95			Note	e GOF tests	may be unre	eliable fo	or small san	nple si	zes						
96															
97			Lo	gnormal RO	S Statistics	Using Im	nputed Non-	-Detec	ts						
98			Mean in O	riginal Scale	0.34						Mea	an in Lo	og Scale	e - '	1.094
99			SD in O	riginal Scale	0.0592						S	D in L	og Scale	9	0.182
100	95	% t UCL (assume	es normality o	of ROS data)	0.379				95	5% Pe	rcentile	Bootst	rap UCL	-	0.371
101			95% BCA Bo	ootstrap UCL	0.369						95% B	ootstra	ap t UCL	-	0.378
102			95% H-UC	L (Log ROS)	0.389										
103															
104		Stati	istics using K	M estimates	on Logged I	Data and	d Assuming	Logno	ormal Di	istribu	tion				
105			KM M	ean (logged)	-1.078							KM G	eo Mear	ı	0.34
106			KM	SD (logged)	0.146				95	5% Crit	tical H V	/alue (KM-Log)	1.89
107		KM Standa	ard Error of M	ean (logged)	0.0558					1	95% H-l	JCL (ŀ	KM -Log)	0.382
108			KM	SD (logged)	0.146				95	5% Crit	tical H V	/alue (KM-Log)	1.89
109		KM Standa	ard Error of M	ean (logged)	0.0558										
110															
111					DL/2 S	tatistics									
112		DL/2	Normal						DL/2 Lo	og-Tra	nsforme	əd			
113			Mean in O	riginal Scale	0.326						Mea	an in Lo	og Scale) - '	1.165
114			SD in O	riginal Scale	0.0881						S	D in L	og Scale	•	0.351
115		95% t	UCL (Assume	es normality)	0.385						95	5% H-S	Stat UCL	-	0.44
116		DL/2	is not a reco	mmended m	ethod, provi	ded for c	comparison	s and I	nistorica	al reas	sons				
117															
118				Nonparame	etric Distribu	tion Free	e UCL Stati	istics	_						
119			Detected	l Data appea	r Normal Di	stributed	d at 1% Sigr	nifican	ce Leve						
120															
121			0.50		Suggested	UCL to	Use								
122			95%	5 KM (t) UCL	0.379										
123															
124	Note: Si	uggestions regard	ding the selec	ction of a 95%	UCL are pr	ovided to	o help the us	ser to s	select th	ie mos	t approp	priate 9	95% UC	L.	
125	Re	ecommendations	s are based up	oon data size	, data distrib	ution, an	a skewness	s using	results	from s	simulatio	on stud	lies.		
126	However,	simulations resul	Its will not cov	/er all Real W	orld data se	ts; for ac	ditional insi	ight the	e user m	nay wa	int to co	nsult a	statistic	cian.	
127															

	А	В	С	D	E	F	G	Н	1	J	K	L	
1		-		•	UCL Statis	stics for Unc	ensored Full	Data Sets	•	-	•		
2													
3		User Sele	ected Options	6									
4	Da	ate/Time of C	omputation	ProUCL 5.2	3/6/2023 2:2	5:47 PM							
5			From File	UCL95_inpu	ut_Revised.x	s							
6		Fu	III Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number	of Bootstrap	Operations	2000									
9													
10													
11	600 IA Car	bon Tetrach	loride										
12													
13						General	Statistics						
14			Tota	I Number of C	Observations	8			Numbe	r of Distinct	Observations	5	
15									Numbe	r of Missing	Observations	0	
16					Minimum	0.37					Mean	0.419	
17					Maximum	0.45					Median	0.42	
18					SD	0.0247				Std. I	Error of Mean	0.00875	
19				Coefficient	t of Variation	0.0591					Skewness	-0.941	
20													
21		Note: Sa	ample size is	small (e.g., •	<10), if data a	are collected	l using increi	mental samp	ling method	ology (ISM)	approach,		
22		refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance,											
23			but note that	t ITRC may re	ecommend th	ne t-UCL or	the Chebysh	ev UCL for s	small sample	e sizes (n <)	7).		
24				The Cheb	yshev UCL o	ften results	in gross ove	restimates o	f the mean.				
25			Re	efer to the Pro	OUCL 5.2 Teo	chnical Guid	e for a discu	ssion of the	Chebyshev	UCL.			
26													
27						Normal	GOF Test						
28			ę	Shapiro Wilk	Test Statistic	0.912			Shapiro Wi	lk GOF Tes	t		
29			1% S	Shapiro Wilk C	Critical Value	0.749		Data appe	ear Normal a	t 1% Signific	ance Level		
30				Lilliefors	Test Statistic	0.237			Lilliefors	GOF Test			
31			-	1% Lilliefors C	Critical Value	0.333		Data appe	ear Normal a	t 1% Signific	ance Level		
32					Data appe	ar Normal a	t 1% Signific	ance Level					
33				Not	e GOF tests	may be unr	eliable for sm	nall sample s	sizes				
34								-					
35			050/ 1		As	suming Nor	mai Distribut	ion					
36			95% N			0.405		95%				0.42	
37				95% Stu	dent's-t UCL	0.435			95% Adjuste		(Cnen-1995)	0.43	
38									95% MOUIT	ea-t UCL (JC	onnson-1978)	0.435	
39						Commo							
40					Toot Statiatia		GOF Test	Ando	roop Dorling	Commo CC)E Toot		
41				A-D		0.433	Detecto		rson-Darling	Gamma GC	F lest		
42				5% A-D (0.715	Detecte	kolmoo	ar Gamma D	Stributed at	5% Significan		
43				50/V00		0.200	Dataata				5% Significan		
44				Detector		0.294		u uata appea		istributed at	5 % Significan	ce Level	
45													
46				INOT	e gur iesis	may be unr		iali sample s	01245				
47													

UCL95_600_IA_Carbon_Tetrachloride

	А	В	С	D	Е	F	G	Н	I	J	K	L
48						Gamma	Statistics		k	tor (biog oor	reated ML E)	109.0
49				The		0.00122			Thoto	star (bias cor		0.00211
50				n		5072			meta	nu star (bia		3171
51			MI	E Mean (hia		0 / 10				MI E Sd (bia	s corrected)	0.0207
52					s conected)	0.413			Annrovimate		Value (0.05)	3041
53			Adius	ted Level of	Significance	0 0195			Approximate	liusted Chi S	quare Value	3009
54			, tujuc			0.0100					quare raide	
55					As	sumina Garr	ma Distribut	tion				
56			95% A	pproximate C	amma UCL	0.437			95	% Adjusted 0	Gamma UCL	0.441
57										,,		
50						Lognorma	I GOF Test					
59			S	hapiro Wilk T	est Statistic	0.897		Shar	piro Wilk Log	normal GOF	Test	
61			10% S	hapiro Wilk C	ritical Value	0.851		Data appear	- Lognormal a	at 10% Signif	icance Level	
62				Lilliefors T	est Statistic	0.248		Lil	liefors Logno	ormal GOF T	est	
63			10	% Lilliefors C	ritical Value	0.265		Data appear	Lognormal	at 10% Signif	icance Level	
64				I	Data appear	Lognormal	at 10% Signi	ficance Leve	el .			
65				Not	e GOF tests	may be unre	eliable for sm	nall sample s	izes			
66												
67						Lognorma	I Statistics					
68			I	Minimum of L	ogged Data	-0.994				Mean of	logged Data	-0.872
69			Ν	laximum of L	ogged Data	-0.799				SD of	logged Data	0.0606
70							1					
71					Assi	uming Logno	ormal Distrib	ution				
72					95% H-UCL	N/A			90%	Chebyshev (MVUE) UCL	0.446
73			95%	Chebyshev (MVUE) UCL	0.458			97.5%	Chebyshev (MVUE) UCL	0.475
74			99%	Chebyshev (MVUE) UCL	0.508						
75												
76					Nonparame	etric Distribu	tion Free UC	CL Statistics				
77					Data appea	ar to follow a	Discernible	Distribution				
78												
79				05				e UCLs				0.400
80			050/	95 Chan david Da	of the trace LICL	0.433				95% BCA B0		0.429
81			95%			0.432			050/ 1	95% B00	tstrap-t UCL	0.432
82			9 00% Ch			0.431			95% 1	obvehov(Mo		0.431
83			90 % Ch		an, Su) UCL	0.443					an, Su) UCL	0.437
84			37.570 CH	ebysnev(mea	an, 50) 662	0.475			3370 CI		an, 50) 662	0.000
85						Suggested	UCL to Use					
86				95% Stu	dent's-t UCL	0.435						
87						01100						
88		Note: Sugae	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL.	
89		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
9U Q1	H	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may	want to consu	ult a statisticia	an.
02								-				
92		Note: For	highly negat	tively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	gnormal, an	d Gamma) n	nay not be	
94			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
95												

		-					-					
-	A	В	C		E JCL Statis	F This for Unc	G ensored Full	H Data Sets		J	K	L
2												
2		User Sele	cted Options									
4	Dat	e/Time of Co	omputation	ProUCL 5.2 3/6	6/2023 2:2	8:07 PM						
5			From File	UCL95_input_F	Revised.xl	s						
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9				<u> </u>								
10												
11	600 IA Chlo	romethane										
12												
13						General	Statistics					
14			Tota	Number of Obs	ervations	8			Numbe	r of Distinct (Observations	7
15									Number	of Missing (Observations	0
16					Minimum	0.31					Mean	0.471
17				Ν	Maximum	0.65					Median	0.465
18					SD	0.162				Std. E	Fror of Mean	0.0574
19				Coefficient of	Variation	0.345					Skewness	0.0261
20			<u> </u>								<u> </u>	
21		Note: Sai	mple size is	small (e.g., <10)), if data a	are collected	l using incre	mental samp	oling method	lology (ISM)	approach,	
22			refer also t	o ITRC Tech Re	eg Guide o	on ISM (ITR	C 2020 and	ITRC 2012)	for additiona	al guidance,	-\	
23		Ľ	out note that	The Obebueb	mmend th		the Chebysh	ev UCL for s	mall sample	e sizes (n < .	/).	
24			Dei	I ne Chebysh			in gross ove	restimates o	Chebyebey			
25			Re		L 5.2 Tec				Chebyshev	UCL.		
26						Normal (20F Test					
27			S	Shaniro Wilk Test	t Statistic	0 739			Shaniro Wi	lk GOF Test	•	
28			1% S	hapiro Wilk Criti	cal Value	0.749		Data No	t Normal at	1% Significat	nce l evel	
29			1,00	Lilliefors Test	t Statistic	0.308		Data No	Lilliefors	GOF Test		
30			1	% Lilliefors Criti	cal Value	0.333		Data appe	ar Normal a	t 1% Signific	ance Level	
31				Data ap	pear App	roximate No	rmal at 1% S	Significance	Level			
32				Note G	OF tests	mav be unre	eliable for sm	nall sample s	sizes			
33												
34					As	suming Nor	mal Distribut	ion				
36			95% N	ormal UCL		-		95%	UCLs (Adju	sted for Ske	wness)	
30				95% Studen	nt's-t UCL	0.58			95% Adjuste	d-CLT UCL	(Chen-1995)	0.566
32									95% Modifi	ed-t UCL (Jo	hnson-1978)	0.58
39												
40						Gamma	GOF Test					
41				A-D Tes	t Statistic	1.134		Ander	son-Darling	Gamma GC	OF Test	
42				5% A-D Criti	cal Value	0.716	D	ata Not Gam	ma Distribut	ed at 5% Sig	nificance Lev	rel
43				K-S Tes	t Statistic	0.319		Kolmog	orov-Smirno	ov Gamma G	OF Test	
44				5% K-S Criti	cal Value	0.294	D	ata Not Gam	ma Distribut	ed at 5% Sig	nificance Lev	rel
45				Data	Not Gamr	na Distribut	ed at 5% Sig	nificance Le	vel			
<u> </u>												

UCL95_600_IA_Chloromethane

	Α	В	С	D	E	F	G	Н	I	J	K	L
47						Gamma	Statistics					F 007
48				The	K hat (MLE)	9.302			K	star (bias cor		5.897
49				The		140.0			meta			0.0799
50			5.4	LE Maan /hid		148.8				MLE Sd (bid	as corrected)	94.35
51			IVI		as conecteu)	0.471			Approximate			72 95
52			Adius	ted Level of	Significance	0.0195				diusted Chi S		68.2
53			Aujus		Significance	0.0135			~			00.2
54					Ase	suming Gam	ma Distribu	tion				
55			95% A	nnroximate (Gamma UCI	0.61			95	% Adjusted (Gamma UCI	0.652
56						0.01						
57						Lognorma	I GOF Test					
58			S	hapiro Wilk	Test Statistic	0.734		Shar	oiro Wilk Lo	normal GOF	- Test	
59			10% S	hapiro Wilk (Critical Value	0.851		Data Not L	_ognormal at	10% Signific	ance Level	
60				Lilliefors	Test Statistic	0.301		Lil	liefors Loan	ormal GOF T	Test	
61			10	% Lilliefors C	Critical Value	0.265		Data Not L	ognormal a	10% Signific	ance Level	
62					Data Not Lo	ognormal at	10% Signific	cance Level				
64						-						
65						Lognorma	I Statistics					
66				Minimum of	Logged Data	-1.171				Mean of	logged Data	-0.807
67			Ν	Maximum of	Logged Data	-0.431				SD of	logged Data	0.357
68												
69					Assı	uming Logno	ormal Distrib	ution				
70					95% H-UCL	0.634			90%	Chebyshev (MVUE) UCL	0.651
71			95%	Chebyshev ((MVUE) UCL	0.732			97.5%	Chebyshev (MVUE) UCL	0.845
72			99%	Chebyshev ((MVUE) UCL	1.067						
73											4	
74					Nonparame	etric Distribu	tion Free UC	CL Statistics				
75					Data appea	r to follow a	Discernible	Distribution				
76												
77					Nonpai	rametric Dis	tribution Fre	e UCLs				
78				95	5% CLT UCL	0.566				95% BCA Bo	ootstrap UCL	0.553
79			95%	Standard Bo	ootstrap UCL	0.56				95% Boo	otstrap-t UCL	0.57
80			9	5% Hall's Bo	ootstrap UCL	0.535			95%	Percentile Bo	ootstrap UCL	0.554
81			90% Ch	ebyshev(Me	an, Sd) UCL	0.644			95% CI	nebyshev(Me	an, Sd) UCL	0.722
82			97.5% Ch	ebyshev(Me	an, Sd) UCL	0.83			99% CI	nebyshev(Me	an, Sd) UCL	1.043
83												
84						Suggested	UCL to Use					
85				95% Stu	dent's-t UCL	0.58						
86			1.4.11		- 11				(1)			
87			Wher	n a data set f	oliows an app	proximate dis	stribution pas	sing only on		- tests,		
88			it is su	ggested to u	se a UCL bas	sed upon a d	istribution pa	issing both G	JUF tests in	ProucL		
89		Noto: Sugar	ctions record	ling the color	tion of a OEM		ovided to be	n the upper to	coloct the -		ato 05% LICI	
90		Poor	mondetions	aro based		data diatrib					ate 95% UCL	
91	LIA			are based up		, uala uistiiD	ts: for addition	ewness usin		want to conc	suules.	an
92		, , Sillu						กลา การเฐาน แ	ie user IIIdy		นกะ ฉ จเฮแจแปไ	
03												

					1							1	-	
1	A		В	C	D	UCL Statist	F tics for Data	G Sets with No	H on-Detects		J	K		L
2														
3		U	ser Sele	cted Options	5									
4	Da	ate/Ti	me of Co	omputation	ProUCL 5.2	3/6/2023 2:2	9:00 PM							
5				From File	UCL95_inp	ut_Revised.xl	s							
6			Fu	II Precision	OFF									
7		Cor	fidence	Coefficient	95%									
8	Number	of Bo	otstrap	Operations	2000									
9														
10	600 IA Eth	anol												
11														
12							General	Statistics			-	-		_
13				Total	I Number of C	Observations	8			Number	r of Distinct (Observations		8
14					Numb	er of Detects	7				Number of	Non-Detects		1
15	 			N	umber of Dis	unct Detects	/			Numbe	er of Distinct	Non-Detects	·	1
16					Min	imum Detect	1.6				Minimun	n Non-Detect		1.4
17					Max	imum Detect	20				Maximun	n Non-Detect		1.4
18	ļ				Varia	ance Detects	40.81				Percent	Non-Detects		12.5%
19					N	lean Detects	6.271					SD Detects		6.388
20	ļ				Me	dian Detects	3.8					CV Detects		1.019
21					Skewr	ness Detects	2.145				Kur	tosis Detects		4.773
22					wean of Log	ged Detects	1.507				SD of Log	gged Detects		0.822
23			lote: Sa	mnlo sizo is	emall (e.a. e	<10) if data a	re collector	using increa	nontal camr	ling method		annroach		
24				refer also t	o ITRC Tech	Reg Guide o	n ISM (ITR	C 2020 and l	TRC 2012)	for additiona	d quidance	appioacii,		
25	 		ł		ITRC may re	commend th	et-UCL or t	he Chebyshe	V UCL for s	mall sample	sizes (n <	7)		
26					The Cheb	vshev UCL of	ften results	in aross over	estimates o	f the mean.		.,.		
27				Re	fer to the Pro	UCL 5.2 Tec	hnical Guid	e for a discus	sion of the	Chebvshev	UCL.			
28										,				
29						Norm	al GOF Tes	t on Detects	Only					
30				Ę	Shapiro Wilk	Fest Statistic	0.715		-	Shapiro Wi	lk GOF Test	t		
32				1% S	hapiro Wilk (Critical Value	0.73	D	etected Dat	a Not Norma	al at 1% Sigr	nificance Lev	el	
33					Lilliefors	Fest Statistic	0.341			Lilliefors	GOF Test			
34				1	% Lilliefors (Critical Value	0.35	De	tected Data	appear Norr	nal at 1% Sig	gnificance Le	evel	
35					Detected	Data appear	Approximat	e Normal at ⁻	1% Significa	nce Level				
36					Not	e GOF tests i	may be unre	liable for sm	all sample s	sizes				
37														
38				Kaplan-	Meier (KM)	Statistics usir	ng Normal C	ritical Values	and other	Nonparamet	ric UCLs			
39						KM Mean	5.663			KN	A Standard E	Error of Mean		2.201
40						90KM SD	5.762				95% KN	И (BCA) UCL		9.538
41					95%	KM (t) UCL	9.832			95% KM (P	ercentile Bo	otstrap) UCL		9.55
42					95%	KM (z) UCL	9.282				95% KM Boo	otstrap t UCL		21.17
43				9	90% KM Che	byshev UCL	12.26			ę	95% KM Che	ebyshev UCL		15.25
44				97	7.5% KM Che	byshev UCL	19.4			ę	99% KM Che	ebyshev UCL		27.56
45														

	А	В	С	D	E	F	G	н		J		К	L
46					Gamma GOF	Tests on De	etected Obse	ervations Onl	У	-			_
47				A-D	Test Statistic	0.52		Ar	nderson-Dai	ling GOF	Test		
48				5% A-D	Critical Value	0.719	Detected	d data appear	r Gamma Di	stributed a	at 5% S	Significan	ce Level
49				K-S	Test Statistic	0.3		К	olmogorov-	Smirnov C	GOF		
50				5% K-S	Critical Value	0.316	Detected	d data appear	r Gamma Di	stributed a	at 5% S	Significan	ce Level
51				Detecte	d data appea	r Gamma Di	stributed at 5	5% Significar	nce Level				
52				No	te GOF tests	may be unre	eliable for sm	nall sample s	izes				
53					0		D. to start D	ata Oaka					
54							Detected D	ata Only		ter (bies a			1.040
55				Th	K nat (MLE)	1.009			K S	star (blas c	correct		F 079
56				Ine	pu hot (MLE)	3./5/			Thetas				5.978
57				М		6 271				nu star (mected)	14.09
58				IVI		0.271							
59					Gamma ROS	Statistics u	sina Imputed	Non-Detect	\$				
60			GROS may	/ not be used	d when data s	et has > 50%	6 NDs with m	any tied obse	ervations at	multiple D	Ls		
61		GROS may	v not be used	d when kstar	of detects is	small such a	s <1.0. espec	cially when th	e sample si	ze is smal	l (e.a	<15-20)	
62			Fc	or such situa	tions, GROS	method may	yield incorre	ct values of L	JCLs and BT	Vs	(- 3,	/	
64					This is especi	ally true whe	n the sample	e size is smal	l.				
65		For gar	mma distribu	ted detected	data, BTVs a	nd UCLs ma	y be comput	ed using garr	nma distribut	tion on KN	l estim	ates	
66					Minimum	0.01						Mean	5.489
67					Maximum	20						Median	3.75
68					SD	6.315						CV	1.151
69					k hat (MLE)	0.638			ks	star (bias d	correct	ed MLE)	0.482
70				The	eta hat (MLE)	8.599			Theta s	star (bias o	correct	ed MLE)	11.38
71					nu hat (MLE)	10.21				nu star (bias co	orrected)	7.716
72			Adjusted	Level of Sig	gnificance (β)	0.0195							
73		Ap	oproximate C	hi Square V	alue (7.72, α)	2.572			Adjusted C	hi Square	Value	(7.72, β)	1.885
74			95% G	amma Appr	oximate UCL	16.47			959	% Gamma	Adjus	ted UCL	22.47
75													
76				E	stimates of G	iamma Para	meters using	, KM Estimat	es				
77					Mean (KM)	5.663						SD (KM)	5.762
78				V	ariance (KM)	33.2				SE	E of Me	ean (KM)	2.201
79					k hat (KM)	0.966					ks	star (KM)	0.687
80					nu hat (KM)	15.45					nu s	star (KM)	10.99
81			0.00	ti	neta hat (KM)	5.864			000		theta s	star (KM)	8.244
82			80%	% gamma pe		9.313			90%	o gamma p	bercen		14.28
83			95%	∞ yamma pe	acentile (KM)	19.41			99%	o yamma (Jercen	uie (KIVI)	31.0/
84					Gamm	a Kanlan-M	oior (KM) 94	atistics					
85		Δρ	proximate Ch	i Square Va		4 569	5151 (INI) 36	443463	Adjusted Chi	Square V	alue ('	10 90 RI	3 581
86			95% KM 4		Gamma LICI	13.62		r	Q5% K	M Adjuste	d Gam		17.38
87			3370 NIVI A	,ppi oximate		10.02			33 /0 N				17.50
88													

	A	В	С	D	E	F F Test on D	G etected Obs	H envetions O		J	K		L
89			5	haniro Wilk	Test Statistic		elecieu Obs		Shaniro Wi	Ik GOF Test			
90			10% SI	napiro Wilk	Critical Value	0.330	Dete	cted Data ar		rmal at 10% S	Significance	Leve	4
91				Lilliefors	Test Statistic	0.249	2010		Lilliefors	GOF Test	e.gearree		
92			10'	% Lilliefors	Critical Value	0.28	Dete	cted Data ar	pear Logno	rmal at 10% \$	Significance	Leve	el l
93				Det	ected Data ap	pear Lognor	mal at 10% \$	Significance	Level		- J		
94				No	te GOF tests	may be unre	eliable for sm	all sample s	sizes				
90								-					
97				L	.ognormal RO	S Statistics	Using Impute	ed Non-Dete	cts				
98				Mean in	Original Scale	5.562				Mean	in Log Scale	•	1.255
99				SD in	Original Scale	6.245				SD	in Log Scale	•	1.044
100		95% t L	JCL (assume	s normality	of ROS data)	9.746			95%	Percentile Bo	otstrap UCL	. !	9.462
101			ę	95% BCA E	Bootstrap UCL	10.99				95% Boo	otstrap t UCL	. 1	9.63
102				95% H-U	CL (Log ROS)	24.37							
103													
104			Statis	tics using	KM estimates	on Logged	Data and Ass	suming Logr	ormal Distri	ibution			
105				KM	Vlean (logged)	1.361				K	M Geo Mean	1	3.9
106				KN	VI SD (logged)	0.811			95% (Critical H Val	ue (KM-Log)		2.976
107			KM Standar	d Error of N	Mean (logged)	0.31				95% H-UC	CL (KM -Log)	1	3.48
108				K	VI SD (logged)	0.811			95% (Critical H Val	ue (KM-Log)		2.976
109			KM Standar	d Error of N	vlean (logged)	0.31							
110													<u>.</u>
111				Jormal		DL/2 S				Francformed			
112			DL/21	Mean in (Original Scale	5 575			DL/2 LUg-1	Mean	in Log Scale		1 27/
113				SD in (6 234					in Log Scale		1.274
114			95% t l		nes normality)	9 751				95%	H-Stat UCI	. 2	22 02
115			DL/2 i	s not a rec	ommended m	ethod. provi	ded for comp	arisons and	historical re	easons		. 2	.2.02
116						, p							
110					Nonparame	etric Distribu	tion Free UC	L Statistics					
110			Det	ected Data	a appear Appr	oximate Nor	mal Distribut	ed at 1% Sig	gnificance L	evel			
120													
121						Suggested	UCL to Use						
122				95	% KM (t) UCL	9.832							
123													
124		The ca	Iculated UCI	_s are base	ed on assump	tions that the	e data were c	collected in a	a random an	d unbiased r	nanner.		
125				Plea	ase verify the	data were co	ollected from	random loca	ations.				
126				If the data	were collected	d using judgi	mental or oth	er non-rand	om methods	\$,			
127				t	hen contact a	statistician	o correctly c	alculate UC	Ls.				
128													
129			When	a data set	follows an app	proximate dis	stribution pas	sing only on	e of the GOF	tests,			
130			it is sug	ggested to	use a UCL bas	sed upon a d	istribution pa	ssing both G	OF tests in	ProUCL			
131		Nata: 0:					منتاب ا				ata 05% 110	1	
132		Note: Sugges	mondations	ing the sele	ection of a 95%	o UCL are pr	ution and a	p the user to	select the n	nost appropri	ate 95% UC	L.	
133		Recom	lations recult	are based t		, uata distrib	te: for addition	nal insight th			suules.	vion	
134		wever, simu		S WIII HOL CO		ionu uata se		nai insignt tr	ie user may	want to cons	นแ ส รเสมร์ได้	nall.	
135													

		-				-							
	A		В	С	D	UCL Stati	F Stics for Und	G G	H Data Sets		J	К	L
2													
2		Use	er Seleo	ted Option	S								
4	D	ate/Tim	e of Co	mputation	ProUCL 5	.2 3/6/2023 2:2	29:41 PM						
5				From File	UCL95_in	put_Revised.>	ls						
6			Ful	I Precision	OFF								
7		Confi	dence	Coefficient	95%								
8	Number	of Boot	tstrap (Operations	2000								
9													
10													
11	600 IA Fre	on 11											
12													
13							General	Statistics					
14				Tota	al Number of	Observations	8			Numbe	r of Distinct (Observations	3
15										Numbe	r of Missing (Observations	0
16						Minimum	1.2					Mean	1.288
17						Maximum	1.4					Median	1.25
18						SD	0.0991				Std. E	Error of Mean	0.035
19					Coefficie	ent of Variation	0.077					Skewness	0.312
20						(10) (1)							
21		No	te: San	nple size is	s small (e.g.,	, <10), if data	are collected	d using incre		oling method	lology (ISM)	approach,	
22			h	reter also		ch Reg Guide		C 2020 and			al guidance,	7)	
23			D							f the mean		/).	
24				B	fer to the P		chnical Guid	e for a discu	seion of the	Chebyebey			
25													
26							Normal	GOF Test					
27					Shapiro Wilk	Test Statistic	0.735			Shapiro Wi	Ik GOF Tes	t	
28				1%	Shapiro Wilk	Critical Value	0.749		Data No	t Normal at	1% Significa	nce Level	
29					Lilliefors	Test Statistic	0.311			Lilliefors	GOF Test		
31					1% Lilliefors	Critical Value	0.333		Data appe	ear Normal a	t 1% Signific	ance Level	
32					Dat	ta appear App	oroximate No	ormal at 1% S	Significance	Level			
33					No	ote GOF tests	may be unr	eliable for sn	nall sample :	sizes			
34													
35						As	suming Nor	mal Distribut	tion				
36				95% N	Normal UCL				95%	UCLs (Adju	sted for Ske	wness)	
37					95% St	tudent's-t UCL	1.354			95% Adjuste	d-CLT UCL	(Chen-1995)	1.349
38										95% Modifi	ed-t UCL (Jo	hnson-1978)	1.355
39													
40							Gamma	GOF Test					
41					A-D	Test Statistic	1.061		Ande	rson-Darling	Gamma GC	OF Test	
42					5% A-D	Critical Value	0.715	D	ata Not Gam	ima Distribut	ed at 5% Sig	nificance Lev	vel
43					K-S	S Test Statistic	0.328		Kolmog	orov-Smirno	ov Gamma C	OF Test	
44					5% K-S	Critical Value	0.294	D	ata Not Garr	ıma Distribut	ed at 5% Sig	nificance Lev	/el
45					0	Data Not Gam	ma Distribut	ed at 5% Sig	inificance Le	evel			
46													

UCL95_600_IA_Freon11

	А	В	C	D		E	F	G	Н		J	К	L
47						k hat (MLE)	194.8	Olalislics		k	star (bias cor	rected MLE)	121.8
48					The	ta hat (MLE)	0.00661			Theta	star (bias cor		0.0106
49							3117			meta	nu star (bia		10/0
50			•	/I E Mear	n (hia		1 288				MIESd (bia	s corrected)	0 117
51			IV.			is conected)	1.200			Annrovimate			1848
52			ibA	isted Levi	el of	Significance	0.0195			Δ	liusted Chi S	quare Value	1823
53			/ taje				0.0100			7.0		quare value	1020
54						As	sumina Gam	ma Distribut	tion				
55			95%	Approxim	nate (Gamma UCI	1.358			95	% Adjusted (Gamma UCI	1.377
56													
57							Lognorma	GOF Test					
58				Shapiro V	Nilk T	est Statistic	0.735		Shar	oiro Wilk Loo	normal GOF	Test	
59			10% 5	Shapiro V	Vilk C	critical Value	0.851		Data Not I	ognormal at	10% Signific	ance Level	
60				Lillief	fors T	est Statistic	0.312		Lil	liefors Loand	ormal GOF T	est	
61			1	0% Lillief	fors C	critical Value	0.265		Data Not I	ognormal at	10% Signific	ance Level	
62			•			Data Not L	ognormal at	10% Signific	cance Level	iog.ioi.iai ai			
63													
64							Lognorma	I Statistics					
65				Minimur	n of L	odded Data	0.182				Mean of	logged Data	0.25
66				Maximur	n of L	Logged Data	0.336				SD of	logged Data	0.0764
67					-	- 33						- 33	
68						Ass	umina Loana	ormal Distrib	ution				
69						95% H-UCL	N/A			90%	Chebvshev (MVUE) UCL	1.392
70			95%	Chebys	hev (l	MVUE) UCL	1.439			97.5%	Chebyshev (MVUE) UCL	1.505
71			99%	Chebysł	hev (l	, MVUE) UCL	1.634				, (,	
72				,		,							
73						Nonparam	etric Distribu	tion Free UC	L Statistics				
74						Data appea	ar to follow a	Discernible	Distribution				
75													
70						Nonpa	rametric Dis	tribution Fre	e UCLs				
77					95	% CLT UCL	1.345				95% BCA Bo	otstrap UCL	N/A
70			95%	% Standar	rd Bo	otstrap UCL	N/A				95% Boo	tstrap-t UCL	N/A
80				95% Hall	l's Bo	otstrap UCL	N/A			95% F	Percentile Bo	otstrap UCL	N/A
81			90% C	hebyshev	v(Me	an, Sd) UCL	1.393			95% Ch	ebyshev(Me	an, Sd) UCL	1.44
82			97.5% C	hebyshev	v(Me	an, Sd) UCL	1.506			99% Ch	ebyshev(Me	an, Sd) UCL	1.636
83													
84							Suggested	UCL to Use					
85				95%	6 Stu	dent's-t UCL	1.354						
86							1	1					
87			Whe	en a data	set fo	ollows an ap	proximate dis	stribution pas	sing only on	e of the GOF	tests,		
88			it is s	uggested	l to us	se a UCL ba	sed upon a d	istribution pa	ssing both G	OF tests in I	ProUCL		
89													
90		Note: Sugge	stions regar	rding the s	selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UCL	•
91		Recom	mendations	s are base	ed up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Ho	wever, simu	lations resu	ılts will no	ot cov	er all Real V	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistici	an.
93													

	· · · ·		-			-	-					14	· · · · ·
1	A	В		С	U U	E UCL Statis	⊢ stics for Unc	ensored Full	H Data Sets	I	J	К	L
2													
3		User Sele	ected	Options									
4	Date/	Time of C	Compu	utation	ProUCL 5.2	3/6/2023 2:3	30:52 PM						
5			Fro	m File	UCL95_inpu	t_Revised.x	ls						
6		Fi	ull Pre	ecision	OFF								
7	C	onfidence	e Coef	ficient	95%								
8	Number of I	Bootstrap	Oper	ations	2000								
9													
10													
11	600 IA Freon	12											
12							0	Otatiatian					
13				Tata	Number of O	haanvationa	General	Statistics		Numbo	r of Distinct	Observations	2
14				Total		DServations	0			Numbe	r of Missing		2
15						Minimum	22			Numbe	or wissing	Mean	2 288
16						Maximum	2.2					Median	2.200
17						SD	0.0354				Std I	Frror of Mean	0.0125
18					Coefficient	of Variation	0.0155				010.1	Skewness	-2.828
19													
20		Note: Sa	ample	size is	small (e.g., <	10), if data a	are collected	d using incre	mental samp	ling method	lology (ISM)) approach,	
21			refe	er also t	o ITRC Tech	Reg Guide	on ISM (ITR	C 2020 and	ITRC 2012) 1	for addition	al guidance,	, ,	
22			but no	ote that	ITRC may re	commend th	ne t-UCL or	the Chebysh	ev UCL for s	mall sample	e sizes (n <	7).	
23					The Cheby	shev UCL o	often results	in gross ove	restimates o	f the mean.			
25				Ret	fer to the Pro	UCL 5.2 Tec	chnical Guid	e for a discu	ssion of the	Chebyshev	UCL.		
26													
27							Normal	GOF Test					
28				S	Shapiro Wilk T	est Statistic	0.419			Shapiro W	ilk GOF Tes	t	
29				1% S	hapiro Wilk C	ritical Value	0.749		Data No	t Normal at	1% Significa	ince Level	
30					Lilliefors T	est Statistic	0.513			Lilliefors	GOF Test		
31				1	% Lilliefors C	ritical Value	0.333		Data No	t Normal at	1% Significa	ince Level	
32						Data Not	t Normal at	1% Significa	nce Level				
33													
34						As	suming Nor	mal Distribut	ion			.	
35				95% No			0.011		95%	UCLs (Adju	isted for Ske	ewness)	0.005
36					95% Stud	lent's-t UCL	2.311		,	95% Adjuste	ed-CLI UCL	(Chen-1995)	2.295
37										95% Modifi	ed-t UCL (Jo	onnson-1978)	2.309
38							Commo						
39						oct Statistic	2 504	GOF Test	Andor	son Dorling	Commo C(DE Tost	
40					5% A-D C	ritical Value	0.715		ata Not Cam	ma Distribut	ed at 5% Si		
41					5% A-D C	est Statistic	0.713		Kolmon	orov-Smirne			
42					5% K-S C	ritical Value	0.294	ח	ata Not Gam	ma Distribut	ted at 5% Si	anificance Lev	vel
43					Da	ta Not Gam	ma Distribut	ed at 5% Sig	inificance Le	vel		J	
44					54								
45	1												

UCL95_600_IA_Freon12

	А	В	C	D	E	F Gamma	G Statistics	Н		J	K	L				
46					k hat (MLE)	4679			k	star (bias co	rrected MLE)	2924				
47				The	ta hat (MLE)	4.8889E-4			Theta	star (bias co	rrected MLE)	7.8221E-4				
48				r	nu hat (MLE)	74863				nu star (bi	as corrected)	46791				
49			ML	E Mean (bia	as corrected)	2.288				MLE Sd (bi	as corrected)	0.0423				
51									Approximate	e Chi Square	value (0.05)	46289				
52			Adjus	ted Level of	Significance	0.0195			A	djusted Chi S	Square Value	46161				
53																
54					As	suming Gam	nma Distribu	tion								
55			95% A	pproximate (Gamma UCL	2.312			95	5% Adjusted	Gamma UCL	2.319				
56							L									
57						Lognorma	GOF Test									
58			S	hapiro Wilk 7	Test Statistic	0.419		Shap	oiro Wilk Log	gnormal GO	F Test					
59			10% Sł	napiro Wilk C	Critical Value	0.851		Data Not L	ognormal a	t 10% Signifi	cance Level					
60				Lilliefors	Test Statistic	0.513		Lill	iefors Logn	ormal GOF	Test					
61			109	% Lilliefors C	Critical Value	0.265		Data Not L	ognormal a	t 10% Signifi	cance Level					
62					Data Not L	ognormal at	10% Signific	cance Level								
63																
64						Lognorma	I Statistics					0.007				
65			ا م	Minimum of I	Logged Data	0.788				Mean of	f logged Data	0.827				
66			N	haximum of i	Logged Data	0.833				50.0	r logged Data	0.0157				
67					^		rmal Diatrib	ution								
68								uuon	00%	Chobyshov		2 326				
69			95% (Chebyshev (2 343			97.5%	Chebyshev		2.320				
70			99% (Chebyshev (2.414					(2.007				
/1																
72					Nonparam	etric Distribu	tion Free UC	CL Statistics								
73					Data do r	ot follow a D)iscernible D	Distribution								
74																
76					Nonpa	rametric Dis	tribution Fre	e UCLs								
77				95	5% CLT UCL	2.308				95% BCA B	ootstrap UCL	N/A				
78			95%	Standard Bo	otstrap UCL	N/A				95% Bo	otstrap-t UCL	N/A				
79			9	5% Hall's Bo	ootstrap UCL	N/A			95%	Percentile B	ootstrap UCL	N/A				
80			90% Ch	ebyshev(Me	an, Sd) UCL	2.325			95% CI	hebyshev(Me	ean, Sd) UCL	2.342				
81			97.5% Ch	ebyshev(Me	an, Sd) UCL	2.366			99% CI	hebyshev(Me	ean, Sd) UCL	2.412				
82																
83						Suggested	UCL to Use									
84			Recommend	ation cannot	be provided											
85		Nata O	- 41	in a di		(110)		L								
86		Note: Sugge	stions regard	ing the selec	ction of a 95%	o UCL are pr	ovided to hel	ip the user to	select the r	nost appropr	atudiaa	•				
87		Recom	Interidations a	are based up		, uata distrib	uuon, and sk	ewness using	y results fro	want to con	i studies.	an				
88	П	owever, simu		S WIII HUL COV		vonu uata se	is, ior additio	nai insignt th	ie usei may		รมเเ a รเสเเรเเCl	a11.				
89		Note: For	highly paget	ively-skowo	d data .confi	dence limite	(e.g. Chen	Johnson La	anormal a	nd Gamma)	may not be					
90		NULE. FUI	reliahla <i>(</i>	Chen's and	Johnson's m	ethods provi	de adiustme	nts for nosit	velv skewer	data sete	may not be					
91										2 4414 3613.						
92																
	А	В	С	D	E	F	G	Н		J	К	L				
----	--	---	---------------	---------------------	-------------	-----------------------------	---	---------------	-------------	----------------	---------------	-----------	--	--	--	--
1				· · ·	JCL Statis	tics for Unc	ensored Full	Data Sets			•					
2																
3		User Sele	ected Options	6												
4	Date	e/Time of C	omputation	ProUCL 5.2 3/6	6/2023 2:3	0:17 PM										
5			From File	UCL95_input_l	Revised.xl	s										
6		Fu	III Precision	OFF												
7	(Confidence	Coefficient	95%												
/	Number of	f Bootstrap	Operations	2000												
8			•													
9																
10	600 IA Freo	n 113														
11																
12	General Statistics															
13			Tota	I Number of Obs	ervations	8			Numbe	or of Distinct	Observations	7				
14			1010		ci vationis	0			Numbo		Observations	,				
15					Minimum	0.47			Numbe	i oi missing	Moon	0 524				
16						0.47					Madian	0.524				
17					viaximum	0.59				0.1	Median	0.52				
18					SD	0.0484				Std.	Error of Mean	0.0171				
19				Coefficient of	Variation	0.0924					Skewness	0.158				
20																
21	Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach,															
22	refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance,															
23	but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7).															
24		The Chebyshev UCL often results in gross overestimates of the mean.														
25			Re	fer to the ProUC	L 5.2 Tec	hnical Guid	e for a discu	ssion of the	Chebyshev	UCL.						
26																
27						Normal (GOF Test									
28			Ś	Shapiro Wilk Tes	t Statistic	0.856 Shapiro Wilk GOF Test										
29			1% S	Shapiro Wilk Criti	cal Value	0.749	749 Data appear Normal at 1% Significance Level									
30				Lilliefors Tes	t Statistic	0.257	Lilliefors GOF Test									
31				1% Lilliefors Criti	cal Value	0.333	Data appear Normal at 1% Significance Level									
32				C)ata appea	ar Normal a	t 1% Signific	ance Level								
33				Note G	iOF tests i	may be unre	eliable for sm	all sample s	izes							
34																
35					As	suming Nor	mal Distribut	ion								
36			95% N	ormal UCL				95%	UCLs (Adjı	usted for Sk	ewness)					
37				95% Studer	nt's-t UCL	0.556		ę	95% Adjust	ed-CLT UCL	(Chen-1995)	0.553				
38									95% Modifi	ed-t UCL (J	ohnson-1978)	0.556				
39																
40						Gamma	GOF Test									
41				A-D Tes	t Statistic	0.654		Anders	son-Darling	Gamma G	OF Test					
42				5% A-D Criti	cal Value	0.715	Detected	d data appea	r Gamma D	istributed at	5% Significar	ice Level				
42				K-S Tes	t Statistic	0.269		Kolmog	orov-Smirn	ov Gamma	GOF Test					
43				5% K-S Criti	cal Value	0.294	Detected	d data appea	r Gamma D	istributed at	5% Significar	ice Level				
44				Detected da	ita appear	Gamma Di	stributed at 5	5% Significar	nce Level							
45				Note G	OF tests	may be unre	eliable for sm	all sample s	izes							
46																
47																

UCL95_600_IA_Freon113

	A		В	С	D	E	F	G	Н		J	K	L			
48							Gamma	Gamma Statistics								
49						k hat (MLE) 134.4		84.1							
50					In	eta hat (MLE	0.0039		0.00623							
51				M	E Moon /h) 2151		0.0571							
52				IVI	LE Mean (b	las correcteu) 0.524		MLE Sd (blas corrected)							
53				Adius	ted Level c	f Significance	0.0195			Δ	diusted Chi S		1201			
54				/ tajut			0.0100						1271			
55						A	sumina Gar									
50				95% A	pproximate	Gamma UCI	0.559		-	95	% Adjusted	Gamma UCL	0.568			
57											-					
59							Lognorma	Lognormal GOF Test								
60				S	hapiro Wilk	Test Statisti	0.854		Sha	piro Wilk Log	normal GO	- Test				
61				10% S	hapiro Wilk	Critical Value	e 0.851		Data appea	r Lognormal	at 10% Signi	ficance Level				
62					Lilliefors	Test Statisti	0.252		Li	lliefors Logno	ormal GOF	Fest				
63				10	% Lilliefors	Critical Value	e 0.265		Data appea	r Lognormal	at 10% Signi	ficance Level				
64						Data appea	r Lognormal	at 10% Sign	ificance Lev	el						
65	Note GOF tests may be unreliable for small sample sizes															
66																
67							Lognorma	al Statistics								
68					Minimum of	Logged Data	a -0.755				Mean of	logged Data	-0.65			
69				r	laximum of	Logged Data	-0.528				SD of	logged Data	0.0922			
70																
71										90%	Chebyshev		0 575			
72				95%	Chehyshev		0 598			97.5%	Chebyshev		0.575			
73				99%	Chebyshev	(MVUE) UCI	0.694		0.00							
74						(
75						Nonparam	etric Distribu	ution Free U	CL Statistics	5						
70						Data appe	ar to follow a	a Discernible	Distribution]						
78																
79						Nonpa	arametric Dis	stribution Fre	e UCLs							
80					ç	5% CLT UCI	0.552				95% BCA Bo	ootstrap UCL	0.549			
81				95%	Standard E	Bootstrap UCI	0.55				95% Boo	otstrap-t UCL	0.558			
82				9	5% Hall's E	Bootstrap UCI	0.545		0.55							
83				90% Ch	ebyshev(M	ean, Sd) UCI	0.575		0.598							
84				97.5% Ch	ebyshev(M	ean, Sd) UCI	0.631			99% Ch	ebyshev(Me	an, Sd) UCL	0.694			
85							_									
86							Suggested	UCL to Use	1							
87					95% St	udent's-t UCI	0.556									
88		Noter	Sugar	tions record	ing the set	otion of - OF		rouidad ta k-	In the uper t		oot oppose					
89			Recom	mendations	are based i		- data distrib				n simulation	studies				
90		r Iowever	simul	ations result	s will not co		Norld data ee	ets: for addition	onal insight t	he user may	want to cons	ult a statistici	an			
91			, onnu										un.			
92																

	А	В	С	D	Е	F	G	Н	I	J	К	L					
1				l	JCL Statis	tics for Unc	ensored Full	Data Sets									
2				1													
3		User Sele	ected Options			4 55 514											
4	Da	ate/Time of C		ProUCL 5.2 3/6	5/2023 2:3	1:55 PM											
5			From File	UCL95_input_i	Revised.xi	IS											
6		FL		OFF													
7		Confidence		95%													
8	Number	of Bootstrap	Operations	2000													
9																	
10	600 Dee6																
11	600 Kes50	dii Inailium															
12	2 General Statistics																
13	General Statistics																
14			TOLAI		ervations	15			Numbe	of Missing (15					
15					Miningung	0.2			Numbe		Moon	4 19					
16					Vininum	0.2					Madian	4.10					
17				I	viaximum	7.0				Ctd F		4.0					
18				Coofficient of	Juristian	2.215				Slu. E		0.572					
19				Coefficient of	variation	0.55					Skewness	-0.132					
20	Normal COE Taat																
21																	
22			10/ 0	hapiro Wilk Tes		0.902		Data ann									
23			170 3		t Statistia	0.635											
24			1	Lilliefors Criti	cal Value	0.140		Data ann		t 1% Signific	ance Level						
25			1)ata anno:	ar Normal at	1% Signific:	ance I evel									
26																	
27					As	sumina Nor	mal Distributi	ion									
28			95% No	ormal UCI	7.0			95%	UCI s (Adiu	isted for Ske	wness)						
29			00,011	95% Studer	nt's-t UCI	5,188			95% Adjuste		(Chen-1995)	5.1					
30					RUTUUL	0.100			95% Modifi	ed-t UCL (Jo	(enen 1998)	5.184					
31																	
32						Gamma	GOF Test										
33				A-D Tes	t Statistic	0.594	Anderson-Darling Gamma GOE Test										
34				5% A-D Criti	cal Value	0.746	Detected	data appe	ar Gamma D	istributed at {	5% Significan	ce Level					
35				K-S Tes	t Statistic	0.193	Kolmogorov-Smirnov Gamma GOF Test										
30				5% K-S Criti	cal Value	0.224	Detected data appear Gamma Distributed at 5% Significance Level										
37				Detected da	ata appear	Gamma Di	stributed at 5	5% Significa	nce Level								
30 20								-									
39						Gamma	Statistics										
40				kł	nat (MLE)	2.193	2.193 k star (bias corrected N										
41				Theta ł	nat (MLE)	1.906	Theta star (bias corrected MLE)										
42 13				nu ł	nat (MLE)	65.78	nu star (bias corrected)					53.95					
43			Μ	LE Mean (bias c	corrected)	4.18	MLE Sd (bias corrected)										
44									Approximate	Chi Square	Value (0.05)	38.08					
46	<u> </u>		Adjus	sted Level of Sig	Inificance	0.0324			A	djusted Chi S	Square Value	36.44					
47	<u> </u>						I					L					
-11																	

	А	В		С	;		D	E	Ξ	F	G	Н			J		K	L	
48									Ass	suming Gam	ima Distribut	lion							
49				9	5% A	pprox	kimate (Gamma	a UCL	5.923				959	% Adjusted	d Gai	mma UCL	6.189	
50																			
51										Lognorma	GOF Test								
52					S	Shapir	o Wilk	Test St	atistic	0.774	Shapiro Wilk Lognormal GOF Test								
53				1(0% SI	hapiro	o Wilk (Critical	Value	0.901									
54						Lil	liefors	Test St	atistic	0.207	Lilliefors Lognormal GOF Test								
55					10)% Lill	liefors (Critical	Value	0.202	Data Not Lognormal at 10% Significance Level								
56	Data Not Lognormal at 10% Significance Level																		
57																			
58	Lognormal Statistics																		
59						Minim	num of	Logged	d Data	-1.609					Mean	of log	gged Data	1.185	
60					Ν	Maxim	num of	Logged	d Data	2.028					SD	of log	gged Data	0.919	
61																			
62	Assuming Lognormal Distribution																		
63								95% H	I-UCL	9.483			ę	90% (Chebyshev	/ (M\	/UE) UCL	8.506	
64	95% Chebyshev (MVUE) UCL) UCL	10.18			97.5% Chebyshev (MVUE) UCL						
65	65 99% Chebyshev (MVUE) UCL 17.08																		
66																			
67	Nonparametric Distribution Free UCL Statistics																		
68	Data appear to follow a Discernible Distribution																		
69																			
70								Ν	lonpai	ametric Dis	tribution Free	e UCLs							
71							95	5% CL1	T UCL	5.121				ç	95% BCA E	Boots	strap UCL	5.043	
72					95%	Stand	dard Bo	ootstrap	DUCL	5.106	95% Bootstrap-t UC						rap-t UCL	5.144	
73					9	95% H	lall's Bo	ootstrap	b UCL	5.057	95% Percentile Bootstrap UG						strap UCL	5.113	
74				90	% Ch	nebysl	hev(Me	ean, Sd) UCL	5.896	95% Chebyshev(Mean, Sd) UC						, Sd) UCL	6.673	
75				97.5	% Ch	nebysl	hev(Me	ean, Sd) UCL	7.752			999	% Ch	ebyshev(N	lean	, Sd) UCL	9.872	
76																			
77										Suggested	UCL to Use								
78						9	5% Stu	ident's-	t UCL	5.188									
79																			
80		Note: Sug	ges	stions re	egard	ding th	ne selec	ction of	a 95%	UCL are pr	ovided to hel	p the user to	select	the m	ost approp	oriate	95% UCL	•	
81		Rec	com	mendat	tions	are ba	ased up	pon dat	a size,	, data distrib	ution, and sk	ewness usir	ng result	s fron	n simulatio	n stu	udies.		
82	Н	owever, si	mul	ations I	result	ts will	not cov	ver all F	Real W	orld data se	ts; for additio	nal insight tl	ne user	may v	vant to cor	nsult	a statisticia	an.	
83																			
84		Note: F	or	highly I	negat	tively	-skewe	d data,	, confi	dence limits	(e.g., Chen,	Johnson, L	ognorm	al, an	d Gamma) ma	y not be		
85				relia	ble.	Chen	's and .	Johnso	on's me	ethods provi	de adjustme	nts for posit	vely ske	ewed	data sets.				
86																			

	A	В	С	D	E	F	G	Н		J	К	L					
1					UCL Statis	stics for Unc	ensored Full	Data Sets									
2				1													
3		User Sele	cted Options	-													
4	Da	ite/Time of C	omputation	ProUCL 5.2	3/6/2023 2:3	33:03 PM											
5			From File	UCL95_inpu	t_Revised.x	ls											
6		Fu	II Precision	OFF													
7		Confidence	Coefficient	95%													
8	Number	of Bootstrap	Operations	2000													
9																	
10																	
11	600 ResSo	oil Tin															
12	General Statistics																
13						General	Statistics		<u> </u>								
14			lotal	Number of O	bservations	15			Numbe	r of Distinct (Observations	6					
15									Numbe	r of Missing (Observations	0					
16					Minimum	3					Mean	6.2					
17					Maximum	10					Median	6					
18					SD	2.242				Std. E	rror of Mean	0.579					
19				Coefficient	of Variation	0.362					Skewness	0.151					
20																	
21		Normal GOF Test															
22			S	hapiro Wilk To	est Statistic	0.929											
23			1% S	hapiro Wilk Cı	ritical Value	0.835		Data appe	ear Normal a	It 1% Signific	ance Level						
24				Lilliefors T	est Statistic	0.136			Lilliefors	GOF Test							
25			1	% Lilliefors Ci	ritical Value	0.255		Data appe	ear Normal a	it 1% Signific	ance Level						
26					Data appe	ar Normal a	t 1% Significa	ance Level									
27																	
28					As	suming Nor	mal Distributi	ion			.						
29			95% No	ormal UCL				wness)									
30				95% Stud	lent's-t UCL	7.22		7.176									
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	7.224					
32																	
33						Gamma	GOF Test										
34				A-D T	est Statistic	0.518	Anderson-Darling Gamma GOF Test										
35				5% A-D Ci	ritical Value	0.738	Detected	data appea	ar Gamma D	istributed at	5% Significan	ce Level					
36				K-S T	est Statistic	0.18		Kolmog	orov-Smirne	ov Gamma G	OF Test						
37				5% K-S Ci	ritical Value	0.222	Detected	data appea	ar Gamma D	istributed at	5% Significan	ce Level					
38				Detected	data appea	r Gamma Di	stributed at 5	5% Significa	nce Level								
39							<u></u>										
40						Gamma	Statistics										
41					k hat (MLE)	7.44		rrected MLE)	5.996								
42				Theta	a hat (MLE)	0.833		1.034									
43			· -		u hat (MLE)	223.2	nu star (bias corrected)										
44			М	LE Mean (bias	s corrected)	6.2	MLE Sd (bias corrected)										
45						0.005			Approximate	e Chi Square	Value (0.05)	149.9					
46			Adjus	sted Level of S	Significance	0.0324			A	djusted Chi S	Square Value	146.5					
47																	

	A B C D E	F	G	Н	I	J	К	L					
48	Ass	uming Gam	nma Distribut	tion		-		-					
49	95% Approximate Gamma UCL	7.442			95	5% Adjusted	d Gamma UCI	_ 7.613					
50													
51		Lognorma	I GOF Test										
52	Shapiro Wilk Test Statistic	0.894		Shapiro Wilk Lognormal GOF Test									
53	10% Shapiro Wilk Critical Value	0.901		Data Not Lognormal at 10% Significance Level									
54	Lilliefors Test Statistic	0.203		Lilliefors Lognormal GOF Test									
55	10% Lilliefors Critical Value 0.202 Data Not Lognormal at 10% Significance Level												
56	Data Not Lognormal at 10% Significance Level												
57													
58	Lognormal Statistics												
59	Minimum of Logged Data	1.099				Mean	of logged Data	э 1.756					
60	Maximum of Logged Data	2.303				SD	of logged Data	a 0.399					
61													
62	Assuming Lognormal Distribution												
63	95% H-UCL	7.727		/ (MVUE) UCI	_ 8.193								
64	95% Chebyshev (MVUE) UCL	9.081		97.5% Chebyshev (MVUE) UCL									
65	99% Chebyshev (MVUE) UCL	12.74											
66													
67	Nonparame	tric Distribu	ition Free UC	L Statistics									
68	Data appear	r to follow a	Discernible	Distribution									
69													
70	Nonpara	ametric Dis	tribution Free	e UCLs									
71	95% CLT UCL	7.152				95% BCA	Bootstrap UCI	_ 7					
72	95% Standard Bootstrap UCL	7.134				95% B	ootstrap-t UCI	_ 7.297					
73	95% Hall's Bootstrap UCL	7.258		_ 7.133									
74	90% Chebyshev(Mean, Sd) UCL	7.937		95% Chebyshev(Mean, Sd) UCL									
75	97.5% Chebyshev(Mean, Sd) UCL	9.816		99% Chebyshev(Mean, Sd) UCI									
76													
77		Suggested	UCL to Use										
78	95% Student's-t UCL	7.22											
79													
80	Note: Suggestions regarding the selection of a 95%	UCL are pr	rovided to hel	p the user to	select the r	most approp	oriate 95% UC	;L.					
81	Recommendations are based upon data size,	data distrib	ution, and sk	ewness using	g results fro	om simulatio	on studies.						
82	However, simulations results will not cover all Real W	orld data se	ets; for additio	nal insight th	ie user may	want to co	nsult a statisti	cian.					
83													

Appendix D<u>Appendix E</u> Soil Vapor Vertical Concentration Profiles

MSVGM Well 200-SG-2 Vertical Concentration Profile For Freon 113

ND - Freon 113 soil ${<}\,11.0~\mu\text{g/kg}$

MSVGM Well 200-SG-2 Vertical Concentration Profile For TCE

MSVGM Well 200-SG-3 Vertical Concentration Profile For Freon 113

MSVGM Well 200-SG-3 Vertical Concentration Profile For TCE

MSVM Well 600-SGW-1 Vertical Concentration Profile For Freon 113

MSVM Well 600-SGW-1 Vertical Concentration Profile For TCE

MSVM Well 600-SGW-5 Vertical Concentration Profile For Freon 113

MSVGM Well 600-SGW-5 Vertical Concentration Profile For TCE

ND - TCE soil < 0.35-0.35 µg/kg