National Aeronautics and Space Administration **Lyndon B. Johnson Space Center White Sands Test Facility** P.O. Box 20 Las Cruces, NM 88004-0020

April 18, 2023

Reply to Attn of: RE-23-070

Mr. Dave Cobrain, Acting Bureau Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Subject: NASA WSTF Periodic Monitoring Report – First Quarter 2023

Enclosed is the NASA WSTF Periodic Monitoring Report (PMR) for the first quarter of 2023. This report provides detailed information about routine groundwater, Plume Front Treatment System (PFTS), and Mid-plume Interception and Treatment System (MPITS) monitoring performed between November 1, 2022 and January 31, 2023. Analytical data processed through the WSTF data management system, operational and performance data for both treatment systems, and site-wide potentiometric surface data are also provided for the same reporting period. Activity updates not associated with or reliant upon analytical data are reported for the previous calendar quarter.

This submittal includes an Executive Summary of the PMR that provides important events and observations as Enclosure 1, suggestions for installing and using WSTF PMR Databases as Enclosure 2, a bound paper copy of the main body of the report (pages i-81) as Enclosure 3, a DVD-ROM containing the entire report, the accompanying historical analytical databases, an Excel spreadsheet comprising groundwater data for the last four calendar quarters (October 2021 to November 2022) as Enclosure 4, a CD-ROM containing analytical lab reports for the reporting period as Enclosure 5, and three updated D-size paper maps of WSTF depicting pertinent features and conceptualized NDMA, TCE, and PCE groundwater plumes as Enclosure 6.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RE-23-070 2

If you have any questions or comments concerning this submittal, please contact Antonette Doherty of my staff at 575-202-5406.

TIMOTHY Digitally signed by TIMOTHY DAVIS
DAVIS
Date: 2023.04.18
09:41:43-06'00'
Timothy J. Davis
Chief, Environmental Office

5 Enclosures

cc:

Mr. Gabriel Acevedo Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Ms. Melanie Sandoval Ground Water Quality Bureau New Mexico Environment Department

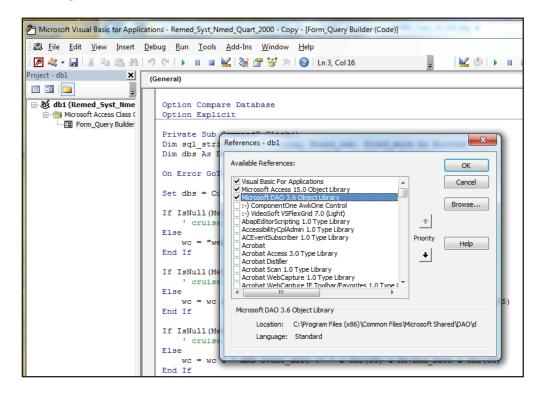
Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to samples collected from groundwater monitoring wells, as well as PFTS and MPITS sampling locations between November 1, 2022 and January 31, 2023. The data were processed through the WSTF data management system during the first calendar quarter of 2023.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.


NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2022e). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

RE-23-070 5

Suggestions for Installing and Using WSTF PMR Databases

- 1. Ensure Microsoft Access 2013 is installed.
- 2. Ensure the following Microsoft libraries are installed:
 - Visual Basic for Applications
 - Microsoft Access 15.0 Object Library
 - Microsoft DAO 3.6 Object Library

To verify the presence of these libraries, choose any table, click "Database Tools" on the menu bar, then click the "Visual Basic" button. A new window will open (see example below). Click "Tools" on the menu bar, then click "References". Another window will open (see example below), showing the libraries available. Ensure the boxes are checked for the three required libraries.

- 3. Copy the database files from the DVD to your hard drive. This will improve the performance of databases.
- 4. After running a query, you can export the data to Excel by selecting *External Data* on the menu bar, then click the *Export to Excel* button.

NASA WSTF Periodic Monitoring Report for First Quarter 2023 NM8800019434

NASA WSTF Periodic Monitoring Report for First Quarter 2023

Reporting Period: November 1, 2022 through January 31, 2023

Report Deadline: April 30, 2023

NM8800019434

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

gitally signed by TIMOTHY NIS te: 2023.04.18 09:42:10 -06'00'

See Electronic Signature

Timothy J. Davis Chief, NASA Environmental Office Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to samples collected from groundwater monitoring wells, as well as PFTS and MPITS sampling locations between November 1, 2022 and January 31, 2023. The data were processed through the WSTF data management system during the first calendar quarter of 2023.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume iso-concentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.

NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2022e). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

Table of Contents

Executive Summaryii			
Tab	le of Co	ntents	iv
		res	
		es	
List		onyms and Abbreviations	
1.0		oductionoduction	
2.0		pe of Activities	
3.0		anup Levels	
3.1		charge Standards for PFTS and MPITS Effluent	
3.2		Detections	
4.0		tine Groundwater Monitoring	
4.1		rent Status and Monitoring Performed	
4.2		undwater Monitoring Results	
	4.2.1	Groundwater Elevations	
	4.2.2	Groundwater Quality Measurements (Indicator Parameters)	
4.3		undwater Chemical Analytical Results	
5.0		atment System Monitoring	
5.1		ne Front Treatment System	
	5.1.1	PFTS Operational Status	
	5.1.2	PFTS Performance	
	5.1.3	Extraction and Injection Well Performance	
	5.1.4	PFTS Monitoring Results	
	5.1.5	PFTS Chemical Analytical Results	
<i>-</i> 2	5.1.6	PFTS Mass Removal	
5.2		-plume Interception and Treatment System	
	5.2.1	MPITS Monitoring Results	
	5.2.2	MPITS Operational Status	
	5.2.3	MPITS Performance MPITS Extraction Well and Infiltration Basin Performance	
	5.2.4 5.2.5		
	5.2.6	MPITS Chemical Analytical Results	
<i>5</i> 2		mediation Systems Operation Costs	
5.3 6.0		eussion and Conclusions	
6.1		imary of Groundwater Monitoring Projects	
0.1	6.1.1		
		Monitoring Well Performance or Sampling Equipment Issues	13
	6.1.3	Monitoring Well Installation and Well Plugging and Abandonment Westbay Well Reconfiguration	1
	6.1.4	Groundwater Monitoring Data Representativeness	
6.2		nparison of Analytical Data to Cleanup Levels	
0.2	6.2.1	Groundwater Monitoring Wells	
	6.2.2	Plume Front Treatment System	
	6.2.3	Mid-plume Interception and Treatment System	15
6.3		taminant Plume Evaluation	
0.5	6.3.1	Groundwater Elevations and Iso-concentration Maps	
	6.3.2	Combined Plume Isoconcentration Maps and Potentiometric Surface Map	
	6.3.3	Time-concentration Plots and Groundwater Data Analytical Trends	
6.4		imary of Source Area Investigations	
∪. - T	6.4.1	200 Area	
	6.4.2	300 Area	
	0. r.2	500 1 11 24	1)

Table of Contents

	6.4.3	400 Area	20
	6.4.4	600 Area Perched Groundwater Extraction and Investigations	20
	6.4.5	SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)	
	6.4.6	SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])	
	6.4.7	Dye Tracer Test Investigation	
	6.4.8	SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)	22
	6.4.9	SWMUs 21–27 (Septic Tanks)	22
	6.4.10	SWMUs 29–31 (Small Arms Firing Ranges)	
	6.4.11	SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)	23
	6.4.12	SWMU 47 (500 Fuel Storage Area)	
	6.4.13	SWMU 49 (700 Area Landfill)	23
	6.4.14	SWMU 50 (First TDRS Diesel Release)	23
	6.4.15	SWMU 52 (Second TDRS UST)	23
	6.4.16	Newly Identified SWMU	23
7.0	Plan	ned Activities	24
7.1	Grou	Indwater Monitoring and Related Projects	24
	7.1.2	Groundwater Monitoring	24
	7.1.3	Westbay Well Reconfiguration.	24
	7.1.4	Monitoring Well Installation	24
7.2	Grou	Indwater Remediation System Monitoring	25
8.0	Refe	rences	25
Figu	ıres		30
Tab	les		41
App	endix A	Indicator Parameters and Analytical Data	A-1
App	endix A	.1 Monitor Well Indicator Parameters	A-2
App	endix A	2 Monitor Well Analytical Data	A-56
App	endix A	3 PFTS Indicator Parameters	A-162
		4 PFTS Analytical Data	
		5 MPITS Indicator Parameters	
App	endix A	.6 MPITS Analytical Data	A-174
		Sampling Event Logbook Entries and Internal CoC Forms	
App	endix C	Chemical Analytical Program (Internal QA reports)	
		Comparison to Cleanup Levels	
		.1 Groundwater Monitoring Wells	
		.2 PFTS	
App	endix D	3 MPITS	D-10
App	endix E	Time Concentration Plots	E-1
App	endix F	Summary of Source Area Investigations	F-1

NASA White Sands Test Facility

List of Figures

Figure 1.1	WSTF Location Map	31
Figure 1.2	WSTF Well Location Map	32
Figure 4.1	Groundwater Elevations and Generalized Flow Directions for the Reporting Period	33
Figure 4.2	Site-Wide N-Nitrosodimethylamine (NDMA) Concentrations for the Reporting Period	34
Figure 4.3	Site-Wide Trichloroethene (TCE) Concentrations for the Reporting Period	35
Figure 6.1	Plume Front Groundwater Elevations for the Reporting Period	36
Figure 6.2	Mid-plume Groundwater Elevations for the Reporting Period	37
Figure 6.3	NDMA Concentrations at the Plume Front for the Reporting Period	38
Figure 6.4	TCE Concentrations at the Plume Front for the Reporting Period	39
Figure 6.5	Plume Front Groundwater Elevations and Trichloroethene Concentrations for the Reporting Period	40

NASA White Sands Test Facility

List of Tables

Table 3.1	DP-1255 Discharge Standards and Groundwater Cleanup Levels for WSTF COC	42
Table 3.2	Accepted New Detections for This Reporting Period	43
Table 3.3	Unconfirmed New Detections – Resolution Pending	44
Table 3.4	Unconfirmed Detections Resolved This Reporting Period	45
Table 4.1	Groundwater Monitoring Wells/Zones Analyzed for the Reporting Period	46
Table 4.2	Groundwater Elevation Data	48
Table 5.1	PFTS and MPITS Operational Status for the Reporting Period	51
Table 5.2	PFTS and MPITS System Shutdowns for the Reporting Period	52
Table 5.3	PFTS Air Stripper and UV Reactor Performance for the Reporting Period	54
Table 5.4	PFTS Extraction and Injection Well Flow Rates for the Reporting Period	55
Table 5.5	Comparison of Specific Capacities for the Plume Front Wells	56
Table 5.6	Plume Front Mass Removal ¹	57
Table 5.7	MPITS Air Stripper and UV Reactor Performance for the Reporting Period	58
Table 5.8	Mid-plume Mass Removal ¹	59
Table 5.9	Groundwater Treatment System Operation Costs (\$ / 1,000 gals)	60
Table 7.1	Status of Wells with Sampling Issues	61

List of Acronyms and Abbreviations

μg/L Micrograms per liter Area of concern **AOC** bgs Below ground surface Bureau of Land Management **BLM** COC Contaminant of concern Chain-of-Custody CoC Discharge Plan DP DTW Depth to water

EPA Environmental Protection Agency

FLUTe Flexible Liner Underground Technologies, LLC

Freon 11 Trichlorofluoromethane

Freon 113 1,1,2-Trichloro-1,2,2-trifluoroethane

ft Foot/feet g Gram

GMP Groundwater Monitoring Plan

gpm Gallons per minute

gpm/ft Gallons per minute per foot HIS Historical Information Summary HWTL Hazardous Waste Transmission Lines

IDWInvestigation-Derived WasteIWPInvestigation Work PlanJDMBJornada del Muerto BasinJERJornada Experimental Range

kg Kilogram Liter

MDL Method detection limit mg/L Milligrams per liter

MPCA Mid-plume Constriction Area

MPE Mid-plume Extraction

MPITS Mid-plume Interception and Treatment System NASA National Aeronautics and Space Administration

ND Not detected

NDMA N-nitrosodimethylamine ng/L Nanograms per liter

NMED New Mexico Environment Department

PCE Tetrachloroethene

Permit NMED Hazardous Waste Permit

PA Preliminary Assessment

PFAS Per- and polyfluoroalkyl substances

PFE Plume Front Extraction PFI Plume Front Injection

PFTS Plume Front Treatment System PMR Periodic Monitoring Report

QA Quality Assurance

RSMP Remediation System Monitoring Plan scfm Standard cubic feet per minute STGT Second TDRS Ground Terminal SVOC Semi-volatile Organic Compound SWMU Solid Waste Management Unit

NASA White Sands Test Facility

T-C Time-concentration TCE Trichloroethene

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

USGS United States Geological Survey

UV Ultraviolet

VOC Volatile Organic Compound WBFZ Western Boundary Fault Zone WSTF NASA Johnson Space Center

White Sands Test Facility

1.0 Introduction

National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) is located at 12600 NASA Road near Las Cruces, New Mexico. WSTF (U.S. Environmental Protection Agency [EPA] and New Mexico Environment Department [NMED] Facility Identification Number NM8800019434) currently operates as a field test facility under the NASA Lyndon B. Johnson Space Center in Houston, Texas. Figure 1.1 is a map showing the location of WSTF in southern Doña Ana County.

The facility provides testing services to NASA for United States space programs and support for the Department of Defense, Department of Energy, private industry, and foreign government agencies. The primary WSTF mission is to develop, qualify, and test the limits of spacecraft propulsion systems and subsystems. The installation also operates several laboratory facilities that conduct simulated use tests for space station materials, as well as compatibility testing.

WSTF historical operations resulted in a groundwater contaminant plume that requires extensive investigation activities and associated corrective actions. NASA developed and implemented a strategy for remediating contaminated WSTF groundwater in 1996, based on an analysis of potential risk to human health and the environmental and hydrogeological characteristics of the site. This strategy involves a sequential three-phase approach: 1) to stabilize the leading edge of the plume in the alluvial aquifer at the Plume Front area through operation of the Plume Front Treatment System (PFTS); 2) to intercept a high-concentration portion of the plume within fractured bedrock in the Mid-plume area through operation of the Mid-plume Interception and Treatment System (MPITS); and 3) to investigate contaminant source areas and remediate, as appropriate, any remaining sources of contamination identified during ongoing investigations.

There are currently 215 active groundwater monitoring locations (treatment system sample ports, extraction wells, conventional wells, and multiport well zones) in use at WSTF. Figure 1.2 provides a map of the facility and shows the locations of groundwater monitoring wells and components of the PFTS and the MPITS. Routine groundwater monitoring is performed in accordance with the NMED Hazardous Waste Permit (Permit; NMED, 2009, p68), the Groundwater Monitoring Plan (GMP; NASA, 2022e), and the Remediation System Monitoring Plan (RSMP; NASA, 2022h).

This report provides details of groundwater (routine and related to corrective actions), PFTS, and MPITS samples processed through the WSTF data management system during the first quarter of 2023. Between November 1, 2022 and January 31, 2023, groundwater samples were collected at 111 groundwater monitoring wells or zones (111 sample events), five PFTS sampling locations (nine sample events), and six MPITS sampling locations (10 sample events). Specific monitoring activities for routine groundwater sampling are discussed in Section 4.0. The individual sampling activity at each monitoring well, well zone, or other sampling point is identified as a discrete sampling event (by location and sampling date). This report includes and discusses these sampling events.

The PFTS was operational on 82 of 90 days during the reporting period at an average flow rate of 327 gallons per minute (gpm) while running. Approximately 110.5 acre-feet (ft) of groundwater were treated at the PFTS during this timeframe. Specific information related to operation, maintenance, and monitoring of the PFTS is included in Section 5.1 of this report. The MPITS was operational on 59 of 90 days during the reporting period, treating approximately 1.07 acre-ft of groundwater including investigation-derived waste (IDW). Specific information on MPITS operation, maintenance, monitoring, and related activities is provided in Section 5.2.

2.0 Scope of Activities

Groundwater and remediation systems sampling event analytical results and remediation systems operational data are provided for the reporting period. Updates for activities that are not associated with or reliant upon groundwater analytical data are provided for the calendar quarter.

NASA routinely collects groundwater and treatment system samples for the analysis of volatile organic compounds (VOC), N-nitrosodimethylamine (NDMA), and several inorganic compounds. On a less frequent basis, semi-volatile organic compounds (SVOCs) are sampled, and in certain wells, 1,4-dioxane, total petroleum hydrocarbons, and 40 CFR Part 264 Appendix IX compounds. The GMP (NASA, 2022e) identifies the specific samples that are to be collected at each groundwater monitoring well. The RSMP (NASA, 2022h) provides sampling requirements for the PFTS and the MPITS.

Groundwater quality data, collectively referred to as indicator parameters, are collected during each sampling event. Indicator parameters may include temperature, pH, conductivity, turbidity, and (at wells sampled using low-flow procedures) oxidation-reduction potential and dissolved oxygen. Depth to groundwater (DTW) is also measured at each conventional monitoring well during the sampling event. Indicator parameters associated with sampling events during the reporting period are included in Appendix A as follows: groundwater monitoring wells (Section 4.2.2) – Appendix A.1; PFTS (Section 5.1.4.2) – Appendix A.3; and MPITS (Section 5.2.1.2) – Appendix A.5.

Chemical analytical data (detections only) for sampling events during the reporting period are discussed in the following sections: groundwater monitoring wells (Section 4.3) – <u>Appendix A.2</u>; PFTS (Section 5.1.5) – <u>Appendix A.4</u>; and MPITS (Section 5.2.5) – <u>Appendix A.6</u>.

Field data and the recording of other specific sampling-related details for each sampling event are discussed in Sections 4.0, 5.1, and 5.2 of this report. Logbook entries and internal chain-of-custody (CoC) forms from sampling events included in the report are provided in Appendix B. The external CoC forms associated with the sampling events can be found in the Lab Reports included on the enclosed DVD. Appendix C provides internal monthly WSTF Quality Assurance (QA) Reports for the reporting period. Appendix D includes the comparison of analytical results from the groundwater monitoring wells (Appendix D.1), PFTS (Appendix D.2), and MPITS (Appendix D.3) with cleanup levels. Only results that exceed cleanup levels are included in these appendices.

During the course of groundwater, PFTS, MPITS, and other related sampling, IDW such as decontamination water and purged groundwater is produced. This IDW is treated by the MPITS as specified in the GMP (NASA, 2022e).

3.0 Cleanup Levels

Cleanup levels for all hazardous constituents detected in WSTF groundwater are summarized in the GMP update (NASA, 2022e) for 2022, submitted to NMED on April 29, 2022 and revised on November 15, 2022 to address NMED comments provided in the approval with modifications (NASA, 2022k; NMED, 2022h). That document outlines the process for developing cleanup levels as specified in Attachment 15 of the Permit (NMED, 2009, p24).

3.1 Discharge Standards for PFTS and MPITS Effluent

The Ground Water Discharge Permit Renewal and Modification, DP-1255 (NMED, 2017) specifies that "Remediated groundwater discharged from the two remediation systems shall not exceed the

concentrations in the most recent version of NMED's Risk Assessment Guidance for Investigation and Remediation Table A-1 Soil Screening Levels for Tap Water..." for NDMA, trichloroethene (TCE), tetrachloroethene (PCE), and chloroform. Table 3.1 includes the updated DP-1255 discharge standards for the four constituents.

3.2 New Detections

The GMP requires that NASA report new detections of hazardous constituents in groundwater (NASA, 2022e). Each quarter, NASA adds several new constituents to the list of analytes detected at certain WSTF groundwater wells. As a result, a number of new detections have been reported in sampling results at those wells. Most of the new detections are consistent with regional groundwater chemistry and require no action beyond continued monitoring and reporting. No new detections, including non-hazardous constituents, were reported in sampling events during the reporting period (Table 3.2).

The GMP also requires detection monitoring at specific compliance points downgradient of the closures and operational areas of the facility. The wells specified are BLM-3-182 (for the 100 and 600 Areas), 200-B-240 and 200-SG-1 (for the 200 Area), 300-A-120 (for the 300 Area), and 400-C-118 (for the 400 Area). No detection monitoring was performed during the reporting period.

In addition to the inorganic constituents that are characteristic of regional groundwater, NASA observed several new detections that require further evaluation. The hazardous constituents in <u>Table 3.3</u> have not been previously detected at the wells listed in the table. As specified in Section 3.3 of the GMP, NASA has scheduled resampling of these wells to confirm these detections (NASA, 2022e). <u>Table 3.4</u> lists the resampling date and the resolution of some of the unconfirmed detections reported in previous PMRs. The wells were resampled as required and the new detections were resolved as indicated in the table.

4.0 Routine Groundwater Monitoring

A variety of groundwater monitoring data are collected from monitoring wells and the groundwater treatment systems during routine WSTF operations. These data consist of measured groundwater elevations, calculated groundwater piezometric elevations, the graphical representations of groundwater elevation generated from these data, and groundwater indicator parameters (field water quality measurements).

Data presented in this section, including groundwater elevations and indicator parameters, were collected from various groundwater monitoring locations during the reporting period. Groundwater chemical analytical data also from this timeframe, while not considered monitoring data in some contexts, are also presented in this section.

4.1 Current Status and Monitoring Performed

NASA continues to monitor groundwater to maintain a complete understanding of plume characteristics, contaminant migration, and the overall impact of ongoing corrective action efforts. This section discusses the results of routine groundwater samples collected from groundwater monitoring wells or zones during the reporting period and processed using the WSTF data management system during the first quarter of 2023. Table 4.1 provides a list of the monitoring wells, drinking water wells, PFTS and MPITS sampling locations, and their associated sampling events for which analytical data are presented in this report.

4.2 Groundwater Monitoring Results

This section provides the results of groundwater monitoring, including groundwater elevations and groundwater quality measurements.

4.2.1 Groundwater Elevations

Groundwater elevations at WSTF's conventional monitoring wells, piezometers, and exploration wells are determined by manually measuring the water level. Piezometric elevations at Westbay^{®1} multiport wells are calculated based on the groundwater formation pressures measured at target monitoring zones. Piezometric elevations for Flexible Liner Underground Technologies, LLC (FLUTeTM) multiport monitoring wells are calculated from dedicated pressure transducer measurements at specified monitoring zones. DTW or formation pressures are measured quarterly and during each sampling event.

Formation pressures at multiport wells in the Plume Front and Mid-plume areas are typically measured during the same week as quarterly DTW measurements at conventional wells. Groundwater elevations from Westbay zones are calculated from pressure data typically collected at the uppermost sampling ports (proximal to the water table) using Westbay pressure measurement equipment. Potentiometric data from multiport wells in other areas of the site are also available. Groundwater elevations are subject to quality review prior to their use in data presentations. Anomalous or erroneous values are flagged as unusable and excluded from the dataset used to generate graphical presentations of groundwater elevation.

The groundwater surface depicted in Figure 4.1 was developed by hand-contouring the most recent water level dataset that corresponds to the analytical reporting period. These data were collected from December 19 to December 21, 2022 and are provided in Table 4.2. Groundwater elevation data measured for the previous PMR were collected during the current monitoring period due to PFTS downtime in the previous monitoring period. Therefore, groundwater elevation data are identical to the preceding PMR. In Figure 4.1 Groundwater elevation contours depict a general westward groundwater flow across the facility. Subtle variations in groundwater elevation may occur within discrete transmissive flow paths at varying depths below ground surface (bgs) in the fractured bedrock aquifer located east of the Western Boundary Fault Zone (WBFZ). Due to the scale, these local elevation variations may not be reflected in the figure. The prominent transition in the hydraulic gradient from the WSTF pediment area east of the WBFZ (0.05 ft/ft) to the relatively flat southern Jornada del Muerto Basin of the WSTF Plume Front area (0.0002 ft/ft) is also evident in the figure. No contours are depicted in the Plume Front area because the range of observed water elevations in that area is less than the contour interval (40 ft). Further discussion of Plume Front and Mid-plume groundwater elevations is provided in Section 7.3.3 of this report.

4.2.2 Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters are obtained from field quality measurements performed during each sampling event. The groundwater indicator parameters associated with the groundwater monitoring well sampling events included in this report (see <u>Table 4.1</u>) are provided in <u>Appendix A.1</u>.

Indicator parameters and other specific sampling-related details associated with each monitoring well sampling event are recorded by technicians in the field sampling record. <u>Appendix B</u> provides the field sampling records and field/internal CoC forms for each sampling event performed during the reporting

¹ Westbay is a registered trademark of Nova Metrix Ground Monitoring (Canada) Ltd.

period. The WSTF external CoC forms for groundwater samples collected during these sampling events are provided in the Lab Reports on the enclosed DVD.

4.3 Groundwater Chemical Analytical Results

<u>Table 4.1</u> lists groundwater monitoring wells sampled during the reporting period. Groundwater chemical analytical data from these wells were processed through the WSTF data management system during the fourth calendar quarter of 2022 and detections are included in <u>Appendix A.2</u>.

NASA has also included a copy of the historical analytical database with this report. The database is provided to facilitate NMED's review of groundwater analytical data provided in this report and to allow for the historical comparisons required by the Permit (NMED, 2009; p85). NASA's historical database is an operational tool developed, maintained, and used by NASA environmental staff to manage and archive environmental data. It is not intended to serve specifically as a regulatory reporting mechanism. NASA reserves the right to implement changes to the database that are deemed appropriate to meet the WSTF internal environmental data management requirements. Any changes will not affect the integrity of historical analytical data. The amount of historical data has exceeded the capacity of a Microsoft Access®² database, and as a result, all the historical data cannot be contained in the database included with this report for use by NMED. Historical data prior to 2000 was removed from the reporting database to facilitate database operation and ease of use by NMED. Pre-2000 historical data of significance in decision-making is appropriately reflected in the time-concentration (T-C) plots presented in Appendix E.

A summary of internal QA methods applied to groundwater chemical analytical data is provided in <u>Appendix C</u>. The QA reports included in <u>Appendix C</u> apply to analytical results from sampling events performed during the reporting period. As requested by NMED (NMED, 2013a), all laboratory analytical reports corresponding to the analytical data presented in this report are also provided electronically (.pdf format) with this submittal.

The most recent chemical analytical data, including data processed in the first quarter of 2023, were used to develop manually contoured plume iso-concentration maps for NDMA (Figure 4.2) and TCE (Figure 4.3). The lowest iso-concentration contour on each map corresponds to the required cleanup level for that analyte.

5.0 Treatment System Monitoring

This section provides information related to NASA's environmental remediation systems at WSTF. It provides the current operational status of the treatment systems and includes a discussion of the capabilities and performance of the treatment systems, pertinent monitoring data from the systems, and applicable chemical analytical data associated with remediation system monitoring.

5.1 Plume Front Treatment System

The PFTS is a pump and treat groundwater remediation system that utilizes air stripping and ultraviolet (UV) photolysis to remove VOC and nitrosamines from contaminated groundwater. The system is an interim measures presumptive remedy located at the leading edge of the WSTF contaminant plume. It was implemented during the first phase of NASA's remediation strategy to stabilize plume migration. This section provides information related to PFTS operation, performance, and monitoring during the reporting

² Microsoft Access is a registered trademark of the Microsoft Corporation.

period. Chemical analytical data from PFTS sampling events completed during the reporting period are also provided.

5.1.1 PFTS Operational Status

The operational status of the PFTS is summarized in <u>Table 5.1</u> and <u>Table 5.2</u>.

5.1.2 PFTS Performance

This section summarizes the performance of the air strippers and UV reactor for the reporting period. Additional operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the PFTS is properly functioning and is adequately treating the WSTF contaminants of concern (COC).

Operational records indicate that the PFTS performed favorably during the reporting period. The PFTS operated a total of 82 days out of 90 days, treated 110.5 acre-ft of groundwater, and operated at an average rate of 327 gpm for the reporting period. System availability statistics, which exclude scheduled shutdowns for planned maintenance, indicate that the system was operational for approximately 75.7% of January, 94.9% of February, and 99.6% of March 2023. Notable events during the reporting period included the following:

- Extraction wells PFE-1, PFE-2, and PFE-3 remained offline during the quarter while NASA completed groundwater modeling and engineering design studies to determine optimum pumping rates needed to maintain contaminant capture.
- NASA finalized a Statement of Work for repair and rehabilitation plans for PFTS wells PFE-1, PFE-2, PFE-3, PFE-7, PFI-2, and PFI-4 and submitted Request for Quotations to drilling contractors to conduct the work. NASA selected Alpha Southwest to procure new pumps and motors for the wells and conduct the work. NASA mobilized Alpha Southwest to WSTF on March 27, 2023 and initiated work at PFE-1 and PFI-4. Repairs to the wells are anticipated to be completed in the second quarter or 2023.
- NASA replaced a defective air compressor component that affected the operation of the PFTS during January 2023.
- NASA initiated work to repaint the injection well and extraction well motor control cabinets for the purpose of minimizing overheating caused by incident sunlight.

5.1.2.1 Air Stripper Capabilities and Performance

The PFTS consists, in part, of two multi-sieve tray air strippers that operate in a parallel configuration to treat the WSTF VOC of concern. A single air stripper can be used when the system is operating at 650 gpm or less. Both air strippers are used when the system flow rate is greater than 650 gpm. The air strippers must maintain an air flow rate between 3,600 standard cubic feet per minute (scfm) and 4,680 scfm to ensure treatment of VOC. Table 5.3 provides the VOC performance data for the air strippers during the reporting period. Chemical analytical data provided in this report demonstrate that DP-1255 discharge limits and Permit-required cleanup levels were achieved throughout the reporting period.

5.1.2.2 UV Reactor Capabilities and Performance

The PFTS includes a 12-lamp Rayox UV reactor that uses UV photolysis to break down nitrosamines (specifically NDMA) in groundwater. The UV reactor is designed to operate at a minimum hydraulic flow rate of 200 gpm and a maximum flow rate of 3,000 gpm. <u>Table 5.3</u> provides the NDMA treatment performance data for the UV reactor during the reporting period. As indicated by these data, system design parameters and cleanup levels for NDMA were achieved during the reporting period.

5.1.3 Extraction and Injection Well Performance

Extraction and injection well performance for the reporting period, as based on volumetric flow rates, extraction well drawdown, and water levels and injection well specific capacities, is summarized below. Average Plume Front injection (PFI) well flow rates and average Plume Front extraction (PFE) well flow rates for the reporting period are provided in <u>Table 5.4</u>. Additional events relevant to the performance of individual extraction or injection wells during the reporting period are summarized below.

Well PFI-1 started producing excessive gravel during backflushing in March 2019 and was taken offline in December 2019. In April, August, and September 2021 NASA attempted to remove the downhole equipment from PFI-1 using a pump hoist truck so that the well casing and screen could be inspected with a downhole video camera and potentially repaired. All efforts to remove the equipment from PFI-1 were unsuccessful due to the presence of a large volume of gravel pack within the well screen, along with a suspected breach in the well casing and/or screen that is acting as a subsurface obstruction to prevent the removal of the equipment. Based on this finding, NASA concluded that well PFI-1 is permanently out of service and initiated a groundwater modeling study that was designed in part to determine if the redistribution of treated groundwater to the remaining injection wells would continue to create hydraulic conditions needed to prevent further downgradient migration of the Plume Front. Findings of the modeling study, along with water-level observations following the redistribution of treated groundwater to and from PFI-1 to the remaining injection wells has thus far indicated that a replacement for PFI-1 is not needed.

Wells PFE-1 and PFE-3 went out of service on January 1, 2022 and December 6, 2021, respectively, due to submersible motor failures believed to have been caused by overheating. Well PFE-2 went out of service on July 19, 2022 due to a submersible motor failure. NASA performed groundwater flow modeling studies to evaluate various extraction well flow rate scenarios with respect to maintaining Plume Front capture zones, as well as to evaluate the potential use of intermittent (pulse) pumping to increase contaminant mass removal. The findings of these evaluations were used to select smaller replacement pumps and motors that may be less susceptible to overheating for installation in wells PFE-1, PFE-2, and PFE-3. The results of pipe flow and pressure distribution analyses of the extraction well network completed by NASA during the quarter were used to determine motor sizing requirements under dynamic head conditions. NASA initiated work to repair PFE-1, PFE-2, and PFE-3 on March 27, 2023. Repairs to these wells are anticipated to be completed in the second quarter of 2023.

The submersible motor used to backwash PFI-4 on a periodic basis failed in April 2022. As a precaution, NASA took well PFI-4 out of service to prevent potential plugging of the gravel pack. While PFI-4 is out of service, treated groundwater is being redistributed between wells PFI-2 and PFI-3 for injection. NASA initiated repairs to PFI-4 on March 27, 2023. Repairs to this well are anticipated to be completed in the second quarter of 2023.

5.1.3.1 Extraction and Injection Well Flow Rates and Specific Capacities

Flow rates for extraction and injection wells were measured and monitored throughout the reporting period. While in operation during the reporting period, flow rates for extraction wells PFE-4A, PFE-5, and PFE-7 were stable and approximately unchanged from the previous reporting period. Injection well PFI-3 operated below the design flow rates during the reporting period due to the reduction in total system flow resulting from extraction wells PFE-1, PFE-2, and PFE-3 being out of service. As previously noted, well PFI-4 went out of service in April 2022 and as a result, treated groundwater was redistributed between wells PFI-2 and PFI-3 for injection during the reporting period.

The operational average flow rates for extraction wells PFE-4A and PFE-5 were below their respective design flow rates during the reporting period, whereas PFE-7 operated above its design flow rate. Because wells PFE-1, PFE-2, and PFE-3 were not operational during the entire reporting period, the overall production of the PFTS was reduced during this period.

Specific capacities for the PFE and PFI wells are provided in <u>Table 5.5</u> and are expressed in gallons per minute per foot (gpm/ft). Generally, PFE well specific capacities are higher than PFI well specific capacities. This is due to the differences between extraction and injection well hydraulics.

5.1.3.2 Injection Well Water Level Variations, Well Monitoring, and Maintenance

Water levels at operational PFI wells are monitored on a continual basis using dedicated pressure transducers that record water levels at 1-second intervals. Specific well capacities are tracked daily while the system is in operation. Periodic backflushing of the injection wells is performed when the wells exhibit rising water levels associated with decreased well capacities and during start-ups and shutdowns. Operations personnel have been using static water table levels as a guide for setting the injection flow rates to each well to maintain a stable injection operation.

In February 2023, the pressure transducer used to monitor water levels in well PFI-4 became lodged in the well, resulting in the well being taken out of service. NASA initiated repairs to PFI-4 on March 27, 2023 and expects to install a new pressure transducer in the well during April 2023.

5.1.4 PFTS Monitoring Results

System monitoring involves the evaluation of a variety of data collected during routine PFTS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from the data (Section 7.3.3), and groundwater indicator parameters (water quality field measurements). The data presented in this section were collected from PFTS monitoring locations during the reporting period. Groundwater chemical analytical data from PFTS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.1.4.1 PFTS Monitoring Events

This section and associated appendices discuss the results of routine PFTS samples processed through the WSTF data management system during the reporting period. Groundwater samples processed and included in this report were collected at two PFTS monitoring locations during the reporting period. Table 4.1 provides a list of the PFTS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.1.4.2 PFTS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by field technicians in the field sampling record. The groundwater indicator parameters measured at each PFTS sampling event in <u>Table 4.1</u> are provided in <u>Appendix A.3</u>. <u>Appendix B</u> provides the field sampling records and internal CoC forms and the lab reports include laboratory CoC forms for each of the PFTS sampling events discussed in this section.

5.1.5 PFTS Chemical Analytical Results

This section and associated appendices provide the groundwater chemical analytical data processed through the WSTF data management system during the first calendar quarter of 2023. Appendix A.4 provides the analytical results (detections only) from PFTS sampling events performed during the reporting period. A summary of internal QA methods applied to groundwater chemical analytical data is provided in Appendix C.

5.1.6 PFTS Mass Removal

Table 5.6 uses available analytical data to calculate the mass of the various WSTF COC removed by the PFTS between February 1, 2022 and January 31, 2023. During this 12-month period, the PFTS removed approximately 11 kilograms (kg) of TCE, 7 kg of trichlorofluoromethane (Freon® 11), 288 grams (g) of PCE, and 63 g of NDMA.

The contaminant mass removal was calculated as follows:

Mass Removal =
Total Volume Treated x (Influent Concentration – Effluent Concentration)

5.2 Mid-plume Interception and Treatment System

The MPITS is the major component of the second phase of NASA's overall groundwater plume remediation strategy. This interim measure presumptive remedy was designed to intercept high COC concentrations within the fractured bedrock aquifer of the Mid-plume Constriction Area (MPCA).

The operational status of the MPITS is summarized below. Component/system failures, repair, and scheduled maintenance activities accounted for the majority of the short duration shutdowns during the reporting period.

5.2.1 MPITS Monitoring Results

System monitoring involves the collection and evaluation of a variety of data during routine MPITS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from these data (refer to Section 7.3.3), and groundwater indicator parameters (water quality field measurements).

³ Freon is a registered trademark of The Chemours Company CF, LLC.

The data presented in this section were collected from seven MPITS monitoring locations during the reporting period. Groundwater chemical analytical data from MPITS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.2.1.1 MPITS Monitoring Events

This section and associated appendices discuss the results of routine MPITS samples collected during the reporting period and processed by the WSTF data management system during the reporting period. Table 4.1 includes the MPITS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.2.1.2 MPITS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by the field technicians in the field sampling record. The groundwater indicator parameters measured at each MPITS sampling event listed in <u>Table 4.1</u> are provided in <u>Appendix A.5</u>. <u>Appendix B</u> provides the field sampling records and internal CoC for each of the MPITS sampling events discussed in this section. The laboratory CoC for each of the MPITS sampling events discussed in this section are provided in the Lab Reports enclosed on the DVD.

5.2.2 MPITS Operational Status

The operational status of the MPITS is included in Table 5.1 and Table 5.2.

5.2.3 MPITS Performance

This section summarizes the MPITS air stripper and UV reactor performance during the reporting period. Operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the MPITS is functioning properly and effectively treating the WSTF groundwater for COC reduction.

Operational records indicate that the MPITS performed favorably during the reporting period. The MPITS operated a total of 59 days out of 90 days, treated 1.07 acre-ft of groundwater at an average rate of 5.5 gpm. System availability statistics, which exclude scheduled shutdowns and planned maintenance, indicate that the system was operational for 99% of January, 100% of February, and 100% of March 2023. Notable events during the reporting period included the following:

- Extraction well MPE-8 was taken out of service on October 25, 2022 after it was determined that the well was producing fine rust particles which were blinding the UV transmissivity sensor. Subsequent camera logging of the well found that the carbon steel well casing and well screen were heavily encrusted with iron tubercles. NASA kept the well offline for the reporting period while work to evaluate potential repair options is being conducted.
- Extraction well MPE-11 experienced a failure of its submersible motor on January 12, 2023. NASA installed a new submersible motor in MPE-11 and place it back into operation on March 14, 2023.
- Due to a decline in water-levels in the MPCA, and a reduction of total available flow while MPE-8 has been out of service, NASA operated the MPITS on an intermittent, pulse pumping basis over the entire reporting period. This change in operational status accounts for the reduction in

the total number of days that NASA operated the system in comparison to the preceding reporting period.

5.2.3.1 Air Stripper Capabilities and Performance

The MPITS consists of a single sieve tray air stripper designed to treat WSTF groundwater VOCs of concern at flow rates up to 125 gpm. Table 5.7 provides the VOC performance data for the air stripper based on MPITS analytical data for the reporting period. As indicated by these data, system design parameters and discharge limits for the VOCs were achieved during the reporting period. The MPITS influent is composed of groundwater from operational Mid-plume extraction (MPE) wells and IDW generated during groundwater sampling, well maintenance, well evaluation activities, and other groundwater-related operations at WSTF. Effluent sample results are closely monitored to ensure the air stripper continues to function properly.

5.2.3.2 UV Reactor Capabilities and Performance

The MPITS uses a 72-lamp UV photolysis reactor to break down nitrosamines in groundwater. The UV reactor is designed to operate at flow rates between 20 and 125 gpm. The reactor is capable of automatically adjusting power to the lamps to meet a target of 4.1 orders of magnitude reduction in contaminant concentrations. However, electrical power to the lamps is currently set manually at 100 percent to comply with current internal NASA operational requirements. The UV reactor achieved approximately four orders of magnitude reduction during the reporting period. Table 5.7 shows the UV reactor's performance for the reporting period. As indicated by these data, system design parameters and discharge limits for NDMA were achieved during the reporting period. Effluent sample results are closely monitored to ensure the UV Reactor continues to function properly.

5.2.4 MPITS Extraction Well and Infiltration Basin Performance

Wells MPE-1, MPE-8, MPE-9, MPE-10, and MPE-11 operated at various flow rates during the reporting period. There were no MPITS infiltration basin performance anomalies during the reporting period.

Well MPE-8 started producing excessive sediment and fine iron oxide particles in the previous reporting period and as a result, NASA took the well offline on October 25, 2022. A subsequent camera log of well MPE-8 showed that the carbon steel casing and well screen is encrusted with iron tubercles and will require rehabilitation before the well can be reactivated. Work to rehabilitate the well and further assess the condition of the casing and well screen is planned for the second quarter of 2023.

The submersible motor in well MPE-11 failed on January 12, 2023. NASA installed a new submersible motor in MPE-11 on March 14, 2023 and placed the well back into operation at that time.

5.2.4.1 Extraction Well Flow Rates and Production Capacities

The MPE wells are completed in a fractured bedrock aquifer. Reduced well production capacity has resulted in cyclic operation of the extraction wells throughout the reporting period. Extraction well performance is characterized by evaluating well pumping rates and drawdown of water levels during pumping at each extraction well. Except for wells MPE-8 and MPE-11 as noted above, no extraction well performance anomalies with respect to pumping rates and water-level drawdowns were observed during the reporting period.

5.2.4.2 Infiltration Basin Performance, Monitoring, and Maintenance

The MPITS infiltration basin was designed to accept up to 200 gpmNo operational or performance issues were identified during the reporting period.

5.2.5 MPITS Chemical Analytical Results

Appendix A.6 provides the MPITS chemical analytical data for the analytical reporting period (detections only). A summary of internal QA methods applied to groundwater chemical analytical data is provided in Appendix C.

5.2.6 MPITS Mass Removal

<u>Table 5.8</u> summarizes the mass of the various WSTF COC removed by the MPITS between February 1, 2022 and January 31, 2023. Approximately 1.9 kg of COC mass was removed by the MPITS during this 12-month period. In addition to groundwater extracted in the MPCA, the MPITS accepts and treats IDW generated during other groundwater investigations. The contaminant mass removal was calculated as follows:

Mass Removal =

Volume of Water Extracted at Each Well x (Contaminant Concentration at Each Well – MPITS Effluent
Concentration)

5.3 Remediation Systems Operation Costs

<u>Table 5.9</u> presents the costs for operating the PFTS and MPITS for the 12 months from February 1, 2022 to January 31, 2023. The table summarizes the cost of the labor and materials for operation and maintenance of both systems, and includes the electrical costs associated with system operations.

6.0 Discussion and Conclusions

Routine groundwater monitoring is conducted at WSTF to support a variety of projects. The primary objectives of routine groundwater monitoring at WSTF are to delineate the extensive contaminant plume resulting from historical contaminant releases at the facility, support the development and implementation of corrective actions, and monitor the impact of these corrective actions during implementation and operation. Groundwater sampling at WSTF is currently focused on the Plume Front and Mid-plume areas, both of which are critical to NASA's overall groundwater remediation efforts.

This section provides discussion and conclusions based on the results of groundwater monitoring conducted at WSTF. Also included is a summary discussion of the remediation systems' performance, monitoring results, system modifications, and compliance with discharge requirements and/or applicable cleanup levels. Chemical analytical results from the PFTS, MPITS, and routine groundwater monitoring are compared to cleanup levels (refer to <u>Appendix D</u>). This section also provides NASA's anticipated future groundwater monitoring and related activities at WSTF.

6.1 Summary of Groundwater Monitoring Projects

Routine groundwater monitoring was performed during this quarter in accordance with currently approved permits, plans, and other regulatory requirements. In general, the WSTF contaminant plume is relatively stable in nature and extent. The potential for continued migration of the plume resulted in the

development of the phased approach to groundwater remediation discussed in Section 1.0. NASA continues to collect a variety of groundwater data from the comprehensive WSTF groundwater monitoring network. Monitoring results are presented in detail in the relevant sections of this report and in later sections of this summary. Several noteworthy projects related to routine groundwater monitoring are discussed below.

6.1.1 Monitoring Well Performance or Sampling Equipment Issues

NASA was unable to sample one well during the previous reporting period (August 1, 2022 – October 31, 2022) and two wells during the current reporting period (November 1, 2022 – January 31, 2023) because of mechanical or well performance issues. This section does not address wells that were not sampled due to resource limitations.

- NASA could not sample well PL-7-480 in August 2022 because the Westbay zone did not produce water. NASA believes the water level at this location has dropped below this sample port and will monitor the water level during future planned sampling events.
- Wells 600A-001-GW and 600A-002-GW (scheduled for sampling in November 2022) were not sampled because of equipment failure. NASA obtained replacement sampling equipment in December 2022 for use in January 2023. Upon further evaluation, NASA determined that previous development of these wells using on-site equipment after colloidal borescope tests may have been inadequate. NASA is working to acquire the services of an off-site subcontractor to perform additional development at these wells prior to sampling. NASA will provide an update on well development progress in future reports.

Recent occurrences of sampling issues, backlog of prior unresolved issues, and issues resolved this quarter are summarized in <u>Table 7.1</u>.

6.1.2 Monitoring Well Installation and Well Plugging and Abandonment

There was no well installation fieldwork this quarter, though NASA plugged and abandoned several monitoring wells as described below with other first quarter 2023 activity.

- On October 31, 2022, NMED approved the *Work Plan for Drilling and Installation of Monitoring Well 600C-002-GW and Abandonment of PL-6*, submitted on February 1, 2022 (NMED, 2022i). NMED directed NASA to complete well installation and provide a well completion report no later than September 29, 2023. NASA continued project planning.
- NASA continued project planning for the installation of replacement well BLM-43 (*Drilling Work Plan for Abandonment of Well BLM-30 and Drilling of New Groundwater Monitoring Well BLM-43* [NASA, 2019c]), replacement well 600B-001-GW (*Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW* [NASA, 2021h]), and new well 600C-001-GW (*Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF)* [NASA, 2021i]).
- On January 7, 2023, NASA completed abandonment of well NASA 9 in accordance with NMED's October 31, 2022 approval of the *NASA WSTF Work Plan for Abandonment of NASA WSTF NASA 9 and Replacement with Monitoring Well 400-001-GW* (NASA, 2022f). NASA continued planning the installation of the replacement well and related abandonment and replacement report, which is due to NMED no later than September 29, 2023.

- On January 10, 2023, NASA completed abandonment of the borehole at well BLM-30 in accordance with the NMED-approved NASA WSTF Drilling Work Plan for Abandonment of Well BLM-30 and Drilling of New Groundwater Monitoring Well BLM-43 (NASA, 2021a). NASA continued planning the installation of the replacement well and related abandonment and replacement report, which is currently due to NMED no later than April 28, 2023.
- On January 30, 2023, NASA completed abandonment of the groundwater monitoring components of wells 200-SG-2 and 200-SG-3 in accordance with NMED's January 10, 2022 approval of the Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3 (NASA, 2021m). NASA submitted the Reconfiguration Report for NASA Wells 200-SG-2 and 200-SG-3 on March 21, 2023 (NASA, 2023i).
- NASA completed abandonment of wells 400-C-118 (January 8, 2023), 400-LV-125 (January 7, 2023), 400-KV-142 (January 7, 2023), BLM-2-482 (January 20, 2023), and NASA 8 (January 30, 2023) as described in the NMED-approved NASA WSTF Groundwater Monitoring Plan Update for 2022 (NASA, 2022k). NASA submitted the Abandonment Report for NASA Wells 400-C-118, 400-KV-142, 400-LV-125, BLM-2-482, and NASA 8 on March 30, 2023 (NASA, 2023j).

6.1.3 Westbay Well Reconfiguration

Westbay well reconfiguration fieldwork in the first quarter of 2023 is summarized below. Historical information and full submittal history for well reconfiguration projects are provided in <u>Appendix F.</u>

- NASA abandoned the borehole remaining from former Westbay well BLM-28 in the first quarter of 2023 and continued planning the installation of replacement well 600C-001-GW. NASA submitted the *Abandonment Report for NASA Well BLM-28* on March 14, 2023 (NASA, 2023g).
- On January 6, 2023, NASA completed abandonment of the lower portion of the borehole at well BW-4 as described in the *Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4* (NASA, 2022b). NASA continued planning the remainder of reconfiguration activities (sampling system installation). NASA submitted the *Reconfiguration Report for NASA Well BW-4* on March 21, 2023 (NASA, 2023h).
- NMED is reviewing the *Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3*, submitted on April 29, 2021 (NASA, 2021b).

6.1.4 Groundwater Monitoring Data Representativeness

Activities in the first quarter 2023 included the following:

• On August 8, 2022, NMED approved the *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation*, submitted to NMED on November 2, 2021 (NASA, 2021). NASA continued development of the investigation report, which is due to NMED no later than April 28, 2023.

6.2 Comparison of Analytical Data to Cleanup Levels

This section and the associated appendix compare the chemical analytical data obtained from groundwater remediation system sampling points and groundwater monitoring wells to the approved

cleanup levels provided in the GMP (NASA, 2022e). <u>Appendix D</u> provides a comparison of groundwater data to cleanup levels for the current analytical reporting period.

6.2.1 Groundwater Monitoring Wells

<u>Appendix D.1</u> includes a comparison of groundwater monitoring well data to applicable cleanup levels for the analytical reporting period. Only analytical results that exceed cleanup levels are included in the tables.

6.2.2 Plume Front Treatment System

Groundwater samples were collected from the PFTS influent and effluent as required by the RSMP (NASA, 2021h) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.1.5 and <u>Appendix A.4</u>. <u>Appendix D.2</u> includes any PFTS influent results that exceeded cleanup levels during the current analytical reporting period. The PFTS effluent met all DP-1255 discharge limits and Permit cleanup levels.

6.2.3 Mid-plume Interception and Treatment System

Groundwater samples were collected from the MPITS influent and effluent as required by the RSMP (NASA, 2022h) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.2.5 and <u>Appendix A.6</u>. <u>Appendix D.3</u> includes any MPITS influent data that exceeded cleanup levels during the current analytical reporting period. There were no DP-1255 discharge limit or cleanup level exceedances from the MPITS during the reporting period.

6.3 Contaminant Plume Evaluation

The plume evaluation for the first quarter of 2023 includes potentiometric surface maps and a variety of chemical analytical data.

6.3.1 Groundwater Elevations and Iso-concentration Maps

A manually contoured potentiometric surface map (Figure 6.1) is provided for the WSTF Plume Front area that correlates with the end of the current reporting period. Data used to generate contours for this map are identical to the data used to generate the site-wide contours (Figure 4.1). The 40-ft contour used in the site-wide piezometric map is supplemented by 2-ft contours in the Plume Front potentiometric surface map. Arrows indicate the direction of groundwater flow. The influence of PFTS operation is evident by the depression in the potentiometric surface that is caused by pumping at the PFE wells. The hydraulic mound produced by injecting treated water at the PFI wells is apparent at the southern edge of the figure.

Groundwater elevations measured in the MPCA during this analytical reporting period are presented in the manually contoured Mid-plume potentiometric surface map (Figure 6.2). The data used to generate contours for this map are the same values used to generate the site-wide potentiometric map (Figure 4.1). The general west-trending groundwater flow direction through the Mid-plume area is apparent in Figure 6.2, though local variations may exist within discrete fractures or higher conductivity flow zones within the fractured bedrock aquifer in this area. Groundwater elevation is generally depressed downgradient of well MPE-11 near well MPE-6.

6.3.2 Plume iso-concentration maps

Figure 6.3 and Figure 6.4 present manually contoured iso-concentration maps of the Plume Front for NDMA and TCE using data processed during this reporting period. The manual contouring method allows a geologist to evaluate plume contaminants against interpreted hydrogeological features to create a realistic representation of the contaminant plume. Hydrogeological conditions considered during the manual contouring of contaminant concentrations are primarily hydrostratigraphic units or significant structural features that cause the juxtaposition of variable hydraulic conductivities. The lowest value solid iso-concentration line on each map corresponds to the required cleanup level for the analyte presented. The iso-concentration maps are consistent with the maps presented in previous reports (i.e., a like-to-like comparison in the case of NDMA), the monthly evaluation of contaminant concentrations, and site-wide plume maps that have been provided to NMED over the last several years.

6.3.3 Combined Plume Iso-concentration Maps and Potentiometric Surface Map

<u>Figure 6.5</u> shows the interrelationship of the Plume Front potentiometric surface and manually contoured TCE plume for the current analytical reporting period. TCE was selected because it is the most widely distributed health-risk-driving contaminant in the conceptualized contaminant plume.

6.3.4 Time-concentration Plots and Groundwater Data Analytical Trends

T-C plots are used to evaluate and summarize contaminant concentration trends in WSTF wells over time on a quarterly basis as presented in this report. An interpretation of the concentration trends shown in T-C plots is provided in this section.

To facilitate the evaluation of T-C plots, WSTF monitoring wells are grouped as listed in Table 5 of the GMP (NASA, 2022e). T-C plots are generated using analytical data from each monitoring and remediation well where available. The concentration trends for four of the primary COCs (Freon 11, TCE, PCE, and NDMA) in groundwater are reviewed by technical personnel to develop the summary table presented in Appendix E. This table includes the historical maximum contaminant concentrations, the latest concentrations, and an interpretation of the current concentration trend for each well. For NDMA, results are presented for both EPA Method 607 and low-level laboratory analysis where available. T-C trend evaluation places greater emphasis on the recent analytical results reported over the last several years if a change in trend is observed over time since initial well installation. As a result, the current T-C interpretation may therefore not reflect the full historical variability in T-C behavior through the life of the well, particularly for the older wells at WSTF installed in the mid-1980s through the 1990s. Where individual wells have been out of service for several years and/or have been plugged and abandoned, the datapoint has been removed from the suite of wells evaluated. T-C plots constantly evolve over time, and the historical plots associated with wells no longer in service are not considered representative of current conditions.

The determination of a trend for COC concentrations within a specific well is based on the evaluation of analytical data collected over at least several quarters (typically a minimum of three to four sampling events). Concentrations are evaluated in conjunction with other potentially influencing factors (including hydrogeology, aquifer recharge conditions, well development activities, and any changes in the operational status of proximal remediation wells) before any modification to the T-C plot interpretation is made. This approach is necessary to avoid the premature determination of a trend that represents a short-term fluctuation that subsequently reverts back to previous conditions.

A summary site-wide well map and analytical table depicting the most recent interpreted T-C trend for each individual well is included in <u>Appendix E</u>. The majority of wells in the WSTF monitoring network reflect a decline in COC concentrations over time, or fluctuating levels that have remained relatively consistent. Only one monitoring well within the network (BLM-5-527 of the MPCA Well Group) is characterized by increasing concentrations for this quarter. A summary evaluation of each of the GMP well groups is provided in the following paragraphs, along with a discussion of the T-C plots for specific wells identified within the group. T-C plots (for specific wells where identified in the text) are also provided in <u>Appendix E</u>.

Upgradient (Background) Well Group: The four wells designated as upgradient groundwater monitoring wells are located east of the WSTF industrialized areas. There have been no confirmed VOC or NDMA detections in groundwater for these wells, and all four wells are classified as not detected (ND).

100/600 Area Well Group: Monitoring wells within this group are located within the 100 Area and the adjacent easternmost part of the 600 Area. The wells are located in the vicinity of the southeastern boundary of the groundwater plume, with COCs sourced by the former 600 Area Closure HWMU and/or the 200 Area. Where located within the footprint of the groundwater plume, wells reflect a decreasing COC concentration trend for Freon 11, TCE, and PCE. This trend is characteristic of both wells within the primary fractured bedrock aquifer and for well 600-G-138 (T-C plot provided) that is screened across a localized perched groundwater horizon located on top of andesite bedrock in the vicinity of the 600 Area Closure. NDMA in groundwater is sourced from the 300 and 400 Areas and is not identified within the 100 and 600 Areas.

200 Area Well Group: The 200 Area represents the primary source of TCE and Freon 11 groundwater contamination at WSTF. Historical maximum concentrations for these contaminants in monitoring wells were reported in the late 1980s through mid-1990s. Over the last 30 years, the majority of 200 Area T-C plots reflect a decreasing trend in contaminant concentrations for these COCs. As an example, TCE in well 200-D-240 (T-C plot provided) has decreased from 110 μg/L in 1990 to 15 μg/L in 2022. The decreases reflect natural plume migration and degradation under the influence of a steep horizontal hydraulic gradient of 0.05 ft/ft within a relatively porous fractured limestone aquifer in conjunction with the implementation of effective waste management practices in the 1980's that eliminated waste discharges. Wells that display a more consistent trend are typically characterized by lower groundwater COC concentrations, an screened intervals in less fractured (lower hydraulic conductivity) andesite bedrock further west and southwest.

300/400 Area Well Group: The T-C plots for monitoring wells in this group show COC concentration trends that are either fluctuating (most notably the group of wells installed in January 2017 within poorly fractured andesite bedrock in the vicinity of the 400 Area Closure HWMU) or have declined since initial well installation. Declining trends primarily correlate to wells characterized by higher COC concentrations and hydraulic conductivity, that are typically screened across the top of bedrock at the andesite-alluvium interface. These wells are located adjacent to the 300/400 Area primary arroyo that experiences enhanced natural recharge. Wells that do not display declines are typically located off the main axis of primary drainages or are protected from precipitation infiltration by low permeability surfaces such as the 300 and 400 Area Closure impoundment caps. Declining trends in the 300 and 400 Areas reflect the influence of contaminant migration related to a strong hydraulic gradient of 0.05 ft/ft in conjunction with the implementation of effective waste management practices in the 1980's. Relatively consistent trends reported for some monitoring wells (particularly for NDMA) are interpreted to result from the limited connectivity of fractures for wells screened in andesite bedrock.

Northern Boundary Well Group: Monitoring wells are frequently characterized by relatively low contaminant concentrations with consistent T-C trends or are ND. A well trend classified as "fluctuating low-level NDMA" without other contaminant detections (otherwise considered to be ND) is reported this quarter from three wells: BLM-32 (1.6 ng/L); JER-1 (1.7 ng/L); and JER-2 (4.2 ng/L). These wells are located adjacent to the boundary of the northwest-trending plume arm that coincides with northwest-trending structural controls in the bedrock that extend northwest from the Mid-plume constriction area.

Southern Boundary Well Group: Monitoring wells are located south of the NDMA and TCE plumes, do not exceed the low-level NDMA cleanup level of 1.1 ng/L, and are classified as ND. A single well (BLM-6-488, T-C plot provided) continues to show a consistently low concentration of TCE (2.20 µg/L) below the NMED cleanup level and is characterized as exhibiting "natural migration - no overall T-C trend."

MPCA Well Group: T-C plots for monitoring wells in this group that characterize the MPCA predominantly show declining contaminant trends associated with either natural plume migration and degradation or related to MPITS pumping following startup in 2011. T-C plots for wells BLM-21-400, BLM-36-350, BLM-18-430, and BLM-5-527 are included in Appendix E.

Well BLM-21-400 is located approximately 500 ft south of the nearest MPE well (MPE-11) and immediately downgradient of the interpreted first primary confluence of the TCE and NDMA contaminants from their respective source areas (Freon 11 and TCE originate from the 200 Area [upgradient well BLM-14-327] and NDMA originates from the 300 and 400 Areas [upgradient well BLM-15-305]). Contaminant concentrations in BLM-21-400 reflect a natural decreasing trend for Freon 11 (320 to 34 μ g/L), TCE (220 to 18 μ g/L), PCE (12 to 0.85 μ g/L), and NDMA (5.6 to 0.85 μ g/L) since well installation in 1991.

Multiport well BLM-36 is located downgradient and to the south-southwest of the MPITS. The T-C plots for the shallow zone in well BLM-36 (BLM-36-350) identify groundwater COCs. These have not been detected in deeper zones of this well, providing a significant location for vertical delineation in the Midplume. BLM-36-350 has previously shown consistent and more recently declining concentrations for groundwater COCs since activation of the MPITS and is currently classified as "pumping-related migration – decreasing."

Wells BLM-18-430 and BLM-5-527 are located in the northwest-trending arm of the WSTF groundwater contaminant plume that extends from the MPCA. These wells are monitored to determine the effect of operation of the MPITS on the migration of groundwater contaminants into this area. The T-C plot for well BLM-18-430 shows a decline in contaminant concentrations since startup of the MPITS, inferred to be related to the arrest of contaminant migration to the northwest arm through continuous operation of the MPE wells. Well BLM-5-527 is currently the only monitoring well on-site interpreted to display a "natural migration – increasing" trend. Increases in this well are inferred to reflect the migration of contaminants into low conductivity rhyolite bedrock of the extreme northwest section of the northwest-trending arm. Although the flow of contaminant mass to the arm may have been arrested following MPITS startup, the COC mass already present within the arm may still be migrating into this remote northwest location.

Main Plume Well Group: Wells in this group are located within the western section of the groundwater plume at the Plume Front and show widespread declining trends related to natural migration or pumping depending on proximity to the PFTS remediation wells. Contaminant concentrations within this group decline during intervals of system operation and rebound during quiescent non-operational periods.

Plume Front Well Group: Monitoring wells within this group are generally located outside the boundary of the contaminant plume and groundwater analytical results are typically ND. Occasional detections of Freon 11 and TCE in well ST-7 may be a result of continued pumping at well PFE-7 and the related irregular migration of contaminants at irregular intervals due to heterogeneity in the alluvial aquifer. Fluctuating low-level NDMA detections without other detectable COCs were identified in one well within this group (PL-6 [44.03 ng/L]).

Sentinel Well Group: Monitoring wells within this group form a more distal tier located outside the groundwater contaminant plume and have all historically shown analytical results that are ND. For this quarter, fluctuating low-level NDMA detections without other detectable COCs have been identified in five of the sentinel wells (BLM-42-709 [1.1 ng/L], PL-10 [1.8 ng/L], PL-11 [1.4 ng/L], WW-3 [1.1 ng/L], and WW-5 [4.4 ng/L]).

Other Well Group – Mid-plume Extraction Wells: The T-C plots for the five MPITS wells are included in Appendix E. The COC concentrations for Freon 11 and TCE in wells MPE-8, MPE-9, MPE-10, and MPE-11 have displayed a generally consistent concentration trend since 2013 under the influence of pumping-related plume migration. Well MPE-1 is historically the well with the highest COC and NDMA concentrations and currently shows a decreasing concentration trend associated with continued operation of the MPITS.

Other Well Group – Plume Front Extraction Wells: The T-C Plots for five PFTS wells; PFE-1, PFE-2, PFE-3, PFE-4A, and PFE-7 are included in <u>Appendix E</u>. The high-volume extraction wells exhibit declining trends when operational due to pumping-related plume dilution within the alluvial aquifer at the Plume Front.

6.4 Summary of Source Area Investigations

The following subsections summarize the status of each solid waste management unit (SWMU) or hazardous waste management unit (HWMU) at WSTF and provide specific information on work performed during the first calendar quarter of 2023; January 1, 202 – March 31, 2023. Relevant historical information including investigation status, and full submittal history for each potential source area is provided in Appendix F.

6.4.1 200 Area

NASA continues work associated with the investigation of two HWMUs and SWMUs in the 200 Area. NASA performed a wide-area soil vapor survey in the 200 and 600 Areas to assess the potential risk to workers posed by soil vapor intrusion into the buildings adjacent to areas with the greatest soil vapor concentrations. NMED disapproved NASA's report on the assessment, stating that the vapor intrusion pathway is complete from the standpoint of risk assessment. During the third quarter of 2022, activities related to this SWMU included:

 On September 20, 2022, NMED disapproved NASA's January 30, 2020 NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report (NASA, 2020a).
 NMED directed NASA to address three multipart comments and submit a revised report no later than April 28, 2023 (NMED, 2022k). NASA continued developing the revised report.

6.4.2 300 Area

There were no document submittals for the 300 Area in the first quarter of 2023.

6.4.3 400 Area

There were no document submittals for the 400 Area in the first quarter of 2023. Recent and ongoing activity includes:

- NMED is reviewing the *Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan* (July 14, 2021; NASA, 2021f).
- NMED is reviewing the NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response (July 27, 2021; NASA, 2021g).
- NMED is reviewing the *Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan* (July 14, 2021; NASA, 2021e).

6.4.4 600 Area Perched Groundwater Extraction and Investigations

NASA is currently conducting a perched groundwater extraction pilot test in the 600 Area and completed an investigation into the presence of additional perched groundwater beneath and adjacent to the 600 Area Closure. During the first quarter of 2023, activities related to this SWMU included:

- NASA extracted approximately 318 gallons of perched groundwater from monitoring well 600-G-138 in accordance with NMED's March 1, 2013 Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area (NMED, 2013). Groundwater elevation measurements indicate there is approximately 3.18 ft of perched groundwater within this well. This perched groundwater thickness has been relatively consistent since the inception of extraction activities in 2013. Extracted groundwater was containerized for treatment at the MPITS and discharged in accordance with DP-1255.
- NMED approved NASA's April 26, 2022 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 9 (NASA, 2022c). NASA began development of the status report for Project Year 10.
- NMED is reviewing NASA's June 29, 2022 600 Area Perched Groundwater Investigation Report (NASA, 2022g).

6.4.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

NASA continued work required to investigate and close the WSTF Wastewater Lagoons in the 100, 200, and 600 Areas and at the Second Tracking and Data Relay Satellite (TDRS) Ground Terminal (STGT). Activities during the first quarter of 2023 included:

• NMED disapproved the NASA WSTF 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report (NASA, 2020a) on July 5, 2022. NASA continued addressing 20 NMED comments and developing a revised report for submittal no later than January 31, 2023 (NMED, 2022d). After completing investigation fieldwork at the 200 Area lagoons in February 2023, NASA and the subcontracted drilling company moved drilling equipment to the 100 Area lagoons. In late February and March 2023, NASA completed the installation of all required soil borings at the 100 Area lagoons. The required soil samples were collected at each boring and submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised

- investigation report, NASA submitted the Request for Extension of Time for NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report Response to Disapproval on January 18, 2023 (NASA, 2023a).
- Investigation Report (NASA, 2019d) on June 6, 2022. NASA continued addressing 14 NMED comments and developing a revised report for submittal no later than December 30, 2022 (NMED, 2022b). NASA also requested an extension of time for submittal of the revised report (NASA, 2022l), which NMED approved. In February 2023, NASA and the subcontracted drilling company completed the nine soil borings at the 200 Area lagoons then decontaminated tooling and moved drilling equipment to the 100 Area lagoons. All samples were submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation report. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval on March 8, 2023 (NASA, 2023e).
- NMED disapproved the NASA WSTF 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report (NASA, 2019e) on June 16, 2022. NASA continued addressing 15 NMED comments and developing a revised report for submittal no later than December 30, 2022 (NMED, 2022c). NASA also requested an extension of time for submittal of the revised report (NASA, 2022m), which NMED approved. In January 2023, NASA mobilized the subcontracted drilling company to WSTF and initiated the installation of soil borings and monitoring wells in accordance with the plan. NASA completed soil boring 600L-SB-28 at a location topographically and hydrogeologically downgradient from the 600 Area wastewater lagoons. NASA collected the required soil samples from the boring, which intercepted perched groundwater at approximately 151 feet below ground surface. NASA installed a groundwater monitoring well in the borehole and monitored groundwater as it recovered to approximately 145 feet below ground surface. In January and February 2023, NASA completed the installation and sampling of all required soil borings within the 600 Area wastewater lagoon. All samples were submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval on March 8, 2023 (NASA, 2023f).
- NMED disapproved the NASA White Sands Test Facility WSTF STGT Wastewater Lagoons Closure (AOC 51) Investigation Report (NASA, 2020c) on July 25, 2022. NASA continued addressing 16 NMED comments and developing a revised report for submittal no later than February 28, 2023 (NMED, 2022e). After completing the drilling and soil sampling at the 100 Area lagoons in early March 2022, NASA and the subcontracted drilling company decontaminated all downhole drilling tools, moved operations to the STGT Area lagoons, and completed the seven soil borings for these lagoons. All drilling equipment and tooling were decontaminated, and the subcontracted drilling company demobilized from WSTF on March 23, 2023. The required soil samples were collected at each boring and submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the Request for Extension of Time for NASA White Sands Test Facility (WSTF) Second

Tracking and Data Relay Satellite Ground Terminal (STGT) Wastewater Lagoons Closure (Area of Concern [AOC] 51) Investigation Report Response to Disapproval on January 18, 2023 (NASA, 2023b).

6.4.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])

NASA performed an investigation of the abandoned HWTL that consisted of HWTL excavation, pipeline removal, soil sampling, and the submittal of an investigation report. Minimal activities during the first quarter of 2023 consisted of the following:

• NMED is reviewing NASA's March 4, 2022 Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report (NASA, 2022a).

6.4.7 Dye Tracer Test Investigation

Activities during the first quarter of 2023 included the following:

• NMED is reviewing NASA's December 20, 2022 Abbreviated Drilling Work Plan in Response to the NMED Approval with Modification of the Report on Tracer Testing in the WSTF 200/600 Areas and Mid-plume Constriction Area (NASA, 2022n).

6.4.8 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

NASA completed a multi-part investigation of the 600 Area BLM Off-Site Soil Pile and has addressed NMED comments on multiple iterations of the investigation report. Activities in the first quarter of 2023 were:

 NMED approved NASA's September 28, 2021 Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) (NASA, 2021j) with modifications on February 10, 2023. NASA is addressing NMED's two comments and revising the work plan for submittal to NMED no later than May 31, 2023.

6.4.9 SWMUs 21–27 (Septic Tanks)

Activities during the first quarter of 2023 included the following:

• NMED approved NASA's May 18, 2021 revised NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27) Investigation Report (NASA, 2021c) on March 16, 2023. NASA is addressing two comments and revising the report for submittal to NMED no later than June 16, 2023.

6.4.10 SWMUs 29–31 (Small Arms Firing Ranges)

During the first quarter of 2023, activities related to these SWMUs included:

• NMED approved the Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report (August 3, 2020; NASA, 2020b) on November 16, 2022 with modifications (NMED, 2022k) and directed NASA to address six comments and submit revised reports no later than January 31, 2023. NASA addressed NMED's six comments and prepared the revised reports for submittal to NMED. NASA submitted the Response to Approval w/Mods – Revised Small Arms Firing Range (SWMUs 29-31) RCR on January 27, 2023 (NASA, 2023d).

6.4.11 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

During the first quarter of 2023, activities related to this SWMU included:

• NMED is reviewing the Response to Disapproval of NASA WSTF 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) (September 14, 2022; NASA, 2022j).

6.4.12 SWMU 47 (500 Fuel Storage Area)

NASA plans to perform an investigation of the 500 Area Fuel Storage Area (SWMU 47). During the first quarter of 2023, activities related to this SWMU included the following:

• NMED is reviewing NASA's *Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan* (June 29, 2021; revised IWP; NASA, 2021d).

6.4.13 SWMU 49 (700 Area Landfill)

NASA completed NMED-approved investigation work at the closed landfill as described in the *Response to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary* (NASA, 2019b). Activities during the first quarter of 2023 include the following:

• NMED approved NASA's April 29, 2022, 700 Area Landfill Closure (SWMU 49) Phase I Investigation Report (NASA, 2022d) on February 10, 2023 and directed NASA to provide a Phase II work plan no later than October 31, 2023 (NMED, 2023).

6.4.14 SWMU 50 (First TDRS Diesel Release)

NASA performed NMED-approved investigation fieldwork at SWMU 50 and provided the results to NMED in the *First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report* (NASA, 2019a). Activities during the first quarter of 2023 include the following:

• NMED approved NASA's Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report (November 9, 2020; NASA, 2020d) on November 16, 2022 with modifications (NMED, 2022j) and directed NASA to address seven comments and submit revised reports no later than January 31, 2023. NASA addressed NMED's seven comments and submitted the Response to Approval with Modification of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report on January 26, 2023 (NASA, 2023c).

6.4.15 SWMU 52 (Second TDRS UST)

No additional activity is planned at this SWMU for the foreseeable future following NMED's approval with a modification on August 8, 2022 (NMED, 2022f).

6.4.16 SWMU 54 (500 Area Former Oxidizer Burner)

While researching documentation related to the Fuel Treatment Unit, NASA identified the location of a former 500 Area oxidizer burner as a potential new SWMU. In the December 20, 2021, *Approval 500*

Area Newly Identified SWMU Release Assessment Report (NMED, 2021b), NMED directed NASA to list the former oxidizer burner as a SWMU requiring corrective action in the WSTF Hazardous Waste Permit (during a Permit renewal or modification, as applicable) and to submit an investigation work plan for the unit no later than August 31, 2022. Activities during the first quarter of 2023 include the following:

• NMED is reviewing the 500 Area Former Oxidizer Burner (FOB) Investigation Work Plan (IWP) and Historical Information Summary (HIS) on August 25, 2022 (NASA, 2022i).

7.0 Planned Activities

This section discusses NASA's planned activities related to groundwater monitoring at WSTF.

7.1 Groundwater Monitoring and Related Projects

7.1.1 Monitoring Well Performance or Sampling Equipment Issues

This section presents plans to address wells that could not be sampled in the data reporting period (November 1 through January 31, 2023) due to mechanical or well performance issues and were not resolved by the end of the period. The backlog of prior unresolved issues is shown on <u>Table 7.1</u>. The section also presents issues that have been resolved.

• Wells 600A-001-GW and 600A-002-GW (scheduled for sampling in November 2022) were not sampled because of equipment failure. NASA obtained replacement sampling equipment in December 2022 for use in January 2023. Upon further evaluation, NASA determined that previous development of these wells using on-site equipment after colloidal borescope tests may have been inadequate. NASA is working to acquire the services of an off-site subcontractor to perform additional development at these wells prior to sampling.

7.1.2 Per- and polyfluoroalkyl substances

NASA is continuing the efforts of developing the Per- and polyfluoroalkyl substances (PFAS) Preliminary Assessment (PA) report. Additionally, NASA plans to install two conventional groundwater monitoring wells for the collection of additional PFAS groundwater data. An Abbreviated Drilling Work Plan for the two monitoring wells will be submitted to NMED for review. Upon completion of the finalized PA report NASA will submit a copy to NMED.

7.1.3 Westbay Well Reconfiguration.

NASA abandoned the borehole at former Westbay well BLM-28 in January 2023. NASA also abandoned the borehole at former monitoring well BLM-30 in January 2023 and continued plans to install replacement well BLM-43 (NASA, 2021k) at a later date.

7.1.4 Monitoring Well Installation

In addition to replacement well BLM-43 mentioned in the preceding section, NASA plans to replace well BLM-28 and to install a deeper monitoring well adjacent to existing well BLM-10-517. NASA also plans to replace Westbay monitoring well PL-6.

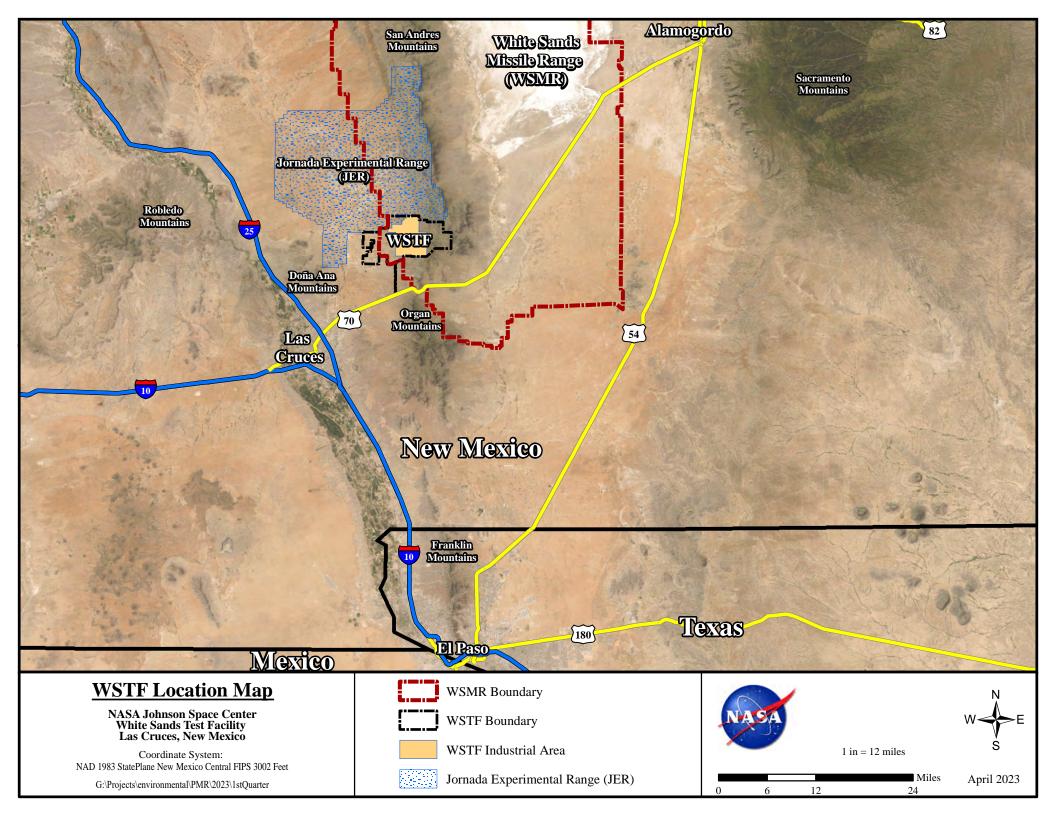
7.2 Groundwater Remediation System Monitoring

The RSMP (NASA, 2022h) and DP-1255 (NMED, 2017) include provisions for monitoring the effectiveness of the PFTS and MPITS. Sampling at designated locations, including extraction wells and remediation system sampling points, will continue as required during remediation system operational periods in accordance with the RSMP and/or DP-1255. Monitoring well sampling to assess remediation system effectiveness will continue in accordance with the GMP (NASA, 2022d).

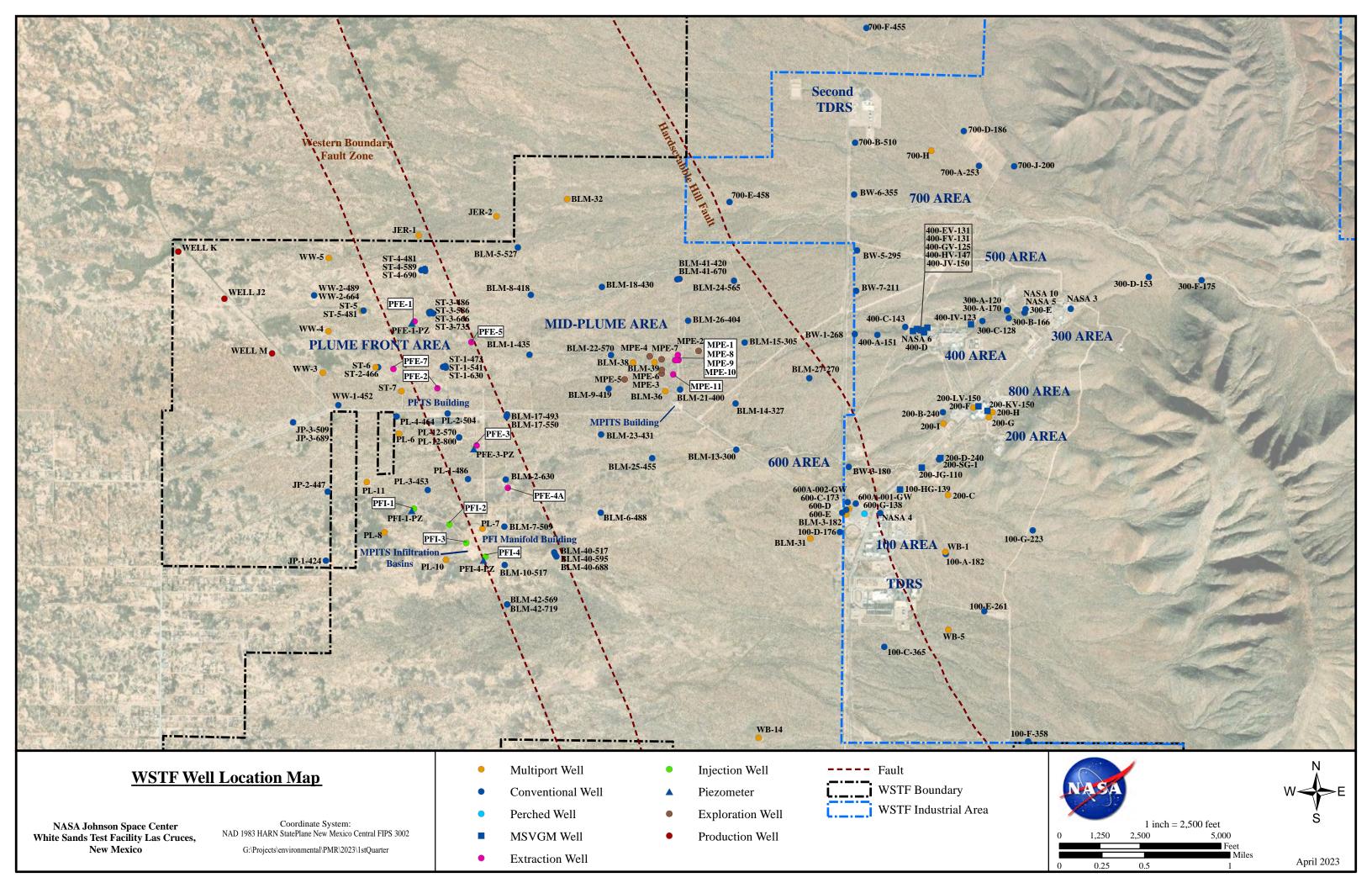
8.0 References

- EPA. Office of Research and Development. (2008, January). A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems. Cincinnati, OH.
- NASA Johnson Space Center White Sands Test Facility. (2019a, March 14). First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, August 8). Response to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019c, August 29). NASA WSTF Drilling Work Plan for Abandonment of Well BLM-30 and Drilling of New Groundwater Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019d, November 25). NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, November 26). NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, August 3). NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020d, November 9). Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Las Cruces, NM.

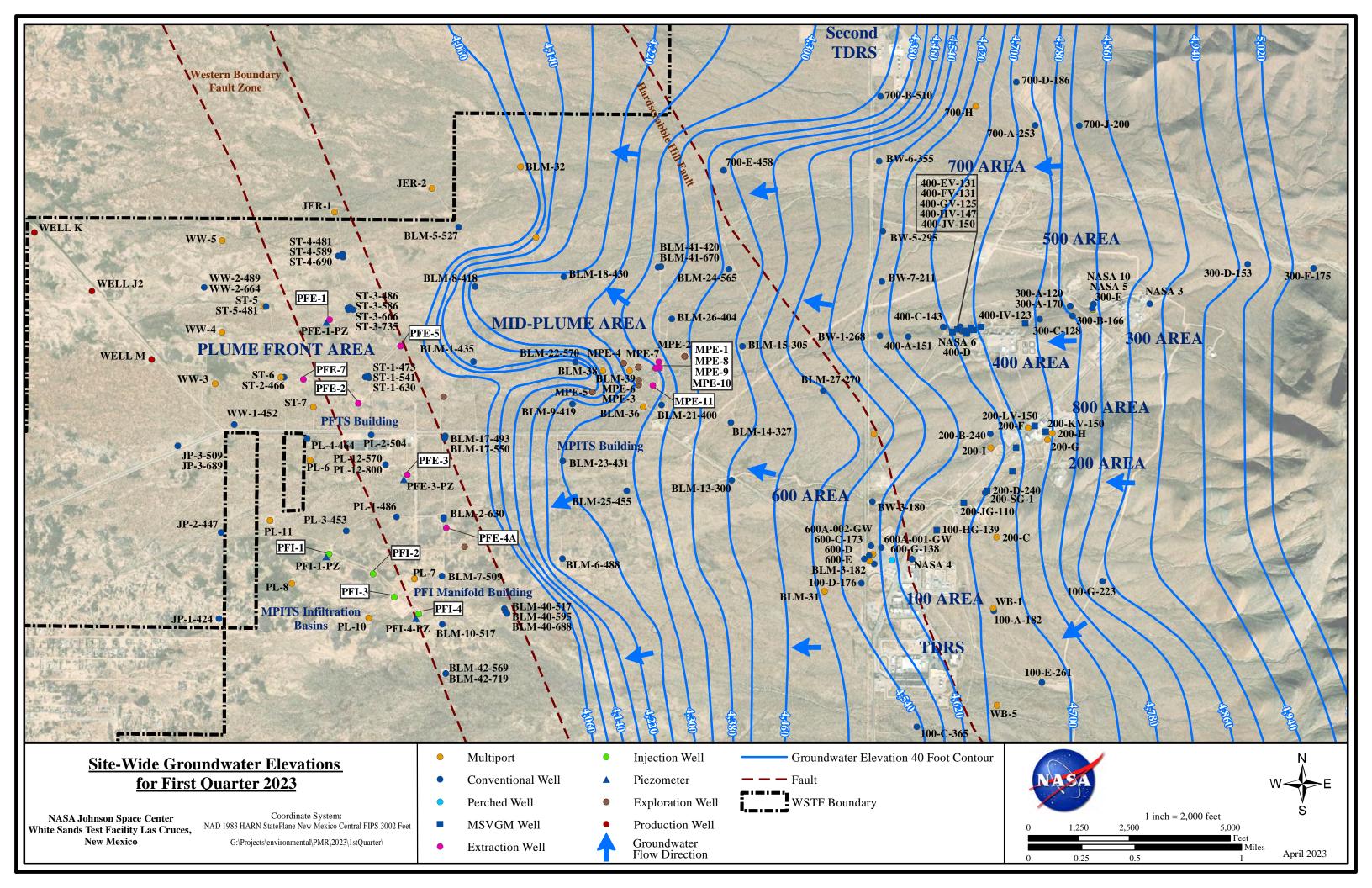
- NASA Johnson Space Center White Sands Test Facility. (2021a, February 3). Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021d, June 29). Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, July 14). Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, July 14). Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, July 27). *NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021h, August 31). NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021l, November 2). Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, November 30). Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022a, March 4). Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report. Las Cruces, NM.

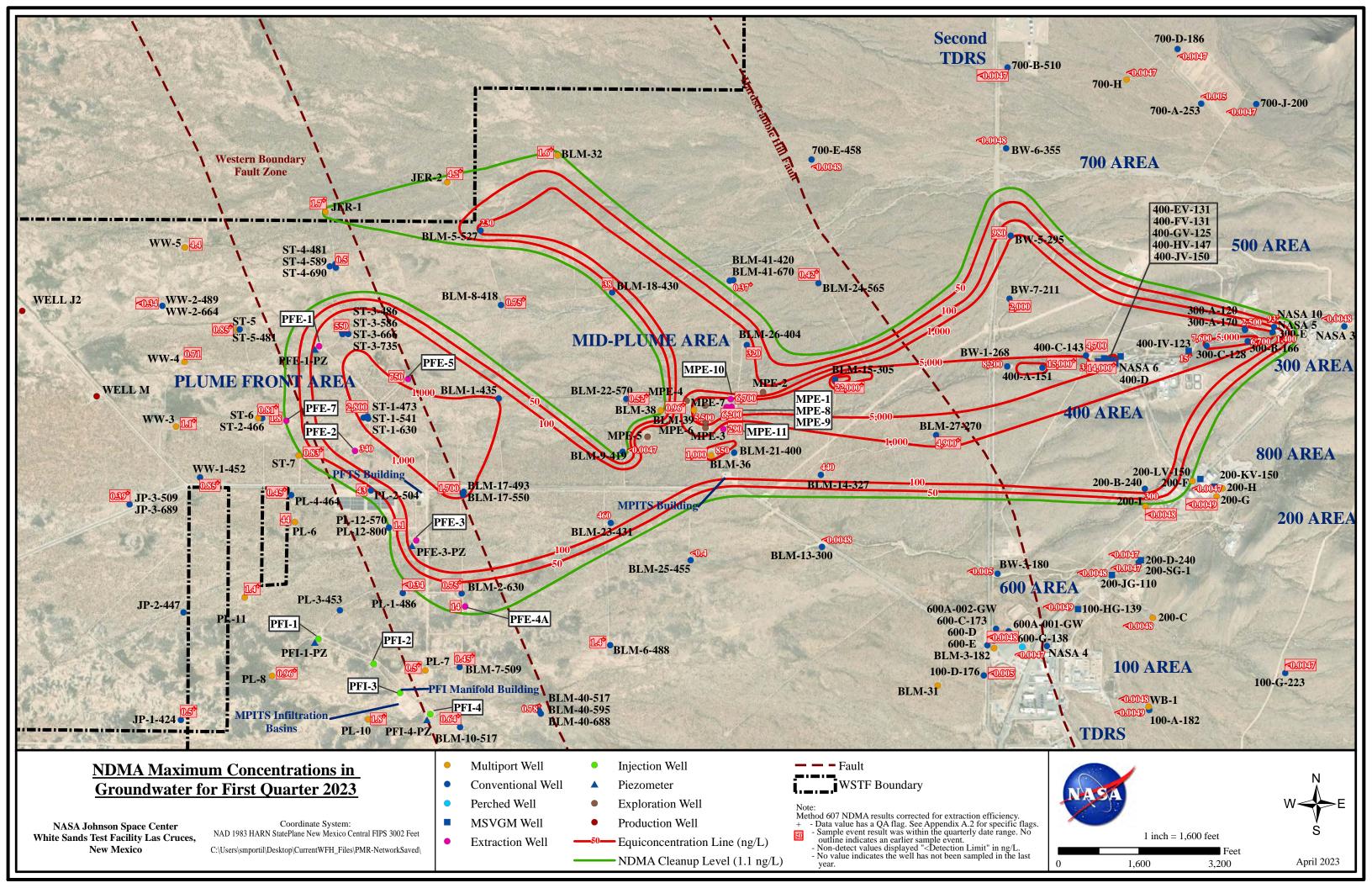

- NASA Johnson Space Center White Sands Test Facility. (2022b, March 8). Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022c, April 26). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 9. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022d, April 29). NASA White Sands Test Facility (WSTF) 700 Area Landfill Closure (SWMU 49) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022e, April 29). NASA WSTF Groundwater Monitoring Plan Update for 2022. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022f, April 29). NASA WSTF Work Plan for Abandonment of NASA WSTF NASA 9 and Replacement with Monitoring Well 400-001-GW. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022g, June 29). 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022h, July 29). NASA WSTF Remediation System Monitoring Plan Annual Update for 2022. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022i, August 25). NASA White Sands Test Facility (WSTF) 500 Area Former Oxidizer Burner (FOB) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022j, September 14). Response to Disapproval of NASA WSTF 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022k, November 15). Response to Approval with Modifications of NASA WSTF Groundwater Monitoring Plan Update for 2022. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022l, December 8). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022m, December 8). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022n, December 20). Abbreviated Drilling Work Plan in Response to the NMED Approval with Modification of the Report on Tracer Testing in the WSTF 200/600 Areas and Mid-plume Constriction Area. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023a, January 18). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report Response to Disapproval. Las Cruces, NM.

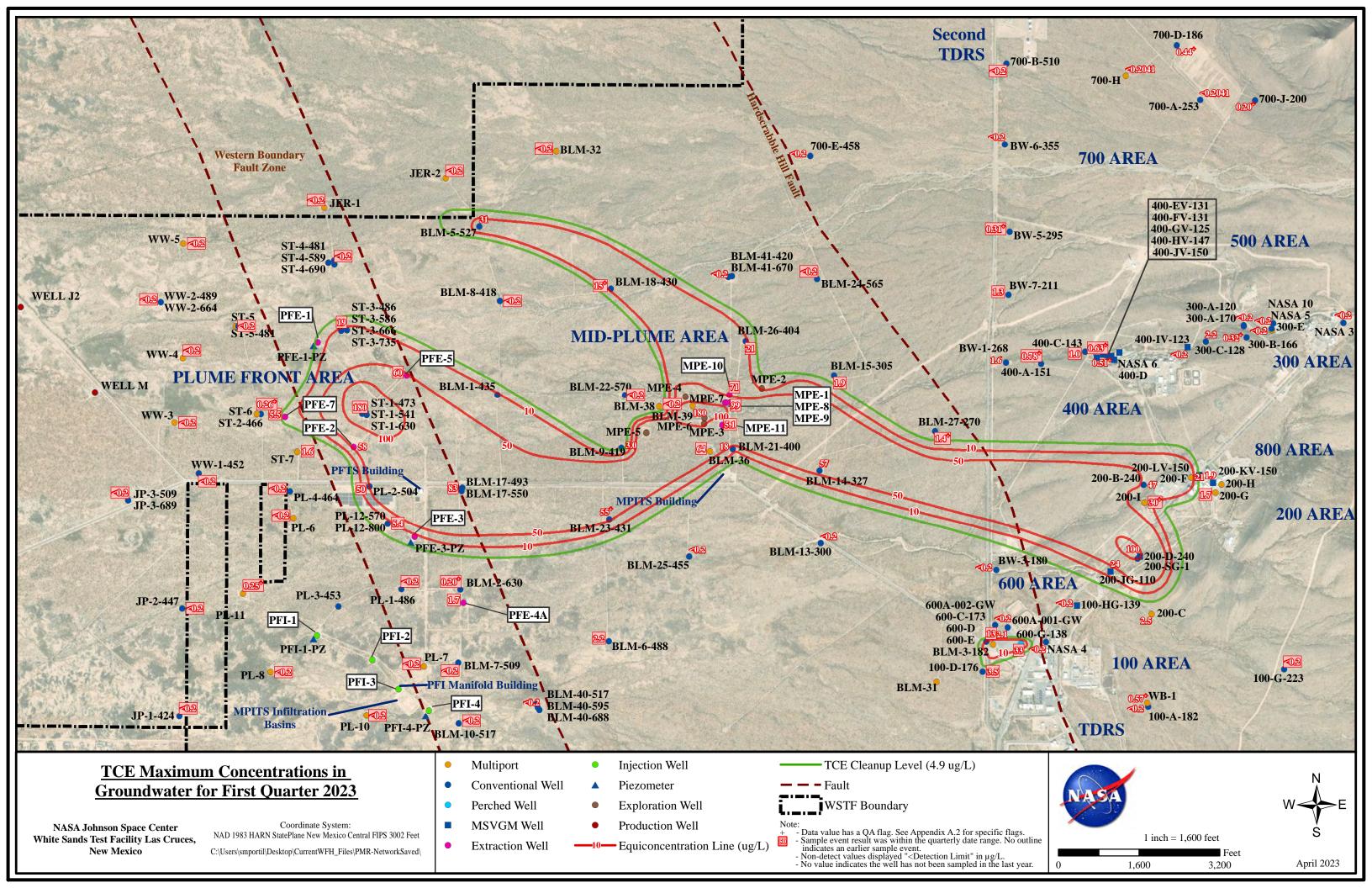
- NASA Johnson Space Center White Sands Test Facility. (2023b, January 18). Request for Extension of Time for NASA White Sands Test Facility (WSTF) Second Tracking and Data Relay Satellite Ground Terminal (STGT) Wastewater Lagoons Closure (Area of Concern [AOC] 51) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023c, January 26). Response to Approval with Modification of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023d, January 27). Approval with Modifications Revised Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report; NMED Comment 1.b. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023e, March 8). Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023f, March 8). Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023g, March 14). *Abandonment Report for NASA Well BLM-28*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023h, March 21). *Reconfiguration Report for NASA Well BW-4*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023i, March 21). *Reconfiguration Report for NASA Wells 200-SG-2 and 200-SG-3*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023j, March 30). Abandonment Report for NASA Wells 400-C-118, 400-KV-142, 400-LV-125, BLM-2-482, and NASA 8. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2009, November 3). *Hazardous Waste Permit No. NM8800019434* (modified December 2019). Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013, March 1). Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area. Santa Fe, NM.
- NMED Ground Water Quality Bureau. (2017, July 14). *Discharge Permit Renewal and Modification, DP-1255, NASA White Sands Testing Facility.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021a, November 15). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, December 20). *Approval 500 Area Newly Identified SWMU Release Assessment Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022a, April 5). *Approval With Modification Report on Tracer Testing in the 200/600 Areas and Mid-Plume Constriction Area*. Santa Fe, NM.

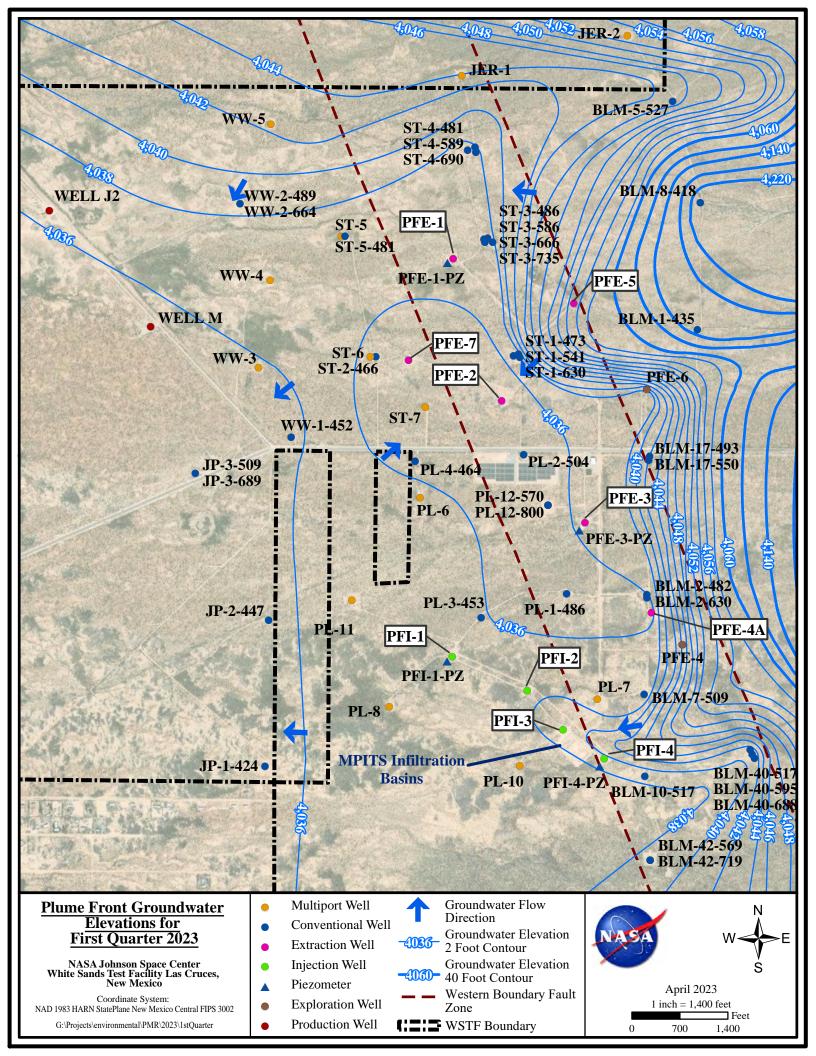

- NMED Hazardous Waste Bureau. (2022b, June 6). Disapproval 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022c, June 16). Disapproval 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022d, July 5). Disapproval 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022e, July 25). *Disapproval STGT Wastewater Lagoons Closure* (AOC 51) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022f, August 8). Approval with Modification Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022g, September 20). Disapproval 200 and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022h, October 31). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022i, October 31). Approval Work Plan for Abandonment of NASA WSTF Well PL-6 and Replacement with Monitoring Well 600C-002-GW. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022j, November 16). Approval with Modifications Revised First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022k, November 16). Approval with Modifications Revised Small Arms Firing Ranges (SWMU 29-31) Remedy Completion Report and Risk Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023, February 10). Approval 700 Area Closure (SWMU 49) Phase I Investigation Report. Santa Fe, NM.USGS. (1994, September). Users Guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. U.S. Geological Survey Open File Report 94-464. Reston, VA.

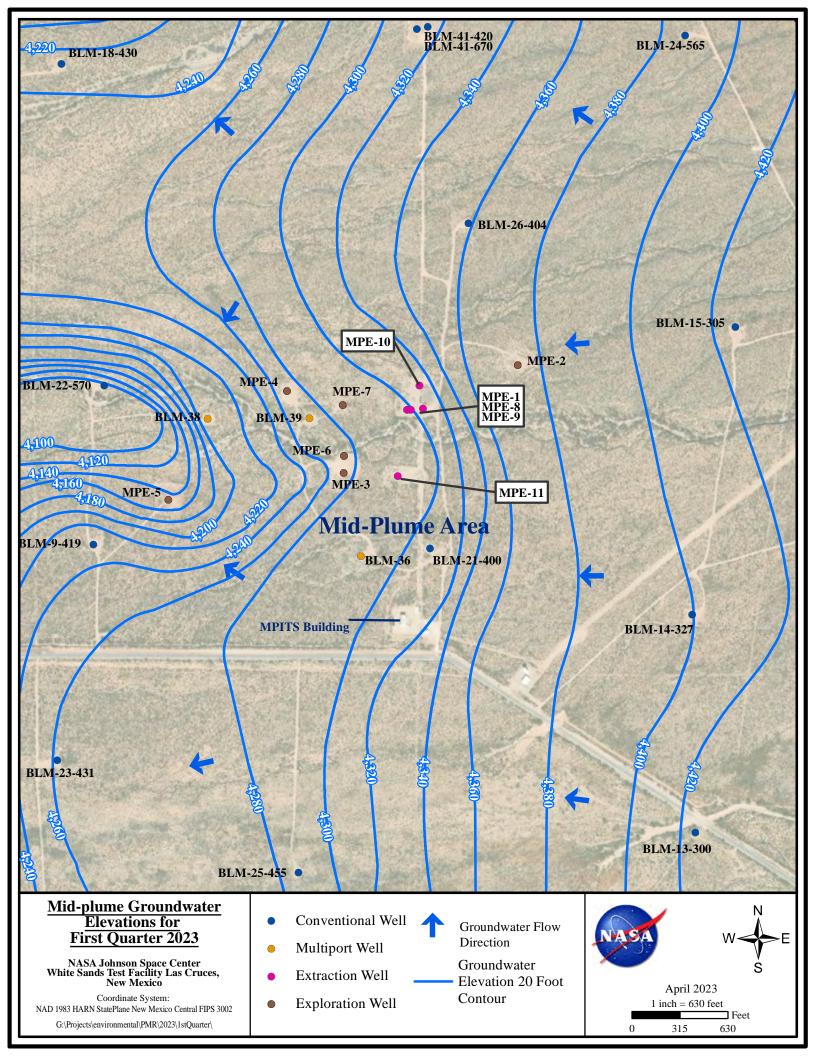
Figures


(SEE NEXT PAGE)


(SEE NEXT PAGE)


Figure 4.1	Groundwater Elevations and Generalized Flow Directions for the Reporting Period
	(SEE NEXT PAGE)


Figure 4.2	Site-Wide N-Nitrosodimethylamine (NDMA) Concentrations for the Reporting Period
	(SEE NEXT PAGE)
	(,



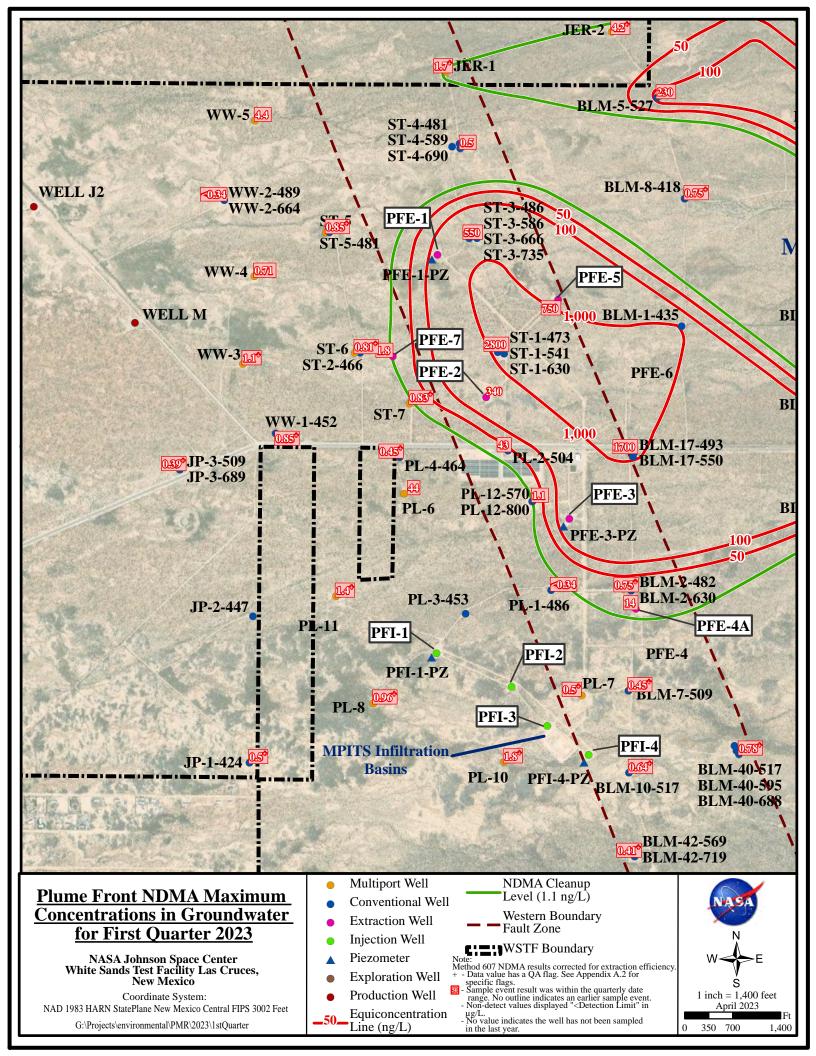
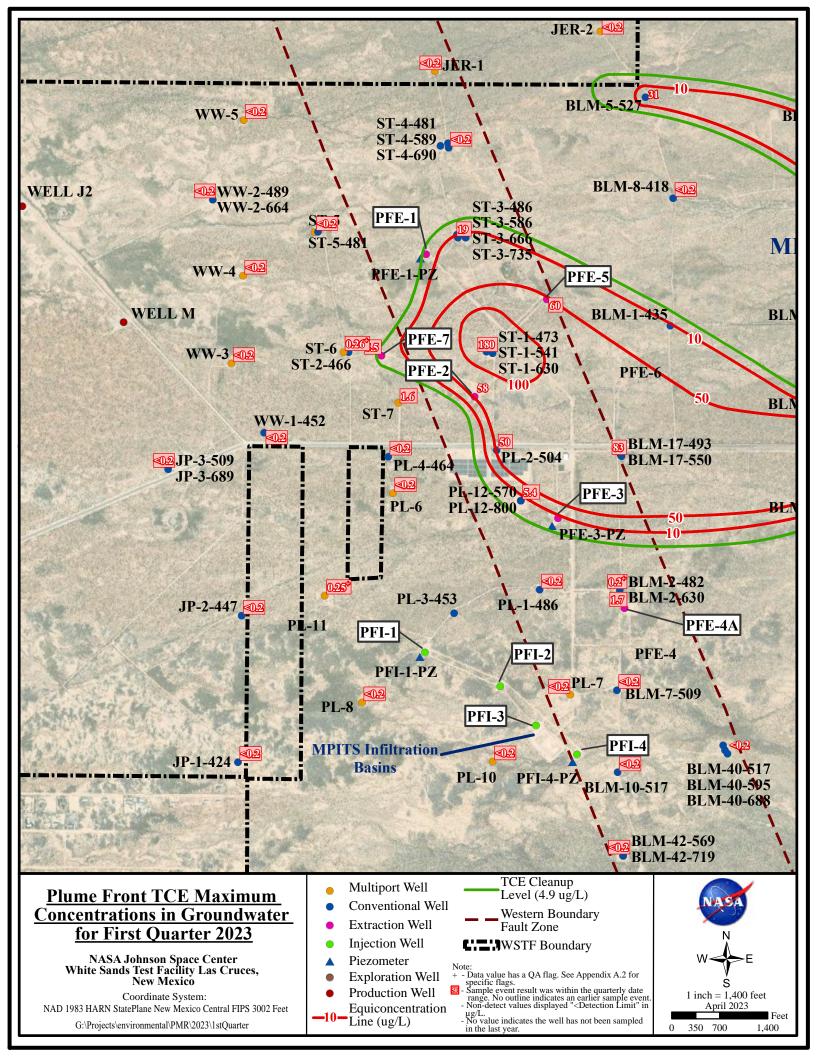


Figure 6.1	Plume Front Groundwater Elevations for the Reporting Period
I Iguit VII	Tume Front Ground futer Electricions for the Reporting Ferrous
	(SEE NEXT PAGE)
	(SEETIERT TROE)



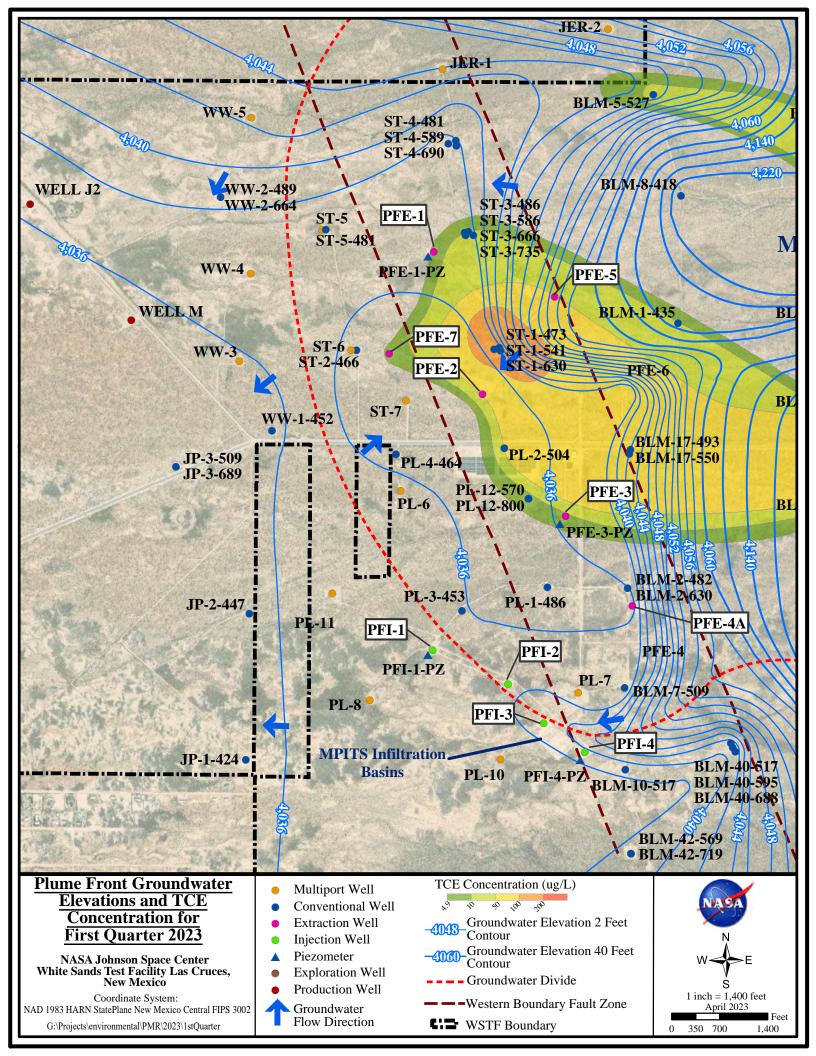

Figure 6.3	NDMA Concentrations at the Plume Front for the Reporting Period
	(SEE NEXT PAGE)

Figure 6.4	TCE Concentrations at the Plume Front for the Reporting Period		
	(SEE NEXT PAGE)		

Figure 6.5	Plume Front Groundwater Elevations and Trichloroethene Concentrations for the Reporting Period
	(SEE NEXT PAGE)

Tables

Table 3.1 DP-1255 Discharge Standards and Groundwater Cleanup Levels for WSTF COC

Contaminant	Chemical Abstract Number	DP-1255 Standard (μg/L)	Cleanup Level (μg/L)		
Carcinogens					
NDMA	62-75-9	0.0049	0.0011^{1}		
TCE	79-01-6	2.59	4.9 ¹		
PCE	127-18-4	40.3	5.0^{2}		
Chloroform	67-66-3	2.29	2.2^{1}		

Notes:

Cleanup Level based on EPA RSL equivalent to the most conservative value equivalent to 1E-05 risk for carcinogens or H=1 for non-carcinogens as updated in the 2022 GMP update (NASA, 2022e).

Cleanup Level based on Maximum Contaminant Levels found in 40 Code of Federal Regulations Part 141: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=a4752225928ed82c597f05b633d21806&mc=true&n=pt40.25.141&r=PART&ty=HTML

Table 3.2 Accepted New Detections for This Reporting Period

No accepted new detections this reporting period.

Table 3.3 Unconfirmed New Detections – Resolution Pending

Well ID CAS Number Analyte Scheduled Resample Date 100-HG-139 67-64-1 Acetone 03/14/23 ST-6-678 67-64-1 Acetone 03/14/23 700-H-535 14797-73-0 Perchlorate 03/20/23 PL-10-484 123-91-1 1,4-Dioxane 04/04/23 PL-10-484 7440-02-0 Nickel, Total 04/05/23 BLM-40-595 14797-73-0 Perchlorate 04/12/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-949 7440-36-0 Antimony, Total	Table 3.3 Unconfirmed New Detections – Resolution Pending					
ST-6-678 67-64-1 Acetone 03/14/23 700-H-535 14797-73-0 Perchlorate 03/20/23 PL-10-484 123-91-1 1,4-Dioxane 04/04/23 PL-10-484 7440-02-0 Nickel, Total 04/05/23 BLM-40-595 14797-73-0 Perchlorate 04/19/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-19 7440-36-0 Antimony, Total 05/23/23 WW-4-19 7440-42-8 Boron, Total 05/23/23 WW-4-19 7439-89-6 Iron, Total 05/23/23 WW-4-19 7439-89-6 Iron, Total 05/23/23 WW-4-19 7439-89-6 Iron, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 06/13/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 <th>Well ID</th> <th>CAS Number</th> <th>Analyte</th> <th></th>	Well ID	CAS Number	Analyte			
700-H-535 14797-73-0 Perchlorate 03/20/23 PL-10-484 123-91-1 1,4-Dioxane 04/04/23 PL-10-484 7440-02-0 Nickel, Total 04/05/23 BLM-40-595 14797-73-0 Perchlorate 04/12/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 05/23/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-19 7439-89-6 Iron, Total 05/23/23 WW-4-19 7439-89-6 Iron, Total 05/23/23 WW-4-19 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-989 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/1	100-HG-139	67-64-1	Acetone	03/14/23		
PL-10-484 123-91-1 1,4-Dioxane 04/04/23 PL-10-484 7440-02-0 Nickel, Total 04/05/23 BLM-40-595 14797-73-0 Perchlorate 04/12/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 05/23/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-949 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 TO-E-458 314-40-9 Bromacil 0	ST-6-678	67-64-1	Acetone	03/14/23		
PL-10-484 7440-02-0 Nickel, Total 04/05/23 BLM-40-595 14797-73-0 Perchlorate 04/12/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-98 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 06/13/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 BLM-32-631 314-40-9 Bromacil	700-H-535	14797-73-0	Perchlorate	03/20/23		
BLM-40-595 14797-73-0 Perchlorate 04/12/23 200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 06/13/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 BLM-32-631 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil	PL-10-484	123-91-1	1,4-Dioxane	04/04/23		
200-B-240 7429-90-5 Aluminum, Total 04/19/23 200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7440-42-8 Boron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/16	PL-10-484	7440-02-0	Nickel, Total	04/05/23		
200-B-240 7439-89-6 Iron, Total 04/19/23 WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7440-42-8 Boron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 08/01/23 BLM-32-571 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 09/13/23	BLM-40-595	14797-73-0	Perchlorate	04/12/23		
WW-4-419 7440-36-0 Antimony, Total 05/23/23 WW-4-419 7440-42-8 Boron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 08/01/23 BLM-32-571 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23	200-B-240	7429-90-5	Aluminum, Total	04/19/23		
WW-4-419 7440-42-8 Boron, Total 05/23/23 WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 10/03/23 </td <td>200-B-240</td> <td>7439-89-6</td> <td>Iron, Total</td> <td>04/19/23</td>	200-B-240	7439-89-6	Iron, Total	04/19/23		
WW-4-419 7439-89-6 Iron, Total 05/23/23 WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/16/23 ST-6-824 7440-50-8 Copper, Total 09/15/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 <td>WW-4-419</td> <td>7440-36-0</td> <td>Antimony, Total</td> <td>05/23/23</td>	WW-4-419	7440-36-0	Antimony, Total	05/23/23		
WW-4-419 7439-96-5 Manganese, Total 05/23/23 WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/02/23 BLM-32-632 314-40-9 Bromacil 08/02/23 WB-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/16/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23	WW-4-419	7440-42-8	Boron, Total	05/23/23		
WW-4-589 7440-36-0 Antimony, Total 05/23/23 WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 WB-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/13/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-02-0 Nickel, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23	WW-4-419	7439-89-6	Iron, Total	05/23/23		
WW-4-589 7440-42-8 Boron, Total 05/23/23 WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/16/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/05/23 BLM-40-688 7440-02-0 Nickel, Total 10/06/23 <	WW-4-419	7439-96-5	Manganese, Total	05/23/23		
WW-4-948 7440-36-0 Antimony, Total 05/24/23 100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-02-0 Nickel, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23 <td>WW-4-589</td> <td>7440-36-0</td> <td>Antimony, Total</td> <td>05/23/23</td>	WW-4-589	7440-36-0	Antimony, Total	05/23/23		
100-E-261 7429-90-5 Aluminum, Total 06/13/23 100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/16/23 WB-5-345 314-40-9 Bromacil 09/16/23 ST-6-824 7440-9 Bromacil 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	WW-4-589	7440-42-8	Boron, Total	05/23/23		
100-E-261 7439-89-6 Iron, Total 06/13/23 ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 10/03/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	WW-4-948	7440-36-0	Antimony, Total	05/24/23		
ST-3-735 7440-02-0 Nickel, Total 06/21/23 700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/16/23 WB-5-345 314-40-9 Bromacil 09/06/23 ST-6-824 7440-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	100-E-261	7429-90-5	Aluminum, Total	06/13/23		
700-E-458 314-40-9 Bromacil 07/11/23 BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 10/03/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/05/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	100-E-261	7439-89-6	Iron, Total	06/13/23		
BLM-32-571 314-40-9 Bromacil 08/01/23 BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	ST-3-735	7440-02-0	Nickel, Total	06/21/23		
BLM-32-632 314-40-9 Bromacil 08/02/23 ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	700-E-458	314-40-9	Bromacil	07/11/23		
ST-5-815 314-40-9 Bromacil 08/02/23 WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 ST-7-453 7440-02-0 Nickel, Total 09/15/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	BLM-32-571	314-40-9	Bromacil	08/01/23		
WB-5-345 314-40-9 Bromacil 08/16/23 PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	BLM-32-632	314-40-9	Bromacil	08/02/23		
PL-11-470 314-40-9 Bromacil 09/06/23 ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	ST-5-815	314-40-9	Bromacil	08/02/23		
ST-6-824 7440-50-8 Copper, Total 09/13/23 300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	WB-5-345	314-40-9	Bromacil	08/16/23		
300-D-153 7439-96-5 Manganese, Total 09/15/23 300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	PL-11-470	314-40-9	Bromacil	09/06/23		
300-D-153 7440-02-0 Nickel, Total 09/15/23 ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	ST-6-824	7440-50-8	Copper, Total	09/13/23		
ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	300-D-153	7439-96-5	Manganese, Total	09/15/23		
ST-7-453 7440-66-6 Zinc, Total 10/03/23 ST-7-544 7440-47-3 Chromium, Total 10/03/23 ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	300-D-153	7440-02-0	Nickel, Total	09/15/23		
ST-7-970 7440-02-0 Nickel, Total 10/04/23 BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	ST-7-453	7440-66-6		10/03/23		
BLM-40-688 7440-02-0 Nickel, Total 10/05/23 PL-10-484 314-40-9 Bromacil 10/06/23	ST-7-544	7440-47-3	Chromium, Total	10/03/23		
PL-10-484 314-40-9 Bromacil 10/06/23	ST-7-970	7440-02-0	Nickel, Total	10/04/23		
	BLM-40-688	7440-02-0	Nickel, Total	10/05/23		
400-D-355 14797-73-0 Perchlorate 08/11/25	PL-10-484	314-40-9	Bromacil	10/06/23		
	400-D-355	14797-73-0	Perchlorate	08/11/25		

Table 3.4 Unconfirmed Detections Resolved This Reporting Period

Well ID	CAS Number	Analyte	Scheduled Resample Date	Resolution
400-C-143	7429-90-5	Aluminum, Total	11/17/22	Unconfirmed
700-B-510	314-40-9	Bromacil	12/9/22	Unconfirmed
BLM-42-709	4164-28-7	N-Nitrodimethylamine	12/13/22	Unconfirmed
PL-8-455	123-91-1	1,4-Dioxane	12/14/22	Unconfirmed
BLM-3-182	1746-01-6	2,3,7,8-TCDD	1/24/23	Unconfirmed

Table 4.1 Groundwater Monitoring Wells/Zones Analyzed for the Reporting Period

	Tuble III GI	
Well Name	Event Date	Well Group
100-D-176	11/14/22	100/600
100-F-358	01/24/23	Upgradient
100-G-223	01/24/23	Upgradient
200-G-175	12/07/22	200
200-G-220	12/05/22	200
200-G-340	12/05/22	200
200-G-420	12/01/22	200
200-G-495	12/01/22	200
200-I-185	11/10/22	200
200-I-300	11/10/22	200
200-I-375	11/10/22	200
200-I-490	11/09/22	200
200-I-675	11/09/22	200
200-I-795	11/08/22	200
300-F-175	01/25/23	Upgradient
400-A-151	01/17/23	300/400
400-C-143	11/17/22	300/400
600-G-138	01/25/23	100/600
700-B-510	12/13/22	N. Boundary
BLM-10-517	01/03/23	Plume Front
BLM-15-305	01/09/23	Mid-plume
BLM-17-493	11/03/22	In Plume
BLM-17-550	01/09/23	In Plume
BLM-18-430	01/17/23	Mid-plume
BLM-22-570	11/15/22	Mid-plume
BLM-24-565	11/02/22	N. Boundary
BLM-2-630	11/15/22	In Plume

Well Name	Event Date	Well Group
BLM-26-404	11/07/22	Mid-plume
BLM-27-270	12/12/22	Mid-plume
BLM-3-182	11/01/22	100/600
BLM-32-543	11/07/22	N. Boundary
BLM-32-571	11/07/22	N. Boundary
BLM-32-632	11/07/22	N. Boundary
BLM-36-350	11/04/22	Mid-plume
BLM-36-610	11/03/22	Mid-plume
BLM-36-800	11/04/22	Mid-plume
BLM-36-860	11/03/22	Mid-plume
BLM-38-480	11/07/22	Mid-plume
BLM-38-620	11/07/22	Mid-plume
BLM-42-569	12/13/22	Sentinel
BLM-42-709	12/13/22	Sentinel
BLM-6-488	01/05/23	S. Boundary
BLM-7-509	12/05/22	Plume Front
BLM-8-418	11/01/22	Mid-plume
BW-5-295	11/07/22	300/400
BW-7-211	12/13/22	300/400
JER-1-483	01/11/23	N. Boundary
JER-1-563	01/11/23	N. Boundary
JER-1-683	01/12/23	N. Boundary
JER-2-504	01/23/23	N. Boundary
JER-2-584	01/23/23	N. Boundary
JER-2-684	01/24/23	N. Boundary
JP-1-424	01/18/23	Sentinel
JP-2-447	01/18/23	Sentinel

e Keporung i eriou				
Well Name	Event Date	Well Group		
JP-3-509	01/23/23	Sentinel		
JP-3-689	01/23/23	Sentinel		
NASA 6	11/16/22	300/400		
PL-10-484	01/03/23	Sentinel		
PL-10-592	01/04/23	Sentinel		
PL-11-470	12/05/22	Sentinel		
PL-11-530	12/05/22	Sentinel		
PL-11-710	12/06/22	Sentinel		
PL-11-820	12/06/22	Sentinel		
PL-11-980	12/06/22	Sentinel		
PL-12-570	11/10/22	In Plume		
PL-12-800	11/10/22	In Plume		
PL-1-486	01/24/23	In Plume		
PL-2-504	12/12/22	In Plume		
PL-4-464	12/12/22	Plume Front		
PL-6-1195	01/05/23	Plume Front		
PL-6-1335	01/10/23	Plume Front		
PL-6-545	01/23/23	Plume Front		
PL-6-725	01/17/23	Plume Front		
PL-6-915	01/11/23	Plume Front		
PL-7-560	11/08/22	Plume Front		
PL-8-455	12/14/22	Sentinel		
PL-8-605	12/14/22	Sentinel		
ST-1-473	11/09/22	In Plume		
ST-1-541	11/16/22	In Plume		
ST-1-630	11/16/22	In Plume		
ST-3-486	12/07/22	In Plume		

Well Name	Event Date	Well Group
ST-3-586	12/15/22	In Plume
ST-3-666	12/08/22	In Plume
ST-3-735	12/08/22	In Plume
ST-4-481	12/01/22	Plume Front
ST-4-589	11/16/22	Plume Front
ST-4-690	12/01/22	Plume Front
ST-5-485	11/01/22	Plume Front
ST-5-655	11/01/22	Plume Front
ST-6-528	12/07/22	Plume Front
ST-6-568	12/07/22	Plume Front

Well Name	Event Date	Well Group
ST-6-678	12/08/22	Plume Front
ST-6-824	12/08/22	Plume Front
ST-6-970	12/08/22	Plume Front
ST-7-453	01/09/23	Plume Front
ST-7-544	01/09/23	Plume Front
ST-7-779	01/10/23	Plume Front
ST-7-970	01/10/23	Plume Front
WW-1-452	12/05/22	Plume Front
WW-2-489	12/06/22	Sentinel
WW-2-664	12/06/22	Sentinel

Well Name	Event Date	Well Group	
WW-3-469	12/13/22	Sentinel	
WW-3-569	12/12/22	Sentinel	
WW-4-419	11/08/22	Sentinel	
WW-4-589	11/08/22	Sentinel	
WW-4-848	11/09/22	Sentinel	
WW-4-948	11/09/22	Sentinel	
WW-5-459	01/18/23	Sentinel	
WW-5-579	01/18/23	Sentinel	
WW-5-809	01/19/23	Sentinel	
WW-5-909	01/19/23	Sentinel	

Plume Front				
Well Name	Event Date			
B650-EFF-1	11/10/22			
B650-EFF-1	12/09/22			
B650-EFF-1	01/19/23			
B650-INF-1	11/10/22			
B650-INF-1	12/09/22			

Plume Front			
Well Name	Event Date		
B650-INF-1	01/19/23		
PFE-4A	01/26/23		
PFE-5	01/19/23		
PFE-7	01/26/23		

Mid-plume				
Well Name	Event Date			
B655-EFF-2	11/10/22			
B655-EFF-2	12/08/22			
B655-EFF-2	01/19/23			
B655-INF-2	11/10/22			
B655-INF-2	12/08/22			

Mid-plume			
Well Name	Event Date		
B655-INF-2	01/19/23		
MPE-1	11/14/22		
MPE-10	11/15/22		
MPE-11	11/15/22		
MPE-9	11/14/22		

Table 4.2 Groundwater Elevation Data

	1 abie		nawater Elevatio		1
Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
100-A-182	198	182	192	4668.68	12/19/22
100-C-365	391	365	386	4536.75	12/19/22
100-D-176	201	176	196	4568.06	12/19/22
100-E-261	277	261	271	4682.41	12/19/22
100-F-358	378	358	368	4713.14	12/19/22
100-G-223	238	223	233	4851.9	12/19/22
200-B-240	255	240	250	4651.93	12/19/22
200-C(170) ⁱ	290	N/A	N/A	4681.731	12/19/22
200-D-240	280	240	250	4664.62	12/19/22
200-F(370) ⁱ	590	N/A	N/A	4729.832	12/19/22
200-G(220)i	515	N/A	N/A	4727.799	12/19/22
200-I(300) ⁱ	815	N/A	N/A	4657.395	12/19/22
200-JG-110	150	110	130	4656.96	12/19/22
200-KV-150	175	150	170	4728.71	12/19/22
200-LV-150	175	150	170	4729.93	12/19/22
200-SG-1	138	123	138	4658.28	12/19/22
300-A-120	151	120	146	4788.88	12/19/22
300-B-166	181	165	176	4773.1	12/19/22
300-C-128	160	128	154	4743.16	12/19/22
300-D-153	179	153	174	4949.19	12/19/22
300-E(138) ⁱ	395	N/A	N/A	4812.711	12/19/22
300-F-175	195	175	185	5045.02	12/19/22
400-A-151	187	151	176	4637.96	12/19/22
400-D(275) ⁱ	380	N/A	N/A	4660.533	12/19/22
600-C-173	199	173	193	4568.65	12/19/22
600-E(280) ⁱ	690	N/A	N/A	4557.233	12/19/22
700-A-253	269	253	263	4730.68	12/19/22
700-B-510	550	510	531	4344.67	12/19/22
700-D-186	202	186	196	4712.87	12/19/22
700-E-458	484	458	479	4411.11	12/19/22
700-H(350) ⁱ	695	N/A	N/A	4630.665	12/19/22
700-J-200	230	200	220	4836.58	12/19/22
BLM-10-517	532	517	527	4038.35	12/19/22
BLM-13-300	316	300	310	4422.41	12/19/22
BLM-1-435	451	435	446	4146.24	12/19/22
BLM-14-327	343	327	337	4402.3	12/19/22
BLM-15-305	321	305	315	4423.77	12/19/22
BLM-17-493	519	493	513	4042.66	12/19/22

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
BLM-18-430	456	430	451	4224.93	12/19/22
BLM-21-400	413	400	410	4312.26	12/19/22
BLM-22-570	597	570	592	4095.78	12/19/22
BLM-23-431	447	431	441	4263.93	12/19/22
BLM-24-565	590	565	585	4385.46	12/19/22
BLM-25-455	470	455	465	4283.6	12/19/22
BLM-26-404	420	404	414	4358.71	12/19/22
BLM-27-270	286	270	280	4498.12	12/19/22
BLM-28 (Borehole) ⁱ	555	N/A	N/A	4257.41	12/19/22
BLM-36(XX)ii	905	604	614	4114.352	12/19/22
BLM-38(480) ⁱⁱ	641	475	485	4202.287	12/19/22
BLM-39(385)ii	595	379	389	4276.39	12/19/22
BLM-40-517	532	517	527	4041.67	12/19/22
BLM-41-420	435	420	430	4318.31	12/19/22
BLM-5-527	560	527	538	4044.81	12/19/22
BLM-6-488	503	488	498	4231.74	12/19/22
BLM-7-509	525	509	520	4036.73	12/19/22
BLM-8-418	434	418	428	4225.07	12/19/22
BLM-9-419	445	419	440	4228.26	12/19/22
BW-1-268	294	268	289	4610.59	12/19/22
BW-3-180	205	180	200	4567.47	12/19/22
BW-5-295	311	295	305	4582.2	12/19/22
BW-6-355	381	355	376	4573.86	12/19/22
BW-7-211	225	211	222	4609.95	12/19/22
JP-1-424	440	424	434	4034.34	12/19/22
JP-2-447	462	446	457	4035.38	12/19/22
MPE-2	600	400	580	4373.096	12/19/22
MPE-3	639	479	619	4274.05	12/19/22
MPE-4	639	499	619	4276.59	12/19/22
MPE-5	590	450	570	4143.14	12/19/22
MPE-6	603	383	602	4278.21	12/19/22
MPE-7	600	401	600	4236.01	12/19/22
NASA 10	135	110	130	4829.1	12/19/22
NASA 3	144	119	139	4889.2	12/19/22
NASA 4	171	146	166	4638	12/19/22
NASA 5	135	110	130	4816.3	12/19/22
NASA 6	153	128	148	4696.2	12/19/22
NASA 8	197	172	192	4569.58	12/19/22

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
PFE-1-PZ	609	588	598	4037.19	12/19/22
PFE-3-PZ	620	590	600	4036.71	12/19/22
PFE-4	877	397	876	4031.246	12/19/22
PFI-1-PZ	619	589	599	4036.17	12/19/22
PFI-4-PZ	600	398	600	4038.22	12/19/22
PL-10(484) ⁱⁱ	1000	479	489	4037.156	12/21/22
PL-1-486	502	486	496	4035.16	12/19/22
PL-3-453	469	453	464	4036.04	12/19/22
PL-4-464	480	464	474	4035.92	12/19/22
PL-6(545) ⁱⁱ	1860	540	550	4038.924	12/19/22
PL-7(480) ⁱⁱ	655	475	485	4036.999	12/19/22
ST-2-466	481	466	476	4035.76	12/19/22
ST-4-481	497	481	491	4037.93	12/19/22
ST-5-481	497	481	491	4037.17	12/21/22
WB-5(250)i	400	N/A	N/A	4666.967	12/19/22
WW-1-452	468	452	462	4035.72	12/19/22
WW-3(469) ⁱⁱ	1014	464	474	4035.349	12/19/22

- Depth to top and bottom of screen are indicated as not applicable (N/A) for multiport Westbay wells that are completed in an open borehole. The depth of the Westbay monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation were calculated from the formation pressure at the indicated port depth.
- The screen depths listed for retrofit multiport wells indicate the top and bottom of the screen in the outer casing of the well that corresponds to the measurement port used at that location. The depth of the monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation for Westbay multiport monitoring wells were calculated from the formation pressure at the indicated port depth. Depth to water and groundwater elevation for FLUTe multiport monitoring wells were calculated from pressure transducer readings collected on the measurement date.

Table 5.1 PFTS and MPITS Operational Status for the Reporting Period

	Plume I	Front Treatm	ent System	Mid-plume Treatment System				
Month	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)		
Nov-22	27 of 30	327	33.8	30 of 30	5.5	0.70		
Dec-22	21 of 31	289	25.5	22 of 31	6.3	0.66		
Jan-23	27 of 31	326	34.1	27 of 31	4.3	0.45		

Table 5.2 PFTS and MPITS System Shutdowns for the Reporting Period

1 abie	Table 5.2 PFTS and MPITS System Shutdowns for the Reporting Period								
Shutdown Date	Restart Date	Type of Shutdown	Description						
Plume Front T	Plume Front Treatment System Shutdowns								
10/17/22	11/2/22	Planned	NASA shut the system down to obtain updated static water level measurements needed for pending well repairs.						
11/4/22	11/4/22	Unplanned	The system shut down automatically because of a high air flow alarm in air stripper #2.						
11/4/22	11/7/22	Planned	NASA shut the system down to troubleshoot and repair a stuck valve at well PFI-2.						
12/1/22	12/7/22	Planned	NASA shut the system down to accommodate a planned outage of the off-site electrical power supply, perform scheduled maintenance of the UV reactor, and install a new air compressor.						
12/12/22	12/14/22	Planned	NASA shut the system down to repair a faulty lamp wiper in the UV reactor.						
12/18/22	12/19/22	Unplanned	The system shut down automatically because of a power surge that tripped a breaker in the UV reactor.						
12/24/22	12/27/22	Unplanned	The system shut down automatically because of a fault in the air compressor resulting in low air pressure.						
12/31/22	1/4/23	Unplanned	The system shut down automatically because of a fault in the air compressor resulting in low air pressure.						
1/1/23	1/4/23	Unplanned	The system automatically shut down due to a component fault within the air compressor.						
1/22/23	1/23/23	Unplanned	The system automatically shut down due to a false leak detection alarm.						
1/27/23	1/30/23	Unplanned	The system shut down automatically due to low influent flow.						
Mid-plume Int	terception and	Treatment System	m Shutdowns						
12/1/22	12/5/22	Planned	NASA shut the system down to accommodate a planned outage of the off-site electrical power supply.						
12/12/22	12/19/22	Planned	NASA shut the system down to install and test automated communications and reporting equipment.						
12/21/22	12/21/22	Planned	NASA shut the system down to perform additional testing and tuning of the automated communications and reporting equipment.						
1/11/23	1/12/23	Planned	The system was shut down because well MPE-1 was not operational, and the overall system flow rate was inadequate to maintain continuous operation.						
1/12/23	1/17/23	Planned	The system was shut down because well MPE-11 was not operational, and the overall system flow						

Shutdown Date	Restart Date	Type of Shutdown	Description
			rate was inadequate to maintain continuous operation.
1/22/232	1/23/23	Planned	The system was shut down because wells MPE-8 and MPE-11 were not operational, and the overall system flow rate was inadequate to maintain continuous operation
1/29/23	1/30/23	Planned	The system was shut down because well MPE-1 was not operational, and the overall system flow rate was inadequate to maintain continuous operation.

Table 5.3 PFTS Air Stripper and UV Reactor Performance for the Reporting Period

Table 3.5 1115 All Stripper and CV Reactor I crior mance for the Reporting I criod						
	Analyte	Unit	Design	Nov-22	Dec-22	Jan-23
A . G	TCE	μg/L	130	3.4	3.5	3.2
Air Stripper Influent	PCE	μg/L	0.66	< 0.21 ²	$< 0.21^2$	< 0.21 ²
Concentrations	Freon 11	μg/L	860	2.0	2.2	1.8
Concenti ations	Chloroform	μg/L	NA ¹	< 0.242	$< 0.51^2$	$< 0.51^2$
A : C4:	TCE	μg/L	5.0	< 0.202	$< 0.20^2$	$< 0.20^2$
Air Stripper Effluent	PCE	μg/L	5.0	< 0.212	< 0.212	< 0.21 ²
Concentrations	Freon 11	μg/L	100	< 0.24 ²	$< 0.24^2$	$< 0.24^2$
Concentrations	Chloroform	μg/L	NA ¹	< 0.24 ²	$< 0.51^2$	$< 0.51^2$
UV Reactor Influent Concentrations	NDMA ³	ng/L	2,000	16ª	17 ^b J	17° J
UV Reactor Effluent Concentrations	NDMA ⁴	ng/L	< 2.0	<0.35 ²	0.4 ² J RB FB	$0.44^2 \mathrm{JFB}$

FB - The analyte was detected in the field blank.

J - The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS – Not sampled during the reporting period.

RB - The analyte was detected in the method blank.

TB - The analyte was detected in the trip blank.

¹ Chloroform was not included as an analyte in the system design criteria; not applicable (NA).

² Analytical result for the constituent was below the method detection limit (MDL; provided).

³ Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 45%^a, 47%^b, 52%^c

⁴ Analytical results from the low-level NDMA analytical method. NDMA was not detected by modified Method 607.

Table 5.4 PFTS Extraction and Injection Well Flow Rates for the Reporting Period

Table 3.4	Well Name	Design Flow Rate (gpm)	Operational Average Flow Rate ¹ (gpm)	Overall Average Flow Rate ² (gpm)	Operational Percent of Well Design	Overall Percent of Well Design
	PFE-1	288	N/O	N/O	N/O	N/O
	PFE-2	224	N/O	N/O	N/O	N/O
Extraction Wells	PFE-3	213	N/O	N/O	N/O	N/O
(gpm)	PFE-4A	200	176	1493	88%	75%
	PFE-5	5.5	3.8	3.2	69%	58%
	PFE-7	125	156	133	125%	106%
	PFI-1	269	N/O	N/O	N/O	N/O
Injection Wells	PFI-2	269	90	77	34%	29%
(gpm)	PFI-3	344	211	179	61%	52%
	PFI-4	194	23	20	12%	10%

¹ Operational averages are averages based on when a well was in operating status. Backwashing and downtime events are not included.

N/O - Not operating during reporting period.

² Overall averages are averages based on the overall status of the well and include backwashing and downtime events.

Table 5.5 Comparison of Specific Capacities for the Plume Front Wells

Well Name	Specific Capacity at Installation	Specific Capacity Apr-22	Specific Capacity Jul-22 ²	Specific Capacity Oct-22	Specific Capacity Jan-23
PFE-1	8.3	NA ¹	NA ¹	NA ¹	NA ¹
PFE-2	5.7	6.0	5.8	NA ¹	NA ¹
PFE-3	19.4	NA ¹	NA ¹	NA ¹	NA ¹
PFE-4A	3.1	3.9	2.1	2.2	1.7
PFE-5	0.14	< 0.1	< 0.1	< 0.1	<0.1
PFE-7	6	5.9	5.7	5.5	5.4
Well Name	Specific Capacity at Installation (Ideal Range)	Specific Capacity Apr-22	Specific Capacity Jul-22 ²	Specific Capacity Oct-22	Specific Capacity Jan-23
PFI-1	2.8–5	NA ¹	NA ¹	NA ¹	NA ¹
PFI-2	2.8–7	1.7	2.1	1.9	1.8
PFI-3	2–4	1.9	2.2	2.0	1.9
PFI-4	2.3–3.5	1.4	1.7	NA ³	NA ³

Notes: Specific capacities are used to measure well performances and have units of gallons per minute per foot of drawdown.

NA¹ – Not Applicable due to well being inoperative during reporting period.

² – Measurements from June 2022 were used because not all wells experienced a drawdown and recovery cycle in July 2022.

NA³ – Not Applicable due to pressure transducer being inoperative during reporting period.

Table 5.6 Plume Front Mass Removal¹

Date	TCE (kg)	Freon 11 (kg)	Chloroform(g)	PCE (g)	NDMA (g)
Feb-22	1.8	1.4	ND	59	10
Mar-22	2.3	1.5	ND	63	14
Apr-22	1.2	1.2	ND	33	8
May-22	1.6	1.1	ND	47	8
Jun-22	1.3	0.74	ND	41	8
Jul-22	1.8	1.4	ND	45	12
Aug-22	0.2	< 0.1	ND	ND	0.22
Sep-22	0.1	< 0.1	ND	ND	0.83
Oct-22	< 0.1	< 0.1	ND	ND	0.37
Nov-22	0.1	< 0.1	ND	ND	0.45
Dec-22	0.1	<0.1	ND	ND	0.38
Jan-23	0.1	< 0.1	ND	ND	0.53
Total ²	11	7	ND	288	63

- Mass removed calculated as: (Influent concentration - Effluent concentration) * volume of water extracted
- 2) Total mass removed during the period covered by this table.

Table 5.7 MPITS Air Stripper and UV Reactor Performance for the Reporting Period

Table 5.7	Analyte	Unit	Design Parameter	Nov-22	Dec-22	Jan-23
Air Stripper	TCE	μg/L	140	51	61	79
Influent	PCE	μg/L	6.4	2.4	3.0	4
Concentrations	Freon 11	μg/L	240	79	120	160
(MPE Wells)	Chloroform	μg/L	NA ¹	< 0.242	< 0.512	< 0.512
Air Stripper	TCE	μg/L	140	NS	NS	33
Influent	PCE	μg/L	6.4	NS	NS	< 0.212
Concentrations	Freon 11	μg/L	240	NS	NS	0.48 J
(Well 600-G-138)	Chloroform	μg/L	NA ¹	NS	NS	< 0.512
	TCE	μg/L	1.0	< 0.202	< 0.202	< 0.202
Air Stripper Effluent	PCE	μg/L	1.0	< 0.212	< 0.212	< 0.212
Concentrations	Freon 11	μg/L	50	< 0.242	< 0.242	< 0.242
	Chloroform	μg/L	NA ¹	$< 0.24^2$	< 0.512	$< 0.51^2$
UV Reactor Influent Concentrations (MPE Wells)	NDMA ³	ng/L	25,500	4,800ª	4,100 ^b	5,800°
UV Reactor Influent Concentrations (Well 600-G-138)	NDMA	ng/L	25,500	NS	NS	NS
UV Reactor Effluent Concentrations ⁴	NDMA ⁴	ng/L	< 2.0	<0.35 ²	0.56 RB	<0.36 ²

^{* =} For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (179%) in the laboratory fortified blank (LFB21A28CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.

FB = The analyte was detected in the field blank.

J = The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS = Not sampled during the reporting period. Well 600-G-138 is sampled annually for NDMA in accordance with the GMP (NASA, 2022e). Analytical data are provided in this table when available.

RB = The analyte was detected in the method blank.

¹ Chloroform was not included in the design analyte list; not applicable (NA).

² Analytical result for the constituent was below the MDL (provided).

Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 45% 47%, 52% c.

⁴ Analytical results from low-level analytical method and was below the MDL (provided). Results for Method 607 were ND.

Table 5.8 Mid-plume Mass Removal¹

Date	TCE (g)	F11 (g)	Chloroform (g)	PCE (g)	NDMA (g)
Feb-22	54	114	ND	2.4	4.5
Mar-22	69	137	ND	3.0	5.9
Apr-22	52	112	ND	2.3	4.3
May-22	53	122	ND	2.1	4.0
Jun-22	65	147	ND	2.6	5.0
Jul-22	52	117	ND	2.1	4.0
Aug-22	62	94	ND	2.5	5.8
Sep-22	49	75	ND	2.0	4.6
Oct-22	43	67	ND	1.7	4.1
Nov-22	42	69	ND	2.0	3.4
Dec-22	42	70	ND	1.9	3.4
Jan-23	35	59	ND	1.6	2.9
Total ²	618	1,183	ND	26	52

¹⁾ Mass calculation: volume of water extracted at each well * (contaminant concentration at each well – MPITS effluent concentration)

²⁾ Total mass removed during the period covered by this table.

Table 5.9 Groundwater Treatment System Operation Costs (\$ / 1,000 gals)

Date	Gallons ¹ Treated	ECO Labor + Materials	TEST Labor + Materials	L+M cost per 1,000 gal	Energy Cost	Energy Cost per 1,000 gal	Total Cost	Total Cost per 1,000 gal treated
Feb-22	20,708,676	\$61,075	\$52,677	\$5.49	\$16,983	\$0.82	\$130,735	\$6.31
Mar-22	22,879,625	\$73,291	\$53,157	\$5.53	\$20,776	\$0.91	\$147,224	\$6.43
Apr-22	19,075,871	\$61,075	\$80,426	\$7.42	\$16,400	\$0.86	\$157,901	\$8.28
May-22	11,619,980	\$101,792	\$61,948	\$14.09	\$12,065	\$1.04	\$175,805	\$15.13
Jun-22	24,221,372	\$62,581	\$47,477	\$4.54	\$27,954	\$1.15	\$138,012	\$5.70
Jul-22	20,518,772	\$104,302	\$76,937	\$8.83	\$26,2732	\$1.28	\$207,512	\$10.11
Aug-22	12,971,249	\$104,302	\$50,643	\$11.95	\$31,3042	\$2.41	\$186,249	\$14.36
Sep-22	13,792,290	\$104,302	\$57,264	\$11.71	\$23,0332	\$1.67	\$184,599	\$13.38
Oct-22	14,801,002	\$104,302	\$76,583	\$12.22	\$20,858	\$1.41	\$201,743	\$13.63
Nov-22	5,545,400	\$83,442	\$39,425	\$22.16	\$8,386	\$1.51	\$131,253	\$23.67
Dec-22	8,808,207	\$62,581	\$98,735	\$18.31	\$12,273	\$1.39	\$173,590	\$19.71
Jan-23	11,243,725	\$104,302	\$68,165	\$15.34	\$9,539	\$0.85	\$182,006	\$16.19
12-Month Total	186,186,169	\$1,027,348	\$763,437	\$9.62	\$229,880	\$1.23	\$2,016,629	\$10.83

Gallons treated reflects amount of water extracted during power reporting period.

Includes Peak Demand Rates.

Table 7.1 Status of Wells with Sampling Issues

Well	Date of Discovery	Description Description	Scheduled for Sampling this Qtr? / Next Sampling Date per GMP	Description of Future Plan or Resolution							
	New Occurrences this Quarter										
600A-001-GW	Nov-22	Sampling equipment failed and was replaced. NASA subsequently determined that additional development is required.	No / TBD	NASA is currently working to secure the services of an off-site contractor to perform additional well development.							
600A-002-GW	Nov-22	Sampling equipment failed and was replaced. NASA subsequently determined that additional development is required.	No / TBD	NASA is currently working to secure the services of an off-site contractor to perform additional well development.							
		Unresol	ved Issues								
PL-7-480	Aug-22	There was insufficient water in the Westbay zone for sample collection.	Yes / Feb-23	Monitor water level annually to determine if it recovers adequately for sampling.							
BLM-1-435	Apr-20	Sampling failed, as there was not enough water in the screen to fill the sample bottles. Failed again, in April 2021 and October 2021.	NA	The well does not provide sufficient water for representative sampling. NASA continued planning to abandon the well as described in the NMED-approved 2022 GMP update (NASA, 2022e).							
PL-3-453	Dec-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	NA	The well does not provide sufficient water for representative sampling. NASA continued planning to abandon the well as described in the NMED-approved 2022 GMP update (NASA, 2022e).							

Well	Date of Discovery	Description	Scheduled for Sampling this Qtr? / Next Sampling Date per GMP	Description of Future Plan or Resolution
	Issue	s Resolved this Quarter (will not ap	pear in future Periodic Monitoring	Reports)
400-C-118	Nov-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	NA	The well did not provide sufficient water for representative sampling. NASA plugged and abandoned the well in January 2023 and now uses well 400-C-143 for required detection monitoring.
NASA 9	Oct-20	The well could not be sampled because of the intrusion of roots into the well casing and screen.	NA	NASA abandoned this well in January 2023 and plans to replace it with well 400A-001-GW as described in the work plan submitted to NMED on April 29, 2022 (NASA, 2022f) and subsequently approved by NMED.

Appendix A Indicator Parameters and Analytical Data

Appendix A.1: Monitor Well Indicator Parameters Appendix A.2: Monitor Well Analytical Data Appendix A.3: PFTS Indicator Parameters Appendix A.4: PFTS Analytical Data Appendix A.5: MPITS Indicator Parameters Appendix A.6: MPITS Analytical Data

Appendix A Indicator Parameters and Analytical Data

Appendix A.1: Monitor Well Indicator Parameters
Appendix A.2: Monitor Well Analytical Data
Appendix A.3: PFTS Indicator Parameters
Appendix A.4: PFTS Analytical Data
Appendix A.5: MPITS Indicator Parameters
Appendix A.6: MPITS Analytical Data

Appendix A.1 Monitor Well Indicator Parameters

Summary of Water Quality Parameters for the Sampling Events in this Reporting Period

Well ID 10	0-D-176	Event Date	11/14/2022		
Sample	Parameter		Result	Units	
2211140915A	Conductivity		2571	μS/cm	
2211140915A	DO		0.35	mg/L	
2211140915A	DTW		184.50	ft	
2211140915A	ORP		105	mV	
2211140915A	pН		7.47	NA	
2211140915A	Temperature		18.78	°C	
2211140915A	Turbidity		34.7	NTU	
2211140920A	Conductivity		2570	μS/cm	
2211140920A	DO		0.41	mg/L	
2211140920A	DTW		185	ft	
2211140920A	ORP		106	mV	
2211140920A	pН		7.48	NA	
2211140920A	Temperature		19.33	°C	
2211140920A	Turbidity		34.1	NTU	
2211140925A	Conductivity		2571	μS/cm	
2211140925A	DO		0.39	mg/L	
2211140925A	DTW		185	ft	
2211140925A	ORP		105	mV	
2211140925A	pН		7.48	NA	
2211140925A	Temperature		19.25	°C	
2211140925A	Turbidity		33.7	NTU	

Well ID 1	100-F-358	Event Date	1/24/2023		
Sample	Parameter		Result	Units	
2301241000A	Conductivity		1323	μS/cm	
2301241000A	DO		1.77	mg/L	
2301241000A	DTW		317.15	ft	
2301241000A	ORP		40	mV	
2301241000A	рН		7.40	NA	
2301241000A	Temperature		19.88	°C	
2301241000A	Turbidity		1.33	NTU	
2301241005A	Conductivity		1326	μS/cm	
2301241005A	DO		1.93	mg/L	
2301241005A	DTW		317.15	ft	
2301241005A	ORP		41	mV	
2301241005A	рH		7.71	NA	
2301241005A	Temperature		19.93	°C	
2301241005A	Turbidity		1.17	NTU	
2301241010A	Conductivity		1328	μS/cm	
2301241010A	DO		1.94	mg/L	
2301241010A	DTW		317.15	ft	
2301241010A	ORP		39	mV	
2301241010A	рH		7.40	NA	
2301241010A	Temperature		19.90	°C	
2301241010A	Turbidity		1.19	NTU	

Well ID	100-G-223	Event Date	1/24/2023		
Sample	Parameter		Result	Units	
2301241400	OA Conductivity		1174	μS/cm	
2301241400	OA DO		2.47	mg/L	
2301241400	OA DTW		78.80	ft	
2301241400	OA ORP		123	mV	
2301241400	OA pH		7.51	NA	
2301241400	OA Temperature		19.84	°C	
2301241400	OA Turbidity		0.71	NTU	
2301241405	5A Conductivity		1105	μS/cm	
2301241405	5A DO		2.50	mg/L	
2301241405	5A DTW		78.80	ft	
2301241405	5A ORP		123	mV	
2301241405	5A pH		7.50	NA	
2301241405	5A Temperature		19.86	°C	
2301241405	5A Turbidity		0.46	NTU	
2301241410	OA Conductivity		1171	μS/cm	
2301241410	OA DO		2.56	mg/L	
2301241410	OA DTW		78.80	ft	
2301241410	OA ORP		123	mV	
2301241410	OA pH		7.50	NA	
2301241410	OA Temperature		19.88	°C	
2301241410	OA Turbidity		0.44	NTU	
Well ID	200-G-175	Event Date	12/7/2022		
Sample	Parameter		Result	Units	
2212071324	4Y Atmospheric Pressu	re	12.07	psia	
2212071324	4Y Conductivity		1354	μS/cm	
2212071324	4Y DTW		218.20	ft	
2212071324	4Y Formation Pressure		24.25	psia	
2212071324	4Y pH		9.16	NA	
2212071324	4Y Temperature		20.2	°C	
2212071324	4Y Turbidity		1.03	NTU	
2212071507	_	re	12.08	psia	
2212071507	7Y Conductivity		1425	μS/cm	
2212071507	7Y DTW		218.25	ft	
2212071507	7Y pH		8.70	NA	
2212071507	•		18.7	°C	
2212071507	7Y Turbidity		0.50	NTU	

Well ID 200	0-G-220 E	Event Date	12/5/2022		
Sample	Parameter		Result	Units	
2212051459Y	Atmospheric Pressure		11.96	psia	
2212051459Y	Conductivity		1469	μS/cm	
2212051459Y	DTW		218.10	ft	
2212051459Y	Formation Pressure		43.67	psia	
2212051459Y	pH		8.63	NA	
2212051459Y	Temperature		20.5	°C	
2212051459Y	Turbidity		2.40	NTU	
2212051553Y	Atmospheric Pressure		12.00	psia	
2212051553Y	Conductivity		1659	μS/cm	
2212051553Y	DTW		218.25	ft	
2212051553Y	pH		8.34	NA	
2212051553Y	Temperature		18.9	°C	
2212051553Y	Turbidity		1.20	NTU	
Well ID 200	0-G-340 E	Event Date	12/5/2022		
Well ID 200 Sample	0-G-340 E	Event Date	12/5/2022 Result	Units	
		Event Date		Units psia	
Sample	Parameter	Event Date	Result		
Sample 2212051040Y	Parameter Atmospheric Pressure	Event Date	Result	psia	
Sample 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity	Event Date	12.07 1875	psia μS/cm	
Sample 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW	Event Date	12.07 1875 218.03	psia μS/cm ft	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	Event Date	12.07 1875 218.03 123.41	psia μS/cm ft psia	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	Event Date	12.07 1875 218.03 123.41 7.87	psia μS/cm ft psia NA	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Event Date	Result 12.07 1875 218.03 123.41 7.87 23.4	psia μS/cm ft psia NA °C	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Event Date	12.07 1875 218.03 123.41 7.87 23.4 1.63	psia μS/cm ft psia NA °C NTU	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Event Date	Result 12.07 1875 218.03 123.41 7.87 23.4 1.63 12.05	psia μS/cm ft psia NA °C NTU psia	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051343Y 2212051343Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Event Date	Result 12.07 1875 218.03 123.41 7.87 23.4 1.63 12.05 1890	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051040Y 2212051343Y 2212051343Y 2212051343Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Event Date	Result 12.07 1875 218.03 123.41 7.87 23.4 1.63 12.05 1890 218.10	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 200	0-G-420 Event Date	12/1/2022		
Sample	Parameter	Result	Units	
2212011450Y	Atmospheric Pressure	12.02	psia	
2212011450Y	Conductivity	2320	μS/cm	
2212011450Y	DTW	217.78	ft	
2212011450Y	Formation Pressure	186.69	psia	
2212011450Y	рН	7.99	NA	
2212011450Y	Temperature	22.0	°C	
2212011450Y	Turbidity	2.36	NTU	
2212011549Y	Atmospheric Pressure	12.05	psia	
2212011549Y	Conductivity	2360	μS/cm	
2212011549Y	DTW	217.86	ft	
2212011549Y	рН	8.06	NA	
2212011549Y	Temperature	22.2	°C	
2212011549Y	Turbidity	1.79	NTU	
Well ID 200	0-G-495 Event Date	12/1/2022		
Well ID 200 Sample	0-G-495 Event Date Parameter	12/1/2022 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2212011015Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity	12.11 2630	psia μS/cm	
Sample 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW	12.11 2630 217.64	psia μS/cm ft	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	12.11 2630 217.64 219.40	psia μS/cm ft psia	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	Result 12.11 2630 217.64 219.40 8.81	psia μS/cm ft psia NA	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.11 2630 217.64 219.40 8.81 23.4	psia μS/cm ft psia NA °C	
2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.11 2630 217.64 219.40 8.81 23.4 4.19	psia μS/cm ft psia NA °C NTU	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.11 2630 217.64 219.40 8.81 23.4 4.19 12.07	psia μS/cm ft psia NA °C NTU psia	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011311Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.11 2630 217.64 219.40 8.81 23.4 4.19 12.07 2650	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011015Y 2212011311Y 2212011311Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.11 2630 217.64 219.40 8.81 23.4 4.19 12.07 2650 217.78	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 20	0-I-185 Event Date	11/10/2022		
Sample	Parameter	Result	Units	
2211101450Y	Atmospheric Pressure	12.36	psia	
2211101450Y	Conductivity	2070	μS/cm	
2211101450Y	DTW	216.58	ft	
2211101450Y	Formation Pressure	13.52	psia	
2211101450Y	рН	8.21	NA	
2211101450Y	Temperature	20.2	°C	
2211101450Y	Turbidity	0.72	NTU	
2211151435Y	Atmospheric Pressure	12.49	psia	
2211151435Y	Conductivity	2120	μS/cm	
2211151435Y	DTW	216.62	ft	
2211151435Y	pН	8.12	NA	
2211151435Y	Temperature	19.8	°C	
2211151435Y	Turbidity	0.64	NTU	
Well ID 20	0-I-300 Event Date	11/10/2022		
Well ID 20 Sample	0-I-300 Event Date Parameter	11/10/2022 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2211101015Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity	12.41 845	psia μS/cm	
Sample 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW	12.41 845 216.50	psia μS/cm ft	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	12.41 845 216.50 64.75	psia μS/cm ft psia	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.41 845 216.50 64.75 7.88	psia μS/cm ft psia NA	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.41 845 216.50 64.75 7.88 20.5	psia μS/cm ft psia NA °C	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.41 845 216.50 64.75 7.88 20.5 2.90	psia μS/cm ft psia NA °C NTU	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.41 845 216.50 64.75 7.88 20.5 2.90 12.36	psia μS/cm ft psia NA °C NTU psia	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101305Y 2211101305Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.41 845 216.50 64.75 7.88 20.5 2.90 12.36 880	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101015Y 2211101305Y 2211101305Y 2211101305Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.41 845 216.50 64.75 7.88 20.5 2.90 12.36 880 216.58	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 200	0-I-375 Eve	ent Date	11/10/2022		
Sample	Parameter		Result	Units	
2211091540Y	Atmospheric Pressure		12.40	psia	
2211091540Y	Conductivity		1024	μS/cm	
2211091540Y	DTW		216.41	ft	
2211091540Y	Formation Pressure		98.84	psia	
2211091540Y	pН		7.30	NA	
2211091540Y	Temperature		22.0	°C	
2211091540Y	Turbidity		2.02	NTU	
2211100856Y	Atmospheric Pressure		12.46	psia	
2211100856Y	Conductivity		1029	μS/cm	
2211100856Y	DTW		216.50	ft	
2211100856Y	pН		7.41	NA	
2211100856Y	Temperature		22.1	°C	
2211100856Y	Turbidity		1.70	NTU	
	•				
	0-I-490 Eve	ent Date	11/9/2022		
	0-I-490 Eve Parameter	ent Date	11/9/2022 Result	Units	
Well ID 200		ent Date		Units psia	
Well ID 200 Sample	Parameter	ent Date	Result		
Well ID 200 Sample 2211091330Y	Parameter Atmospheric Pressure	ent Date	Result	psia	
Well ID 200 Sample 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity	ent Date	Result 12.38 933	psia μS/cm	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW	ent Date	Result 12.38 933 216.31	psia μS/cm ft	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	ent Date	Result 12.38 933 216.31 176.30	psia μS/cm ft psia	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	ent Date	Result 12.38 933 216.31 176.30 7.92	psia μS/cm ft psia NA	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	ent Date	Result 12.38 933 216.31 176.30 7.92 22.3	psia μS/cm ft psia NA °C	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	ent Date	Result 12.38 933 216.31 176.30 7.92 22.3 2.40	psia μS/cm ft psia NA °C NTU	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	ent Date	Result 12.38 933 216.31 176.30 7.92 22.3 2.40 12.40	psia μS/cm ft psia NA °C NTU psia	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091425Y 2211091425Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	ent Date	Result 12.38 933 216.31 176.30 7.92 22.3 2.40 12.40 928	psia μS/cm ft psia NA °C NTU psia μS/cm	
Well ID 200 Sample 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091330Y 2211091425Y 2211091425Y 2211091425Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	ent Date	Result 12.38 933 216.31 176.30 7.92 22.3 2.40 12.40 928 216.41	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 200	0-I-675 Even	t Date 11/9/2022		
Sample	Parameter	Result	Units	
2211090925Y	Atmospheric Pressure	12.41	psia	
2211090925Y	Conductivity	1604	μS/cm	
2211090925Y	DTW	216.23	ft	
2211090925Y	Formation Pressure	255.40	psia	
2211090925Y	pН	7.69	NA	
2211090925Y	Temperature	20.8	°C	
2211090925Y	Turbidity	4.19	NTU	
2211091030Y	Atmospheric Pressure	12.47	psia	
2211091030Y	Conductivity	1615	μS/cm	
2211091030Y	DTW	216.31	ft	
2211091030Y	pН	7.77	NA	
2211091030Y	Temperature	20.9	°C	
2211091030Y	Turbidity	2.80	NTU	
Well ID 200	0-I-795 Even	t Date 11/8/2022		
Well ID 200 Sample	0-I-795 Even Parameter	t Date 11/8/2022 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2211081450Y	Parameter Atmospheric Pressure	Result 12.46	psia	
Sample 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity	Result 12.46 2120	psia μS/cm	
Sample 2211081450Y 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity DTW	Result 12.46 2120 216.15	psia μS/cm ft	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	Result 12.46 2120 216.15 306.75	psia μS/cm ft psia	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	Result 12.46 2120 216.15 306.75 7.56	psia μS/cm ft psia NA	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.46 2120 216.15 306.75 7.56 22.9	psia μS/cm ft psia NA °C	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.46 2120 216.15 306.75 7.56 22.9 1.68	psia μS/cm ft psia NA °C NTU	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081545Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.46 2120 216.15 306.75 7.56 22.9 1.68 12.50	psia μS/cm ft psia NA °C NTU psia	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081545Y 2211081545Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.46 2120 216.15 306.75 7.56 22.9 1.68 12.50 2360	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081450Y 2211081545Y 2211081545Y 2211081545Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.46 2120 216.15 306.75 7.56 22.9 1.68 12.50 2360 216.23	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 300)-F-175	Event Date	1/25/2023		
Sample	Parameter		Result	Units	
2301250935C	Conductivity		1154	μS/cm	
2301250935C	DO		NA	mg/L	
2301250935C	DTW		NA	ft	
2301250935C	ORP		NA	mV	
2301250935C	pН		8.82	NA	
2301250935C	Temperature		18.3	°C	
2301250935C	Turbidity		1.90	NTU	
2301250937C	Conductivity		1150	μS/cm	
2301250937C	DO		NA	mg/L	
2301250937C	DTW		NA	ft	
2301250937C	ORP		NA	mV	
2301250937C	pН		8.78	NA	
2301250937C	Temperature		18.6	°C	
2301250937C	Turbidity		1.63	NTU	
2301250939C	Conductivity		1146	μS/cm	
2301250939C	DO		NA	mg/L	
2301250939C	DTW		NA	ft	
2301250939C	ORP		NA	mV	
2301250939C	pН		8.73	NA	
2301250939C	Temperature		18.3	$^{\circ}\mathrm{C}$	
2301250939C	Turbidity		1.53	NTU	

Well ID 400	0-A-151	Event Date	1/17/2023		
Sample	Parameter		Result	Units	
2301171415A	Conductivity		1240.3	μS/cm	
2301171415A	DO		4.40	mg/L	
2301171415A	DTW		161.21	ft	
2301171415A	ORP		110.4	mV	
2301171415A	рН		7.51	NA	
2301171415A	Temperature		20.10	°C	
2301171415A	Turbidity		NA	NTU	
2301171420A	Conductivity		1210.2	μS/cm	
2301171420A	DO		4.45	mg/L	
2301171420A	DTW		161.21	ft	
2301171420A	ORP		110.4	mV	
2301171420A	pН		7.48	NA	
2301171420A	Temperature		20.11	°C	
2301171420A	Turbidity		NA	NTU	
2301171425A	Conductivity		1205.7	μS/cm	
2301171425A	DO		4.49	mg/L	
2301171425A	DTW		161.21	ft	
2301171425A	ORP		110.4	mV	
23011/1423A					
	pН		7.36	NA	
2301171425A	pH Temperature		7.36 20.03	NA °C	
2301171425A 2301171425A 2301171425A 2301171425A	=				
2301171425A 2301171425A 2301171425A	Temperature	Event Date	20.03	°C	
2301171425A 2301171425A 2301171425A	Temperature Turbidity	Event Date	20.03 NA	°C	
2301171425A 2301171425A 2301171425A Well ID 400 Sample	Temperature Turbidity 0-C-143	Event Date	20.03 NA 11/17/2022	°C NTU	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C	Temperature Turbidity 0-C-143 Parameter	Event Date	20.03 NA 11/17/2022 Result	°C NTU Units	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C	Temperature Turbidity D-C-143 Parameter Conductivity	Event Date	20.03 NA 11/17/2022 Result	°C NTU Units μS/cm	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C	Temperature Turbidity 0-C-143 Parameter Conductivity DO	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28	°C NTU Units μS/cm mg/L	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C	Temperature Turbidity 0-C-143 Parameter Conductivity DO ORP	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2	°C NTU Units μS/cm mg/L mV	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C	Temperature Turbidity 0-C-143 Parameter Conductivity DO ORP pH	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40	°C NTU Units μS/cm mg/L mV NA	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45	°C NTU Units μS/cm mg/L mV NA °C	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C	Temperature Turbidity 0-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73	°C NTU Units μS/cm mg/L mV NA °C NTU	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C	Temperature Turbidity 0-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Temperature Turbidity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42 20.47 1.39 1294	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42 20.47 1.39 1294 5.28	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2301171425A 2301171425A 2301171425A Well ID 400	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42 20.47 1.39 1294 5.28 196.9	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2301171425A 2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170912C 2211170912C 2211170912C 2211170912C 2211170912C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42 20.47 1.39 1294 5.28	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2301171425A 2301171425A 2301171425A Well ID 400 Sample 2211170910C 2211170910C 2211170910C 2211170910C 2211170910C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170911C 2211170912C 2211170912C 2211170912C	Temperature Turbidity D-C-143 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	20.03 NA 11/17/2022 Result 1295.6 5.28 197.2 7.40 20.45 1.73 1295 5.27 198.5 7.42 20.47 1.39 1294 5.28 196.9	°C NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

G 1			1/25/2023		
Sample	Parameter		Result	Units	
2301251255	A Conductivity		1653	μS/cm	
2301251255	SA DTW		145	ft	
2301251255	SA pH		8.12	NA	
2301251255	A Temperature		17.0	°C	
2301251255	A Turbidity		1.35	NTU	
2301251310	OA Conductivity		1633	μS/cm	
2301251310	OA DTW		144.90	ft	
2301251310	OA pH		8.33	NA	
2301251310	A Temperature		16.8	°C	
2301251310	OA Turbidity		5.86	NTU	
Well ID	700-B-510	Event Date	12/13/2022		
Sample	Parameter		Result	Units	
2212131456	6C Conductivity		560	μS/cm	
2212131456	6C DO		3.56	mg/L	
2212131456	6C DTW		265.70	ft	
2212131456	6C ORP		79	mV	
2212131456	6C pH		8.86	NA	
2212131456	6C Temperature		20.24	°C	
2212131456	C Turbidity		0.52	NTU	
2212131458	Conductivity		561	μS/cm	
2212131458	BC DO		3.53	mg/L	
2212131458	BC DTW		265.73	ft	
2212131458	3C ORP		78	mV	
2212131458	BC pH		8.81	NA	
2212131458	C Temperature		20.23	°C	
2212131458	3C Turbidity		0.55	NTU	
2212131500	OC Conductivity		561	μS/cm	
2212131500	OC DO		3.55	mg/L	
2212131500	OC DTW		265.73	ft	
2212131500	OC ORP		78	mV	
2212131500	OC pH		8.84	NA	
2212131500	OC Temperature		20.23	°C	
2212131500	OC Turbidity		0.51	NTU	

Well ID BI	LM-10-517	Event Date	1/3/2023		
Sample	Parameter		Result	Units	
2301031540C	Conductivity		1029.6	μS/cm	
2301031540C	DO		4.78	mg/L	
2301031540C	ORP		186.2	mV	
2301031540C	pН		7.66	NA	
2301031540C	Temperature		18.70	°C	
2301031540C	Turbidity		1.44	NTU	
2301031541C	Conductivity		1022.3	μS/cm	
2301031541C	DO		5.01	mg/L	
2301031541C	ORP		186.2	mV	
2301031541C	pH		7.66	NA	
2301031541C	Temperature		18.70	°C	
2301031541C	Turbidity		1.37	NTU	
2301031542C	Conductivity		1024.6	μS/cm	
2301031542C	DO		4.70	mg/L	
2301031542C	ORP		186.2	mV	
2301031542C	pН		7.66	NA	
2301031542C	Temperature		18.66	°C	
2301031542C	Turbidity		1.35	NTU	
Well ID BI	LM-15-305	Event Date	1/9/2023		
Sample	Parameter		Result	Units	
2301091440A	Conductivity		1141.9	μS/cm	
2301091440A	DO		1.26	mg/L	
2301091440A	DTW		281.10	ft	
2301091440A	ORP		35.3	mV	
2301091440A	pН		7.88	NA	
2301091440A	Temperature		20.57	°C	
2301091440A	Turbidity		1.66	NTU	
2301091442A	Conductivity		1139.2	μS/cm	
2301091442A	DO		1.13	mg/L	
2301091442A	DTW		282.15	ft	
2301091442A	ORP		37.2	mV	
2301091442A	pН		7.88	NA	
2301091442A	Temperature		20.52	°C	
2301091442A	Turbidity		1.51	NTU	
2301091444A	Conductivity		1143.7	μS/cm	
2301091444A	DO		0.96	mg/L	
2301091444A	DTW		282.15	ft	
2301091444A	ORP		40.3	mV	
2301091444A	pН		7.88	NA	
2301091444A	Temperature		20.55	$^{\circ}\mathrm{C}$	
2301091444A	Turbidity		1.56	NTU	

Well ID	BLM-17-493	Event Date	11/3/2022		
Sample	Parameter		Result	Units	
2211030920	A Conductivity		1138	μS/cm	
2211030920	A DO		7.31	mg/L	
2211030920	A DTW		498.90	ft	
2211030920	OA ORP		218	mV	
2211030920	OA pH		7.71	NA	
2211030920	A Temperature		20.56	°C	
2211030920	A Turbidity		5.10	NTU	
2211030922	A Conductivity		1141	μS/cm	
2211030922	A DO		7.26	mg/L	
2211030922	A DTW		498.96	ft	
2211030922	A ORP		215	mV	
2211030922	A pH		7.69	NA	
2211030922	A Temperature		20.55	°C	
2211030922	A Turbidity		5.12	NTU	
2211030924	A Conductivity		1138	μS/cm	
2211030924	A DO		7.30	mg/L	
2211030924	A DTW		498.98	ft	
2211030924	A ORP		215	mV	
2211030924	A pH		7.69	NA	
2211030924	A Temperature		20.56	°C	
2211030924	A Turbidity		5.09	NTU	

Well ID BL	M-17-550	Event Date	1/9/2023		
Sample	Parameter		Result	Units	
2301091010A	Conductivity		1114.9	μS/cm	
2301091010A	DO		6.82	mg/L	
2301091010A	DTW		504.45	ft	
2301091010A	ORP		124.4	mV	
2301091010A	pН		7.49	NA	
2301091010A	Temperature		19.63	$^{\circ}\mathrm{C}$	
2301091010A	Turbidity		4.96	NTU	
2301091012A	Conductivity		1116.7	μS/cm	
2301091012A	DO		6.77	mg/L	
2301091012A	DTW		504.90	ft	
2301091012A	ORP		132.9	mV	
2301091012A	pН		7.50	NA	
2301091012A	Temperature		19.69	$^{\circ}\mathrm{C}$	
2301091012A	Turbidity		5.10	NTU	
2301091014A	Conductivity		1117.5	μS/cm	
2301091014A	DO		6.79	mg/L	
2301091014A	DTW		504.90	ft	
2301091014A	ORP		131.7	mV	
2301091014A	pН		7.50	NA	
2301091014A	Temperature		19.65	°C	
2301091014A	Turbidity		6.26	NTU	

Well ID	BLM-18-430	Event Date	1/17/2023		
Sample	Parameter		Result	Units	
2301170935A	Conductivity		925.53	μS/cm	
2301170935A	DO		6.88	mg/L	
2301170935A	DTW		398.50	ft	
2301170935A	ORP		76.8	mV	
2301170935A	рH		7.67	NA	
2301170935A	Temperature		17.30	°C	
2301170935A	Turbidity		1.09	NTU	
2301170940A	Conductivity		901.60	μS/cm	
2301170940A	DO		6.78	mg/L	
2301170940A	DTW		398.84	ft	
2301170940A	ORP		75.8	mV	
2301170940A	рH		7.68	NA	
2301170940A	Temperature		17.11	°C	
2301170940A	Turbidity		1.12	NTU	
2301170945A	Conductivity		910.12	μS/cm	
2301170945A	DO		6.67	mg/L	
2301170945A	DTW		398.84	ft	
2301170945A	ORP		75.9	mV	
2301170945A	рН		7.68	NA	
2301170945A	Temperature		16.95	°C	
2301170945A	Turbidity		1.03	NTU	

Well ID	BLM-22-570	Event Date	11/15/2022		
Sample	Parameter		Result	Units	
2211151500	OA Conductivity		1018.6	μS/cm	
2211151500	OA DO		7.72	mg/L	
2211151500	OA DTW		514.95	ft	
2211151500	OA ORP		125.9	mV	
2211151500	OA pH		7.56	NA	
2211151500	OA Temperature		20.06	°C	
2211151500	OA Turbidity		0.81	NTU	
2211151502	2A Conductivity		1049.1	μS/cm	
2211151502	2A DO		7.75	mg/L	
2211151502	2A DTW		515.10	ft	
2211151502	2A ORP		129.1	mV	
2211151502	2A pH		7.56	NA	
2211151502	2A Temperature		20.11	°C	
2211151502	2A Turbidity		0.72	NTU	
2211151504	4A Conductivity		1062.3	μS/cm	
2211151504	4A DO		7.53	mg/L	
2211151504	4A DTW		515.10	ft	
2211151504	4A ORP		130.4	mV	
2211151504	4A pH		7.55	NA	
2211151504	4A Temperature		20.68	°C	
2211151504	4A Turbidity		0.67	NTU	

Well ID BI	LM-24-565	Event Date	11/2/2022		
Sample	Parameter		Result	Units	
2211021330A	Conductivity		1140	μS/cm	
2211021330A	DO		4.87	mg/L	
2211021330A	DTW		332.20	ft	
2211021330A	ORP		77.7	mV	
2211021330A	pН		10.22	NA	
2211021330A	Temperature		22.96	°C	
2211021330A	Turbidity		1.51	NTU	
2211021331A	Conductivity		1150	μS/cm	
2211021331A	DO		4.68	mg/L	
2211021331A	DTW		332.45	ft	
2211021331A	ORP		75.0	mV	
2211021331A	pН		10.31	NA	
2211021331A	Temperature		22.80	°C	
2211021331A	Turbidity		1.45	NTU	
2211021332A	Conductivity		1157	μS/cm	
2211021332A	DO		4.57	mg/L	
2211021332A	DTW		332.65	ft	
2211021332A	ORP		74.2	mV	
2211021332A	рН		10.39	NA	
2211021332A	Temperature		22.74	°C	
2211021332A	Turbidity		1.33	NTU	
Well ID BI	LM-2-630	Event Date	11/15/2022		
Well ID BI Sample	LM-2-630 Parameter	Event Date	11/15/2022 Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result	μS/cm	
Sample 2211151020A	Parameter Conductivity	Event Date	Result 945.14		
Sample 2211151020A 2211151020A	Parameter Conductivity DO	Event Date	945.14 7.21	μS/cm mg/L	
Sample 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP	Event Date	945.14 7.21 189.6	μS/cm mg/L mV	
Sample 2211151020A 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP pH	Event Date	945.14 7.21 189.6 7.66	μS/cm mg/L mV NA	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP pH Temperature	Event Date	945.14 7.21 189.6 7.66 19.72	μS/cm mg/L mV NA °C	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP pH Temperature Transducer	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61	μS/cm mg/L mV NA °C ft	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61 10.2	μS/cm mg/L mV NA °C ft NTU	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84	μS/cm mg/L mV NA °C ft NTU μS/cm	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH	Event Date	Result 945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity Conductivity	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39 7.14	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39 7.14 193.3	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151024A 2211151024A 2211151024A 2211151024A 2211151024A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity Conductivity	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39 7.14 193.3 7.61	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm rug/L mV NA	
2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151024A 2211151024A 2211151024A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39 7.14 193.3	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm	
Sample 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151020A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151022A 2211151024A 2211151024A 2211151024A 2211151024A 2211151024A	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	945.14 7.21 189.6 7.66 19.72 20.61 10.2 942.84 7.14 190.6 7.64 19.68 10.4 946.39 7.14 193.3 7.61	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm rug/L mV NA	

11/7/2022

Event Date

Well ID BLM-26-404

Sample	Parameter	Result	Units	
2211071440C	Conductivity	1016.2	μS/cm	
2211071440C	DO	7.02	mg/L	
2211071440C	DTW	310.95	ft	
2211071440C	ORP	110.3	mV	
2211071440C	pH	7.50	NA	
2211071440C	Temperature	21.46	°C	
2211071440C	Turbidity	0.73	NTU	
2211071442C	Conductivity	1017.4	μS/cm	
2211071442C	DO	7.01	mg/L	
2211071442C	DTW	310.98	ft	
2211071442C	ORP	120.2	mV	
2211071442C	pH	7.50	NA	
2211071442C	Temperature	21.44	°C	
2211071442C	Turbidity	0.54	NTU	
2211071444C	Conductivity	1016.4	μS/cm	
2211071444C	DO	6.99	mg/L	
2211071444C	DTW	310.98	ft	
2211071444C	ORP	133.7	mV	
2211071444C	pН	7.49	NA	
2211071444C	Temperature	21.41	°C	
2211071444C	Turbidity	0.69	NTU	
Well ID BL	M-27-270 Event Date	e 12/12/2022		
Sample	Parameter	Result	Units	
2212120925C	Conductivity	825	μS/cm	
2212120925C	DO	5.74	mg/L	
2212120925C	DTW	233.70	ft	
2212120925C	ORP	82	mV	
2212120925C	pН	7.95	NA	
2212120925C	Temperature	20.61	°C	
2212120925C	Turbidity	1.02	NTU	
2212120927C	Conductivity	827	μS/cm	
2212120927C	DO	5.71	mg/L	
2212120927C	ORP	81	mV	
2212120927C	рН	7.92	NA	
2212120927C	Temperature	20.62	°C	
2212120927C	Turbidity	99	NTU	
2212120929C	Conductivity	825	μS/cm	
2212120929C	DO	5.74	mg/L	
2212120929C	DTW	234.41	ft	
2212120929C	ORP	81	mV	
2212120929C	рН	7.92	NA	
2212120929C	Temperature	20.61	°C	
2212120929C	Turbidity	1.03	NTU	
	-			

Well ID BL	M-3-182	Event Date	11/1/2022		
Sample	Parameter		Result	Units	
2211010925A	Conductivity		4072	μS/cm	
2211010925A	DO		0.63	mg/L	
2211010925A	DTW		179.55	ft	
2211010925A	ORP		142	mV	
2211010925A	pН		7.86	NA	
2211010925A	Temperature		21.41	°C	
2211010925A	Turbidity		7.26	NTU	
2211010927A	Conductivity		4072	μS/cm	
2211010927A	DO		0.64	mg/L	
2211010927A	DTW		179.67	ft	
2211010927A	ORP		140	mV	
2211010927A	pН		7.79	NA	
2211010927A	Temperature		21.40	°C	
2211010927A	Turbidity		7.23	NTU	
2211010929A	Conductivity		4071	μS/cm	
2211010929A	DO		0.62	mg/L	
2211010929A	DTW		179.67	ft	
2211010929A	ORP		142	mV	
2211010929A	pН		7.83	NA	
2211010929A	Temperature		21.41	°C	
2211010929A	Turbidity		7.20	NTU	
2212151000A	Conductivity		4033.36	μS/cm	
2212151000A	DO		1.51	mg/L	
2212151000A	DTW		159.71	ft	
2212151000A	ORP		135	mV	
2212151000A	pН		7.33	NA	
2212151000A	Temperature		18.79	°C	
2212151000A	Turbidity		7.59	NTU	
2212151003A	Conductivity		4039.67	μS/cm	
2212151003A	DO		1.36	mg/L	
2212151003A	DTW		159.78	ft	
2212151003A	ORP		138	mV	
2212151003A	pН		7.36	NA	
2212151003A	Temperature		18.92	°C	
2212151003A	Turbidity		7.24	NTU	
2212151006A	Conductivity		4040.02	μS/cm	
2212151006A	DO		1.12	mg/L	
2212151006A	DTW		159.78	ft	
2212151006A	ORP		139	mV	
2212151006A	pН		7.37	NA	
2212151006A	Temperature		19.03	°C	
2212151006A	Turbidity		6.90	NTU	
2301241340C	Conductivity		3890.1	μS/cm	
2301241340C	DO		4.51	mg/L	
2301241340C	DTW		179.36	ft	

Page 19 of 53

2301241340C	ORP		97.7	mV	
2301241340C	pН		8.14	NA	
2301241340C	Temperature		20.10	$^{\circ}\mathrm{C}$	
2301241340C	Turbidity		1.47	NTU	
2301241343C	Conductivity		3878.8	μS/cm	
2301241343C	DO		4.27	mg/L	
2301241343C	DTW		179.48	ft	
2301241343C	ORP		98.9	mV	
2301241343C	pН		8.14	NA	
2301241343C	Temperature		20.14	°C	
2301241343C	Turbidity		1.24	NTU	
2301241346C	Conductivity		3868.4	μS/cm	
2301241346C	DO		4.13	mg/L	
2301241346C	DTW		179.48	ft	
2301241346C	ORP		99.5	mV	
2301241346C	pН		8.13	NA	
2301241346C	Temperature		20.16	°C	
2301241346C	Turbidity		1.19	NTU	
Well ID BL	M-32-543	Event Date	11/7/2022		
Sample	Parameter		Result	Units	
2211071345B	Parameter Conductivity		Result	Units μS/cm	
2211071345B	Conductivity		1125	μS/cm	
2211071345B 2211071345B	Conductivity pH		1125 7.80	μS/cm NA	
2211071345B 2211071345B 2211071345B 2211071345B	Conductivity pH Temperature	Event Date	1125 7.80 21.1	μS/cm NA °C	
2211071345B 2211071345B 2211071345B 2211071345B	Conductivity pH Temperature Turbidity	Event Date	1125 7.80 21.1 1.00	μS/cm NA °C	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample	Conductivity pH Temperature Turbidity M-32-571 Parameter	Event Date	1125 7.80 21.1 1.00 11/7/2022	μS/cm NA °C NTU Units	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity	Event Date	1125 7.80 21.1 1.00 11/7/2022 Result	μS/cm NA °C NTU	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH	Event Date	1125 7.80 21.1 1.00 11/7/2022 Result	μS/cm NA °C NTU Units μS/cm	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity	Event Date	1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22	μS/cm NA °C NTU Units μS/cm NA	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature	Event Date Event Date	1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5	μS/cm NA °C NTU Units μS/cm NA °C	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature Turbidity		1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5 2.18	μS/cm NA °C NTU Units μS/cm NA °C	
2211071345B 2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature Turbidity M-32-632 Parameter		1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5 2.18 11/7/2022 Result	μS/cm NA °C NTU Units μS/cm NA °C NTU	
2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B 2211071522B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature Turbidity M-32-632 Parameter Conductivity		1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5 2.18 11/7/2022 Result 1072	μS/cm NA °C NTU Units μS/cm NA °C NTU Units Units	
2211071345B 2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B 2211071522B 2211071522B 2211071522B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature Turbidity M-32-632 Parameter Conductivity pH Conductivity		1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5 2.18 11/7/2022 Result 1072 7.47	μS/cm NA °C NTU Units μS/cm NA °C NTU	
2211071345B 2211071345B 2211071345B 2211071345B 2211071345B Well ID BL Sample 2211071435B 2211071435B 2211071435B 2211071435B 2211071435B 2211071522B	Conductivity pH Temperature Turbidity M-32-571 Parameter Conductivity pH Temperature Turbidity M-32-632 Parameter Conductivity		1125 7.80 21.1 1.00 11/7/2022 Result 1074 7.22 21.5 2.18 11/7/2022 Result 1072	μS/cm NA °C NTU Units μS/cm NA °C NTU Units μS/cm NA	

Well ID	BLM-36-350	Event Date	11/4/2022		
Sample	Parameter		Result	Units	
2211041100	Y Atmospheric Pressur	e	12.56	psia	
2211041100	Y Conductivity		1268	μS/cm	
2211041100	Y DTW		573.25	ft	
2211041100	Y Formation Pressure		32.84	psia	
2211041100	Y pH		8.10	NA	
2211041100	Y Temperature		18.5	°C	
2211041100	Y Turbidity		0.60	NTU	
2211041220	Y Conductivity		18.7	μS/cm	
2211041220	Y DO		1283	mg/L	
2211041220	Y ORP		12.53	mV	
2211041220	Y pH		0.72	NA	
2211041220	Y Temperature		8.20	°C	
2211041220	Y Turbidity		573.32	NTU	
Well ID	DI M 26 610	E4 D - 4 -			
WEIL ID	BLM-36-610	Event Date	11/3/2022		
Sample	Parameter	Event Date	11/3/2022 Result	Units	
	Parameter			Units psia	
Sample	Parameter Y Atmospheric Pressur		Result		
Sample 2211031345	Parameter Y Atmospheric Pressur Y Conductivity		Result	psia	
Sample 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW		12.40 1155	psia μS/cm	
Sample 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure		12.40 1155 573.17	psia μS/cm ft	
Sample 2211031345 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH		12.40 1155 573.17 102.06	psia μS/cm ft psia	
Sample 2211031345 2211031345 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature		Result 12.40 1155 573.17 102.06 7.92	psia μS/cm ft psia NA	
2211031345 2211031345 2211031345 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity	e	Result 12.40 1155 573.17 102.06 7.92 24.2	psia μS/cm ft psia NA °C	
Sample 2211031345 2211031345 2211031345 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur	e	Result 12.40 1155 573.17 102.06 7.92 24.2 1.28	psia μS/cm ft psia NA °C NTU	
Sample 2211031345 2211031345 2211031345 2211031345 2211031345 2211031345 2211031345	Parameter Y Atmospheric Pressur Y Conductivity DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity	e	Result 12.40 1155 573.17 102.06 7.92 24.2 1.28 12.42	psia μS/cm ft psia NA °C NTU psia	
Sample 2211031345 2211031345 2211031345 2211031345 2211031345 2211031345 2211031417	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW	e	Result 12.40 1155 573.17 102.06 7.92 24.2 1.28 12.42 1162	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2211031345 2211031345 2211031345 2211031345 2211031345 2211031417 2211031417	Parameter Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW Y pH	e	12.40 1155 573.17 102.06 7.92 24.2 1.28 12.42 1162 573.23	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID	BLM-36-800	Event Date	11/4/2022		
Sample	Parameter		Result	Units	
2211040900	Y Atmospheric Pressur	e	12.48	psia	
2211040900	Y Conductivity		930	μS/cm	
2211040900	Y DTW		573.20	ft	
2211040900	Y Formation Pressure		177.00	psia	
2211040900	Y pH		8.26	NA	
2211040900	Y Temperature		23.2	°C	
2211040900	Y Turbidity		1.50	NTU	
2211040955	Y Atmospheric Pressur	e	12.53	psia	
2211040955	Y Conductivity		1008	μS/cm	
2211040955	Y DTW		573.25	ft	
2211040955	Y pH		8.33	NA	
2211040955	Y Temperature		23.4	°C	
2211040955	Y Turbidity		1.34	NTU	
Well ID	BLM-36-860	Event Date	11/3/2022		
Sample	Parameter		Result	Units	
2211031010	Y Atmospheric Pressur	e	12.41	psia	
2211031010° 2211031010°		e	12.41 1140	psia μS/cm	
	Y Conductivity	e		•	
2211031010	Y Conductivity Y DTW	e	1140	μS/cm	
2211031010° 2211031010°	Y Conductivity Y DTW Y Formation Pressure	e	1140 573.10	μS/cm ft	
2211031010 2211031010 2211031010	Y Conductivity Y DTW Y Formation Pressure Y pH	е	1140 573.10 137.48	μS/cm ft psia	
2211031010 2211031010 2211031010 2211031010	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature	e	1140 573.10 137.48 8.13	μS/cm ft psia NA	
2211031010 2211031010 2211031010 2211031010 2211031010	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity		1140 573.10 137.48 8.13 23.3	μS/cm ft psia NA °C	
2211031010° 2211031010° 2211031010° 2211031010° 2211031010° 2211031010°	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur		1140 573.10 137.48 8.13 23.3 10.2	μS/cm ft psia NA °C NTU	
2211031010° 2211031010° 2211031010° 2211031010° 2211031010° 2211031047°	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity		1140 573.10 137.48 8.13 23.3 10.2	µS/cm ft psia NA °C NTU psia	
2211031010 2211031010 2211031010 2211031010 2211031010 2211031047 2211031047	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW		1140 573.10 137.48 8.13 23.3 10.2 12.39 1135	μS/cm ft psia NA °C NTU psia μS/cm	
2211031010 ^o 2211031010 ^o 2211031010 ^o 2211031010 ^o 2211031010 ^o 2211031010 ^o 2211031047 ^o 2211031047 ^o 2211031047 ^o	Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW Y pH		1140 573.10 137.48 8.13 23.3 10.2 12.39 1135 573.17	μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID	BLM-38-480	Event Date	11/7/2022		
Sample	Parameter		Result	Units	
2211071055	Y Atmospheric Pressure	:	12.53	psia	
2211071055	Y Conductivity		1068	μS/cm	
2211071055	Y DTW		403.40	ft	
2211071055	Y Formation Pressure		39.80	psia	
2211071055	Y pH		8.33	NA	
2211071055	Y Temperature		22.9	°C	
2211071055	Y Turbidity		0.79	NTU	
2211071350	Y Atmospheric Pressure		12.57	psia	
2211071350	Y Conductivity		1076	μS/cm	
2211071350	Y DTW		403.54	ft	
2211071350	Y pH		8.25	NA	
2211071350	Y Temperature		22.7	°C	
2211071350	Y Turbidity		0.70	NTU	
Well ID	BLM-38-620	Event Date	11/7/2022		
Well ID Sample	BLM-38-620 Parameter	Event Date	11/7/2022 Result	Units	
	Parameter			Units psia	
Sample	Parameter Y Atmospheric Pressure		Result		
Sample 2211071515	Parameter Y Atmospheric Pressure Y Conductivity		Result 12.49	psia	
Sample 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW		12.49 1089	psia μS/cm	
Sample 2211071515 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure		12.49 1089 403.54	psia μS/cm ft	
Sample 2211071515 2211071515 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH		12.49 1089 403.54 87.00	psia μS/cm ft psia	
Sample 2211071515 2211071515 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature		Result 12.49 1089 403.54 87.00 7.98	psia μS/cm ft psia NA	
Sample 2211071515 2211071515 2211071515 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity	:	Result 12.49 1089 403.54 87.00 7.98 22.8	psia μS/cm ft psia NA °C	
2211071515 2211071515 2211071515 2211071515 2211071515 2211071515 2211071515	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressure	:	Result 12.49 1089 403.54 87.00 7.98 22.8 1.12	psia μS/cm ft psia NA °C NTU	
Sample 2211071515 2211071515 2211071515 2211071515 2211071515 2211071515 2211071547	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressure Y Conductivity	:	Result 12.49 1089 403.54 87.00 7.98 22.8 1.12 12.55	psia μS/cm ft psia NA °C NTU psia	
Sample 2211071515 2211071515 2211071515 2211071515 2211071515 2211071515 2211071547 2211071547	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressure Y Conductivity Y DTW	:	Result 12.49 1089 403.54 87.00 7.98 22.8 1.12 12.55 1097	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2211071515 2211071515 2211071515 2211071515 2211071515 2211071515 2211071547 2211071547 2211071547	Parameter Y Atmospheric Pressure Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressure Y Conductivity Y DTW Y DTW Y pH	:	12.49 1089 403.54 87.00 7.98 22.8 1.12 12.55 1097 403.69	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID	BLM-42-569	Event Date	12/13/2022		
Sample	Parameter		Result	Units	
2212130955	A Conductivity		615.33	μS/cm	
2212130955	SA DO		4.26	mg/L	
2212130955	SA ORP		156.4	mV	
2212130955	5A pH		7.64	NA	
2212130955	A Temperature		19.38	°C	
2212130955	A Transducer		44.36	ft	
2212130955	A Turbidity		2.96	NTU	
2212130958	3A Conductivity		616.21	μS/cm	
2212130958	BA DO		4.17	mg/L	
2212130958	3A ORP		157.0	mV	
2212130958	BA pH		7.66	NA	
2212130958	A Temperature		19.56	°C	
2212130958	3A Transducer		44.38	ft	
2212130958	3A Turbidity		3.10	NTU	
2212131001	A Conductivity		617.49	μS/cm	
2212131001	A DO		4.08	mg/L	
2212131001	A ORP		157.3	mV	
2212131001	A pH		7.67	NA	
2212131001	A Temperature		19.70	°C	
2212131001	A Transducer		44.41	ft	
2212131001	A Turbidity		2.98	NTU	

Well ID BL	M-42-709	Event Date	12/13/2022		
Sample	Parameter		Result	Units	
2212131430A	Conductivity		561.40	μS/cm	
2212131430A	DO		7.12	mg/L	
2212131430A	ORP		160.2	mV	
2212131430A	pН		7.93	NA	
2212131430A	Temperature		18.83	°C	
2212131430A	Transducer		44.40	ft	
2212131430A	Turbidity		2.00	NTU	
2212131433A	Conductivity		568.78	μS/cm	
2212131433A	DO		6.85	mg/L	
2212131433A	ORP		159.8	mV	
2212131433A	pН		7.86	NA	
2212131433A	Temperature		18.97	°C	
2212131433A	Transducer		44.43	ft	
2212131433A	Turbidity		1.79	NTU	
2212131436A	Conductivity		573.20	μS/cm	
2212131436A	DO		6.61	mg/L	
2212131436A	ORP		159.0	mV	
2212131436A	pН		7.84	NA	
	_		19.06	°C	
2212131436A	Temperature		17.00		
2212131436A 2212131436A	Temperature Transducer		44.43	ft	
	•				
2212131436A 2212131436A	Transducer	Event Date	44.43	ft	
2212131436A 2212131436A Well ID BL	Transducer Turbidity	Event Date	44.43 1.51	ft	
2212131436A 2212131436A Well ID BL	Transducer Turbidity M-6-488	Event Date	44.43 1.51 1/5/2023	ft NTU	
2212131436A 2212131436A Well ID BL Sample 2301050955C	Transducer Turbidity M-6-488 Parameter	Event Date	44.43 1.51 1/5/2023 Result	ft NTU Units μS/cm	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity	Event Date	44.43 1.51 1/5/2023 Result	ft NTU Units	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05	ft NTU Units µS/cm mg/L	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C	Transducer Turbidity AM-6-488 Parameter Conductivity DO	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5	ft NTU Units μS/cm mg/L mV	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54	ft NTU Units μS/cm mg/L mV NA	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47	ft NTU Units μS/cm mg/L mV NA °C	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2	ft NTU Units μS/cm mg/L mV NA °C NTU	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV/ MS/cm	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV/ NA	
2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Temperature Turbidity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52 20.49	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2212131436A 2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Turbidity Turbidity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52 20.49 2.11	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2212131436A 2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52 20.49 2.11 1470.3	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2212131436A 2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52 20.49 2.11 1470.3 1.01	ft NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2212131436A 2212131436A 2212131436A Well ID BL Sample 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050955C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C 2301050956C	Transducer Turbidity M-6-488 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	44.43 1.51 1/5/2023 Result 1470.1 1.05 78.5 7.54 20.47 2.09 1469.2 1.03 79.2 7.52 20.49 2.11 1470.3 1.01 79.6	ft NTU Units µS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

M-7-509	Event Date	12/5/2022		
Parameter		Result	Units	
Conductivity		1080.6	μS/cm	
DO		5.39	mg/L	
DTW		498.73	ft	
ORP		205.4	mV	
pН		7.54	NA	
Temperature		20.50	$^{\circ}\mathrm{C}$	
Turbidity		4.81	NTU	
Conductivity		1077.9	μS/cm	
DO		5.34	mg/L	
ORP		206.3	mV	
pН		7.55	NA	
Temperature		20.70	$^{\circ}\mathrm{C}$	
Turbidity		4.93	NTU	
Conductivity		1080.5	μS/cm	
DO		5.47	mg/L	
ORP		206.3	mV	
pН		7.54	NA	
Temperature		20.69	°C	
Turbidity		4.78	NTU	
M-8-418	Event Date	11/1/2022		
Parameter		Result	Units	
Parameter Conductivity		Result	Units μS/cm	
			μS/cm	
Conductivity		1056		
Conductivity DO		1056 6.70	μS/cm mg/L	
Conductivity DO DTW		1056 6.70 335.75	μS/cm mg/L ft	
Conductivity DO DTW ORP		1056 6.70 335.75 185	μS/cm mg/L ft mV	
Conductivity DO DTW ORP pH		1056 6.70 335.75 185 7.43	μS/cm mg/L ft mV NA	
Conductivity DO DTW ORP pH Temperature		1056 6.70 335.75 185 7.43 21.82	μS/cm mg/L ft mV NA °C	
Conductivity DO DTW ORP pH Temperature Turbidity		1056 6.70 335.75 185 7.43 21.82 1.55	μS/cm mg/L ft mV NA °C NTU	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity		1056 6.70 335.75 185 7.43 21.82 1.55	μS/cm mg/L ft mV NA °C NTU μS/cm	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO		1056 6.70 335.75 185 7.43 21.82 1.55	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81 1.62	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81 1.62	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81 1.62	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μf mV NA °C NTU μS/cm ft	
Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW		1056 6.70 335.75 185 7.43 21.82 1.55 1053 6.68 335.81 186 7.41 21.81 1.62 1051 6.69 335.81	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm ft mV NA °C NTU μS/cm mg/L ft ft mV NA	
	DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Temperature Turbidity Temperature	DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	DO 5.39 DTW 498.73 ORP 205.4 pH 7.54 Temperature 20.50 Turbidity 4.81 Conductivity 1077.9 DO 5.34 ORP 206.3 pH 7.55 Temperature 20.70 Turbidity 4.93 Conductivity 1080.5 DO 5.47 ORP 206.3 pH 7.54 Temperature 20.69 Turbidity 4.78	DO 5.39 mg/L DTW 498.73 ft ORP 205.4 mV pH 7.54 NA Temperature 20.50 °C Turbidity 4.81 NTU Conductivity 1077.9 μS/cm DO 5.34 mg/L ORP 206.3 mV pH 7.55 NA Temperature 20.70 °C Turbidity 4.93 NTU Conductivity 1080.5 μS/cm DO 5.47 mg/L ORP 206.3 mV pH 7.54 NA Temperature 20.69 °C Turbidity 4.78 NTU

Well ID BV	V-5-295	Event Date	11/7/2022		
Sample	Parameter		Result	Units	
2211070940C	Conductivity		799.34	μS/cm	
2211070940C	DO		6.22	mg/L	
2211070940C	DTW		236.56	ft	
2211070940C	ORP		161.7	mV	
2211070940C	pН		8.10	NA	
2211070940C	Temperature		21.83	°C	
2211070940C	Turbidity		0.38	NTU	
2211070942C	Conductivity		809.46	μS/cm	
2211070942C	DO		6.11	mg/L	
2211070942C	DTW		236.90	ft	
2211070942C	ORP		162.7	mV	
2211070942C	pН		8.07	NA	
2211070942C	Temperature		21.86	°C	
2211070942C	Turbidity		0.34	NTU	
2211070944C	Conductivity		813.79	μS/cm	
2211070944C	DO		6.09	mg/L	
2211070944C	DTW		236.85	ft	
2211070944C	ORP		162.9	mV	
2211070944C	pH		8.06	NA	
2211070944C	Temperature		21.88	°C	
2211070944C	Turbidity		0.27	NTU	

Well ID BY	V-7-211	Event Date	12/13/2022		
Sample	Parameter		Result	Units	
2212130819C	Conductivity		1008	μS/cm	
2212130819C	DO		6.94	mg/L	
2212130819C	DTW		192.30	ft	
2212130819C	ORP		76	mV	
2212130819C	pН		7.92	NA	
2212130819C	Temperature		19.59	°C	
2212130819C	Turbidity		0.12	NTU	
2212130820C	Conductivity		1024	μS/cm	
2212130820C	DO		6.85	mg/L	
2212130820C	DTW		192.30	ft	
2212130820C	ORP		76	mV	
2212130820C	pН		7.91	NA	
2212130820C	Temperature		19.58	°C	
2212130820C	Turbidity		0.15	NTU	
2212130821C	Conductivity		1013	μS/cm	
2212130821C	DO		6.80	mg/L	
2212130821C	DTW		192.30	ft	
2212130821C	ORP		80	mV	
2212130821C	pН		7.92	NA	
2212130821C	Temperature		19.60	°C	
2212130821C	Turbidity		0.39	NTU	
Well ID JE	R-1-483	Event Date	1/11/2023		
Sample	Parameter		Result	Units	
2301111503B	Conductivity		1157	μS/cm	
2301111503B	pН		7.56	NA	
2301111503B	Temperature		19.9	°C	
2301111503B	Turbidity		1.73	NTU	
Well ID JE	R-1-563	Event Date	1/11/2023		
Sample	Parameter		Result	Units	
2301111510B	Conductivity		1191	μS/cm	
2301111510B	pН		8.03	NA	
2301111510B	Temperature		19.5	°C	
2301111510B	Turbidity		2.68	NTU	
Well ID JE	R-1-683	Event Date	1/12/2023		
Sample	Parameter		Result	Units	
2301121400B	Conductivity		1187	μS/cm	
2301121400B	pН		7.54	NA	
2301121400B	Temperature		21.0	°C	
2301121400B	Transducer		95.85	ft	
2301121400B	Turbidity		0.85	NTU	
		<u> </u>			Page 28 of 53

Well ID .	JER-2-504	Event Date	1/23/2023		
Sample	Parameter		Result	Units	
2301231415B	Conductivity		1024	μS/cm	
2301231415B	pН		8.96	NA	
2301231415B	Temperature		15.2	°C	
2301231415B	Turbidity		0.20	NTU	
Well ID .	JER-2-584	Event Date	1/23/2023		
Sample	Parameter		Result	Units	
2301231432B	Conductivity		1019	μS/cm	
2301231432B	pH		8.17	NA	
2301231432B	Temperature		16.2	°C	
2301231432B	Turbidity		1.40	NTU	
Well ID .	JER-2-684	Event Date	1/24/2023		
Sample	Parameter		Result	Units	
2301241435B	Conductivity		1037	μS/cm	
2301241435B	pН		8.07	NA	
2301241435B	Temperature		17.0	$^{\circ}\mathrm{C}$	
2301241435B	Turbidity		1.15	NTU	
Well ID .	JP-1-424	Event Date	1/18/2023		
Well ID Sample	JP-1-424 Parameter	Event Date	1/18/2023 Result	Units	
	Parameter	Event Date		Units μS/cm	
Sample	Parameter Conductivity	Event Date	Result		
Sample 2301181010A	Parameter Conductivity DO	Event Date	Result 986.76	μS/cm	
Sample 2301181010A 2301181010A	Parameter Conductivity DO ORP	Event Date	986.76 5.30	μS/cm mg/L	
Sample 2301181010A 2301181010A 2301181010A	Parameter Conductivity DO ORP pH	Event Date	986.76 5.30 122.7	μS/cm mg/L mV	
2301181010A 2301181010A 2301181010A 2301181010A	Parameter Conductivity DO ORP pH Temperature	Event Date	986.76 5.30 122.7 7.79	μS/cm mg/L mV NA	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	986.76 5.30 122.7 7.79 18.64	μS/cm mg/L mV NA °C	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181010A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 986.76 5.30 122.7 7.79 18.64 0.59	μS/cm mg/L mV NA °C NTU	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO	Event Date	Result 986.76 5.30 122.7 7.79 18.64 0.59 985.60	μS/cm mg/L mV NA °C NTU μS/cm	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH	Event Date	Result 986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH Temperature	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH Temperature	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73 0.63 985.80	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73 0.63 985.80 5.26	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73 0.63 985.80 5.26 122.8	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181020A 2301181020A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP ORP DH Temperature Turbidity Conductivity DO ORP	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73 0.63 985.80 5.26	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L my	
2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181010A 2301181015A 2301181015A 2301181015A 2301181015A 2301181015A 2301181020A 2301181020A 2301181020A	Parameter Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP PH Temperature Turbidity Conductivity DO ORP ORP PH Temperature Turbidity Conductivity DO ORP	Event Date	986.76 5.30 122.7 7.79 18.64 0.59 985.60 5.31 122.8 7.80 18.73 0.63 985.80 5.26 122.8	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L my	

Well ID JP-	-2-447	Event Date	1/18/2023		
Sample	Parameter		Result	Units	
2301181500A	Conductivity		1010.9	μS/cm	
2301181500A	DO		6.23	mg/L	
2301181500A	ORP		173.2	mV	
2301181500A	pН		7.59	NA	
2301181500A	Temperature		19.31	°C	
2301181500A	Turbidity		0.98	NTU	
2301181505A	Conductivity		1009.1	μS/cm	
2301181505A	DO		6.23	mg/L	
2301181505A	ORP		173.6	mV	
2301181505A	pН		7.59	NA	
2301181505A	Temperature		19.33	°C	
2301181505A	Turbidity		0.79	NTU	
2301181510A	Conductivity		1010.7	μS/cm	
2301181510A	DO		6.18	mg/L	
2301181510A	ORP		173.2	mV	
2301181510A	pН		7.59	NA	
2301181510A	Temperature		19.28	°C	
2301181510A	Turbidity		0.87	NTU	
Well ID JP-	-3-509	Event Date	1/23/2023		
Sample	Parameter		Result	Units	
2301230955A	Conductivity		1114	μS/cm	
2301230955A	DO		5.34	mg/L	
2301230955A	DTW		20.20	ft	
2301230955A	ORP		106	mV	
2301230955A	рН		7.66	NA	
2301230955A	Temperature		19.61	°C	
2301230955A	Turbidity		0.58	NTU	
2301231000A	Conductivity		1108	μS/cm	
2301231000A	DO		5.10	mg/L	
2301231000A	DTW		20.20	ft	
2301231000A	ORP		102	mV	
2301231000A	pН		7.68	NA	
2301231000A	Temperature		19.68	°C	
2301231000A	Turbidity		0.51	NTU	
2301231005A	Conductivity		1110	μS/cm	
2301231005A	DO		5.12	mg/L	
2301231005A	DTW		20.20	ft	
2301231005A	ORP		109	mV	
2301231005A	pН		7.65	NA	
2301231005A	Temperature		19.72	°C	
2301231005A	Turbidity		0.56	NTU	

Well ID	JP-3-689	Event Date	1/23/2023		
Sample	Parameter		Result	Units	
2301231415	5A Conductivity		1113	μS/cm	
2301231415	5A DO		4.99	mg/L	
2301231415	5A DTW		20.20	ft	
2301231415	5A ORP		110	mV	
2301231415	5A pH		7.72	NA	
2301231415	5A Temperature		20.13	°C	
2301231415	5A Turbidity		1.15	NTU	
2301231420	OA Conductivity		1120	μS/cm	
2301231420	OA DO		5.05	mg/L	
2301231420)A DTW		20.20	ft	
2301231420	OA ORP		111	mV	
2301231420)A pH		7.70	NA	
2301231420	A Temperature		20.17	°C	
2301231420	OA Turbidity		0.97	NTU	
2301231425	5A Conductivity		1115	μS/cm	
2301231425	5A DO		4.94	mg/L	
2301231425	5A DTW		20.20	ft	
2301231425	5A ORP		110	mV	
2301231425	5A pH		7.66	NA	
2301231425	5A Temperature		20.22	°C	
2301231425	5A Turbidity		0.99	NTU	
Well ID	NASA 6	Event Date	11/16/2022		
Sample	Parameter		Result	Units	
2211161005	5B Conductivity		1723	μS/cm	
2211161005	5B DTW		128.62	ft	
2211161005	5B pH		7.37	NA	
2211161005	5B Temperature		12.7	°C	
2211161005	5B Turbidity		4.33	NTU	
2211161020	OB Conductivity		1751	μS/cm	
2211161020)B DTW		137.85	ft	
2211161020)B pH		7.40	NA	
2211161020	OB Temperature		12.5	°C	
2211161020)B Turbidity		5.20	NTU	

Well ID PI	L-10-484 Event Date	1/3/2023		
Sample	Parameter	Result	Units	
2301031440Y	Atmospheric Pressure	12.06	psia	
2301031440Y	Conductivity	1239	μS/cm	
2301031440Y	DTW	465.60	ft	
2301031440Y	Formation Pressure	19.90	psia	
2301031440Y	pН	8.65	NA	
2301031440Y	Temperature	19.0	°C	
2301031440Y	Turbidity	1.56	NTU	
2301031541Y	Atmospheric Pressure	12.08	psia	
2301031541Y	Conductivity	1230	μS/cm	
2301031541Y	DTW	465.72	ft	
2301031541Y	pН	8.72	NA	
2301031541Y	Temperature	19.2	°C	
2301031541Y	Turbidity	1.27	NTU	
Well ID PI	L-10-592 Event Date	1/4/2023		
Sample	Parameter	Result	Units	
2301041340Y	Atmospheric Pressure	12.14	psia	
2301041340Y	Conductivity	1244	μS/cm	
2301041340Y	DTW	465.72	ft	
2301041340Y	Formation Pressure	66.27	psia	
2301041340Y	pН	8.63	NA	
2301041340Y	Temperature	21.3	°C	
2301041340Y	Turbidity	1.75	NTU	
2301041418Y	Atmospheric Pressure	12.10	psia	
2301041418Y	Conductivity	1254	μS/cm	
2301041418Y	DTW	465.85	ft	
2301041418Y	pН	8.55	NA	
2301041418Y	Temperature	21.1	°C	
2301041418Y	Turbidity	1.45	NTU	
Well ID PI	L-11-470 Event Date	12/5/2022		
Sample	Parameter	Result	Units	
2212051409B	Conductivity	1206	μS/cm	
2212051409B	рН	8.75	NA	
2212051409B	Temperature	20.4	°C	
2212051409B	Transducer	66.53	ft	
2212051409B	Turbidity	0.94	NTU	

Well ID PL	-11-530	Event Date	12/5/2022		
Sample	Parameter		Result	Units	
2212051429B	Conductivity		1218	μS/cm	
2212051429B	pН		8.17	NA	
2212051429B	Temperature		20.8	$^{\circ}\mathrm{C}$	
2212051429B	Transducer		68.83	ft	
2212051429B	Turbidity		0.99	NTU	
Well ID PL	-11-710	Event Date	12/6/2022		
Sample	Parameter		Result	Units	
2212061400B	Conductivity		1251	μS/cm	
2212061400B	pН		8.62	NA	
2212061400B	Temperature		20.0	°C	
2212061400B	Transducer		71.84	ft	
2212061400B	Turbidity		0.55	NTU	
Well ID PL	-11-820	Event Date	12/6/2022		
Sample	Parameter		Result	Units	
2212061420B	Conductivity		1126	μS/cm	
2212061420B	pН		8.33	NA	
2212061420B	Temperature		19.9	°C	
2212061420B	Turbidity		0.71	NTU	
Well ID PL	-11-980	Event Date	12/6/2022		
Sample	Parameter		Result	Units	
2212061435B	Conductivity		1067	μS/cm	
2212061435B	pН		8.36	NA	
				0.00	
2212061435B	Temperature		20.5	°C	
2212061435B 2212061435B	Temperature Transducer		20.5 74.47	ft	

Well ID PL	-12-570	Event Date	11/10/2022		
Sample	Parameter		Result	Units	
2211100855C	Conductivity		1004	μS/cm	
2211100855C	DO		4.69	mg/L	
2211100855C	ORP		142	mV	
2211100855C	pН		7.40	NA	
2211100855C	Temperature		20.44	°C	
2211100855C	Transducer		16.42	ft	
2211100855C	Turbidity		0.32	NTU	
2211100857C	Conductivity		1003	μS/cm	
2211100857C	DO		4.65	mg/L	
2211100857C	ORP		141	mV	
2211100857C	pН		7.36	NA	
2211100857C	Temperature		20.43	°C	
2211100857C	Turbidity		0.35	NTU	
2211100859C	Conductivity		1005	μS/cm	
2211100859C	DO		4.64	mg/L	
2211100859C	ORP		141	mV	
2211100859C	pН		7.41	NA	
2211100859C	Temperature		20.44	°C	
2211100859C	Turbidity		0.33	NTU	
Well ID PL	₋ -12-800	Event Date	11/10/2022		
Well ID IL	12 000	2.0110 2000	11/10/2022		
Sample	Parameter	2,010,2100	Result	Units	
				Units μS/cm	
Sample	Parameter		Result		
Sample 2211101410C	Parameter Conductivity		Result	μS/cm	
Sample 2211101410C 2211101410C	Parameter Conductivity DO		1013 3.78	μS/cm mg/L	
Sample 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP		1013 3.78 139.9	μS/cm mg/L mV	
Sample 2211101410C 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP pH		1013 3.78 139.9 7.48	μS/cm mg/L mV NA	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP pH Temperature		1013 3.78 139.9 7.48 20.96	μS/cm mg/L mV NA °C	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP pH Temperature Transducer		Result 1013 3.78 139.9 7.48 20.96 16.42	μS/cm mg/L mV NA °C ft	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30	μS/cm mg/L mV NA °C ft NTU	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012	μS/cm mg/L mV NA °C ft NTU μS/cm	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87 0.43	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87 0.43 1012	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87 0.43 1012 3.70	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101420C 2211101420C 2211101420C 2211101420C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87 0.43 1012 3.70 140	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Sample 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101410C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101415C 2211101420C 2211101420C 2211101420C 2211101420C 2211101420C	Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity		Result 1013 3.78 139.9 7.48 20.96 16.42 0.30 1012 3.71 140 7.42 20.87 0.43 1012 3.70 140 7.48	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	

Well ID PL	-1-486	Event Date	1/24/2023		
Sample	Parameter		Result	Units	
2301241025C	Conductivity		951.88	μS/cm	
2301241025C	DO		7.36	mg/L	
2301241025C	DTW		487.43	ft	
2301241025C	ORP		141.3	mV	
2301241025C	pН		8.03	NA	
2301241025C	Temperature		18.43	$^{\circ}\mathrm{C}$	
2301241025C	Turbidity		1.40	NTU	
2301241028C	Conductivity		949.46	μS/cm	
2301241028C	DO		7.12	mg/L	
2301241028C	DTW		487.60	ft	
2301241028C	ORP		140.4	mV	
2301241028C	pН		8.02	NA	
2301241028C	Temperature		18.39	°C	
2301241028C	Turbidity		1.33	NTU	
2301241031C	Conductivity		943.70	μS/cm	
2301241031C	DO		6.87	mg/L	
2301241031C	DTW		487.60	ft	
2301241031C	ORP		139.6	mV	
2301241031C	pH		7.99	NA	
2301241031C	Temperature		18.32	°C	
2301241031C	Turbidity		1.16	NTU	

Well ID PL	-2-504	Event Date	12/12/2022		
Sample	Parameter		Result	Units	
2212121400A	Conductivity		1001.3	μS/cm	
2212121400A	DO		4.41	mg/L	
2212121400A	ORP		183.7	mV	
2212121400A	pН		7.84	NA	
2212121400A	Temperature		20.67	°C	
2212121400A	Transducer		20.30	ft	
2212121400A	Turbidity		3.33	NTU	
2212121403A	Conductivity		1002.8	μS/cm	
2212121403A	DO		4.32	mg/L	
2212121403A	ORP		183.0	mV	
2212121403A	pН		7.85	NA	
2212121403A	Temperature		20.69	°C	
2212121403A	Transducer		20.34	ft	
2212121403A	Turbidity		3.13	NTU	
2212121406A	Conductivity		998.3	μS/cm	
2212121406A	DO		4.20	mg/L	
2212121406A	ORP		182.7	mV	
2212121406A	pН		7.85	NA	
2212121406A	Temperature		20.74	$^{\circ}\mathrm{C}$	
2212121406A	Transducer		20.34	ft	
2212121406A	Turbidity		2.85	NTU	

Well ID	PL-4-464	Event Date	12/12/2022		
Sample	Parameter		Result	Units	
2212120915	5B Conductivity		1043.9	μS/cm	
2212120915	5B DO		6.26	mg/L	
2212120915	5B DTW		449.54	ft	
2212120915	5B ORP		204.1	mV	
2212120915	5B pH		7.65	NA	
2212120915	5B Temperature		20.09	°C	
2212120915	5B Turbidity		1.99	NTU	
2212120918	BB Conductivity		1055.9	μS/cm	
2212120918	BB DO		6.12	mg/L	
2212120918	BB DTW		449.54	ft	
2212120918	BB ORP		204.8	mV	
2212120918	ВВ рН		7.61	NA	
2212120918	BB Temperature		20.16	°C	
2212120918	BB Turbidity		1.80	NTU	
2212120921	1B Conductivity		1067.7	μS/cm	
2212120921	IB DO		5.94	mg/L	
2212120921	1B DTW		449.54	ft	
2212120921	1B ORP		205.3	mV	
2212120921	1B pH		7.59	NA	
2212120921	1B Temperature		20.22	°C	
2212120921	1B Turbidity		1.73	NTU	
Well ID	PL-6-1195	Event Date	1/5/2023		
Sample	Parameter		Result	Units	
2301051410	OY Atmospheric Pressu	re	12.14	psia	
2301051410	OY Conductivity		1984	μS/cm	
2301051410	OY DTW		470.93	ft	
2301051410	OY Formation Pressure		337.28	psia	
2301051410	OY pH		8.52	NA	
2301051410	OY Temperature		23.2	°C	
2301051410	OY Turbidity		7.67	NTU	
2301101354	4Y Atmospheric Pressu	re	12.16	psia	
2301101354	4Y Conductivity		1995	μS/cm	
			470.70	ft	
2301101354	4Y DTW		4/0./0	10	
2301101354 2301101354			8.31	NA	
	4Y pH				

Well ID PL	-6-1335 Event Date	1/10/2023		
Sample	Parameter	Result	Units	
2301101520Y	Atmospheric Pressure	12.25	psia	
2301101520Y	Conductivity	1974	μS/cm	
2301101520Y	DTW	470.70	ft	
2301101520Y	Formation Pressure	398.46	psia	
2301101520Y	рН	8.91	NA	
2301101520Y	Temperature	22.2	°C	
2301101520Y	Turbidity	6.79	NTU	
2301111020Y	Atmospheric Pressure	12.33	psia	
2301111020Y	Conductivity	1967	μS/cm	
2301111020Y	DTW	470.83	ft	
2301111020Y	pH	8.82	NA	
2301111020Y	Temperature	21.8	°C	
2301111020Y	Turbidity	3.83	NTU	
Well ID PL	6-545 Event Date	1/23/2023		
wente it	1 0 545 Event Date	1/20/2020		
Sample	Parameter	Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2301231505Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity	12.11 1093	psia μS/cm	
Sample 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW	12.11 1093 471.21	psia μS/cm ft	
2301231505Y 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	Result 12.11 1093 471.21 55.38	psia μS/cm ft psia	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.11 1093 471.21 55.38 8.72	psia μS/cm ft psia NA	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.11 1093 471.21 55.38 8.72 20.2	psia μS/cm ft psia NA °C	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.11 1093 471.21 55.38 8.72 20.2 0.87	psia μS/cm ft psia NA °C NTU	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.11 1093 471.21 55.38 8.72 20.2 0.87 12.13	psia μS/cm ft psia NA °C NTU psia	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.11 1093 471.21 55.38 8.72 20.2 0.87 12.13 1080	psia μS/cm ft psia NA °C NTU psia μS/cm	
2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231505Y 2301231555Y 2301231555Y 2301231555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.11 1093 471.21 55.38 8.72 20.2 0.87 12.13 1080 471.33	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID PL	-6-725 Event Date	1/17/2023		
Sample	Parameter	Result	Units	
2301171330Y	Atmospheric Pressure	12.16	psia	
2301171330Y	Conductivity	976	μS/cm	
2301171330Y	DTW	471.12	ft	
2301171330Y	Formation Pressure	134.01	psia	
2301171330Y	pН	8.43	NA	
2301171330Y	Temperature	19.7	°C	
2301171330Y	Turbidity	1.91	NTU	
2301171417Y	Atmospheric Pressure	12.15	psia	
2301171417Y	Conductivity	986	μS/cm	
2301171417Y	DTW	471.21	ft	
2301171417Y	pH	8.50	NA	
2301171417Y	Temperature	19.5	°C	
2301171417Y	Turbidity	1.50	NTU	
Well ID PL	-6-915 Event Date	1/11/2023		
Well ID PL Sample	-6-915 Event Date Parameter	1/11/2023 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2301111345Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity	12.39 1042	psia μS/cm	
Sample 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW	12.39 1042 470.83	psia μS/cm ft	
2301111345Y 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	12.39 1042 470.83 217.24	psia μS/cm ft psia	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.39 1042 470.83 217.24 8.92	psia μS/cm ft psia NA	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.39 1042 470.83 217.24 8.92 21.2	psia μS/cm ft psia NA °C	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.39 1042 470.83 217.24 8.92 21.2 3.55	psia μS/cm ft psia NA °C NTU	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.39 1042 470.83 217.24 8.92 21.2 3.55	psia μS/cm ft psia NA °C NTU psia	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111541Y 2301111541Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.39 1042 470.83 217.24 8.92 21.2 3.55 12.42 1034	psia μS/cm ft psia NA °C NTU psia μS/cm	
2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111345Y 2301111541Y 2301111541Y 2301111541Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.39 1042 470.83 217.24 8.92 21.2 3.55 12.42 1034 471.12	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID PL	-7-560 Event Date	11/8/2022		
Sample	Parameter	Result	Units	
2211081000Y	Atmospheric Pressure	12.61	psia	
2211081000Y	Conductivity	1009	μS/cm	
2211081000Y	DTW	484.20	ft	
2211081000Y	Formation Pressure	45.99	psia	
2211081000Y	pН	8.19	NA	
2211081000Y	Temperature	22.5	°C	
2211081000Y	Turbidity	1.25	NTU	
2211081055Y	Atmospheric Pressure	12.63	psia	
2211081055Y	Conductivity	997	μS/cm	
2211081055Y	DTW	484.33	ft	
2211081055Y	pH	8.24	NA	
2211081055Y	Temperature	22.9	°C	
2211081055Y	Turbidity	1.14	NTU	
Well ID PL	-8-455 Event Date	12/14/2022		
			T T •	
Sample	Parameter	Result	Units	
Sample 2212150925Y	Parameter Atmospheric Pressure	Result	psia	
2212150925Y	Atmospheric Pressure	12.15	psia	
2212150925Y 2212150925Y	Atmospheric Pressure Conductivity	12.15 1107	psia μS/cm	
2212150925Y 2212150925Y 2212150925Y	Atmospheric Pressure Conductivity DTW	12.15 1107 440.95	psia μS/cm ft	
2212150925Y 2212150925Y 2212150925Y 2212150925Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.15 1107 440.95 21.66	psia μS/cm ft psia	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.15 1107 440.95 21.66 7.30	psia μS/cm ft psia NA	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.15 1107 440.95 21.66 7.30 17.9	psia μS/cm ft psia NA °C	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.15 1107 440.95 21.66 7.30 17.9 1.09	psia μS/cm ft psia NA °C NTU	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212151027Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.15 1107 440.95 21.66 7.30 17.9 1.09	psia μS/cm ft psia NA °C NTU psia	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212151027Y 2212151027Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.15 1107 440.95 21.66 7.30 17.9 1.09	psia μS/cm ft psia NA °C NTU psia μS/cm	
2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212150925Y 2212151027Y 2212151027Y 2212151027Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.15 1107 440.95 21.66 7.30 17.9 1.09 12.19 1117 441.03	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID Pl	L-8-605 Event Dat	e 12/14/2022		
Sample	Parameter	Result	Units	
2212141313Y	Atmospheric Pressure	12.17	psia	
2212141313Y	Conductivity	1071	μS/cm	
2212141313Y	DTW	440.87	ft	
2212141313Y	Formation Pressure	86.91	psia	
2212141313Y	pH	6.96	NA	
2212141313Y	Temperature	12.1	°C	
2212141313Y	Turbidity	2.53	NTU	
2212141412Y	Atmospheric Pressure	12.12	psia	
2212141412Y	Conductivity	1135	μS/cm	
2212141412Y	DTW	440.95	ft	
2212141412Y	pH	8.21	NA	
2212141412Y	Temperature	19.7	°C	
2212141412Y	Turbidity	1.09	NTU	
Well ID ST	Γ-1-473 Event Dat	e 11/9/2022		
Sample	Parameter	Result	Units	
2211091430C	Conductivity	1089.1	μS/cm	
2211091430C	DO	6.32	mg/L	
2211091430C	ORP	109	mV	
2211091430C	pН	7.40	NA	
2211091430C	Temperature	20.78	°C	
2211091430C	Transducer	18.58	ft	
2211091430C	Turbidity	1.30	NTU	
2211091432C	Conductivity	1092.3	μS/cm	
2211091432C	DO	6.20	mg/L	
2211091432C	ORP	114	mV	
2211091432C	pН	7.38	NA	
2211091432C	Temperature	20.84	°C	
2211091432C	Turbidity	1.18	NTU	
2211091434C	Conductivity	1091.5	μS/cm	
2211091434C	DO	6.13	mg/L	
2211091434C	ORP	116	mV	
2211091434C	pН	7.38	NA	
2211091434C	Temperature	20.81	°C	
2211091434C	Turbidity	1.10	NTU	

Well ID ST	-1-541	Event Date	11/16/2022		
Sample	Parameter		Result	Units	
2211161020A	Conductivity		1156.5	μS/cm	
2211161020A	DO		6.62	mg/L	
2211161020A	DTW		470.25	ft	
2211161020A	ORP		20.9	mV	
2211161020A	pH		7.34	NA	
2211161020A	Temperature		20.02	$^{\circ}\mathrm{C}$	
2211161020A	Turbidity		0.81	NTU	
2211161022A	Conductivity		1159.2	μS/cm	
2211161022A	DO		6.65	mg/L	
2211161022A	DTW		470.40	ft	
2211161022A	ORP		20.8	mV	
2211161022A	pН		7.34	NA	
2211161022A	Temperature		20.13	°C	
2211161022A	Turbidity		0.75	NTU	
2211161024A	Conductivity		1158.4	μS/cm	
2211161024A	DO		6.69	mg/L	
2211161024A	DTW		470.40	ft	
2211161024A	ORP		21.7	mV	
2211161024A	pH		7.33	NA	
2211161024A	Temperature		20.10	$^{\circ}\mathrm{C}$	
2211161024A	Turbidity		0.88	NTU	

Well ID ST	-1-630	Event Date	11/16/2022		
Sample	Parameter		Result	Units	
2211151520A	Conductivity		852.32	μS/cm	
2211151520A	DO		4.62	mg/L	
2211151520A	DTW		470.00	ft	
2211151520A	ORP		136.8	mV	
2211151520A	pH		7.63	NA	
2211151520A	Temperature		19.68	°C	
2211151520A	Turbidity		2.11	NTU	
2211151522A	Conductivity		853.57	μS/cm	
2211151522A	DO		4.70	mg/L	
2211151522A	DTW		470.00	ft	
2211151522A	ORP		137.2	mV	
2211151522A	pН		7.65	NA	
2211151522A	Temperature		19.72	°C	
2211151522A	Turbidity		1.98	NTU	
2211151524A	Conductivity		854.44	μS/cm	
2211151524A	DO		4.65	mg/L	
2211151524A	DTW		470.00	ft	
2211151524A	ORP		138.3	mV	
2211151524A	pН		7.63	NA	
2211151524A	Temperature		19.67	°C	
2211151524A	Turbidity		1.87	NTU	
Well ID ST	-3-486	Event Date	12/7/2022		
Sample	Parameter	2,010,240	Result	Units	
•					
2212070020C	Conductivity		959.20	uS/cm	
2212070920C	Conductivity		959.20	μS/cm	
2212070920C	DO		5.81	mg/L	
2212070920C 2212070920C	DO ORP		5.81 226.4	mg/L mV	
2212070920C 2212070920C 2212070920C	DO ORP pH		5.81 226.4 7.26	mg/L mV NA	
2212070920C 2212070920C 2212070920C 2212070920C	DO ORP pH Temperature		5.81 226.4 7.26 19.89	mg/L mV NA °C	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C	DO ORP pH Temperature Transducer		5.81 226.4 7.26 19.89 23.49	mg/L mV NA °C ft	
2212070920C 2212070920C 2212070920C 2212070920C	DO ORP pH Temperature		5.81 226.4 7.26 19.89	mg/L mV NA °C ft NTU	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C	DO ORP pH Temperature Transducer		5.81 226.4 7.26 19.89 23.49 4.55	mg/L mV NA °C ft	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C	DO ORP pH Temperature Transducer Turbidity		5.81 226.4 7.26 19.89 23.49 4.55	mg/L mV NA °C ft NTU	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity		5.81 226.4 7.26 19.89 23.49 4.55	mg/L mV NA °C ft NTU μS/cm	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75	mg/L mV NA °C ft NTU μS/cm mg/L	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9	mg/L mV NA °C ft NTU μS/cm mg/L mV	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25	mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20 958.15	mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20	mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20 958.15	mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070922C 2212070922C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20 958.15 5.80	mg/L mV NA °C ft NTU	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070922C 2212070922C 2212070922C 2212070922C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20 958.15 5.80 226.1	mg/L mV NA °C ft NTU µS/cm mg/L mV NA °C NTU µS/cm mg/L mV	
2212070920C 2212070920C 2212070920C 2212070920C 2212070920C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070921C 2212070922C 2212070922C 2212070922C 2212070922C 2212070922C	DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP		5.81 226.4 7.26 19.89 23.49 4.55 957.33 5.75 225.9 7.25 19.85 4.20 958.15 5.80 226.1 7.26	mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	

Well ID ST	-3-586	Event Date	12/15/2022		
Sample	Parameter		Result	Units	
2212151000C	Conductivity		851	μS/cm	
2212151000C	DO		10.01	mg/L	
2212151000C	DTW		460.95	ft	
2212151000C	ORP		188	mV	
2212151000C	pН		7.60	NA	
2212151000C	Temperature		19.29	°C	
2212151000C	Turbidity		18.6	NTU	
2212151002C	Conductivity		850	μS/cm	
2212151002C	DO		9.93	mg/L	
2212151002C	ORP		187	mV	
2212151002C	pН		7.57	NA	
2212151002C	Temperature		19.29	°C	
2212151002C	Turbidity		19.2	NTU	
2212151004C	Conductivity		852	μS/cm	
2212151004C	DO		9.90	mg/L	
2212151004C	DTW		261.22	ft	
2212151004C	ORP		187	mV	
2212151004C	pН		7.59	NA	
2212151004C	Temperature		19.28	°C	
2212151004C	Turbidity		19.6	NTU	
Well ID ST	-3-666	Event Date	12/8/2022		
Sample	Parameter		Result	Units	
2212080955C	Conductivity		1008.7	μS/cm	
2212080955C	DO		5.63	mg/L	
2212080955C	DTW		461.72	ft	
2212080955C	ORP		202.4	mV	
2212080955C	pН		7.49	NA	
2212080955C	Temperature		20.85	°C	
2212080955C	Turbidity		3.56	NTU	
2212080956C	Conductivity		1007.6	μS/cm	
2212080956C	DO		5.58	mg/L	
2212080956C	ORP		202.8	mV	
2212080956C	pН		7.50	NA	
2212080956C	Temperature		20.81	°C	
2212080956C	Turbidity		3.15	NTU	
2212080957C	Conductivity		1008.1	μS/cm	
	DO		5.59	mg/L	
2212080957C	DO		202 5	mV	
	ORP		202.7	111 V	
2212080957C			202.7 7.49	NA	
2212080957C 2212080957C	ORP				
2212080957C 2212080957C 2212080957C	ORP pH		7.49	NA	

Event Date

12/8/2022

Well ID ST-3-735

			12/0/2022		
Sample	Parameter		Result	Units	
2212081355C	Conductivity		1016.6	μS/cm	
2212081355C	DO		4.85	mg/L	
2212081355C	DTW		462.35	ft	
2212081355C	ORP		47.5	mV	
2212081355C	pН		7.28	NA	
2212081355C	Temperature		21.03	°C	
2212081355C	Turbidity		1.72	NTU	
2212081356C	Conductivity		1018.8	μS/cm	
2212081356C	DO		4.84	mg/L	
2212081356C	ORP		49.6	mV	
2212081356C	pН		7.27	NA	
2212081356C	Temperature		20.63	°C	
2212081356C	Turbidity		1.80	NTU	
2212081357C	Conductivity		1016.9	μS/cm	
2212081357C	DO		4.85	mg/L	
2212081357C	ORP		48.7	mV	
2212081357C	pН		7.29	NA	
2212081357C	Temperature		20.80	$^{\circ}\mathrm{C}$	
2212081357C	Turbidity		1.78	NTU	
Well ID ST	-4-481	Event Date	12/1/2022		
	-4-481 Parameter	Event Date	12/1/2022 Result	Units	
Sample	Parameter	Event Date	Result	Units	
Sample 2212011015A	Parameter Conductivity	Event Date	Result 1029.8	μS/cm	
Sample 2212011015A 2212011015A	Parameter Conductivity DO	Event Date	Result 1029.8 6.28	μS/cm mg/L	
Sample 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW	Event Date	Result 1029.8 6.28 459.00	μS/cm mg/L ft	
Sample 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP	Event Date	Result 1029.8 6.28 459.00 190.4	μS/cm mg/L ft mV	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH	Event Date	Result 1029.8 6.28 459.00 190.4 7.46	μS/cm mg/L ft mV NA	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH Temperature	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56	μS/cm mg/L ft mV NA °C	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH	Event Date	Result 1029.8 6.28 459.00 190.4 7.46	μS/cm mg/L ft mV NA	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH Temperature	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56	μS/cm mg/L ft mV NA °C	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11	μS/cm mg/L ft mV NA °C NTU	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3	μS/cm mg/L ft mV NA °C NTU μS/cm	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58 0.53	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58 0.53 1030.5	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011019A 2212011019A 2212011019A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58 0.53 1030.5 6.27	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011017A 2212011019A 2212011019A 2212011019A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58 0.53 1030.5 6.27 459.00 191.1	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm	
Sample 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011015A 2212011017A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	Result 1029.8 6.28 459.00 190.4 7.46 20.56 1.11 1031.3 6.25 459.00 190.1 7.47 20.58 0.53 1030.5 6.27 459.00	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm ft mV L ft mV NA	

Well ID ST	-4-589	Event Date	11/16/2022		
Sample	Parameter		Result	Units	
2211161440C	Conductivity		741.58	μS/cm	
2211161440C	DO		3.55	mg/L	
2211161440C	ORP		147.1	mV	
2211161440C	pH		7.94	NA	
2211161440C	Temperature		20.14	°C	
2211161440C	Turbidity		1.13	NTU	
2211161441C	Conductivity		740.58	μS/cm	
2211161441C	DO		3.49	mg/L	
2211161441C	ORP		147.7	mV	
2211161441C	pH		7.93	NA	
2211161441C	Temperature		20.12	°C	
2211161441C	Turbidity		1.08	NTU	
2211161442C	Conductivity		741.38	μS/cm	
2211161442C	DO		3.48	mg/L	
2211161442C	ORP		148.4	mV	
2211161442C	pН		7.93	NA	
2211161442C	Temperature		20.13	°C	
2211161442C	Turbidity		1.21	NTU	
Well ID ST	-4-690	Event Date	12/1/2022		
Well ID ST Sample	-4-690 Parameter	Event Date	12/1/2022 Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result		
Sample 2212011400A	Parameter Conductivity	Event Date	Result 817.90	μS/cm	
Sample 2212011400A 2212011400A	Parameter Conductivity DO	Event Date	Result 817.90 2.93	μS/cm mg/L	
Sample 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW	Event Date	Result 817.90 2.93 458.00	μS/cm mg/L ft	
Sample 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP	Event Date	Result 817.90 2.93 458.00 131.4	μS/cm mg/L ft mV	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP pH	Event Date	Result 817.90 2.93 458.00 131.4 8.17	μS/cm mg/L ft mV NA	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP pH Temperature	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06	μS/cm mg/L ft mV NA °C	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80	μS/cm mg/L ft mV NA °C NTU	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90	μS/cm mg/L ft mV NA °C NTU μS/cm	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99 1.53	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99 1.53 822.37	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99 1.53 822.37 2.74	μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Sample 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011404A 2212011404A 2212011404A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99 1.53 822.37 2.74 458.20	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm	
2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011400A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011402A 2212011404A 2212011404A 2212011404A 2212011404A	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	Result 817.90 2.93 458.00 131.4 8.17 20.06 1.80 820.90 2.79 458.20 131.7 8.17 19.99 1.53 822.37 2.74 458.20 131.8	µS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm ft mV NA °C NTU μS/cm mg/L ft mV	

Well ID ST	-5-485 Event Date	11/1/2022		
Sample	Parameter	Result	Units	
2211011430Y	Atmospheric Pressure	12.62	psia	
2211011430Y	Conductivity	1077	μS/cm	
2211011430Y	DTW	476.92	ft	
2211011430Y	Formation Pressure	40.19	psia	
2211011430Y	pH	8.45	NA	
2211011430Y	Temperature	23.8	°C	
2211011430Y	Turbidity	1.05	NTU	
2211011530Y	Atmospheric Pressure	12.60	psia	
2211011530Y	Conductivity	1084	μS/cm	
2211011530Y	DTW	477.00	ft	
2211011530Y	pН	8.39	NA	
2211011530Y	Temperature	23.5	°C	
2211011530Y	Turbidity	0.96	NTU	
Well ID ST	-5-655 Event Date	11/1/2022		
Sample	Parameter	Result	Units	
2211011030Y	Atmospheric Pressure	12.62	psia	
2211011030Y	Conductivity	917	μS/cm	
2211011030Y	DTW	476.76	ft	
2211011030Y	Formation Pressure	113.82	psia	
2211011030Y	pH	8.79	NA	
2211011030Y	Temperature	22.1	°C	
2211011030Y	Turbidity	1.30	NTU	
2211011057Y	Atmospheric Pressure	12.62	psia	
2211011057Y	Conductivity	912	μS/cm	
2211011057Y	DTW	476.92	ft	
2211011057Y	pH	8.69	NA	
2211011057Y	Temperature	22.3	°C	
2211011057Y	Turbidity	1.12	NTU	
Well ID ST	-6-528 Event Date	12/7/2022		
Sample	Parameter	Result	Units	
2212071429B	Conductivity	1256	μS/cm	
2212071429B	рН	8.72	NA	
2212071429B	Temperature	18.0	°C	
2212071429B	Transducer	73.06	ft	
2212071429B	Turbidity	1.18	NTU	

Well ID S	ST-6-568	Event Date	12/7/2022		
Sample	Parameter		Result	Units	
2212071440B	Conductivity		1203	μS/cm	
2212071440B	pН		8.25	NA	
2212071440B	Temperature		18.7	°C	
2212071440B	Transducer		73.73	ft	
2212071440B	Turbidity		0.57	NTU	
Well ID S	ST-6-678	Event Date	12/8/2022		
Sample	Parameter		Result	Units	
2212081350B	Conductivity		1176	μS/cm	
2212081350B	рН		8.71	NA	
2212081350B	Temperature		19.3	°C	
2212081350B	Turbidity		0.72	NTU	
Well ID S	ST-6-824	Event Date	12/8/2022		
Sample	Parameter		Result	Units	
2212081410B	Conductivity		1042	μS/cm	
2212081410B	pН		8.57	NA	
2212081410B	Temperature		18.4	°C	
2212081410B	Transducer		76.43	ft	
2212081410B	Turbidity		1.39	NTU	
Well ID S	ST-6-970	Event Date	12/8/2022		
Sample	Parameter		Result	Units	
2212081418B	Conductivity		1172	μS/cm	
2212081418B	pН		8.51	NA	
2212081418B	Temperature		19.1	°C	
2212081418B	Turbidity		0.73	NTU	
Well ID S	ST-7-453	Event Date	1/9/2023		
Sample	Parameter		Result	Units	
2301091500B	Conductivity		1207	μS/cm	
2301091500B	•		8.40	NA	
2301091500B	Temperature		20.5	°C	
2301091500B	Turbidity		1.05	NTU	
Well ID S	ST-7-544	Event Date	1/9/2023		
Sample	Parameter		Result	Units	
2301091510B	Conductivity		1169	μS/cm	
2301091510B	pН		7.84	NA	
2301091510B	=		19.4	°C	
2301091510B			0.81	NTU	

Sample Parameter Result Units	Well ID S	T-7-779	Event Date	1/10/2023		
2301101330B pH 7.97 NA 2301101330B Temperature 21.5 °C 2301101330B Turbidity 0.45 NTU	Sample	Parameter		Result	Units	
2301101330B Temperature 21.5 °C	2301101330B	Conductivity		1046	μS/cm	
Sample	2301101330B	pН		7.97	NA	
Well ID ST-7-970 Event Date 1/10/2023 Sample Parameter Result Units 2301101338B Conductivity 852 μS/cm 2301101338B pH 7.99 NA 2301101338B Temperature 19.3 °C 2301101338B Turbidity 0.64 NTU Well ID WW-1-452 Event Date 12/5/2022 Sample Parameter Result Units 2212051515C DO 5.84 mg/L 2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C PH 7.63 NA 2212051515C Turbidity 2.96 NTU 2212051516C Turbidity 2.96 NTU 2212051516C DO 5.79 mg/L 2212051516C PH 7.64 NA 2212051516C Temperature	2301101330B	Temperature		21.5	°C	
Sample Parameter Result Units	2301101330B	Turbidity		0.45	NTU	
2301101338B Conductivity 852 μS/cm	Well ID S	T-7-970	Event Date	1/10/2023		
2301101338B pH 7.99 NA 2301101338B Temperature 19.3 °C 2301101338B Turbidity 0.64 NTU	Sample	Parameter		Result	Units	
19.3 °C	2301101338B	Conductivity		852	μS/cm	
2301101338B Turbidity 0.64 NTU Well ID WW-1-452 Event Date 12/5/2022 Sample Parameter Result Units 2212051515C Conductivity 1085.0 μS/cm 2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C PH 7.64 NA 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C ORP 177.4 mV 2212051517C <	2301101338B	pН		7.99	NA	
Well ID WW-1-452 Event Date 12/5/2022 Sample Parameter Result Units 2212051515C Conductivity 1085.0 μS/cm 2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C PH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C ORP 177.1 mV 2212051516C ORP 177.1 mV 2212051516C PH 7.64 NA 2212051516C Temperature 21.78 °C 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C ORP	2301101338B	Temperature		19.3	°C	
Sample Parameter Result Units 2212051515C Conductivity 1085.0 μS/cm 2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C ORP 177.4 mV 2212051517C ORP 177.4 mV 2212051517C Temperature	2301101338B	Turbidity		0.64	NTU	
2212051515C Conductivity 1085.0 μS/cm 2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051516C Turbidity 2.96 NTU 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C PH 7.62 NA 2212051517C Temperature 21.81 °C	Well ID V	VW-1-452	Event Date	12/5/2022		
2212051515C DO 5.84 mg/L 2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051516C Turbidity 2.96 NTU 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	Sample	Parameter		Result	Units	
2212051515C DTW 423.20 ft 2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	Conductivity		1085.0	μS/cm	
2212051515C ORP 177.6 mV 2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C ORP 177.4 mV 2212051517C ORP 177.4 mV 2212051517C PH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	DO		5.84	mg/L	
2212051515C pH 7.63 NA 2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	DTW		423.20	ft	
2212051515C Temperature 21.89 °C 2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	ORP		177.6	mV	
2212051515C Turbidity 2.96 NTU 2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	pН		7.63	NA	
2212051516C Conductivity 1080.4 μS/cm 2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	Temperature		21.89	°C	
2212051516C DO 5.79 mg/L 2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051515C	Turbidity		2.96	NTU	
2212051516C ORP 177.1 mV 2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	Conductivity		1080.4	μS/cm	
2212051516C pH 7.64 NA 2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	DO		5.79	mg/L	
2212051516C Temperature 21.78 °C 2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	ORP		177.1	mV	
2212051516C Turbidity 2.78 NTU 2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	pН		7.64	NA	
2212051517C Conductivity 1083.2 μS/cm 2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	Temperature		21.78	°C	
2212051517C DO 5.80 mg/L 2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051516C	Turbidity		2.78	NTU	
2212051517C ORP 177.4 mV 2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051517C	Conductivity				
2212051517C pH 7.62 NA 2212051517C Temperature 21.81 °C	2212051517C	DO		5.80	mg/L	
2212051517C Temperature 21.81 °C	2212051517C	ORP		177.4	mV	
	2212051517C	pH		7.62	NA	
2212051517C Turbidity 2.81 NTU	2212051517C	Temperature		21.81	°C	
	2212051517C	Turbidity		2.81	NTU	

Well ID W	W-2-489	Event Date	12/6/2022		
Sample	Parameter		Result	Units	
2212060945C	Conductivity		919.65	μS/cm	
2212060945C	DO		3.80	mg/L	
2212060945C	ORP		150.9	mV	
2212060945C	pН		8.33	NA	
2212060945C	Temperature		21.09	°C	
2212060945C	Transducer		23.99	ft	
2212060945C	Turbidity		4.96	NTU	
2212060946C	Conductivity		915.73	μS/cm	
2212060946C	DO		3.73	mg/L	
2212060946C	ORP		151.2	mV	
2212060946C	pН		8.33	NA	
2212060946C	Temperature		21.21	°C	
2212060946C	Turbidity		4.78	NTU	
2212060947C	Conductivity		917.18	μS/cm	
2212060947C	DO		3.74	mg/L	
2212060947C	ORP		150.9	mV	
2212060947C	pН		8.33	NA	
2212060947C	Temperature		20.99	°C	
2212060947C	Turbidity		4.82	NTU	
Well ID W	W-2-664	Event Date	12/6/2022		
Sample	Parameter		Result	Units	
Sample	1 al allietei		Result		
2212061530C	Conductivity		906.10	μS/cm	
2212061530C	Conductivity		906.10	μS/cm	
2212061530C 2212061530C	Conductivity DO		906.10 4.38	μS/cm mg/L	
2212061530C 2212061530C 2212061530C	Conductivity DO ORP		906.10 4.38 152.6	μS/cm mg/L mV	
2212061530C 2212061530C 2212061530C 2212061530C	Conductivity DO ORP pH		906.10 4.38 152.6 7.78	μS/cm mg/L mV NA	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C	Conductivity DO ORP pH Temperature		906.10 4.38 152.6 7.78 20.62	μS/cm mg/L mV NA °C	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C	Conductivity DO ORP pH Temperature Transducer		906.10 4.38 152.6 7.78 20.62 20.45	μS/cm mg/L mV NA °C ft	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C	Conductivity DO ORP pH Temperature Transducer Turbidity		906.10 4.38 152.6 7.78 20.62 20.45 1.28	μS/cm mg/L mV NA °C ft NTU	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity		906.10 4.38 152.6 7.78 20.62 20.45 1.28	μS/cm mg/L mV NA °C ft NTU μS/cm	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61 1.60	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61 1.60 906.10	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061532C 2212061532C 2212061532C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61 1.60 906.10 4.35	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061532C 2212061532C 2212061532C 2212061532C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61 1.60 906.10 4.35 152.9	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061530C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061531C 2212061532C 2212061532C 2212061532C 2212061532C 2212061532C 2212061532C	Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP		906.10 4.38 152.6 7.78 20.62 20.45 1.28 906.11 4.34 153.2 7.80 20.61 1.60 906.10 4.35 152.9 7.81	μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	

Well ID W	W-3-469 Event Date	12/13/2022		
Sample	Parameter	Result	Units	
2212131258Y	Atmospheric Pressure	12.12	psia	
2212131258Y	Conductivity	1117	μS/cm	
2212131258Y	DTW	409.78	ft	
2212131258Y	Formation Pressure	38.42	psia	
2212131258Y	pH	6.87	NA	
2212131258Y	Temperature	18.0	°C	
2212131258Y	Turbidity	0.66	NTU	
2212131330Y	Atmospheric Pressure	12.13	psia	
2212131330Y	Conductivity	1120	μS/cm	
2212131330Y	DTW	409.87	ft	
2212131330Y	pН	7.48	NA	
2212131330Y	Temperature	15.4	°C	
2212131330Y	Turbidity	0.51	NTU	
Well ID W	W-3-569 Event Date	12/12/2022		
Sample	Parameter	Result	Units	
2212121030Y	Atmospheric Pressure	12.02	psia	
2212121030Y	Conductivity	1099	μS/cm	
2212121030Y	DTW	412.09	ft	
2212121030Y	Formation Pressure	89.98	psia	
2212121030Y	pH	7.93	NA	
2212121030Y	Temperature	18.8	°C	
2212121030Y	Turbidity	4.84	NTU	
2212121355Y	Atmospheric Pressure	12.00	psia	
2212121355Y	Conductivity	1127	μS/cm	
2212121355Y	DTW	412.13	ft	
2212121355Y	рН	7.90	NA	
2212121355Y	Temperature	20.7	°C	
2212121355Y	Turbidity	3.19	NTU	
Well ID W	W-4-419 Event Date	11/8/2022		
Sample	Parameter	Result	Units	
2211081430B	Conductivity	1202	μS/cm	
2211081430B	рН	7.97	NA	
2211081430B	Temperature	21.1	°C	
2211081430B	Transducer	119.95	ft	
2211081430B	Turbidity	1.56	NTU	

Well ID	WW-4-589	Event Date	11/8/2022		
Sample	Parameter		Result	Units	
22110814511	B Conductivity		1151	μS/cm	
22110814511	В рН		7.55	NA	
22110814511	B Temperature		21.2	°C	
22110814511	B Transducer		124.27	ft	
22110814511	B Turbidity		0.98	NTU	
Well ID	WW-4-848	Event Date	11/9/2022		
Sample	Parameter		Result	Units	
22110914151	B Conductivity		991	μS/cm	
22110914151	В рН		8.09	NA	
22110914151	B Temperature		21.6	°C	
22110914151	B Transducer		122.74	ft	
22110914151	B Turbidity		0.86	NTU	
Well ID	WW-4-948	Event Date	11/9/2022		
Sample	Parameter		Result	Units	
22110914501	B Conductivity		1166	μS/cm	
22110914501	В рН		8.00	NA	
22110914501	B Temperature		20.7	°C	
22110914501	B Transducer		124.27	ft	
22110914501	B Turbidity		0.55	NTU	
Well ID	WW-5-459	Event Date	1/18/2023		
Sample	Parameter		Result	Units	
23011814351	B Conductivity		1052	μS/cm	
23011814351	В рН		8.38	NA	
23011814351	B Temperature		17.6	°C	
23011814351	B Transducer		87.70	ft	
23011814351	B Turbidity		0.45	NTU	
Well ID	WW-5-579	Event Date	1/18/2023		
Sample	Parameter		Result	Units	
23011814551	B Conductivity		1009	μS/cm	
23011814551	•		8.53	NA	
23011814551	B Temperature		17.0	°C	
23011814551	B Transducer		87.70	ft	
	B Turbidity		0.36	NTU	

Well ID V	/W-5-809	Event Date	1/19/2023		
Sample	Parameter		Result	Units	
2301191410B	Conductivity		971	μS/cm	
2301191410B	pН		8.59	NA	
2301191410B	Temperature		17.7	°C	
2301191410B	Transducer		87.70	ft	
2301191410B	Turbidity		0.30	NTU	
Well ID V	/W-5-909	Event Date	1/19/2023		
Sample	Parameter		Result	Units	
Sample 2301191434B	Parameter Conductivity		Result	Units μS/cm	
2301191434B	Conductivity		1265	μS/cm	
2301191434B 2301191434B	Conductivity pH		1265 8.44	μS/cm NA	

Appendix A.2 Monitor Well Analytical Data

Detections for Monitoring Well Sampling Events in this Reporting Period

Analytical Results for Sampling Events at 100-D-176

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/14/2022	8260	2211140930A	2-Propanol	5.4	ug/L	50	3.4		J
11/14/2022	8260	2211140930A	Trichloroethene (TCE)	3.5	ug/L	1	0.2		
11/14/2022	8260	2211140930A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.45	ug/L	1	0.2		J
11/14/2022	8260	2211140930A	Silane, fluorotrimethyl-	8	ug/L	NA	NA		TIC
11/14/2022	8260	2211140930A	Silane, methoxytrimethyl-	9.3	ug/L	NA	NA		TIC
11/14/2022	8260	2211140930A	1,1,2-Trichloro-1,2,2-Trifluoroethane	28	ug/L	1	0.2		
11/14/2022	8260	2211140932A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.52	ug/L	1	0.2		J
11/14/2022	8260	2211140932A	1,1,2-Trichloro-1,2,2-Trifluoroethane	28	ug/L	1	0.2		
11/14/2022	8260	2211140932A	Trichloroethene (TCE)	3.5	ug/L	1	0.2		
11/14/2022	607	2211140933A	Bromacil	0.09	$\mu g/L$	0.01	0.005	99	
11/14/2022	8270	2211140935A	1H-Benzotriazole, 4-methyl-	12	ug/L	NA	NA		TIC
11/14/2022	METALS	2211140936A	Molybdenum, Total	0.083	mg/L	0.025	0.003		
11/14/2022	METALS	2211140936A	Manganese, Total	0.064	mg/L	0.01	0.004		
11/14/2022	METALS	2211140936A	Zinc, Total	0.003	mg/L	0.02	0.003		J
11/14/2022	METALS	2211140936A	Vanadium, Total	0.009	mg/L	0.05	0.0007		J
11/14/2022	METALS	2211140936A	Strontium, Total	7.89	mg/L	0.1	0.002		
11/14/2022	METALS	2211140936A	Sodium, Total	246	mg/L	10	2		
11/14/2022	METALS	2211140936A	Selenium, Total	0.008	mg/L	0.01	0.007		J
11/14/2022	METALS	2211140936A	Potassium, Total	5.1	mg/L	2	0.4		
11/14/2022	METALS	2211140936A	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
11/14/2022	METALS	2211140936A	Iron, Total	2.98	mg/L	0.1	0.07		
11/14/2022	METALS	2211140936A	Nickel, Total	0.397	mg/L	0.04	0.003		
11/14/2022	METALS	2211140936A	Copper, Total	0.006	mg/L	0.02	0.004		J
11/14/2022	METALS	2211140936A	Chromium, Total	0.796	mg/L	0.01	0.002		
11/14/2022	METALS	2211140936A	Calcium, Total	175	mg/L	1	0.3		
11/14/2022	METALS	2211140936A	Boron, Total	1.62	mg/L	0.2	0.02		
11/14/2022	METALS	2211140936A	Barium, Total	0.048	mg/L	0.02	0.003		
11/14/2022	METALS	2211140936A	Arsenic, Total	0.0026	mg/L	0.001	0.0004		
11/14/2022	METALS	2211140936A	Magnesium, Total	134	mg/L	1	0.03		
11/14/2022	SM2540C	2211140937A	Total Dissolved Solids (TDS)	2000	mg/L	13	12		
11/14/2022	353.2	2211140940A	Nitrate+Nitrite as Nitrogen	9.2	mg/L	0.5	0.02		
11/14/2022	300.0	2211140941A	Chloride	382	mg/L	10	3		

Analytical Results for Sampling Events at 100-F-358

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/24/2023	8270	2301241025A	Unknown	440	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241025A	Unknown	5.7	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241025A	Toluene	22	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241025A	Benzene, chloro-	8.1	ug/L	NA	NA		TIC RB
1/24/2023	METALS	2301241032A	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
1/24/2023	METALS	2301241032A	Boron, Total	0.07	mg/L	0.2	0.02		J
1/24/2023	METALS	2301241032A	Strontium, Total	6.51	mg/L	0.1	0.002		
1/24/2023	METALS	2301241032A	Sodium, Total	40.6	mg/L	1	0.2		
1/24/2023	METALS	2301241032A	Potassium, Total	3.3	mg/L	2	0.4		
1/24/2023	METALS	2301241032A	Nickel, Total	0.004	mg/L	0.04	0.003		J
1/24/2023	METALS	2301241032A	Arsenic, Total	0.0018	mg/L	0.001	0.0004		
1/24/2023	METALS	2301241032A	Calcium, Total	154	mg/L	1	0.3		
1/24/2023	METALS	2301241032A	Manganese, Total	0.025	mg/L	0.01	0.004		
1/24/2023	METALS	2301241032A	Barium, Total	0.031	mg/L	0.02	0.003		
1/24/2023	METALS	2301241032A	Magnesium, Total	70.6	mg/L	1	0.03		
1/24/2023	ANIONS	2301241033A	Alkalinity, Total as CaCO3	221	mg/L	2	1.8		
1/24/2023	ANIONS	2301241033A	Chloride	33.7	mg/L	2	0.5		
1/24/2023	ANIONS	2301241033A	Fluoride, undistilled	1.12	mg/L	0.1	0.01		
1/24/2023	ANIONS	2301241033A	Sulfate	492	mg/L	20	4		
1/24/2023	SM2540C	2301241034A	Total Dissolved Solids (TDS)	1010	mg/L	10	9		
1/24/2023	353.2	2301241036A	Nitrate+Nitrite as Nitrogen	0.003	mg/L	0.05	0.002		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/24/2023	8270	2301241426A	Unknown	6.2	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241426A	Toluene	27	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241426A	Benzene, chloro-	11	ug/L	NA	NA		TIC RB
1/24/2023	8270	2301241426A	Unknown	390	ug/L	NA	NA		TIC RB
1/24/2023	METALS	2301241433A	Boron, Total	0.07	mg/L	0.2	0.02		J
1/24/2023	METALS	2301241433A	Sodium, Total	39.9	mg/L	1	0.2		
1/24/2023	METALS	2301241433A	Potassium, Total	2.7	mg/L	2	0.4		
1/24/2023	METALS	2301241433A	Strontium, Total	3.75	mg/L	0.1	0.002		
1/24/2023	METALS	2301241433A	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
1/24/2023	METALS	2301241433A	Barium, Total	0.022	mg/L	0.02	0.003		
1/24/2023	METALS	2301241433A	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
1/24/2023	METALS	2301241433A	Magnesium, Total	66.4	mg/L	1	0.03		
1/24/2023	METALS	2301241433A	Calcium, Total	121	mg/L	1	0.3		
1/24/2023	ANIONS	2301241435A	Sulfate	324	mg/L	8	1.6		
1/24/2023	ANIONS	2301241435A	Alkalinity, Total as CaCO3	266	mg/L	2	1.8		
1/24/2023	ANIONS	2301241435A	Chloride	38.6	mg/L	2	0.5		
1/24/2023	ANIONS	2301241435A	Fluoride, undistilled	1.18	mg/L	0.1	0.01		
1/24/2023	SM2540C	2301241436A	Total Dissolved Solids (TDS)	839	mg/L	10	9		
1/24/2023	353.2	2301241438A	Nitrate+Nitrite as Nitrogen	0.097	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/7/2022	8260	2212071349Y	Silane, methoxytrimethyl-	14	ug/L	NA	NA		TIC
12/7/2022	8260	2212071349Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.1	ug/L	1	0.2		
12/7/2022	8260	2212071349Y	Trichloroethene (TCE)	1.7	ug/L	1	0.2		
12/7/2022	8260	2212071349Y	Trichlorofluoromethane (CFC 11)	3.5	ug/L	1	0.24		QD
12/7/2022	8260	2212071349Y	Silane, fluorotrimethyl-	13	ug/L	NA	NA		TIC
12/7/2022	8260	2212071352Y	Trichlorofluoromethane (CFC 11)	4.6	ug/L	1	0.24		QD
12/7/2022	8260	2212071352Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.5	ug/L	1	0.2		
12/7/2022	8260	2212071352Y	Trichloroethene (TCE)	1.7	ug/L	1	0.2		
12/7/2022	607	2212071353Y	Bromacil	0.35	μg/L	0.0098	0.0049	84	
12/7/2022	METALS	2212071419Y	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
12/7/2022	METALS	2212071419Y	Zinc, Total	0.016	mg/L	0.02	0.003		J
12/7/2022	METALS	2212071419Y	Strontium, Total	2.04	mg/L	0.1	0.002		
12/7/2022	METALS	2212071419Y	Sodium, Total	53.2	mg/L	1	0.2		
12/7/2022	METALS	2212071419Y	Selenium, Total	0.007	mg/L	0.01	0.007		J
12/7/2022	METALS	2212071419Y	Potassium, Total	14	mg/L	2	0.4		
12/7/2022	METALS	2212071419Y	Magnesium, Total	73.4	mg/L	1	0.03		
12/7/2022	METALS	2212071419Y	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
12/7/2022	METALS	2212071419Y	Calcium, Total	140	mg/L	1	0.3		
12/7/2022	METALS	2212071419Y	Boron, Total	0.15	mg/L	0.2	0.02		J
12/7/2022	METALS	2212071419Y	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
12/7/2022	METALS	2212071419Y	Barium, Total	0.03	mg/L	0.02	0.003		
12/7/2022	METALS	2212071419Y	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
12/7/2022	ANIONS	2212071444Y	Sulfate	338	mg/L	8	1.6		
12/7/2022	ANIONS	2212071444Y	Alkalinity, Total as CaCO3	299	mg/L	2	1.8		
12/7/2022	ANIONS	2212071444Y	Chloride	73.1	mg/L	2	0.5		
12/7/2022	ANIONS	2212071444Y	Fluoride, undistilled	0.89	mg/L	0.1	0.01		
12/7/2022	SM2540C	2212071446Y	Total Dissolved Solids (TDS)	991	mg/L	10	9		
12/7/2022	6850	2212071447Y	Perchlorate	0.448	ug/L	0.1	0.025		
12/7/2022	353.2	2212071506Y	Nitrate+Nitrite as Nitrogen	5.69	mg/L	0.5	0.02		

Event	Analysis Mathod	G 1		D 1/	TT */	Quant	Det	Xtrct	O.A. Fil
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/5/2022	8260	2212051526Y	Trichlorofluoromethane (CFC 11)	0.24	ug/L	1	0.24		J
12/5/2022	METALS	2212051551Y	Nickel, Total	0.006	mg/L	0.04	0.003		J
12/5/2022	METALS	2212051551Y	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J RB EB
12/5/2022	METALS	2212051551Y	Zinc, Total	0.012	mg/L	0.02	0.003		J
12/5/2022	METALS	2212051551Y	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
12/5/2022	METALS	2212051551Y	Strontium, Total	15.4	mg/L	1	0.02		
12/5/2022	METALS	2212051551Y	Sodium, Total	30.8	mg/L	1	0.2		
12/5/2022	METALS	2212051551Y	Potassium, Total	2.6	mg/L	2	0.4		
12/5/2022	METALS	2212051551Y	Manganese, Total	0.063	mg/L	0.01	0.004		
12/5/2022	METALS	2212051551Y	Magnesium, Total	96.5	mg/L	1	0.03		
12/5/2022	METALS	2212051551Y	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
12/5/2022	METALS	2212051551Y	Calcium, Total	201	mg/L	1	0.3		
12/5/2022	METALS	2212051551Y	Boron, Total	0.06	mg/L	0.2	0.02		J
12/5/2022	METALS	2212051551Y	Barium, Total	0.029	mg/L	0.02	0.003		
12/5/2022	METALS	2212051551Y	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
12/5/2022	METALS	2212051551Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/5/2022	8260	2212051304Y	Silane, fluorotrimethyl-	7.3	ug/L	NA	NA		TIC
12/5/2022	METALS	2212051341Y	Iron, Total	0.31	mg/L	0.1	0.07		
12/5/2022	METALS	2212051341Y	Vanadium, Total	0.001	mg/L	0.05	0.0007		J RB
12/5/2022	METALS	2212051341Y	Strontium, Total	13.5	mg/L	1	0.02		
12/5/2022	METALS	2212051341Y	Sodium, Total	33.9	mg/L	1	0.2		
12/5/2022	METALS	2212051341Y	Potassium, Total	2.5	mg/L	2	0.4		
12/5/2022	METALS	2212051341Y	Nickel, Total	0.004	mg/L	0.04	0.003		J
12/5/2022	METALS	2212051341Y	Magnesium, Total	109	mg/L	1	0.03		
12/5/2022	METALS	2212051341Y	Zinc, Total	0.012	mg/L	0.02	0.003		J
12/5/2022	METALS	2212051341Y	Calcium, Total	240	mg/L	1	0.3		
12/5/2022	METALS	2212051341Y	Boron, Total	0.06	mg/L	0.2	0.02		J
12/5/2022	METALS	2212051341Y	Barium, Total	0.02	mg/L	0.02	0.003		
12/5/2022	METALS	2212051341Y	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
12/5/2022	METALS	2212051341Y	Manganese, Total	0.009	mg/L	0.01	0.004		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/1/2022	METALS	2212011522Y	Manganese, Total	0.013	mg/L	0.01	0.004		
12/1/2022	METALS	2212011522Y	Strontium, Total	15.7	mg/L	1	0.02		
12/1/2022	METALS	2212011522Y	Zinc, Total	0.025	mg/L	0.02	0.003		
12/1/2022	METALS	2212011522Y	Sodium, Total	32.9	mg/L	1	0.2		
12/1/2022	METALS	2212011522Y	Potassium, Total	2.4	mg/L	2	0.4		
12/1/2022	METALS	2212011522Y	Nickel, Total	0.004	mg/L	0.04	0.003		J
12/1/2022	METALS	2212011522Y	Iron, Total	0.19	mg/L	0.1	0.07		
12/1/2022	METALS	2212011522Y	Calcium, Total	414	mg/L	10	3		
12/1/2022	METALS	2212011522Y	Boron, Total	0.07	mg/L	0.2	0.02		J
12/1/2022	METALS	2212011522Y	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
12/1/2022	METALS	2212011522Y	Barium, Total	0.011	mg/L	0.02	0.003		J
12/1/2022	METALS	2212011522Y	Magnesium, Total	138	mg/L	1	0.03		
12/1/2022	ANIONS	2212011545Y	Chloride	32.4	mg/L	8	1.7		
12/1/2022	ANIONS	2212011545Y	Fluoride, undistilled	1.81	mg/L	0.1	0.01		
12/1/2022	ANIONS	2212011545Y	Alkalinity, Total as CaCO3	232	mg/L	2	1.8		
12/1/2022	ANIONS	2212011545Y	Sulfate	1230	mg/L	40	8		
12/1/2022	SM2540C	2212011546Y	Total Dissolved Solids (TDS)	2190	mg/L	13	12		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/1/2022	METALS	2212011310Y	Nickel, Total	0.006	mg/L	0.04	0.003		J
12/1/2022	METALS	2212011310Y	Barium, Total	0.014	mg/L	0.02	0.003		J
12/1/2022	METALS	2212011310Y	Zinc, Total	0.044	mg/L	0.02	0.003		
12/1/2022	METALS	2212011310Y	Strontium, Total	15.3	mg/L	1	0.02		
12/1/2022	METALS	2212011310Y	Sodium, Total	33.4	mg/L	1	0.2		
12/1/2022	METALS	2212011310Y	Potassium, Total	2.4	mg/L	2	0.4		
12/1/2022	METALS	2212011310Y	Magnesium, Total	136	mg/L	1	0.03		
12/1/2022	METALS	2212011310Y	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
12/1/2022	METALS	2212011310Y	Boron, Total	0.08	mg/L	0.2	0.02		J
12/1/2022	METALS	2212011310Y	Calcium, Total	508	mg/L	10	3		
12/1/2022	METALS	2212011310Y	Manganese, Total	0.014	mg/L	0.01	0.004		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	0260							Line	, , , , , , , , , , , , , , , , , , ,
11/10/2022	8260	2211101540Y	Tetrachloroethene (PCE)	0.53	ug/L	1	0.21		J
11/10/2022	8260	2211101540Y	Trichloroethene (TCE)	14	ug/L	1	0.2		
11/10/2022	8260	2211101540Y	Dichlorofluoromethane (CFC 21)	0.26	ug/L	1	0.2		J
11/10/2022	8260	2211101540Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	8.3	ug/L	1	0.2		
11/10/2022	8260	2211101540Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.5	ug/L	1	0.2		
11/10/2022	607	2211140935Y	Bromacil	1.82	μg/L	0.0095	0.0048	99	
11/10/2022	METALS	2211141440Y	Strontium, Total	3.09	mg/L	0.1	0.002		
11/10/2022	METALS	2211141440Y	Nickel, Total	0.007	mg/L	0.04	0.003		J
11/10/2022	METALS	2211141440Y	Zinc, Total	0.012	mg/L	0.02	0.003		J
11/10/2022	METALS	2211141440Y	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
11/10/2022	METALS	2211141440Y	Sodium, Total	169	mg/L	1	0.2		
11/10/2022	METALS	2211141440Y	Potassium, Total	47.5	mg/L	2	0.4		
11/10/2022	METALS	2211141440Y	Magnesium, Total	99.7	mg/L	1	0.03		
11/10/2022	METALS	2211141440Y	Calcium, Total	156	mg/L	1	0.3		
11/10/2022	METALS	2211141440Y	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
11/10/2022	METALS	2211141440Y	Boron, Total	1.05	mg/L	0.2	0.02		
11/10/2022	METALS	2211141440Y	Barium, Total	0.059	mg/L	0.02	0.003		
11/10/2022	METALS	2211141440Y	Molybdenum, Total	0.012	mg/L	0.025	0.003		J
11/10/2022	METALS	2211141440Y	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
11/10/2022	SM2540C	2211150945Y	Total Dissolved Solids (TDS)	1520	mg/L	17	15		
11/10/2022	353.2	2211151050Y	Nitrate+Nitrite as Nitrogen	2.89	mg/L	0.25	0.008		
11/10/2022	300.0	2211151340Y	Chloride	321	mg/L	20	5		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
		-				Lillit		EIIIC	- 3
11/10/2022	8260	2211101035Y	Benzene	0.47	ug/L	1	0.2		J
11/10/2022	8260	2211101035Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	24	ug/L	1	0.2		
11/10/2022	8260	2211101035Y	cis-1,2-Dichloroethene	0.52	ug/L	1	0.23		J
11/10/2022	8260	2211101035Y	Trichlorofluoromethane (CFC 11)	0.36	ug/L	1	0.24		1 Q
11/10/2022	8260	2211101035Y	Trichloroethene (TCE)	30	ug/L	1	0.2		Q
11/10/2022	8260	2211101035Y	Tetrahydrofuran (THF)	34	ug/L	5	1.7		
11/10/2022	8260	2211101035Y	Dichlorofluoromethane (CFC 21)	5.6	ug/L	1	0.2		
11/10/2022	8260	2211101035Y	1,1-Dichloroethene	0.27	ug/L	1	0.2		J
11/10/2022	8260	2211101035Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	17	ug/L	1	0.2		Q
11/10/2022	8260	2211101035Y	Tetrachloroethene (PCE)	0.52	ug/L	1	0.21		JQ
11/10/2022	607	2211101036Y	Bromacil	0.02	μg/L	0.0095	0.0048	99	
11/10/2022	METALS	2211101100Y	Manganese, Total	0.004	mg/L	0.01	0.004		J
11/10/2022	METALS	2211101100Y	Zinc, Total	0.005	mg/L	0.02	0.003		J
11/10/2022	METALS	2211101100Y	Strontium, Total	2.79	mg/L	0.1	0.002		
11/10/2022	METALS	2211101100Y	Sodium, Total	20.3	mg/L	1	0.2		
11/10/2022	METALS	2211101100Y	Potassium, Total	3.5	mg/L	2	0.4		
11/10/2022	METALS	2211101100Y	Iron, Total	0.78	mg/L	0.1	0.07		RB
11/10/2022	METALS	2211101100Y	Calcium, Total	86.6	mg/L	1	0.3		
11/10/2022	METALS	2211101100Y	Magnesium, Total	52	mg/L	1	0.03		
11/10/2022	METALS	2211101100Y	Barium, Total	0.036	mg/L	0.02	0.003		
11/10/2022	METALS	2211101100Y	Boron, Total	0.07	mg/L	0.2	0.02		J
11/10/2022	ANIONS	2211101101Y	Fluoride, undistilled	2.64	mg/L	0.1	NA		
11/10/2022	ANIONS	2211101101Y	Sulfate	125	mg/L	8	NA		
11/10/2022	ANIONS	2211101101Y	Chloride	26.1	mg/L	2	NA		
11/10/2022	ANIONS	2211101101Y	Alkalinity, Total as CaCO3	304	mg/L	2	NA		
11/10/2022	SM2540C	2211101102Y	Total Dissolved Solids (TDS)	523	mg/L	11	NA		
11/10/2022	6850	2211101103Y	Perchlorate	0.0381	ug/L	0.1	0.025		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/10/2022	METALS	2211100855Y	Iron, Total	0.33	mg/L	0.1	0.07		RB
11/10/2022	METALS	2211100855Y	Strontium, Total	12.4	mg/L	1	0.02		
11/10/2022	METALS	2211100855Y	Sodium, Total	23.6	mg/L	1	0.2		
11/10/2022	METALS	2211100855Y	Potassium, Total	3.3	mg/L	2	0.4		
11/10/2022	METALS	2211100855Y	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
11/10/2022	METALS	2211100855Y	Zinc, Total	0.021	mg/L	0.02	0.003		
11/10/2022	METALS	2211100855Y	Calcium, Total	115	mg/L	1	0.3		
11/10/2022	METALS	2211100855Y	Boron, Total	0.06	mg/L	0.2	0.02		J
11/10/2022	METALS	2211100855Y	Barium, Total	0.027	mg/L	0.02	0.003		
11/10/2022	METALS	2211100855Y	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
11/10/2022	METALS	2211100855Y	Manganese, Total	0.007	mg/L	0.01	0.004		J
11/10/2022	METALS	2211100855Y	Magnesium, Total	62.1	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/9/2022	8260	2211091400Y	Unknown	6.5	ug/L	NA	NA		TIC
11/9/2022	8260	2211091400Y	Benzene	0.4	ug/L	1	0.2		J
11/9/2022	8260	2211091400Y	Tetrahydrofuran (THF)	18	ug/L	5	1.7		
11/9/2022	METALS	2211091402Y	Molybdenum, Total	0.027	mg/L	0.025	0.003		
11/9/2022	METALS	2211091402Y	Sodium, Total	22.9	mg/L	1	0.2		
11/9/2022	METALS	2211091402Y	Potassium, Total	3.2	mg/L	2	0.4		
11/9/2022	METALS	2211091402Y	Calcium, Total	116	mg/L	1	0.3		
11/9/2022	METALS	2211091402Y	Nickel, Total	0.003	mg/L	0.04	0.003		J
11/9/2022	METALS	2211091402Y	Zinc, Total	0.011	mg/L	0.02	0.003		J
11/9/2022	METALS	2211091402Y	Strontium, Total	25.3	mg/L	1	0.02		
11/9/2022	METALS	2211091402Y	Iron, Total	1.13	mg/L	0.1	0.07		
11/9/2022	METALS	2211091402Y	Boron, Total	0.06	mg/L	0.2	0.02		J
11/9/2022	METALS	2211091402Y	Barium, Total	0.03	mg/L	0.02	0.003		
11/9/2022		2211091402Y	Arsenic, Total	0.0056	mg/L	0.001	0.0004		
11/9/2022		2211091402Y	Magnesium, Total	61.5	mg/L	1	0.03		
11/9/2022		2211091402Y	Manganese, Total	0.005	mg/L	0.01	0.004		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/9/2022	8260	2211090955Y	Tetrahydrofuran (THF)	39	ug/L	5	1.7		
			•		•				TIC
11/9/2022	8260	2211090955Y	Unknown	24	ug/L	NA	NA		TIC
11/9/2022	8260	2211090955Y	2-Propanol	3.9	ug/L	50	3.4		J
11/9/2022	8260	2211090955Y	Unknown	6	ug/L	NA	NA		TIC
11/9/2022	METALS	2211091025Y	Nickel, Total	0.003	mg/L	0.04	0.003		J
11/9/2022	METALS	2211091025Y	Manganese, Total	0.023	mg/L	0.01	0.004		
11/9/2022	METALS	2211091025Y	Zinc, Total	0.016	mg/L	0.02	0.003		J
11/9/2022	METALS	2211091025Y	Strontium, Total	25	mg/L	1	0.02		
11/9/2022	METALS	2211091025Y	Potassium, Total	3.8	mg/L	2	0.4		
11/9/2022	METALS	2211091025Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
11/9/2022	METALS	2211091025Y	Iron, Total	0.74	mg/L	0.1	0.07		
11/9/2022	METALS	2211091025Y	Arsenic, Total	0.0022	mg/L	0.001	0.0004		
11/9/2022	METALS	2211091025Y	Calcium, Total	233	mg/L	1	0.3		
11/9/2022	METALS	2211091025Y	Sodium, Total	26.6	mg/L	1	0.2		
11/9/2022	METALS	2211091025Y	Boron, Total	0.06	mg/L	0.2	0.02		J
11/9/2022	METALS	2211091025Y	Barium, Total	0.02	mg/L	0.02	0.003		J
11/9/2022	METALS	2211091025Y	Magnesium, Total	95.9	mg/L	1	0.03		
11/9/2022	ANIONS	2211091026Y	Sulfate	718	mg/L	20	4		
11/9/2022	ANIONS	2211091026Y	Alkalinity, Total as CaCO3	238	mg/L	2	1.8		
11/9/2022	ANIONS	2211091026Y	Chloride	35.6	mg/L	2	0.5		
11/9/2022	ANIONS	2211091026Y	Fluoride, undistilled	1.74	mg/L	0.1	0.01		
11/9/2022	SM2540C	2211091027Y	Total Dissolved Solids (TDS)	1350	mg/L	14	13		
11/9/2022	6850	2211091028Y	Perchlorate	0.045	ug/L	0.1	0.025		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/8/2022	8260	2211081520Y	2-Propanol	8.9	ug/L	50	3.4		J
11/8/2022	8260	2211081520Y	Tetrahydrofuran (THF)	140	ug/L	5	1.7		
11/8/2022	8260	2211081520Y	Silane, fluorotrimethyl-	28	ug/L	NA	NA		TIC
11/8/2022	8260	2211081520Y	Silane, methoxytrimethyl-	18	ug/L	NA	NA		TIC RB
11/8/2022	METALS	2211081522Y	Nickel, Total	0.003	mg/L	0.04	0.003		J
11/8/2022	METALS	2211081522Y	Strontium, Total	18.1	mg/L	1	0.02		
11/8/2022	METALS	2211081522Y	Beryllium, Total	0.0002	mg/L	0.003	0.0002		J
11/8/2022	METALS	2211081522Y	Sodium, Total	27.8	mg/L	1	0.2		
11/8/2022	METALS	2211081522Y	Zinc, Total	0.02	mg/L	0.02	0.003		J
11/8/2022	METALS	2211081522Y	Potassium, Total	3.9	mg/L	2	0.4		
11/8/2022	METALS	2211081522Y	Magnesium, Total	95.9	mg/L	1	0.03		
11/8/2022	METALS	2211081522Y	Iron, Total	1.91	mg/L	0.1	0.07		
11/8/2022	METALS	2211081522Y	Boron, Total	0.11	mg/L	0.2	0.02		J
11/8/2022	METALS	2211081522Y	Barium, Total	0.022	mg/L	0.02	0.003		
11/8/2022	METALS	2211081522Y	Calcium, Total	376	mg/L	10	3		
11/8/2022	METALS	2211081522Y	Manganese, Total	0.02	mg/L	0.01	0.004		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	0260 11	-						Line	
1/25/2023	8260_LL	2301250945C	Sulfur Dioxide	11	ug/L	NA	NA		TIC RB FB
1/25/2023	NDMA_LL	2301250948C	N-Nitrosodimethylamine	0.42	ng/L	0.48	0.35		J TB
1/25/2023	METALS	2301250958C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
1/25/2023	METALS	2301250958C	Zinc, Total	0.007	mg/L	0.02	0.003		J
1/25/2023	METALS	2301250958C	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
1/25/2023	METALS	2301250958C	Strontium, Total	8.12	mg/L	0.1	0.002		
1/25/2023	METALS	2301250958C	Sodium, Total	70.6	mg/L	1	0.2		
1/25/2023	METALS	2301250958C	Nickel, Total	0.005	mg/L	0.04	0.003		J
1/25/2023	METALS	2301250958C	Calcium, Total	103	mg/L	1	0.3		
1/25/2023	METALS	2301250958C	Boron, Total	0.09	mg/L	0.2	0.02		J
1/25/2023	METALS	2301250958C	Barium, Total	0.033	mg/L	0.02	0.003		
1/25/2023	METALS	2301250958C	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
1/25/2023	METALS	2301250958C	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
1/25/2023	METALS	2301250958C	Magnesium, Total	75.8	mg/L	1	0.03		
1/25/2023	METALS	2301250958C	Potassium, Total	2.2	mg/L	2	0.4		
1/25/2023	ANIONS	2301250959C	Alkalinity, Total as CaCO3	255	mg/L	2	1.8		
1/25/2023	ANIONS	2301250959C	Sulfate	367	mg/L	8	1.6		
1/25/2023	ANIONS	2301250959C	Chloride	53.1	mg/L	2	0.5		
1/25/2023	ANIONS	2301250959C	Fluoride, undistilled	0.97	mg/L	0.1	0.01		
1/25/2023	SM2540C	2301251000C	Total Dissolved Solids (TDS)	915	mg/L	10	9		
1/25/2023	6850	2301251001C	Perchlorate	0.0627	ug/L	0.1	0.025		J
1/25/2023	353.2	2301251002C	Nitrate+Nitrite as Nitrogen	0.344	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/17/2023	8260	2301171435A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	4.3	ug/L	1	0.2		
1/17/2023	8260	2301171435A	Trichlorofluoromethane (CFC 11)	190	ug/L	1	0.24		
1/17/2023	8260	2301171435A	Silane, fluorotrimethyl-	5.7	ug/L	NA	NA		TIC
1/17/2023	8260	2301171435A	1,1,2-Trichloro-1,2,2-Trifluoroethane	94	ug/L	1	0.2		
1/17/2023	8260	2301171435A	Dichlorofluoromethane (CFC 21)	4.5	ug/L	1	0.2		
1/17/2023	8260	2301171435A	Silane, methoxytrimethyl-	11	ug/L	NA	NA		TIC RB
1/17/2023	8260	2301171435A	Trichloroethene (TCE)	0.77	ug/L	1	0.2		J
1/17/2023	8260	2301171436A	1,1,2-Trichloro-1,2,2-Trifluoroethane	93	ug/L	1	0.2		
1/17/2023	8260	2301171436A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	4.3	ug/L	1	0.2		
1/17/2023	8260	2301171436A	Trichlorofluoromethane (CFC 11)	190	ug/L	1	0.24		
1/17/2023	8260	2301171436A	Trichloroethene (TCE)	0.78	ug/L	1	0.2		J
1/17/2023	8260	2301171436A	Dichlorofluoromethane (CFC 21)	4.6	ug/L	1	0.2		
1/17/2023	607	2301171438A	N-Nitrodimethylamine	3.28	$\mu g/L$	0.0095	0.0048	64	
1/17/2023	607	2301171438A	Bromacil	1.93	$\mu g/L$	0.0095	0.0048	102	
1/17/2023	607	2301171438A	N-Nitrosodimethylamine	7.6	$\mu g/L$	0.048	0.024	52	D
1/17/2023	METALS	2301171439A	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/17/2023	METALS	2301171439A	Magnesium, Total	69	mg/L	1	0.03		
1/17/2023	METALS	2301171439A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
1/17/2023	METALS	2301171439A	Strontium, Total	3.35	mg/L	0.1	0.002		
1/17/2023	METALS	2301171439A	Potassium, Total	3.5	mg/L	2	0.4		
1/17/2023	METALS	2301171439A	Sodium, Total	99.2	mg/L	1	0.2		
1/17/2023	METALS	2301171439A	Calcium, Total	98.9	mg/L	1	0.3		
1/17/2023	METALS	2301171439A	Boron, Total	0.24	mg/L	0.2	0.02		
1/17/2023	METALS	2301171439A	Barium, Total	0.028	mg/L	0.02	0.003		
1/17/2023	METALS	2301171439A	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
1/17/2023	METALS	2301171439A	Chromium, Total	0.002	mg/L	0.01	0.002		J
1/17/2023	ANIONS	2301171440A	Alkalinity, Total as CaCO3	288	mg/L	2	1.8		
1/17/2023	ANIONS	2301171440A	Chloride	78.2	mg/L	2	0.5		
1/17/2023	ANIONS	2301171440A	Fluoride, undistilled	0.9	mg/L	0.1	0.01		
1/17/2023	ANIONS	2301171440A	Sulfate	320	mg/L	8	1.6		
1/17/2023	SM2540C	2301171441A	Total Dissolved Solids (TDS)	943	mg/L	10	9		
1/17/2023	6850	2301171442A	Perchlorate	0.434	ug/L	0.1	0.025		
1/17/2023	353.2	2301171443A	Nitrate+Nitrite as Nitrogen	6.71	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/17/2022	8260	2211170920C	Dichlorofluoromethane (CFC 21)	1.6	ug/L	1	0.2		
11/17/2022	8260	2211170920C	1,1,2-Trichloro-1,2,2-Trifluoroethane	64	ug/L	1	0.2		
11/17/2022	8260	2211170920C	Trichloroethene (TCE)	1	ug/L	1	0.2		
11/17/2022	8260	2211170920C	Trichlorofluoromethane (CFC 11)	190	ug/L	1	0.24		
11/17/2022	8260	2211170920C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.4	ug/L	1	0.2		
11/17/2022	607	2211170922C	N-Nitrosodimethylamine	2.21	μg/L	0.0095	0.0048	47	
11/17/2022	607	2211170922C	N-Nitrodimethylamine	2.2	$\mu g/L$	0.0095	0.0048	77	
11/17/2022	607	2211170922C	Bromacil	2.01	μg/L	0.0095	0.0048	101	
11/17/2022	8270	2211170923C	Unknown	230	ug/L	NA	NA		TIC RB
11/17/2022	8270	2211170923C	Unknown	4.2	ug/L	NA	NA		TIC
11/17/2022	8270	2211170923C	Unknown	6.1	ug/L	NA	NA		TIC
11/17/2022	8290	2211170925C	1,2,3,4,6,7,8-HpCDD	0.253	pg/L	24	0.0768		J RB
11/17/2022	8290	2211170925C	OCDD	0.9	pg/L	48.1	0.0645		J RB
11/17/2022	8290	2211170925C	Total Hepta-Dioxins	0.253	pg/L	NA	NA		J RB
11/17/2022	8290	2211170925C	Total Tetra-Furans	2.34	pg/L	NA	NA		J
11/17/2022	8290	2211170925C	Total Penta-Furans	0.461	pg/L	NA	NA		J
11/17/2022	METALS	2211170929C	Calcium, Total	99.3	mg/L	1	0.3		
11/17/2022	METALS	2211170929C	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
11/17/2022	METALS	2211170929C	Strontium, Total	2.49	mg/L	0.1	0.002		
11/17/2022	METALS	2211170929C	Sodium, Total	91.6	mg/L	1	0.2		
11/17/2022	METALS	2211170929C	Selenium, Total	0.007	mg/L	0.01	0.007		J
11/17/2022	METALS	2211170929C	Potassium, Total	2.6	mg/L	2	0.4		
11/17/2022	METALS	2211170929C	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
11/17/2022	METALS	2211170929C	Magnesium, Total	69.2	mg/L	1	0.03		
11/17/2022	METALS	2211170929C	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
11/17/2022	METALS	2211170929C	Boron, Total	0.25	mg/L	0.2	0.02		
11/17/2022	METALS	2211170929C	Barium, Total	0.032	mg/L	0.02	0.003		
11/17/2022	METALS	2211170929C	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
11/17/2022	METALS	2211170929C	Manganese, Total	0.008	mg/L	0.01	0.004		J
11/17/2022	ANIONS	2211170930C	Sulfate	333	mg/L	8	1.6		
11/17/2022	ANIONS	2211170930C	Fluoride, undistilled	0.86	mg/L	0.1	0.01		
11/17/2022	ANIONS	2211170930C	Chloride	73.4	mg/L	2	0.5		
11/17/2022	ANIONS	2211170930C	Alkalinity, Total as CaCO3	281	mg/L	2	1.8		
11/17/2022	SM2540C	2211170931C	Total Dissolved Solids (TDS)	919	mg/L	10	9		
11/17/2022	6850	2211170932C	Perchlorate	0.554	ug/L	0.1	0.025		
11/17/2022	353.2	2211170933C	Nitrate+Nitrite as Nitrogen	5.95	mg/L	0.5	0.02		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/25/2023	8260	2301251300A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.58	ug/L	1	0.2		J
1/25/2023	8260	2301251300A	Unknown	5.2	ug/L	NA	NA		TIC RB FB
1/25/2023	8260	2301251300A	Trichlorofluoromethane (CFC 11)	0.48	ug/L	1	0.24		J
1/25/2023	8260	2301251300A	Trichloroethene (TCE)	33	ug/L	1	0.2		
1/25/2023	8260	2301251300A	1,1,2-Trichloro-1,2,2-Trifluoroethane	26	ug/L	1	0.2		
1/25/2023	METALS	2301251302A	Nickel, Total	0.009	mg/L	0.04	0.003		J
1/25/2023	METALS	2301251302A	Zinc, Total	0.005	mg/L	0.02	0.003		J
1/25/2023	METALS	2301251302A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
1/25/2023	METALS	2301251302A	Strontium, Total	4.4	mg/L	0.1	0.002		
1/25/2023	METALS	2301251302A	Sodium, Total	128	mg/L	1	0.2		
1/25/2023	METALS	2301251302A	Selenium, Total	0.011	mg/L	0.01	0.007		
1/25/2023	METALS	2301251302A	Potassium, Total	4.3	mg/L	2	0.4		
1/25/2023	METALS	2301251302A	Iron, Total	0.12	mg/L	0.1	0.07		
1/25/2023	METALS	2301251302A	Magnesium, Total	79.1	mg/L	1	0.03		
1/25/2023	METALS	2301251302A	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
1/25/2023	METALS	2301251302A	Chromium, Total	0.014	mg/L	0.01	0.002		
1/25/2023	METALS	2301251302A	Calcium, Total	116	mg/L	1	0.3		
1/25/2023	METALS	2301251302A	Boron, Total	0.69	mg/L	0.2	0.02		
1/25/2023	METALS	2301251302A	Barium, Total	0.044	mg/L	0.02	0.003		
1/25/2023	METALS	2301251302A	Arsenic, Total	0.0021	mg/L	0.001	0.0004		
1/25/2023	METALS	2301251302A	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
1/25/2023	ANIONS	2301251303A	Chloride	138	mg/L	8	1.7		
1/25/2023	ANIONS	2301251303A	Fluoride, undistilled	1.89	mg/L	0.1	0.01		
1/25/2023	ANIONS	2301251303A	Alkalinity, Total as CaCO3	228	mg/L	2	1.8		
1/25/2023	ANIONS	2301251303A	Sulfate	959	mg/L	20	4		
1/25/2023	SM2540C	2301251304A	Total Dissolved Solids (TDS)	1160	mg/L	11	10		
1/25/2023	6850	2301251305A	Perchlorate	0.844	ug/L	0.1	0.025		
1/25/2023	300.0	2301251306A	Chloride	137	mg/L	20	5		
1/25/2023	353.2	2301251307A	Nitrate+Nitrite as Nitrogen	5.32	mg/L	0.5	0.02		

Event	Analysis Method	C 1 -	Constituent	D14	TI *4	Quant	Det	Xtrct	OA Ela
Date	Michiga	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/13/2022	METALS	2212131547C	Boron, Total	0.15	mg/L	0.2	0.02		J
12/13/2022	METALS	2212131547C	Potassium, Total	1.5	mg/L	2	0.4		J
12/13/2022	METALS	2212131547C	Vanadium, Total	0.009	mg/L	0.05	0.0007		J
12/13/2022	METALS	2212131547C	Strontium, Total	0.93	mg/L	0.1	0.002		
12/13/2022	METALS	2212131547C	Sodium, Total	95.3	mg/L	1	0.2		
12/13/2022	METALS	2212131547C	Arsenic, Total	0.0021	mg/L	0.001	0.0004		
12/13/2022	METALS	2212131547C	Calcium, Total	22.2	mg/L	1	0.3		
12/13/2022	METALS	2212131547C	Barium, Total	0.022	mg/L	0.02	0.003		
12/13/2022	METALS	2212131547C	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
12/13/2022	METALS	2212131547C	Magnesium, Total	8.3	mg/L	1	0.03		
12/13/2022	METALS	2212131548C	Boron, Total	0.15	mg/L	0.2	0.02		J
12/13/2022	METALS	2212131548C	Vanadium, Total	0.009	mg/L	0.05	0.0007		J
12/13/2022	METALS	2212131548C	Strontium, Total	0.94	mg/L	0.1	0.002		
12/13/2022	METALS	2212131548C	Sodium, Total	95.8	mg/L	1	0.2		
12/13/2022	METALS	2212131548C	Potassium, Total	1.5	mg/L	2	0.4		J
12/13/2022	METALS	2212131548C	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
12/13/2022	METALS	2212131548C	Calcium, Total	22.4	mg/L	1	0.3		
12/13/2022	METALS	2212131548C	Barium, Total	0.022	mg/L	0.02	0.003		
12/13/2022	METALS	2212131548C	Arsenic, Total	0.002	mg/L	0.001	0.0004		
12/13/2022	METALS	2212131548C	Magnesium, Total	8.3	mg/L	1	0.03		
12/13/2022	ANIONS	2212131555C	Chloride	22.5	mg/L	2	0.5		
12/13/2022	ANIONS	2212131555C	Fluoride, undistilled	0.28	mg/L	0.1	0.01		
12/13/2022	ANIONS	2212131555C	Alkalinity, Total as CaCO3	93.2	mg/L	2	1.8		
12/13/2022	ANIONS	2212131555C	Sulfate	144	mg/L	8	1.6		
12/13/2022	SM2540C	2212131600C	Total Dissolved Solids (TDS)	395	mg/L	10	9		
12/13/2022	6850	2212131605C	Perchlorate	0.235	ug/L	0.1	0.025		
12/13/2022	353.2	2212131609C	Nitrate+Nitrite as Nitrogen	1.29	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	9260 11						0.2	Line	
1/3/2023	8260_LL	2301031545C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	ug/L	0.5			
1/3/2023	8260_LL	2301031545C	Trichlorofluoromethane (CFC 11)	0.47	ug/L	0.5	0.24		J
1/3/2023	NDMA_LL	2301031547C	N-Nitrosodimethylamine	0.64	ng/L	0.48	0.35		FB
1/3/2023	METALS	2301031549C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/3/2023	METALS	2301031549C	Zinc, Total	0.014	mg/L	0.02	0.003		J
1/3/2023	METALS	2301031549C	Strontium, Total	2.33	mg/L	0.1	0.002		
1/3/2023	METALS	2301031549C	Sodium, Total	43.2	mg/L	1	0.2		
1/3/2023	METALS	2301031549C	Potassium, Total	3.9	mg/L	2	0.4		
1/3/2023	METALS	2301031549C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
1/3/2023	METALS	2301031549C	Chromium, Total	0.004	mg/L	0.01	0.002		J
1/3/2023	METALS	2301031549C	Calcium, Total	98.7	mg/L	1	0.3		
1/3/2023	METALS	2301031549C	Boron, Total	0.06	mg/L	0.2	0.02		J
1/3/2023	METALS	2301031549C	Barium, Total	0.021	mg/L	0.02	0.003		
1/3/2023	METALS	2301031549C	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
1/3/2023	METALS	2301031549C	Magnesium, Total	65.2	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date	Witthou	Sample	Constituent	Result	Units	Lillit	Lillit	Effic	QA Flag
1/9/2023	8260	2301091450A	Dichlorofluoromethane (CFC 21)	3.2	ug/L	1	0.2		
1/9/2023	8260	2301091450A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.5	ug/L	1	0.2		
1/9/2023	8260	2301091450A	1,1,2-Trichloro-1,2,2-Trifluoroethane	43	ug/L	1	0.2		
1/9/2023	8260	2301091450A	Trichloroethene (TCE)	1.9	ug/L	1	0.2		
1/9/2023	8260	2301091450A	Dibromochloromethane	0.43	ug/L	1	0.2		J
1/9/2023	8260	2301091450A	Chloroform	1.3	ug/L	1	0.51		
1/9/2023	8260	2301091450A	Bromoform	0.67	ug/L	1	0.25		J
1/9/2023	8260	2301091450A	Bromodichloromethane	1	ug/L	1	0.2		
1/9/2023	8260	2301091450A	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
1/9/2023	607	2301091452A	N-Nitrosodimethylamine	10.42	$\mu g/L$	0.094	0.047	47	D
1/9/2023	607	2301091452A	N-Nitrodimethylamine	4.09	$\mu g/L$	0.0094	0.0047	59	
1/9/2023	607	2301091452A	Bromacil	0.82	$\mu g/L$	0.0094	0.0047	96	
1/9/2023	METALS	2301091453A	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
1/9/2023	METALS	2301091453A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
1/9/2023	METALS	2301091453A	Strontium, Total	2.38	mg/L	0.1	0.002		
1/9/2023	METALS	2301091453A	Barium, Total	0.044	mg/L	0.02	0.003		
1/9/2023	METALS	2301091453A	Sodium, Total	86.1	mg/L	1	0.2		
1/9/2023	METALS	2301091453A	Zinc, Total	0.003	mg/L	0.02	0.003		J
1/9/2023	METALS	2301091453A	Potassium, Total	3.7	mg/L	2	0.4		
1/9/2023	METALS	2301091453A	Magnesium, Total	60.6	mg/L	1	0.03		
1/9/2023	METALS	2301091453A	Boron, Total	0.23	mg/L	0.2	0.02		
1/9/2023	METALS	2301091453A	Arsenic, Total	0.006	mg/L	0.001	0.0004		
1/9/2023	METALS	2301091453A	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
1/9/2023	METALS	2301091453A	Calcium, Total	95.4	mg/L	1	0.3		
1/9/2023	METALS	2301091453A	Manganese, Total	0.014	mg/L	0.01	0.004		
1/9/2023	ANIONS	2301091454A	Chloride	53.9	mg/L	2	0.5		
1/9/2023	ANIONS	2301091454A	Fluoride, undistilled	0.94	mg/L	0.1	0.01		
1/9/2023	ANIONS	2301091454A	Alkalinity, Total as CaCO3	289	mg/L	4	3.6		
1/9/2023	ANIONS	2301091454A	Sulfate	233	mg/L	8	1.6		
1/9/2023	SM2540C	2301091455A	Total Dissolved Solids (TDS)	1040	mg/L	11	10		
1/9/2023	6850	2301091456A	Perchlorate	0.623	ug/L	0.1	0.025		
1/9/2023	353.2	2301091457A	Nitrate+Nitrite as Nitrogen	6.4	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
								EIIIC	Z11 1 1118
11/3/2022	8260	2211030930A	1,1,2-Trichloro-1,2,2-Trifluoroethane	82	ug/L	1	0.2		
11/3/2022	8260	2211030930A	Trichlorofluoromethane (CFC 11)	50	ug/L	1	0.24		*
11/3/2022	8260	2211030930A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.68	ug/L	1	0.2		J
11/3/2022	8260	2211030930A	Trichloroethene (TCE)	53	ug/L	1	0.2		_
11/3/2022	8260	2211030930A	Dichlorofluoromethane (CFC 21)	0.42	ug/L	1	0.2		J
11/3/2022	8260	2211030930A	Tetrachloroethene (PCE)	2.4	ug/L	1	0.21		
11/3/2022	607	2211030932A	N-Nitrosodimethylamine	0.76	$\mu g/L$	0.0096	0.0048	44	
11/3/2022	607	2211030932A	N-Nitrodimethylamine	0.59	μg/L	0.0096	0.0048	74	
11/3/2022		2211030932A	Bromacil	0.47	μg/L	0.0096	0.0048	95	
11/3/2022		2211030933A	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
11/3/2022		2211030933A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
11/3/2022	METALS	2211030933A	Zinc, Total	0.011	mg/L	0.02	0.003		J
11/3/2022	METALS	2211030933A	Strontium, Total	3.19	mg/L	0.1	0.002		
11/3/2022	METALS	2211030933A	Sodium, Total	40.8	mg/L	1	0.2		
11/3/2022	METALS	2211030933A	Potassium, Total	3.5	mg/L	2	0.4		
11/3/2022	METALS	2211030933A	Nickel, Total	0.227	mg/L	0.04	0.003		
11/3/2022	METALS	2211030933A	Barium, Total	0.028	mg/L	0.02	0.003		
11/3/2022	METALS	2211030933A	Manganese, Total	0.006	mg/L	0.01	0.004		J
11/3/2022	METALS	2211030933A	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
11/3/2022	METALS	2211030933A	Boron, Total	0.07	mg/L	0.2	0.02		J
11/3/2022	METALS	2211030933A	Calcium, Total	118	mg/L	1	0.3		
11/3/2022	METALS	2211030933A	Chromium, Total	0.209	mg/L	0.01	0.002		
11/3/2022	METALS	2211030933A	Iron, Total	1.06	mg/L	0.1	0.07		
11/3/2022	METALS	2211030933A	Magnesium, Total	69.1	mg/L	1	0.03		
11/3/2022	METALS	2211030934A	Zinc, Total	0.011	mg/L	0.02	0.003		J
11/3/2022	METALS	2211030934A	Sodium, Total	40.3	mg/L	1	0.2		
11/3/2022	METALS	2211030934A	Manganese, Total	0.006	mg/L	0.01	0.004		J
11/3/2022	METALS	2211030934A	Strontium, Total	3.15	mg/L	0.1	0.002		
11/3/2022	METALS	2211030934A	Potassium, Total	3.5	mg/L	2	0.4		
11/3/2022	METALS	2211030934A	Nickel, Total	0.225	mg/L	0.04	0.003		
11/3/2022	METALS	2211030934A	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
11/3/2022	METALS	2211030934A	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
11/3/2022	METALS	2211030934A	Iron, Total	1.08	mg/L	0.1	0.07		
11/3/2022	METALS	2211030934A	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
11/3/2022		2211030934A	Chromium, Total	0.213	mg/L	0.01	0.002		
11/3/2022		2211030934A	Calcium, Total	117	mg/L	1	0.3		
11/3/2022		2211030934A	Boron, Total	0.07	mg/L	0.2	0.02		J
11/3/2022		2211030934A	Barium, Total	0.028	mg/L	0.02	0.003		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/3/2022	METALS	2211030934A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
11/3/2022	METALS	2211030934A	Magnesium, Total	68.4	mg/L	1	0.03		

Event Date	Analysis Method	Campla	Constituent	Dagult	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date	Michiga	Sample	Constituent	Result	Units	Lillit	Limit	Effic	QA Flag
1/9/2023	8260	2301091020A	Trichlorofluoromethane (CFC 11)	91	ug/L	1	0.24		
1/9/2023	8260	2301091020A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
1/9/2023	8260	2301091020A	Trichloroethene (TCE)	83	ug/L	1	0.2		
1/9/2023	8260	2301091020A	Dichlorofluoromethane (CFC 21)	0.5	ug/L	1	0.2		J
1/9/2023	8260	2301091020A	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		
1/9/2023	8260	2301091020A	Tetrachloroethene (PCE)	3.3	ug/L	1	0.21		
1/9/2023	607	2301091022A	N-Nitrosodimethylamine	0.5	μ g/L	0.0095	0.0048	47	
1/9/2023	607	2301091022A	N-Nitrodimethylamine	0.38	μ g/L	0.0095	0.0048	59	
1/9/2023	607	2301091022A	Bromacil	0.33	μ g/L	0.0095	0.0048	96	
1/9/2023	607	2301091023A	N-Nitrodimethylamine	0.38	μ g/L	0.0097	0.0049	59	
1/9/2023	607	2301091023A	Bromacil	0.34	μg/L	0.0097	0.0049	96	
1/9/2023	607	2301091023A	N-Nitrosodimethylamine	0.48	μg/L	0.0097	0.0049	47	
1/9/2023	METALS	2301091024A	Manganese, Total	0.009	mg/L	0.01	0.004		J
1/9/2023	METALS	2301091024A	Strontium, Total	3.24	mg/L	0.1	0.002		
1/9/2023	METALS	2301091024A	Sodium, Total	53.1	mg/L	1	0.2		
1/9/2023	METALS	2301091024A	Potassium, Total	5.3	mg/L	2	0.4		
1/9/2023	METALS	2301091024A	Zinc, Total	0.013	mg/L	0.02	0.003		J
1/9/2023	METALS	2301091024A	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
1/9/2023	METALS	2301091024A	Vanadium, Total	0.005	mg/L	0.05	0.0007		J
1/9/2023	METALS	2301091024A	Iron, Total	1.25	mg/L	0.1	0.07		
1/9/2023	METALS	2301091024A	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
1/9/2023	METALS	2301091024A	Chromium, Total	0.07	mg/L	0.01	0.002		
1/9/2023	METALS	2301091024A	Calcium, Total	122	mg/L	1	0.3		
1/9/2023	METALS	2301091024A	Boron, Total	0.08	mg/L	0.2	0.02		J
1/9/2023	METALS	2301091024A	Barium, Total	0.034	mg/L	0.02	0.003		
1/9/2023	METALS	2301091024A	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
1/9/2023	METALS	2301091024A	Magnesium, Total	63.5	mg/L	1	0.03		
1/9/2023	METALS	2301091024A	Nickel, Total	0.045	mg/L	0.04	0.003		
1/9/2023	ANIONS	2301091025A	Chloride	61.9	mg/L	2	0.5		
1/9/2023	ANIONS	2301091025A	Fluoride, undistilled	0.94	mg/L	0.1	0.01		
1/9/2023	ANIONS	2301091025A	Alkalinity, Total as CaCO3	228	mg/L	2	1.8		
1/9/2023	ANIONS	2301091025A	Sulfate	335	mg/L	8	1.6		
1/9/2023	SM2540C	2301091026A	Total Dissolved Solids (TDS)	888	mg/L	10	9		
1/9/2023	6850	2301091027A	Perchlorate	0.27	ug/L	0.1	0.025		
1/9/2023	353.2	2301091028A	Nitrate+Nitrite as Nitrogen	2.41	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
		-				1		EIIIC	
1/17/2023	8260	2301170950A	Trichlorofluoromethane (CFC 11)	21	ug/L	1	0.24		Q
1/17/2023	8260	2301170950A	1,1,2-Trichloro-1,2,2-Trifluoroethane	22	ug/L	1	0.2		Q
1/17/2023	8260	2301170950A	Tetrachloroethene (PCE)	0.52	ug/L	1	0.21		J
1/17/2023	8260	2301170950A	Trichloroethene (TCE)	15	ug/L	1	0.2		Q
1/17/2023	8260	2301170951A	Trichlorofluoromethane (CFC 11)	18	ug/L	1	0.24		Q
1/17/2023	8260	2301170951A	Trichloroethene (TCE)	13	ug/L	1	0.2		Q
1/17/2023	8260	2301170951A	Tetrachloroethene (PCE)	0.46	ug/L	1	0.21		J
1/17/2023	8260	2301170951A	1,1,2-Trichloro-1,2,2-Trifluoroethane	19	ug/L	1	0.2		Q
1/17/2023	607	2301170953A	N-Nitrosodimethylamine	0.02	μg/L	0.0094	0.0047	52	
1/17/2023	607	2301170954A	N-Nitrosodimethylamine	0.02	μg/L	0.0094	0.0047	52	
1/17/2023	METALS	2301170955A	Magnesium, Total	57.1	mg/L	1	0.03		
1/17/2023	METALS	2301170955A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/17/2023	METALS	2301170955A	Strontium, Total	2.48	mg/L	0.1	0.002		
1/17/2023	METALS	2301170955A	Sodium, Total	51.8	mg/L	1	0.2		
1/17/2023	METALS	2301170955A	Silver, Total	0.0008	mg/L	0.01	0.0006		J RB
1/17/2023	METALS	2301170955A	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
1/17/2023	METALS	2301170955A	Calcium, Total	101	mg/L	1	0.3		
1/17/2023	METALS	2301170955A	Boron, Total	0.14	mg/L	0.2	0.02		J
1/17/2023	METALS	2301170955A	Barium, Total	0.028	mg/L	0.02	0.003		
1/17/2023	METALS	2301170955A	Arsenic, Total	0.0016	mg/L	0.001	0.0004		
1/17/2023	METALS	2301170955A	Zinc, Total	0.009	mg/L	0.02	0.003		J
1/17/2023	METALS	2301170955A	Potassium, Total	6.3	mg/L	2	0.4		·
1/17/2023	ANIONS	2301170956A	Sulfate	299	mg/L	8	1.6		
1/17/2023	ANIONS	2301170956A	Fluoride, undistilled	0.73	mg/L	0.1	0.01		
1/17/2023	ANIONS	2301170956A	Alkalinity, Total as CaCO3	228	mg/L	2	1.8		
1/17/2023	ANIONS	2301170936A 2301170956A	Chloride	42.1		2	0.5		
1/17/2023	SM2540C	2301170956A 2301170957A	Total Dissolved Solids (TDS)	42.1 771	mg/L	10	9		
			Perchlorate		mg/L				
1/17/2023	6850	2301170958A		0.141	ug/L	0.1	0.025		
1/17/2023	353.2	2301170959A	Nitrate+Nitrite as Nitrogen	1.52	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/15/2022	8260_LL	2211151510A	Silane, methoxytrimethyl-	5.8	ug/L	NA	NA		TIC
11/15/2022	NDMA_LL	2211151512A	N-Nitrosodimethylamine	0.52	ng/L	0.47	0.34		FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/2/2022	8260_LL	2211021333A	1,2-Dichloroethane	3.1	ug/L	0.5	0.2		
11/2/2022	NDMA_LL	2211021337A	N-Nitrosodimethylamine	0.42	ng/L	0.47	0.34		J RB TB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/15/2022	8260	2211151030A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.24	ug/L	1	0.2		J
11/15/2022	8260	2211151030A	Trichloroethene (TCE)	0.2	ug/L	1	0.2		J
11/15/2022	NDMA LL	2211151033A	N-Nitrosodimethylamine	0.75	ng/L	0.47	0.34		TB FB
11/15/2022	NDMA_LL	2211151034A	N-Nitrosodimethylamine	0.75	ng/L	0.47	0.34		TB FB
11/15/2022	METALS	2211151036A	Chromium, Total	0.119	mg/L	0.01	0.002		
11/15/2022	METALS	2211151036A	Strontium, Total	2.79	mg/L	0.1	0.002		
11/15/2022	METALS	2211151036A	Sodium, Total	51.1	mg/L	1	0.2		
11/15/2022	METALS	2211151036A	Potassium, Total	6.8	mg/L	2	0.4		
11/15/2022	METALS	2211151036A	Nickel, Total	0.006	mg/L	0.04	0.003		J
11/15/2022	METALS	2211151036A	Vanadium, Total	0.008	mg/L	0.05	0.0007		J
11/15/2022	METALS	2211151036A	Molybdenum, Total	0.022	mg/L	0.025	0.003		J
11/15/2022	METALS	2211151036A	Calcium, Total	90.8	mg/L	1	0.3		
11/15/2022	METALS	2211151036A	Boron, Total	0.08	mg/L	0.2	0.02		J
11/15/2022	METALS	2211151036A	Barium, Total	0.032	mg/L	0.02	0.003		
11/15/2022	METALS	2211151036A	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
11/15/2022	METALS	2211151036A	Iron, Total	0.46	mg/L	0.1	0.07		J RB
11/15/2022	METALS	2211151036A	Magnesium, Total	53.9	mg/L	1	0.03		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/7/2022	8260	2211071450C	Dichlorofluoromethane (CFC 21)	0.3	ug/L	1	0.2		J
11/7/2022	8260	2211071450C	Silane, methoxytrimethyl-	5	ug/L	NA	NA		TIC RB
11/7/2022	8260	2211071450C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.31	ug/L	1	0.2		J
11/7/2022	8260	2211071450C	Trichlorofluoromethane (CFC 11)	65	ug/L	1	0.24		
11/7/2022	8260	2211071450C	Tetrachloroethene (PCE)	0.48	ug/L	1	0.21		J
11/7/2022	8260	2211071450C	1,1,2-Trichloro-1,2,2-Trifluoroethane	49	ug/L	1	0.2		
11/7/2022	8260	2211071450C	Trichloroethene (TCE)	21	ug/L	1	0.2		
11/7/2022	607	2211071452C	N-Nitrodimethylamine	0.06	$\mu g/L$	0.0094	0.0047	76	
11/7/2022	607	2211071452C	N-Nitrosodimethylamine	0.14	$\mu g/L$	0.0094	0.0047	44	
11/7/2022	607	2211071452C	Bromacil	0.007	$\mu g/L$	0.0094	0.0047	90	J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
		-			Units	Lillit		Effic	QA Flag
12/12/2022	8260	2212120935C	Dichlorofluoromethane (CFC 21)	4.9	ug/L	1	0.2		
12/12/2022	8260	2212120935C	Tetrachloroethene (PCE)	0.43	ug/L	1	0.21		1 Q
12/12/2022	8260	2212120935C	Trichloroethene (TCE)	1.4	ug/L	1	0.2		Q
12/12/2022	8260	2212120935C	Trichlorofluoromethane (CFC 11)	400	ug/L	5	1.2		Q
12/12/2022	8260	2212120935C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5.2	ug/L	1	0.2		
12/12/2022	8260	2212120935C	1,1,2-Trichloro-1,2,2-Trifluoroethane	170	ug/L	5	1		Q
12/12/2022	8260	2212120936C	Trichlorofluoromethane (CFC 11)	420	ug/L	5	1.2		Q
12/12/2022	8260	2212120936C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5	ug/L	1	0.2		
12/12/2022	8260	2212120936C	Trichloroethene (TCE)	1.1	ug/L	1	0.2		Q
12/12/2022	8260	2212120936C	Dichlorofluoromethane (CFC 21)	4.6	ug/L	1	0.2		
12/12/2022	8260	2212120936C	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		Q
12/12/2022	607	2212120938C	N-Nitrodimethylamine	1.05	μg/L	0.0098	0.0049	78	
12/12/2022	607	2212120938C	Bromacil	0.08	μg/L	0.0098	0.0049	84	
12/12/2022	607	2212120938C	N-Nitrosodimethylamine	2.32	μg/L	0.0098	0.0049	47	Q
12/12/2022	METALS	2212120939C	Magnesium, Total	20.1	mg/L	1	0.03		
12/12/2022	METALS	2212120939C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
12/12/2022	METALS	2212120939C	Zinc, Total	0.02	mg/L	0.02	0.003		J
12/12/2022	METALS	2212120939C	Vanadium, Total	0.005	mg/L	0.05	0.0007		J
12/12/2022	METALS	2212120939C	Strontium, Total	1.84	mg/L	0.1	0.002		
12/12/2022	METALS	2212120939C	Sodium, Total	114	mg/L	1	0.2		
12/12/2022	METALS	2212120939C	Arsenic, Total	0.001	mg/L	0.001	0.0004		
12/12/2022	METALS	2212120939C	Chromium, Total	0.007	mg/L	0.01	0.002		J
12/12/2022	METALS	2212120939C	Calcium, Total	48.1	mg/L	1	0.3		
12/12/2022	METALS	2212120939C	Boron, Total	0.08	mg/L	0.2	0.02		J
12/12/2022	METALS	2212120939C	Barium, Total	0.049	mg/L	0.02	0.003		
12/12/2022	METALS	2212120939C	Potassium, Total	3.3	mg/L	2	0.4		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/1/2022	8260	2211010932A	1,1,2-Trichloro-1,2,2-Trifluoroethane	180	ug/L	2.5	0.5		
11/1/2022	8260	2211010932A	Trichloroethene (TCE)	13	ug/L	1	0.2		
11/1/2022	8260	2211010932A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.49	ug/L	1	0.2		J
11/1/2022	607	2211010934A	Bromacil	1.52	μg/L	0.0095	0.0048	95	
11/1/2022	8290	2211010939A	Total Tetra-Dioxins	41.2	pg/L	NA	NA		
11/1/2022	8290	2211010939A	2,3,7,8-TCDD	41.2	pg/L	9.43	0.193		
11/1/2022	8290	2211010939A	OCDD	1.49	pg/L	47.2	0.0895		J RB
11/1/2022	METALS	2211010941A	Boron, Total	0.24	mg/L	0.2	0.02		
11/1/2022	METALS	2211010941A	Manganese, Total	0.006	mg/L	0.01	0.004		J
11/1/2022	METALS	2211010941A	Strontium, Total	15.8	mg/L	1	0.02		
11/1/2022	METALS	2211010941A	Sodium, Total	179	mg/L	1	0.2		
11/1/2022	METALS	2211010941A	Selenium, Total	0.042	mg/L	0.01	0.007		
11/1/2022	METALS	2211010941A	Potassium, Total	7	mg/L	2	0.4		
11/1/2022	METALS	2211010941A	Nickel, Total	0.289	mg/L	0.04	0.003		
11/1/2022	METALS	2211010941A	Molybdenum, Total	0.021	mg/L	0.025	0.003		J
11/1/2022	METALS	2211010941A	Iron, Total	0.47	mg/L	0.1	0.07		
11/1/2022	METALS	2211010941A	Cobalt, Total	0.001	mg/L	0.05	0.0009		J RB
11/1/2022	METALS	2211010941A	Arsenic, Total	0.0025	mg/L	0.001	0.0004		
11/1/2022	METALS	2211010941A	Calcium, Total	455	mg/L	10	3		
11/1/2022	METALS	2211010941A	Chromium, Total	0.068	mg/L	0.01	0.002		
11/1/2022	METALS	2211010941A	Barium, Total	0.022	mg/L	0.02	0.003		
11/1/2022	METALS	2211010941A	Magnesium, Total	253	mg/L	1	0.03		
11/1/2022	353.2	2211010942A	Nitrate+Nitrite as Nitrogen	6.6	mg/L	0.5	0.02		
11/1/2022	9030	2211010944A	Sulfide, Acid-Soluble	1	mg/L	1	1		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/7/2022	8260_LL	2211071410B	1,4-Dioxane	27	ug/L	40	13		J
11/7/2022	8260_LL	2211071410B	Tetrahydrofuran (THF)	2.4	ug/L	5	1.7		J
11/7/2022	NDMA LL	2211071412B	N-Nitrosodimethylamine	1.05	ng/L	0.48	0.35		RB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/7/2022	NDMA_LL	2211071452B	N-Nitrosodimethylamine	1.61	ng/L	0.48	0.35		RB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/7/2022	8260_LL	2211071545B	Toluene	0.21	ug/L	0.5	0.2		J
11/7/2022	NDMA_LL	2211071547B	N-Nitrosodimethylamine	0.72	ng/L	0.49	0.35		RB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/4/2022	8260	2211041130Y	Trichlorofluoromethane (CFC 11)	33	ug/L	1	0.24		
11/4/2022	8260	2211041130Y	cis-1,2-Dichloroethene	0.33	ug/L	1	0.23		J
11/4/2022	8260	2211041130Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5	ug/L	1	0.2		
11/4/2022	8260	2211041130Y	Trichloroethene (TCE)	63	ug/L	1	0.2		
11/4/2022	8260	2211041130Y	Tetrachloroethene (PCE)	3	ug/L	1	0.21		
11/4/2022	8260	2211041130Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	66	ug/L	1	0.2		
11/4/2022	8260	2211041130Y	Dichlorofluoromethane (CFC 21)	7.4	ug/L	1	0.2		
11/4/2022	8260	2211041131Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	83	ug/L	1	0.2		
11/4/2022	8260	2211041131Y	Dichlorofluoromethane (CFC 21)	7.4	ug/L	1	0.2		
11/4/2022	8260	2211041131Y	Tetrachloroethene (PCE)	3.1	ug/L	1	0.21		
11/4/2022	8260	2211041131Y	Trichloroethene (TCE)	64	ug/L	1	0.2		
11/4/2022	8260	2211041131Y	Trichlorofluoromethane (CFC 11)	42	ug/L	1	0.24		
11/4/2022	8260	2211041131Y	cis-1,2-Dichloroethene	0.34	ug/L	1	0.23		J
11/4/2022	8260	2211041131Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5.9	ug/L	1	0.2		
11/4/2022	607	2211041132Y	N-Nitrodimethylamine	0.36	$\mu g/L$	0.0098	0.0049	74	
11/4/2022	607	2211041132Y	Bromacil	0.68	$\mu g/L$	0.0098	0.0049	95	
11/4/2022	607	2211041132Y	N-Nitrosodimethylamine	0.44	$\mu g/L$	0.0098	0.0049	44	
11/4/2022	607	2211041155Y	N-Nitrodimethylamine	0.38	$\mu g/L$	0.0095	0.0048	74	
11/4/2022	607	2211041155Y	Bromacil	0.7	μg/L	0.0095	0.0048	95	
11/4/2022	607	2211041155Y	N-Nitrosodimethylamine	0.46	μg/L	0.0095	0.0048	44	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/7/2022	8260_LL	2211071325Y	2-Propanol	6.6	ug/L	40	3.4		J TB
11/7/2022	8260_LL	2211071325Y	Silane, methoxytrimethyl-	6.3	ug/L	NA	NA		TIC RB TB
11/7/2022	NDMA_LL	2211071326Y	N-Nitrosodimethylamine	0.96	ng/L	0.48	0.35		RB TB EB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
11/7/2022	NDMA_LL	2211071546Y	N-Nitrosodimethylamine	0.62	ng/L	0.49	0.35		RB EB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/13/2022	NDMA LL	2212131007A	N-Nitrosodimethylamine	0.41	ng/L	0.48	0.35	•	J	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/5/2023	8260	2301051000C	Trichloroethene (TCE)	2.2	ug/L	1	0.2		
1/5/2023	8260	2301051000C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.36	ug/L	1	0.2		J
1/5/2023	8260	2301051000C	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.5	ug/L	1	0.2		
1/5/2023	607	2301051003C	Bromacil	0.94	$\mu g/L$	0.0095	0.0048	91	
1/5/2023	NDMA_LL	2301051004C	N-Nitrosodimethylamine	1.36	ng/L	0.48	0.35		FB
1/5/2023	METALS	2301051007C	Boron, Total	0.11	mg/L	0.2	0.02		J
1/5/2023	METALS	2301051007C	Molybdenum, Total	0.019	mg/L	0.025	0.003		J
1/5/2023	METALS	2301051007C	Zinc, Total	0.015	mg/L	0.02	0.003		J
1/5/2023	METALS	2301051007C	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J
1/5/2023	METALS	2301051007C	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
1/5/2023	METALS	2301051007C	Strontium, Total	6.07	mg/L	0.1	0.002		
1/5/2023	METALS	2301051007C	Sodium, Total	80.7	mg/L	1	0.2		
1/5/2023	METALS	2301051007C	Potassium, Total	5.2	mg/L	2	0.4		
1/5/2023	METALS	2301051007C	Nickel, Total	0.501	mg/L	0.04	0.003		
1/5/2023	METALS	2301051007C	Manganese, Total	0.046	mg/L	0.01	0.004		
1/5/2023	METALS	2301051007C	Magnesium, Total	73.3	mg/L	1	0.03		
1/5/2023	METALS	2301051007C	Iron, Total	0.19	mg/L	0.1	0.07		
1/5/2023	METALS	2301051007C	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
1/5/2023	METALS	2301051007C	Calcium, Total	147	mg/L	1	0.3		
1/5/2023	METALS	2301051007C	Barium, Total	0.042	mg/L	0.02	0.003		
1/5/2023	METALS	2301051007C	Arsenic, Total	0.001	mg/L	0.001	0.0004		
1/5/2023	METALS	2301051007C	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
1/5/2023	METALS	2301051007C	Chromium, Total	0.026	mg/L	0.01	0.002		
1/5/2023	ANIONS	2301051008C	Fluoride, undistilled	0.76	mg/L	0.1	0.01		
1/5/2023	ANIONS	2301051008C	Sulfate	480	mg/L	20	4		
1/5/2023	ANIONS	2301051008C	Alkalinity, Total as CaCO3	128	mg/L	2	1.8		
1/5/2023	ANIONS	2301051008C	Chloride	142	mg/L	8	1.7		
1/5/2023	SM2540C	2301051009C	Total Dissolved Solids (TDS)	1110	mg/L	10	9		
1/5/2023	6850	2301051010C	Perchlorate	0.666	ug/L	0.1	0.025		
1/5/2023	353.2	2301051011C	Nitrate+Nitrite as Nitrogen	3.14	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/5/2022	8260_LL	2212050925C	Sulfur Dioxide	6.6	ug/L	NA	NA		TIC RB TB FB	
12/5/2022	NDMA LL	2212050927C	N-Nitrosodimethylamine	0.45	ng/L	0.48	0.35		J	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/1/2022	8260_LL	2211011455A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.41	ug/L	0.5	0.2		J
11/1/2022	8260_LL	2211011455A	Trichlorofluoromethane (CFC 11)	0.24	ug/L	0.5	0.24		J
11/1/2022	NDMA_LL	2211011510A	N-Nitrosodimethylamine	0.75	ng/L	0.47	0.34		RB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/7/2022	8260	2211070950C	Trichloroethene (TCE)	0.31	ug/L	1	0.2		J
11/7/2022	8260	2211070950C	Trichlorofluoromethane (CFC 11)	60	ug/L	1	0.24		
11/7/2022	8260	2211070950C	Dichlorofluoromethane (CFC 21)	0.4	ug/L	1	0.2		J
11/7/2022	8260	2211070950C	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.9	ug/L	1	0.2		
11/7/2022	607	2211070952C	N-Nitrodimethylamine	1.63	μg/L	0.0098	0.0049	76	
11/7/2022	607	2211070952C	Bromacil	0.05	μg/L	0.0098	0.0049	90	
11/7/2022	607	2211070952C	N-Nitrosodimethylamine	0.43	μg/L	0.0098	0.0049	44	
11/7/2022	METALS	2211070953C	Barium, Total	0.013	mg/L	0.02	0.003		J
11/7/2022	METALS	2211070953C	Molybdenum, Total	0.033	mg/L	0.025	0.003		
11/7/2022	METALS	2211070953C	Vanadium, Total	0.007	mg/L	0.05	0.0007		J
11/7/2022	METALS	2211070953C	Strontium, Total	1.15	mg/L	0.1	0.002		
11/7/2022	METALS	2211070953C	Sodium, Total	114	mg/L	1	0.2		
11/7/2022	METALS	2211070953C	Zinc, Total	0.012	mg/L	0.02	0.003		J
11/7/2022	METALS	2211070953C	Potassium, Total	1.2	mg/L	2	0.4		J
11/7/2022	METALS	2211070953C	Nickel, Total	0.004	mg/L	0.04	0.003		J
11/7/2022	METALS	2211070953C	Manganese, Total	0.007	mg/L	0.01	0.004		J
11/7/2022	METALS	2211070953C	Magnesium, Total	20.4	mg/L	1	0.03		
11/7/2022	METALS	2211070953C	Iron, Total	0.64	mg/L	0.1	0.07		
11/7/2022	METALS	2211070953C	Chromium, Total	0.009	mg/L	0.01	0.002		J
11/7/2022	METALS	2211070953C	Boron, Total	0.53	mg/L	0.2	0.02		
11/7/2022	METALS	2211070953C	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
11/7/2022	METALS	2211070953C	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
11/7/2022	METALS	2211070953C	Calcium, Total	32.4	mg/L	1	0.3		
11/7/2022	ANIONS	2211070954C	Alkalinity, Total as CaCO3	234	mg/L	2	1.8		
11/7/2022	ANIONS	2211070954C	Chloride	32.8	mg/L	2	0.5		
11/7/2022	ANIONS	2211070954C	Fluoride, undistilled	2.16	mg/L	0.1	0.01		
11/7/2022	ANIONS	2211070954C	Sulfate	145	mg/L	8	1.6		
11/7/2022	SM2540C	2211070955C	Total Dissolved Solids (TDS)	523	mg/L	10	9		
11/7/2022	6850	2211070956C	Perchlorate	0.78	ug/L	0.1	0.025		
11/7/2022	353.2	2211070957C	Nitrate+Nitrite as Nitrogen	4.51	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/13/2022	8260	2212130826C	1,1,2-Trichloro-1,2,2-Trifluoroethane	8.6	ug/L	1	0.2		
12/13/2022	8260	2212130826C	Dichlorofluoromethane (CFC 21)	0.29	ug/L	1	0.2		J
12/13/2022	8260	2212130826C	Trichloroethene (TCE)	1.3	ug/L	1	0.2		
12/13/2022	8260	2212130826C	Trichlorofluoromethane (CFC 11)	150	ug/L	1	0.24		
12/13/2022	8260	2212130826C	Silane, fluorotrimethyl-	5.4	ug/L	NA	NA		TIC
12/13/2022	607	2212130828C	N-Nitrosodimethylamine	0.96	μg/L	0.0094	0.0047	47	
12/13/2022	607	2212130828C	N-Nitrodimethylamine	3.4	μg/L	0.0094	0.0047	82	
12/13/2022	607	2212130828C	Bromacil	1.98	μg/L	0.0094	0.0047	82	
12/13/2022	METALS	2212130829C	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
12/13/2022	METALS	2212130829C	Zinc, Total	0.017	mg/L	0.02	0.003		J
12/13/2022	METALS	2212130829C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
12/13/2022	METALS	2212130829C	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
12/13/2022	METALS	2212130829C	Strontium, Total	2.57	mg/L	0.1	0.002		
12/13/2022	METALS	2212130829C	Nickel, Total	0.01	mg/L	0.04	0.003		J
12/13/2022	METALS	2212130829C	Potassium, Total	3.3	mg/L	2	0.4		
12/13/2022	METALS	2212130829C	Sodium, Total	76.4	mg/L	1	0.2		
12/13/2022	METALS	2212130829C	Chromium, Total	0.005	mg/L	0.01	0.002		J
12/13/2022	METALS	2212130829C	Calcium, Total	82.6	mg/L	1	0.3		
12/13/2022	METALS	2212130829C	Boron, Total	0.23	mg/L	0.2	0.02		
12/13/2022	METALS	2212130829C	Barium, Total	0.041	mg/L	0.02	0.003		
12/13/2022	METALS	2212130829C	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
12/13/2022	METALS	2212130829C	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
12/13/2022	METALS	2212130829C	Magnesium, Total	59.3	mg/L	1	0.03		

Event	Analysis Method	6 1		D 1/	T T •	Quant	Det	Xtrct	O.A. El
Date	Methou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/11/2023	8260_LL	2301111536B	2-Butanone (MEK)	1.1	ug/L	5	0.78		J
1/11/2023	8260_LL	2301111536B	Toluene	0.66	ug/L	0.5	0.2		
1/11/2023	8260_LL	2301111536B	1,4-Dioxane	54	ug/L	40	13		
1/11/2023	8260_LL	2301111536B	1,4-Dioxane, 2,5-dimethyl-	6.4	ug/L	NA	NA		TIC
1/11/2023	NDMA_LL	2301111538B	N-Nitrosodimethylamine	0.48	ng/L	0.47	0.34		RB
1/11/2023	8270	2301111540B	1,4-Dioxane	0.81	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
		эшири	Constituent	resure	Cints			EIIIC	Q:11 mg
1/11/2023	8260_LL	2301111555B	Unknown	5.3	ug/L	NA	NA		TIC
1/11/2023	8260_LL	2301111555B	1,4-Dioxane	16	ug/L	40	13		J
1/11/2023	8260_LL	2301111555B	Toluene	3.3	ug/L	0.5	0.2		
1/11/2023	NDMA_LL	2301111557B	N-Nitrosodimethylamine	1.06	ng/L	0.48	0.35		RB
1/11/2023	NDMA_LL	2301111557B	N-Nitrodimethylamine	0.67	ng/L	0.48	0.34		
1/11/2023	8270	2301111559B	1,4-Dioxane	1.2	ug/L	0.04	0.027		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/12/2023	8260_LL	2301121425B	Silane, fluorotrimethyl-	8.9	ug/L	NA	NA		TIC
1/12/2023	8260_LL	2301121425B	Toluene	0.4	ug/L	0.5	0.2		J
1/12/2023	8260_LL	2301121425B	1,4-Dioxane	83	ug/L	40	13		
1/12/2023	8260_LL	2301121425B	Unknown	12	ug/L	NA	NA		TIC RB TB FB
1/12/2023	8260_LL	2301121425B	1,4-Dioxane, 2,5-dimethyl-	12	ug/L	NA	NA		TIC
1/12/2023	NDMA_LL	2301121427B	N-Nitrosodimethylamine	1.68	ng/L	0.49	0.35		RB
1/12/2023	NDMA_LL	2301121427B	N-Nitrodimethylamine	1.09	ng/L	0.49	0.34		
1/12/2023	NDMA_LL	2301121428B	N-Nitrosodimethylamine	1.57	ng/L	0.49	0.35		RB
1/12/2023	8270	2301121451B	1,4-Dioxane	1.1	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/23/2023	8260_LL	2301231416B	Toluene	1.4	ug/L	0.5	0.2		
1/23/2023	NDMA_LL	2301231455B	N-Nitrosodimethylamine	2.52	ng/L	0.48	0.35		TB FB
1/23/2023	8270	2301231457B	1,4-Dioxane	0.45	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	OA Flag
Date	Method	Sample	Constituent	Resuit	Units	Lillit	Lillit	Effic	QA Flag
1/23/2023	8260_LL	2301231434B	Silane, fluorotrimethyl-	12	ug/L	NA	NA		TIC
1/23/2023	8260_LL	2301231434B	Toluene	0.79	ug/L	0.5	0.2		
1/23/2023	NDMA_LL	2301231515B	N-Nitrosodimethylamine	3.24	ng/L	0.48	0.35		
1/23/2023	8270	2301231517B	1,4-Dioxane	0.48	ug/L	0.04	0.027		
1/23/2023	8270	2301231518B	1,4-Dioxane	0.51	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/24/2023	8260_LL	2301241450B	Toluene	1.1	ug/L	0.5	0.2		
1/24/2023	NDMA_LL	2301241452B	N-Nitrosodimethylamine	4.15	ng/L	0.49	0.36		FB Q
1/24/2023	8270	2301241454B	1,4-Dioxane	0.51	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/18/2023	NDMA_LL	2301181028A	N-Nitrosodimethylamine	0.5	ng/L	0.47	0.34		FB	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/23/2023	METALS	2301231015A	Nickel, Total	0.004	mg/L	0.04	0.003		J
1/23/2023	METALS	2301231015A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/23/2023	METALS	2301231015A	Zinc, Total	0.005	mg/L	0.02	0.003		J
1/23/2023	METALS	2301231015A	Strontium, Total	2.41	mg/L	0.1	0.002		
1/23/2023	METALS	2301231015A	Sodium, Total	40.5	mg/L	1	0.2		
1/23/2023	METALS	2301231015A	Potassium, Total	3.2	mg/L	2	0.4		
1/23/2023	METALS	2301231015A	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
1/23/2023	METALS	2301231015A	Magnesium, Total	68.4	mg/L	1	0.03		
1/23/2023	METALS	2301231015A	Calcium, Total	99.9	mg/L	1	0.3		
1/23/2023	METALS	2301231015A	Boron, Total	0.06	mg/L	0.2	0.02		J
1/23/2023	METALS	2301231015A	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
1/23/2023	METALS	2301231015A	Barium, Total	0.024	mg/L	0.02	0.003		
1/23/2023	METALS	2301231016A	Magnesium, Total	68.5	mg/L	1	0.03		
1/23/2023	METALS	2301231016A	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
1/23/2023	METALS	2301231016A	Nickel, Total	0.004	mg/L	0.04	0.003		J
1/23/2023	METALS	2301231016A	Potassium, Total	3.2	mg/L	2	0.4		
1/23/2023	METALS	2301231016A	Zinc, Total	0.005	mg/L	0.02	0.003		J
1/23/2023	METALS	2301231016A	Sodium, Total	40.4	mg/L	1	0.2		
1/23/2023	METALS	2301231016A	Strontium, Total	2.4	mg/L	0.1	0.002		
1/23/2023	METALS	2301231016A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/23/2023	METALS	2301231016A	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
1/23/2023	METALS	2301231016A	Calcium, Total	99.8	mg/L	1	0.3		
1/23/2023	METALS	2301231016A	Boron, Total	0.06	mg/L	0.2	0.02		J
1/23/2023	METALS	2301231016A	Barium, Total	0.024	mg/L	0.02	0.003		
1/23/2023	ANIONS	2301231017A	Chloride	41.4	mg/L	2	0.5		
1/23/2023	ANIONS	2301231017A	Fluoride, undistilled	0.89	mg/L	0.1	0.01		
1/23/2023	ANIONS	2301231017A	Sulfate	323	mg/L	8	1.6		
1/23/2023	ANIONS	2301231017A	Alkalinity, Total as CaCO3	226	mg/L	2	1.8		
1/23/2023	SM2540C	2301231018A	Total Dissolved Solids (TDS)	787	mg/L	10	9		
1/23/2023	6850	2301231019A	Perchlorate	0.0478	ug/L	0.1	0.025		J
1/23/2023	353.2	2301231020A	Nitrate+Nitrite as Nitrogen	0.669	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/23/2023	NDMA_LL	2301231434A	N-Nitrosodimethylamine	0.39	ng/L	0.47	0.34		J
1/23/2023	METALS	2301231436A	Potassium, Total	3.2	mg/L	2	0.4		
1/23/2023	METALS	2301231436A	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
1/23/2023	METALS	2301231436A	Zinc, Total	0.007	mg/L	0.02	0.003		J
1/23/2023	METALS	2301231436A	Vanadium, Total	0.004	mg/L	0.05	0.0007		J
1/23/2023	METALS	2301231436A	Strontium, Total	2.42	mg/L	0.1	0.002		
1/23/2023	METALS	2301231436A	Sodium, Total	40.8	mg/L	1	0.2		
1/23/2023	METALS	2301231436A	Nickel, Total	0.008	mg/L	0.04	0.003		J
1/23/2023	METALS	2301231436A	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
1/23/2023	METALS	2301231436A	Magnesium, Total	69	mg/L	1	0.03		
1/23/2023	METALS	2301231436A	Calcium, Total	101	mg/L	1	0.3		
1/23/2023	METALS	2301231436A	Barium, Total	0.024	mg/L	0.02	0.003		
1/23/2023	METALS	2301231436A	Boron, Total	0.06	mg/L	0.2	0.02		J
1/23/2023	ANIONS	2301231437A	Fluoride, undistilled	0.89	mg/L	0.1	0.01		
1/23/2023	ANIONS	2301231437A	Alkalinity, Total as CaCO3	228	mg/L	2	1.8		
1/23/2023	ANIONS	2301231437A	Sulfate	315	mg/L	8	1.6		
1/23/2023	ANIONS	2301231437A	Chloride	42	mg/L	2	0.5		
1/23/2023	SM2540C	2301231438A	Total Dissolved Solids (TDS)	802	mg/L	10	9		
1/23/2023	6850	2301231439A	Perchlorate	0.0721	ug/L	0.1	0.025		J
1/23/2023	353.2	2301231440A	Nitrate+Nitrite as Nitrogen	0.662	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/16/2022	8260	2211161012B	Silane, fluorotrimethyl-	7.2	ug/L	NA	NA		TIC
11/16/2022	8260	2211161012B	Silane, methoxytrimethyl-	9.5	ug/L	NA	NA		TIC
11/16/2022	8260	2211161012B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
11/16/2022	8260	2211161012B	2-Propanol	7.3	ug/L	50	3.4		J
11/16/2022	8260	2211161012B	1,1,2-Trichloro-1,2,2-Trifluoroethane	25	ug/L	1	0.2		
11/16/2022	8260	2211161012B	Trichlorofluoromethane (CFC 11)	74	ug/L	1	0.24		
11/16/2022	8260	2211161012B	Trichloroethene (TCE)	0.63	ug/L	1	0.2		J
11/16/2022	8260	2211161012B	Dichlorofluoromethane (CFC 21)	1.7	ug/L	1	0.2		
11/16/2022	607	2211161013B	N-Nitrodimethylamine	7.63	μg/L	0.094	0.047	77	D
11/16/2022	607	2211161013B	Bromacil	1.62	μg/L	0.0094	0.0047	101	
11/16/2022	607	2211161013B	N-Nitrosodimethylamine	6.49	μg/L	0.094	0.047	47	D
11/16/2022	METALS	2211161014B	Boron, Total	0.33	mg/L	0.2	0.02		
11/16/2022	METALS	2211161014B	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
11/16/2022	METALS	2211161014B	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
11/16/2022	METALS	2211161014B	Strontium, Total	2.63	mg/L	0.1	0.002		
11/16/2022	METALS	2211161014B	Sodium, Total	108	mg/L	1	0.2		
11/16/2022	METALS	2211161014B	Vanadium, Total	0.005	mg/L	0.05	0.0007		J
11/16/2022	METALS	2211161014B	Potassium, Total	3.3	mg/L	2	0.4		
11/16/2022	METALS	2211161014B	Nickel, Total	0.018	mg/L	0.04	0.003		J
11/16/2022	METALS	2211161014B	Manganese, Total	0.024	mg/L	0.01	0.004		
11/16/2022	METALS	2211161014B	Magnesium, Total	76.5	mg/L	1	0.03		
11/16/2022	METALS	2211161014B	Iron, Total	0.5	mg/L	0.1	0.07		J RB
11/16/2022	METALS	2211161014B	Calcium, Total	95.7	mg/L	1	0.3		
11/16/2022	METALS	2211161014B	Barium, Total	0.064	mg/L	0.02	0.003		
11/16/2022	METALS	2211161014B	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
11/16/2022	METALS	2211161014B	Zinc, Total	0.004	mg/L	0.02	0.003		J
11/16/2022	METALS	2211161014B	Chromium, Total	0.096	mg/L	0.01	0.002		
11/16/2022	ANIONS	2211161015B	Alkalinity, Total as CaCO3	304	mg/L	2	1.8		
11/16/2022	ANIONS	2211161015B	Chloride	90.6	mg/L	2	0.5		
11/16/2022	ANIONS	2211161015B	Fluoride, undistilled	0.97	mg/L	0.1	0.01		
11/16/2022	ANIONS	2211161015B	Sulfate	336	mg/L	8	1.6		
11/16/2022	SM2540C	2211161016B	Total Dissolved Solids (TDS)	1020	mg/L	10	9		
11/16/2022	6850	2211161017B	Perchlorate	0.765	ug/L	0.1	0.025		
11/16/2022	353.2	2211161018B	Nitrate+Nitrite as Nitrogen	10.8	mg/L	0.5	0.02		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/3/2023	NDMA_LL	2301031511Y	N-Nitrosodimethylamine	1.81	ng/L	0.48	0.35		EB
1/3/2023	8270	2301031540Y	1,4-Dioxane	0.43	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/4/2023	NDMA_LL	2301041416Y	N-Nitrosodimethylamine	1.02	ng/L	0.48	0.35		EB
1/4/2023	NDMA LL	2301041416Y	N-Nitrodimethylamine	0.41	ng/L	0.48	0.33		J

Event	Analysis			-		Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/5/2022	8260_LL	2212051410B	Dichlorofluoromethane (CFC 21)	0.31	ug/L	0.5	0.2		J
12/5/2022	8260_LL	2212051410B	Toluene	0.95	ug/L	0.5	0.2		
12/5/2022	8260_LL	2212051410B	Trichloroethene (TCE)	0.25	ug/L	0.5	0.2		J
12/5/2022	8260_LL	2212051410B	Trichlorofluoromethane (CFC 11)	0.31	ug/L	0.5	0.24		J
12/5/2022	8260_LL	2212051410B	Sulfur Dioxide	5.8	ug/L	NA	NA		TIC RB FB
12/5/2022	NDMA_LL	2212051412B	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.35		FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/5/2022	8270	2212051434B	1,4-Dioxane	1.1	ug/L	0.04	0.027		FB
12/5/2022	8270	2212051434B	1,4-Dioxane	1.8	ug/L	0.04	0.027		T FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/6/2022	NDMA_LL	2212061403B	N-Nitrosodimethylamine	1.08	ng/L	0.47	0.34		
12/6/2022	NDMA_LL	2212061403B	N-Nitrodimethylamine	0.35	ng/L	0.47	0.33		J
12/6/2022	NDMA_LL	2212061404B	N-Nitrosodimethylamine	0.73	ng/L	0.47	0.34		
12/6/2022	8270	2212061406B	1,4-Dioxane	1.6	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/6/2022	NDMA LL	2212061423B	N-Nitrosodimethylamine	0.53	ng/L	0.47	0.34			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/6/2022	8260_LL	2212061436B	Silane, methoxytrimethyl-	8	ug/L	NA	NA		TIC	
12/6/2022	NDMA LL	2212061438B	N-Nitrosodimethylamine	0.63	ng/L	0.48	0.35			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/10/2022	8260	2211100902C	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.2	ug/L	1	0.2		
11/10/2022	8260	2211100902C	2-Propanol	4.4	ug/L	50	3.4		J
11/10/2022	8260	2211100902C	Trichloroethene (TCE)	4.4	ug/L	1	0.2		
11/10/2022	8260	2211100902C	Trichlorofluoromethane (CFC 11)	4.2	ug/L	1	0.24		
11/10/2022	8260	2211100902C	Silane, methoxytrimethyl-	8.6	ug/L	NA	NA		TIC
11/10/2022	8260	2211100902C	Unknown	5.3	ug/L	NA	NA		TIC
11/10/2022	NDMA_LL	2211100904C	N-Nitrosodimethylamine	1.09	ng/L	0.47	0.34		
11/10/2022	NDMA_LL	2211100905C	N-Nitrosodimethylamine	1.14	ng/L	0.49	0.35		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/10/2022	8260	2211101425C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.4	ug/L	1	0.2		J
11/10/2022	8260	2211101425C	Silanol, trimethyl-	5.8	ug/L	NA	NA		TIC
11/10/2022	8260	2211101425C	Silane, methoxytrimethyl-	9.5	ug/L	NA	NA		TIC
11/10/2022	8260	2211101425C	Silane, fluorotrimethyl-	6.6	ug/L	NA	NA		TIC
11/10/2022	8260	2211101425C	Trichloroethene (TCE)	5.4	ug/L	1	0.2		
11/10/2022	8260	2211101425C	Dichlorofluoromethane (CFC 21)	0.63	ug/L	1	0.2		J
11/10/2022	8260	2211101425C	2-Propanol	5.8	ug/L	50	3.4		J
11/10/2022	8260	2211101425C	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.3	ug/L	1	0.2		
11/10/2022	8260	2211101425C	Trichlorofluoromethane (CFC 11)	4.3	ug/L	1	0.24		
11/10/2022	8260	2211101426C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.47	ug/L	1	0.2		J
11/10/2022	8260	2211101426C	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.4	ug/L	1	0.2		
11/10/2022	8260	2211101426C	Dichlorofluoromethane (CFC 21)	0.65	ug/L	1	0.2		J
11/10/2022	8260	2211101426C	Trichloroethene (TCE)	5.3	ug/L	1	0.2		
11/10/2022	8260	2211101426C	Trichlorofluoromethane (CFC 11)	4.5	ug/L	1	0.24		
11/10/2022	NDMA_LL	2211101435C	N-Nitrosodimethylamine	1.74	ng/L	0.5	0.36		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/24/2023	8260_LL	2301241035C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.8	ug/L	0.5	0.2		
1/24/2023	8260_LL	2301241036C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.86	ug/L	0.5	0.2		
1/24/2023	8260_LL	2301241036C	Trichlorofluoromethane (CFC 11)	0.25	ug/L	0.5	0.24		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/12/2022	8260	2212121410A	Unknown	5.2	ug/L	NA	NA		TIC
12/12/2022	8260	2212121410A	1,1,2-Trichloro-1,2,2-Trifluoroethane	28	ug/L	1	0.2		
12/12/2022	8260	2212121410A	Dichlorofluoromethane (CFC 21)	0.56	ug/L	1	0.2		J
12/12/2022	8260	2212121410A	Tetrachloroethene (PCE)	0.83	ug/L	1	0.21		J
12/12/2022	8260	2212121410A	Trichloroethene (TCE)	50	ug/L	1	0.2		
12/12/2022	8260	2212121410A	Unknown	6.8	ug/L	NA	NA		TIC
12/12/2022	8260	2212121410A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.3	ug/L	1	0.2		J
12/12/2022	8260	2212121410A	Trichlorofluoromethane (CFC 11)	38	ug/L	1	0.24		
12/12/2022	607	2212121412A	N-Nitrosodimethylamine	0.02	$\mu g/L$	0.0095	0.0048	47	
12/12/2022	607	2212121412A	N-Nitrodimethylamine	0.02	$\mu g/L$	0.0095	0.0048	78	
12/12/2022	607	2212121412A	Bromacil	0.01	$\mu g/L$	0.0095	0.0048	84	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/12/2022	8260	2212120925B	Silane, fluorotrimethyl-	7.5	ug/L	NA	NA		TIC
12/12/2022	8260	2212120925B	Trichlorofluoromethane (CFC 11)	0.27	ug/L	1	0.24		J
12/12/2022	NDMA_LL	2212120927B	N-Nitrosodimethylamine	0.45	ng/L	0.48	0.35		J RB TB FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/5/2023		2301051440Y	Silane, methoxytrimethyl-	6.8		NA	NA	EIIIC	TIC
1/5/2023	8260_LL NDMA_LL	23010314401 2301101100Y	N-Nitrosodimethylamine	5.18	ug/L	0.48	0.35		EB
	_		•		ng/L				ED
1/5/2023	METALS	2301101101Y	Strontium, Total	2.27	mg/L	0.1	0.002		¥
1/5/2023	METALS	2301101101Y	Nickel, Total	0.009	mg/L	0.04	0.003		J
1/5/2023	METALS	2301101101Y	Sodium, Total	242	mg/L	10	2		_
1/5/2023	METALS	2301101101Y	Thallium, Total	0.00008	mg/L	0.001	0.00004		J
1/5/2023	METALS	2301101101Y	Vanadium, Total	0.012	mg/L	0.05	0.0007		J
1/5/2023	METALS	2301101101Y	Zinc, Total	0.023	mg/L	0.02	0.003		EB
1/5/2023	METALS	2301101101Y	Iron, Total	0.08	mg/L	0.1	0.07		J
1/5/2023	METALS	2301101101Y	Arsenic, Total	0.0022	mg/L	0.001	0.0004		
1/5/2023	METALS	2301101101Y	Barium, Total	0.018	mg/L	0.02	0.003		J
1/5/2023	METALS	2301101101Y	Boron, Total	0.34	mg/L	0.2	0.02		
1/5/2023	METALS	2301101101Y	Calcium, Total	106	mg/L	1	0.3		
1/5/2023	METALS	2301101101Y	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
1/5/2023	METALS	2301101101Y	Chromium, Total	0.002	mg/L	0.01	0.002		J
1/5/2023	METALS	2301101101Y	Potassium, Total	8.1	mg/L	2	0.4		
1/5/2023	METALS	2301101101Y	Manganese, Total	0.006	mg/L	0.01	0.004		J
1/5/2023	METALS	2301101101Y	Magnesium, Total	41.9	mg/L	1	0.03		
1/5/2023	METALS	2301101101Y	Aluminum, Total	0.12	mg/L	0.1	0.03		
1/5/2023	ANIONS	2301101350Y	Sulfate	663	mg/L	20	4		
1/5/2023	ANIONS	2301101350Y	Fluoride, undistilled	0.53	mg/L	0.1	0.01		
1/5/2023	ANIONS	2301101350Y	Alkalinity, Total as CaCO3	78.7	mg/L	2	1.8		
1/5/2023	ANIONS	2301101350Y	Chloride	122	mg/L	4	0.9		
1/5/2023	SM2540C	2301101351Y	Total Dissolved Solids (TDS)	1350	mg/L	11	10		
1/5/2023	6850	23011013511 2301101352Y	Perchlorate	0.169	ug/L	0.1	0.025		
1/5/2023	353.2	23011013521 2301101353Y	Nitrate+Nitrite as Nitrogen	4.45	mg/L	0.5	0.02		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/10/2023	NDMA LL	2301110935Y	N-Nitrodimethylamine	1.71	ng/L	0.48	0.33		EB
1/10/2023	NDMA LL	2301110935Y	N-Nitrosodimethylamine	44.03	ng/L	0.48	0.35		
1/10/2023	METALS	2301110936Y	Molybdenum, Total	0.045	mg/L	0.025	0.003		
1/10/2023	METALS	2301110936Y	Zinc, Total	0.027	mg/L	0.02	0.003		
1/10/2023	METALS	2301110936Y	Vanadium, Total	0.016	mg/L	0.05	0.0007		Ī
1/10/2023	METALS	2301110936Y	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
1/10/2023	METALS	2301110936Y	Strontium, Total	2.47	mg/L	0.1	0.002		•
1/10/2023	METALS	2301110936Y	Sodium, Total	335	mg/L	10	2		
1/10/2023	METALS	2301110936Y	Potassium, Total	9.8	mg/L	2	0.4		
1/10/2023	METALS	2301110936Y	Manganese, Total	0.188	mg/L	0.01	0.004		
1/10/2023	METALS	2301110936Y	Magnesium, Total	23.7	mg/L	1	0.03		
1/10/2023	METALS	2301110936Y	Lead, Total	0.004	mg/L	0.05	0.003		I
1/10/2023	METALS	2301110936Y	Iron, Total	0.1	mg/L	0.1	0.07		I
1/10/2023	METALS	2301110936Y	Copper, Total	0.011	mg/L	0.02	0.004		J
1/10/2023	METALS	2301110936Y	Chromium, Total	0.002	mg/L	0.01	0.002		J
1/10/2023	METALS	2301110936Y	Calcium, Total	92.4	mg/L	1	0.3		•
1/10/2023	METALS	2301110936Y	Boron, Total	0.43	mg/L	0.2	0.02		
1/10/2023	METALS	2301110936Y	Barium, Total	0.02	mg/L	0.02	0.003		J
1/10/2023	METALS	2301110936Y	Antimony, Total	0.0007	mg/L	0.001	0.0002		J
1/10/2023	METALS	2301110936Y	Aluminum, Total	0.06	mg/L	0.1	0.03		J
1/10/2023	METALS	2301110936Y	Nickel, Total	0.008	mg/L	0.04	0.003		J
1/10/2023	METALS	2301110936Y	Arsenic, Total	0.0043	mg/L	0.001	0.0004		•

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/23/2023	NDMA_LL	2301231531Y	N-Nitrodimethylamine	0.48	ng/L	0.48	0.33		EB
1/23/2023	NDMA_LL	2301231531Y	N-Nitrosodimethylamine	9.58	ng/L	0.48	0.35		* EB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/17/2023	NDMA_LL	2301171416Y	N-Nitrosodimethylamine	10.33	ng/L	0.48	0.35		EB	

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/11/2023	NDMA_LL	2301111435Y	N-Nitrodimethylamine	0.53	ng/L	0.48	0.33		EB
1/11/2023	NDMA_LL	2301111435Y	N-Nitrosodimethylamine	1.25	ng/L	0.48	0.35		EB
1/11/2023	NDMA_LL	2301111436Y	N-Nitrosodimethylamine	1.5	ng/L	0.48	0.35		EB
1/11/2023	METALS	2301111505Y	Vanadium, Total	0.016	mg/L	0.05	0.0007		J
1/11/2023	METALS	2301111505Y	Strontium, Total	2.31	mg/L	0.1	0.002		
1/11/2023	METALS	2301111505Y	Zinc, Total	0.003	mg/L	0.02	0.003		J
1/11/2023	METALS	2301111505Y	Calcium, Total	38.5	mg/L	1	0.3		
1/11/2023	METALS	2301111505Y	Sodium, Total	135	mg/L	1	0.2		
1/11/2023	METALS	2301111505Y	Nickel, Total	0.005	mg/L	0.04	0.003		J
1/11/2023	METALS	2301111505Y	Molybdenum, Total	0.016	mg/L	0.025	0.003		J
1/11/2023	METALS	2301111505Y	Arsenic, Total	0.0026	mg/L	0.001	0.0004		
1/11/2023	METALS	2301111505Y	Potassium, Total	4.6	mg/L	2	0.4		
1/11/2023	METALS	2301111505Y	Boron, Total	0.18	mg/L	0.2	0.02		J
1/11/2023	METALS	2301111505Y	Chromium, Total	0.003	mg/L	0.01	0.002		J
1/11/2023	METALS	2301111505Y	Magnesium, Total	30.5	mg/L	1	0.03		
1/11/2023	METALS	2301111505Y	Manganese, Total	0.004	mg/L	0.01	0.004		J
1/11/2023	METALS	2301111505Y	Barium, Total	0.013	mg/L	0.02	0.003		J
1/11/2023	METALS	2301111540Y	Barium, Total	0.015	mg/L	0.02	0.003		J
1/11/2023	METALS	2301111540Y	Calcium, Total	37.9	mg/L	1	0.3		
1/11/2023	METALS	2301111540Y	Chromium, Total	0.003	mg/L	0.01	0.002		J
1/11/2023	METALS	2301111540Y	Magnesium, Total	30	mg/L	1	0.03		
1/11/2023	METALS	2301111540Y	Molybdenum, Total	0.016	mg/L	0.025	0.003		J
1/11/2023	METALS	2301111540Y	Nickel, Total	0.006	mg/L	0.04	0.003		J
1/11/2023	METALS	2301111540Y	Potassium, Total	4.6	mg/L	2	0.4		
1/11/2023	METALS	2301111540Y	Sodium, Total	133	mg/L	1	0.2		
1/11/2023	METALS	2301111540Y	Strontium, Total	2.29	mg/L	0.1	0.002		
1/11/2023	METALS	2301111540Y	Vanadium, Total	0.016	mg/L	0.05	0.0007		J
1/11/2023	METALS	2301111540Y	Zinc, Total	0.013	mg/L	0.02	0.003		J
1/11/2023	METALS	2301111540Y	Arsenic, Total	0.0029	mg/L	0.001	0.0004		
1/11/2023	METALS	2301111540Y	Boron, Total	0.18	mg/L	0.2	0.02		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
11/8/2022	NDMA_LL	2211081032Y	N-Nitrosodimethylamine	0.5	ng/L	0.47	0.34	•	RB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/14/2022	NDMA_LL	2212150946Y	N-Nitrosodimethylamine	0.56	ng/L	0.48	0.35		EB
12/14/2022	8270	2212151023Y	1,4-Dioxane	0.038	ug/L	0.04	0.027		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/14/2022	NDMA LL	2212141341Y	N-Nitrosodimethylamine	0.96	ng/L	0.48	0.35		EB	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/9/2022	8260	2211091440C	1,1,2-Trichloro-1,2,2-Trifluoroethane	90	ug/L	1	0.2		
11/9/2022	8260	2211091440C	Chloroform	0.3	ug/L	1	0.24		J
11/9/2022	8260	2211091440C	Dichlorofluoromethane (CFC 21)	0.38	ug/L	1	0.2		J
11/9/2022	8260	2211091440C	Tetrachloroethene (PCE)	3.1	ug/L	1	0.21		
11/9/2022	8260	2211091440C	Trichloroethene (TCE)	180	ug/L	1	0.2		
11/9/2022	8260	2211091440C	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
11/9/2022	8260	2211091440C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.54	ug/L	1	0.2		J
11/9/2022	607	2211091442C	Bromacil	0.007	$\mu g/L$	0.01	0.005	90	J
11/9/2022	607	2211091442C	N-Nitrosodimethylamine	0.19	$\mu g/L$	0.01	0.005	44	
11/9/2022	607	2211091442C	N-Nitrodimethylamine	0.08	$\mu g/L$	0.01	0.005	76	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/16/2022	8260	2211161030A	2-Propanol	4.8	ug/L	50	3.4		J FB
11/16/2022	8260	2211161030A	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
11/16/2022	8260	2211161030A	Trichloroethene (TCE)	150	ug/L	1	0.2		
11/16/2022	8260	2211161030A	Trichlorofluoromethane (CFC 11)	160	ug/L	1	0.24		
11/16/2022	8260	2211161030A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.6	ug/L	1	0.2		
11/16/2022	8260	2211161030A	Silane, fluorotrimethyl-	5.5	ug/L	NA	NA		TIC
11/16/2022	8260	2211161030A	Silane, methoxytrimethyl-	7.7	ug/L	NA	NA		TIC FB
11/16/2022	8260	2211161030A	Tetrachloroethene (PCE)	8.2	ug/L	1	0.21		
11/16/2022	8260	2211161030A	1,1,2-Trichloro-1,2,2-Trifluoroethane	330	ug/L	5	1		
11/16/2022	607	2211161032A	Bromacil	0.22	$\mu g/L$	0.0094	0.0047	101	
11/16/2022	607	2211161032A	N-Nitrodimethylamine	0.88	$\mu g/L$	0.0094	0.0047	77	
11/16/2022	607	2211161032A	N-Nitrosodimethylamine	1.32	$\mu g/L$	0.0094	0.0047	47	
11/16/2022	METALS	2211161033A	Iron, Total	0.08	mg/L	0.1	0.07		J RB
11/16/2022	METALS	2211161033A	Calcium, Total	120	mg/L	1	0.3		
11/16/2022	METALS	2211161033A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
11/16/2022	METALS	2211161033A	Strontium, Total	2.83	mg/L	0.1	0.002		
11/16/2022	METALS	2211161033A	Sodium, Total	38.2	mg/L	1	0.2		
11/16/2022	METALS	2211161033A	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
11/16/2022	METALS	2211161033A	Chromium, Total	0.014	mg/L	0.01	0.002		
11/16/2022	METALS	2211161033A	Boron, Total	0.06	mg/L	0.2	0.02		J
11/16/2022	METALS	2211161033A	Magnesium, Total	72	mg/L	1	0.03		
11/16/2022	METALS	2211161033A	Potassium, Total	3.5	mg/L	2	0.4		
11/16/2022	METALS	2211161033A	Nickel, Total	0.019	mg/L	0.04	0.003		J
11/16/2022	METALS	2211161033A	Barium, Total	0.029	mg/L	0.02	0.003		
11/16/2022	METALS	2211161034A	Sodium, Total	38.1	mg/L	1	0.2		
11/16/2022	METALS	2211161034A	Strontium, Total	2.82	mg/L	0.1	0.002		
11/16/2022	METALS	2211161034A	Potassium, Total	3.4	mg/L	2	0.4		
11/16/2022	METALS	2211161034A	Nickel, Total	0.019	mg/L	0.04	0.003		J
11/16/2022	METALS	2211161034A	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
11/16/2022	METALS	2211161034A	Magnesium, Total	71.7	mg/L	1	0.03		
11/16/2022	METALS	2211161034A	Iron, Total	0.07	mg/L	0.1	0.07		J RB
11/16/2022	METALS	2211161034A	Chromium, Total	0.013	mg/L	0.01	0.002		
11/16/2022	METALS	2211161034A	Calcium, Total	119	mg/L	1	0.3		
11/16/2022	METALS	2211161034A	Boron, Total	0.06	mg/L	0.2	0.02		J
11/16/2022	METALS	2211161034A	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
11/16/2022	METALS	2211161034A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
11/16/2022	METALS	2211161034A	Barium, Total	0.029	mg/L	0.02	0.003		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/16/2022	8260	2211161530A	Trichlorofluoromethane (CFC 11)	39	ug/L	1	0.24		
11/16/2022	8260	2211161530A	Trichloroethene (TCE)	49	ug/L	1	0.2		
11/16/2022	8260	2211161530A	Tetrachloroethene (PCE)	2.3	ug/L	1	0.21		
11/16/2022	8260	2211161530A	1,1,2-Trichloro-1,2,2-Trifluoroethane	52	ug/L	1	0.2		
11/16/2022	607	2211161532A	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0094	0.0047	47	
11/16/2022	607	2211161532A	N-Nitrodimethylamine	0.03	$\mu g/L$	0.0094	0.0047	77	
11/16/2022	607	2211161533A	N-Nitrodimethylamine	0.03	$\mu g/L$	0.0094	0.0047	77	
11/16/2022	607	2211161533A	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0094	0.0047	47	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/7/2022	8260	2212070930C	Trichlorofluoromethane (CFC 11)	18	ug/L	1	0.24		
12/7/2022	8260	2212070930C	1,1,2-Trichloro-1,2,2-Trifluoroethane	31	ug/L	1	0.2		
12/7/2022	8260	2212070930C	Trichloroethene (TCE)	4.3	ug/L	1	0.2		
12/7/2022	607	2212070932C	N-Nitrosodimethylamine	0.04	μg/L	0.0096	0.0048	47	
12/7/2022	607	2212070932C	N-Nitrodimethylamine	0.03	μg/L	0.0096	0.0048	78	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/15/2022	8260	2212151008C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.9	ug/L	1	0.2		
12/15/2022	8260	2212151008C	Trichlorofluoromethane (CFC 11)	6.8	ug/L	1	0.24		
12/15/2022	8260	2212151008C	Trichloroethene (TCE)	12	ug/L	1	0.2		
12/15/2022	8260	2212151008C	Tetrachloroethene (PCE)	0.42	ug/L	1	0.21		J
12/15/2022	8260	2212151009C	Trichloroethene (TCE)	11	ug/L	1	0.2		
12/15/2022	8260	2212151009C	Tetrachloroethene (PCE)	0.43	ug/L	1	0.21		J
12/15/2022	8260	2212151009C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.9	ug/L	1	0.2		
12/15/2022	8260	2212151009C	Trichlorofluoromethane (CFC 11)	6.5	ug/L	1	0.24		
12/15/2022	607	2212151011C	N-Nitrosodimethylamine	0.01	μg/L	0.01	0.005	47	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/8/2022	8260	2212081000C	Tetrachloroethene (PCE)	0.65	ug/L	1	0.21		J
12/8/2022	8260	2212081000C	Trichlorofluoromethane (CFC 11)	12	ug/L	1	0.24		
12/8/2022	8260	2212081000C	1,1,2-Trichloro-1,2,2-Trifluoroethane	13	ug/L	1	0.2		
12/8/2022	8260	2212081000C	Trichloroethene (TCE)	19	ug/L	1	0.2		
12/8/2022	607	2212081002C	N-Nitrodimethylamine	0.02	μg/L	0.0094	0.0047	78	
12/8/2022	607	2212081002C	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0094	0.0047	47	
12/8/2022	607	2212081003C	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0095	0.0048	47	
12/8/2022	607	2212081003C	N-Nitrodimethylamine	0.02	$\mu g/L$	0.0095	0.0048	78	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
		F -							
12/8/2022	8260	2212081400C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.4	ug/L	1	0.2		
12/8/2022	8260	2212081400C	Trichlorofluoromethane (CFC 11)	8	ug/L	1	0.24		
12/8/2022	8260	2212081400C	Trichloroethene (TCE)	14	ug/L	1	0.2		
12/8/2022	607	2212081402C	Bromacil	0.008	μg/L	0.0095	0.0048	84	J
12/8/2022	607	2212081402C	N-Nitrodimethylamine	0.16	μg/L	0.0095	0.0048	78	
12/8/2022	607	2212081402C	N-Nitrosodimethylamine	0.26	μg/L	0.0095	0.0048	47	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/1/2022	8260_LL	2212011025A	Silane, fluorotrimethyl-	7.7	ug/L	NA	NA		TIC	
12/1/2022	NDMA LL	2212011027A	N-Nitrosodimethylamine	0.5	ng/L	0.47	0.34			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
11/16/2022	NDMA LL	2211161447C	N-Nitrosodimethylamine	0.4	ng/L	0.48	0.35	•	J TB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
11/1/2022	NDMA LL	2211011506Y	N-Nitrosodimethylamine	0.8	ng/L	0.48	0.35		RB EB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
11/1/2022	NDMA_LL	2211011056Y	N-Nitrosodimethylamine	0.85	ng/L	0.5	0.36		RB EB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/7/2022	8270	2212071434B	1,4-Dioxane	1.6	ug/L	0.04	0.027			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/7/2022	8260_LL	2212071441B	Trichloroethene (TCE)	0.26	ug/L	0.5	0.2		J
12/7/2022	NDMA_LL	2212071443B	N-Nitrosodimethylamine	0.4	ng/L	0.48	0.35		J Q
12/7/2022	NDMA_LL	2212071443B	N-Nitrodimethylamine	0.39	ng/L	0.48	0.33		JQ
12/7/2022	8270	2212071445B	1,4-Dioxane	1.9	ug/L	0.04	0.027		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/8/2022	8260_LL	2212081430B	Acetone	6.5	ug/L	5	5		
12/8/2022	8260_LL	2212081430B	Toluene	0.58	ug/L	0.5	0.2		T
12/8/2022	8260_LL	2212081430B	1,4-Dioxane	28	ug/L	40	13		J
12/8/2022	8260_LL	2212081430B	Toluene	0.72	ug/L	0.5	0.2		
12/8/2022	8260_LL	2212081430B	Silane, fluorotrimethyl-	5.5	ug/L	NA	NA		TIC T
12/8/2022	NDMA_LL	2212081432B	N-Nitrosodimethylamine	0.42	ng/L	0.47	0.34		J RB FB
12/8/2022	NDMA_LL	2212081535B	N-Nitrosodimethylamine	0.47	ng/L	0.49	0.36		J RB FB
12/8/2022	8270	2212081537B	1,4-Dioxane	1	ug/L	0.04	0.027		
12/8/2022	8270	2212081538B	1,4-Dioxane	1.1	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/8/2022	8260_LL	2212081448B	Toluene	0.26	ug/L	0.5	0.2		J
12/8/2022	8260_LL	2212081448B	Silane, methoxytrimethyl-	9.3	ug/L	NA	NA		TIC
12/8/2022	NDMA_LL	2212081450B	N-Nitrosodimethylamine	0.81	ng/L	0.48	0.35		RB FB
12/8/2022	NDMA_LL	2212081450B	N-Nitrodimethylamine	0.34	ng/L	0.48	0.33		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/8/2022	NDMA_LL	2212081512B	N-Nitrosodimethylamine	0.78	ng/L	0.47	0.34		RB FB
12/8/2022	NDMA_LL	2212081512B	N-Nitrodimethylamine	0.43	ng/L	0.47	0.33		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/9/2023	8260_LL	2301091530B	Toluene	0.23	ug/L	0.5	0.2		J
1/9/2023	NDMA_LL	2301091532B	N-Nitrosodimethylamine	0.51	ng/L	0.49	0.35		FB

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/9/2023	8260_LL	2301091548B	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.55	ug/L	0.5	0.2		
1/9/2023	8260_LL	2301091548B	Toluene	0.48	ug/L	0.5	0.2		J
1/9/2023	8260_LL	2301091548B	Trichloroethene (TCE)	1.6	ug/L	0.5	0.2		
1/9/2023	8260_LL	2301091548B	Trichlorofluoromethane (CFC 11)	1.4	ug/L	0.5	0.24		
1/9/2023	NDMA_LL	2301091550B	N-Nitrosodimethylamine	0.65	ng/L	0.48	0.35		* FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/10/2023	8260_LL	2301101355B	Toluene	0.32	ug/L	0.5	0.2		J	
1/10/2023	NDMA_LL	2301101357B	N-Nitrosodimethylamine	0.83	ng/L	0.48	0.35		FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/10/2023	8260_LL	2301101407B	Toluene	0.58	ug/L	0.5	0.2			
1/10/2023	NDMA_LL	2301101409B	N-Nitrodimethylamine	0.42	ng/L	0.47	0.33		J	
1/10/2023	NDMA_LL	2301101409B	N-Nitrosodimethylamine	0.5	ng/L	0.47	0.34		FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/5/2022	NDMA LL	2212051532C	N-Nitrosodimethylamine	0.85	ng/L	0.47	0.34		FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/6/2022	8260_LL	2212061535C	Silane, methoxytrimethyl-	9.5	ug/L	NA	NA		TIC
12/6/2022	8260_LL	2212061535C	Unknown	11	ug/L	NA	NA		TIC

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/13/2022	8260_LL	2212131320Y	Silane, fluorotrimethyl-	7.1	ug/L	NA	NA		TIC	
12/13/2022	NDMA_LL	2212131321Y	N-Nitrosodimethylamine	0.84	ng/L	0.48	0.35		EB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/12/2022	NDMA_LL	2212121316Y	N-Nitrosodimethylamine	1.09	ng/L	0.48	0.35		RB EB
12/12/2022	NDMA_LL	2212121317Y	N-Nitrosodimethylamine	0.77	ng/L	0.48	0.35		RB EB

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/8/2022	8260_LL	2211081433B	Toluene	0.69	ug/L	0.5	0.2		
11/8/2022	NDMA_LL	2211081435B	N-Nitrodimethylamine	1.18	ng/L	0.47	0.33		
11/8/2022	NDMA_LL	2211081435B	N-Nitrosodimethylamine	2.21	ng/L	0.47	0.34		RB FB
11/8/2022	8270	2211081520B	Unknown	10	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	Benzenesulfonamide, N-butyl-	240	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	1,3,5-Cycloheptatriene	14	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	Unknown	11	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	Unknown	7.1	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	Unknown	7.7	ug/L	NA	NA		TIC
11/8/2022	8270	2211081520B	Benzene, chloro-	4.1	ug/L	NA	NA		TIC

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/8/2022	8260_LL	2211081453B	Toluene	1.4	ug/L	0.5	0.2		
11/8/2022	NDMA_LL	2211081455B	N-Nitrosodimethylamine	0.9	ng/L	0.47	0.34		RB
11/8/2022	NDMA_LL	2211081455B	N-Nitrodimethylamine	0.74	ng/L	0.47	0.33		
11/8/2022	8270	2211081548B	Benzene, chloro-	5.7	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Unknown	8.9	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Toluene	15	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Unknown	4.4	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Unknown	5.7	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Benzenesulfonamide, N-butyl-	110	ug/L	NA	NA		TIC
11/8/2022	8270	2211081548B	Unknown	8	ug/L	NA	NA		TIC

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date	1,10,110,0	Sample	Constituent	Kesuit	Units	Lillit	Limit	Effic	QA Flag
11/9/2022	8260_LL	2211091418B	Toluene	0.61	ug/L	0.5	0.2		
11/9/2022	8260_LL	2211091418B	2-Propanol	5.8	ug/L	40	3.4		J
11/9/2022	NDMA_LL	2211091420B	N-Nitrosodimethylamine	0.6	ng/L	0.48	0.35		FB
11/9/2022	NDMA_LL	2211091420B	N-Nitrodimethylamine	0.36	ng/L	0.48	0.34		J
11/9/2022	8270	2211091518B	Benzenesulfonamide, N-butyl-	21	ug/L	NA	NA		TIC *
11/9/2022	8270	2211091518B	Benzenesulfonamide, N-butyl-	31	ug/L	NA	NA		TIC T
11/9/2022	8270	2211091518B	Unknown	13	ug/L	NA	NA		TIC RB T
11/9/2022	8270	2211091518B	Unknown	5	ug/L	NA	NA		TIC T

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/9/2022	8260 LL	2211091452B	Toluene	0.54	ug/L	0.5	0.2		
11/9/2022	_	2211091540B	N-Nitrodimethylamine	0.4	ng/L	0.49	0.34		J
11/9/2022	NDMA_LL	2211091540B	N-Nitrosodimethylamine	0.71	ng/L	0.49	0.35		
11/9/2022	8270	2211091600B	Unknown	39	ug/L	NA	NA		TIC T
11/9/2022	8270	2211091600B	Unknown	12	ug/L	NA	NA		TIC T
11/9/2022	8270	2211091600B	Unknown	4	ug/L	NA	NA		TIC T
11/9/2022	8270	2211091600B	Benzenesulfonamide, N-butyl-	29	ug/L	NA	NA		TIC *

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/18/2023	8260_LL	2301181440B	Toluene	1.5	ug/L	0.5	0.2		
1/18/2023	NDMA_LL	2301181520B	N-Nitrosodimethylamine	1.22	ng/L	0.47	0.34		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/18/2023	8260_LL	2301181500B	Toluene	2.9	ug/L	0.5	0.2		
1/18/2023	NDMA_LL	2301181535B	N-Nitrodimethylamine	0.41	ng/L	0.48	0.33		J
1/18/2023	NDMA LL	2301181535B	N-Nitrosodimethylamine	1.49	ng/L	0.48	0.35		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/19/202	8260_LL	2301191415B	Toluene	7.7	ug/L	0.5	0.2		
1/19/2022	3 NDMA_LL	2301191417B	N-Nitrosodimethylamine	2.1	ng/L	0.47	0.34		QD
1/19/2023	NDMA LL	2301191418B	N-Nitrosodimethylamine	1.13	ng/L	0.47	0.34		QD

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/19/2023	8260_LL	2301191435B	Toluene	1	ug/L	0.5	0.2			
1/19/2023	NDMA_LL	2301191437B	N-Nitrodimethylamine	0.68	ng/L	0.47	0.33			
1/19/2023	NDMA_LL	2301191437B	N-Nitrosodimethylamine	4.41	ng/L	0.47	0.34			

Appendix A.3
PFTS Indicator Parameters

Summary of Water Quality Parameters for the Plume Front Sampling Events in this Reporting Period

Well ID	B650-EFF-1	Event Date	11/10/2022		
Sample	Parameter		Result	Units	
2211100759	Conductivity		1234	μS/cm	
2211100759	pH		8.52	NA	
2211100759	Temperature Temperature		24.2	°C	
2211100759	Turbidity		0.37	NTU	
Well ID	B650-EFF-1	Event Date	12/9/2022		
Sample	Parameter		Result	Units	
2212090529	Conductivity		1196	μS/cm	
2212090529	pH		7.89	NA	
2212090529	Temperature Temperature		25.5	°C	
2212090529	Turbidity		0.38	NTU	
Well ID	B650-EFF-1	Event Date	1/19/2023		
Sample	Parameter		Result	Units	
2301190746	Conductivity		1078	μS/cm	
2301190746	pH		8.30	NA	
2301190746	Temperature		20.6	°C	
2301190746	Turbidity		0.41	NTU	
Well ID	B650-INF-1	Event Date	11/10/2022		
Sample	Parameter		Result	Units	
2211100829	Conductivity		1932	μS/cm	
2211100829	pH		7.72	NA	
2211100829	Temperature Temperature		23.4	°C	
221110002)	F				
2211100829	1		1.64	NTU	
2211100829	1	Event Date		NTU	
2211100829	Turbidity	Event Date	1.64	NTU Units	
2211100829 Well ID	Turbidity B650-INF-1 Parameter	Event Date	1.64		
Well ID Sample	Turbidity B650-INF-1 Parameter Conductivity	Event Date	1.64 12/9/2022 Result	Units	
2211100829 Well ID Sample 2212090552	Turbidity B650-INF-1 Parameter Conductivity pH	Event Date	1.64 12/9/2022 Result 1209	Units μS/cm	
2211100829 Well ID Sample 2212090552 2212090552	B650-INF-1 Parameter Conductivity pH Temperature	Event Date	1.64 12/9/2022 Result 1209 7.28	Units μS/cm NA	
2211100829 Well ID Sample 2212090552 2212090552	B650-INF-1 Parameter Conductivity pH Temperature	Event Date Event Date	1.64 12/9/2022 Result 1209 7.28 23.7	Units μS/cm NA °C	
2211100829 Well ID Sample 2212090552 2212090552 2212090552	Turbidity B650-INF-1 Parameter Conductivity pH Temperature Turbidity		1.64 12/9/2022 Result 1209 7.28 23.7 1.00	Units μS/cm NA °C	
2211100829 Well ID Sample 2212090552 2212090552 2212090552 Well ID	Turbidity B650-INF-1 Parameter Conductivity pH Temperature Turbidity B650-INF-1 Parameter		1.64 12/9/2022 Result 1209 7.28 23.7 1.00 1/19/2023	Units μS/cm NA °C NTU	
2211100829 Well ID Sample 2212090552 2212090552 2212090552 Well ID Sample	Turbidity B650-INF-1 Parameter Conductivity PH Temperature Turbidity B650-INF-1 Parameter Conductivity		1.64 12/9/2022 Result 1209 7.28 23.7 1.00 1/19/2023 Result	Units μS/cm NA °C NTU	
2211100829 Well ID Sample 2212090552 2212090552 2212090552 Well ID Sample 2301190758	Turbidity B650-INF-1 Parameter Conductivity pH Temperature Turbidity B650-INF-1 Parameter Conductivity		1.64 12/9/2022 Result 1209 7.28 23.7 1.00 1/19/2023 Result 1158	Units μS/cm NA °C NTU Units μS/cm	

Well ID PH	E-4A	Event Date	1/26/2023		
Sample	Parameter		Result	Units	
2301260918	Conductivity		1106	μS/cm	
2301260918	pН		7.63	NA	
2301260918	Temperature		17.2	°C	
2301260918	Turbidity		1.89	NTU	
Well ID PH	FE-5	Event Date	1/19/2023		
Sample	Parameter		Result	Units	
2301191004	Conductivity		979	μS/cm	
2301191004	pН		7.97	NA	
2301191004	Temperature		22.4	°C	
2301191004	Turbidity		0.42	NTU	
Well ID PI	FE-7	Event Date	1/26/2023		
Sample	Parameter		Result	Units	
2301260847	Conductivity		1080	μS/cm	
2301260847	pН		7.28	NA	
2301260847	Temperature		20.7	°C	
2301260847	Turbidity		0.48	NTU	

Appendix A.4 PFTS Analytical Data

NASA White Sands Test Facility

Detections for Plume Front Treatment System Sampling Events in this Reporting Period

Analytical Results for Sampling Events at B650-EFF-1

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/9/2022	NDMA_LL	2212090538	N-Nitrosodimethylamine	0.4	ng/L	0.48	0.35		J RB FB	
1/19/2023	NDMA_LL	2301190750	N-Nitrosodimethylamine	0.44	ng/L	0.47	0.34		J FB	

Analytical Results for Sampling Events at B650-INF-1

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/10/2022	8260	2211100830	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.2	ug/L	1	0.2		
11/10/2022	8260	2211100830	Trichloroethene (TCE)	3.3	ug/L	1	0.2		
11/10/2022	8260	2211100830	Trichlorofluoromethane (CFC 11)	1.9	ug/L	1	0.24		
11/10/2022	8260	2211100831	Trichlorofluoromethane (CFC 11)	2	ug/L	1	0.24		
11/10/2022	8260	2211100831	Trichloroethene (TCE)	3.4	ug/L	1	0.2		
11/10/2022	8260	2211100831	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.3	ug/L	1	0.2		
11/10/2022	607	2211100833	N-Nitrodimethylamine	0.005	μg/L	0.01	0.005	77	J
11/10/2022	607	2211100833	N-Nitrosodimethylamine	0.007	$\mu g/L$	0.01	0.005	45	J
12/9/2022	8260	2212090557	Trichloroethene (TCE)	3.5	ug/L	1	0.2		
12/9/2022	8260	2212090557	Trichlorofluoromethane (CFC 11)	2.2	ug/L	1	0.24		
12/9/2022	8260	2212090557	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.3	ug/L	1	0.2		
12/9/2022	607	2212090559	N-Nitrosodimethylamine	0.008	$\mu g/L$	0.0099	0.005	47	J
1/19/2023	8260	2301190800	Trichlorofluoromethane (CFC 11)	1.8	ug/L	1	0.24		
1/19/2023	8260	2301190800	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.8	ug/L	1	0.2		
1/19/2023	8260	2301190800	Trichloroethene (TCE)	3.2	ug/L	1	0.2		
1/19/2023	8260	2301190801	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.6	ug/L	1	0.2		
1/19/2023	8260	2301190801	Trichloroethene (TCE)	2.7	ug/L	1	0.2		
1/19/2023	8260	2301190801	Trichlorofluoromethane (CFC 11)	1.8	ug/L	1	0.24		
1/19/2023	607	2301190803	N-Nitrosodimethylamine	0.009	μg/L	0.0097	0.0049	52	J
1/19/2023	607	2301190803	N-Nitrodimethylamine	0.006	μg/L	0.0097	0.0049	64	J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/26/2023	8260	2301260925	Trichlorofluoromethane (CFC 11)	1.3	ug/L	1	0.24		- 0
1/26/2023	8260	2301260925	1,1,2-Trichloro-1,2,2-Trifluoroethane	3	ug/L	1	0.2		
1/26/2023	8260	2301260925	Unknown	5.7	ug/L	NA	NA		TIC RB FB
1/26/2023	8260	2301260925	Trichloroethene (TCE)	1.7	ug/L	1	0.2		
1/26/2023	607	2301260927	N-Nitrodimethylamine	0.006	μg/L	0.0096	0.0048	66	J
1/26/2023	607	2301260927	Bromacil	0.01	μg/L	0.0096	0.0048	103	
1/26/2023	607	2301260927	N-Nitrosodimethylamine	0.008	μg/L	0.0096	0.0048	56	J
1/26/2023	NDMA LL	2301260928	N-Nitrodimethylamine	13.65	ng/L	0.48	0.34		
1/26/2023	NDMA_LL	2301260928	N-Nitrosodimethylamine	13.89	ng/L	0.48	0.35		
1/26/2023	NDMA LL	2301260929	N-Nitrodimethylamine	16.85	ng/L	0.47	0.33		
1/26/2023	NDMA_LL	2301260929	N-Nitrosodimethylamine	13.05	ng/L	0.47	0.34		

Event	Analysis Method	C1-	Constituent	D14	TI *4	Quant	Det	Xtrct	OA EL-
Date	Wicthou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/19/2023	8260	2301191010	Dichlorofluoromethane (CFC 21)	0.34	ug/L	1	0.2		J
1/19/2023	8260	2301191010	Tetrachloroethene (PCE)	2.4	ug/L	1	0.21		
1/19/2023	8260	2301191010	Trichloroethene (TCE)	60	ug/L	1	0.2		
1/19/2023	8260	2301191010	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.31	ug/L	1	0.2		J
1/19/2023	8260	2301191010	Trichlorofluoromethane (CFC 11)	21	ug/L	1	0.24		
1/19/2023	8260	2301191010	1,1,2-Trichloro-1,2,2-Trifluoroethane	16	ug/L	1	0.2		
1/19/2023	607	2301191012	N-Nitrosodimethylamine	0.39	μg/L	0.0095	0.0048	52	
1/19/2023	607	2301191012	N-Nitrodimethylamine	0.2	$\mu g/L$	0.0095	0.0048	64	
1/19/2023	607	2301191012	Bromacil	0.05	$\mu g/L$	0.0095	0.0048	102	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/26/2023	8260	2301260852	1,1,2-Trichloro-1,2,2-Trifluoroethane	6.2	ug/L	1	0.2		
1/26/2023	8260	2301260852	Sulfur Dioxide	6.5	ug/L	NA	NA		TIC RB
1/26/2023	8260	2301260852	Trichlorofluoromethane (CFC 11)	5.8	ug/L	1	0.24		
1/26/2023	8260	2301260852	Unknown	5.9	ug/L	NA	NA		TIC FB
1/26/2023	8260	2301260852	Trichloroethene (TCE)	5.5	ug/L	1	0.2		
1/26/2023	8260	2301260853	Unknown	6.3	ug/L	NA	NA		TIC FB
1/26/2023	8260	2301260853	Trichlorofluoromethane (CFC 11)	5.6	ug/L	1	0.24		
1/26/2023	8260	2301260853	Trichloroethene (TCE)	5.3	ug/L	1	0.2		
1/26/2023	8260	2301260853	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.8	ug/L	1	0.2		
1/26/2023	8260	2301260853	Tetrachloroethene (PCE)	0.21	ug/L	1	0.21		J
1/26/2023	NDMA_LL	2301260856	N-Nitrodimethylamine	0.71	ng/L	0.49	0.34		
1/26/2023	NDMA_LL	2301260856	N-Nitrosodimethylamine	1.75	ng/L	0.49	0.36		

Appendix A.5 MPITS Indicator Parameters

Summary of Water Quality Parameters for the Mid-plume Sampling Events in this Reporting Period

Well ID	B655-EFF-2	Event Date	11/10/2022		
Sample	Parameter		Result	Units	
2211100859	O Conductivity		1258	μS/cm	
2211100859	рН		8.34	NA	
2211100859) Temperature		24.4	°C	
2211100859	Turbidity		0.54	NTU	
Well ID	B655-EFF-2	Event Date	12/8/2022		
Sample	Parameter		Result	Units	
2212081050) Conductivity		1255	μS/cm	
2212081050) рН		7.31	NA	
2212081050) Temperature		24.1	°C	
2212081050) Turbidity		2.45	NTU	
Well ID	B655-EFF-2	Event Date	1/19/2023		
Sample	Parameter		Result	Units	
2301190846	6 Conductivity		1269	μS/cm	
2301190846	б рН		8.75	NA	
2301190846	5 Temperature		17.8	°C	
2301190846	5 Turbidity		1.69	NTU	
Well ID	B655-INF-2	Event Date	11/10/2022		
Sample	Parameter		Result	Units	
2211100915	5 Conductivity		1244	μS/cm	
			7.20	NA	
2211100915	5 pH		7.38	1 11 2	
2211100915 2211100915	1		24.0	°C	
	5 Temperature				
2211100915 2211100915	5 Temperature	Event Date	24.0	°C	
2211100915	Temperature Turbidity	Event Date	24.0 2.68	°C	
2211100915 2211100915 Well ID	Temperature Turbidity B655-INF-2 Parameter	Event Date	24.0 2.68 12/8/2022	°C NTU	
2211100915 2211100915 Well ID Sample	Temperature Turbidity B655-INF-2 Parameter Conductivity	Event Date	24.0 2.68 12/8/2022 Result	°C NTU Units	
2211100915 2211100915 Well ID Sample 2212081020	Temperature Turbidity B655-INF-2 Parameter Conductivity pH	Event Date	24.0 2.68 12/8/2022 Result	°C NTU Units μS/cm	
2211100915 2211100915 Well ID Sample 2212081020 2212081020	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature	Event Date	24.0 2.68 12/8/2022 Result 1590 8.21	°C NTU Units μS/cm NA	
2211100915 2211100915 Well ID Sample 2212081020 2212081020 2212081020	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature	Event Date Event Date	24.0 2.68 12/8/2022 Result 1590 8.21 25.1	°C NTU Units µS/cm NA °C	
2211100915 2211100915 Well ID Sample 2212081020 2212081020 2212081020	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature Turbidity		24.0 2.68 12/8/2022 Result 1590 8.21 25.1 0.51	°C NTU Units µS/cm NA °C	
2211100915 2211100915 Well ID Sample 2212081020 2212081020 2212081020 2212081020 Well ID	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature Turbidity B655-INF-2 Parameter		24.0 2.68 12/8/2022 Result 1590 8.21 25.1 0.51 1/19/2023	°C NTU Units μS/cm NA °C NTU	
2211100915 2211100915 Well ID Sample 2212081020 2212081020 2212081020 2212081020 Well ID Sample	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature Turbidity B655-INF-2 Parameter Conductivity		24.0 2.68 12/8/2022 Result 1590 8.21 25.1 0.51 1/19/2023 Result	°C NTU Units μS/cm NA °C NTU Units	
2211100915 2211100915 Well ID Sample 2212081020 2212081020 2212081020 Well ID Sample 2301190908	Temperature Turbidity B655-INF-2 Parameter Conductivity pH Temperature Turbidity B655-INF-2 Parameter Conductivity		24.0 2.68 12/8/2022 Result 1590 8.21 25.1 0.51 1/19/2023 Result 1255	°C NTU Units μS/cm NA °C NTU Units μS/cm	

PF_1	Event Date	11/14/2022		
Parameter	Event Bate	Result	Units	
Conductivity		1411	μS/cm	
pН		8.09	NA	
Temperature		21.7	°C	
Turbidity		0.72	NTU	
PE-10	Event Date	11/15/2022		
Parameter		Result	Units	
Conductivity		1341	μS/cm	
pН		6.74	NA	
Temperature		19.2	°C	
Turbidity		1.58	NTU	
PE-11	Event Date	11/15/2022		
_		D 1/	Units	
Parameter		Result	Units	
Parameter Conductivity		1026	μS/cm	
Conductivity		1026	μS/cm	
Conductivity pH		1026 7.14	μS/cm NA	
Conductivity pH Temperature	Event Date	1026 7.14 23.7	μS/cm NA °C	
Conductivity pH Temperature Turbidity	Event Date	1026 7.14 23.7 1.21	μS/cm NA °C	
Conductivity pH Temperature Turbidity	Event Date	1026 7.14 23.7 1.21 11/14/2022	μS/cm NA °C NTU	
Conductivity pH Temperature Turbidity PE-9 Parameter	Event Date	1026 7.14 23.7 1.21 11/14/2022 Result	μS/cm NA °C NTU	
Conductivity pH Temperature Turbidity PE-9 Parameter Conductivity	Event Date	1026 7.14 23.7 1.21 11/14/2022 Result	μS/cm NA °C NTU Units μS/cm	
	Conductivity pH Temperature Turbidity PE-10 Parameter Conductivity pH Temperature Turbidity PE-11	Parameter Conductivity pH Temperature Turbidity PE-10 Event Date Parameter Conductivity pH Temperature Turbidity PE-11 Event Date	Parameter Result Conductivity 1411 pH 8.09 Temperature 21.7 Turbidity 0.72 PE-10 Event Date 11/15/2022 Parameter Result Conductivity 1341 pH 6.74 Temperature 19.2 Turbidity 1.58 PE-11 Event Date 11/15/2022	Parameter Result Units Conductivity pH 1411 μS/cm pH 8.09 NA Temperature 21.7 °C Turbidity 0.72 NTU PE-10 Event Date 11/15/2022 Parameter Result Units Conductivity pH 6.74 NA Temperature 19.2 °C Turbidity 1.58 NTU PE-11 Event Date 11/15/2022

Appendix A.6 MPITS Analytical Data

NASA White Sands Test Facility

Detections for MPITS Sampling Events in this Reporting Period

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/8/2022	NDMA_LL	2212081058	N-Nitrosodimethylamine	0.56	ng/L	0.49	0.36		RB
1/19/2023	607	2301190854	Bromacil	0.02	$\mu g/L$	0.0096	0.0048	102	
/19/2023	METALS	2301190857	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
1/19/2023	METALS	2301190857	Barium, Total	0.028	mg/L	0.02	0.003		
1/19/2023	METALS	2301190857	Boron, Total	0.12	mg/L	0.2	0.02		J
1/19/2023	METALS	2301190857	Calcium, Total	131	mg/L	1	0.3		
1/19/2023	METALS	2301190857	Magnesium, Total	67.1	mg/L	1	0.03		
1/19/2023	METALS	2301190857	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
1/19/2023	METALS	2301190857	Potassium, Total	4.5	mg/L	2	0.4		
1/19/2023	METALS	2301190857	Silver, Total	0.0006	mg/L	0.01	0.0006		J RB
1/19/2023	METALS	2301190857	Sodium, Total	52.7	mg/L	1	0.2		
1/19/2023	METALS	2301190857	Strontium, Total	2.73	mg/L	0.1	0.002		
1/19/2023	METALS	2301190857	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
1/19/2023	ANIONS	2301190858	Fluoride, undistilled	0.86	mg/L	0.1	0.01		
1/19/2023	ANIONS	2301190858	Sulfate	344	mg/L	8	1.6		
1/19/2023	ANIONS	2301190858	Chloride	65.6	mg/L	2	0.5		
1/19/2023	ANIONS	2301190858	Alkalinity, Total as CaCO3	256	mg/L	2	1.8		
1/19/2023	SM2540C	2301190859	Total Dissolved Solids (TDS)	932	mg/L	10	9		
1/19/2023	6850	2301190900	Perchlorate	0.282	ug/L	0.1	0.025		
1/19/2023	353.2	2301190901	Nitrate+Nitrite as Nitrogen	4.08	mg/L	0.25	0.008		

Analytical Results for Sampling Events at B655-INF-2

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/10/2022	8260	2211100916	Trichloroethene (TCE)	51	ug/L	1	0.2		
11/10/2022	8260	2211100916	1,1,2-Trichloro-1,2,2-Trifluoroethane	150	ug/L	1	0.2		
11/10/2022	8260	2211100916	Trichlorofluoromethane (CFC 11)	79	ug/L	1	0.24		
11/10/2022	8260	2211100916	Tetrachloroethene (PCE)	2.4	ug/L	1	0.21		
11/10/2022	8260	2211100916	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
11/10/2022	8260	2211100916	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
11/10/2022	607	2211100918	Bromacil	0.4	μg/L	0.0094	0.0047	99	
11/10/2022	607	2211100918	N-Nitrosodimethylamine	2.16	μg/L	0.0094	0.0047	45	
11/10/2022	607	2211100918	N-Nitrodimethylamine	1.07	$\mu g/L$	0.0094	0.0047	77	
12/8/2022	8260	2212081025	Trichloroethene (TCE)	58	ug/L	1	0.2		
12/8/2022	8260	2212081025	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.6	ug/L	1	0.2		
12/8/2022	8260	2212081025	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
12/8/2022	8260	2212081025	Dichlorofluoromethane (CFC 21)	1.1	ug/L	1	0.2		
12/8/2022	8260	2212081025	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	2.5	0.5		T
12/8/2022	8260	2212081025	Tetrachloroethene (PCE)	3	ug/L	1	0.21		
12/8/2022	8260	2212081026	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	2.5	0.5		T
12/8/2022	8260	2212081026	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
12/8/2022	8260	2212081026	Tetrachloroethene (PCE)	2.9	ug/L	1	0.21		
12/8/2022	8260	2212081026	Trichloroethene (TCE)	61	ug/L	1	0.2		
12/8/2022	8260	2212081026	Trichlorofluoromethane (CFC 11)	120	ug/L	1	0.24		
12/8/2022	8260	2212081026	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.5	ug/L	1	0.2		
12/8/2022	607	2212081028	N-Nitrosodimethylamine	1.89	μg/L	0.0099	0.005	47	
12/8/2022	607	2212081028	N-Nitrodimethylamine	0.97	$\mu g/L$	0.0099	0.005	78	
12/8/2022	607	2212081028	Bromacil	0.35	$\mu g/L$	0.0099	0.005	84	
12/8/2022	607	2212081029	N-Nitrosodimethylamine	1.95	μg/L	0.0098	0.0049	47	
12/8/2022	607	2212081029	N-Nitrodimethylamine	0.99	μg/L	0.0098	0.0049	78	
12/8/2022	607	2212081029	Bromacil	0.34	$\mu g/L$	0.0098	0.0049	84	
1/19/2023	8260	2301190914	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.4	ug/L	1	0.2		
1/19/2023	8260	2301190914	1,1,2-Trichloro-1,2,2-Trifluoroethane	360	ug/L	2.5	0.5		
1/19/2023	8260	2301190914	Dichlorodifluoromethane (CFC 12)	0.32	ug/L	1	0.21		J
1/19/2023	8260	2301190914	Dichlorofluoromethane (CFC 21)	1.7	ug/L	1	0.2		
1/19/2023	8260	2301190914	Tetrachloroethene (PCE)	4	ug/L	1	0.21		
1/19/2023	8260	2301190914	Trichloroethene (TCE)	79	ug/L	1	0.2		
1/19/2023	8260	2301190914	Trichlorofluoromethane (CFC 11)	160	ug/L	1	0.24		
1/19/2023	8260	2301190914	cis-1,2-Dichloroethene	0.24	ug/L	1	0.23		J

Analytical Results for Sampling Events at B655-INF-2

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/19/2023	607	2301190916	N-Nitrodimethylamine	1.53	μg/L	0.0094	0.0047	64	- 0
1/19/2023	607	2301190916	N-Nitrosodimethylamine	3.02	μg/L	0.0094	0.0047	52	
1/19/2023	607	2301190916	Bromacil	0.6	μg/L	0.0094	0.0047	102	
1/19/2023	METALS	2301190917	Barium, Total	0.029	mg/L	0.02	0.003		
1/19/2023	METALS	2301190917	Boron, Total	0.13	mg/L	0.2	0.02		J
1/19/2023	METALS	2301190917	Calcium, Total	132	mg/L	1	0.3		
1/19/2023	METALS	2301190917	Magnesium, Total	67.3	mg/L	1	0.03		
1/19/2023	METALS	2301190917	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
1/19/2023	METALS	2301190917	Potassium, Total	4.6	mg/L	2	0.4		
1/19/2023	METALS	2301190917	Silver, Total	0.001	mg/L	0.01	0.0006		J RB
1/19/2023	METALS	2301190917	Sodium, Total	53.5	mg/L	1	0.2		
1/19/2023	METALS	2301190917	Strontium, Total	2.79	mg/L	0.1	0.002		
1/19/2023	METALS	2301190917	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
1/19/2023	METALS	2301190917	Zinc, Total	0.003	mg/L	0.02	0.003		J
1/19/2023	METALS	2301190917	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
1/19/2023	ANIONS	2301190918	Fluoride, undistilled	1	mg/L	1	0.1		J *
1/19/2023	ANIONS	2301190918	Sulfate	339	mg/L	8	1.6		
1/19/2023	ANIONS	2301190918	Chloride	64.7	mg/L	2	0.5		
1/19/2023	ANIONS	2301190918	Alkalinity, Total as CaCO3	252	mg/L	2	1.8		
1/19/2023	SM2540C	2301190919	Total Dissolved Solids (TDS)	918	mg/L	10	9		
1/19/2023	6850	2301190920	Perchlorate	0.295	ug/L	0.1	0.025		
1/19/2023	353.2	2301190921	Nitrate+Nitrite as Nitrogen	4.06	mg/L	0.25	0.008		

Event	Analysis	~ .				Quant	Det	Xtrct	0.1.77
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/14/2022	8260	2211141331	Trichloroethene (TCE)	76	ug/L	1	0.2		
11/14/2022	8260	2211141331	1,1,2-Trichloro-1,2,2-Trifluoroethane	260	ug/L	2.5	0.5		
11/14/2022	8260	2211141331	Trichlorofluoromethane (CFC 11)	140	ug/L	1	0.24		
11/14/2022	8260	2211141331	Tetrachloroethene (PCE)	3.8	ug/L	1	0.21		
11/14/2022	8260	2211141331	Dichlorofluoromethane (CFC 21)	1.4	ug/L	1	0.2		
11/14/2022	8260	2211141331	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.6	ug/L	1	0.2		
11/14/2022	607	2211141333	N-Nitrosodimethylamine	2.79	μg/L	0.0096	0.0048	45	
11/14/2022	607	2211141333	N-Nitrodimethylamine	1.45	$\mu g/L$	0.0096	0.0048	77	
11/14/2022	607	2211141333	Bromacil	0.6	μg/L	0.0096	0.0048	99	

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/15/2022	8260	2211151301	1,1,2-Trichloro-1,2,2-Trifluoroethane	150	ug/L	1	0.2		
11/15/2022	8260	2211151301	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
11/15/2022	8260	2211151301	Trichlorofluoromethane (CFC 11)	120	ug/L	1	0.24		
11/15/2022	8260	2211151301	Dichlorofluoromethane (CFC 21)	1.8	ug/L	1	0.2		
11/15/2022	8260	2211151301	Tetrachloroethene (PCE)	3.5	ug/L	1	0.21		
11/15/2022	8260	2211151301	Trichloroethene (TCE)	71	ug/L	1	0.2		
11/15/2022	607	2211151303	N-Nitrosodimethylamine	3.02	μg/L	0.01	0.005	45	
11/15/2022	607	2211151303	N-Nitrodimethylamine	1.41	$\mu g/L$	0.01	0.005	77	
11/15/2022	607	2211151303	Bromacil	0.33	$\mu g/L$	0.01	0.005	99	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
Date		Sample	Constituent	Kesuit	Units	Lillit	Lillit	LIHC	QA Flag
11/15/2022	8260	2211151243	Dichlorofluoromethane (CFC 21)	0.64	ug/L	1	0.2		J
11/15/2022	8260	2211151243	Tetrachloroethene (PCE)	0.26	ug/L	1	0.21		J
11/15/2022	8260	2211151243	Trichloroethene (TCE)	5.1	ug/L	1	0.2		
11/15/2022	8260	2211151243	Trichlorofluoromethane (CFC 11)	7.8	ug/L	1	0.24		
11/15/2022	8260	2211151243	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.49	ug/L	1	0.2		J
11/15/2022	8260	2211151243	1,1,2-Trichloro-1,2,2-Trifluoroethane	11	ug/L	1	0.2		
11/15/2022	607	2211151245	N-Nitrosodimethylamine	0.13	μg/L	0.01	0.005	45	
11/15/2022	607	2211151245	N-Nitrodimethylamine	0.06	μg/L	0.01	0.005	77	
11/15/2022	607	2211151245	Bromacil	0.01	μg/L	0.01	0.005	99	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/14/2022	8260	2211141348	Dichlorofluoromethane (CFC 21)	1.6	ug/L	1	0.2		
11/14/2022	8260	2211141348	Tetrachloroethene (PCE)	4.8	ug/L	1	0.21		
11/14/2022	8260	2211141348	Trichloroethene (TCE)	99	ug/L	1	0.2		
11/14/2022	8260	2211141348	Trichlorofluoromethane (CFC 11)	130	ug/L	1	0.24		
11/14/2022	8260	2211141348	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
11/14/2022	8260	2211141348	1,1,2-Trichloro-1,2,2-Trifluoroethane	130	ug/L	1	0.2		
11/14/2022	607	2211141350	N-Nitrosodimethylamine	3.47	μg/L	0.0094	0.0047	45	
11/14/2022	607	2211141350	N-Nitrodimethylamine	1.7	μg/L	0.0094	0.0047	77	
11/14/2022	607	2211141350	Bromacil	0.46	μg/L	0.0094	0.0047	99	
11/14/2022	607	2211141351	Bromacil	0.46	μg/L	0.0095	0.0048	99	
11/14/2022	607	2211141351	N-Nitrosodimethylamine	3.54	μg/L	0.0095	0.0048	45	
11/14/2022	607	2211141351	N-Nitrodimethylamine	1.74	μg/L	0.0095	0.0048	77	

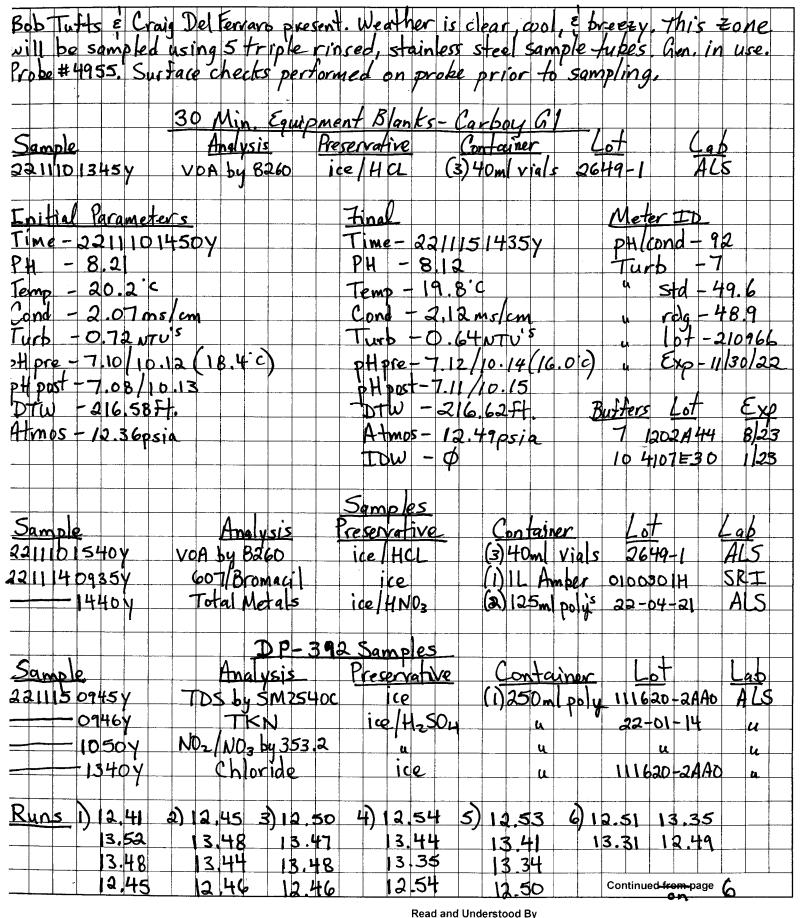
Appendix B
Sampling Event Logbook Entries and Internal CoC Forms

Notebook No. D32 # 126A
Continued from page N/A

PROJECT TOO - 17		00 0000	Continued from page _7 1/2.	
Matt Garcia &	Marcus A	Tualos present	. weather is clear & cool.	
This well wil	11 be pu	raed and:	sampled using a dedicated	
bladder Dumi	D. Sample	es will b	e collected using a terron	
discharge hose	water	quality pa	rameters monitored using an	
In Situ Agua	Tral 1 50	O. Carbon	61	
		1 1		
Calibrations			initial - 184.50 f	F
	100% 50	+ AIr	Sinol - 185ft.	
PH Sensor = in	15itu 4,7,	10 buffers		
Canductivita = ir	15tu 1413	sostem std.	IDev .7gal	
Conductivity = in	is to tur	b std.		
,4,4,1,1				
Parameters (Time)	Temp	cond Do	PH ORP Turb DTW	
22111409154	18.78	2571 .35	7.47 105 34.7 185	77
	19.33	2570 ,41	7.48 1060 34.1	
0925A		2571 .39		
		Samples	-	
Sample	Analysis	Preserv.	Container Lot Lab	
- - 	VOA 8260		(3) 40M2 vials 2649-1 ALS	7
	((FB)	(c	(1)	
0932 A	(r (Dup)	CC	C < (1) Cc	
09331	607	Ice ((1) 12 Amber 6,00301 H SR	+
	Gro 8015			15
	SUOA 82701		Z) 16 Ambro 01003014 (_
	T. Metals	Ichno 3 (2	2) 125ML POIN 220421 (
	TDS SMASO	inc Toe (1	7250ML Poly 09021A-2400 (1
	Dro 80150		11 Amber 090522 18k (
09394	TKN	ICE/H 504 (1)2	250 ML Poly 090219 -2440	
09401	No2 No 3	¢((4)	
	chloride		re l'i	,
	Chloria	202		
		Trip Blank		
Samole	Analossis	Preserv.	container Lat La	4
	UDA BRUG			45
	UBA CLUB	THE HILL	(3) Your viats Continued from page	

Read and Understood By

Most S


Date: 11/14/22										Page _ l of _ l
Sample Location: 100-D-176				F	Analytic	al Req	uiremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	VOA 8260	607	GRO BOIS	SU6A 8270D				X GMQ Charge Number
22111407304 (TB)	3	A	X							
09304	3	1	×				·			
-0931A (FB)	3		X							
-0932 A (DUD)	3		X							
0933A	1			X				***		
0934A	3				X					
-0935A	2	V	· · · · · · · · · · · · · · · · · · ·			X				
Sample Location:	•			A	nalytic	al Req	uiremen	ıt		
Sample Number	# of Containers	Sample Matrix*	T. Metals	TDS	Dro BoIst	TRA	No7, No3	chloride		XGMD Charge Number
8211140936A	2	A	X		_					
09374	1			X				÷		
09384	1				X					
09394	l					X				
0940A	1						x			
0941A	ı	V						X		
Relinquished by: Date Moth Dia 1/14/22	e / Time	e: <i>0</i> 0h	45		m (dcepte	a)by:	_dr	-	Date / Time: 9-22 0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

trang Ill Zerro

Jumele

11-16-22

11/15/22

ROJECT 200 - I - 185 WII ENV-0020 11/14/22

Notebook No. D64#130(y)
Continued from page _______

Zun	_		7-	10	5	1	d	۸,	h .	۲۱		2	10		-	•	_	10	سر	,	,	7	12.	- 7		•	<u>~</u>	, ,			
un	•		1)	12	,ວ າ	ا م	C	<u>) 1</u>	Q.: 3.	10		7)	10		3	-)	12	.5	وا ر		"	2	23			4	12	.5	3	- 1
				12	. oc	2			3.	10				2.1	7			13	, O	9			3.	0				12	. 9	5	_
				13	. 2	0_		+	3.	18			15) , C	8			13	.0	1			3.	0				2	94	<i>t</i>	-
+				14	.4			_\	ຊ.	44			lò	. 5	54			12	.5	1			a,	.54	‡_			122.	50		_
-																															
																															_
																											_				
																												·			
																			-												
												ļ											ļ								
			-																												
					 								-												<u> </u>						
										<u> </u>																					
									-	<u> </u>		-																	-		
								-							-				-												,
			-			-																	<u> </u>								
									 																				· · ·		_
									-									ļ												_	-
-													<u> </u>		-			-		-											-
-					-			-													-										-
							-		_		-	-									-				<u></u>						-
							ļ		-	-														-							_
		-				-	<u> </u>						-																		<u> </u>
				-											-																
		1																		-				Cor	ntinu	ed fro	om p	age	N	A	

Cray Del Zemo

11/15/22

B-5 Signed hundle

11-16-22

Date: 1110 22										Page of
Sample Location: 200-I-185				F	Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)										
	ers	* ! . <u>*</u>								
	# of Containers	Sample Matrix*	8260							
	of Co	mple	83							
Sample Number										Charge Number
2211101345y (EB)	3	A	~							XGMD
1540y	3_	_A_	~					<u>.</u>		и
				<u>-</u> .						
			:				•			
								•		
Sample Location:				A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)								_		
	rs	* X:								
	ntaine	Matr								
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
Relinquished by: Date /	7	1		(A	ccepted		1		Date / Time:
traig letter 11/10/22	/16	30h	rs.	10	re ($\sum_{i=1}^{N}$	\tim	d	11-14	-22/0845
				$+ \rangle$	<u> </u>					-

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11 14,42										Page of
Sample Location: 200-I-185				A	nalyti	cal Rec	uireme	nt		
Pertinent Notes (if any)				5						1
	Sis	* *		otal Meta				1		
	# of Containers	Sample Matrix*	<u></u>	M	•					
	f Col	mple	607	19	,					
Sample Number	#	Sa		٩						Charge Number
8211140935y		A								XaMD
14404	2	A								u
	:									
Sample Location:				A	nalytic	al Req	uireme	nt	<u> </u>	
Pertinent Notes (if any)										
	ş	*					i	:		
	tainer	Aatri	•				į			
	# of Containers	Sample Matrix*								
Sample Number	0 #	San								Charge Number
Relinquished by: Date	/ Time): 			A	ccepte	d by:	- A		Date / Time:
Craig Del Ferra 11/14/22	116	ooh	رج	\o	u	\bigcup	llum	d	11-1	5-22 0830
σ ,	l .									7
				0						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11 15 22										Page 3	of 3
Sample Location: 200 – I – 185 Pertinent Notes (if any)				A	Analytic	al Requ	uirement	t			
Pertinent Notes (if any)						6					
	iners	ıtrix*		Z	NO	orid					
	# of Containers	Sample Matrix*	SQ	TAN T		14	-				
Sample Number	# of	Sam		_ [NOz	\mathcal{C}				Charge 1	Number
2211150945y	1	A		-						X00.	
0946y	1_	A								4	
1050y	1	A			~					4	
= 1340 y	1_	A								4	
						-					
Sample Location:				Δ	nalytic	al Pagu	irement				
Pertinent Notes (if any)					liarytica	ar Kequ					
	rs L	*×									
	ntaine	Matri						i			
	# of Containers	Sample Matrix*									
Sample Number	#	Š								Charge N	lumber
								-			
	Time		1 -	10	1 1	cepted			11 1	Date / Time	node
Craig Illten 11/15/2	3/ 1	520	hrs.	 or	r \wedge	<u> </u>	lle-c	<i>/</i> L	11-1	6-22	לזעט
				+0-			 				
			l	L							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tutts & Craig Del Ferraro present. Weather is clear & cool. This zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Gen. in use. Probe#4955. Surface checks performed on probe prior to sampling. 30 Min Equipment Blanks - Garbon G/ Sample Analysis Container Preservative ice/HCL VOA by 8260 Total Metals 221110 0935y (3)40mlvials 2649-1 ice/HNO3 (2) 125ml poly's 22-04-21 - 0936y Initial Parameters Final Meter ID Time - 22111010154 pH/cond-92 Time-22111013054 - 7.88 Turb PH - 7.69 Temp - 20.5 °C Temp - 20.8'C std - 49.6 Cond - 845 uslom Turb - 290 NTUS Cond + 880 us/cm rdg - 48.9 Turb - 2.02 NTV'S 07-210966 pHore - 7.12/10.08(19.3 c) >Hoost - 7.11/10.09 DTW - 216.50ft. pHare - 7.08/10.05 (21.00) Exp-11/30/22 pHpost - 7.10/10.03 Buffers Atmos - 12.41 psia 1202A44 Atmos - 12 36psia IDW - 1/2 gal. 10 4107E30 Sample Container Analysis Preservative VOA by 8260 ice/HCL (3)40ml vials 221110 1035Y 2649-1 GOT/Bromacil 1036y ice (1) IL Amber 01003014 SRI 2)125ml polys 11004 ice/HNO3 Total Metals 22-04-21 11014 Anions / AlK. ice 1102 y TOS by Smy 540C (1)250ml poly 111620-2AAO 1103 y Perchlorate by 6850 (1) 25 ml poly NOz/NO3 by 353.2 ice/HzSOn (1)250ml poly 22-01-14 11044 Controls Blind Analysis Preservative Container Lot 221110 1125 y VOA by 8260 ice/HCL 3)40ml vials 22MM153A ALS - 1126 y 607/Bromacil ice 22MM153B ice/HNO3 Total Metals 2) 25m poly 22MM 153C -1127y Continued from page NA on page 4 Read and Understood By

Craig Del Fermo 11/10/22 B. Jon Wound

11-14-22

Notebook No. $D64#130(\gamma)$ Continued from page 3OJECT 200 - I - 300 WJI ENV - 0000 11/10/22 2) 51.83 64.70 3) 51.82 64.67 64.68 51.79 2 un s 1) 51.88 64.75 64.74 951.71 64.63 64.60 51.73 64.68 51.83 51.86 Continued from page

Praig Rel Zerro 11/10/22 B-10

Read and Understood By

Date: 11 10 22										Page of
Sample Location: 200 - I - 300		-		A	nalytic	al Requ	uiremer	ıt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260	607	Total Metals	Anjons/AIK	705			
Sample Number	#	Sa			۲	A				Charge Number
2211100935y (EB)	3	A	V							Xamp
09364 (EB)	2	A			~					и
——1035y	3	A	/							u
1036y		A	_	/						ч
	2	A			/					a_
lioly	2	A				V				ч
- 1102y		A					~			a
Sample Location: 200 - I - 300 Pertinent Notes (if any)	,			A	nalytic	al Requ	iiremen	t		
Sample Number	# of Containers	Sample Matrix*	Perch lorate	NO2/NO3	8260	109	Total Metals			Charge Number
22111011034	1	A	~							Xamo
11044		A								pl .
1125y (BC)	3	A								и
1126y (BC)	1	A				\checkmark				и
1127y (BC)	2	A					V			и
,										
D.P. 11.11	/									
Relinquished by: Date Orang Del Terro 11/10/22	/ Time	:: 30h	S .		cu (cepted	lby:		11-14	Date / Time: 122 / 084 5
U		-					_		_	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

(OJECT_				19	W.	J. 4		- V		~~ <u> </u>	1	11	1100					COII	inue	u no	пі ра	ge		<u> </u>	-				
iob Tu	fts	ε (rai	9	Del	Fe	YYO	l√0	P	re:	en	ŧ.	W	ea	her	r, i	s (le	ar,	ω	a.r	m,	ξι	vir	de	1.	th	is	
one w	illb	è s	Sam	ءام	d	us	in	4	5 ¹ 7	tri	ple	r	ins	ed	, ;	sto	un	es	5	$\pm e$	el	sa	mp	le	+ŭ	205	. G	en	
ruse.	Prok	0#	49	55	5.	Su	fa	ce	ch	ec	Es	p	ert	For	me	d	on	D	0	Se	pr	io	r 4	0 \$	san	nρ	in	q .	
																		1			/								
				3	0	M	١٨	ع .	- GU	ipr	nen	1,	Bla	nk.	<u>s-</u>	\mathcal{C}_{a}	rb	04	G	3									
Sample	2					A	14	y 51	5	1	Pr	e se	1	ativ	re			Con	ta	ine	r			-ot	`		10	6	
221109		y		V	AC	bu	18	26	0		(X	ice	2/1	HCI	_		(3)4	ml	V	ral	5	્ય	62	1		AL.	S	
	150				60	7/8	101	ma.	cil				ice				(i	IL	A	mb	er		010	030	SIH		SR	$ \mathcal{I} $	
		•																					_						
nitial	Par	am.	etex	`\$								Fi.	na										Me	te	\sim	II			
ime-					OY						-		_	L.	22	11	0	80	56	У		4	DН	70	20	d -	92		
1 1	7.	1	1 - 1		T						-	H		1	7.4	1				7				ir	Ы	_	7		
emp	- 22	.0	٠.									en	~		26		.c						ч	·	Sł	 	49	16	
1 1 1	- 10:	t	: 1	lem	`										10				m				u		rd	۔ ب	.4	9.4	
urb	– 2,										_				1.								ų		ما	¥ -	210	86	6
H pre	- 7.0	9/	10.	04	(2		·c)					рΗ	Dre	2 _	٦.	13	Lic	.10	1)	6.4	. 5)		u		Éx	2-	11/3	ola	2
Hoost	-7.0	7	10.	04											-7										•				÷
	- 211											1	11	i -			1	1 4	, , .		-	Buz	fei	Z	1	ot		3	KQ
tmos	- 12	.4	D p	Si a								A.	L mi	05		12	46	D.					7	12	02	A 4	4	8/	73
			1	,								I	Du	j	-!	/2	401	1				1	D				1	1/2	- 1
																•								-					
											<	50	m		25.														
Samp	e						A	19	u S	S	1	P	res	erv	va	iv	2		0	n	aux	er			.6			_a	6
221110	082	5	Y		Vo	ΑJ						i	ce	1+	CL					_	ml		TE	2	62	1	7	415	5
	086	46			9	07/	Bro	m	aci				1 .	æ					M	1.	Am	13		l	,	114		SP	
	-08	'	1 1			Ha		Ve				i	1 .	a .	V0 ₃				(a)		m							ÁL	S
			1					•					- (7							1	F						
																										<u></u>			
Luns	1) 8	4.0	5			<i>I</i>	2)	84	.5	0		3)	81	t.:	55														
	10		24	٠ (١)		•	98		2			9		13														
	9 -	7 -	84					98		6				β,	15														
	q	8.	86					84	1 .	1					54														
	5	4.	60																										
-																						Cor	ntinu	ed fr	om p	age	NA	<u> </u>	
			,						,					Rea	d and	d Un	derst	ood i	Зу									,	

Craig let Leuro 1/10/22

Date: 11 9 22]	Page of)
Sample Location: 200-1-375	•			A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	LS.	*x									
	# of Containers	Sample Matrix*	8260	7	•						
	f Col	mple	00	607							
Sample Number	#	Sa								Charge Numbe	r
2211091500y (EB)	3	A								XGMD	
2211091500y (EB)	1	A		/						પ	
					,						
						:					
Sample Location:				A	nalytic	cal Req	uireme	nt			
Pertinent Notes (if any)											
	ers	*XI.							:		
	# of Containers	Sample Matrix*									
	oJ co	 ımple									
Sample Number	#	Š							T	Charge Numbe	er
		-									
									<u></u>		
Relinquished by: Date Traig Del Terro 11/9/22/	/ Time			1	/ 11	Accepte	d by:	0	1/ 11	Date / Time:	<u>, v</u>
	,,,		~~ I	1 1/1						1 - 1 1 - 1 1 / A 1	11.7
July State III I Las	16	loha	S.	- ₩	u N	$\sqrt{\frac{n}{n}}$		<u></u>	111.11	LUJUD	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 11 15 22									PageQ of
-	Date:				A	nalytica	al Requi	irement		
	Pertinent Notes (if any)					5				
		# of Containers	Sample Matrix*	8260	607	a Meta	-			
	Sample Number	# of	Sam	00		101				Charge Number
	X21110 0825 Y	3	A	1						XGMD
	<i>1</i>	1	A		~					ч
		2	A			~				u
								_		
	Sample Location:				A	nalytic	al Requ	irement		
	Pertinent Notes (if any)		:							
		# of Containers	Sample Matrix*							
	Sample Number) jo #	Samp							Charge Number
	Sample Number									Charge Ivamoer
					_					
	Relinquished by: Date	/ Tjm			1) A	gcepted	l by:		Date / Time:
	Cray Del Ferro 11/10/22	-/11	15 k	rs.		for 1		11.—d	<u> </u>	-14-22 /0845
						;	. ,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tufts & Craig Del Ferraro present. Weather is clear, warm, & breeze. This zone will be sampled using 5 triple rinsed, stainless steel sample tupes. Ren. in use. Probe#4955. Surface checks performed on probe prior to sampling. 30 Min. Equipment Blanks-Carboy Sample Preservative Analysis VOA by 8260 ice/HCL (3)40ml vials 2621 221169 13004 (2)125ml polys 22-04-21 Total Metals ice/HNO3 -1301Y nitial Parameters Meter ID Final ime - 22110913307 PH/cond - 92 Time-22110914254 -7.85 Temp - 22.3 Temp - 22.5°C Cond - 92845/cm Turb - 1.84 NTU'S rds -48.4 -933 us/cm - 2.40 NTU'S pre -7.08/10.05 (22.9°c) pH pre -7.04/10.03 (22.5') Ex9-11/30/22 pHaost -7.03/10.06 Drw -21641Ft. DTW - 216.31FH Buffers 1202A44 Atmos - 12.40 psia Atmos - 1238 psia IDW - /agal. 4107E30 Samples
Preservative Sample Container Analysis 22110914004 VOA by 8260 3) Homl vials ice/HCL 607/Bromacil SRI (1) IL Amber 010030 1H 14014 ice (2) 25 ml poly's 22-04-21 ALS ice HNO2 Total Metals - 1402y Runs 134.62 134.56 3) 134.47 76.27 176.30 176.24 176.26 176.22 176.18 134.63 134.59 134,49 Continued from page NA Read and Understood By

Charg lel Ferro

Jumsk 11-10-22

Date: 11922]	Page of
Sample Location: 200 -T-490				A	nalytica	al Requi	rement	·	
Pertinent Notes (if any)					2/5				
	# of Containers	Sample Matrix*	0.0		Met				
	of Cor	ample	8260	607	otal				
Sample Number	#	Š			-				Charge Number
2211091300Y (EB)	3	A	~						XGMD
1301y (EB)	2	A		-					u
1400y	3	A	~						ш
14014	1	A							ц
14024	2	A				•			a
Sample Location:				A	nalytica	al Requi	rement		
Pertinent Notes (if any)									
	SI	* .×							
	ntaine	Matri							
	 # of Containers	Sample Matrix*							
Sample Number	0#	Saı							Charge Number
Relinquished by: Dat	e / Time	e:			A	ccepted	by:		Date / Time:
Relinquished by: Date Craig Ill Ferro 11/9/22	16	20/	rs.	10	<u>u U</u>	/\ u	<u>ul</u>	11-1	0-22 /0838
U	•	•		$\bot \bot$					f
				V					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Τ.		- 1				G		<u> </u>		Τ-	7		,				-		T						N/I					
R	ob_	tul	#5	3 8	C	rcu	ا ا	Je1	te	rra,	0/	ore	se n	/	fe	eat	her	- is	c/1	ear	, (QO,	1,	6.	ee	ΈY.	. 1	i i s	· 2	one	wil
D	2 5	amp	190	* 1	الكار	Δq	<u> </u>	Tri	ple	sis	se	1,	Sto	un	les	<u>د</u> اع	sto	el	SOM	ומו	a 1	uba	5.	G	en.	in	us	e,	Pro	be #	495
7	urt	ace	C	he	ck	5 1	>e €	tovi	nec	1 0	<u> </u>	pro	be	· ρ	rio	√ -	o_	sar	npl	ing											
	+	-	-	_	_	_						'		_''			İ			0											
L	-	ļ.,	ļ.	_		\perp		<u>30</u>	M	in	. 8	qu	10n	nen	4	Bla	nk	5-	Ca	pode	4	G:	3								
3	>am	عام	2	\perp			_ _		An	aly	si	-4		P	æs	en	rati	ve		(on	lai	er	-		/	#			La	7
2	21	bg	0	84	15			Vov									ICL	/		(3	140	0.00	V	ials			621		-4	AL	
L					·		:			J												7114		413	-	O	1			74	<u> </u>
I	'ni.	fial	F	an	am.	ete	rs							-	7in	al					-	-		N	-	For	T				
7	ime	2 –	2:	21	10	90	96	25	,				1.					111	911	20	.,		-	15	_	_		_	0	7	-
P	#_	_	7	6	9			7					†	D:	u		7:	1 -7	2111	30	Y			-	l I	τ.	onc	-	7 6	K	
Ta	mi	-	2	0	Q.	C			1		1	1	 		-	- 1	1	1						-	1	ur	1		1		
7		_	I		24		1		-	1	+						20							-	ч	ł	Sto	1 1	1 -		+
$\tilde{\tau}$	1-1	-	L	1	9.	4. ,	5	7	\dagger	1	+	+-	-	4	nnd 1	+	16	12°	as la	س ر در		-		-	ų		1		1 1	3.4	
								(18			+-	1	-						M				`		u		1 1	1 1		96	
۲,	100	H.	7	. 1	7	7		415	7	+)	+	-	-	1	•				10.		. ,	.0	9		-4	-	ϵ_{x}	> -	11/	<i>7</i> 0/:	22
K	7,	st -) -	- /	111	1	9 r	<u> </u>	-	-	+-	-	+-	+-		,	- 1			10	1 - 1			_	- 0	-		, '	,			
1	u		_ =		0.2	3 7	Ţ.	-	+-			-	-						31 F				Bu	He			67			<u>¥</u>	×ρ
Ш	mo	5 -	7]	٦	.41	ps	10	-		-	-	\vdash	-	AH	MI	<u> </u>	- 16	2 4	٦p	sia				7		120	21	F44	7	8	23
				+-	+	-	-	-	-	-	-	<u> </u>	-	T	Þμ	<u> </u>	-1/	4	al.'					10		1 1	1E	1.	i 1	- 11	23
	-	-		+-	+	+	+-	-	-	-	-	-	-	<u> </u>	<u> </u>	ļ.	<u> </u>														
_		. 1		-		-	+-	-		1	 	<u> </u>	ļ	59	mI	le	\$				_										
	l .	ple		-	-	<u> </u>	_		An	aly	sis	<u> </u>		PG	se	V	in	ne.			an	ai	n ox	-]			+			_as	5
23	111	69	0	95	5>	<u>/</u>		VO	a E	24	32	60		i	k /	HO				(3)						26	_		-	AL	_
			-0	95	64	<i>i</i>				Bra						çe					IL				- 1		230			SR	
_			10	22	5ý				. 19	1			ı	i	ce	l H	NO			(a)					1		1	- 1		Al	
_					6 Y					อกร						ice					110~		uf	019			-04 		4	HL	-S
				1	1	1				bu				~]				(1)	04	4	1	1		-	NA	-	-	<u> </u>	
				1	8	4		Per	ch	ore	to	hu	69	50		u				\ \	- 1	- 1		ole		-	u	-		ч	-
					91	L į		NO:	7.	10		252	2		:	111	So.	 		-	12:	- 1		lo			u_	\dashv	\dashv	u	-
			y						11	//3 ·	y)	, oc		ICE	HH.	30	1	-	(1)	a D	Ove	N P	باله	}-	22	-01		4	4	
					1			+-		<u> </u>						-	-		-	-			-		-		-	\rightarrow	_	-	
				-	-		-	+-						<u></u>		-	-			\dashv		_		-				_	\dashv	_	
P	un		7	7	11.	110	2									<u> </u>	-		_			•		4			_		\perp		
2	411	2	• ,		4	1		ļ ó	-	114		i i	3)		ı	3:	i					-	_	_		-	\perp	\perp			
\dashv	\dashv	\dashv		l	55.					55						4:	1				_			\perp				\perp			
-	-				5.		-	-		55						.41	r 1														
-				ム	4.	45			2	14	.3	8	_	2	14	.20	2														
					<u> </u>																				Cont	inuec	d fron	n paç	je A	, A	

Craig Del Zemo

11/9/22 Date B-17 Ori U

umck

11-9-22

WSIFINIER										
Date: 11/9/22		-					_			Page of
Sample Location: 200 - I - 675			Α	nalytic						
Pertinent Notes (if any)					5	王	•	0)		
	şo	*			6	*	S	To T		
	ainer	[atrrix	0		Μ	150	Ó	-9		
	Conta	le M	8260	607	8	وَ ِ ﴿	+	43		
	# of Containers	Sample Matrix*	8	ف	10	Anions	,	9		
Sample Number	<u> </u>				,					Charge Number
2211090845y (EB)	3	A								XGMD
0955Ý	3	A								4
956V	1	A								u
	2	A		-	/					и
	2	A					•			
10264	<u>~</u>									и
10214	1	A			_					u
10284	1	A						V	-	ч
Sample Location: 200-1-675				A	nalytic					
Pertinent Notes (if any)										
	w w	*	<u>س</u>	,						
	ainer	latrix	NO3							
	# of Containers	le M	/2							
6 1 2 1		Sample Matrix*	Noz							
Sample Number	•									Charge Number
22110910294	1	A			-					Xamo
				•						
	,			\int		c¢epte		-		
Relinquished by: Date	/¡Time	1		1	/ I I	Date / Time:				
Craig Del Ferro 11/9/22	μ	5h	5. Cyl / um ch 11-							10-22 /0830
										,
			1		-			I		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Robert Burrows & Craig Del Ferraro present. Weather is clear, warm, & breezy. This zone will be sampled using 5 steam cleaned & triple rinsed, stainless steel sample tubes. Gen. in use. Proke #4955. Surface checks performed on proke prior to sampling. 30 Min. Equipment Blants - Carpay G.B.
Analysis Preservative Contai Analysis Preservative Container VOA by 8260 | ce/HCL (3)40ml vials Container Sample ALS 2211081420y Initial Parameters Meter ID Final PH/Cond-Time - 2211081450 y Time- 22110815454 PH - 7.56 PH - 7.61 Temp - 22.6.c Temp - 22.9.4 Cond - 2.12 ms/cm Turb - 1.68 NTU'S Cond - 236 ms/cm Turb - 1.51 NOU'S PHpve - 7.04/10.02 (25.3'c) PHpvst-7.05/10.01 PH pre + 702/10.01 (26.1'c) pH post - 7.04/10.01 DTW - 216.15 Ft. Drw - 216.23 ft. Buffers Lot Atmos - 12,50psia 7 1202A44 Atmos - 12.46 psia 123 IDW - Yzgali 10 4107E30 Samples Sample Preservative Analysis Container 221108 15204 VOA by 8260 ice/HCL (3) 40ml vials 2621 ALS --- 15 21 y 607 Bromacil (NIL Amber 0100301H ice 1522Y ice HNO3 (a) 125ml poly's 22-04-21 Total Metals ALS X Samples were very agrated. Runs 1) 266.25 2) 266.18 3) 266.07 306.71 306.75 306.73 306.70 306.71 306.74 266.20 266.20 266.09 Continued from page N/A Read and Understood By

Craig Del Femo

11/8/22 B-19 John Jumsh 11-9.22

Date: 11822								-		Page	_ of		
Sample Location: 200-I-795		A	nalytic										
Pertinent Notes (if any)					S								
	ers	rix*			eta								
	# of Containers	Sample Matrix*	9	607	Me								
	ofC	ample	8260	ĕ	<u>5</u>								
Sample Number					-						Number		
2211081420y (EB)	3	Α	V							Xai	ND		
1520y	3	A			-					પ			
1521y	1	A		~				_		ų			
1522y	2	A											
•									_				
Sample Location:				A	nalytic								
Pertinent Notes (if any)	-										•		
	<u>8</u>	*											
	taine	Matri											
	# of Containers	Sample Matrix*											
Sample Number	#	San								Charge	Number		
						-							
										"			
									=				
			-										
Relinquished by: Date	/ Time): 	Adcepted by:							Date / Time:			
Cray Polters 118/22	Cray Del temo 11/8/22/16001												
7-101/								1	0830				
							/						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Read and Understood By

11.17.20 B-21 You

Continued from page

Date: //- / 7-27							-			Page	of
Sample Location: You - C · 143				A	Analytic	cal Req	uireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8766	607	8770	7525-0-465	2-08H2/2-72	ماسه المراجية		X6M Charge N	
7711717 0970c 	3	Ą	X					:			
- 0971c (EB)	3		\varkappa								
0972 2	1			\boldsymbol{x}	_						
0923c	2				X						
0923c 0924c	1					X					
0975c - 0976c	1,						X				
- 09760	1							X			
Sample Location:				A	Analytic	cal Req	uireme	nt			<u>-</u> -
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	P B s	من-ره حماي	1019184-9-1	42-020 AVK	J, 5	こしているしのなとし	201703	Charge N	umber
-0977c	1	A	カ								•
- 0578c	1			x							
0979c	7				ャ						
0930c	2					$\boldsymbol{\varkappa}$					
6931c	1						ス				
G932c	1							X			
0933c	1	1		(κ		
Relinquished by: Dat //-17-2	e / Time				In V	vccepte	d by:	de		1 - 22 /	1030
				1							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11-17-27						372 133	_			Page of	<u> </u>
Sample Location: Yoo-C-14 3 Pertinent Notes (if any)				A	Analyti	cal Req	uiremei	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	いなとうない	クルーケータを						X6mD Charge Number	
271117 0934c	1	A	\mathcal{X}								
27117 0934c 0935c	1	A		X							
				,							
	_										
	ļ	-									
Sample Location:				Δ	nalytic	al Reg	uiremer	ıt	<u> </u>		
Pertinent Notes (if any)				• • • • • • • • • • • • • • • • • • • •							
Samula Navahan	# of Containers	Sample Matrix*									
Sample Number	1									Charge Number	
	-										
					<u>-</u>	-					
	-										
Relinquished by: Date	/ Time): ::	<u> </u>	1	A	ccepte	d by:			Date / Time:	-
J-3 11-17.2					Ju 1		tun	sh	[[-]	17-22/1036	,
					_						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

4 ROJI	ECT_	ৰ্ভূ	36	50	9-	- 6	=F	-6	= _	- 1									N	Vote Conti	bo nued	ok l fron	Vo. n pag		U/s	t 4		-			
	1 = ,	7 K		90				4		٤	T	- ` ,	ч	~	10	2	2 Б І	Pr	es	=	N		ę	v	_	_†	- 4	-			
	≯ ¢				- 1				co	1		ار	J	h.	<u>.</u> 5	٠-	مجد	4	n	10	<u> </u>	3	e	Ph	- ſ <u>`\$</u>	له م	4	<u>~</u> /	201	-	_
Ge	M	2	0	1 4	ح_2	> /	,,	G	•	- ¢		لعا	ه`ر	-1	4 0	٨.	5-	1	21	`^	۷	P	0	~ \	1 ,	,	_			\perp	_
$ \mathcal{E} $	امم	` 1		ef					\$		عا			2/	<u></u>	0		P	10	me	f	0	<u> </u>	_	[_		5.	ρ		_
7	C		2	er	<u> </u>			N	Le	re.	ر ٢	5					کے	11	દા ⋧			4	77	7	_						
-	1:00	Q 7	22	-11	10	9	75	9	P	4	COR	1	_ ہـ	1/2	1	ح		7					A				8	12	5		
P	<u></u>	_ {	3 .	52	_ `				-	Tu,	ط ٬	-	U/	4	B			0		4	116	9 7	E	30				23			
7	en	P	7	4:	2 00	C				٠ - ج	57	1	-6		3																
	Pno	# # I	~ /	23	4	عر		4		U	20	6	-6	51.	4																
	4/1	5		37							- 1	إب	4	2 1	09	6	0														
PI	A	e	~7	00	110	0,00	01	7	5. 8	27	2	ν Δ	15	131	0/-	7	-														
DI) / D =				- /	, ,	2			`/	_	7			/ _							_									
10	Po	5 7	-/	.00	<u> </u>	/ 0	٥٠ ح	~~						<u> </u>							-	-		\neg							\dashv
		-		+	_	+																	\dashv	\dashv		_					\dashv
-									,		n	-	>_	-	(- 2				R				ار			\dashv		\dashv
7 -7	11	7	CE O	700	0	,		/\$-	1.5			,	2	<u>.</u>								(S				الده	10	J ,	- 	$\overline{}$	
46	111	10	2	100 C	<i>></i>	- 0	4	999	5th	occi)	/	E	5 L	K.	2	07	19	-						/ (-		· ·	0	4	
			- 1			$\overline{}$				-											_	s of	(ζιV		_		6		-	
		0	00	2	~	M	21	M	MB	601	40	07	/	CE	*	ا و	90,	301	14		24	,	`	(2)	, C T		~	24	2/	-	\dashv
	T _		80				_	<u>ر ک</u>	n).	Pur	A		<u> </u>	<u> </u>			.,					•						\vdash	\vdash	_	\dashv
		0	80	24				_ (0	<u>\$)</u>			, ,	12													•		\vdash	\dashv	
			-								ļ	<u> </u>			ļ							·							\vdash		
	_	_							<u> </u>			ļ	ļ			ļ													-	_	
		ļ											ļ			-													-		
												<u></u>		<u> </u>													L				
								-																			L.				
		†											<u> </u>																		
+		†						 	-					+	1																
	-	+			_				1					 		+							1								
-+-	+	-	+		-				1		+-	-		+	+	1		-	-							-		-		$\neg \uparrow$	\neg
	+	-	-		-+				 	 	+-			+	+	+-		1					-	-		-	-	+-	+		
		+-					-				-	-	-	+		+-						<u> </u>		-				-	+-1		$\neg \uparrow$
-	-	+	-		\dashv		-	-		-				1	-	-		-				-		Car	otine	ad fr	L	lage	N	A	-
		<u></u>									<u></u>						<u> </u>		<u> </u>		<u> </u>		<u> </u>	COI	umu	eu II	——	.aye			
	1		1	,	()	// (1									Г.ea	d and	d Und	dersto · M	ood E		\wedge			۸						
0	2				H	1				/	1.	D	_ 7	22	_			X,		1	$\setminus /$					_	1	11-1	0 -	22	
			/ Sin	han				_			'-/	Dat	he .		В-	24		Ju	ν ν /	Sic	aned	-	W	~0		-		17	Date	9	

Date: 11-10-27										Page of \
Sample Location: B 6 50 - EFF	-1				Analytic	cal Requ	uiremer	nt .		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UDA 8260	LL-VOA 8260LL	DROWACIL 607	! :	Tom Werris	HIOUS/ALC	los suzabe	X6MD Charge Number
2211100800	3	A		メ						Charge Number
- 0801 (FB)	3	A		×						۸,
- 0802	l	\mathcal{A}			X					•
- 0803 - 0804 LFB	(\mathcal{A}				×				
- 0804 (FB	1	A				*				• •
										· · · · · · · · · · · · · · · · · · ·
Sample Leasting										
Sample Location: Pertinent Notes (if any)		-			nalytic	al Requ	iremen	t T		
Sample Number	# of Containers	Sample Matrix*	VERCHURATE 10850	NO2/NO3 853.2						XGMD Charge Number
Relinquished by: Date /						cepted	by:	L		Date / Time: -22 / 0945

* Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

*ROJECT_B 650-1NF-1

cool, This well we present we thor write Pursed end cool, This sempled asing a dedicated sempling ports
single Carboy "Plume front! Buffers LoTH 8/23 100- 221100080P Land Ha 12 1202 444 7 PU-7.72 Ta/6-N/4 8 Temp-23.46 Ta/6-61.3 10 4107 E30 Eond-1232 m3/cn 570-61.4 Tulb-1.64NTUS 407#210966 Phpe-7.00/10.000000001195 1/20/22 Ph Pest - 702/10.04 Simple# A USIS LOTA LAB CONT (=)40-11:01 221110 0830 0A6 48260 100 401 2649-1 ALS -0831 (Ja) -0832 (JB) - 0833NDMAIDAN/81051007 1CE 01003044 SWRI WILT ONLON Continued from page \sqrt{A}

=t/3ll

11-10-72 B-26

Read and Understood By

11-10-22

	Date: 11-10-27	-]	Page 1 of 1
	Sample Location: 3650 - INF	-1				Analytic	cal Requ	uiremer	nt		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UDA 8260	2001	109	, 	Z		ros suzadoc	XGMD Charge Number
	221110 0830	3	A	×							, (
	- 0831(Dup)	3	A	X							٠.
	- 0832(FB)	3	A	X							• •
1	- 0832(FB) - 0832(FB)	1	A			X					ı •
-											
.	Sample Location: Pertinent Notes (if any)						al Requ	iremen	t		
	Sample Number	# of Containers	Sample Matrix*	Perchiarate 1850	NO2/NO3 353.2						XGMD Charge Number
	Dhlinevished to										
	Relinquished by Date /			b)		iu ()	repted	by: li ()		11-14	Date / Time:

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Front Callers ! Tim those present we that is (1801 and cool , This bidg will be simpled and parsed in a dedicated sampling point, on the entirent side correspy Plimetront! Permissis there is a life of the formation of the control of the contro	6 ROJEC	т_ <u>В</u>	ے (د	<i>.</i> ک	5-	-E	F	F-	Z	<u></u>									,	Not Cont	ebc inue	ok d fro	No. m pag		ン p	~ T	5 ¥	‡ (}		
(100 and c00 , 7% bids will be sompled and parsed using a dedice od 5 = mpling port ON to ethwent = ide Carboy Pline front! Per 1 22/1100959 Phase of 7 1202 A44 8/23 Ph - 834 Talbota 8 10 4107630 1/23 Tenp - 24.49 C 57A - 61.3 Can 1-12-58 5/2007 PAC-61.4 Talbo - 0 540705 ico 210966 Pre-7.02/1000(24.00) Exp - 1430/22 Ph Pos - 7.00 1002 Samples Talloogoo Valyzzco((1) 1/2= Hel 2648-1 A15 (34000) in 1 0901 Vonalish Nerobies 1/2 C1003014 50/21) (1 - mbe) - 0903 (1 Normalish Nerobies 1/2 C1003014 50/21) (1 - mbe)	T			-	1.1			-	•			•																	\neg		Ť
Per () Per (T 1-			- 9	-	1					7		V				•												-	+	-
0 N to effect = ide Corloby Pline front! Per-1211/00059 Ph/and-win 7 1002 A44 \$/23 Ph - 834 Ph - 834 Ph/and-win 7 1002 A44 \$/23 Ph - 24.4° Ph/and-win 7 1002 A44 \$/23 Ph - 24.4° Ph/and-win 7 1002 A44 \$/23 Ph/an	$\perp C$	(leal										ر	7	ム	`\$	k				-					- 1	- 1	1	0.	1		
0 N to effect = ide Corloby Pline front! Per-1211/00059 Ph/and-win 7 1002 A44 \$/23 Ph - 834 Ph - 834 Ph/and-win 7 1002 A44 \$/23 Ph - 24.4° Ph/and-win 7 1002 A44 \$/23 Ph - 24.4° Ph/and-win 7 1002 A44 \$/23 Ph/an	an		P	a l	9	2	4	~=	. ^) G	٧	-	<u> </u>	لم	lic	e. (Q _o		5	-	m	PI	٠,	S	P	6 /	+	-,			
Per - 22/100859 Phond-win 7 1202 Aqu 3/23 Ph - 834 Tub-ota 8 10 4107200 123 Tenp-24.4°C 5TD-61.3 Tenp-24.4°C 5TD-61.3 Tenp-24.4°C 5TD-61.7 Tub-0544705 LOTT 210966 Pre-7.02/10.00(24.0°C) Exp-1450/27 Ph Po 5 - 7.00 10.07 T2111009000 VOLKYTEGO(10) (CF EXC) 2649-1 ALS GLYOMINI-1 - 0901 VONALAMARIONO (CF 61003014 50010) Ct enter - 0903 (CNOMIN 100000) CF 61003014 50010) Ct enter		ر ار			حا	54	lu	امرع	4	5	, 0	لعا	, (-1	مط	9 🗸	•	. 6	1 4	ہہ	+	10	7	+ 1	, \					
Time-22/1/00859 Ph/and-with 7 1202 A 94 8/23 PL-834 Thib-ota 8 10 4107 E30 1/25 Temp-24.4°C STD-61.3 Can 1-1258 5/27 PDC-61.4 Taio - 8 542 This 1207 EDC-61.4 Trio - 8 542 This 1207 EDC-61.4 Pre-7.02/10.00(24.0°C) Exp-1/30/22 PL post - 7.00 10.02 Finally # Manufers & Post 1 A (5 (5) 40m Viol 1 O 901 (FB) - 0901 Vonalumilar by con 1 (E 5) (O 30) H 5WR, () (t = her 1 O 903) (C Nome)																															
Time-22/1/00859 Ph/and-with 7 1202 A 94 8/23 PL-834 Thib-ota 8 10 4107 E30 1/25 Temp-24.4°C STD-61.3 Can 1-1258 5/27 PDC-61.4 Taio - 8 542 This 1207 EDC-61.4 Trio - 8 542 This 1207 EDC-61.4 Pre-7.02/10.00(24.0°C) Exp-1/30/22 PL post - 7.00 10.02 Finally # Manufers & Post 1 A (5 (5) 40m Viol 1 O 901 (FB) - 0901 Vonalumilar by con 1 (E 5) (O 30) H 5WR, () (t = her 1 O 903) (C Nome)	75					, _				, ,			_ /			_	0				۷	e -	- 5	E			E	yρ	+	7	
PL - 834 The - DT 8 10 4107 230 128 Temp-24.4°C STD-61.3 Cond-1258°SCM RDC-61.4 The - 0.54 mins Lott 210966 Pre-7.02/10.00(24.0°C) 'Exp-1430/22 PL Pos - 7.00 10.00 The post 10000 Valuation (1) (EFM) 2648-1 ACS (SHOMIN) - 1 - 0901 North Minule 10 by 207 1CE (S10030) H 5WR, (1) (H = mber) - 0903 (CNOMIN				تع	21	2	- ~		v					T	7	<i>_</i>		/رما										-	-	+	
Tenp-24.4°C STD-61.3 cond-1258 45 cm RDC-61.4 The O STATUS COTT 210966 Pre-7.02/10.00(24.0°C) Exp-1430/22 PL POS -1.00 10.00 Samples 22111009000 VOLLYSZGO(L) (CEEN) 2648-1 ALS GILOMINION -0901 (FB) -0902 VOMALAMA/BIODICOT (CE SIOO361H SWR) () (TEME) -0903 (CNOMIN)	Tim	Q - 2	21	1/4	90	20	9			Ph	/a	ad	- 1	بر	*	ļ	<u> </u>												+		
Fre-7.02/10.00(24.0°C) 'Exp-1/30/22 Ph Po 5-7.00/10.00 Fre-7.02/10.00(24.0°C) 'Exp-1/30/22 Ph Po 5-7.00/10.00 Fre-1/30/20 Fre-1/30	PL	<u>, </u>	8	34	t					7	4/1	o ~	1	TA	8		10	9		4	10	7 4	530	၁			2	5		\perp	
Fre-7.02/10.00(24.0°C) 'Exp-1/30/22 Ph Po 5-7.00/10.00 Fre-7.02/10.00(24.0°C) 'Exp-1/30/22 Ph Po 5-7.00/10.00 Fre-1/30/20 Fre-1/30	Tem	. <i>[</i> -	2	4.	4	್ದಿ	_			• •	57	4	- l	٦.	3																
700-05427115 (2070) (Ep-1/30/27) Ph Pos = 7.00 10.07 Samples Cont Cas								/	~	•	R	٧/	_ (61.	4																
Ph Pos = 7.00 10.00 Ph Pos = 7.00 10.00 Samples 22111009000 VALLYSZGO(U) (CE FILL) 2649-1 ALS GILOMIVILI 											ı	_		1	D	56	10												1		_
Ph Pos - 7.00 10.00 Semples	A 000	(6)	^-	1 1	<i></i>	7 ~	-, u	6	<u>~</u>	,	./-	2/	<i></i>	1/2		-													\dashv		
5 m liett an Lisis Pa (-) # CMB CONT 22111009000 VOLKYSZGO((1) (CE FIX) 2649-1 ALS (SYLOMIVIO) 	7/4	~7.0	52	110	.00	7	<u>ر</u>	. G	9			באי		/3	>0/	77		<u> </u>											\dashv		
7211100900 VOLGYSZGO((1) 1/E É IX ZGAR-1 ALS GIYOMIVI-1	476	o 2_	7	-7	. & 0	110	0.0										<u> </u>					<u> </u>								+	
7211100900 VOLGYSZGO((1) 1/E É IX ZGAR-1 ALS GIYOMIVI-1																													\rightarrow		
7211100900 VOLGYSZGO((1) 1/E É IX ZGAR-1 ALS GIYOMIVI-1								ļ				3	يد	×0 1	05	;					ļ		_			<u> </u>					
2211100900 VOLGYTEGO((1) (EF L) 2647-1 ALS GYOMINI-1	50	05	0#				1	. , <	15		ρ		1			-		٠,٦	Ħ		4	4	_	نے	24	7	-				
6902 NOMALAMA/BIODUGO ICE 01003014 SWR, WITH amber	7711	10	9	100							,\	1	تور	5	1(,)			1				1		4	ч с	9	w	``	,		
0903 CC NOMA 01003014 5WR, () Ct = n ber		700	5	201		VO	4	48	26	0	را	''	- 2	1	1			—	•	•	·	1	_	<u> </u>							
0903 CC NOMA						. 2.0					-			ļ	-		-	1					-	- 3		Ì					
- 6964 · (FB) · · · · · · · · · · · · · · · · · · ·			70	90		0							7	12	=		دع	160	03	01	4	1	RI	ری	ct	۵,	- L	ر ع			
			7	03				66				1		• ,						<u></u>		٠.	ļ			٠.			<u> </u>		
		- E	19	9	4			, ,	(FI	6)							•													
																												}			
		-									†			_																	
	+					-	-	<u> </u>	-	 						1			·	 			 			 					
	-			-											 	 	-	-	-	 -				-					$\overline{}$	-	
		_						-		-	-	ļ	ļ	 	-	ļ	-	ļ			-	-	\vdash			-					
					ļ	ļ	ļ		ļ	-	ļ						_				<u> </u>	-	-	ļ		ļ	ļ				
																					ļ	<u> </u>									
												L											<u> </u>								
			 	1											1	†		1							-						
	+++	+		-			 	 	-	-		+-	+	1			+					+		 		-				十	
	++-			 	-	-	-	-		+	-	-	-	+-	-	+	1		+	-				1	-	+	-				
				-		-	ļ	-	ļ	-	-			 			<u> </u>					ļ		-	-	-					
			<u> </u>	-	1			1		-				-		1	-		-		<u> </u>	-	-		_	<u> </u>	<u> </u>	<u> </u>			
																					<u> </u>					<u> </u>	<u> </u>	ļ			
																Ī															
Continued from page ~/A						†		†	+			 	-	†	1	1	+	1	1	1		+	1	Со	ntinu	ed fr	om p	age	N	11	
				/	<u></u>		7		1		1		Т.,				<u> </u>					<u></u>		1							
Read and Understood By			_/	Q		IJŲ	. ^										- 1	d Un	derst	ood ا ۱	By ∕	\			٨						
Signed Date 11-10-22 Signed Date Date			/1_	/2	2/	7	V \			1	/-	-/6	2-	27	-		Ų	٧ <u>.</u> .		11			la .					11.	10.	12	
Signed Date Signed Date			Si	gned					-			Dat	:e		В	-28		h	_ل	Ų ∖ Si	gned	-	w	(,,,,	-		11			

Date: 15-10-22										Page l of (
Sample Location: 3655-FF	F-	ح			Analyti	cal Req	uireme	nt		·
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UDA 8200	17-10A 8260LL	NOMA/DMW/b07	cal Required Poly (Poly Poly Poly Poly Poly Poly Poly Poly	Tom WETRIS	ANIONS/ALK	TDS SN2940C	XGMD Charge Number
2211100900	3	A		×				-		L `
- 0901 (FB)	3	A		X						
- 0902	١	A			X					٠,
- 090Z - 0903	1	A				X				
- 0904	1	A		12.00		X				
						·				
Sample Location:						al Requ	iremen	t		
Pertinent Notes (if any)			q	3.7						
Sample Number	# of Containers	Sample Matrix*	VERCHURATE LOSSO	NO2/NO3 353.2						XGMD Charge Number
,										
						-				
Polhowishodba										
Relinquished by: Date /			9	C	n d	cepted	by:	L	1)-14	Date / Time: -22 /0845
				 				-		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11-10-22										Pageof
Sample Location: B655-INF	ح-	-			Analyti	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UOA 8260	11-VOA 8260LL	NOMA/DMW/b07	ral Required Takan (mon)	Tom WETRIS	ALLIONS/ALL	105 SNOSHOC	X6MD Charge Number
2211100916	3	A	×							1-
- 0917 (FB)	3	A	X					,		1.
0918	1	A			X					, .
										
Sample Location:	1	!		A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	BECHINDATE	NO2/NO3 353.2						XGMD
										Charge Number
					·					· · · · · · · · · · · · · · · · · · ·
	-									
Relinquished by: Date /	Time:			1		-hout - 1	ban.			D (/ T)
11-10-2			>	10	rn C	repted	by: lu-	d	11-14	Date / Time: -22 0845
				14) 	<i>'</i>
				17			,			

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Continued from page

					N.						_				_			.1		_		1			-			<i>a</i>			\neg
M	44	Co	يرززم	6H	k	8	M	مرز	کر	A			2 6			. У	اوم	the	- ``	S	حاه	4	\ C	16/	Thi	1	ve	10	vil		\Box
P	, ح	200	ميو	4	59	mpl	rg.	৩ঽ	, <u>,,,,</u>	٩	9	عفازو	ماء	7	bla	كاكور		nul) , ,	Sai	mpl	ک	will	be (:0 •	aled		اکا ۸م	(a		
to	Har	19	150	NUC	e	No	Ke.	. \	Nat	2	evo V	بلنا	1 0	ه (ص	Les	25	w	ovite provide	nd		ر اک		A A	1,	Site	Ag	باو -	tool	18	00.	·
(do	1, (۱.ع		0						נ		1 1				-				-	Z				1	<u> </u>				
		1												T																	
\overline{C}	1:1	1	Jon.																			-	Tran	source	15	٠٤٥٠	٠٤_				
$\overline{\alpha}$	1	1		, /	00'	. ~	Σ.	7.	\ ~:													1 -		٠ 8.			7				
研	1	61	7-71		50 /	_	₹:	70	ъ.,	ű.		(u	7,	(01										0	, 7	٠,					
1.4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ia	1/2	2/1/	2 al ,	7.7	ر ر	14	15 D.	177	~>		1	,10								Ten	4K								\exists
4	Vani	1-1	4.	_	1	105	$C^{\prime\prime}$	1		NO)	<u>w</u>		ω	•								uo;	Th	10	. 10	\	1				\exists
	101	014	1.		١,	021.	5	IO	ν,	S								-											\dashv	+	\dashv
N N			·											1		1 6	,					-					-			\dashv	\dashv
	 		1			<u> </u>		, ,	_						•	lan (-5	-		^	١,	-			╬,	11	 		1		\dashv
	awl	1	1		 	 		Asal	421	5				Ī	وري			ļ		l	daj	1			-	194		ļ —		b	\dashv
77	111.	1	731	i		'	i	p	٠.		_				120			-				Vì.			- 1	6491	ļ			1/2	
	\vdash	6	131	A			امد	العد	<u>/e/</u>	NĐ	AM				Συ				() [47	uba			0.	1003	o1H			RI	_
_	ļ	\	· ·			-															ļ.,					-			\leftarrow	2 - \	\sim
<u> </u>	DW	<u>ele</u>	13 (fin	n)		_	\e	MP.	<u>(ن</u>))		Con	<i>?\(</i>	% ~`)		DO	.			14		07	۲۲_		lur	P(M		orw	(+)
7)_	22	111	510	10	A			19	<u>.٦٠</u> ٠	L			94.	1.2	4		_	1.21			٦	. દુ(ત્		189	ا ما		10	2		ND	_
<u>7)</u>			10	ובו				19		.			94?	٤. ٤	4		-	1.19	.		٦	७५		190			10	4		:	
<u>3)</u>	<u> </u>		103	М 1	\			19	.76				946		39		-	1.14	1		٦.	५१		193	3		8.	11		=	
	<u> </u>																										<u> </u>				
			ļ												EM ₀	لعط															
<u>S</u>	Jan	#						trek	جرج				(١.	1 (U)	1 :				Co	dai	w				10+				lab	
	1 '		A OE	,			1	b	١,					HC	11	٠			(;	3)4	mo	719	5		1	26441				Als	,
		1	A					5		B)					હ						ے ا					2					
	-	1	AL				60	$\eta/$		naci	(7					(1	1	۱۸	سكم	,		0	500l	410			St.	<u> </u>
	—	1	AE				Lon	1	ا.،	l	M			*	,						-				T	٠				,	
	-	1	A				~V.			(0,					=											3					,
	_		SA.				"		. (F				<u></u>	:			1			٤				1		 			3	
_	<u> </u>	İ	2				10	a	M	T '	ر د			LAIN	3/1				(2	2)'	15	1	ta/.			220	 			t)	<u> </u>
		1031	9 1-7				'	-	IANT	د به				11100	37 -							100	b	7		7,20	121				<u> </u>
	-		 										ł	21:	6				-			-			+	+				-	
<u> </u>	1	l "	_	-			-	1	. `					n		1 1		 	-		\					1.1	-			11	
_	mpl	1	1				 	tral	451.	S (.	10.		-	-	we	\vdash		-			dain	ur	-	SAMPLE		104	MIC	AV.		lab	
<u>.13</u>	1173	277,	40/					Low	ليون	x\1	Mar	+		7	v			 	111	4.	180			SAMPLE	<u>"</u> Q	洲	炭	شدند. ا	-	A	<u> </u>
		 	_		_	-												-	-				-	ANALY	,	1.07	 			-	
7	0/	<i>N</i> -	7	્દ્	1																					<u> </u>					
	<u></u>				1													<u>L_</u>	<u> </u>		ļ	<u></u>	<u></u>	C	ontin	ued fr	om p	age			
																	.	d and		4 .	1 7	.									

Signe

11/15/22

B-32 Ori Signed

11-16-22

Date: \\ /15/22										I	Page	of	_
Sample Location: RIM . 2 . (30						_	iiremen	t			•	
Pertinent Notes (if any Sample Number	2)	# of Containers	Sample Matrix*	9760	607/Bro	LUNDMA	T. Mulals				Char	ge Numb	 oer
1211150736A (T	(B)	3	4	×							XGM	<i>y</i>	
•	(87	1	1		W	X	-				1	7	
\ 1030 A		3		X									
	FB)	3		X									
\ 1652 A		1			X								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	1				X							
)υρ)	١	1			X			-		7		
Sample Location:					A	nalytic	al Requ	ıiremen	t				
Pertinent Notes (if any		# of Containers	Sample Matrix*			(L NOWA	T. Metals						
Sample Number 75	2 \	1				- /						ge Numb	er
	27	2	4			X	- /				XUND		
1036 A	()	1				$\overline{}$	X				$\frac{1}{2}$		
- 1140 A (B) ()												
						$\overline{}$,						
Relinquished by:		/ Time				ore !	cepte	l by:	l]]-](Date / - 22	Time:	4

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

-KOJECT JSEI				
1 1 1 1	1 1 1 1		weether is che	
w.11 be p	ngelland Sa	apped using a	dedicated bladd	- prop. Samples will be
alled I	sing a new-	Tellon discharge	hose. Water qu	aliky Parkmoters w'i' be
المعمد بدور	us of t	n. 5'ta Doug To	1) 500, Carbo	, G3 . , use,
no: fordila				In tiel Dry: 179.55 St.
Do Sensor	= In saturate	41 01 0 P 100 G	/0	F: ~ 179.67
PH Sensor.	Using a 3 pt	+ 41,7,10 In-5,3	a Butter	ION 25 CE),
1 1 1 1	1 1 1 1 1	uslem In. Situ		
تحانا : د	as an Inc	5:1 5to. 501 st.	50	
an mount	ima) Temp (Cond Da	PH ORP	TU (B) DIW (F4)
2211010925	4 21 41	o72 0.63	7.86 142	7.26 /79.67
0027		1072 0.64	7.79 140	7.23 179.67
०५२५	N 31 M/ E	3071 9.62	7.83 142	7.29 174.67
		Samples		
314016	Janks:	\$	Pro secue	Container 1AB
2211-10932	e var by 8:	260	Jec 14c)	(3) 40 m) V: 4) QS
O933 N	Lowe low A	(FB)	1,	1, 1,
०९७५।	1 1 1 1 1		700	WILL AMBER 5R
0935 4	, Suc 4, 82-	G &C	()	(2) " 42
09364	PCBS by 80	4580	''	(1)
75937	Resticitus		3,	(1) 1, 1
2438	. Herbicides		1)	(1) 13
0939 A	Dioxins Func	N		(1) 1, SRE
0940 4	Presics		T& 142504	() 250 m) Ambor ALS
09414	Samuels		25/11/03	(2)25 +1 Po x
2415	Noplas 3		IG 43504	(D250 A) PD 1
0413	1 1 1 1		Ice/DaOH Masir inc Acateta	(DI25 -1 Pal)
05/14			sinc Acabeta	(D500 m1Pay
				Continued from page
				Continued from page
			Read and Understood By	

Date: 11.01.2022										Page of
Sample Location: 73-182				F	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)				-						
	SI	* *					ප	3		
	# of Containers	Sample Matrix*	ర్జ	100	./	n	4,7,4,8	The Dicites)	
	f Cor	mple	VO8	ğ	Suck		×,	Ż		X Comp
Sample Number		Sar		<u>-</u>	V)	à	03	才		Charge Number
22110100327	3	A	70							
0933 A FB	3		9							
0934 A	1			d						
35 A	\mathcal{A}				>					
- 0936 A	1					9				
A 1500)						2			
OS 38 A)							4		
Sample Location:				A	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any)			V							
	g.	*_	F. V. N.S.							
	taine	Matri		1,55	Ŋ	Nos	- ४	Z		
	of Containers	Sample Matrix*	Dokns	2	Make 15	7	Lynnigh	all Alas		
Sample Number	#		Ä	Prum):cs	12	2000	3	7		Charge Number
2211010939 #	1	7	9							
- 0940 A	1			7						
	7	\Box			4					
Oct13 P	1	\prod				P				
OCK13 A	1						9			
- odriki p)	,						P		
								,		
~	/ Time:],()	\A	ccepted	by:	7	<u> </u>	Date / Time:
11.1.3033	<u> </u>	1010	<u>'</u>	14	<u>u V</u>	$\sqrt{\ \ }$	Um C	th	11-2	.22 0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12/15/22 Notebook No. D32#126 (A)

Continued from page N/A ROJECT BLM-3-182 Resample WJI-ENV-0020 Tong Torrez & Craig Del Ferraro present. Weather is clear & cold. This well will be purged using a dedicated bladder pump. Samples will be collected sing a terion discharge hose. Water quality parameters will be controlled an In-Situ Aqua Troll 500. This is a resample event with no field blanks required. alibrations 20 sensors - calibrated in 100% saturation. ond sensor-calibrated using 1413 uslem std. solution.
Hisensor-calibrated using 4,7 and 10 butters. urb. sensor - calibrated using 10 NTU std temp ('c) arameters (time) Turb (NTV) cond(uslan) PH ORP Do DIW(H 221215 1000A 18.79 (4033.36 7.33 135 1.51 159 78 - 1003A 18.92 4040.02 736 138 1 36 159.78 +1006A 19.03 139 1 1 12 7.37 159 78 5amples Analysis Container Preservative Dioxins/ Furans 2212151010A ice Amber SRT 0100B01H by 8290 * Resemple Event * Initial DTW-179,7187.e0 Total gallons purged (IDW) 159 715+ Continued from page

Craig Ill Fermo 12/15/22 B-36 Vari W numch 12-15-22

Read and Understood By

Date: 12 15 22						·			Page	of
Sample Location: BLM - 3 - 183	2				Analyti	cal Req	uirement			
Pertinent Notes (if any)			ens Sm							
Resample Event	<u>s</u>	**	Turans							
•	# of Containers	Sample Matrix*	5	•						
	Con	ıple l	Dioxins							
Sample Number	, # o#	San	Ġ						Cha	rge Number
2212151010A	1	A	1				!			amo
	•									
					-					
								-		
Sample Location:					1	1.0	. ,		+	
Pertinent Notes (if any)	_				maiyu	ai Keq	uirement		-	
										·
	iners	atrix*								
	onta	le Ma								
Samula Navahan	# of Containers	Sample Matrix*								
Sample Number	,,-					<u> </u>			Chai	ge Number
		!				,				
								-		
		-								
					_					
	/ Time		, -	+		ccepte	h	10	Date /	Time:
Cray Oll Ferro 12/15/25	1/10	401	ncs.		<u>u [/</u>	V 10	u d	- 12	19-22	/1030
									 -	<u>'</u>

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

> 1	Ι 1	12				1	0	Ι,	7	1		<u> </u>		Τ.	T		Γ.	Ţ <u>.</u>	11	Γ			·	1 .			- ,				
30b	ect	מן	ur	rov	ی 1	7	LY	pri,		e	Ter	Va	20	61	rese	nT	. (Vec	th	er	۱S	C	ou	dy	, .	10 1V	rdy	, 8	<u>. ce</u>	<u>ا د</u>	<u> </u>
his	W	eu	w	ıu	B	e p	ur	ged	1.	181	200	a	d	ed	1 Cai	ed	<u>_</u>	la	d ob	er	pu 1	ME	•	Sa.	ကဉ	les	w	14	4	_	
وااه	· I	d	y	\$1 <i>(</i>	19	a	tey	101		Nis	ch	ar	30	h	120	-	ω	te		qu	ali	ty	P	250	2 M	et.	ers	_	zì U	4	e
nor	1 +1	0 r	ea	u	داخ	79	Q.	h -	-n	- 5	si t	u	14.	qu	a.]	ro	u	50	20,	ŀ	e	sar	'nΡ	le.	er	ier	τ.	_	_		
7 1		1										-		-	-		-	-	-			ļ	•			-		_	\dashv		
<u>Pali</u>	br	at	101	15	1.		,	I				<u> </u>	<u> </u>	١,	-	,	ļ —		-							ļ		_			_
> 0	ser	50	r -	C	211	br	at.	ed	1	<u>, l</u>	00	ه / ۵	5	at	ur	017	or	-	, ,		.,	1						\dashv			
20	4.	5en	720	Y_	1	Çal	1.	ra:	tee	L	ls i	ng	} L	<u>41.</u>	3u	<u>us/</u> 0	m	2	td.	.ح	ole	u+1	on	,							
HS	ens	tor	_	Ca	11	ÞΥ	a te	d	us	in	g	4,	ー	٤	10	b	urf	fer	s.									_			
urt	4. S	ser	SĆ	r	-	cal	ıЬ	CQ.	tec	1 0	us,	po) <	₹ ⊘	N7	tυ	2-	Hd	_									_	_		
,				1.		ļ	,		^ \					1		-												_			
ara		1 -	Т	1 '		-	1	mp!	_		Co	ne	(u	5/0	·m)	ָר י	<u>Dc</u>			RP.		PH	*	Tu	M	דע	(٤)	Q	Tu)(}	4)
) 2	30	1 -	1	1			i	1			3	89	0	1		4	.হ।		T	.7		١١.		1	.4	7		-	79	-	
<u>) </u>	1	-			•	2					_3	8-	18	8		1	27		I -	.9		3.14			٦,	-		1	76	1.4	-8
<u>)</u> –	-			13	46	C	a	ο.	16		_3	8	8	4	·	4	.13	\$	99	.5	(8.1	3		.1	\mathcal{I}		_1	7	1,4	18
_	-	_	<u> </u>												ļ.,		Ĺ		ļ									$ \bot $			
	ļ.,		ļ .									ļ .	<u>S</u>	m	ولط	25															
Dax			<u> </u>						A	nal	کا	5		Pro	ese	20	tis	10.		\mathcal{C}	en	eu in	ex		(7م	<u> </u>	. (La	8	
2301	اعا	41	35	oc	ļ .	ļ	D.	Ιοχ							ic	<u>e</u>			(1)1	LA	m	ber	c	210	D3 ()H		SP	T	·
	ļ	<u> </u>						Ь	, 8	329	10							,		_			٠,								1.8
									<i>,</i>										<u></u>												
			_																												
	ļ								_ }	$\in T$	hi	5	5	a	re	sa	WE	le	e	vė	$^{\lambda}$	*									
				,]														
														1.0																	
		_																													
n	ih	al	D	\mathbf{T}	v			79	1.3	6	土				To	tal	9	all	ON.	c b	אנו	a e	d -	•	1						
																				t		,			•						
				,																											\neg
																												1	\top		
																												1			\neg
																				-		,						\top			
																												+		\top	\neg
													1															+		1	
																												\top	\top	+	\exists
																								Con	tinue	d fro	m pag	 је ,	~/	 4	7
					·									<u></u>	1	Read	land	Und	ersto	od B	l V								-1 1		
•																	7	1		- 	•							es.			

raig Oel Ferma

12423 Date or Which

1-26-23

Date: 1/24/23									F	Page of
Sample Location: BLM-3-182				A	nalytic	al Requ	iremen	ıt		
Dominant Notes (if any)										
Resample event	iners	Sample Matrix*	Dioxins Furans							
	# of Containers	le M	άχ							
Sample Number	# of (Samı	اك							Charge Number
2301241350C	1	A								XGMD
A2014 1 1030 C	,	**								
					- 11					
Sample Location:				A	nalytic	al Requ	airemer	nt		-
Pertinent Notes (if any)										
	lers	rix*								
	# of Containers	Sample Matrix*							ļ	
C 1 N 1	# of C	Sampl								Charge Number
Sample Number										Charge Number
							-			
	-									
						_				
						Δ				
	/ Tim				+	Accepte	d by:	()	, 4	Date / Time:
Craig Oll Ferro 1/24/23	14	10h	rs.	$-\!$	m 1	$\Delta \sqrt{}$	Jun	- <u>v</u>	1-2	5-23 / 0915
				$ \!$						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

i0 ROJ	ECI	<u> </u>	w-	જ-	41	8				EN	N-	တ	<u>53</u>	.		_					teb ntinud						26	A			
200	14	ماري	95	ien	4	10	2	B	L	2 7	Dr	<i>e</i> <	1	Ţ.	ء اما	17			4 C									5 L		J	T
١١. زر	13	e t	VE	الم	۵	لمه	5	0	,ماد	l,	15%	•		ارملا)	λ. ο	L	١٥		1		7	<	,	w			<i>y</i> .	121		-
olle	ke d		15.	•		n	W	74	Ck	S	٦:	ر ا	16.	بر و	<u>۷</u>	105	•	ملا	ter		, <u></u>	<u>.</u>	a	***	~	<u>.</u>	1	- 34	,		+-
<u> </u>	100	د٠	u	12; V		80	7	^ -	\$.	tu	Ac	ina	7	10°					- 60	1	(- · ·	100		<u>د، ر</u>	1.00		3	W.		٥	+
_					3														. 00	2				35	-		<u> </u>		-	-	+-
طنان	4	:00	<u> </u>																			٦٠٦		0-	4.5	- 3	२९	7	5	<i>C1</i>	-
>0 5	22	700	-	In		100	3	0	Sc	A	a'	hed	0	X : c								ſ		1		ı	1	8		4.4	+
4 5				1												B	ıc.					1			ł	1	1	(2)			_
nduc																					1	-	4	13 W		34.	3 2	1000	-		+
5 Dic	1	-	1	1	_	1	1	1			1	10				`		-	<u> </u>	_					· ·				-		+-
				,																							-			-	-
CLD M	uda	5 5(me)	_	13.	mg.		C	20	0			D.				P	4			08	D			ون ٦	G				-
23110		1	1				82		1	25 L			1	0.			-		43	-	-	18		_		<u>یں،</u> ۱. ج				DT4	T
i	1	1	2	1 8		3 1.				5			ļ —	o . L			1		41			18							İ	35.	
		1	1 6	1 1			81			51				ها. و			1		44			18				. اه	عر - م			35.	1
									•	3.		-		- 4			1	 '.				1 8	ب			. 2	7			35.	*/
										1						 	1	-			-							-			
											<	ا حاد	~0), E	<			-								-					
JAR K	*					1~	15	•							وعر	_ !					_	£									•
22110		755	- 4			1	p		(45	11				1	Lee	1		-		(7		}	I					<u> </u>			
1			4			1.	7			FB					-4	,					<u>ک</u> د	,	71	710)			-	<u>ل</u> ح ا،		_
4		l	A		٨	Dr	44								T					7									اد د		
		i	4			ι,				B.	5				1,		-			(נפ	<u> </u>	12	6.				3	, 5-3,		
			_																										-		
																	<u> </u>														
																									\dashv						
																												+			_
																						\dashv	\dashv		-					_	
		-																					\dashv	\dashv	-						
								-										-					_		-						
																											+	+	-	-	
									-							~_								-				\rightarrow	-		
																					\dashv	\dashv	-	-+	-			$\frac{1}{1}$	+		\dashv
																			_	\dashv	-	-	\dashv	_			_	+	\dashv	\dashv	\dashv
1				+																				-		_		\dashv	\dashv	\dashv	\dashv
																				_				Cant							-
<u> </u>			<u>.</u> L				!	1																Cont	inue	ı tro	m pa				
	\														F	Read	and	Und	ersto	od By	y										

Signed

11.01-2023 Date

||-|-<u>11</u>

Date: //-01-2022										Page	_ of <u> </u>
Sample Location 32m - 8-41)8				A	nalytic	al Requ	iremer	nt			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	Nos	77 4400						X 6 r Charge	Number
22110114554	3	4	4								
1456A FB	3		7								
1510A	1			4							
1511 A FB	١	1		9							
Sample Location:				A	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*									
Sample Number	# 	S			·····					Charge	e Number
	-										-
					\rightarrow						
					`						
Relinquished by: Date	/ Time	e: 1 6 3	3	0	n	Accepte	d by:	-d	11-2	Date / T	ime: 0900
				1			+				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sianed

11-3-5055

B-42 Signed

11-7-22

Date: 11-3-2022										Page of
Sample Location: 34m-17-453 Pertinent Notes (if any)				P	Analytic	cal Rec	luireme	ent		,
Pertinent Notes (if any)										_
	iners	atrix*			V					
	# of Containers	Sample Matrix*	Ook	८००	4					XGMD
Sample Number	0#	Sar			7					Charge Number
221103 0930A	3	A	9							
- 0931A	3	1	7							
0932A	1			0						
0933A	2				P					
0934A	2				9	101				
Sample Location:				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	STS	* X								
	# of Containers	Sample Matrix*								
	ر وا	haple								
Sample Number	#	Są					<u> </u>			Charge Number
								-		
]						
	-									
Relinquished by: Date	/ T:									
~~~	/ Time		+	<del>  </del>	Z	ccente		. [	11-7	Date / Time: / -22 /0830
11.3.3033		1100	ر ر	$ \downarrow V$	<u>u U</u>	<del>/  </del>	u-	n	11-1	-22 /0000
				+()-			· · · · · · · · · · · · · · · · · · ·			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

B-44

Signed Wund

11-16-22

Date: 1/15/27	_									Page	of
Sample Location: 3M.22.570				·	Analyti	cal Req	uireme	nt			
Pertinent Notes (if any)				7							
	SIS	* *	328	LC NOMA							
	# of Containers	Sample Matrix*	8	M							
	oJ Col	mple		\$							
Sample Number	#	Sa						<u> </u>		Charge	e Number
2211151510A	3	A	X							XIMO	
1511A (FB)	3	1	X								
1512A	١			X							
1513A (FB)	١	1		X						+	
Sample Location:				A	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)											
	LS	* *									
	ıtaine	Matri									
	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charge	Number
						,					
				/	\						
	/ Time				) h	ccepted	i\by:	Λ	{1 1}	Date / Ti	
11/15/22	<u>ω</u>	600		10	ru 1		Ju	_d	.   -	6-22	10845
		<u>.</u>	_	+ 0			<u> </u>				1

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page 10/14
Dan Halvorsen & Craig Del Ferraro present. Weather is clear & warm. This well
will be purged using a dedicated bladder pump. Samples will be collected
using a teflon discharge hose. Water quality parameters will be monitored
using an In-Situ Agua Troll 500, Carboy G3 in use.
Xthis will be a modified sampling event due to rapid drawdown.
Calibrations
Do sensor-calibrated in saturated air (100%).
Cond. sensor-calibrated using 1413 us/cm std. solution
PH-calibrated using 4,7,10 buffers.
Turb. sensor-calibrated using 10 NTU std. solution.
Parameters (time) temp (:) cond (us/cm) DO ORP PH Turb (NTÚS) DTW (Ft.)
1) 22 1102 1330 A 22.96 1140 (4.87 \ 777 7 \ \[ 10.22 \] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2 - 1331A 22.80 1150 4.68 75 0 1031 11.45 732.45
2)
Trip blanks - Water purification system
Sample Analysis Preservative Container Lot Lab
2211021250A VOA by 8260LL ice/HCL (3)40ml vials 2621 ALS
1251A Low Level NDMA ice (1)11 Amber 0100301H SRI
Samples De la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de la late I de late I de la late I de la late I de late I de la late I de la late I de late I de la late I de late I de la late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de late I de
Sample Analysis Preservative Container Lot Lab 2211021333A VOA by 82604L ice/HCL (3)40ml vials 2621 ALS
$\downarrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
1335A 607/Bromacil ice (1) IL Ambert 0100301H SRI
1336A * (N<)*
1337A Low Level NDMA a u u u
1338A a (FB) a a a
Initial DTW - 332.20ft Total gallons purged - 1/8 gal.
(modified purge vol.)
Continued from page 1/4
Continued from page N/A
Read and Understood By

Craig Ill Ferra 11/2/22 B-46 Von W wurch 11-3-22

Date: 11222								Page of
Sample Location: BLM-24-56	5			A	nalytica	l Requirem	ent	
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	770988	607	LL NOMA			Charge Number
2211021250A (TB)	3	A	~					Xamo
1251A (TB)		A			-			u
	3	A	/					11
1334A (FB)	3	A	/					u
- 1335A	1	A		~				U
1336A (MS)	1	A		~				Ü
1337A	1	A			-			ä
Sample Location: BLM-24-565  Pertinent Notes (if any)	<u> </u>			A	nalytical	Requirem	ent	
Sample Number	# of Containers	Sample Matrix*	LL NDMA					Charge Number
2211021338A (FB)	1	A	~					XamD
Relinquished by: Date	/ Time	: :			Acc	epted by:		Date / Time:
Craig Del Termo 11/2/22			rs.					Zuw : Imio.

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

B-4

Signed

11-8-22

Date: 11 . 7 . 22					•					Page of
Sample Location: BW.26.400	<i>-</i>			A	nalytic	al Requ	uiremer	ıt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	704 00 N J 0	2054.052.007						Charge Number
22110714566	3	A	×							XGMD
1451C (FB)	3	A	×							1
14520	1	A		×						
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Requ	uiremer	nt ————		
	# of Containers	Sample Matrix*		:						
Sample Number	#	N			-					Charge Number
	, <u></u>					٠				
Relinquished by: Date	/ Time	e: 4): 5	6	V		Coepte	d by:	h	11-9	Date / Time: 3 - 22   0906
				V		<del>/</del>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

11- 2- 3033

3-50 VON

unch

11-8-22

Date: / 1 - 7 - 2022					•				1	Page 1 of 1
Sample Location: Burn. 32-543				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)				7						
	ırs	*x		NOW L						
	# of Containers	Sample Matrix*		6						
	f Cor	nple	)06	00						16mD
Sample Number	#	Sar					****			Charge Number
22110714103	3	PR	8							
1411 B FB	3		1							
1412 B	,		,	7	*					
1413 B FB	,	1		2						
				,						
Sample Location:				A	nalytic	al Requ	uiremer	nt	. =	
Pertinent Notes (if any)					-		-	•		
	\s	*,								
	taine	Aatriy								·
	# of Containers	Sample Matrix*								
Sample Number	[O #	San								Charge Number
·					/					
										,
									/	
Relinquished by: Date	e / Time	»:			) 1	Accepte	d by:	ñ		Date / Time:
11.3-3033		1630	<u> </u>	$\bot$	er 1	$\mathcal{N}$	\m	-ch	11-(	8-22 /0900
							<u> </u>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

89

Continued from page _

$\overline{\mathcal{D}}$		17	1,,,						7		. T	7	ء م									11.	<u> </u>		1		A .	>		17	. <	
7.	·~			, ,	E	0.	~ ^		~~	•	<0	-0	. 0	NEW.		W	2	CI	13	*	~ c	7,		<.	)	av.	eL'	10/1	10	1	د	•
		1-	1	1	1	1	_	1	ļ		ı	1	1	1	1	1 -			1	1				i		1		1	1	Phe		
		1				t .	l	1	1	1	ı	1	1	_		1		,	~	1.	4	1	1	l .	1	1		1 -	l	n; n	,	
7.		~~~		7	3		73,		. /a	26	-C.		-		6	21	3.	, ,	, ,	<u> </u>		2.46	O.K	~~			01.		6	2-6	W.A.	
					·	~~	4.		Ses		A J-	vil	*U*		-	-1	Se.,	10.4	D 1	MEI		ρ			r <del>o</del>	D/ H	ħu.	12.	<u> </u>	266	600	
<b>3</b>	<u>, , , , , , , , , , , , , , , , , , , </u>	2	us											5								<u></u>									1	-
)		-	0		عبك	_			ļ		-				0.	Ken?					<del> </del>	<u> </u>										
74			7.	1	ace.	2	-		<u> </u>			N	0 1	RN	2CM	Keri								ref				- C	3			
		1	21.	1																								= 9 - 2				
		1	1	1	i								-													Į.		‡ Q	j		-	
			100 2.3		<del> </del>																	<u> </u>						55				
V	: <b>ر</b> يا	•			-												ļ <u>.</u>											= 6	1			
<b>)</b>		\																										<del>-</del> 2	١.			
		T -	10.	Ī												-										. હ	4	<b>a</b> )	1)=	2		
		1	ı		14	3\$	<u>.</u> 2															ļ										
#			7.														-															
H_W	<u> </u>	-	10	(- )	0												<u> </u>				ļ											
		1			J																											
					tu			-	4.7	,						-	ļ				-											
									4.7	?)							ļ															
(A)	021	3	(a.	7 7	/	7-1	/										-															
				<u> </u>							•.	_				-																
		#										NA	LC	<u>≱S</u> .	-																	
<u>&gt;√</u> #			_		-				14								اردو			-				نعف				-		La		
3⊇ v	(0)	l					V	38	1		160						T	حر)	المدل			<	32,			U\	<u>;)</u>				ردح	
		l	5	1	l .						(۶	<b>B</b> .)					-	••			-				J,						45	
_			<b>5</b> a				Ŋ	1, Du	. 0	١		- \						Σcı	<b>e</b>				<u>D</u>		ra,	حدر	· · · · ·				<b>B.</b> I	
		14	5_3	3						-	<b>(</b> F	B)						_						٠,			•				1,	
$\dashv$																																
-																																
-								-																							_	
	-																										<del>,</del>					
																															_	
$\dashv$																		_														
		L																							Con	tinue	d fro	om pa	age			
																	Read	and	Und	ersto	nod P	łν										

Signed

Date: 11 - 7 - 2022										]	Page	of
Sample Location: Burn 32- 5  Pertinent Notes (if any)	ור				Α	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)												
		ers	*Xi		7							
		# of Containers	Sample Matrix*	000	nowy t							
		ofCo	ample	う	000							
Sample Number			<u> </u>		-		<u> </u>				Charg	e Number
2211071450 B		3	A	7								
1451 B	FB	3		9								
1453 B		1			9							
1453 B	FB	1			7							
			_								,	1001 181.1
	_											
Sample Location:					A	nalytic						
Pertinent Notes (if any)												
		\\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*×									
		ıtaine	Matri									
		# of Containers	Sample Matrix*									
Sample Number		#	Saı								Charg	e Number
								/				
										/		
						-						
Relinquished by:	Date	/ Time	<b>:</b> :		1	)   ^A	ccepte		V.	11 4	Date / T	
11-7.	30 3 Z		1630	<u>.</u>	\\(\)(	ru 1		1 lun	_d_	11-8	3-22 /	0900
				_	$\downarrow \downarrow$							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECTBLM-32-632 FLYTE ENV-0020 Continued from page - some pore sent. weather is backly county Zony W:11 be pursued and sampled using a Flyte system. Samples w:11 be Comorcil esing a delicated discharge hose, Aure pressure set at 281 posi-Somble presence at 252 psi. Flowmeter sot at 3psi. bladder stable et 7psi minuta recounty between purges minimum of 4 galbas purged prior to Snow (agon 5): Pre- SanDie Permilers No Transducer muker ID PB = 7.51 PH (COMO = 93 Tex = 20.9 TURB = 20 "5.0 = 5.94 Cox0 = 1081 TUB - 0.93 " QOG = 6.01 3 405 - 270966 , Et = 11/35 Time = 221107/522B = 7.47 MG 3 20-8°C = 1072 uslam NOB - 0.62 Ais =1.98-10.0) (25.3°0) 24 Ross = 1.99. 10.00 SAMPLES Pre setue 50 age 221071545 B S) CB 100 Jac Hel (3)40 m) US) " (EB) 1546 B 1547 B NOWA 21 1) L AMBOR Tae SPI 1605 B 1, 1 1606 B (FB) 1407 R Continued from page

Read and Understood By

11.7.2022 B-54_

11-8-22

Date: 11-7.2022										Page/	of _)
Sample Location: Brow 32-632  Pertinent Notes (if any)				A	nalyti	cal Req	uireme	nt			
Pertinent Notes (if any)											
	ers	*xi		7							
	# of Containers	Sample Matrix*	307	Nowa 4				:			
	ofC	ample	2	700						X6m	<u>,D</u>
Sample Number		S				<u> </u>	1			Charge	Number
22110715453	3	4	9		<del></del>					_	
1546 B FB	3	$\bot$	7				ļ				
1547 3	)			7							
1605 B ms	1			7							
- 1LOLB MSD	1			Ą							
1607 B FB	1	\									
				,							
Sample Location:											
Pertinent Notes (if any)											
	<u>e</u>	*.									
	taine	Matri									
	#/of Containers	Sample Matrix*									
Sample Number	<b>%</b>	Sar								Charge	Number
							/,				
					•						
						,					
Relinquished by: Date	/ Time:				A	ccepte	d by:	,		Date / Tip	ne:
11.7.2023	1	630		Yer	ull	/ h	u-0	h	1)-8	-22 /	0900
				J							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

Maru	s Av		8	Ke0		ۍ د ۱	lle	305	P	جري مرا-	. fr bes		gent Stai		i5 55	z/e		20			TY tub		ر ج	<u> </u>	N 	1113	عا	Sw	urg .
Prope	स ५	25	•	Sur	120		ورا	45	6	æ fe	rw	ly Out	٥ <i>٧</i>	be	ope	Pr		-fo				-							•
										انند	Z B					نى	3		4				1	<del>-</del>				1	
Samp	# .						free	તફ્રે 🤈							live			(	orj	in	<b>(</b>			40				19	
221101	4 1031	1				V	A	40	87	Q.		<b>©</b> :	17	cl]	Iu			(3)	<u>)40</u>	W	via	کا		[63	1	ļ		A	\\$
																										_			
											-																		
Initio	1 6	raw	معاه	3				$\dashv$			na									_	her		_	_	-				
Time	• 1	<i>5710</i>	14	100	4				J.	7//0	114	770	1								'or	8.	97						
Time	-	8.1	0						8	٦(	7								7	irb				<b>\</b>					
Temp	-	18.	2.						18	۳.,	. (									τ	577	2 -	y	١٠ر		بر	4		
Cord	<u> </u>	126	a 6	sly	M				/3	. 83	ىدە	s/c	M							ے	1200	7	40	1.8	لا	70			
Tuch	+ 1	D. 6	0	Jn	)				0	٦.	2	マ	tu	<u></u>						= '	701	_			(6(	1			-
PArc		1.64	110	0.05	(	18.	( c)		٦	10.	1	0.0	4							- (	4×	-	11	130	3/2	1		<del></del>	
PH pre		7.03	1/1	0.0	2				٦.	04	1	0,0	5							_						-			
STW	_	5	13	72							. 3:									Buf	<u>ler</u>			10 7	<b></b>		) 6	XP 23	
A-lower	+	12.	5(4	63	u				1	۲. ۲	53	63	س								٦_		1)	01	AY	4_	8	123	<b>.</b>
									7	Na	١.	1	١	1						١	0		4	70	£ 2	0		(23	
													`	` (					,										
			.							•	Sai	uple	5_											1		-			<u>.                                    </u>
Sample	<u> </u>					1	wa!	sis			ŀ	`			which				Con	jark	29			104	_		-		
11/10		9				<i>401</i>	P.	487	(Q)				1	<i>101</i>	I	ie		(3)	<u>0P(</u>	ml,	rials			(C)	\	<u> </u>	-	<u> </u>	15
	-1131	7					17	0)	(qu						=					2				=	-	_		<u> </u>	:
4	-1132	1				ول ا	18	ZON	<b>برر</b> ز	1				`	v			(1)	11	Ar	be	r		100	८८	4		*	138
	-112	21					=	(0	up						5					3	-			:		_		-	
																									<u> </u>		ļ		
											<u> </u>		<u> </u>	<u> </u>												_	-	$\sqcup$	
						,				_	ļ	-													_	+	-		-
Runs 1				2)	/2	. (و	۹	_3	) r	2.7	1	1	4)	15.	14					-					-	-	-		
	32.	४५				3.2		-	3	8.	12			3.	12									<u> </u>		-	-		
	32.	80			33	۶, ٥	5				65	ļ	3	3.0	60										-		-		_
1.	12.	70			12	۱۲.			\	١.	15			2	11										_		-		
											ļ	ļ	<u> </u>	_								ļ	-	ļ		-	+		
_										-								ļ			_	-				<u></u>	<u></u>		
	1	1	1	1		1	1	1		1	1	1	1	1	1	1		1	1	1	l	i	Co	ntinı	red f	rom	oage		

W W

11/4/22

B-56 Or Signed um in

11-7-22

Date: 11/4/22									F	Page)_	_of
Sample Location: BM. 34.800	)			A	Analytic	al Requ	iiremen	t			
Pertinent Notes (if any)				6							
	iners	atrix*	32(6)	3							
	# of Containers	Sample Matrix*	8260	80					į		
Sample Number	# of	Sam								Charge	Number
22110408264 (63)	3	А	X							XCMD	
09507	3		X								
09517	1	7		7						7	
											<u> </u>
Sample Location:				4	Analytic	al Requ	uiremen	it		_	
Pertinent Notes (if any)											
	ners	rix*									
	# of Containers	Sample Matrix*									
Sample Number	# of C	Samp								Charge	Number
Sumpre Prumoer									::		
Relinquished by:	Date / Tim	le:			1 · · · · ·	Accepte	d by:			Date / Ti	
Max III	1/22@1	1200		1	on 1		\un	-d	11-	7-22	10830
					<b>\</b>		_)				
				`			,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#129(y)
Continued from page NA

41 - 4 - 5 - 6	Dol Excora	cosat Weather	r is clear, cool, Ewindy. this	
THAT CUS PANAIOS	and using 5tri	de sinced stail	less steel sample tubes. Gen.	
Cone will be sam	55 Sulface che	chs performed	on probe prior to sampling,	
IN use. Trope with	JJ, Jurface Che	CLES PELYOTATED	The property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o	
	30 Min Equipme	Ablants-Car	has GI	
	John Cylume	Preservative	Container Lot Lap	
Sample 22110313054	Voa by Babo	ical 4CI	(3)40ml vials 2621 ALS	
2211051305 y	VOH BY DAGO	TOP TOP	(5) (0m) (1913 & 0a) - 1123	
				<b> </b>
T 11. 00 - L		7:0	Meter ID	
Initial Parameter		Final		<del>                                     </del>
Time - 221103131	457	Time-221103		+
PH + 7.92		PH - 7.84	Turb - 7	-
Temp - 24.2°C		Temp - 248'	5+0-47,6	
Cond + 1155 us/	cm 's	Cond - 11624		, ,
Turb - 1.28,5TV		Turb - 1.17 N	TU 1016	
pH pre - 7.04/10.0		PHPre - 7.05/10	0.01(25,0°c) u Exp-11/30/s	33
pH post - 7.05/10.0		PH post - 7.03/1	10.00	-
DTW - 573.17		Torw -573.	23Ft Buffers Lot E	χρ 23
Atmos - 12.40 ps	ia	Atmos-12.42		• i
		IDW - 1/2 g	al 10 4107E30 1/2	<b>23</b> .
				-
		<u> </u>		+
		pamples		+
Sample	Analysis	Preservative ice/HCL	Container of Cab	+
22110314154	VOA by 8260 607/Bromacil	ice/HCL	(3)40ml vials 2621 ALS (1)11 Amber 01003014 SRI	+
1416y	607/Bromacil	Ice	(NIL Amber 0100301H SRI	+
				+
				-
				-
				-
				-
Runs 1) 32.44	2) 32.41			
102.06	101.97			-
101.98	101.93			
32.41	32.33			
			Continued from page N.A.	
		Read and Und	terstood By	

Chang let Ferran

11/3/22

__ B-58

for Wounds

11-7-22

Date: ///3/22									]	Page	of
Sample Location: BLM-36-610	)			Α	nalytic	al Requ	uiremer	ıt			
Pertinent Notes (if any)											
	ners	ıtrix*									
	# of Containers	Sample Matrix*	8260	00,	•		i				
Sample Number	Jo#	Sam	$  \infty  $	)						Charg	ge Number
2211031305y (EB)	3	A	~							XGI	
14154	3	A	V							ч	
14164	1	A			•					и	
Sample Location:  Pertinent Notes (if any)		I		A	nalytic	al Requ	uiremer	nt			
retinient ivotes (ir arry)										:	
	iners	atrix*									
	# of Containers	Sample Matrix*									
Sample Number	Jo#	Sam								Charg	ge Number
									-		
Relinquished by: Date	/ Time	ə.		+	1 6	Accepte	d by:			Date / T	Fime:
Gray letters 11/3/02/		50hi	-	1	Du.	X /	١	-ch	11-1	Date / 7	10830
7		~~!!	3*	1	<u> </u>	• •	1	<u> </u>			1
				- 5			1				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

11/4/25

B-60 Ou Signed which

Read and Understood By

11-7-22

Date: 1/1/12									]	Page of
Sample Location: BIM · 36 · 350				Α	nalytic	al Requ	uiremer	nt		
Pertinent Notes (if any)			~							
	22	*	8760	607/B00						
	# of Containers	Sample Matrix*	ď	18						
	f Cor	mple		2						
Sample Number	#	Saı							<i>y</i>	Charge Number
22110410304 (EB)	3	A	X							XGMO
11304	3		Χ							
11314 (Dug)	3		X							
1327	١		:	X						
11554 (DUD)	١	1		X						L
•										
Sample Location:				A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)										
	ırs	   *   .≚								
	ntaine	Matri								
	# of Containers	Sample Matrix*	:							
Sample Number	#	Sa					1			Charge Number
	/ Time			T	/	ccepte	d by:	1	}1	Date / Time:
114/22	6/	1300		<u> </u>	h V		Un-	ch	11-	7-22/0830
						/	<u> </u>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

<del>,</del>	<u> </u>		,	100		يد د		4 7	208		111	210						Con	tinue	ea tro	m pa	age _	NJ	д	_				
Marcus A	valo	ک(	ε (	ra	19	Del	Fe	rva	ro	Pl	ese	nt.	h	leat	her	is	cl	ear	E	coc	1	Th	is	Zor	e	wi	u k	e	
ampled	usi	<b>Δ</b> 4	5	st	ear	nc	10	ne	d	Et	ri	olo	r	in	لرم	. 5	fai	nb.	cs s	sto	bl	Sc	m	ole	4,	60.5		en	
s use f	robe	2#	49	<b>5</b> 5		Sur	fa	æ	ch	eck	₹3	ne s	For	m	ed	0 0	P	rok	e	Pr	10	+ +	0 3	Sa.	no	lin	2		
												10.					ı			ı					T		1		_ 
				3	0	M;	n.	E	wi	DM	ent	4 B	lan	Ks	- (	2	rbo	u	GI										_
Sample							n -		is	1	-	Pre	50		Li	10	20	#	0,	Z	ina			1	+		1	ab	
1211030	125	v			V	PA	Би	Rá	160		S .	10	0/	НС	/			(3	HO		vi	als			21		7	10	<u>-</u>
		1					J						- 1	110					10	m L	W / C	us		X C		<u> </u>	7	<b>-</b>	
											$\vdash$	<del>                                     </del>										-					-		_
Initial i	050	ua (2)	رما	٠ر						-	1	:	0			-						ul.	L		EZ		-		
ime - :					<b>\</b>			<u> </u>				00	1	1	2 4 1	~		114						_	T 1	1	2 1	-	
	9.1		310	,,,	1						i	H					310	71	<b>y</b> _			11		1.6		_ ¢	7		
	2 =	• •							<del> </del>		-	*		8	2	6					-	u	ur	1	l .		1	_	_
	14	ر ا							-			mp										4	ļ	1	!	_ ¥	- 7		
urb -		つ U	-2 I G	m3			-	<del> </del>	-		1			1	l 1	1 .	s/c					a		C	dg.	_ }	TO.		_
H pre -	-	-	-				)				1.	251	<b>)</b> -	-1	U,	R N	τú	<u></u>		٠.)		···				- 2			
_1 &	1 1			- 1	_	R . C	,			-	1	110	e.	- 1.	09/	16.	05	(/{	7.7	9		u		ع	XP	-11	130	12:	2
H post	1 1	- 1									_	. 1		1			0.0			70	11			1	7		_		
	57.				<del></del>						ı ,	A 1	l	1		1	7 <i>f</i>			D	<i>477</i>	ers		60		- (	<u>ک</u> 8/3	7	_
ttmos -	ld.	71	PSI	•					ļ		1		l			!	psi	9				1	1	1	44	1 1		- 1	_
											_	LD	$\omega$	- ;	/z	99	<i>l.</i>				/0	4	107	E 5	0		1/4	23	
	+-+										-																	_	_
												ļ													<u> </u>				_
	+					1		<u></u>	•		5	gm	PI	<u>e s</u>	1.				1	١,			-	1	1		7	1	_
Dample						<u>,                                    </u>	na.	Ly:	is			<u>Lié</u>	sea	V9	11	<u>e</u>		/	07	tau	nes	ς,	ļ	-	t			<u>at</u>	
221/03/	1 1					A						1		H	CL			( <u>3</u> )	)40	m	Vį	als	-	26	21		•	LS	
1	046	γ			60	)   	R	om	acı	<u> </u>		ļ	-	ce				Д)	ال	Ph	nbe		01	200	10	<b>H</b>	SI	21	_
																													_
					Ι.	1		1																			$\dashv$		_
X Sample	4 4	ve	re	a	Þŗ	r a	er	91.	ed	•																			
	++											<del> </del>																	
						~																					_		_
2uns	'I J '	- 1	.at			3)		1	14																	•	_	_	
	1 7		.4						50			<del> </del>															-	_	_
	1	37	•						47			<u> </u>													,			_	
		41	,2	0			_4	41.	10			ļ												•				_	_
+ + + + + + + + + + + + + + + + + + + +	+																										_		_
		- 1	- 1	i	1	! (			1	I	1	1			- 1	1						1 _				age 1	- 1		

Chaig let Zemo

11/3/22

B-62 Pu Signed which

11.7.22

Date

Date: 11322										Page of
Sample Location: BLM - 36 - 860				F	nalytic	cal Req	uireme	nt		-
Pertinent Notes (if any)										
	ıers	rix*								
	# of Containers	Sample Matrix*	8260	607						
Sample Number	) Jo #	Samp	8	9						Charge Number
2211030925y (EB)	3	Α	~							XGMD
	3	A								u young
10454	1	A		~						45
Sample Location:		1		A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)										
	ners	trix*								
	# of Containers	Sample Matrix*								
Sample Number	# of (	Samp								Charge Number
Sumpto I various										Charge Number
				/	j					
Relinquished by: Date  Paig Olf Ferral 11/3/22	/¡Time	ioh	rc		) A	cepte	dby:			Date / Time:
11/0/40	4	101	13		, u		1000	_ 0**	- 11	1 1 - 0)
				4	_		<del>-/</del>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

B-64 Ori W umch 1(-8-22

Date: 11/7/22										Page of
Sample Location: BLM - 38 - 480	)			A	nalytic	cal Req	uireme	nt	T	
Pertinent Notes (if any)	<b>.</b>									
	niners	atrix*	770	LL NDMA						
	# of Containers	Sample Matrix*	360	- Ni						
Sample Number	fo#	San	8	רָ						Charge Number
2211070910y (TB)	3	A	~							XGMD
09114 (TB)	1	A		/						. u
1000y (EB)	3	A	~							ч
10014 (EB)		A							-	u
—— 1325y	3	A								4
- 1326y	1	A		V						u
Sample Location:						al Dam		-4		
Pertinent Notes (if any)				A	narytic	ai Keqi	uireme	nt		
	s	*								
	ıtainer	Matrix								
	# of Containers	Sample Matrix*								
Sample Number	)#	Sa								Charge Number
						<u>.</u>				
					,					
Relinquished by: Date Cray Oll Ferral 11/7/22	/ Time				1 1	ccepte		<i>i</i> )	[1 1	Date / Time:
Tray Oll tenul 11/7/22	/16	15h	3	10	<u>u V</u>	V 1	<u>u</u>	eh_	11-8	-22 /0900
				11		/				
			_							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

present. Weather is cloudy & warm. This zone sed, stainless steel sample tubes. Gen. in use.

bert Burrows & Craig Del Ferraro

Robert Burrows & Craig Del Ferraro	present. Weather is cloudy & warm. This zone
will be sampled using 5 triple rin	present. Weather is cloudy & warm. This zone ised, stainless steel sample tubes. Gen. in use.
Probe #4955. Surface checks perform	ned on proke prior to sampling.
30 Min Equipment	Blanks - Carboy G.B
	eservative Container Lot Lab
	ice/HCL (3) 40 ml vials 2621 ALS
2211071430Y VOA by 8260LL 	ice (I) LAmber 0100301H SRIL
- 1431y Low Level NDMA	ice (I) IL immeer O16030 M 3 R.L.
Initial Parameters	Final Moter ID
Time - 22110715154	Time - 2211071547y PH/cond + 92
PH - 7.98	P4 - 7-88 Turb + 7
Temp - 82.8	P4 - 7-88 Tarb - 7 Temp - 22.6 C " std - 49.6
Cond - 1089 uslem	Cond - 1097us/cm n dg -49.0
Turb - 1.12 NTU'S	Turb - 1.02 NTU'S 4 10+ -210966
pH pre - 7.05/10.08 (23.1°c)	PHORE - 7.08/10.10 (22.6°C) 4 Exp-11/30/22
	pHppst-7.06/10.10
	DTW - 403.6971. Buffers Lot Exp
Dtw -403.54 Jt.	
Atmos - 12.49 psia	Atmos-12.55psia 7 1202A44 8/23
	IDW - 1/2 gal. 10 4107E30 1/23
	Samples
Sample Analysis	Preservative Container Lot Lab
22110715454 VOA by 8260LL	ice/HCL (3)40ml vials 2621 A/5
- 1546y Low Level NOMA	ice (1) IL Amper 0100301H SRI
	CITE TIMES TO SOME STA
Runs 1) 110.84 2) 110.79	
87.00 86.86	
86,94 86.85	
110.82 110.77	
	Continued from page NA
0	Read and Understood By
Praig let Ferriso 11/7/2	22 no You // much 11-8-22
Signed Date	te B-66 UM U U U U U U U U U U U U U U U U U
• Samen	ie 71 Sinnen Date

Date: [[ ] 22						,				Page	of
Sample Location: BLM-38-620				A	nalyti	cal Req	uireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260 LL	LNDMA							
Sample Number	#	Š					<u> </u>				ge Number
2211071430y (FB)	3	A	/		_					XC	OM
1431ý (EB)		A				ļ					1
1545y	3	A									и
15464	1_	A		~						l	1
						,					
Sample Location:				A	nalytic	al Req	uiremer	nt	_		
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#	S			<del></del>	ware to				Charg	ge Number
	_										
			,		i						
Relinquished by: Date Praig Del Terro 11/1/22/		: 5h	rs.		n V	ccepte		l	11-8	Date / T	ime: /0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

DTW (#)

236.85

Alt

SO I

ALS

Continued from page

Isitial DTW-136.56

Turs (NW)

27

26491

0/00301/4

22042

220114

HS

8.10

8.07

8.06

Cartain

(3) 40 m vias

(1) 11 Amour

(2) 125 m poly

(1) 250 m/pof

Read and Understood By

PROJECT BW. 5. 295 WJ ENV. 0053

- Cal using 10 was sto

emo(·c)

21,83

21.86

211.88

Anal-sis

187)

607/Bronguil

TOS BY EMOSTOC Perdibrale 6850

NO2 403 by 358.2

Razed.

Voa by 8260

1413 vocan std. solution

Cond (us/cm)

799.34

809.46

813.79

DO- Calin 100% sounded ar

Pagneters (time)

1) 2211070940 C

Sample #

2211670950 (

0951

0952

6953 09540

09566

09576

Gallars

Final 15TW - 236.90'

- 0944 C

Continued from page

Morris Avalos & Dan Halvorsen present Weather is clear & cool. This well will be purged using a dedicated bladder pump. Samples, will be collected using a dedicated teston hose.
Water quality parameters will be maitaced using a In-situ Aqua Troll 500. Carboy Gr. 2

DO(M) ORA

6.04

Sample 5 Preservative

Hr! I Tee

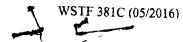
HNO3/Ice Ice/ZeroHS

Hogo I a

1617

162.7

162 4


Date: \\ / 7 / 12											Page/	of
Sample Location: BW.5.	295				F	Analytic	al Req	uireme	nt			
Pertinent Notes (if an	λ)	# of Containers	Sample Matrix*	8160	607 Bra	1. Malals	Dies AK	705	Perchlorate	-	Charge N	Jumber
22110709500		3	А								Xams	
0957 (FB)		3	١	X								
0952(		1			X							
09530	•	7				X						
0954 (		2					X					
69556		١						X				
09566		١							X		1	
Sample Location:					A	Analytic	cal Req	uireme	nt			
Pertinent Notes (if an	<u>y)</u>	# of Containers	Sample Matrix*	NO2 NO3						·	Charge N	Jumber
22110709576		1	A	X							X.GMD	
Relinquished by:	Date (1) 7 ) 22 (	/ Time				u U	Accepte	d by:	h	11-	Date / Time 8 - 22 /	e: 0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT MPE-	-			Notebook No Continued from page	NIA
Trak Ga	110905 &	Tim MOO	re pres	ENT. W	eather
S Clear	E cpol	1+h 3	weil	6011C, 6	e sempled
T	1 sed 4	Jith a	dedi	e ted	scripting!
801+.					
			B	h 1	OTH EXP
Parche re		Meter 7	14 469/ 7		8/
Ph 3:0	3	Tulb-N/2		120244 4107E	
Ten? 21.	z'c	5-10 4.7	5 mr		/ 43
	esta	206 4,4	NTO		
T~1 6 0.7	2000	LOTH ON	966		
Ph Bre 7.	1-10.00 (17.	ic) EXP "/30			
Rh POST					
			0) -		
C - 2010+	F .4 .		ese CG		LAR CONT
5=m)1et	VOA	2,7760		1 262	ALS (3) 40 plus
1372		· · (FB)			1.
/333	Pame	· IDNAL Browy 6	7 1CE	01003014	Suppl (1) (+ pombe
					1.0
				Co	ontinued from page $\mathcal{N}/\mathcal{A}$
			Read and Under	stood By	
- Inthe		14 Nov 2022 Date	You.	W punch	- 11-16-22
Signed		Date	B-70	Signed	Date

Date: //- 14-22										Page of
Sample Location: MP E − 1					Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9260	11-VOA 8260LL	NOMA/DMW/ b07	Takal (no)	tom Werms	ALLIANS ALK	105 SN2Spoc	X6MD Charge Number
221141331	3	A	×							c .
1332 (FB)	3	A	X							٠,
- /333	l	A			X					- ,
						·				
Sample Location:						al Requ	iremen	t		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	PERCHIPPATE 6850	NO2/NO3 353.2						XGMD
Sample Number	#	Sa	VE	<u>2</u>						Charge Number
Relinquished by: Date/			)		n O	ccepted	by:	d	11-10	Date / Time: 5-22 /0830
			<b>J</b>		<u> </u>				W-13	1 22   0000

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:



			, ,															_		_	1	,	_ [	F 1			, ,					
_1					11	•		Ę		(	M					- 1			1	Į.		٥	-	t r	4 /		',	<b>&gt;</b>		7		$\dashv$
	CI	ras			æc					,_	1	4	`s	ı	ەسىر	- 1		1	) ((	Ĺ	_	۷.	2	pe	-1	2	يلاء	9	. 1	<b>/</b>		
4	S =	~~	10	ص)		u	-5	<i>(</i> ~	,		-	_l.	. 0	<b>'</b> 'C	وع	ہو۔		S	پىر ھ	P				0		1				1		
			-+	,,			Ť	· · · · · ·					-01							•												
-	<u> </u>		-								<u> </u>		<u>.</u>								6		=			G	~	)				$\dashv$
	عــّ	1=	<u>~</u>	بو	2.7			M	2+	٤/	2	4	* }		<u></u>	n	60	15			73					-		_	-			
-	- ,,	ا م	22	1//	1/3	34	3	P	1/6	CON	d-	N)	Æ				7			12	0	A	44	•			/z	3				
	7,			i		l											10				10					,	23					
	<u>~</u>	o d			/	1					> - /	9,,	4				, –											-			-	
	m				5					57	D																					
2	2n	d		15	71	115	1CA	21	•	21	6																					
7		٢.		2	Z9	10	711			1.	PT2	4																				
-	1 1	^		٠,	79	<i>,</i>						_																		$\rightarrow$		$\neg$
_	<u>h</u>	روا	-	6.9	2-	10.	00	K	1c	) E	×ρ																					_
4	りん	05	Т					•			·																					
			•																													
$\neg$				<del> </del>								<b>C</b>			_															-		
	_											2	\ <u>\</u>	PI	<u>e_</u> S																	
4	<b>-</b>	بدو	ρ(	e F	=	4	n _	7	51	5	•	2_	Q.		_	د	_	تص	#		4	A)	3		ြင							
2	21	14	' ノマ	4/2		V	04	bv	826	0		10	€5	4	7		7	6	21		,	46.	5	(	5)4	0	ml,	مأزو				
× 0	<del>'</del>								<b>(</b> 3				٠,	-	<u> </u>			•.				1.				~						
			<u>/ 2</u>	49														_,						ri	-							$\dashv$
_	7	1	<u> </u>	50	/	79	MA				0460	₹7	1	E		4	10		36	9	3	w/	L(	(1)	L	τ -	·M	be				
			13.	5/				, .(	Def	)			٠.,					• •				2 4										
									<b>—</b>										-													
-																														$\dashv$		
					-		-				<u> </u>				-																	
											<del> </del>																					=
_				-		· ·									ļ																	
							1								<b>†</b>																	
				-	-		-					-																		$\dashv$		
																											.,					
						<u> </u>															-											
				-	-	<del>                                     </del>	-								-																	
							<u> </u>				ļ								ļ													
																														Ī		
***************************************										-	<del> </del>										-						-					
		-	-	-		-	<del> </del>				ļ																					
		ļ		ļ		ļ	ļ	<b>_</b>			ļ																					
																															1	ŀ
-																	<b></b>								Con	tinus	ed fr	om na	age	الس	1/1	
	L	L	l	L	1		1	L	L	L	1	1	t i	1	1	1		l i	ŀ	I	!	I	1	1				P	-3-	V (	<i>r</i> 7	1

14 Nov 2022 B-72

Read and Understood By

#-19-22

	Date: 11-14-22										Page/ of/_
	Sample Location: MPE-9					Analytic	cal Req	uireme	nt		
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	10A 8260	LL-VOA 8240LL	ROMACIL 607	low lever	Tom Werms	JIONS/ALL	DS SN29foc	XGMD
J	Sample Number		Š	12		50	3	10	=	7	Charge Number
	2211141348	A	A	1	<u>.</u>						i (
	1349 (FB)	3	A	X							• 6
$\downarrow$	1350	ı	A			X					٤ (
$\downarrow$	- 1351 (Aup)	1	A			X					/ (
. [	Sample Location:				A	nalytic	al Requ	iremen	t		
	Pertinent Notes (if any)	# of Containers	nple Matrix*	Perchiarate 1850	NO2/NO3 353.2						V
_	Sample Number	0#	San	721	9					-	XGMD Charge Number
	Relinquished by Date /			)	or	11	ccepted		eh	[[-]6	Date / Time: -12 / 0930
					0		7				

WSTF 381C (05/2016)

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other: _____

11

_			V		+_	LU	ءم		_	9	Γ-,	_ `		- 1					7				,,,		L	<u> </u>	T_	Τ.	Τ.		П	
	1	1	l -	1			_			T -	_			0		1	عر			e		1-		t :		ہے ک		7	4	1		
_						stje							1	J	-	F	t			ر ر		B	0	(-	) ધ	وي	20	1	9.	2	/	
2	<b>-</b>		P	10	td	ب	<5	1.	U (	6	C	<b>-</b>	ما	ود	2.	<b>C</b> •	+	20	L	S	-	7	۱ (	2	9		P	0	$\mathcal{L}$			
					ļ																	•										
•	PE	r=		10.4	e [	5			m	01	4	_	1				2.	P	رمع	5			1	01	7				رسط	P		
_		l			1	12.	- No					1	./ -		1				, ·		T	,	_	2/1				<del></del>		23	-	
-	,	4			70				_!		1			l	4	•				-	i		l	84	_	1	<u> </u>		V	23		
	<u></u>			$\varphi$ .	/				:		L	1_	<i>v)</i>		_	_		16		-	4	16	7	E3	0			-	12	3		
$T_{\epsilon}$	-,-	rf	,	,	17.	2 103	0	<del> </del>			77	1	4.	75	WT	V			<u> </u>		_					<u> </u>		<u> </u>				
	0.		1	1	341	צט /	5/C	M		R	Do	(a)	7.;	25	Wī	U		<u>L</u>														
	u	11	L	1	5	81	150	ノ	1		رے ــا	( ) <del>(</del> )	_	71	h 9																	
P	h	P ~	6	6.	99	- /0	o.de	11	5.6	) ;	ہرے	2	21/3	30/																		
2	,	Da			7	50	//	ro.0	07			V	/-		occ.	2											<u> </u>					
4	<b>h</b>	γc	7 3		7.0					-																	<del> </del>	ļ			-	
				<b>-</b>								_	_														-				$\dashv$	_
												2	<b>-</b>	~	<u>ر) ط</u>	5																
	5-	. 1	24	e_#	F	1			<u> </u>				0	<u>a</u>			Co	تح	<b>7</b> 4	- 4		B		J	0	J						
27	1113	73	301			Ū	9	Ąį	py	82	00		10	رَع ح	HC		Z	62	(		A	15	į	3)	40	m	Lυ	ر ان				
_		1	2						4					•					T		٠.						-	Ĭ ,				
			03			7		l	lΩn		. , (	a . (					۱ و	(Paris	2011	4 5	د م ک	Λ (		$C^{\prime}$	\1	+		عال				
_		/-	ب							~ /€	>1 <i>d</i> *	الرا	ک	, ,			•	- 0-0		- 1		(K)		_	<u>ر</u>			رد	-Q/		$\rightarrow$	
																															$\rightarrow$	
																																$\exists$
	-		_										-																		+	
	_			_																										$\dashv$	_	-
											-																			_		
																										-					$\perp$	
																					·											
			Ī																											$\exists$		
																														+	+	$\dashv$
								-												-							<u></u>			$\dashv$		$\dashv$
-						$\dashv$				-			-																			_
_						_					_									$\Box$												
_																				_	_ }	_		İ								
					Part of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o																											
																					1									$\dashv$	$\dashv$	$\dashv$
$\exists$		_			<del></del>					_								$\rightarrow$												$\dashv$	-+	$\dashv$
$\dashv$							$\dashv$			$\dashv$	$\dashv$																			11	$\perp$	$\dashv$
_																									Con	tinue	d fro	m pa	ge ,	<u> </u>	4	

Read and Understood By

Signed

15 Nor 2021

Date
B-74

Di Wuck

11-15-22

											Page of
Sample Location: MPE	-10					Analyti	cal Req	uireme	nt		
Pertinent Notes ( Sample Numb		# of Containers	Sample Matrix*	VOR 8260	0	NOMA/DMN/b07	LOW LEVEL- NOMA	Torse WETRIS	ALLIONS/ALL	los susabo	X6MD Charge Number
22/115/301		3	A	X							Charge Number
1302	(FB)	3	A	X							C.
1303		1	4			X					` ,
ample Location:		<u> </u>	<u> </u>		A	nalytic	al Requi	irement			
Pertinent Notes (if	any)									-	
		s.	*	ग्राह्य	33.7						
		lainer	Aatrix	至	2						
		of Containers	Sample Matrix*	PERCHINANTE 10851	NO2/NO3						1//
Sample Numbe	er	# of	Sam	160	N02					-	XGMD Charge Number
								-	-		Charge Numbe
					-+				-	-+	· · · · · · · · · · · · · · · · · · ·
					-+						·
		-						-	-		
							<u> -</u>				
D-1:- 4 : 5 1//											
Relinguished by	Date /				T)	Acc	cepted b		A .		Date / Time:
1000	11-15-72	(133	<u>ره ۲</u>		Jou	$\Delta$	<u>/\u</u>	und	4/1	1-16	-22 /084
	ļ				ĬĂ_		1			•	
					U						

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Notebook No. PFC 5++ CL OJECT MPE-11 Continued from page MIA presentingeti will be se 1202 444 4107 E30 7.14 Tarb 6

10 23.70 "5 TO 4.75

10 1026 US/CAM "-ROG 4.75

10 1.21 NIU "LOTH ZVO? 166

10 7.02-10.01/15.10" Exp "/30/22 105T-702-1002 2711/5/243 VOAGY8260 CERIC 2621 ALS (3) 40 M v in 1245 NOMA/ANDRODYGOT I'E 010030(H 5mp, (1) L + enleg(

Read and/Understood By

| 15 No v 2022 | Date | B-76 | Signed | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date | Date

Continued from page ~/A

						****			
		ı	4	Analytic	al Req	uireme	nt		
# of Containers	Sample Matrix*	UDA 9200				T	<del></del>	105 SNZSYDE	X6MD Charge Number
3	A	Y							v 1
3	A	X							1.
1	4			X					
-									
			A	nalytica	l Requi	irement			
f Containers	nple Matrix*	CHUPCATE	353.1						V/0 han
# ol	San	160	N02					-	XGMD Charge Number
	30)		On	( )	epted b		al		Date / Time: 6-22 / 0845
	Time:	# of Containers  **Sample Matrix**	# of Containers  Sample Matrix*  VERCHURATE  XX	# of Containers  # of Containers  # of Containers    A A A B B B B B B B B B B B B B B B B	# of Containers  # of Containers  Sample Matrix*  Sample Matrix*  WOZ/NO3 853.2  WDMR/DMU/  BROWAGIL  BROWAGIL  WDMR/DMU/	Analytical Requires # Of Containers  Analytical Requirements  WOZ/NOS 363.7  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted to the containers  Accepted	Analytical Requirement # of Courtainers  Analytical Requirement # NOT/NOT 923.7  # Accepted by:	Time:  Accepted by:	Analytical Requirement  Analytical Requirement  # of Containers  Analytical Requirement  # Acqeptea.by:

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Jankov) Signed

 $\frac{11 - 16 - 22}{Date}$ 

Wunde 11-17-22

	Date: 11-16-22									]	Page	of
	Sample Location: NASA-6	-			A	Analytic	al Requ	uiremei	nt			
	Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	0908	(00)	Metals	Swordflek	591			Chars	ge Number
\	221161010 B (FB)	3	A	X							Charg	ge rumber
\	- 1011 B (FB)	2	1			X						
\	- 1012 B	3		X								
\	- 1013 B	1			Χ							
	- 1014 B	2				K						
<u> </u>	1015 B	2					X					
	- 1016 B	i						X				•
	Sample Location: NASA - 6				A	Analytic	al Requ	uiremer	nt			
	Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	perchloride	No2 (NO3						Charg	ge Number
`	2211161017 B	ì	A	χ								
	- 1018 B	1	1		X							
						ή						
	Relinquished by: Date	2/ Time	2:			)ru (	êcepte.		-d	11-17	Date / 1	OG 00

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

0	\	1	Ð	<del></del>	<u> </u>	7	0	Τ.	G	17		T		1		1/	Τ.	1 /	7	,		1	, ,								• / /	7
K	obe	4	Pu	um	کساد	ع : ر	1	ray	g 1	)el	ter	Var	9	Pre I	se	T.	W	pati	per	45	cl	ear	٤	40	pl	Tr	115	20	ne	W	ill	be
50	m	Ple	Ş.d.	us I	mg	, 5	5	Ear	<b>h</b> <	100	ane	d	٤	ţrı	pK	2 1	in.	sea	, :	sta	un,	les.	ى 1	te	2/:	59n	np/	e 4	rbe.	٢,	Ge	1.
t.	u.	se.	4	don	e#	4	15:	5	Su	Ha	ce	ch	ect	5	pe	nto	rm	ed	01	P	rot	e 7	ri	or :	to	Sar	'nρ	lin	9.	-		
					-	-	-	-	-				ļ		,	ļ.,				•		<u> </u>					•					
L	_	١,	-	-	-	ļ.	T	1P	B	ar	k	۶ -	- u	Va	te.	<u> </u>	ur	tic	a/1	on	<u>S</u>	γs	en	۸.								
5	am	[م	<u>e</u>		-	ļ			1	na	lvs	is		<u></u>	re	ser	vat	ive	2		Col	Ja	ine	~			67				26	
26	Ш	109	8 0	281	φy	ļ	V	OA	be	1 8	26	OL	L		i	ce	H	11_						a/s		2	21			Ai	S	
<u></u>		-	- (	180	lý		L	w	Le	vel	N	DM	A			ì						1		r		l		1			T	
					1																/12					<u> </u>						
							1	0	М		1	214	.0.4		1	RL	ak	C -	- (		L,	. (	13									
S	2 ~~	وام	9				<u> </u>		1 1	/I	16	7. 515	1 /	NEL					ive		1	110		u'n		-	. /	of	-		1	T .
	1		1 '	92	0.	ļ	١,	101	7	1114	27		,		Ц		I V	91	IVE					vi						4	-9k	<u>}</u> _
	1	1	1	99					1	34	l .	10 I	1.0		<u> </u>	ic	2/1	TU			_	,			- 1			21	lí	_/		!
				710	7	-	-	ωœ	نسا	eve	1 [	101	MH				ice				L	)   [	1/1	mb	er		Plo	030	lH	_১	RI	_
	.1	. 0	ก		1	-			-	-				<b>-</b> -7.	-	0								-		1						
1				ray											no			-							M							
7		1	1	211	1	10	00	Y							M	1	l .	1	08	310	5	5 Y			P	4/9	OΝ	d -	- 9	2		
PI			<b>\</b>	3.19	1_			-				_		PI				.2							7	ur	Ь	•	- 1	7		
	MP			22.															9 .c						u		S	td	- 4	19.	6	
Co	nd	-	1	00	9u	s/c	m							Co	nd	_	- 9	97	us	c	n_				u	L	<b>Y</b>	da	-4	8.	3	
Tu	rb	<u>,                                    </u>	<u> </u>	1.2:	ĮΝ.	Tu'	5							$T_{i}$	ır	-	- 1	.14	M	-v'5					u				-2	- 1	1	
Hg	pſ.	<u>e</u>	<u> </u>	1.10	1	٥.	13	[19	3	6)									t//			a	4.1	(c)			نح	ΩX	- 11	130	12:	2.
H4	20	<del>st</del>		7.0	<b>B</b> /	10	13										1		5 /	1		,						T				•
.D	Th	)	<u> </u>	48	4. 3	201	<b>it.</b>												4.					$\mathcal{R}_{\ell}$	St	re		-0	+	3	- X	,
AH	m	2	_	12,	61	PC	<u>a</u>			,,,,,,					_	1		1 - 1	63					<u> </u>	7	_	220		44	7	3/2	?
						10		-							Du				1 1	PS	ı u				/ /0				30		/2:	
										-				ملد	يس			/2	9 9 1	•					70		10	16.	50		100	
														<		ماء	_														-	
5		ble							A	مام						ple.		. 10					L、					1		1	_	$\dashv$
				30				Vo		, ,			,		دگار د	ecy	911	Ve				on					<u></u> 9	-,		<del> </del>	a P	-
	-   1	08		1	7	<u> </u>		VU		py,	<u> </u>	.0L			_10	e [	HU	ــــــــــــــــــــــــــــــــــــــ			(3)	40	m (	via	R	_	26=	2 \		141	_3	_
5-			ł	31	ŀ			1	1	-		<b>)*</b>	1			u		-	*		<b>(</b> )		U.	1			Ų		-		4	$\exists$
		+-	70	32	7			۰٥	W	لىوم	e	ND	MA	<b>\</b>		10	e				(ı)		Am	ber		81	00	30	IH	\$	RI	
		<u> </u>	_																													_
																		-														_
Ru	10	5	1)	49		•		2) 4				. \$	3) 4	19	91						_											
	······································			45					46	٥.	2		1	16.	03	<b>_</b>														]		
					.0				16	·O	כ			6.			[															
					.94				<del>1</del> 9					t9.											Cont	inue	d fro	m pa	ge	N	7	$\exists$
		-												•											-					7-11		

Crary lel Lemo

11/8/22

B-80

Jumde Jumde

11-9-22

Date

Date: 11822									Page 1	of
Sample Location: PL-7-560				Α	nalytica	l Requ	irement	-		
Pertinent Notes (if any)										
	ers	*XI		NDMA						
	# of Containers	Sample Matrix*	10988	D Z						
	of Cc	ample	83	_					,	
Sample Number	+	Š		7	-					Number
2211080810y (TB)	3	A	~						Xam	<u>D</u>
0811y (TB)		A		-					u	
0920y (EB)	3	A							<u> </u>	
	1	A		~					a_	
	3	A							u	
10314 (MS)	3	A	~						a	
10324		A							у	
Sample Location:		<b>T</b> -		A	nalytica	1 Requ	irement	,		
Pertinent Notes (if any)										
	lers	rix*								
	ontair	e Mat								
	# of Containers	Sample Matrix*							-	-
Sample Number	#								Charge	Number
					+					
	-									
		-								
	-									-
	<u> </u>									
Relinquished by: Date	e / Time	<u> </u>			N =	depted	\bv.		Date / Tiŋ	101
Cray Del Freso 11/8/22				1	/	debied.	Ji.		-9 -22	v830
Jung per freeze 110 1000	/   (-4	<u>.U/11 (</u>	-	1	lri C	<i></i>	TIM	-041	1-20	-070
				+1)			1			
								<u> </u>		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11/10/22					,	Page of	
Sample Location: 01.12.570			A	analytical Req	uirement		
Pertinent Notes (if any)			1				
	# of Containers	82.66	LL NOMA				
	of C						
Sample Number	<del>                                     </del>	<del>                                     </del>				Charge Number	
22111067001 (TB)	3 A	↓×				XGMD	
0701 ( (18)	1 1	_	X				
0902C	3	X					
0903 C (FB)	3	X					
0904 C	1		X				
0905c (Dup)			$ _{\times}$				
0906 C (FB)	1 1		X				
Sample Location:			A	nalytical Req	uirement		
Pertinent Notes (if any)							
	S *						
	tainer Matri						
	# of Containers Sample Matrix*						
Sample Number	# oj					Charge Number	
		ν.					
				-			
							_
Relinquished by: Date	/ Time:			Accepte	d by:	Date / Timę:	
1/10/22	/ Time:	3Qn		ju W	Junch	11-14-22 /0845	)
				.,=	<i>J</i>		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

LAB

5 R.T.

3000

6-16 310 0 100

71 1B (71)

01013014

0.30

0.43

0.29

70 W = 39W

107 #= DIOALL

ORP

139.9

(40

140

(3) 40 m) U: a)

(DIL Amber

Samphel using a chelicated bladded prop Samples will

7.48

7.42

7.48

GZ in use.

a run rellen dischange hose, hater quality parameters

206:9.43

3.78 mg/

Preserve

#ce

IcelHal

Packer=

Past :

Prior: Byps,

Jorn

Read, and Understood By

\umah 11-14-22

Continued from page

ROJECT PL-12.800

vebelity muter = 21

melurs (Time)

2211101410 \$

319mpie

221101475c

Transducer:

14200

1427 c

1440c

P3: 0 7.11

Tems = 23.09

De04 - 16.42

- 14 15 4

1420 c

ENU-0053

Acua Troll 500 Carbon

marcus Austos present

sor: 45try a 3pt (4), 7, 6) Butter method

510-9,40

1013 45/4

1012 11

Sin MPLES

1012

8210

"(FB)

" (FB)

(aug) "

Sensor: In 100 % Solumbay Air

enductivity: 45:00 a 1417 45/cm In Sity

TE MP

20.86

29.87

70.95

VOR

NOMA LL

Date: 11.10.77										Page	of_/
Sample Location: PC-12.800		·		1	Analytic	al Req	uireme	nt			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	82 40	23 bl rr						Char	ge Number
22111014250	3	A	K								
14260	3	A	X								
1427c (FR	3	4	$\prec$								
	1	A		K							
1435c	) [	A		X							
Sample Location:				F	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#	Sa							1	Char	ge Number
Relinquished by: Dat	te / Time	e:	L		)  A	ccepte	d by:	<u></u>		Date /	Гіте:
11.10.22		4108		1	m (	$\bigvee \Big \}$	lunc	<u>h</u> _	1171	-22	10845
				1							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

M W

**\9\2**\ B-86

on Wounds

11-10-22

Date: 11.09.22				-					]	Page	<u>l</u> o	f	
Sample Location: ST. \ . 473				Α	nalytic	al Requ	iremen	t					
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	>04 WN40	20 54.052.000 6						Cha	urge N	umber	-
221109/4406	3	A	×										
1441C (FB)	3	A	×							3			
14420	1	A		×					******				
					·								
								-					
								_					
Sample Location:				A	nalytic	al Requ	uiremen	t					
Pertinent Notes (if any)													
Sample Number	# of Containers	Sample Matrix*								Cha	arge N	umber	
Sumport													
						a							
Relinquished by: Date	:/Tim		3an		in (	ccepte	d by:	-1	-   -	Date - 10 - 2	Time	7083	5
	<del></del>					!	/		<u></u>	-····			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date

– B-88

Or Signed unde

117-22

Data

Date: \\/\\u/\12									F	Page of
Sample Location: 57.   . 54				A	Analytic	al Requ	uiremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8160	607/120	T. Melals					Charge Number
121116730A (TB)	3	A	X							XCIMD
1030 A	3	1	X	-						<u> </u>
1031 A (FB)	3		X							
1052A	1			X						
- 1033A	5									
1034A (Dup)	5	t			1					1
(19)										
Sample Location:					Analytic	al Req	uiremer	nt		- 100 //
Pertinent Notes (if any)									·	
	# of Containers	Sample Matrix*				-				
Sample Number	#	S						. ::===		Charge Number
					1					
			-							-
			-							
Relinquished by: Da	ate / Tim	e:				\ \cc <b>e</b> pte	d by:			Date / Time:
11/16/22					Iru ()	$\sqrt{\ }$		di_	11-1	1-22/0900
										/
				$\neg$						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

11/16/22

B-90 Ou Signed umch

Read and Understood By

11-16-22

	Date: 11/14/22		-						-		Page	<u> </u>	1
	Sample Location: 57-1-630				A	nalytic	al Requ	uiremer	nt			1=	
	Pertinent Notes (if any)			83	6								
		ainers	Sample Matrix*	0218	(607)/Bro			:					
		# of Containers	nple N		30								
	Sample Number	0#	Sar								Cha	arge Nu	mber
	2211161530A	3	4	X							Yan	$\overline{v}$	
	- 1531A (FB)	3		$\times$									
		\			*								
	1533A (Dup)	\	-		X						7		
													<u> </u>
									_				
	Sample Location:				A	nalytic	al Requ	uiremer	nt				
	Pertinent Notes (if any)					·							
		ers	ix*										
		ntain	: Matı		ı								
		# of Containers	Sample Matrix*										
	Sample Number	#	Š								Cha	arge Nu	mber
	Relinquished by: Date	/ Time	<u>.</u>			\ , \	ccepte	d ben			Dete	/ Time:	
				$\top$	1	/	ССЕРІВ			11-15	1-22		700
ŀ	Will be	- 4		'	1	ru V	$\overline{\vee}$	lu-	-0h	u '	+	1	
				-+	+			-					
Ĺ				L									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

11-16.27 B-92 Ou

11-21-22 Date

Date: /1-/6-77								_		Page	<u></u>	
Sample Location: 57-4.589				Analytical Requirement								
Pertinent Notes (if any)	# of Containers	Sample Matrix*	0023011	47041						XGA		
Sample Number	7	<u> </u>	<u></u>			<u> </u>				Charg	e Number	
221116 1445c 1446c 1447c 1448c	7	4	X N		_			-				
14470	1		(~	$\mathcal{K}$								
14480	i			×			_					
2211170700C (TB)	1	A		X								
Sample Location:			Analytical Requirement									
Pertinent Notes (if any)	of Containers	Sample Matrix*										
Sample Number	#	Sa								Charg	e Number	
		_							-			
Relinquished by: Date	nquished by:  Date / Time:			Accepted by:					11-1	Date / Time:		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

w a San	7.C	m	7	ralo th ub sar	ا ک ک	7 Ge	0 A.	g D e c in	el l vi us	en U e.	ran Be Pro	o S	ore. am #4	ven pl	t. ed 5.	us Si	ea in us	the	5 ce	is tri ch	ple ec	art Es	ly ir p	ch sec	Con	dy st m	, b ain ed	les or	e z (	f, ste pro	e/ ee	
Sa 22			1:	350 35			Ľ.	<i>₫</i> 0 <b>A</b>	ma be	у. 1 8	15 260	) LI	up, Pre	sev ice	γa //	tive 40	2 L	G	(%) (%)	nta Om	ini V	ial:	ς	2 2 210		_	4		L. AL SR			
PH Ter Co Tu	8 2 2 0 5 0 3 W	e st	2 - 3 - 11 - 1	21.0	15 8 74 5 5 4 9	C . S/0	43 0's	2 ( ) [		4.0	D. C	)		PI Te CTU PLAD A	1 mgch 1 pp 1 um		8 23 10 -7 -1	39 .5 .96 .01 .01 .01	tus 11 11 11 11	0.0 0.0 0.0 00:	n 4 ( 55 Ft.	24.		Bu	PT4 un fee T	H/ inr	۲ ا ا	td dist	- 9 - 7 - 4 - 4 - 11	9.0 9.0 109 130	>	b 3
\( \) 22	11	01	1	05				V( Lo	A	by	83	60	S LL MA	ian E	ipl re	es er ce/	va	ive			() 1) 1) 1)	nto 10m	ejn M	21 (19 22 Y		1	ot 26.	21		L A	rb RJ	
B	ur	\ <b>S</b>	Î	1441	7. 0. 1.	921921			2)	40	7.9 0.1 0.1	6			40 40	. 88. 2.14 2.14	o															4
																	P		4 11-	deret		<b>D</b>			Со	ntinu	⊥ ued fr	om p	age	N/F	<del>1</del>	

Date:									I	Page	of
Sample Location: ST-5-485				A	nalytic	al Requ	iiremen	ıt			•
Pertinent Notes (if any)											
	ers	ix*	77	LL NOMA							
	# of Containers	Sample Matrix*	8260 61	ND							
	ofC	ample	82	7							
Sample Number	#	S									Number
22110113504 (EB)	3	A	~							XGn	10
1351y (EB)	1	A		<u> </u>						L	
1505y	3	A	~							<u> </u>	
1506y	1	A									
Sample Location:				A	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any)											
	S	*									
	taine	Matri									
	of Containers	Sample Matrix*									
Sample Number	, # o #	San								Charge	Number
						·				-	
Relinquished by: Date	  / Time	l ∋:	11	(		ccepte	d by:			Date / Tir	ņe:
Relinquished by: Date  Cray Del Ferro 11/1/22/	160	ohr	·s. 🗍	0	Yn [	$\prod$	Um	-de	-	2.22 /	0900
					•						
				7							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

6 ROJECT_	ST-5-	655	· 5 ω:	II	٤N	W-	- 00	20			೩၃								No. om pa				-129	7(	<u>Y)</u>	-	
Varcus	Avalos	e Cr	aud '	Del	Fo	m	100	D.	TO (.	int	. 1	Joan	the	ri	· ·	رما ا		21	أمم	·	h.	Š	70	ا. م	أزر	1	10.
ampled	usino	5.	Stea	m (	le	0.00	7	£ 7	ris	<b>b</b> .	cii	1 60	Ī.	<-	n i	6		c.4.	أوه	50	MZ	lo.	4,	bo	5		<b>.</b>
en in	iso Pr	No t	+ 49	55	Si	4	0/0		i	·k	- 1	, J C	E		ار م	· · · ·		57	60	2	ria	· -	ζ,	500	201		
	use i i	0	1 11	,	٠,	17 1	MLE		)e		1		U	77 [		ÖA	1	01	i	1	70			741.	14.	<i>V</i>	<b>!</b> -
			1	30	Ä	•	2				1.1	7	1		1	1		n j	<u> </u>		,			<u> </u>		* * *	. ,
				- Λ!				7							la	71	7	_	-			/ _	L	$\vdash$	7	1	
Dample	<del>~</del>				na	1					se/			e_	;			un				٥			-	36	
221101			15	A	J		1 .		4	ાં	e/		1.	•	1	L			ria	i .	á	62			AL		<u> </u>
++-	09464	-	Lo	w: I	ev	el	Nt	MA	*		ia	<u>.                                    </u>		<u>  `</u>	(	1);	L_	f)mk	er		010	003	olt		SR	t	
			-		, ,		-				_	• •	1:		ļ	ļ		• • •	, . ]	Ĺ.,			•	•			
Initial	Param	eter	٤				_		$\exists$	in	al								M	et	2	I	D_				
Time -	22110	3.1.10	301	<i>i</i> ,	:	<u>_</u>		. ,	শ	in	e -		12	110	110	Oś	<b>5</b> 7	Y		pН	Co	nd		92			
'H ' +	8.79				<u>,</u>	, ,	, ,		F	H	٠٠.	ع -ِ	3.6	q.				1	-	Tu	cb			7	•		
emp	. 22.1	٠.			÷	, ·,	•		1	em	ρ.	_ •	22	3	c	:	•	٠.		u.		td	<b>2</b> -,	4	7:6		
ond	- 917	usl	cm							on	1.8	1	J		slo	MA				:3		10	· <u>.</u> `	4-	7 7	)	
- Jrb +	- 1.30									ur		1	-		TU	l _* "						i	-5			1	
Have.	- 7.06	V 1		17:	7 °C	1						ı			0.0		20	1 0	1	u		l	-1		1	. 1	
2 U 1 1 1	- 7:05		1	1 14	, <u> </u>	)	<u> </u>	ļ · · · ·			16				10	-	1	1	/	-61		XP		15	)/ o	ئد	* *
					٦.		, 1	1				1		1 -	1	1 .	1		D			·	1	$\mathcal{L}^{-1}$		_	
11.00	-476	167		ОР	<b>67</b> (	ve	Lh	eg d	<b>)</b>		1 :			1	92	1	1		200	預	205	-	-07			읶	$\mathcal{P}$
Homos	- 12.6	3 OE	si a				ļ	-							2	PS1	<b>a</b> _			7			o2A	1	r	8/4	<u>13</u>
										L	M	-	- '/	ک ز	991	•	<u> </u>			10		<i>†                                    </i>	7E	30		12	<u> </u>
+   '				-			<u> </u>	ļ						<u> </u>	-							- <b>`</b> -				ř	
													•	• •	ļ			-	•	٠.		••		•			
		-				,		ļ		50	m	le:	<u>S</u> :														•
Sample	ور ا			$\perp A$	no	lly	<u> 513</u>			Pc	ese	Ń	ahì	vе			or	ta	ne	<u> </u>	. *>	Li	+:	•		ab	
221101	1055 y	1	V	ρA	Ьч	80	260	LL			ce	/H	CL	·		3	140	ml	γi	als		26:	21		Al	S	
	1056Y	1 1	Lo	w		!	ı		4			, (e_			,	Čì	iil		nbe				01+	4		工	
							,	].		٠.,		>					,						~, ,				* : 4 = :
											,					•		<u>,</u>				*3	•	•	1		
								, -				,	10.0	••		,	-					. 4					
							•										•										
		1 1	-																		+						
Zuns	1) 92.	19	2	193	<b>1</b>		-					•			<del> </del>					,		• • ·		.			
341)3	• • •   ` ` `		<u> </u>	7	<u> </u>	<u> </u>					•			-								*3	•	-	$\rightarrow$		- ,4
	1113.		-	113	2.1	1					•					•	<b>8</b>					7	•	$\dashv$			
	113.	1 1	_	113	5.8	7						•									. •	• "	·		~		
	92			9	1.1	O					`			-	-	•							·				
															ļ												
						L														Con	tinue	ed fro	om pa	ıge	N	4	
												Read	d ampl	Und	lersto	od E	Ву								• •	-	
$\mathcal{A}_{\mathbf{A}}$	0007		_				١.	1_	_						1 1	/	\			1			11	,	Ωı	P	
/larg_	WY J	eu	wo			11	11		<u>.</u> 2		ъ.	96	50	m	V	$\cdot$		lu	لسرد	h	-		_11	<u> </u>	-21	<u></u>	
U	Signed							Date			D-	30	Λ			Sig	ned	1							Date		

Date: 11 1 22										Page of	
Sample Location: \$T-5-655				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	S.	  *	_	LL NDMA							
	ıtaine	Matri	700	ial	ı						
	# of Containers	Sample Matrix*	326	L A							
Sample Number	#	Sa	3	7						Charge Number	
22110109454 (EB)	3	A	-							XGMD	
0946y (EB)	1	A		/						и	
1055y	3	A	~							u	
10564		A		/						ų.	
Sample Location:				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	ırs	* .×									
	# of Containers	Sample Matrix*									
	f Cor	mple									
Sample Number	#	Sa								Charge Number	
						,					
											. ,
Relinquished by: Date	/ Time	- 1		T	)  A	ccepte		7	3 I	Date / Time:	20
Craig Del Ferro 11/1/22/	113	Lohr	<b>5</b> ,	\\(\bar{u}	u l	$\Delta / \downarrow$	lu	-ch	-	2-22 /0900	<u>)                                    </u>
,				$\downarrow$			1			· 	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

91

PROJECT WW4-419 FLWTZ ENV.0020

Continued from page

Dan	He	\v	. ~ \$	en	e.	10	~	T0	664	دح	Q.	حو	جو،	7	w	و د/	Le,		s	د/و	24	8V	<i>)</i> (	ےمد	۲	17	ر. د د	ح	0 H	<u> </u>	
w.1	6	e_	pu.	حربو	۵	مده	۵	50	mp	لوبا	u	2.	×	۹	FL	W	L	54.	ste		54	mp	العن	W	:11	6		'la'	red	ليد	
usin	-5	Δ.	مهو	٠.	حصا	لرد	ں	∵3	د/	<i>د</i> ۲	çe.	10	- ક્ર		PJ.	ze	4	ومز خ	SU	re	Sè	ہ 4	7	23	7-6	5	١٤	N 1-4	e he	<u>.  </u>	
pres																															
m:c	He	2	ور	m	FY	2	e-7.	بس	in	Pu	. 62.	٤5 .	N	); •	· m	un		7	4	۾ڇ	110	<u>~</u>	-βı	۲ رځ	حدا	£	<b>e</b> : (	70	40		
Smmp.	1	1			_													<u> </u>	ļ	•									<del>                                     </del>		
	ļ												<b>B</b> r					<u> </u>	ļ												
? re - 8	~ **	<u>0                                    </u>	Pc	72	(me)	er r	<u>s</u>					7	CA	120	luc	ur							n.	ter		۵					
PH	-	7.9	14									5	72	, ၁ မ	2 =	8:	<u>;</u>						P	4/0	P 6	0	3	73			
Ferm	3 6	21.	3	ļ								ó	14	4	8 =	Te.	we							_	اب	cB	. د	QО			
ane:	<u>)</u>	Ru										j	19	9	2 =	(C)	44								<u>"</u> 2	70	> 5	۶.۶	4		
10 1B	- 1	. Li	3															ļ	ļ									5. c			_
																		<u> </u>							3 4	.6T	2.	<b>2</b> ) c	ำใ	ک	
Pares																									, 6	<b>}</b>	~	11/3	<b>S</b> E		_
Time					43	0	>																								_
6+3	2	7.	3	-																											
KLUNP	3	ر2	, 8	<u>C</u>	,														ļ												_
:000		l .	1	1	1 1	W												ļ											<u> </u>		
íu B	•	1.5	ندما	A-0	·s	2			_																						
>40,00	•	ر ج	4.	10	(G,		<b>5</b> €.	3	ر)																						_
3488		<u>ل. ۵</u>	8-	- 5 (	3.0	0																							ļ	,	_
																			ļ												_
	-451		-						_	21	XN	4	۲.€	<u>ک</u>		ļ							ļ						.		
50 me)	6			_			7~	John	<u></u>				_		6.	₹ 90	9	w	ļ				00		l .	l	_		_1	AB.	_
33110						V	04	<b>les</b>	8.							T	,	الحد)				37	40		v	(م)				145	
		l .	4 6	ı			١,				15 (	4	3)				1.		ļ					<b>)</b>						••	$\dashv$
		ł	B			2	0"	A	LL				<u>\</u>				¥ C	e	ļ			0	11		10	.~				28 I	-
	l	1	4 E				,		1	(4	, -						,							1,		_				7	$\dashv$
	<u> </u>	53	<b>ə</b> <u>(</u>	<u> </u>		<u>_</u> 5	36 C	Þ	1 8	<b>5</b> 2	o C						7					(3	7	l ₂					<u> </u>	DYZ	
																-															$\dashv$
																						-									
-																		-		-											_
																															$\dashv$
											<u> </u>								-	$\left  \cdot \cdot \right $											$\dashv$
																		_							4:	. al e:				and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	$\dashv$
			<u></u>	L	L						<u></u>			<u> </u>		<u> </u>			<u> </u>	ood B				Con	tinue	ea tre	om pa	age			_

Signed

Date: //- 8 - 2022										Page of
Sample Location: WW- 4-4	119				A	nalytic	al Req	uiremer	nt	
Pertinent Notes (if any	)									·
		iers	rix*		46	Y				
		# of Containers	Sample Matrix*	100	0	Svor				
		of Co	ample	2	Q	3				CAND X
Sample Number			S		<u>ر</u>					Charge Number
2211081433 B		3	7	ድ						
14343		3		ゴ						 
1435 B		1			7					
1436B		1			4					
1520 B		q	)			8				
Sample Location:					Α	nalytic	al Req	uiremei	nt	
Pertinent Notes (if any	)	-								
		ß	**							
		ıtaine	Matri							
		ofContainers	Sample Matrix*							
Sample Number		0#	Sar							Charge Number
									,	
Relinquished by:	Date	/ Time	: :			) [A	dcepte			Date / Time:
12	1-8-3032	)	1630	<b>S</b>	1	on	$\mathcal{N}$	\m_	-d	-22 /0830
					U					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

NO

1)-8-2022 Date B-100 Signed Hunch

Read and Understood By

11-9-22

Continued from page

Date

Date: 11-8-2022							-			Page of(
Sample Location: Ww-H- 589				Α	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	iers	rix*		77					:	
	ontair	e Mat	V O G	NOW LL	\ 0					
Comple North	# of Containers	Sample Matrix*	ク	λ	Suge					X GWD
Sample Number	<del>  -</del>		~		•					Charge Number
22110814533	3	7	29	-	_					
1454 3 58	<del>                                     </del>		J	- 2	_					
1455 3	1	<del>                                     </del>		99						
1456 B FB		H		,	7		_			
15483	2	-			9					
									_	
Sample Location:  Pertinent Notes (if any)	Τ.	I		A	nalytic	al Requ	uireme	nt 	<u> </u>	
	iners	atrix*								
	of Containers	Sample Matrix*						:		
Sample Number	Jo#	Samp								Charge Number
Sample Number										Charge Number
							_			
						_				
	<del>                                     </del>									
Relinquished by: Date	/ Time	:			) \A	ccepte		<u> </u>		Date / Time:
11-4.2032	<b>.</b>	1630	)	0	u l	$M_{\perp}$	\lu	_el	11-0	1-22 /0930
	. <u>.</u>									
				1			,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

*ROJECT WW 4-848 FLUTE EDV. OO ZO

			,					·		1					·		_	Т	T	,											<del></del>	
<b>₽</b> 。		4	No	624	-	•	70	<u> </u>	13	درم	2	Q	مود	me or	7	W	و در کا	٠,	,	5 (	٠٠٠	- ~	<del>د</del> ر	7 1	احليم	. 2	_	1	5	کہ	m	
																														بموا		
																														<b>L</b> 59		
																				4												
1			₹ .	1	l	l		1	l						l .	1	l	1	I .		1					l .		I	1	186		
Q	un	V-C-1	-	<del>pa</del>	35.			123.0	-4	`	-		WI II	3.,2	P	, 70	<i>L 1</i> X	Ae.	06	70	. 20	, MP	1,42		2.5	رس	<u></u>		,	700		
0						<u> </u>																										
			į	1	Sec	res:	٥.				ļ		<u>ئ</u>		1									<i>7</i> 1.7								
P			8.1			<u> </u>										. <b>Q</b> e	1							Ą				- (	1		+	$\dashv$
- 1			<u>ک۱.</u>													7৩									_		1	3 -	1 1			
			25									_ (	761	\ =	122	ר.	4												۶.۹			
<u>ن ر</u>	B	-	) .<	32	ļ <u>-</u>						ļ					ļ		ļ								R	05	3 6	0.0	۹		
					ļ																					<u>1</u>	57	دء	100	كالماذ		
) .	œ.c	re le	دع																							٠,٠(	SAD.	= 1	,	22		
			t t	1	714	115	В																				`.		,			
2 44			1	09	1																											
ž m				ما																												
			•		1	100										<u> </u>																
						w's																										
1.0	<u>.                                    </u>	<u></u>			~ .	1 (	r_,	_	0)		-																				1	
								<i>)</i>	C	ر							-														+	
77/	081	-	<b>_</b>	15.	10	. 0	0									<u> </u>			-												-	
$\dashv$			-	ļ		-					_						<u> </u>											ļ				
		**		-	-				-			Bu	1	<u>e</u> :	<u> </u>	-			ļ									•	-			
5	<i>4016</i>						7	ca)	45	\$					2	re	500	ue				C	00,	٠.	~1	<u> </u>				<i>214</i>		
( <b>2</b> )	109	P4-J	8	β			000	9	18	36	L	ر				I	41	40			(	3) I	40	1	<u> </u>	)				4	LS	
		14	19	B		ļ	15		<u> </u>		^ C	<u>£3</u>	<b>_</b>				2.	<u> </u>					,	•							۱,	
		14:	20	B			Vo	MA	L							J	حر					16	L 1	وسو	45					_	R	
		[4]	21	B			٠.		٤,	E	B						د							1)								
		15	18	3		5	N 90	\		1	0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4					(	න _'	1_	4	'B.	-					772	
												0	BI	2	\v <			-														
56	·6)	- <b>43</b> - S	1				_	_	1			٢	71	<u>• 7.11</u>		_		45					_		٠,					<u>_</u>	NB	$\dashv$
			7.	0 7	2			Γ	-					-	-	1.5			Ī	-		,		0 V.				-				
(2)	יוסי	_					l	1	_	ł	60	LL						<u>در ا</u>					3).			1					AL	
		0	10	12	-		N	bw.	<b>N</b>	۲۲					-		<u> </u>	t<	e_				W	1	170	10	1			<del></del>	SR.	7
				-					-	-					_		-	-	-	-							<u> </u>				$\dashv$	$\dashv$
			<u> </u>	-				<u> </u>			-				-			<b> </b>										ļ			_	_
			-	ļ			ļ		ļ						_	ļ	_															
				<u> </u>																					Cor	ntinu	ed fr	om p	age			

Read and Understood By

11-8-2022

– B-10<del>2</del>—

TU V Signed

11-10-22

Date

	Date: 11-9-2022											Page _	of_ <u>)</u>
	Sample Location: Www	. 848				A	nalytic	al Req	uireme	nt		100	
	Pertinent Notes (if an	y)											
			ers	rix*		7							
			# of Containers	Sample Matrix*	8	NO MA L	ن		:				
			ofC	ample	2	9	SVOS					YBN	
	Sample Number		<u> </u>	S								Charge	e Number
	2211090700B	TB	3	4	B	-	_						<del></del>
1	1418 B		3		t								
	14193	FB	3		4								
	0701B	TB	١			9							
	12/20 B		J			9		÷					
$\downarrow$	- 1421B	FB	l			4							
	- 1518B		2	\			4						
	Sample Location:					A	nalytic	al Req	uireme	nt			
	Pertinent Notes (18 an	<u>λ)</u>											
			<u>s</u>	*									
			talne	Matri									
			# of Containers	Sample Matrix*									
	Sample Number		0#	Sar								Charge	e Number
				·				_					
									_				
							<b>~</b>	-					
	Relinquished by:	Date	/ Time	e:			) [A	ccepte	d by:	1)	ĺl	Date / T	
*	2011	11-6-303	•	163	50	$\prod$	ir	$\bigcup \setminus$	Jun-	<u></u>	-	10-22	10830
-									)	<i>;</i>			-

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 4/25 3

PROJECT WW. 41- 9-48 FLUTE ENV-00 20 Continued from page _ Ja eces Present 5 Chear and whom, This Weather sompled using a Flute system Samples with the contracting cosing al sames hose. Purse pressure sut at 221 ps; sample presone 305: 51 solder stable at 5 psis 15 minute recovery toutines 4) galbons parged prior to tampings Carby 51 in use Pre-Sample Personalurs = 797 PS: = 53.87 PHICORD = 93 8.0C = 9nx Tump = 24.50 100 = 115A Pupl = 124.27 370 3 5.94 TUGB = 0.73 -3 720 FUL Time = 22110914503 00.8= b ** = RO.7 C COND = 1166 usten JUB = 0.55 NH WS 04 Pre = 7.01.10.02 (26.30) PHP057 - 1.99-10.01 SAMPLES SUMBIE Preserve Andys: 2211091452 B 82 40 LL Itel HU - 1453 B 1, (88) 1540 3 (DIL Amber Ice SRE 15413 1. (FB) 1, 1600 B JUGG By 82 70 D (3) "

Read and Understood By

11-9- 2022 B-104

mule 11-10-22

Continued from page

umber
umber
umber
:
2820

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT 200-6-	17) WJE ENU-C	xx (0 12-1-72	Continued from page
Robert Burrows	É Marcus Avalos	present Wenther i	5 chudy & breezy & Cool. This Zowe
VIU be Sampled	using 5 terels	rosed stataless	Heel Sample Tubes, Prosbe # 495
entre of the	e formed is only	be or for to tompe	Ing Carloy G-1.
erfoce exects pe			
		30 mm Equipmen	of blacks
		Passerghir	
Ample #	ANALYSIS		
21207 12474	Vonly 876	o Hel see	(3/70/11) (0.00) (3/17)
			1,50
with Personeter		mal Parametras	Metal ID PH/Cord - 12#
ne - 22 1207 1324	/ Y	no -22/20715514	
H - 9,16	1 9	H - 8,70	
mp - 20.2 (c)	Te Te	mp - 18.7 c	11 4 Std 59.5 (atús)
md - 13 54 Ces/co	1) CI	owd - 1425 /us/cm	) 4 1 Poly - 59.9 NTO'S
urb - 1.03 Cuntus		usb - 0.00 (whis)	1 1/ Lot # 210966
H PRE - 7,86/10.01	(8.6°C) P	HPRE - 7.78/10.01	" Exp - 12/7//22
H post - 7.77/10.02	P	Hpost - 7.85/10.00	(8.0°c)
7W - 218,70 G	<i>z</i> )	DTW - 2/8.25 (FA	1) Butter 5 Lutter 1
4tmos - 12,07 Q		Atmos - 12,08 PSS	
71103 1010.		IOW - 1941.	10 415 7530 1
		1 271	
		SAMPLES	
immples #	Analy sis	Plesquat NE	Constativer Lot# 14
717,71240			
212671349 Y	oaby 8260	Caups " "	, , , , , , , , , , , , , , , , , , , ,
1352 Y		0/607 - 15	
1353 Y	NDMR/DMN/ bau	Maril ICE	125mt
1419 Y	1044L Netar	4/NO3/16E	(2) poly 270121 A
14444	Antony/A/K	ICE/Zeko H	20000
1446 Y	TD3 by 5 m 2 540		(1) poly 6/202440
14474	Perchante by		O Polis MA
1506 Y	Noz, Noz bry	3532 H2504/ICE	(1) poly 720726
	,		
Zun's: 1) 12.13 2	1 12.19 3) 12,17	4) 12.17 5) 12.17	
24x.25	24.25 24.25		-
24.23	24.24 24.20		
12.13	12.17 12.18		
	12,70		
<del></del>	<del>           </del>	<del>                                     </del>	Continued from page 10/17

Read and Understood By

Robert Burowa

12-7-27

__B-106___

Or Wound

12-8-22

Date

Date: 12-7-27									]	Page	of
Sample Location: 200-6-175				A	nalytic	al Requ	iiremen	t			
Pertinent Notes (if any)				25	, ,		20.00				
TASK - Memo - 11460  Sample Number	# of Containers	Sample Matrix*	100 by 826	soundames by	Total Makel	Anions / All	705 by Sm2540 C				ζηλ <b>Ο</b> ge Number
221207/247 Y (EB)	3	A	χ								1
1349 4	3	A	X								
1352Y (Qup)	3	A	X								
1353Y		A		X	:						
14194	Z	A			χ						1
1444 Y	Z	A				χ					
1946 Y	1	A					×			١	<u>Y</u>
Sample Location: 200-6-175				A	nalytic	al Requ	iiremen	t			
Pertinent Notes (if any)  Task Momo - 11460  Sample Number	# of Containers	Sample Matrix*	Peechbook by 6550	Nor Nos by 33, 2							<b>6m 0</b> ge Number
221207 14474	1	A	χ								
1506 Y	ı	A		X							$\underline{\underline{\Psi}}$
							:				
	-										
Relinquished by: Date  fout Linguished 12-7-2	/ Tim	e: 7:10		To.	u	ccepte	d by:	di	12-8	Date /	Time: / 0830
				1		,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

211	0	T	L		<u> </u>		Τ.	T -	T	<del></del>		1	7				1					page	7	7		<del></del>			_
Robert	Dur	vau	<i>U</i> (C		tvol	05	Mai	cu	\$_	pre	sen	4.	w.	at	her	15	Clor	idy	È (	2001		7213	Z	ON	٢	11	1	be	
Sample	HU	LSI	g	5		Rof	12	r	5245	ed.	, 37	יענא	429	31	*U	50	mp	ole .	tal	es.	P	cobe	F.	49.	5/.		ker 1	CA C	7
checks	P	er f	مدو	ed	DA	,	pre	be	1	OKN	M 7	₽.	Son	rpl.	1/2		ark	y	G	/				_	1		L		
		-	-						-	-	-	-	-		-	-													
		_			-			-	_	_	<u> </u>	36	m	V	Eq.	ap,	neni	Bla	nk:	5									T
Sample	#			4		A	A)	y3)	3				Re	1		1			1	ra Ex	,		1	207	#			LA	6
271205	143	3 Y					06						1	(c)	IT	cE		(3)	40 m	ilvi	Als				9-1			A	$\neg$
+-+-	143	5 Y	/	_		709	192	Me	tal	<u>/</u>			H	vo:	3/Z	CE.		(2)	12	5 m	1 /				42	ı		ſ,	$\overline{}$
		$\perp$																		-									t
chitlaL	PA	RAI	neve	R	5				Ŧ	ومعود	1	PA	enn	ete	es					m	eter	Z	0	1	İ				$\dagger$
me - 2	2 120	5/4	159	Y						)>~6	1	1	1	1								Con	•		<b>&gt;#</b>				t
74 -	8.63	3				Ì				AH.	1	3,34	ı								ur b		9		3 #				$\dagger$
emp-			·5)						<del>                                     </del>	em		1	1	5					+	11		<i></i>	مدر				٠	<u> </u>	$\vdash$
ond -	1 1		ı	m					1	one	1	1		1	(m)					u	1								+
web -		- 1	1						1	Tuc.	•	1	1		1					u	i					(A			$\vdash$
H PRE -					19.	6 %	)									(12	5 °C	)		4	+	ال		1	1	966			-
post -										PH	Doct	ļ-,		100	00	10.	9				-	E	×ρ	_	14/3	31/	25		-
TW -										Ori	1 -		12	10						1	)			-	, 74				-
9tmos-	i	1		1	$\exists$				-	- 1	1	1	2.00		1			_	+	13	- 1	FER	1	i	1#	1	E	φ.	
			φ,	7						7.7		_ (.	و د ا	P	5 74	7		+	+	-	7			Ì	449			'z	
		1		$\dagger$						72			720	MI-					-	-	10	-	4	1/5	TES	80	_7	23	
													<	•	مام				-	-	-						_		-
Sompl	, #		+-			$\dashv$		1-24	,	سد		_	T		Olz:		-		+-	,	-				æ		$-\downarrow$		
2 1205	- 1		,	+	+	-+	- 1	- 1	-	5/5	1	_				LIV				Hasi				ľ	184			R	
1200			+	+	1	-	1/24	269	/ গ্র	2BO	160	7			1	reE			1		i	rial.	! I	26	49-	1		<i>A</i> 2	5
	15 2	ſ.	+	+	-	K	UDM —	4/0	mu/	PLON	hei [				FC.	<u> </u>		_	<i>a</i> >	12	Bm To a	bek 11		010	030	14		۸ک	:p
	155	7	-	+	$\dashv$		70	tas	_ /	nefa	13			4N	03/-	TCE		_	<b>(2)</b>	P	oly			22	42			92 5	5
		1/		+	+	+	4			<u> </u>									-	-	ļ_	-					_		
Runs'	<u> </u>	16.		+	2)		-96			6.9								_		-	<u> </u>								_
+ + +		43.		+	-	57 <u>.</u> رار	3.68			3.6									-	-	-	-					$\downarrow$	_	
		43,		+	+		3.6	i		73. G								_	-	ļ	-								
		16.9	5		+	10	6.9	2	9	46-9	4								-										
		+	+	-	+	-	$\dashv$	_							_					-									
	-		+-	-	_	-		_		-					_				-				-						
		+	-	+	_	+	-																						
		+-	-	-	-															<u> </u>									
		-	-	-	-			$\dashv$											ļ										
																						Cont	tinue	d fro	m pa	ge ,	N/X	9	

Read and Understood By

Rbert Lunows

12-5-22 Date

B-108

Date: 12-5-22											Page · /	of/
Sample Location: 200-	G-220				A	nalytic	al Requ	uiremen	ıt			
Pertinent Notes (if  TASK Memo - 114  Sample Numbe	any) 58	# of Containers	Sample Matrix*	10 g by 8260	Nomajoons/by 607	Total matals					X Go Charg	<b>vo</b> ge Number
221205 1433Y	(EB)	3	A	X								
1435 Y	(EB)	2				X						
18264		3		x								,
15284		i			X	_						
15514	<u></u>	2	<u>\P</u>			Χ					د	k
Sample Location:					A	nalytic	al Requ	uiremen	ıt			
Pertinent Notes (if		# of Containers	Sample Matrix*									-
Sample Numbe	<u>r</u>	7#-			<u> </u>						Charg	e Number
						-						
Relinquished by:	Date	/ Time	l e:			ĮΑ	ccepte	d by:			Date / T	ime:
Relinquished by:	12-5-22	/4:	20		Te	rul		llu-	dr	12-6	0-22	10845.
					1						1	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT_200-&-940 WII ENV-0020 12-05-22

Robert Burrows & marcus Avolos present, weather is cloudy & Cool & wet. This Zone will be sampled using 5 TRIPLE roused & steamed cleaned stainless steel sample teles Probe #4971 Surfaces checks performed on probe peror to sampling. Carboy G-1 30 mm Equipment Blacks & Strats Samole # PRESERVATIVE ARB (2) 40 ml Vrals HCI/TCE 2649-1 VOABY 8260(#B) ZZ1265 0956 Y A25 RA LIAL metals (EB) HA103/ICE meter ID In: Fral Parameters TOWAL PARAMETERS 84/Cond -12# 7/mc + 22 12 05 3 43 Y Time - 12 1205 1540 Y Turb - 8 * PH - 7.87 04 - 7.8/ Temp - 23.4 (9c) Temp + 20.3 (C) 5/1/ - 57.5 (whis) Rolg - 59.2 (2 Avis) Coord - 1875 (45/cm) Cond- 1890 (15/cm) 1 200 2 10966 Turb - 1.63 Catui) 1.63 (atus) Turb + PH PRE - 7.02/9.98 (21.400) PA pre - 7.50/9.83 (21.2°C) Exp-12/81/22 2H post 1000/10,03 PH post - 7,47/ 10.00 ERP DTW - 218.10 FA Buffers D-W - 218.03 4 1202944 8/23 Atmos - 12.05 (2500) Atmos - 12.07 (05:4) 4107880 1/23 TOW - 1/2 9A1 Samples 20t# Sample # LAB Analysis PRESERVATIVE Container VOA LOY 8260 NOMA/Doney GASTACE! 1205 1304 Y Hel ITEE 7740 mil 44/5 2649-1 A25 11 13054 SKI ICE W IL Amber 01003014 (2) 125 mg/ 720421 1341 4 Total Metals 4NO3/ICE A23 (FB) 145 2) 71.42 AS 3) 69.26 Rum 5: 1) 69.29 123.41 123.51 122,92 123.55 121.89 122,67 69.28 69. ZZ 69.34 Continued from page /1/4/

Read and Understood By

Robert Buroud

12-5-22 B-110 You

\umak

Data									
Date: 12-5-27			<u> </u>						Page of
Sample Location: $2\infty$ - $G$ - $340$				Α	nalytic	al Requ	irement		
Pertinent Notes (if any)  Task Memo- 11459	# of Containers	Sample Matrix*	0928 hg tu	Acmos!	Total medils				
Sample Number	#	San	2	/q/v	ŝ				Charge Number
22 1205 09564 (FB)	3	A	X						
1304 Y	3	1	X						
13054	,			X					
13414	2				X				
1342 Y (FB.	2	4			X				$\downarrow$
							-		
Sample Location:				A	nalytic	al Requ	irement		
Pertinent Notes (if any)									
Samula N. 1	# of Containers	Sample Matrix*							
Sample Number						<u> </u>			Charge Number
					_				
	_								
	-								
								-	
Relinquished by: Date	/ Time	e:			( A	ccepted	by:		Date / Time:
Relinquished by: Date  Land Bernard 12-5-22	/4	;20		10	<u>u V</u>	J\L	u-ch	12-6	0-22 /0845
				$\bot \downarrow \downarrow$					·

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12-5-22

Date: 12/1/22										Page of
Sample Location: 200- 6-420				A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8260	٥٥٦	Total Metals	Anions Alk	TDS	Perchlorate		Charge Number
2212011400y (EB)	3	A	/							XAMD
1520y	3	A								u
15214	l	A		~						ч
(5aay	2	A								и
1545y	2	A								4
1546Y	1	A					~			44
15479	i	A						~		и
Sample Location: 200 - G - 420  Pertinent Notes (if any)		1		A	nalytic	al Requ	iremen	ıt		
Sample Number	# of Containers	Sample Matrix*	No2/N03	,						Charge Number
22120115484	1	Α								Xamb
•										
Relinquished by: Date  Pay Ill Termo 12/1/22	/ Time		rs		O'u	\$cepted	Nby:	-d	12-	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tufts & Craig Del Ferraro present. Weather is clear & rool. This zone will be sampled using 5 steam cleaned & triple rinsed, stainless steel sample tupes.

Probe # 4955. Surface checks performed on probe prior to sampling. 30 Min. Equipment Blanks - Carboy G1
Analysis Preservative Container Sample VOA by BZGO ice/HCL (3)40ml vials 2649-22120109404 Tritial Parameters Meter ID Time - 221202 cg PH/cond-12 Time - 22120110154 -8.8 -8.68 Temp - 23.4°c Temp - 23.0°C std-59.5 Cond - 2.43 ms/cm Turb - 4.19 NTU'S Cond - 2.65 Ms/cm rdg - 59. 04-210966 Turb - 3.37 NTU'S PH pre - 7.13/10.09(17.5°c) PH post - 7.11/10.10 pHpre-7,06/10.08(20.60) Exp-12/31/22 st-7.07/10.05 Buffers DTW -217.78ft. DTW -217.6451 Atmos - 12.07 psia Almos - 12.11 psia 1202A44 IDW - 1/2 991. 1/23 4107E30 Preservative Analysis Container ice / HCL 22120110404 VOA by 8260 607/Bromacil (3)40m/ vials 2649-1 (1) IL Amper 01003014 (2) 125ml poly 5 22-04-21 - 1041y ice/HNO3 Total Metals - 1310y ALS * Samples were a bit gerated Runs 1) 137.31 137.16 3) 136.83 219.29 219.40 219.10 219 38 219.35 219.08 137 29 37.18 36.76 Continued from page N/A Read and Understood By

_____

Charg Del Ferro

12/1/22

B-114 Jon W

12-6-22

Date: 12 11 22									Page of
Sample Location: 200- G- 49	5			A	nalytic	al Requir	ement		
Pertinent Notes (if any)					2				]
	SIS	  *   <u>*</u>			ete				
	# of Containers	Sample Matrix*	8260	۲(	. ≥				:
	of Col	mple	82	607	ta				
Sample Number	#	Sa			10	<u> </u>		ı	Charge Number
2212010940y (EB)	3	A	~						XGMD
1040y	3	A	<u></u>						u
10414		A		/					ч
1310y	a	A							u
				. <u>.</u>					
Sample Location:				Α	nalytic	al Requir	ement		
Pertinent Notes (if any)									]
	SIS	ix*							
	# of Containers	Sample Matrix*							
	oJ Co	mple							
Sample Number	#	Sa							Charge Number
Relinquished by: Date Clay letters 12/1/22/	/ Time	e:			A	ccepted b		iα	Date / Time:
Vay 12/1/22/	160	<u>'o hr</u>	<u>``</u>	$ \psi$	ri )	V fl	wh	12-0	5-22 /08/5
<b>V</b>	u								
				"		,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page PROJECT_700-75-5/0 ENV-0053 worsen oraccus Auglas present weather is postly Cloudy win wass wish se purgued and sampled using a chadicated bladder pumps samples corrected using a new Tellon discharge hose water quality will be monitored using an In-Situ Days Troll 500, Carbo G5 in use Drw = 243 70 C4 Calibrations 100 % SA tentral a:r 11 = 265,73 Do Sensor: In PH Sensor: 45 mg & 3 pt. (4,7,10) Buter mus 104 = 2 Eal Mich vite = 45 mg a 1413 uslow 540. Solution Expelient = Using an Jon Silva STO. 94 orw(a) Brance rs (Time) tu/B TO OT Cono ORP 265 73 221213 1456 C 3.54 8.86 0.52 20-24 5/0 265 73 20,23 881 **3.55** - 1458 c 561 3.53 8.84 245.73 +1500 C 78 0.51 20123 3.55 561 SANDIES SAMPIC Preserve LAB 8200 (3) 40 2) (:1) 2212131510 C I 41 121 (FB) 3 vondloma) 1511 0 5 R. 1525 C WILL BULL 0 0 00 TICE Total metals Ice HVO3 (2)1)\$ m1 Pol 2207-25 NUS 1547 c 1548 C (A) (1) 1555 c 410 Anionslavk I 40 (<del>2</del>) TOS & SMOTHOC JUDO C Perchante & 1810 1605 6 100 No3 & 357.3 1609 ( Ece 14250c (1) 250 ml Poin

Read and Understood By

Continued from page

Date: 12-13-2022										Page 1	_of(
Sample Location: 700-13-510				A	nalytic	al Requ	iiremer	nt			
Pertinent Notes (if any)											
	2	**				π					
	# of Containers	Sample Matrix*	م ا	ر	7	Anions) NIK					
	f Con	nple	400	ردم	ath.	0	2			X BMS	
Sample Number	(O #	San			٤	٥	£				e Number
221213/5/0 C	3	A	9								
1511 c FB	3		9								
-1525 6	1			9-							
1547 c	2				*						
1548 c	Ş				7			1100			
1555 c	2					7					
1600	1	1				,	17				
Sample Location:				A	nalytic	al Requ	uiremen	nt			
Pertinent Notes (if any)					-						
	8	*	1	٤							
	ainer	fatrix	348	Va							
	# of Containers	Sample Matrix*		100a/100s							
Sample Number	Jo#	Sam	Perchlorap	Νς						Charge	e Number
2212131605 6	)	A	ጷ								
1609 c	1			L							
				<u> </u>				12112			
	-	-									
Relinquished by: Date	/ Tim	e:			iA	ccepte	d by:			Date / T	ime:
12.13.2030		16 39	c	4	In (	$\sum_{i}$	hu	L	12-11	1-22	10840
					<u> </u>	<del>- \</del>				1	
	an 1			- J		,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. PF 5 1 ROJECT B 650-EFF-1 Continued from page N/A de Sempline dedicated butter 40171 B. Pfers 1202444 Time 20/2090529 Perford - 93

PL 7.89 To 16 - 20

Temp 25.5'C 500 - 2.31

EOD 1/86 US/CM "20C - 2.33

To 16 0.38MU 20TH 20966

Phore 700-10.00(19i) Exp 1930 4107530 10/2/5 Pre 2 LOT x 10/2/5/7260(CL) 1001/40( 2621 Samples LOTH 5-mllet 2212090535 0536 5WKI(1) Ltanber NDma (011) 810 4007 CE 01003014 - 0538 CLNONA (FB) 0539 Continued from page N/A Read and Understood By

9 beo 2022 B-118 On Wumch 12-9-22

Date: 9 Dec 2022  Sample Location: 8650 - Eff-									<del></del>	Page of
Sample Location: B650 - EFF-	- /				Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 8220	11-VOA 8260LL	NOMA/DMN/b07	Low Level	Tom WETRUS	Autous/Ark	105 Suzsipe	XGMD Charge Number
2212090535	3			X						5
0536 FB	3			X						<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>
- 0537					X					
0536 FB - 0537 - 0538						X		-		
- 0539 FA	3					X				
Sample Location:				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	VERCHURATE 0850	NOz/NO3 353.2						XGMD Charge Number
	+	$\dashv$		_		<del>-  </del> -				
Relinquished by: Date 9 hec 207	e / Time:		7	Ton an	-1.7	cepted I	by:	h		Date / Time: -22 /0830
				10		, ,				

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Notebook No. PFT5711 OJECT \$650-1NF-1 Continued from page W/A Pulsed for Buffers Semples LOTT LAR JOA 6 4 5 760 (CE & HCL 2621 ALS (3)40mL ), of 2212090557 NONALDANBIOLOGO ICE 01003014 500 PO Hanker ! Had To close Down Stace on Valre going be Alle To get sample because of low - from Wells.

There was a lot of air and Stack Flow in Samples and Ralametras. WOTE! Continued from page Read and Understood By 9 1 cc 2022 B-120

Date: 9 dec 2022  Sample Location: \$650 - FNf-										Page of
Sample Location: 6550 - FNF-	1				Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9220	12-VOA 8260LL	NOMA/DMN/b07	low lever	Tom Werms	Autous/Ark	TDS SN2940C	X G M D Charge Number
2212090557	3	A	X							
0558 FB	3	A	X							
2212090557 0558 FB 0559	1	A			X					
		·								
	ļ									
Sample Location:  Pertinent Notes (if any)	r					al Requ	iremen	t		
Sample Number	# of Containers	Sample Matrix*	PERCHIARATE	NO2/NO3 353.2						XGMD Charge Number
										Charge Number
,										
D.F										
Relinquished by: Date /				107	1 1	cepted	by: — cl	_	12-9	Date / Time: -22 /0830
				3						

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

2-8.22

on Signed

129-22

Date

Date: /2-8.72					-					Page of
Sample Location: BG55 - EFF	2				Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9260	11-VOA 8260LL	NOMA DAW/ 607	low lever	Tom WETRIS	ANIONS/ALK	TOS SNZSHOC	XGMD Charge Number
221208 195	3	A	女	X						
221208 195 - 1056 (FB) - 1097 - 1058	3	1	当常	X						
1097	1				X					
- 1058	(					X				
- 1099 (73)	1	1				X				i
/ (.70		<u> </u>								
				-						
Sample Location:		<u> </u>		A	Analytic	al Requ	iremen	t		
Pertinent Notes (if any)								-		
Sample Number	# of Containers	Sample Matrix*	VERCHURATE 10850	NO2/NO3 353.2				-		XGMD Charge Number
Relinquished by: Da										
Reiniquisned by: Da	ate / Time:				) Ac	repted	by:	-d	12-9	Date / Time: -11 / 0830

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

OJECT	<b>T</b>	3 b	5	<u> </u>	- /	NI	F -	· Z	/									<b>†</b>	Note Conti	boo	ok N	No.		<del>-</del> -		<u>ک</u>	<del></del>		1		
D)EC	1	ful,	Ko	11	/	·	$\overline{T}$	11	17	MQ	th	85				$\overline{}$	<del></del>				-1		اور د	<u></u>		$\overline{}$			$\overline{}$	-1	
100	#	6	= 1		25		No	4	-	-	$\dashv$	6	~		6	es		. /	<u> </u>	_	/ M	1	50			. 1	$\rho$	es	5	$\dashv$	
21L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12	-			Ke		- 4	10	9		0				CC				0		<del> </del>	- <u> </u>	$n \in$	-	PO		=		1	
L* 1	He?	4		01	~ <u>e</u>	+	1	71/	21	< #°	-	8+	11	24	- 4	+		50	, 7	+	6	7	+	+	$\dashv$	-	_	-+	+	$\dashv$	
1		-	<u></u>	+	+	-	+	<del></del>	no	طر نہ	, ,		-	-	-		_	Pfe	2/1	=	$\dashv$	Co	, 7	4		B	<del>7</del> *	P	#		
P&						+	+	<u>'</u> c	DI	. 1	0	1	93	,		2	台	7	-	<del> </del>	70	7	44	+ <			8/		+	$\dashv$	
Tim	e 2	_		100	<b>∤</b> O	+	+	-	- *	1/6	110	TU \				-	10		+	4	1	₽. •	7 /	.3c	70		1/	3	+	$\dashv$	
1	_]	8.	1	-	-	+			1	14	1	D	4	(O)	2.		, U		$\dashv$	-//	$\overline{}$				-	<del>}</del>					
Den	7//	1 1	5.1			_	_	-	-	- 1		6				. S	خ		+												
Con	4	1 1	590 0.5	1.4	nca	7	+	+		7'	10	577	∓ سوست		09 (				1												
PINC	o he	+-	l l		<i>0.</i> 0	20	1	+		. (	El	KP	1	ľ	36	1 ' 1															
PhP	) A 5	+	7.0			,	+						/	1	1					land or									1		
100		-	/				+																								
+ + +		+									3	50	M	PJ	P	2															
150	ny	01	en	#_	,	A	Inc		\y.	5	2		P	~	è s	0,	_ نىلىسا	e		10	J3	Ŧ_	_	LA	ŁB.		-0	l	1 - L		
21208							J		1 b		Ta	9		16	E	3	Hc	=	2	و	2			14	lS	(	3)	Ya	mi	2	ò
		026	1 !							Da	1	 				, ,	L			i	1				<u></u>	-	ļ!				
	té	927	,					l	1	F	B)					2 (				-	,			<u> </u>		-					
	11	028	1				$\sim$	12/	MA	101	nW/	1360	140	60	>_	1 1	E		9/a	20	23	0	17:	Sil	PR	11	1) (	[+	=~	be	/
	16	029						 	'	[	Du	P)	<b>\</b>	-	-	/ (				ι	1		<u> </u>	<u> </u>	<u> </u>	-	-			$\vdash$	
					$\square$			<u> </u>							+		-	-			-	-			-	-	+	-		$\vdash$	
	_		1		<b>_</b>			<b> </b>			-	-				-		-				-	-	ļ [']	<del> </del>	-	-	+	-	$\vdash$	
4-+	_	-	-			$\vdash$		<u> </u>			-	+	<del>                                     </del>	-	-	-	-	+	-						-	-		-	+	$\vdash$	
		-	$\downarrow \downarrow \downarrow$	<del></del>				<del> </del>		ļ'	-	+	-	-	-	-	-	+-					-		+	+	+-	-	-	$\vdash \vdash$	i
-	-		+-		$\vdash$	$\vdash$		+-		-	-	+	-	-	-	-	-	+	+	-		-	+-		-	+	+	-	+-		i
	_	-	-	$\vdash$		-		-		-	-	+	-			-	-	+-	-	-		-	-	-	-	+	+	+	+-		ł
			+	$\vdash$				-		-	-	+	-	-	-	-			-		-		-	-	-	-		+	-		ĺ
-		+	+-		-	+		-		+	-	+	-	-	+	+-	-	+	-				+-	<del>                                     </del>		+	+	1	+		l
-	+	+	+-			-		-	+-	+			1		+	+		+-							<u> </u>						ł
++	+	+	+			-		-	+				+	+	+		-						1								İ
+++	+	+							+	1					+	1															
		+	+			'											†		+_				<u></u>						<u> </u>		
									1				1_	1_												$\perp$	1_	1_			
															L	<u></u>								<u></u>					1/	لـلِ	1
																					<u> </u>		Co	ntinu	Jed f	rom	page	^	VII	4	1
			_												Rea	ad an	d Ur	nderst	tood !	Ву	_										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	/	10	19	1						<b>ر</b> ا	Ų	. 2	2			1	<u>)</u> .	1	1		).		,	)			12	9-	22	-	
			ianed	<u></u>						12	U Da			. В	-124		gr	<u></u> _	V ∖ s	J igned	+	<i></i>	~	n	_			Da	<u>22</u>		i i
																				-										~ .	- 10

Date: 12-8-22	· · · · · · · · · · · · · · · · · · ·						··			Page of
Sample Location: BG55 - INF	-2				Analyti	cal Req	uireme	<del></del>		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 8260			1	33		105 SNISOHOC	X6MD Charge Number
224208 1025	3	1	X							Charge Number
	3	1	X	·						·
1026 (Dep) - 1029 (FB) - 1028	3		X							
- 1028	1				X					
- 1029 (20)	١	1			X					
										· · · · · · · · · · · · · · · · · · ·
Sample Location:				A	nalytic	al Requ	iremen	t l		
Pertinent Notes (if any)						<u>_</u>				
Sample Number	# of Containers	Sample Matrix*	VERCHIARATE 18850	NO2/NO3 353.2						XGMD
										Charge Number
Relinquished by: Date	155									
12.6-	/ Time:				1 Ac	cepted l	by: 			Date / Time: 122 / 083 0

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Notebook No. D32#/Z7617 *ROJECT Bm-7-509 ENU.0053 Continued from page V/A Bob TUFIS & Tong Torce present 12-5-22 The weather is cleans GOOC. This WECC will be pursed & sampled asing a dedicated TExcon 5/Addingump Samples collected from A TEXON DISCHARGE TUSE. Paniameters collected From An Moster Agua Troll 500. Carboy 6-2 NTW498.73 Calibrations Do Cal'd 14 100% SATGRATION COND CALD IN 1413 45/cm Theb cal'd in 25 NTA STANDAND pH cald , ~ 4,7,10 B4FF615 Parameters TEMP Do Cons SAMPLE # ORP TUAL 27/20509200 408000 20.500 7.54 4.81 5.39 205.4% 0971 1,077.9 20.70 5.34 206.3 755 4.93 - 0972c 1,080.5 20.69: 5.47 4.78 7.54 706.3 TRA Blanks PRESCAU Lab ANALYS CAF SAMPLEAT 3) 40 ml vials 14E/Act Als 721205 0700C 876066 100 11) Ict Amb En 07010 (CNOMA 5pt SAMPLES PRESELW 45 Sample # ANALYSIS Coli (3) 40 ml vids 221205 09250 4(5 826.11 if 1Hel 0926c "(F,3) 1) ILK Amben - 0927c ((NOAA SAI "(FB) 0878c

Read and Understood By

12.5-22 B-126 You Wunch 12-6-22

Continued from page

Date: 12-5-72									]	Page	of
Sample Location: Blm-7.509				A	nalytic	al Req	uireme	nt			
Sample Number	# of Containers	Sample Matrix*	876011	1 745 4						T6 Charg	∽∆ e Number
221205 0700C (TB)	3	A	4								
07010 (18)	l			x							
0925c	3		ょ								
- 0976c (FB)	7		K								
- 09776	-	6		入	_						
0927c (FB)	(			Ø							
Sample Location:		T		A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#	Š								Charg	e Number
Relinquished by: Date  7 22/05	Time		20		u V	ccepte	d by:	-d	12-6	Date / T	ime: 1845

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12-12-2023 B-128 JOW

1

Date

Date: 12-12-2022											Page /	of <u>1</u>
Sample Location: 34m-27.270				Analytical Requirement								
Pertinent Notes (if any)												
		, s	*									
		# of Containers	Sample Matrix*	ے،	(	<u>V</u>	þ					
		Cont	ple N	V 06	(00)	1	]					
Sample Number		Jo#	Sam			7					X6M	ge Number
		3		4			<u> </u>				Char	ge Number
ठेठाठाठ ०५३६ ८		3	12	ļi					<u> </u>			
0936 c				9				-				
0937 c	FB	3		9								
0938 c		1			8							
0939 c		2				<b>y</b>						
1030 (	BC	3		8								
1031 6	BC	1	1	_~	×	-						
Sample Location:				Analytical Requirement								
Pertinent Notes (if any)			<u> </u>		1 mary nour requirement							
·		ners	trix*	\ \\ \\								
		ontai	e Ma	145   145								
		# of Containers	Sample Matrix*	3								<u>-</u>
Sample Number			Š	۷		1	<u> </u>	<u> </u>			Charg	ge Number
22121210326	BC	2	0	X								
										•		
,,			<b> </b>									
		-										
Relinguished by:				·   · /	Α.		11			D : //	r:	
Relinquished by: Date / Time:				Accepted by:					10	Date / Time: 2-13-22 / 0840		
13-13-3037 1100			Tor W \ lundy					12-	17-26	10790		
				_		)						
						,						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 12 / 13 22										
12/13/22			Ī							Page of
Sample Location: BLM-42-569  Pertinent Notes (if any)	1	I		A	nalytic	cal Req	uireme	nt T	T	·
Fertilient Notes (II any)				¥						
	ers	rix*	7	LL NomA						
	# of Containers	Sample Matrix*	8260	>						
	f Col	nple	326	7,						
Sample Number	0#	Sar		7						Charge Number
2212130750A (TB)	1	A		<u></u>						Xamb
1005A	3	A								и
1006A (FB)	3	Α								L
1007A	1	A		/	-					C)
1008A (FB)		A								
Sample Location:				A	nalytic	cal Requ	uireme	nt		
Pertinent Notes (if any)										
		*								
	iners	atrix								
	# of Containers	Sample Matrix*								
Sample Number	) Jo #	Samp								Charge Number
Sumple Number						<u> </u>				Charge Number
	_									
		i			-					
Dalin and day 1	/ m:			<del>                                  </del>			11			7.
Relinquished by: Date Cray Del Ferro 12/13/22	/ 11me	<u>:</u> 1	+	10	' \ [	Accepte		T)	10.11	Date / Time: -22 / 1.840
Mary MI Jumo 12/13/22	711	ΙΟΛΙ	<b>Z</b> .	1/0	<u>u V</u>	$\bigvee$	llu-	M_	112.14	-22 / 6890
		***								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT BLM-42-709 WII ENV-0053 12/13/22

Craig Del Ferra

Read and Understood By |2|3|22 | Date | B-132 | Date | Box | Bate | Date | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate | Bate |

Continued from page X/A

Date: 12/13/22							,			Page	of	
Sample Location: BLM-42-709				A	nalytic	al Req	uiremen	t				
Pertinent Notes (if any)												
Sample Number	# of Containers	Sample Matrix*	770928	LL NDMA						Cha	ırge Nur	nber
2212131440A	3	A	~							Χſ	MD	
1441 A (FB)	3	A	~								u	
1442A (MS)	3	A	~		<u>-</u>						ц	
1443A		A		~	_						<u> </u>	
1444A (FB)		A		/							4	
Sample Location:  Pertinent Notes (if any)	Т	T		A	nalytic	al Req	uiremen	t				
	# of Containers	Sample Matrix*										
Sample Number	#	N N								Cha	rge Nur	nber
					-							
												- · · ·
Relinquished by: Date	/ Ţime	l ⊖:			) A	ccepte	d by:	<i>r</i>			/ Time:	
Craig Oll Emo 12/13/22	15	45h	rs		m		llu-i	L_	12-14	1-22	1081	10
									f			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

1 **ユ- パシース ロコス** B-134

W √ ∫ W Signed 12-14-22

Date

Date: 12-13-2022	-									Page	of
Sample Location: Bw - 7.2//				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	ု	*			ام ۱						
	# of Containers	Sample Matrix*	ر ان	_	2/2424						
	Con	ıple l	なり	ردم	(g)					46.5	
Sample Number	# of	San			6	•				スらへ! Charge	Number
22,2/30826	3	4	X	-							
0827 c FB	3	1	X								
_	1			X							
0828 c					X						
0825 6	Q	,			^						
					_						
Sample Location:		Г		A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	ers	rix*									
	# of Containers	Sample Matrix*									
	of Co	mpble									
Sample Number	#	Sa								Charge	Number
Relinquished by: Date	/ Time	e:			A	ccepte	d by:	,		Date / Tin	
12:13:202	<u>a</u> 1	0900	2	_  \	ru V	$/\setminus$	، سىنر	h	]2-1	4-22 /	0840
									•	1	1
					· -						,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Tony Torrez & Crain Del Ferraro present. Weather is cloudy, cool, & windy . This well will be purged using a dedicated bladder nump. Samples will be collected using a testion discharge hose. Water quality parameters will be monitored asing an In-Situ Aqua Troll 500. Carbog G2 in use. 23.47 % 2030FT Do sensor - calibrated in 100% saturation. Conductivity sensor - calibrated using 1413 uslom std. solution PH sensor - ralibrated using 4, 7, and 10 puffers Turb. sensor-calibrated using 10 NTU std. Parameters (time) temp (c) cond (uslan) PH Turb (NTUS) DTW(Ft.) ORP DO 2212121400BA 2067 1001.3 183.7 7.84 4.41 20.32 3) - 1406\$A 20.69 183,0 7.85 1002.8 (4.32) 20.34 7.85 { 14.20 18271 998.3 2,85 (fransducer) Samples Container Preservotive 221212 14108 1410A VOA by 8260 (3)40ml vials 2649-1 ice (HCL 1411B 1411A -14128 1412A 607 (Bromaci) (i) LAmber 01003014 1ce Total gallons punged (tow) Initial DTW - 20 30Ft. (transducer reading Continued from page

Read and Understood By

Charge Del Ferro 12/12/22 B-136 for Junch 12-13-22

Date: 12/12/22										Page	of
Sample Location: PL-2-504	_			Α	nalytic	al Requ	uiremen	ıt		-	
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*	8260	L09							
Sample Number	#										e Number
221212+40 1410A	3	A	~							XGr	nD
1411A (FB)	3	A	~							4	
1412A	1	A		<u> </u>						u	
Sample Location:				A	nalytic	al Requ	uiremen	t			
Pertinent Notes (if any)				·							
Sample Number	# of Containers	Sample Matrix*								Charro	a Namahan
Sample Number										Cnarg	e Number
											<u></u>
	<u> </u>										<del></del>
	-										
Relinquished by: Date	/ Time	ż.		<del>-   /</del>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	gcepte	d by:			Date / T	ime:
Cray DOFormo 12/12/22	/15	500h	ന്ദ.	10	Ju (		Ju-	-di	12-1	3-22	10840
	-			+0			_/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 12/12/22									]	Page of
Sample Location: PL-4-464				A	nalytica	al Requ	iiremei	nt		
Pertinent Notes (if any)									-	
Sample Number	# of Containers	Sample Matrix*	8260	LL NDMA						Charge Number
2212120730B (TB)	3	A	/							XGMD
0731B (TB)	1	A		~						
0925B	3	A	~							<u> </u>
- 0926B (FB)	3	A	~							
0927B	1	A								<u> </u>
092BB (MS)	1	A								4
	1	A								4
Sample Location: PL-4-464				A	nalytica	al Requ	uiremei	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	LL NDMA							
Sample Number	#									Charge Number
221212 0930B (FB)	1	A								XGMD
						•				
Relinquished by: Date Craig Defection 12/12/2	/ Time	: [00]	hrs		) (A	ccepte	d by:	Ju	2-1	Date / Time: 3 - 22   0840

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT	and the same																				ia iro							$\Box$	T	_
Matt	Ga	rc	ìa	_6	Š	50	<b>b</b> .	ار	1	42	Do	es ·	217	十.	u	Je	at	he	C	$i \leq i$			Pal		C	0	ן פ	7	hi.	5
one	4	ند	11	6	e	کے	ar	nf	) le	0	$\boldsymbol{\omega}$	<u>5 i</u>	70	اج (	5	57	ain	إعل	22	5t ^	æ	X	71	įρ	12		(1)	100	1	
amp	le	_	υb	25		Yr.	ماه	<u>-</u>	-4	95	-		) ၂	<u>(</u> —\		1	1 1		1	-	1	to	rn	12	Øl.	B	a	pr	96	E
Prior	49		Sa	m	PI	in	9.	1	DC.		.39	۱۵۱			a	U.C	) O	<b>3</b>	<b>-</b> 0	21								+		_
+ + +							$\vdash$	l		ļ					- C	. 1	1.										$\vdash$			
							1				n.	E	90	本	- [	219	nK:	۲							,				,	_
amp									Q	15			שע	<u>25</u>	2	re'	-10-	2	رے:		n		1 1	i		o <del>-1</del>	1 1		La	
22121						1	1	l l	1	1	1		1		1	tcl	-										1-1 01		<b>A</b>	
	- 1	4 3	<u> </u>	<u> </u>		L	( )	סש	M	<b>A</b> _			١	20					. ال	12	Ar	104	24		), e	υ _{&gt;}	<b>D</b> []	-		_
	_				1	ļ		-	<del> </del>	+-		7		,								4.							$\dashv$	
Initia					1 -	er	1 -	1			3	<b>士</b>	<u>م</u> و ا ع	4		\ <b>-</b>					-	N	01	4	1	+	<del>  •</del>			_
PH				15	0	423	Y	-		<del> </del>	<del>  ^</del>		۱ ط . اع		10	× /	<b>y</b>						757	7	OV	O	- 4			_
	. 7							-					u								-			l	7	<b>b</b>	-		<b>—</b>	_
remp														<del> </del>													-5 2			
	-						<del> </del>		-	<del></del> -			13	I	í	1								12	04	)	- 5 - 5	7.0	34	
Turb	-	.0	27	^ <b>f</b> `\	5		1	9.	700	<b>)</b>	<del> </del>	<u>    •</u>	1 2	4/			40	2.4	/ °C	)	-	<u> </u>			1	1	-12			
TH Pre	_ /	• •	) <u>Z</u>	/_(			<b>o</b> `		1	1		7 .	00	,	10	0.	4				R	. Ω.	Pec				4			
)4 Past	,				-	C	<del> </del>	-	<del> </del>	-	<del> </del>	11	41.	1/	70	·C	6				- 4	7		3	_		2.4	1	- 1	_
DTW					1								7 <i>1.</i> 2.									10	-	LI LI			30		7	
4TMOS	_		, ( )	צי	7,0								2.	) ~!	W51	_							_	-	70	• =	20		- / 64	_
						<del> </del> -		1	<	<b>*</b>	m	$\sim$ 1		•								-	-							
ampl							\ \ \			<u>مم</u>		וץ	9)			1,	e			~	nto	,			-	10-	1		La	
221215		2 11		レ -		-	Γ	1	<b>□</b> ∪	י זי		•							l .		ML	1		1			T	1	4	
	-09						1		BZ O		46			<u> </u>	ce		٧	(	ررا	,	Am	1-0	A 12	2			3L H	,	51	
			3 3 シ				1	4-	:		ne.	97			در			C	)) (	2	ul,	De A			10	32	PL IT	1	A	Ŀ
	$\exists$					-	-,			YXU	re	06	W	<u> </u>		<u> </u>		· ·	<i>)</i> & ?	OA	u,	#m	261			-				_
	1							-	<u> </u>	-			<del> </del>				<del> </del>													_
					-	<u> </u>	-																							
									$\dagger$		<u> </u>																		1	
									+																					_
Runs.		١.	<b>\</b>	2	.0	<u>ጻ</u>	2)	) 2	22.	a,	<del> </del>	3	) 2	7.	85			77	ع .	31	1									_
				1	1.6		-/	- 1	T	az	†	-		1	28				ر انگ		1				†					_
				21	. C	3			21.					_	0-		1		0.0			-				<del> </del>				
				2	7	86			2 2 .	82				1	70	1		l	2.0											_
				~	<b>4</b>					٦	<b>†</b>			٠ ٢ ١	1					<u> </u>	1			<b>†</b>						_
			1	1	1	1	1			-		L	L	L	1	1	-	L		<b></b>	+		+		1			ــــــــــــــــــــــــــــــــــــــ		—

Read and Understood By

But 1/6 Signed

12-15. ZZ B-140

Date: 12/15/22				-				-		Page _ l of _ l
Sample Location: PL-8-455				Ā	Analytic	al Req	uiremer	nt		
Pertinent Notes (if any)			7		V					
	2	**	VOA BZGOLL	2	jo Yanz					
	# of Containers	Sample Matrix*	326	LLNOMA	010					
	Con	nple l	4	1	700					
Sample Number	- fo#	San	9	77						Charge Number
22121509454	3	A	X							X6MD
	1	1		Y						
1623Y	1		4		V					<b>V</b>
			X	v		, ,,,,,				
2212141453x (EB)	ų.			X						
•				**						
					,					
Sample Location:				F	Analytic	al Requ	uiremer	nt		
Pertinent Notes (if any)										
	<u>8</u>	**								
	taine	Matri	t							
	# of Containers	Sample Matrix*								
Sample Number	# 0	San								Charge Number
	/ Time	e:		1/2	) 4	ccepte		- f		Date / Time:
Wet Der 12/15/2	22	. <u> </u>			)ru	$\prod$	\ un	-dh	12-1	6-22 /1030
						,				<u> </u>
				J				\$10		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tufts present. Weather is clear & cool zone will be sampled using 5 stainless steel triple rinsed Sample tubes. Probe - 4951 Surface checks performed on Orabe prior to sampling. IDW ·5001 Carbon - G1 30 min Equip. Blanks Sample Analysis Dreservative container 22121410451 VOA BZGOLL ICE/HCL (3)40 ML vials 2647-(1) 1 L Amber -1046y LL UDMA 0100301H Ice 5ÞI nitial Parameters Meter ID 22121414124 Time - 22121413134 PH/cand -8.21 Turb (e 9 6 8 17.100 19.70 -59.5 mus Temo (c 5+d (c Rdg 113505/cin 1071 uslen 59 8 2003 2.53 NJUS " Lot - 210946 1.09 MTUS Turb 4.96/10.03 (19.10) PHORE 6.95/10.00 (18.900) CI EXP - 12/31 PH post. 6. 97/10.05 .99/10.03 440.87 F1 440 95 ft DTW 1202 444 ATMOS- 12.17 Psie 12 12 Psia 4107630 Samples Analysis Preservative Sample Lab 22121413404 (3) 40MC vials VOA 8260LL IcelHCI 2649-1 13414 (1)12 Amber SKI LLNOMA 01003G1 H Ice 050922-165 14074 qc A125 1,4-010 your 8270D 14084 CC cc (us) (1) 250Mc Amber Trip Blanks Analysis Preservative Sample container Lot (3)40ML VIals 2649-1 UDA 8260LL sce/HCL 2212140939V ALS LL NDMA (1)14 Amber 09404 SKI 1ce 01003014 3 88.26 Runs -2) 88.80 1) 87.52 86.48 86.45 86.91 84.39 86.41 86.47 87.33 88.14 88. 13 Continued from page Read and Understood By

12/14/22

B-142

on wuch

Date: 12/14/22	_	<del>-</del>				-		•		of
Sample Location: Q-8-605				F	Analytical	Requirem	ent	T.		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	VOA BZGOLL	LL NOMA	1,4 Dioxane				Charge 1	Number
22121409394 (13)	3	A	Y						XGN	
0940Y (TB)	i	1		X						
1045Y	3		X							-
-10464	1	,)		X						
1340Y	3	1	X							
13417	١			X						
14074	1	V			X				V	
Sample Location: PL-8-605  Pertinent Notes (if any)				Ā	Analytical	Requireme	ent			
Sample Number	# of Containers	Sample Matrix*	1,4 Dioxane						Charge N	Number
221214140BY (MS)	1	A	X					1	X6 M	
									,	
	e / Time	e:			Acc	cepted by:	0		Date / Tim	/
Moth Danne 12/14/20	<u>- 1</u>	530		16	mW	\ m_		12-19	5-22/	0930
	·								/	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvorsen & Craig Del Ferraro present. Woother is clear & cool This zone will be purged and sampled using a FLUTE system. Samples will be collected using a declicated discharge hose. Purge pressure set @ 227psi, sample pressure set @ 227psi, sample pressure set @ 205psi, flow mater set @ 3psi, and bubbler stable @ 9psi, There will be a 15 minute recovery between purges. Minimum of 4 gallans purged prior to sampling. Carboy G5 in use. Pre-Sample parameters PH - 8.82 Meter ID Transducer pressure 28.84 psi pH(cond-91 Temp - 21.0°C temp 24.32 c depth - 66.53Ft. Std - 4.20 UTU'S Cord - 1213 us/cm Turb - 0.79 NTU'S rdg - 4.30 NTUS u Exp-12/31/22 Time - 22120514093 Buffers Lot PH - 875 Temp - 20.41 c 7 1202A44 Cond + 1206 45/cm 10 4107E30 Turb - 0.94 MTV'S pH pre - 7.09/10.06(21.10) Hpost - 7.10/10.05 Preservative Container (3)40m vials 2649-221205 1410 \$ ice HCL VOA by 8260LL 14118 (1) 11 Amber 01003014 Low Level NDMA 14128 1413 18 h (FB) (1)250mlamber 050922-1GJ 1,4 Dioxane by 82700 ALS 14143 IDW- 5 gallons Continued from page Read_and Understood By

Craig Del Ferro

12/5/22 B-144 Yorn W Jumbs

12-6-22

Date: 12   5   22					-					Page	of
Sample Location: PL-11-470				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)				-							
	ers	ix*	77 0928	LL NomA	Dioxane						
	# of Containers	Sample Matrix*	ુ	3	×						
	oy jc	mple	32	7	Ã						
Sample Number	#	Sa	5		•				<u> </u>	Charge	Number
22120514103	3	A	~		_					X G	n D
1411B (FB)	3	A	~							u	
14128	1	A		~	_					u	
	1	A		-	•					ч	<u>-</u>
14148	A	A			~	•				4	
											_
											,
Sample Location:				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	LS	x*									
	ıtaine	Matri									
	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charge	Number
Relinquished by: Date	/ Time	e:		11.	) _\ A	ccepte		<u>f</u> )		Date / Tir	7
Craig Del Fermo 12/5/22	15	36h	rs.	118	in L	<u>U</u>	\ u-	-ch	12-1	0-22	10845
	·			$\perp \downarrow \lambda$			)			***	,
				"							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Raig Rel Fermo

12/5/22

B-146 Ver Wunch

Read and Understood By

12-6-22

Continued from page N/A

Date

Date: [2[5]22										Page	of	
Sample Location: P2-11-530				A	nalytic	al Req	uireme	nt				
Pertinent Notes (if any)					,					1		
	<u>&amp;</u>	*	77	LLNDMA	Dioxane							
	# of Containers	Sample Matrix*	826011	Ũ	Š							
	f Cor	nple	32,6	77	70,							
Sample Number	0#	Saı	ω	7						Charge N	umbe	r
22120514308	3_	A	<u></u>							XGM	D	
1431B (FB)	3	A	<u></u>							u		
1432B	1	A		~						1.		
14338 (FB)	1	A		/						4	-	
14348	1	A				-				4		
14358 (FB)	1	A								4		
Sample Location:	•		1	A	nalytic	al Req	uireme	nt				
Pertinent Notes (if any)												
	ış.	**										
	ntaine	Matri										
	of Containers	Sample Matrix*						i				
Sample Number	#	Saı								Charge N	umbe	r
											. <u> </u>	
	/ Time				A	gcepte	d by:	1	1.3	Date / Time		
Cray All Fund 12/5/22	15	30h	rs,	10	in 1	<u> </u>	Jim	-ih-	12-6	0-22 /0	845	
				$\downarrow \downarrow$			1					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvorsen & Craig Del Ferraro present. Weather is clear & cool. This zone will be purged and sampled using a FLUTE system. Samples will be collected using a dedicated discharge hose. Purge pressure set @ 227 psi, sample pressure set@205psi, flow meter set@ 3psi, and bubbler stable @ 9psi. There will be a 15 minute recovery time between purges. Minimum of 4 gallons will be purged prior to sample collection. Carboy 65 in use. Meter ID Pre-sample parameters PH/cond-91 PH - 8.56 pressure - 31,14psi temp - 24.08 c depth - 71.84 ft Temp-19.6°C Std-4.20 NTU'S Cord - 125 Tus/cm Turb - 0.62 NTU'S rdg-4,28 NTU'S 0+-210966 4 Exp-12/31/22 Parameters Time - 2212061400B Buffers Lot PH -8.62 7 1202144 Temp - 20.0c Cond - 1251 us cm Turb - 0.55 NTU'S 10 4107E30 1/23 pt pre - 7.08/10.13 (18.0.6) pt/past - 7.09/10.11 Samples Container Analysis Preservative Sample (3)40ml viels 2049-1 VOA by B260LL ice/HCL 22120614018 u (FB) 14028 (1)11 Amber 0100301H Low Level NDMA SRI - 1403B - 1404B u (Duple) u (FB) -- 1405B (1)250ml amber 050922-16J 14068 1,4 Dioxane by 8270D IDW-5gallons Continued from page

Craig Del Ferro 12/6/22 B-148 Or W umch 12-7-22

Read and Understood By

Date: 12 6 22										Page	of
Sample Location: PL-11-710				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)				4	Ø						
	ers	*xi	17 0928	LLNDMA	Dioxano						
	# of Containers	Sample Matrix*	35.2	3	) (o						
	ofC	ample	Œ	7	P						
Sample Number		I						<u> </u> 		Charg	e Number
2212061401B	3	4								XGM	ND
1402B (FB)	3	A	-							u	
14038	1	A		<u> </u>						u	
1404B (Dupl.)		A								· Le	
1405B (FB)		A		~					-	ų	
		H			~					4	
Sample Location:		1		A	nalytic	al Req	uireme	nt	<del></del>		
Pertinent Notes (if any)											
	iers	rix*									
	ontaii	e Mat									
	# of Containers	Sample Matrix*					-				
Sample Number	#									Charg	e Number
		_									
							***		<u> </u>		
					-				_		
Relinquished by: Date	/ Time	<u>.</u>		/		000545	d h			Date / T	<b></b>
Cray Del Ferro 12/6/22	7	30ht		Tor	$-\Gamma$	ccepte	<u>а ву:</u> Ип. _с	lai	112-	Date / 1	0830
my million lateral	13.	<u> </u>	<u>-3, </u>		vv	$\frac{1}{2}$				-22	10070
				-		/					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

		Ti			•	1	Γ.	_		_	1				11	1		,		- 1	,					,					
an	14	alv	bY.	en	٤	Cr	cui (	D	el t	en	ar	0.1	ore	ren	t.	W	244	1er	- 15	c	ea	<u> </u>	co	01.	7	hi.	₹ 7	on	e		
الأز	b	D	un	ed	La	nd	Sc	m	led		ادی	^ 4	a	F	LU	Te	<	vc+	Pm	\ \	Sa	MD.	bc	(a)	<i>i/1</i>	6	<b>C</b>	110	ct	1	
			1.1	5	لما		ع ز د			. 1	20	50	ī	<b>)</b>			ر م	7	Ga	-0	4	<b>3</b> 7	יבו	1 _	-,						
sir	<b>\9</b>	2 2	reco	ıca	۲	1	413	7116	N GR	-	10.	) E	2	uv:	ge	1	7 E.S I I	<i>JUI</i>	11	26	<u>_</u> [		1	P	5 <i>1</i>	, 3	a W	$P_{ij}^{II}$	l	ecr	une
41	1	20	2]	251	, 7	10	$\omega$	me	Ter.	S	er	<u>e</u>	31	P 5 1	4	no	l P	ub	b l-	ev	۲2	a	sie	(c	7	P	5/.	7!	rev	6	
2111	Þ	a	17	<b>^</b>	VΛ	ut:	es_	rec	074	er	4	Hr	ne.	by	etu	ver	en	P	ur	g e	5.	N	in	<u>im</u>	un	1 (	ッチ	4	99	llo	nd
2111	b	e P	ur	qea	1	pr	1'OY	- +	0	Sa	m	pli	Μq		Ca	rb	04	$\mathcal{G}$	5	in	ч	se									
		1		<i>)</i>	į							ļ	J				ر														1
re.	_ <	-	1		<b>~</b> ~	Cri.	m a		-c				-		~ ~	1.,	يرور					IA	۸.,	L.							$\neg$
74		O	7		<u> </u>	L W	me	14.	_						1	r .	1 1								Г			0	•	-	$\neg$
7	T	0.	7 0	•													rea							•		nd	-	9			$\dashv$
₽m!	<u> </u>	119	ه.	ر								-					o f						$\mathcal{I}$	w	<u>гЬ</u>			6			
<b>OD</b>	d -		19	45	cm	۸							tr	01/0	+	Vai	750	duc	w				4		5	td	-	4	,20	W	16
ur	Ь-	-0	.6	0	υT	;	5																u						28		
																									1	1		2	09	, ,	
,		1					†								-								·			D.I.		ا	07	90	_
ara			_				<u> </u>																h			XP		21	31	22	4
IM	9-	೩೩	12	06	.14	ZC	B															_	N F			,			_	_	
4	-	8.	33	<b>)</b>																		<b>\$</b>	ut t	ers		Lo	<u>*</u>		₫	X/	
3 ME	. –	- 19	9	C																			7		12	OS/	44	4		12	
					10	-																			1	76				las	
ono	_	-	-7		L''	5																	•			, ,				, a.	
11	1			1.	10		1.																								-
Hp	e:	11	114	1	٥.	10	L	1.1	<u>c)</u>																						-
H po	st	+7	.11	110	0,0	8	-								ļ															_	_
1	1																														
														5	2 100	p	05														
3		1						Ana		- 3			D			17.	1			201	I	1			1	1			1	1	
<u> 21:</u>	Y P	12		0									11	ese	_	Τ-	1 1		<u> </u>	201	Ma	vne	1		_	ot			<u>_</u> 4		$\dashv$
<u>ط ا</u> :	10		1	1			YOF	b	y 🌣	- 1	<b>\</b>	<u> </u>		Ce	11	ICL	-		کی	)40	m	VI	a S		26	49-	- [		H	_S	$\dashv$
+	-	1 -	72						• (	FR	-				u	<u> </u>						u_				u			E		
+	-	. 1	2	B_		L	ou	L	evel			A.N			ice	ļ			(1	) [	. A	mbe	r	0	loc	30	1H		\$	PI	
		. 14	12	ŁB				(	_ (	FR	)				u						-	u				u				u	
										·																					
						•										<del> </del>															$\exists$
+		+				-				-																				-	$\dashv$
														ļ																-	_
$\overline{\mathbb{D}}$	Ψ		5	go	<b>N</b>	20	\S_			-				_		ļ															$\perp$
				٦																											
																				_										T	
															<u> </u>																
+		1	<u> </u>	-		<del>                                     </del>								-	-									C ~~	ntin	ad fr	\m n	i	,,,,	 1	$\dashv$
	_L	_!	<u> </u>	L	L	L					l			L	L									COI	itiiiu(	-u 11C	, n pe	-9 ^c	NY	<u>†                                      </u>	

Craig Del Zemo

12/6/22

B-150 Signed um ch

12-7-22

Date

Date: 12 6 22										Page	of
Sample Location: PL-11-820				A	nalytic	cal Req	uireme	nt			
Pertinent Notes (if any)				~~	-					1	
	ırs	* X	77	LL NOMA							
	# of Containers	Sample Matrix*	356011	N							
	f Cor	mple	00	77							
Sample Number	#	Saı					<u> </u>			Charge N	lumber
2212061421B	3	A	_							XGME	)
1422B (FB)	3	A	~							ų	
1423B	1	A		~						q	
1424B (FB)	1	A		<u></u>						ų	
						<u>.</u>					
		·									
Sample Location:				A	nalytic	cal Req	uiremer	nt			<u>.</u>
Pertinent Notes (if any)											
	ers	ix*									
	# of Containers	Sample Matrix*									
	oJ Jo	ımple									
Sample Number	#	Sã								Charge N	umber
	_										
					<del>-</del>						
					<u> </u>						
	/ Time	1		+t	/	Accepte		-lı	14 -	Date / Time	
Gaig Del Ferro 12/6/22	415	30h	<u>ে                                     </u>	10	r (	<b>√</b>	Jun	- du	12-1	-22 C	930
		.,_		$+$ $\emptyset$		<u>.</u> .	1				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvorsen & Craig Del Ferraro present. Weather is clear & cool. This zone will be purged and sampled using a FLUTE system. Samples will be collected using a dedicated discharge hose. Purge pressure set @ 227,000 sample pressure set @ 205 psi, flow meter set @ 3 psi, and bubbler stable @ 9,000, there will be a 15 minuter recovery time between purges. Minimum of 4 gallons will be purged prior to sampling. Carboy 65 in use. Transducer

pressure - 32.28psi

temp - 24.24°c

depth - 74.47ft Meter ID Pre-Sample parameters PH-8.29 pH/cond - 91 Turb - 6 Temp - 20.3 C Std - 4, 20 NTU'S Cond-1075us/cm rdg - 4 28 NTU'S Turb-070NTUS 10+ - 210966 Exp-12/31/22 Parameters Time - 2212061435B Buffers Lot PH - 8.36 1202 A44 Temp - 20.5'4 1/23 Cond - 106 Tuslem Turb - 0.63 NTV'S 4107E30 pHpre, -7.09/10.11(17.90) pHpost -711/10.10 Samples Preservative Container Sample Analysis (3)40mlvials ice / HCL 2212061436B VOA by 8260LL 14378 (1) L Amber Low Level NDMA -1438B SRI 01003014 u (FB) -1439B IDW - 5 gallons Continued from page N/A

Read and Understood By

Craig Del Temp

12/c/22 B-152 Jon Wumch

12-7-22

Date: 12 6 22									1	Page 1	of	<u></u>
Sample Location: PL-11-980				A	nalytic	al Requ	uiremer	nt				
Pertinent Notes (if any)				Æ								
	ners	trix*	77	LL NDMA								
	# of Containers	Sample Matrix*	170928	2								
County Noveles	# of C	Sampl	82	רו		;				Class		<b>.</b>
Sample Number		A			<del>.</del>						me Num	oer
2212061436B 1437B (FB)	<u>ო</u>	A								70	(WID	
1431B (18)	) -	A		<b>-</b>						4	2	
1439\$ (FB)	<del> </del>	A								4		
- 1,576 (10)		-11								4	<b></b>	
	-											
					,							
Sample Location:				A	nalytic	al Req	uiremei	nt				
Pertinent Notes (if any)												
	ers	rix*										
	ontain	e Mat								:		
	# of Containers	Sample Matrix*										
Sample Number	#	01								Cha	rge Num	ber
			*									
	/ Time	ı	1		) A	ccepte	d by:	f)		Date /		
Cray Determo 12/6/22/	153	ohre	5.	10	u L	$\sqrt{\ }$	lu-v	<u>h</u>	12-7	-22	1083	0
•			_	-						· · · · · · · · · · · · · · · · · · ·		
				11								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob TUFTS & Toney TONEZ PARSENT ON 12-7-22. The WEATHER OUEACAST & cool. This zone will be pursued & sampled using A dedicated TEFLON bladden pump. Samples allected From A dedicated TEFLON discharge Tabe. Parameters collected from A Agua Troll 500 from INSTA. Transducen 20.76 FT Cald IN 100% SATANATION DO SEVEN 16.72 E 73.46 -Condstron calld in/4/3/solum strandard PH SENSON RAL'D IN 4,7,10 Buffers. Tunb senson Ral'd IN 20 NTU Buffers Paname Tens Corrd TEMP PH SAMPLE # onp 72120705200 959.20 19.89° 7.26 276.4 6927 957.33 6927 958.15 5.75 225 9 19.85. 7.25 4.20 5.80 7.26 276-1 19.86 5Amples A-74451 Sample # PRESERV (1) ( Tambér 8240 16 Hel 221207 09300 "(PB) - 0931c 0532c SAX Continued from page Read and Understood By

T. >

12-7-22 B-154 Jose Wunds 12-8-22

Date: 57-3.486										Page		
Sample Location:				Ā	Analyti	cal Rec	uireme	nt				
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8760	407							mrge Num	ber
221207 0530c	3	4	X									· ·
- 0971c (FB)	3											
271707 0530c 0571c (FB) 0932c	ı	_(		D								
					<u> </u>							
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Req	uireme	nt	т -			
2 Greatest Profes (11 unity)	of Containers	Sample Matrix*										
Sample Number	#	Sa								Char	ge Numl	oer
					<u> l</u>							
Relinquished by:    Date /			>	04	1 1	ccepted		ch	2	Date / 7.	Γime:	30

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ond DO

(2-16-22

Continued from page

Read and Understood By

Date: 12-15-2022									]	Page /	of <u>/</u>
Sample Location: 57-3-586				Α	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)					:						
	l s	* *									
	# of Containers	Sample Matrix*	g	~							
	f Cor	nple	800	८०१						XGM	2
Sample Number	#	Saı									ge Number
2212151008	3	$\mathcal{A}$	X								
1009 6	3		$\mathcal{X}$								
1010c FB	3		Q								
1011 c	1			X							
				-							
Sample Location:				Δ	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if any)				•		ar requ					
		<b>.</b>				:					
	iner	atrix'				,					
	# of Containers	Sample Matrix*									
Sample Number	Jo#	Samı								Char	ge Number
Sample 1 times									,	Charg	- Tumoor
	_		_								
					<u></u>						
Relinquished by: Date	/ Ti			$\overline{}$	17.	hacut-	d here			De4= /7	rim o.
11	/ Time			1		ccepte			12-14	Date / 7	////2n
12.15-202	رع ,	10 24	2	1 10	mi L	<u> </u>	un.	(h	اد ا	1	ロレン・
		·		$-\downarrow \emptyset$		- 1					
										· <u></u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>りろと オノこフ(c)</u>13 PROJECT 57-3-666 ENU.0053 Continued from page Bob Tars + Tong Torre = present 12/8/22, The weather is clean + Gol. This wed will be pure il & supposed as us a dedicated Testino bradden pump Samples offered From a TERlow dischange Tibe. Carbon 6-2. PARAMETERS COMETED FROM A INSTE Agus Troll 500 DTW 461.72 PT Cal'd IN 100 % SATURATION 604D GU'd IN 1413 STANDARD Tanb cal'd IN 20NTU STANDAND MH Cald N 4,7,10 buffer Panam ETERS SAMPLEM TEmp('c) Do (9/6) corpel (selen) ORPHAN TUNG CATES PH 1,008,7 221208 0955C 20.85 202.4 563 7.45 3.56 1,007,6 20.81 5.28 - 095 6c 202.8 7.50 315 09570 1,008.1 7.44 3 2 b 20.90 5 55 202.7 SAMPLES Sample# Awalysis PRESEND Cart 77/208 1000 c 8760 - 1001 c 11 (FS) - 1002 c 607 415 1 th 3)40 ml U1a/5 (1) (Tambén SKI 100 1003c "(Dup)

Read and Understood By

12-8-22 B-158 Jon Junch 12-9-22

Continued from page

Date: 17-8-27										Page	of	
Sample Location: 57.3-666				P	Analytic	cal Req	uireme	nt				
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	Bruo	607							Gm!	
221208/0000	3	4	×									
100/c (FR)	3		Ø								-	
1007c (FB) 1007c 1007c (Dip)				X								
1003c (Dup)	1	4		صر								
V												
Sample Location:  Pertinent Notes (if any)	Γ	<u> </u>	- 1	A	nalytic	al Requ	uiremer	nt	T			
	of Containers	Sample Matrix*			•							
Sample Number	#	Sa		<u> </u>						Cha	rge Numl	oer
Relinquished by: Date	/Time	1110	0		TT	coepted	1 by:	~	12-0	Date /	Time:	0

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

																												: 47********	(1.00 9 9 M 90	N. S. B. College and	
i4 ROJE	CT.		57	T- I	3 -	<u>'</u>	35									-									55		17	?7(	(ک	<b>)</b>	
$\mathcal{B}_{\epsilon}$	99		Tu,	<i>47</i>	5	+	T0~	مردا	76	//c	F 2	P	LES	رتى	7	17	2-8	7. 2	22	-	77	E	WE	4	n-	2	ر در	- (=		4	
Coo	(	- 7	3	5	w	EG	1 .	~ /	11	6	E	zur	255	1	1	54	mp	16	یل	us	100		10	léo	lica	970	36	76	Fa	24	
15/	2	L;	2	PL	in	م ا		SA	m	PLE	2.5	C	140	Fc7	=	1 1	Su	n	, ,4	-7	E	26	V +	64	5	isch	A	200	74	40	
Pan	Ar	n E	78	ns	5	5/6	E c7	Ed		Fn	am	A	<b>/</b> ▶	15	270	-	38.	14	72	06		50	2	C	n	104	_¢	3-	2	$\dashv$	$\dashv$
							-								<del> </del>														_	_	$\dashv$
Do					6-2		<b>,</b>		0,		ات ج	-	-	<u></u>	<del>                                     </del>	1					Ł	> / :	4	70	67	٠ .	)	7	+		$\dashv$
<b>S</b> 2	سر در	a c	. (	d	~	2	14	17	h	-/	41	5	76	-11	سم														+		
Tun	, 1	ral	•	i	,,,	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72		57	H~	مار	3-7-0	1	7.4	er_															
PH																															
							ļ.,			1	91	An	1 E	76			ļ														_,
SAM	PLE	#			4	Dε	(m	5/1	)_	ļ	ρ.	#		-	L		o C		)					-	(17		14	nb	6745	Ta	y je
22/	20	8/	3	53	e	<i>y.</i>	85		<u></u>			28		-	<u> </u>		7.5				•		6.				1.7			2 <i>!</i> c	
	_				1		84		-	-	7.	27		-	-		. પ				1 1		18.			1 }	- 1	0		200	1
	·	1)	5 7	7C		4.	35				12	.79	<u> </u>	-	-	48	2 -	2			1,	DI	6.	9		1	. 7	8	_2	08	O
						-					SA	mad	01-		+	-													+		$\dashv$
Sam	Ol	ē #	2			1	1~	'ah	رجد			-4	Pr	-5 -5	En	1			C	<b>2</b> 4	7						ر	74	1		$\exists$
22	, -			You	C	Ľ.	82	240	2				11	ce,	He	1					0"	nl i	) /4	<b>સ</b> (			A	Kr	-		
			14	01	<b>c</b> _		-	"						11							11							7			
	_		14	22.	4	<u> </u>	6	07					<u> </u>	14					(/	)(	(T	Au	136	~			5	14			
					_	-	igspace	-			ļ			<u> </u>	<u> </u>									,					_		
-						-	-			-	ļ!			<u> </u>	-	-	-												_		
-					-		-			-				-	-	-	-												_	$\rightarrow$	
					1	+-				-	-			+	+	<u> </u>	-												$\dashv$	+	_
							-							-		1													-	-	

Read and Understood By

/2.8-27_{B-160} Dri

Dri Would

12-9-22

Continued from page

Date

Date: 12-8.27									]	Page	1_0	f
Sample Location: 57-3-735				A	nalytic	al Requ	uiremen	t			,	
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8760	1 205 A							<u> </u>	
721208 1400c	3	A	ゃ									·
1401e (FB)	3		X									
721208 1400e - 1401e (FB) - 1402e	1			X								
•									-	-		
											-	
Sample Location:		ľ			Analytic	cal Req	uiremen	ıt				
Pertinent Notes (if any)												
Sample Number	# of Containers	Sample Matrix*								Chi	arge N	umber
											<u> </u>	<del></del>
B1: 11 11 -	/ Æ:			L	λ	1 -		<del>.</del>			/ <del></del>	
Relinquished by: Date	7 Time		0.9		In (	Accepte	· ·	-ch	2	- 9 - <u>1</u>	Time 2	0830
				$- \downarrow \downarrow \downarrow$			1					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

PROJECT ST. 4. 481 ny a dedicated bladder pump. Samples will be The Water quality parameters will be monitor Robert sampled using monitored Agua Trall 500. Tuitia DTW-459.00 e Buffers (4,7,10) 1413 us/cm Cal using Turbidity - Cal rizu Trip Blanks Analysis Sample # to serve र्ग 12120 6800 A HCI/Ica 1109 64 67 HOVE 26441 A1080 Low Level WAWA tu 01002014 SPI landers Hime DO (M>/1) Temp(c) Turb (NO) DTW(\$ Cond ( us/un) 9510 2212011015 A 1029.8 40 20.54 459,00 190. H 20.58 10313 OTTA 0.53 uJ 190 6.27 0-33 019 A 20.54 1030.5 7.40 191 Samples Colaine 3) HOM vials Preserve Analysis 26491 1201 1625 A JOA DIBLEOLL #u (FB) 1026 A Level NOMA 1027 A 01003014 SIZI Ιu (FB) 1078A TOW. Continued from page

12/1/22

B-162

or

Read and Understood By

12-5-22

Date: \1/1/12										Page of
Sample Location: 87.4.481				A	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	אז ליס דר	LL NOWA						Charge Number
2212010800A (113)	र	4	χ							YaMD
U801A (1B)	1,	1		X						1
102 C A	3		Χ							
1026A (FB)	3		X							
1027 A				Х						
102BA (EB)	(	1		7						+
Sample Location:			-	P	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*			·					
Sample Number	#	S								Charge Number
	<del> </del>					-				
	<u> </u>							-		
	e / Time				) _[ A	ccepte	d by:	<u>,                                    </u>	1	Date / Time:
W W 12/1/22	20	115	·		or l	$\bigcup$	hun	d	12-0	5-22 /0815
				$-\downarrow \emptyset$						r

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12/1/22 B-164 JOH

Junda 125-22

Date: \1.\.12										Pageo	f
Sample Location: 57. 4 · 690				Α	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8260 LC	LL NAMA						Charge Ni	ımber
1212011410A	3	Α	Х							VGMD	
1411 A (FB)	3		$\times$							1	
1412 A	1			χ_							
1413A (FB)	١	1		X						1	
Sample Location:  Pertinent Notes (if any)	T	ı			nalytic	al Requ	uiremei	nt	T		
retinent Notes (if any)											
	# of Containers	Sample Matrix*									
Sample Number	#	Š								Charge Nu	ımber
									_		
		_									
					_						
Relinquished by: Date	ا م 2				m	accepte	d by:	ch	12-9	Date / Time	815

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECTS 1-6-5-20 PLUTE WIT ENV-0000 TAT ILLA COMMINGENTIN PAGE 141
in Halvorsen & Craig Del Ferraro present. Weather is cloudy & cool. This zone will
purged and sampled using a FLUTE system. Samples will be collected using a
11. [ ]   Vial   In 15 ptg   Vial Descripto Set @ 228 DSV SOMDLE Press (428 DSV
I The fat @ 3 asi and bubble stable 9 4751 Inere will be
5 minute recovery time between purges. A minimum of 4 gallons will
purged prior to sampling. Carboy 65 in use.
Trip blanks-Water Purification System-
Andreis Protective Container Lot Lap
1120 70740B VOA by 8260LL ICE/HCL (3)40ml VIais 2649-17 ACS
- 07418 Low Level NDMA ice (1) IL Amper 010030141
ce-sample parameters Transducer Meter ID
Le Sample Out ameros
WAS COLUMN TO THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE
000 1 dettusion 15
u lot - 210966
àrameters u Exp - 12/31/22
14 - 872  14 - 872  1 1202 A 444 8 123
emp - 18.0°C 7 1202A44 8/23
(000 - 12) (000 (000 - 12)
urb - 1.18 NTU'S
Hpre -713/1011 (15.9°)
Hpast - 7,10/10-10
Samples Ollah III
Sample Analysis Preservative Container Let Lab
2212071430B VOA by B260LL ice/HCL (3)40ml vials 2649-1 ALS
1431R (4 (FB) a a 4
Wigner 1 1 1 SPT
13-5
1434B 1 4 Dioxane by 8270D u (1)250mlamber 050922-163 ACD
IDW - 5 gallons Continued from page NA
Continued non-page N/A
Read and Understood By

Date: 12/7/22									Page of
Sample Location: ST-6-528				A	nalytic	al Requirem	ent		
Pertinent Notes (if any)				4	0)				1
	iners	ıtrix*	826011	LL NDMA	Dioxane				
	# of Containers	Sample Matrix*	26	ומן 7	7,07				
Sample Number	Jo #	Samı	ω	7	7			:	Charge Number
2212070740B (TB)	3	A	~						XGMD
0741B (TB)	1	A		~			ļ		n
1430B	3	A	~						4
1431B (FB)	3	A	<b>/</b>						ц
1432B	1	A	-	<u>/</u>	!				и
1433B (FB)	1	A					<del>                                     </del>		Ц
Sample Location:	<u> </u>	A			nalytics	al Requireme	<u> </u>		ч
Pertinent Notes (if any)	_				Tarytica	- Cquirent	T -		
	S.	**							
	ıtaine	Matri							
	# of Containers	Sample Matrix*							
Sample Number	#	S							Charge Number
	_								
	,								
Relinquished by: Date .	/ Time	: 1		TD	1 1	cepted by:		100	Date / Time:
(My M) Termo 12/7/22/	154	15 hi	(5)	1/0	r C	V /m	-d-	12-1	1-22   0830
	···		_ -	++		/	•		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvorsen & Craig Del Ferraro present. Weather is aloudy & cool This zone will be purged and sampled using a Flute system. Samples will be collected using a dedicated discharge nose Purge pressure set @ 228psi, sample pressure set @ 207 psi, flow moter set @ 3psi, and publier stable @ 8psi. There will be a 15 minute recovery time returen purges. A minimum of 4 gallons will be purged prior to sampling. Carboy 65 in use. Meter ID Pre-sample parameters PH - 7.95 Transducer pH/ cond - 91 pressure - 31.96 ps Turb temp - 24.14 c depth - 73.73ft. Temp - 19.1'c Std - 4.20NTUS Cond - 1225 us/cm 1 rdg -4.26 NTV'S Turb - 0.64 NTV'S 10+ -210966 · Exp-12/31/22 Parameters Time - 22120-1440B Buffers Lot PH - 8.25 8/23 Temp - 18.7'C Cond - 1203 us lcm 7 1202 A44 1/23 10 4107E30 Turb - 0.57 NTU'S >4 pre - 7.14/10.10 (16.2.4) 24 post -7.12/10.07 Samples Confairer Lot (3)40ml vials 2649-1 Preservative Analysis Sample VOA by 8260LL ice/HCL 22120-14418 4 (FB) ----- 1442B (1)11 Amber 01003014 - 1444B LOW Level NDMA SRI læ u (FB) (1)250mlanter 050922-16J 1445B ALS 1,4 Dioxane by 82700 Blind Controls Analysis Container Lot Preservative Sample (1) IL Amber 22MM 155A 22120715308 Low Level NDMA ice IDW - 5 gallons Continued from page NIA

Read and Understood By

Gray Del Fermo

12/1/22 B-168 for Wounds 12-8-22

Date: 12 7 22						ř			Page	of
Sample Location: \$7-6-568				A	nalytic	al Requi	rement			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	770728	LLNDMA	Dioxane				Charg	e Number
22120714418	3	A	~						Xai	
1442B (FB)	3	A	/						u	
1443B	1	A		~					4	<del></del>
1444B (FB)	1	A			<b>`</b>				u	
14458		I.A.							4	
1530B (BC)	1	A							u	
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Requi	rement			
Sample Number	# of Containers	Sample Matrix*							Charg	e Number
Sumpre Francos									Charg	e number
										<u></u>
Relinquished by: Date	/ Time	): ::			\ A	ccepted 1	by: n		Date / T	ime:
Craig Del Fenno 12/1/22/	154	15hr	S.		ru V	VIu	ul	12-8		0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT 57-6-678 ENV-0020

Signed

Continued from page

20	· V	14	vo	rse	, ,	10	141	rcy	s c	۸۷۶	:01:	<b>S</b>	روه	٠. در در	+ 1	w.e	41	40 5		<b>5</b> (	:/بود	~ ~	an	cd	ره	o),	7	١,	2	20	w	1
	- 1		i	٨٠٤	l	į į			1	- 1	- 1	~ I			!		1		1	l 1	!!		l .	1		; !						
																														54-	e	
- 1	- 1		,	l _	l	1		1	1	- 1		- 1			1					!	l 1			:	i l		l.			<i>20:</i>		
2	.pe	1	ල	2	: 0	,	48	e.										•			•											
		-14					_	7	ونو	G	2/V	٧K	2																			
0	~81	٤		-	-	-	1	700	1						ا ا	کرو	501	W				<u>ر</u>	or,	<u> </u>	THE S	_		<u>L</u> 6	7	_	LAB	
<u>اد</u> 2	30	8	<u>5</u> )	00		1	Sai	P	4 S	31	00	لر				I	se]	170	)		(	<i>3</i> 7,	10 t	ن (پ	ia	<b>)</b>	ຊ	64	)९-	<u>,                                    </u>	45.	\$
=		- 0	7	01	$\mathcal{Z}$		Us	~	ď	LL							ť	e			Ç	$D^{1}$	4	Jul	D87-		6	100	20		282	ŧ
-																																
				Pens	54	uk	5	<b>_</b>						A.	-	luc	T		•					ret		_		•				-
4	- 1		ما.	1				-						~	, \	A								Q.		C»						-
	1		ļ	3																				-	-	Tu	B	=	4			-
	- 1			3																						), <del>2</del> 3	70	7 4	<b>Y.</b> Q	<u> </u>	_	-
<u> </u>	3		১. ১	\$0				1																					∜			
															_											Ĺ	70	ر بر	210	966	D	
<u>م</u>	Zn		ļ	1			-									-										` G	45	· ·	/⊋/	32		
- 1			ļ	120	1	350	3																									-
4			1	וכ	1			-								-														$\rightarrow$	_	-
:4	R			.3				-												1												
	۵			76		, ,	1																									$\left  \cdot \right $
- 1	B		0,	۱,۱ کح	V	- ~ ·				~													<del>-</del>							_	_	1
ال	,			}	1	1	1	16	.4] (	ر د														-								$\left  \cdot \right $
76	92	- >	フ	10	- 1	0.1	0								_			-						-						$\dashv$		
-		51	<b>)</b>	-								-	70	W		<u>52</u>														_	1	-
	<i>ν</i> δχ			<del> </del>		-		700	. 7						-	احد					-		-;c			_		تعا	-		LAB	1
a)	<b>3</b> 0		1	50	į		1, D4	20	4		00					I	<u>حد ا</u>	Hc	)		ফ	40	Ì	n:	<b>.</b> )		ユば	18.	)	$\dashv$	02	-
			1	2 (							<u>"(</u>	FB_	)										, ,	ļ				•				1
				3 3			ν, ν.	m!		برر		~				:	ECI	<u> </u>			(J)	11	Dr	Merc	-	(	olo		>)	+	28±	1
				5 ]			1)		۱ د		<i>S</i>	•					١,						•					٠,				$\frac{1}{2}$
			l	13				<u> </u>			:B`	)					٠,						),					4		+		$\left\{ \right.$
				3	1	:	SUC	፟	.5	74							3				$\omega$	у, Ус	lm e	0	Upu	-	O.	<b>∂</b> ₹	35	•	945	-
-		15	38	B			- ,		•	. (	Denf	?)					-					•		ļ						-	-	-
-			, _			1	١ ,	\	h		•		1			1								-	Car	ntinue	ad fra	m n	anc			
		<u> </u>	201	<u>e</u> =	<u> </u>	1	<u>t c l &lt;</u>	<u> </u>	x 11		loe	<u> </u>	184	<u></u>	Da	احا		L		lersto			<u> </u>	<u> </u>	COL	iuiiu(	su IIC	, iii pa				]

Date: 12.8-2022									]	Page J	_ of
Sample Location: 37-6-1					A	nalytical Re	equireme	nt			
Pertinent Notes (if an	у)					110					
		. 8	*		4	<b>\</b> €					
		# of Containers	Sample Matrix*	<u>ر</u>	4	<b>(P)</b>					
		Cont	ple M	807	4	18					
Sample Number		Jo#	Sam		NOWA	M				X 6 M	Number
	R	3	7	X		-				Charge	- Number
2217080100 B	TB	٦		9	-						
1430 3	<u> </u>	3				-				<u> </u>	
1432 3	FB			70							
0701B	TB	)			4						
14132 B		)			9		:				
15353	•	)			7						
15363	FB	١	,		9						
Sample Location:					A	nalytical Re	equiremen	nt			
Pertinent Notes (if any	у)										
		S	*	SIN							
		taine	Matri	2							
		of Containers	Sample Matrix*	500G.							
Sample Number		# of	San	3						Charge	Number
22120815373		1	4	8							
1538 3		l	4	K	۷						
70303			-	1				,			
		_									·
							<del> </del>			_	
Relinquished by:	Date	/ Time	·			1A boom	ted by:			Date / Ti	me.
				$\overline{}$			wed by:	L	10 -	9-22	10830
10 11	⊼-&- <b>3</b> ○33		1630	<del>,</del>		u VV	1		1	1 44	/
	· · · · · · · · · · · · · · · · · · ·				+	——————————————————————————————————————	1				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page Dan Halvorson & Marcus Duales Present weather is chear and Good in s zone will be project and somethed using a FLUTE System. Smalks will be Collected using ducticated d'actorge pase. Pune presence set at 228 ps., supe presence at 205 is Flowment Set at 383, bubbler stable at 885: 15 minute recovery between Director Minum of Mealons purged Poior to Southing Carbon GS in Use. Par- STIMPK REDMITERS make ID Transchucer P4 (COAD - 9) PH = 846 Psi = 38.13 E-P = 158.41 TURB = 6 TE . 241,28 , voe 1 4.50 0201 F Coc Death=76.43 UB-1.43 3127,910266 "er-12/22 Parameter 5 1: me = 22120814/03 8.57 - 184 °C m) /2 4 4 5/ 1 900 TURB - 1.39 His 12 - 7.12.10.10 (16.5°C) MR-31 - 11. 1 - 10 10 SAMPLES Amysis Container SAMPLE Preserve LAB U as by 8210 L 2212081448 B Tal Hel 10 mo 11 vie -- 1449 B - 1450 B Noma LL DIL Super 00030 " (FB) - 14513 Continued from page

Read and Understood By

Date: 12-8-2022										Page
Sample Location: 57-6-824		_		A	Analytic	cal Req	uireme	nt	-	
Pertinent Notes (if any)				,						
Sample Number	# of Containers	Sample Matrix*	Vos	DOWN L						X & NAD Charge Number
22120814483	3	A	2		-					
IMMAB FB	3		9							
14503	)			2						
1451B FB	1			9						
Sample Location:				Α	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any)	_									
	of Containers	Sample Matrix*								
Sample Number	#	N.					-			Charge Number
						-				
Relinquished by: Date	/ Time	<b>_</b>		<del>-   /  </del>		ccept@	l hv			Date / Time:
12.8.2033		14 30	)		n	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-ch	12-	9-22 / 0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

unch 12-9-22

Read and Understood By

Date: 12-8-2022										Page \	of
Sample Location: 57-6 970		-		A	Analyti	cal Req	uireme	ent			
Pertinent Notes (if any)										-	
	# of Containers	Sample Matrix*	Vor	DOWN LL							
Sample Number	) jo #	Samp		2						X6M	
	3	Λ.		·				<u> </u>		Charge 1	Number
221208 1510 3	3	17	7						1		
1511B FB		1	ア		_						
1512 3	1	$\perp$		7		ļ					<del>.</del>
1513 B FB	)	<u> </u>		1							
		_									
Sample Location:				A	nalytic	al Req	uireme	nt			
Pertinent Notes (Many)										1	
	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charge N	Number
										·	
											· <u>-</u> · · ·
		-		-							
Relinquished by: Date	/ Time:				i A	ccepte	l by:			Date / Tim	ę:
12.8.2032	. /	630	,	Vo.		$\sqrt{\Lambda}$		-d	12-0		0830
					**-V	<b>∀</b>				<del></del>	
							<u> </u>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJI	ECT		ر)	w:	1-9	45	Z			غ		U	٠,٠	~) <b>.</b> 5	T 7					No	teb	ook	No om pa	·	<b>Ω</b> 3	37	#/	27	<u>، (۲</u>	:)
	т—	Т			1		·				, -		,				1	1	<u> </u>					-			- 			
- Ni	25	10	1	5	4	) (	n	- /	2/	3	2	P	ı€:	(a	7	~	17	- 2	-2	7	14	5	4	23	77.	35		OU	<u>C</u> 2	6437
1	Ca	0(	,	1 4	•	\$	w	E (	<u> </u>	L	ر ب	((	5	بخ	P	14.	24	لئ:	8	SA	m	) / č	1	u	5'n	5	A	70	F4	مید
73. P	A	cle	1 5	1	Pu	1	-	۲_>	4	npe	Es		æ((	$(\mathcal{E}_{c}$	75	4	4 n	Sa	4	7	Efe	5-1	di	50	40.	agE	7	46	E.	
P	7 n	91	, '1	-6	3//	Cc	Ta	1	Fa	2	7	A		~	\$ 17	4	AS	,ue	1	200	1	5	<u>ئە</u>	<u> </u>	Ca.	26	72	6	. 2	
		-				-		-		<u> </u>	-			-			_	-		-	<u> </u>									
		ļ	ļ	ļ				<u> </u>		<u> </u>										ļ <u>.</u>				D.	14	– ر	42	3.	So	
C	4.	504	A T	low	5_																									
D	$\mathcal{O}$		55	~5	21		(	36	'J	10	e e	loa	90	5.	41	r pa	775													
40								24	'd	( ,	~	/	4/	34	/ 5/	رم		5 7	42	la	الدورة	1								
Tu	l	1	1	1		1		Ca	('	٨.	1 "	v	2:	0	, 7.	<	7		رم	, ,	- 4	1								
P								C	26	<b>'</b>		~	4		11	5	75	2	6											
												- 4					100		C.	75									-	_
					ļ					0.			_	-	_															
SAm	0/3				_	_			-	PA				<i>( e ,</i>	75	1											-	-		
		_	1	<u></u>		E	0	2				40	1			l .	~	1	-	C	_		1	1	,		- 1	9 /	<i>+</i>	_
212		l	l	l	2	21.	0	)				۲. ۲				, ,	1		<b>&gt;</b>	5	8,	ī			? C			2. ¢	22	
		/>	i		!	21.		t 1			1	'. 7	- 1			1)0	ے8¢	2.4		5.	79	•		77.			_7	7. 4	٧,	
		15	כו	c		27.	81				_ <	. 8				1,0	8	3.2		5.	80		1	77	4			2. 4	,2	
												$\leq$	m	P	E S															
5/	m	O LE	7				44	P	45	15_					ne	SE	n				4	D.	N/					L	46	
55	12	05	-1:	Bo	c		-8	2.0	0	(					n	EV	7/				13	14	ml	U	9/5			4	15	_
			15	31	c			11		F,3	)				1							l	•					1		
-		•	15	32	c		11	N	2	74					14	Ē					11	Xτ	An	4,5	1			5,	NI	-
	_	_	15	3.3 ¢	_			11		[]					11													,	1	
																						•			-					
																													$\dashv$	
																												$\dashv$	-	
																						-						+	-	_
											$\neg$					-						_			-			+	-	
																									-			-	+	
													-+													-		-	$\perp$	
																					_				-+			_	_	
																												$\dashv$	$\dashv$	
												$\dashv$	$\dashv$															_	$\perp$	_
				-						-				_														_		
				-							_																			
																								Con	tinue	d fro	n pag	je		
		<	4												F	Read	and	Unde	ersto	od B	/									
	T		1	$\vdash$						1	$\overline{}$			,			P	) Yu	1	1		\		Λ			, ^	, ,	^	٥
	/ -			<i></i>						_/	2	<u>-)</u>	• (	7	-B-1	76	0	m	L	$\triangle$	/	\u	<b>-</b>	ch	<u></u>		12	<u>-6</u>	-2	<u></u>
			⊸-gi	ıσμ							i	Date					V			Sia	ned	1						1	Date	

Date: WW-1-457						-				Page	of/
Sample Location: 17/5/77				F	Analytic	cal Red	quirem	ent		<u> </u>	
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	800000	しゃろゃり						X6	ge Number
821205 1530C	3	A	オ								30 1 (4111001
15310	ア		K								
1532c	1			X							
1533 c	1	1		$\sim$							
			-								
Sample Location:  Pertinent Notes (if any)			<u> </u>	A	nalytic	al Req	uireme	nt	T	-	
Sample Number	# of Containers	Sample Matrix*									
Sample Hamber										Charg	e Number
D. H											
Relinquished by: Dat	5.22	1163	5		11	ccepted	d by: Un	d	12-1	Date / T	ime:   0845
				10							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT WW. 7-489 ENU. 0053 Continued from page Bob Tufts of Tony Torrer Present 12/4/22. The + col. This Zone will SE purged + sampled asing a DEdicaTEd TEFTON Badden pump. SAMPLES collected from a TEF our discharge Tobe. PARAM'S COLLECTES by a rasita Agua Task Jos Carbon 6-2 Transducen Reading Calibrations Cal'd In 1000 SATURATION 20.48 FT DOSENSON Good 5= rom cal'd in 1473 ho con 5, andard 23.99 C Tanb SENSON CAL'D W/ ZONTA Transland pA stron cald w/ 47,10 baffer Paname Tens Cond SAMPLE A DD Tun6 orp 919.65 27170609450 4.86 8.33 3.80 150.8 915.73 4.78 05460 3.73 151.2 917.18 4.82 05470 8,33 150.9 TRIP Blanks 45 ANALysis Presens SAMPLEN CAYT 221206 0700C (3) Youlunds 876011 IcE clfd ALS ((NDMA 070/0 11) ( transton ILE SKIT Samples Sont 145 SAMPLE # ANA4515 (3) You wals 271204 09500 1cE/Hol 465 8260K 0951c 11 (FB) (1) ICT AMBER CCNDMA 05520 14E 0953c 11 (FB) Continued from page

J. U. Signed

12-6-22

B-178

Or Una

Read and Understood By

12-7-22

Date

Date: 17-6-27									Page	/_of/_	
Sample Location: Ww.7.489				Analytic	cal Req	uireme	nt				
Pertinent Notes (if any)  Sample Number		phao,	しくかかみ						X C	urge Number	
2201.221206 0700 c 903	A	x									
2201.221206 0700 eff. 3			٧					-			
1- 05 to e 3		×									
- 0951 c(FB) 3		X									
- 0952c 1			×				W				
- 0953c(FB) 1	T		×								
Sample Location:  Pertinent Notes (if any)	· ·			Analytic	al Req	uiremer	nt				
# Of Containers	Sample Matrix*										
Sample Number #									Cha	rge Number	
Relinquished by: Date / Tim	ne:		17	\ A	ccepte	d by:			Date /	Time	
7.2 12-6.22	/1102	)		<u>n</u> U		lu ,	l —	12-7	1-22	083 c	) —

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

10 PROJECT WW. 7. 664	ENU.0053	Notebook No. P37 # 127 (c) Continued from page $\sqrt{4}$
		2-6.22 The WEATHER 15
Clary windy of cool.	This ZONE CUIL DE	parked & SAMO/61 Men.
AdedicaTES TEFCON	Deadden pune. JA	topoles enlicated for
JEFfor discharge Table	· PANAMETERS C	Clared from A 145,Th
Agua Troll 500 Can	bon 6-2	
		Trigarsducen
		23.41 AT
Caybraturs Pai		20.45 c
DO SENSON CAC'D IN	00% SATURATION	
COVASENSON CALIDIN	1418 hs/con SToreda	
Tunb souson of (id , v	ZUWTY STANSAN	
ph server cal'd in	47,10 buffers.	
+ + + + Pas		
	AMETERS	
5 Ample# ATA TEMP 27/206/530c 20-67	90610 4:38	orp pt Turb
27/206/530c 20-67 153/c 20.61		152.6 7.78 1.28
1532c 70.62	906.11 7.34	
	906.10 4.35 SAMPLES	157.9 7.81 1.48
Sample# Anaysig	PNESERY	Cart Cab
221206 1535c 8260U	ac vel	(3) 40m/cm/s Als
153GC ((FS)		11 11 11
1537c CLNOMA	14	11) 1 cramben 5nx
1538c 11(F3)	//	
1539c		74
		Continued from page
	Bood and Unit	
	Read and Understo	
1-17	2-06-72 B-180 Date	1 Junch 12-7-22
Signed Signed	Date	Signed Date

Da	te: 12-6-72			<u> </u>		·						Page	of
Sai	nple Location: Ww - 7	2-464				A	Analytic	cal Req	uireme	nt			
	Pertinent Notes (if an	ny)	# of Containers	Sample Matrix*	87606	1 1 2054						T6 Charg	on) e Number
	2206 153	50	3	A	b								
\-	153	6c (f3)	3		حر								
	153	7c 👸	l			ス							
	153 153 153 153	& (F5)	_/	1		$\sim$							
Sai	nple Location:					F	Analytic	cal Req	uireme	nt	ı		
	Pertinent Notes (if a	ny)									:		
	· ·		of Containers	Sample Matrix*									
	Sample Number		#	S								Charg	e Number
							_						
			<u></u>										
							,						
				_			<u> </u>						
	Relinquished by:	Date	/ Time	):		,,		Accepte	d by:			Date / T	ime:
	1-1	Date:	2//	630	2		on l		\ um	-d	12.7	-22	0830
						+U			<u> </u>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT WW-3-469 WIT ENV-DOZO

Bob Tufts Present Weather is clear & cold Garcia This Zone will be sampled using 2 triple rinsed stainless sample tubes Probe-2213. Surface checks performed on proprior to sampling. IDW-. Sgal 30 min. Aguipment Blanks Lab Sample Analysis Trescrusion 22121310457 VOA 8240LL ICE/HCL Container Lat Prescruative (3) 40 Mu vials 2649-1 (1) LL Amber 0100301 H 10467 11 SRT MADMA Ide Initial Parameters Meter I -2212131258y PH/cond. -12 ZZ1Z131330Y - 6.87 Tunb 7.48 PH - 18.0°C 15,4% - 59.5 WYU Temp cc Rdg - 1117 uslan 112045km - 59.5 NIU Cond - 210946 - 0.66 Ntu's 0.9 LATU'S u Lot Turb (14.50) - 7.04 / 10.0 B(4.7°c) CEXD -12/31/22 7.06/10.05 PH Dre -7.04/1006 Buffers 7.05/10.05 PH Dost - 409.78 Pt. 7 8/23 409.875 1202 A44 ATM05 - 12 12 ps/a 12.13 05:6 4107E30 LO Samples Preservatives Container " Analysis Lab Sample 2212131320 Y VOA 826024 (3)46 ML vials Ice/Her 2449-1 LLNONA (1) IL Amber -1321Y 0100301 H SRP 2) 39.90 Runs. 1) 40.75 38.42 38. 37 38.21 38.35 39.57 38.84 Continued from page

12/13/22 B-182

Read and Understood By

Matt Isan

Date: 12/13/22									]	Page	_of <b>\</b>
Sample Location: WW-3-46	9			F	Analytic	al Requ	uiremer	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	10A 8260 LL	LL NOMA							
Sample Number				7	1						Number
ZE121310457 (EB)	3	4	X							XG,	MD
1046Y (EB)	ı	1		X						1	
1320y	3		X					_			
13214	(	V		አ						V	•
Sample Location:				A	Analytic	al Req	uiremer	nt			
Pertinent Notes (if any)								:			
	# of Containers	Sample Matrix*		·							
Sample Number	#	Š			<u> </u>					Charge	Number
	ļ										
				_							
Relinquished by: Date	e / Time				<i>A</i>	Accepte		1.		Date / Ti	
Mat San 12/13/2	2	410		\	on 1	$\sqrt{\ }$	Jun	_ Jh	12-14	-22	0840
					-	-	)				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT WW-3-569 WIT ENU-0020

سک	<u> </u>	, (	، ر		<u>~</u> ,			,										Cont	iiiuc	4 11 01	pu	90 _			-				100
G	arı	cia		र्व	В	36	T	€ ر	`+,		Dr	ese	พา	Ł.	U	<i>j</i> ea	41	141	-	Co	01	4	(	رر	in	da			
Zc	3116	9	u	011	1	be		So	λW	01	ولم		0	532	101	_ {	_	40	0	le		$C_{i}$	13	2 1					
le	55		Sa	m	ρl	e	+	υŀ	es		Pr	36	e.	27	77	3	٤	01	to	<u>ce</u>		cl	æ	cK	.5	1	Be	ar	end(
Dre	by	2	Q	ric	'n		10	S	av	NC	11:	иd		IX	کر	ر	. 5	Q	rl										
																												_	
									3	9,	m:	n	E	زب	pn	ren	74	1	31	3 <b>V</b>	٤:	5_							
e						A	1	لب	l			P	زوج	eri	لم	-i u	۷_											29	
12	09	30	)Y			1 1				ŀ	-		IC	e/	H	در													
<del> -</del>	00	13	Y			L	<u>'</u>	VC	M	A				Cee					U,	14	_ <u>A</u>	m	ber	` (	510	63	0	H	5 P
								-		_						-													
																				_		•	1						
				10.	30	と				1				35	5	ソ				P	H/	CC	nd						
+ -	7,	13	•						-		1										_	ال	1 p	•					
1	1		l						-	1	1	-	-								((	51	d	-					
1			1	1						1	15.	70	5/1	m							( (	R	49						
1 2	1.8	u,	<b>ντ</b>	U è	+						1.	9	<i>\\</i>	τ,	ح`د							L(	5 +	-					
	-1	3/	10	ε. ε	9	7	.2	56							98						10	E	XP	-	15	13	5//	5	۷.
+	+	<del></del>		+	+						/ . (	2	1		11				Ω	۸				-					
T	1	T									4								Du			5						-	
- 1	2.	08	-	PSI	14						2.0	0	PS	Tia	-						<del>                                     </del>		12	08	A	44	1	/2	3
																				ıc			7	10	( 6	)کر ج	٠ ر	(X)	•
<del> </del>		ļ			-				5														<del> </del>	-					
1-			-		-		Λ	1	احرا	ar	JF				1	_					<u>_</u> ,				,	1		,	1
le 12	17		V			1.0	41	al	نکو	5		<u> </u>	<u> </u>	eru	aI	ve			ر الارا الارا	Ur	M	N.					,		1
12	13	1/4	y		1	1	A ,	<i>D</i> 7	10C	NΔ	_	-						(1	<i>2)</i>	1	Λ	b L	als					,	
						<u> </u>	C	70		77		<del> </del>		1	-				1	ŀ	1	10	-1	-					ı
-	1, 3		<u>-</u>		-				UU	עע					ļ								-						
1-	-										ļ																		
		<del> </del>	<del> </del>	+	-			<u> </u>		-											-				-	-			
		-			-					-	-	-	<del> </del>	†		-		-					<del> </del>			-			
		<u> </u>			-	<u> </u>				-											<u> </u>								
_	,	ع ۲	13	g	5		8	3.0	2 5			g _~	1	ı	<del>                                     </del>						<u> </u>	<del> </del>				-			
		8	9	a	8		t	4	3			<del>ر ر</del> 8 ا	4	5				†					<u> </u>						
		8	8	75			8	14	13			<b>B</b> 1.	53	<u> </u>	†														
4	+	+-	ļ-,	+	+	+	+ =	+•		+	1	00	-	±	+		$\vdash$	<del> </del>	<del> </del>	<del> </del>	<del> </del>	+	+	<del>  -</del>	$\vdash$				
		8	₹3.	ברן,	+		8	1.9	2			Ø≯.	Z2	>		1							1						
	6 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Gara Zone 1e55 Droby 1209 - 221 - 7.1 - 18.9 - 4.8 - 7.1 - 12.	Garcia Zone less Drobe 120930 -093 -093 -1209 -189 -1099 -189 -1099 -1136 -1202	Garcia Zone La less so Probe P 20930y -0931y 1 Paraw 221212 7.93 18.8° 109903 4.84 LA -7.13/16 -412.09 12.09 12.09	Garcia de Zone will less sam Probe Pris 12 0930 y - 0931 y - 1099 s/e - 1099 s/e - 1099 s/e - 12.09 s/e - 12.09 s/e - 12.09 s/e - 12.09 s/e - 12.09 s/e - 1315 y - 1316 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 1317 y - 13	Garcia & Bo Zone will less sampl Probe Prior 20930y -0931y 120930y -12121030 7.93 -18.8° -109905/cm 4.84 wis -7.13/10.09 -7.13/16.12 -412.09 fa. 12.09 psia	Garcia & Bab  Zone will be  less sample  Drobe Prior  1209304 Vo.  -09314 L.  1209304 Vo.  -19314 L.  18.8°  109905/cm  -18.8°  109905/cm  -18.8°  -10.09 ft.  -12.02 psia	Garcia & Bab T.  Zone will be  less sample +  Drobe Prior to  209304 VOA 8  209304 VOA 8  209304 VOA 8  22121210304  7.93  18.8°  109905/cm  4.84 Wus  -7.13/16.12  412.09 F1.  12.02 PSIA  12.02 PSIA  12.02 PSIA  13164 LL  13174 CC	Garcia & Bab Tuf Zone will be so less sample tub Drobe Prior to s e Analy 12 0930 y VOA 820 0931 y LL NO 1 Parameters 2212121030 y -7.93 18.8° 109905/cm 4.84 NOS -7.13/16.12 412.09 FL 12.02 PSIA 1310 y LL NO Analy VOA 820 12.09 FL 12.09 PSIA 1310 y LL NO 1317 y CC (5	Garcia & Bob Tofts  Zone will be saw less sample tubes  Probe Prior to sav  209304 VOA 8260  - 09314 LL NOM  Parameters  22121210304  - 18.8° - 109905/cm  - 4.84 NOS  - 7.13/16.12  - 412.09 ft.  12.02 psia  Sole  213154 VOA 8260  LL NOM  - 13164 LL NOM  - 13174 CC (DU	Garcia & Bab Tofts  Zone will be sample  less sample tubes.  Drobe Prior to Samp  Analysis  12 0930 y VOA 8260 LL  - 0931 y LL NOMA  1 Parameters - 2212121030 y 2:  - 18.8° - 2  - 10 99 03/cm 11  - 4.84 Nov;  - 7.13/16.12  - 412.09 fl.  - 12.02 psia  I Analysis  VOA 8260 LC  - 1316 y LL  DMA  - 1317 y CC (DUD)	Garcia & Bab Tofts Dr Zane will be sampled less sample tubes. Pro Probe Prior to sampli 30 mi Analysis 12 0930 y VOA 8240 LL - 0931 y LL NOMA Al Parameters Fin 2212121030 y 2213 - 7.93 - 10.99 Jem 112. - 4.84 NOS - 10.99 Jem 112. - 7.13/16.12 7.1 - 412.09 F1. 12.0 - 12.02 PSIA 12.0 - 1316 y LL NOMA LL NOMA - 1317 y CC (DUD)	García & Bob Tufts Drese Zane will be sampled less sample tubes. Prob Drobe Prior to sampling 30 min Analysis P VOA 8260 LL - 09314 LL NOMA 221212 7.93 -1.90 - 18.8° 20.7° 109905/cm 11270 3.19 -7.13/10.09 (17.2°C) 7.11 7.13/10.12 7.12 412.09 F1. 12.00 Sample Analysis Probable 12.00 Sample 13154 VA 8260 LL - 13164 LL NOMA - 13174 CC (DOD)	Zone will be sampled U.  less sample tubes. Probe-  Probe Prior to sampling.  30 min E.  Analysis Pres.  20930 y VOA 82400 LL IO  120931 y LL NOMA  22121210  18.8°  109905/cm 12705/  1109905/cm 201°c  112705/  112.02 psia 12.00 ps  121315 y VOA 82400 LL IO  Analysis Pres.  121315 y VOA 82400 LL IO  121316 LL NOMA  121317 y CC (DUD)  233.85 83.05 83.1	Garcia & Bab Tufts Dresent.  Zone will be sampled Usin less sample tubes. Probe 27  Probe Prior to Sampling. IN  30 min Equi 209304 VOA 8260 LL Ece/ -09314 LL NOMA Tee  1 Parameters Final 22121210304 221212135 7.93 118.8° 20.7°c 1109905/cm 112705/cm 3.191012 7.113/16.12 7.12/10. 412.02 psia 12.00 psia  Samples  Analysis Preserv 12.13154 VOA 8260 LL ICe/ 13104 LL NOMA Ice 13177 CC (DUD)  1 83.85 83.05 83.11	Garcia & Bab Tufts Dresent Wales will be sampled Using less sample tubes. Probe 2273 Probe Prior to Sampling. Tous 30 min Equipm Analysis Preserval 12 0930 y VOA 82400 LL ICE/HILL 10930 y LL NOMA TEE 12 12 12 10 30 y 22 12 12 13 55 7. 93 1.90 12 7. 93 1.90 12 7. 12 7. 13 / 10.09 (17.2°C) 7. 11 / 10.08 7. 13 / 10.09 (17.2°C) 7. 11 / 10.08 7. 12 / 10.11 412.02 PSIA 12.00 PSIA 12.00 PSIA 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y VOA 82 400 LL ICE/HCC 13 15 Y UNA 82 400 LL ICE/HCC 13 17 Y CC (DUD)	Garcia & Bab Tufts Dresent Wea  zone will be sampled Using a less sample tubes. Probe 2213  Probe Prior to Sampling. IDCJ  30 min Equipmer  Analysis Preservative 12 09304 VOA 8240 LL IDE/HCC  - 09314 LL NOMA IDE  12 2121210304 22121213554  - 7.93 - 1.90 - 18.8° 20.7°C - 109905/cm 112705/cm 3.19 NTU'S - 7.13/10.09 (1-12°C) 7.11/10.08 - 7.13/16.12 7.12/10.11 - 412.09 f1. 12.00 psta  Samples  Samples  LL NOMA IDE  13164 LL NOMA IDE  13177 CC (DUD)  11 83.85 83.05 83.11	Garcia & Bab Tufts Dresent Weath Zone will be sampled Using Z less sample tubes. Probe-2713 S Drobe Prior to Sampling TOW. 3  30 min Equipment  Analysis Preservative 12 0930 y VOA 82400 LL Ice/HCC -0931 y LL NOMA Tee  12 12 12 10 30 y 2212 12 1355 y 7.93 71.90 18.8° 20.7° 112 705/cm 4.84 NOS 7.13/16.12 7.12/10.11 412.09 fl. 412 13 ft 12.02 psia 12.00 psia  Samples  La 1316 y LL NOMA Tee 1316 y LL NOMA Tee 1317 y CC (DUD)  18.8.85 83.05 83.11	Garcia d Bab Tofts Dresent Weather Zone will be sampled Using I to less sample tubes. Probe 2213 Sur Probe Prior to Sampling. TOW .5ge  30 min Equipment  Analysis Preservative 12 0930 y VOA 8260 LL ICE/HCC - 0931 y LL NOMA ICE  11 Parameters Final 122121030 y 2212121355 y 17.93 T1.90 18.8° 20.7°C 109905/cm 112705/cm 4,84 NOV; 3.1 9 NOV; 5 7.13/16.12 7.12/10.11 412.09 F1. 412.13 ft 12.02 PSIA 12.00 PSIA  Samples  Analysis Preservative VZ 1315 y VOA 8260 LL ICE/HCC (DVD)  C 1317 y C (DVD)  C (DVD)  1 83.85 83.05 83.11	Garcia d Bab Tufts Present Weather  Zone will be sampled Using Z trip  less sample tubes. Probe 2213 Surfe  Probe Prior to Sampling. TOW5gal  30 min Equipment Bl  E. Analysis Preservative C  12 09304 VOA 92400 LL ICE/HCC (3)  - 09314 LL NOMA ICE (1)  1 Parameters Final  22 12 12 10 304 2212 12 13554  - 7.93 - 1.00  - 18.8° 2 20 1° C  10 99 13 / Cm 112 Tus/cm 3.1° a NT 1's  - 7.13 / 10.0 a (12°C) 7.11 / 16.0 e  7.13 / 15.1Z 7.12 / 10.1 1  412.09 FL 412.13 ft Bu  12.02 PSIA 12.00 PSIA  Samples  Samples  Le Analysis Preservative CC  13 13 144 LL NOMA ICE (1) 1  - 13 174 CC (Dup)  - 13 1774 CC (Dup)  - 1 83.85 83.05 83.11	Garcia & Bab Tofts Present Weather Co Zone will be sampled Using I triple less sample tobes. Probe 2213 Surface Probe Prior to Sampling. IDCJ. 5gal 30 min Equipment Blan 20930Y UA 8240 LL ICE/HCL (3)40 LO930Y LL NOMA TEE (1)10 11 Parameters Final 2212121030Y 2212121355Y P 7.93 71.90 18.8° 20.1°C 109905/Cm 1127105/cm 3.1°C 109905/Cm 1127105/cm 3.1°C 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm 1127105/cm	Garcia & Bob Tofts Dresent. Weather cool Zone will be sampled using 2 triple less sample tubes. Probe 2273 Surface Probe Prior to Sampling. Town. 5gal  30 min Equipment Blanks e Analysis Preservative Centar 12 0930 y WOA 82400 LL TOR HOC 3)40m - 0931 y LL NOMA TOR (1)1CA  1 Parameters Final Med 2212121030 y 2212121355 y PH/ 7.93 18.8° 109903/cm 112705/cm (0 4.84 NOW 3.19 NOW 5 7.13/10.00 (1-2°C) 7.11/10.00 7.13/10.12 7.12/10.11 412.00 PSIA 12.00 PSIA 10  Samples  Preservative Contai 12 1315 y WOA 82400 L TOR HOC (3)40m 12 1315 y WOA 82400 L TOR HOC (3)40m 12 1315 y WOA 82400 L TOR HOC (3)40m 1310 y LL NOMA TOR (3)40m 1317 y CC (DUD) (4 1 183.85 83.05 83.11	Garcia de Bob Tofts Dresent. Weather cool de Zone will be sampled using 2 triple riples sample tubes. Probe 2273 Surface Classis sample tubes. Probe 2273 Surface Classis prior to Sampling. Town. 5gal 30 min Equipment Blanks.  E. Analysis Preservative Contains 12 0930 y WOA 82400 LL IQE/HCC (3)40 mL 12 0930 y WOA 82400 LL IQE/HCC (3)40 mL 12 0930 y WOA 82400 LL IQE/HCC (3)40 mL 12 12 12 12 12 12 13 55 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH/CC 1.993 y PH	Garcia d Bab Tuffs Dresent Weather coold of come will be sampled using 2 to ple rins. Iless sample tubes. Probe 2213 Surface Chee. Probe Prior to Sampling. IDCU .5gal 30 min Equipment Blanks Entainer 12 09304 Usa 8260 LL ICE/HCL (3)40 mL Usa 12 212 12 10304 2212 12 12 13554 PH/Cond Turb 18.8° 20 1°C (454a 1127 15/4m 127 15/4m 127 15/4m 127 15/10.00 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/10.10 (454a 1127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4m 127 15/4	Garcia & Bob Tefts Present Weather cool & word cone will be sampled using 2 triple rinsed less sample tubes. Probe 2213 Surface Check Probe Prior to Sampling Town 50al Son 2 triple rinsed less sample tubes. Probe 2213 Surface Check Probe Prior to Sampling Town 50al Surface Check Probe Prior to Sampling Town 50al Surface Check Probe Prior to Sampling Town 50al Surface Cantainer (2012) 12030 V UA 82400 LL Tax Hec (3)40mL virols 12040 V UA 82400 LL Tax Hec (1)14 Amber of 12212/12/1030 V 2212121355 V PH/Cond Turb 1200 V 12713/10.00 (154d 1200 V 12713/10.00 (154d 1200 V 12713/10.11 V 1200 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12/10.11 V 12	Garcia & Bab Tofts present. Weather cool & win Zane will be sampled using 2 to ple rinsed less sample tubes. Probe +2713 . Surface checks probe prior to sampling Town. Saal  30 min Equipment Blanks  Landwest Presentive Container Log Adalysis Presentive Container Log Adalysis Presentive Container Log 12 09304 Und 82600LL Ide/HCC (3)40mL vials 2  12 09304 Und 8260LL Ide/HCC (3)40mL vials 2  12 12 12 10 304 2212 12 13554 PH/Cond -1  7. 93  18.8° 20.7° (157d -5  10 99 3/cm 1127 15/cm (157d -5  10 99 3/cm 1127 15/cm (157d -5  10 10 10 10 10 10 10 10 10 10 10 10 10 1	Garbia & Bob Tefts Present Weather cool & Windy Zone will be sampled Using Z teight rissed less sample tubes. Probe 1273 Suffice Checks & Probe Prior to Sampling. Town. 5gal  30 min Equipment Blanks  E. Analysis Preservative Container Lot 12030y Von 8240 LL ICE/HCL (3)40mL vials 244  - 0931y LL NOMA Tee (1)14 Amber 6103  AL Parameters Final Meter TD.  12212121030y 2212121355y PH/cond 12  7.93 Torb & 12705/cm (154d 59. 112705/cm) (104 ph. 12  7.93 Torb & 12705/cm (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705/cm) (1054d 59. 112705	Garcia & Bab Tufts Dresent Weather coold windy  Zone will be sampled using I triple rinsed  less sample tubes Probe 2273 Surface checks for  Probe Prior to Sampling Town .5gal  30 min Equipment Blanks  E. Analysis Preservative Container Lat 1209304 VOA 82400LL ICE/HCC 3)40mL virals 2649-1  209314 LL NOMA Tee (1)1L Amber 0103301  Al Parameters Final Meter ID.  22121213554 PH/Cond -12  7.93 7.00 10254 59.54  11275/cm (1240, 59.54  4.840705 7.11/10.00 (1240, 59.54  7.13/10.00 (1.2°) 7.11/10.00 (1.2°)  7.13/10.00 (1.2°) 7.11/10.00 (1.2°)  7.13/10.12 7.12/10.11  412.00 PSIA 12.00 PSIA 10 1107630 1  Samples  Preservative Container Lat 12.02 PSIA 12.00 PSIA 10 1107630 1  Samples  Preservative Container Lat 12.13157 VOA 826014 ICE/HCL (3)40mL virals 2449-1  131177 CC (DUD) CC (1.2°)	Garcia & Bob Tufts Dissent Weather cool & windy Zone will be sampled Using 2 to file rinsed less sample tubes. Probe 2213 Suffice Checks Arran Probe Prior to Sampling Town. 5gal  30 min Equipment Blanks  E Analysis Preservative Container Lat Less 12,09304 Was 8260LL See Hec 3)40mL was 2669-14  Le 20304 Was 8260LL See Hec 3)40mL was 2669-14  Nester to 112 Amber 01063014  Nester to 112 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber 01063014  Nester to 12 Amber

Nove Signed

12/12/22 Date B-184 Or Signed wurch

Read and Understood By

12-13-22

Date

Date: 12/12/22 Sample Location: 6 - 3 - 566					_					Page of	
Sample Location: Ww-3-569	ર			A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	100A 8866LL	LLNOWA						XGMP Charge Number	
22121209301	3	A	×								
09314	l.			X							
13151	3		X								
1316x	1			χ							
1317Y (DUP)	1	V		×	-0.0						
Sample Location:				A	nalytic	al Requ	uireme	nt	<b>u</b>		
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#	Š								Charge Number	
Relinquished by: Date  MdV 9 12/12/2	/ Time	:: 15³30	<b>D</b>		re P	cĉepte	$\overline{}$	-d	12-1	Date / Time:	Ċ

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

		<del></del>				r						1			r														$\overline{}$
M. Gara	ria	# [	3.	آر)	Fts	0	res	en	<del>\</del> .	w	en	th.	er	i	5	b	ec	Zy	£	ca	d.	U	ve	11	u	11	!		
be Pu	role	d l	اح	in	9	a	d	ed	ice	24	201	L	lac	da	r	PL	m	۵.	Ś	am	ole	2 5		col			1		
with	1 -1	1 - 1	41	0	<u>1</u>	d	150	ho	na	e	4	عان	e	[	Par	ah	ne	le.	C	4	ake	'n	U	Blu	101	Agu		rd/	SOO
														,		1	G	1	ľ		In	ita	al	DT	نل	₹.	3	- 1	
															,							na				_		( <	
Aguat	roll S	00	c	21																				00	ر	•	2.	50	al
Do -	100%	0 51	4	<b>a</b> }	~	(a)	او	41	ia m	HG													-						
	Ins																												-
cond-	1 1	1 1	1	- 1	•							ļ																	
Turb -		1 1					20	)												-			`						一
			•																										
Parame	4005			Te	<u>~ </u>	<b>D</b>	C	sno	N.		ΡŁ		$\bigcirc$ 1	99		Do	<b>5</b>	•	To	<u>c</u> b			-		Di		,	_	
23012				19			_	23	1		7,4		4		1	7			ا.	3:	l I			=			- 7.1	~	
		35A			.9		_	52	<del></del>	<del>                                     </del>	7.1		4		١	. 0	+		1	1-	1					١,	( (		
	101	T		$\rightarrow$	9	t	11	32	8	•	7.4	0	3	9	١	C	14		1	. 1 4	7						(		
					-									İ															
									5	N/	NO	les	-				<del> </del>												
Samol	0			1.	٠١.	152	6		Dre				_		Cau	1_2	ne t					Lo	+				La	6	
230124		A		324	_	7	2			رع	1		_				LV						191			-		ALS	$\neg 1$
	1021		.		(F					"	<b>F</b>					دد	L V	a.,				C	(					CL	
	102	1 1			07	<del></del>			-	īce				1	1)1	L A	mb.	er			a	<u>ራ</u> ስ	30	, 13				5 K	X.
	102	1 1				mA			† <u>-</u>	ç ı						e						<u> </u>	1	, , ,				RZ	
	102					B)			(	د					(	c						·	,					16	
	102	5.A		82						LL				1	2)	۱۷.	Am	bec				N	4					ALS	
	1021					8082	24			( (				_	T	]	Ami					C	¢					CC	
	102						le5			<b>د</b> (						دد						(						Le	
	102	7		He	rbi	cid	es			c	:					ıc						(	ļ					CL	
	102			- 1			Fur			l	L				·	16	-				,	100	131	(H		,		5	2
	103					1 /	Yav	-		C	L				(1)	25	OM	ιA	mb	••	1 1			ve				L	5
	1031	Å				4	ics			T	e/1	130	¥			_	((						25					CC	
	1032	1 1		7			al	,				HA			(2)	125	ML	રિઠા	4				07:					ic	
	1033			A.			A			l		ze		1		c							, A					در	
	1031				25	1		•			Ic				(い)	250	ML	Po	14			OI	201	0-	AA	0		"	
	1033			T		T	at	2	,	1		1.7:	3 H	$\vdash$			ML						NI					۲,	
	1036	T				1/1					1 1	/tı	1				ML		_			7	7 C	91	1			Cر	
	103	7A		· l		nic					ıα	NA	40				ML						۱7,					u	
	103	BA				fid									(1)	<b>5</b> 60	M	_ Po	14		,	Cor	ntinu	ed fro	m pa	ige			
	,							_						Read	and	Und	lersto	od B	Ву										

WSTF INTER	RNAL	SAI	MPL	E CH	AIN (	OF C	UST	DDY	REC	ORD				
Date: 1 24 23											Page	_1_	_ of <b>4</b>	<u>L</u>
Sample Location: 100-F-358							A	nalytic	al Req	uireme	nt 🖔			
Pertinent Notes (if any)  Sample Number		# of Containers	Sample Matrix*	8260 ~ L	200	LL NOMA	82700	R B 8082A	Posticides	Herbicides	Dioxins/Fums	1,4 Dioxane	Phenolics	7. metals
230124 1620A		3	A	X										
1021A (FO	3)	3		X										
1022A		l			X									
1023A		1				X						<u>_</u>		
1024A (F	72B)	1				X								
- 1625A		2					×							
1026 A		1						X						
-10214		1							X					
10284		1								X				
10294		1								Ì	X			
1036A		1										X		
1031A		ı											X	
1032A		2												X
							,							
					)									
Relinquished by:	Date / T	Time:				Acce	pted b	y:	fi l	i A		e / Tin		,
mat 2 124	23	1	130	hes	Jon!	$\bigcup$	1 V	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> L</u>	1-1	<u> </u>	) / (	0919	)
					<u> </u>									
					V									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF INTERNA	L SA	MPL	Е СН	AIN	OF C	UST	ODY	REC	ORD				
Date: 1 24 23						·				Page	2	of	2
Sample Location: 100-F-358					***	A	nalytic	al Req	uireme	ent			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	nions / ALK	TDS	enchlonate	201/20N	-yanide	Sulade					
Sample Number	#	Sa	7		0	7	U						
23012416334	2	A	X										
10344	\			X					,				
1035A	1				X								
1036A	1					X							
1037A	\					·	X						
1038A	(	V					·	X					
					_								
					_								
											:		
				$\bigcap$									
Relinquished by: Date  Matt 1/24/23	/ Time:		hrs	jûn 1	Acce	pted by	V	<u> </u>	1-21		e / Tim	ne: )919	<u>,                                    </u>
				)		1							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:  $_$ 

Signed

1/24/23 Date B-189 Oru Signed

1-29-23

WSTF INTERNA	L SA	MPL	Е СН	AIN	OF C	UST	ODY	REC	ORD				
Date: 1/24/23										Page	2	of	2
Sample Location: 100.6.223						A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	T. Metals	Anions/All	705	Perchlorate	No2/1203	Cyanide	Sulfide				
2301241433A	Z	A	i——										
1434A (FB)	て	1	X										
1435A	2			X									
1436A		1			X								
1437A					, ,	X							
1438A							×						
14394	-							γ					
14404		$\sqrt{}$							X		-		
				$\overline{\wedge}$									
Relinquished by: Date /	Time:			$\left( \cdot \right)$	Acce	pted by	y:			Date	e / Tim	ne:	
Mott 9 1/24/23	l S	530h	r5	Jon			lunc	h	1-25		$\int$	091	Ś
				<u> </u>			•••					<u>.                                    </u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF INTERNA	L SA	MPL	Е СН	AIN	OF C	UST	ODY	REC	ORD	1			
Date: 1 24 23										Page	<u> </u>	_ of _	2
Sample Location: 100-G-283						A	nalytic	al Req	uireme	ent 🕠			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8240 LL	607	LLNOMA	05270D	PCB 80824	Pesticides	Herbicides	Diaxins/Furans	1,4 Dioxane	Phenolics	4. Metalson
230124 1420A	3	A	X										
1421A (FB)	3	1	X		_								
1422 A	•			X									
1423A (FB)	1			×									
1424A	1				X		,						
1425A (FB)	1				X								
14264	Z					X			•				
1427A	1						×						
1428A	1							X					
1429A	l						, <u> </u>		X				
1430.4	ı									X			
14314	ı										X		
1432A	1			-								×	
				$\bigcirc$									
Relinquished by: Date  Mattheway: 124/23	/ Time	: 5301	145	Ou 1	Acce	pted by	γ: l		- 29		te / Tin	ne: ) 9 1 5	
			į,	)—									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: _

Signed

094L /

PCB's

1.28.2023

B-192 Or U

Read and Understood By

1000 11

-ch [-26-2

Continued from page

Date

JE	СТ	3	ec ec	<i>- چ</i>	-1	75			<u>e</u> ı	N U	. 00	>53	(	ر <u>د</u>	1	2									ok I I fron					<u> </u>				
			1	$\top$									4		MO	NE	\$																	_
BE.	<b>y</b> -		$\dagger$		7	D	-1	. 5							T	رجو					c.	tra		~ 4				10	-			LA	3	_
12	i	25	1	-						70	ıL					د//		- 1							ber			N	41			4	13	
	1	7				+4										4								Po					1			a	1	
	09	1				<i></i>	1	- 1	- 1							Ŧa.	- 1			- 1	(3)	- 1	٠,			_			$\coprod$			4	)	
	) 00					1		1		<b>~</b> 2	546	c				,					(1)	Ŋς.	• *	18	٠٠,			-	$\downarrow \downarrow$				`	_
	100					محد										•		$\perp$			- 1	- 1		۱ ۴۰	_			_	$\prod$				^	<u>_</u>
	100	T	Ţ			1	1	- 1	- 1	35	3,2	<b>.</b>			Za	١١	25	34			0	೧ಬ	4	Po	12			_	$\parallel$			_		
		3				ye.	1					-									0	1/3	5	1)				_	1			-	1	<u> </u> -
	00					i								7	عر د	2/10 1/10	e's	Ž			<b>0</b>	200	10	Po	<b>&gt;</b>								)	L
															_						_			ļ					-					L
												_		_					_					ļ										F
															1_		_		_	_		-					_	_						-
												_			1	-				_						_							-	+
												<u> </u> -					_																	$\mid$
												<u> </u>			1.		_			_							_							-
																-								<u> </u>	-				_					+
																													-				_	+
														_										-	ļ									$\frac{1}{1}$
																						ļ	ļ	<u> </u>	-	ļ								+
												<u> </u>													-	-								+
																									-	-		-						$\frac{1}{1}$
														_									-	-		<u> </u>								1
																								_	-	<u> </u>					ļ			4
																								1	<u> </u>	ļ					ļ		_	+
																								1		ļ	ļ				-		_	4
																														-			_	1
											!														-	<u> </u>	<u> </u>						-	4
																							ļ			$\downarrow$	<u> </u>				<u> </u>	_		4
																							1	_			<u> </u>	-			-	_	_	_
																			<u></u>		_	_		ļ	ļ.	-	1		_	-		-	-	_
																						<u> </u>	-	_	_		_		<u> </u>	-	-		-	
																				ļ	ļ				_	1	-	_		_	-		-	_
																											_	_		A		<u> </u>	-	
			•																			_					<u> </u>	-		_	1	<u> </u>	-	
																				<u> </u>		1_			_					_		1	1_	
																											Со	ntinı	ed fr	om t	oage			
																			Rea	d and	d Un	ders												
			_													_			,	1	-	(	1		d) U					1	_9	6-!	13	
	7	` _		L	igne						_	<u>J-</u>	25		ල <b>්</b> Oate	3				101	<u></u>	$\vee$		<u> </u>	YN	~~			<del>-</del> .			Da	te	_

Date: 1, 25.2023								<del></del> -		Page 2 of 2
Sample Location:				Δ	nalytic	al Requ	uireme	nt		
Sample Location: 300- F. 175  Pertinent Notes (if any)			<u> </u>			ar requ				
	iners	atrix*	3	5	NI O		7	5	نہ	
	# of Containers	Sample Matrix*	2	4	800	Ñ		3	د داد	_
Sample Number	# of (	Samp	Primites	ξ	110 Sno. no.	705	R. chert	Nos /Ne3	Cyan: de	Charge Number
	1	7	9				9			Charge Tramber
23012509576	-	1	1	7					····	
04586	3			1	9					
09596	3					7				
1000 C	1	+				J				
1001 c	<del>  ]  </del>	<del>                                     </del>					b			
)000c	-   '	$\vdash$						7		
10036	1	,	·						X	<u> </u>
Sample Location:		т-		A	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any)										
	ers	*xi	ر ا							
	ntain	Mat	- つ ::							
	# of Containers	Sample Matrix*	مل :اكالهاج الماد : مالهاج							
Sample Number	#	1								Charge Number
230128+004C		4	9							
Relinquished by: D	ate / Tim	e:			<i>\</i>	ccepte	d by:	î		Date / Time:
1.52.30	23 /	105		<u> </u>	in 1	$\Delta \mathcal{L}$	Ilm	<u>-h</u>	1-2	6-23 /0845
							,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1-25-2023							•				Page	of <u>2</u>
Sample Location: 300- 6-	175				A	nalytic	al Requ	iiremen	ıt			
Pertinent Notes (if a	ny)			,								
		Š	*,			1						
		# of Containers	Sample Matrix*			7						
		Cont	ple N	100	$\zeta$	4						_
Sample Number		Jo#	Sam		رمع	AGGN					X6N Char	ge Number
	TB	7	7	4							- Caluar	8011001
23012507206	7/3	3	1									,
04%5C			+	9								
09466	FB	3	$\vdash \vdash$	9								
०९५७ ८		1			1	_						***
07210	丁B	1				8						···
09486		1				R					-	
8949	513	)	1			g						
Sample Location:					A	nalytic	al Requ	iiremer	ıt			
Pertinent Notes (if a	ny)					2						
		ş,	*	2	v	Ser Para	Ŋ	Q				
		ainer		S	3	4	. <i>-</i> 5	, c	ij			
		of Containers	Sample Matrix*	, ,	ر. بنر	, '¿	Ä	ď	3			
Sample Number		Jo#	Sam	5 War - SIN	Pusticishes	Diawins	Harbici	Svor 8270B	PCB's		Char	ge Number
23012509506		1	V	9								
	FB	\	1									
09516	\	,		-	4	-						
- ०५६२८					7	4						
05536		<u> </u>				7						
05546		1	+				4					
09556		2	-					4				
09560	· · · · · · · · · · · · · · · · · · ·		1						9			
Relinquished by:		/ Tim	e:		+d	$\mathcal{I}$	ccepted		1)	ι Δι	Date /	1 1
	1. 22.302)		103	-	+	Pre 1	$\mathcal{N}$	llu	d-	1-21	o -23	/0845
						)	<u> </u>					
					'	J	•					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Junah 1-18-23

Read and Understood By

Continued from page 1

Sample Location: 400 . A . 151					Α	nalytic	al Requ	uiremen	t			
Pertinent Notes (if any)  Sample Number	# of Containers		Sample Matrix*	002/80	407	TAPTALS	41-02M· 414	FD5			Charge	Numbe
	- 1	2	A	×								
2301171435A	DUP 3		$\frac{1}{1}$									
			-	$\times$								
	FB 3	1	+		×							
1438A	2	,				×	<u> </u>	<u> </u>				
1439A 1440 A		$\dashv$				<del>  ^</del>	×					<del></del>
		<u></u>	+					×				
1441 A		1	1_		<u> </u>	A a la et:	asl Das	luireme	nt	L		
Sample Location:  Pertinent Notes (if any)				P	Γ	Anaiyu	Cai Rec	luneme				
Sample Number	prosition of the	# OI COINAINCIS	Sample Matrix*	ERCHLORDT.	202203				i		Charg	e Numt
2301171442A		(	A	×								
1443A	(		A		×							
											,	
Relinquished by:	Date / T	ime	e:			) [	Accept	ed by:			Date / T	
1.17	.23		4R	n	-	Ou \	$\mathcal{N}_{}$	Jun	<u>-l</u>	1-10	8-23	082

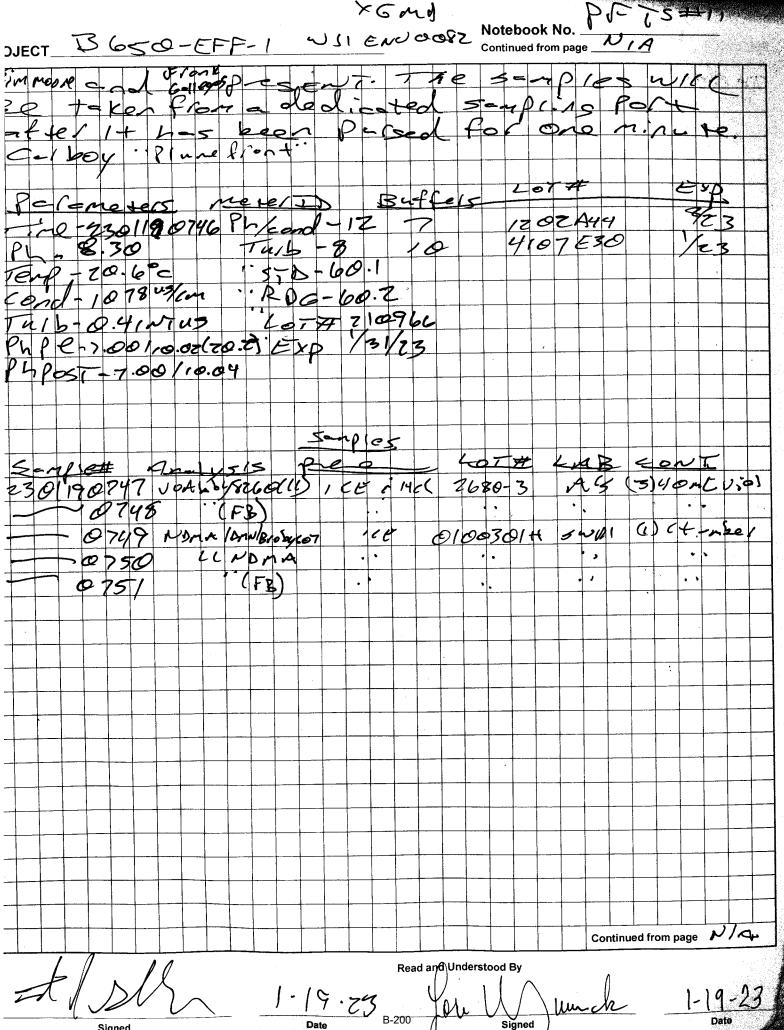
^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page NA

PROJECT 600-8 108 601 ENDI-2013 Continued from page 707																														
Matt C	tour	cio	_ ,	Bc	b.	Tu	£7.	5,	Cr	ماه	De	1 5	ter	ra	rc	<u>,                                    </u>	re.	sen	1.	w	eat	he	ز ع	ر اح	cl	iea	* 4	L Co	loq	
This u	we	11 0	w	11	1 6	be	9	300	100	ed	- d	my	1	US	in	a ·	a	be	nn	ett	+ 0	אַטַּ	nO	$\lambda$ . $A$	424	ter	ر ر	rel	И	
recou	er	5, .	50	<u>~~</u>	le'	les	<u>.</u>	w	ü	1 6	se!	7	المأ	lei	eti	ed	ن	Sir	10	a	1	te.	Pie	י בייב	L	ai	le.			
																			0				C	art	50/	٠.	<u></u>			
											'	'												,		<b>5</b>				
Jota 1	De	04	1	-	148	8,						M	ta	+ nC		TD.	,	'			B	t	Les	5	1	404	<b>+</b>	1	EXP	0
Initia	1	m									9	P	11/	Co	ind	1 -	<u>_</u>						7	1 1				44	- F	F .
Start	2	. W.↓	0	- \	ה	الم	15					7	Tu (	4		1		<del>                                     </del>					10					300		
Stops	Or,	مريا ط م	<u>-</u>	- 1	₩.	<del>1</del> 77	1		'			7	((			. at	+		7				-	<del>                                     </del>		-	=			-
7111		9	-	-	1,	5	40			-	+		Cı			06.							-	+		+	+-	+ +	$\Box$	
Total C Final	10	ر ت	-		<u>ر</u> ایر		97,	+	$\square$	-	+	-	(1	+		0G .		-	-				+	-			+	++	$\Box$	
Tivo.	\\ \mathcal{\nu}\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\right	<u>, u</u>	$\top$	<del></del>		†	10			<del> </del>	+	<del>     </del>	C		i	XP -			1 . 1	1 1			-	-	<del>                                     </del>	+	+-	+	$\Box$	1
	+++	+	+	<del></del>	<del>                                     </del>	+	+-	+	<del>                                     </del>	+	+-	-	+	+	E	(P-	+ 1	13.	1.0	<b>3</b>			+	+		+	<del> </del>	+-+	$\Box$	
Initia	+	Q,	+			+-	+	+		+	-	+	4	+	+	+	+	+	+	$\vdash$	<del>                                     </del>		+-'	+		+	+	+++	$\Box$	$\vdash$
-hitia	+	Far	av	2	7	<u> </u>	+1	+	+-	-	+	#	in	بع	+	+		+	-	-	+	<del></del>	+-	+	-	+	+	+	$\Box$	
Time	10	301	4	.5	12	5>	<i>54</i>	+	-	=	+-	10	100	01	2:	21,	31	C	A		-	<del> </del>	+-'	+-'	-	+	+	++	$\longrightarrow$	$\overline{}$
PH -	19	1.1	-	۔ ما	<del></del>	+	+	-	-		+-		8.3		-		+-	<del>     </del>	+	-	+	<del></del>	-	<del> </del> '	+	+	+	+	$\longrightarrow$	$\overline{}$
Temp.						+	+-'	+	<del>  '</del>	F-'	1	-		8			+	+-'	₩	-	$\vdash$	<del></del>		+'	+-	+	+	+	$\vdash$	-
cond	+ + +	4	3	S	fur	<b>^</b>	+'	<del></del>	1	<u></u>	<del>                                      </del>	+'				Slem		+'	-	-	1	<del> </del>	+	<del></del> '	-	+	+	+	$\vdash$	
Turb.	+1	.35	4	4	<u>, , , , , , , , , , , , , , , , , , , </u>	+-	1	47	-	+-	+-	<del>-</del>				~70		<del> </del>	<b>7.</b> —		1	<del> </del>	+-		-	+	+	+	$\vdash$	<u> </u>
PH Pre	+ 7	.09	1	10	1.1.	2	<u> </u>	1	<del>-</del>	<del>  -   -   -   -   -   -   -   -   -   -</del>	+	<u></u>				2 3 10				ر ۲۰	1	<del> </del>	-		+		+	+	$\overline{\Box}$	,
PH Post		<u> </u>	-	10	<u>p.1</u> .	1	+'	1	<del>                                     </del>	<b>—</b>	#	<u></u>	+ '			9,1		13	<del>  '</del>	<del> </del>	1	<del> </del>		+'		-	+	+	+	<del> </del>
DRU.	114	15	-		+	-	<del></del>	1	<del></del>	#	+	‡'		14	4)	.90	*	<u></u>	<u>                                     </u>		<u>                                     </u>	<del> </del>	-	<u></u>	-	+		1	<del></del>	<del> </del>
	1		_		+	-		<u> </u>	<u>'</u>		<u> </u> '		<u> </u>	<del> </del> '	<u> </u>			<del> </del>	<u> </u>	<u> </u>	<del>  '</del>		-	<del> </del>	_		+		$\vdash$	⊢—
	1	-	_		_	-	<u></u> '	<u>  '</u>		<u> </u>	wb	<u> 11-e</u>	<u>.</u> S'	<u> </u>	<del> </del>			<u> </u>	<u> </u> '	<u> </u>	<u></u>	<u> </u>	<del> </del>	<u> </u>						<del> </del>
Sample			$\dashv$	<u> </u>	<u></u>			حريا	5	-	<del>  '</del>	Pr	resco	مبع.	tu	y-e					ine		<del> </del>		o t	-			Int	_
230125	1 1	: I		1		8	326	20		<u> </u>	<u> </u> '		Ιœ	/HC	دد		<u></u>		3)40	ML			7		193	<del>d</del>		$\perp$		L5
	1 1	301		1		1	ئد (ا=	1	1 1	<u> </u>	<u> </u>	<u> </u>	(			1			(	دد				(	+			$\perp$	4	•
	1 1	301	- 1	1 1		T	M	ela	حاد	,'	'	1	1ce	2/H	in	جرد		(2)	2)12	451	n L	Po	13	720	<b>27</b>	125	<u>5</u>		(	•
	1 1	303	1	1		-   -   -   -	A .	ous	1 1		<u>.</u>		TC	e/z	en	ънς	<u> </u>		1 1	ر د	'				ns.	1				(
		300	- 1	1 1	_		105							ce	1			a.	)25	501	ML	Po	14	0.	10	bec	0 24,	118	(	,
		30	- 1	! !			7	ilon	AL.	<u>e</u>		<u>ر.</u> ا			+	H5.		(1)	)12	27	الر	Pc	بار		NA				1 1	در
		304				cl	hlo	rid	te		<u> </u>		1 3	ce				_	7	C	<u></u>	<u> </u>				4710	9		4	4
	1	30-	74	1		L	202	No	3		<u> </u>			e/H		4		U-	725	501	ML	Po	ly			091	<del></del>			ر
								1			+			1	-	1														
		1	1			1		+			+	+ -		+		+	-						1	+		+		+		1 3.
				1		+	+	+	<del> </del>	$\vdash$	+	-	+	+	$\vdash$	+	-	1								+-	+	++		1
		1	+	1			+	+	<b> </b>	+	+		+-	+	+	+	<del>                                     </del>	<del> </del>					Co	ntinue	∟ ıed fr	rom /	page	1		
and the same of the same of	<del></del>					<u> —</u>	ىسل	Щ.		<del></del>	<u> </u>	لبـــا	<u> </u>	<u></u>		ad and	ا خالات	deret	لــــــــــــــــــــــــــــــــــــ	لـــــا م	—	ــــــــــــــــــــــــــــــــــــــ			-					
															Keo	∡α <del>μα</del> γν	A UTIC	TEISI	Juu D	yد										

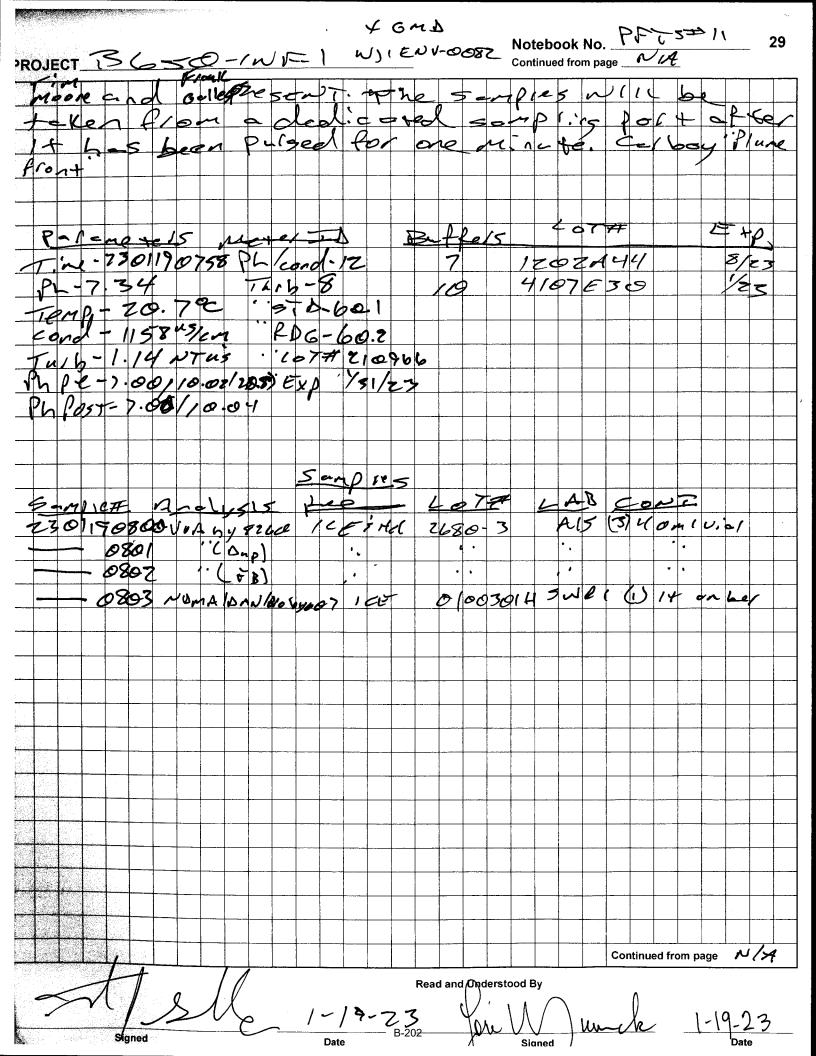
Most De

1/25/23


___ B-198 Ou Signed

1-29-23

Date


WSTF INTERI	NAL SA	MPL	E CH	AIN	OF C	UST	DDY :	REC	ORD				
Date: 1 25 23										Page		_ of	1
Sample Location: 600-6-138		Analytical Requirement											
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8200	T, Metals	Anions (46K	705	Derchlorate	Chloride	201/200				
2301251300A	3	A	X										
1301A (F	B) 3	1	X				_						
1302A	2			X									
1303A	2				X								
-1304 A	(					X							
1305A	(						V						
-1306A	(							X					
1307A	(	$  \psi$							X				
						ļ							
111 1 = 01	Date / Time				1 1	epted b			1-21		te / Tin な /	ne:	۱ ۷
Matt Sa 1/25/2	.3	1345	405	Jon Jon	ι <u>/ /</u>	<u> </u>	) lun	-a	<u>[-L</u>	0-1	<u>)                                    </u>	174	~ 丿 

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:



Date: 1-19-23							,			Pagel_ofl
Sample Location: BUSCO EFF			-		Analytic					
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UOA 8260	3	<b>L</b> 09		PRS.		105 Suzishoc	XGMD Charge Number
2301190747	3	A		×						-
0745(A)	3	A		X				·		• 1
— 0749 — 0750	1	A			入					-1
	/	A				X				٠,
- 0751 (PB)		A				У				<b>'</b> \
,										
Sample Location:  Pertinent Notes (if any)			Analytical Requirement							
Sample Number	# of Containers	Sample Matrix*	VERCHIARATE 6850	NO2/NO3 353.2						XCMD Charge Number
Relinquished by Date /	Time:				TT	cepted	by:		1-20-	Date / Time:
1-17-25		/ 3 W	<del>-</del>	1 or					1-71-	-23 /cqoo

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:



Date: 1-19-23	<del></del>								<del></del>	Page of
Sample Location: B 650-11	UF.	- 1			Analytic	cal Req	uireme	nt .		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 8200	11-VOA 8260LL	NOMA/DMW/b07	Low Level	Tora WETRIS	ALLIANS/ALL	105 SN2SHOC	XGMD Charge Number
2301190800	3	A	74							• _
- 0801 (pip)	3	A	X			·				*/
- 0801 (\$in) - 0802 FB) - 0803	3	A	X							
- 0803	J	A			K					
Sample Location:				A	nalytic	al Requ	iremen	t		_
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	VERCHINGATE 10850	NO2/NO3 353.2						XGMD
										Charge Number
Relinghished by Date /	Time				\ h_	cepted	hv:			Data / Time
1-19-2	3/0	9930	9	Jan J	, Ac	I = I	by:		1-20-	Date / Time: 23 / 0900

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

ROJE	CT	£	34	· 5	5	- 6	EF	<del>-</del>	ح		w.	اد				~ (t		ङ्	_	<b>Not</b> Cont	ebo inue	ok d froi	<b>No.</b> m pa					<b>5</b> 1.	± 1	۱ 2	7
Tim !	2	ee t		(ce	^	P	7	6M	re	9	- 0	la		1 . 1	n' ''			re		>° ∠	<u>_</u>	rp T	ρ <i>β</i>		CO	ر ج	1	0	7		
a (	10	()    -	<b>∕</b> • •	- ک	,	9.		3	0	×	رم	٠.٢	3	l l'	0	7	. (			> e	~ (	<b>&gt;</b> <	· d			3 &				.1	<b>1</b>
F	0,	(o	ऻ —			5 84		No Pi					2	B	<u>uf</u>	Les		(   <del>1</del>		-T						-E	ξ λ -/-	P -3			
7	6.	P	8.	7) 17.	\$			•	<i>i</i>	^/ ≶T	D 1	6	0.	ىر1 2.	18	/				<i>3</i> -7			0			1	2	3		,	
7	u.	P.	e e	/,6 7.c	9/	10	.00	/zo.	zi)	∠. +€	ンプ	<b>Z</b>	_2	10%	6	6															
	h	fo	5		<i>).</i>	00	2 /	10	2.0	7																					
230		7.		##		Ŀ	<u>رم</u> 0 س	l	<u>y                                    </u>	. <del>15</del>	0(1)	<i>f</i> ~	ف	1B CE		te(		-0`				4		. 1		0 الم		ن	,,	<b>ا</b>	
			35	3 4				me	16	· <b>B</b> ,	BH	بوط		7	, ,	t	Ø	lσ	0.	<b>w</b> l	14	``,	-P 1	Ć	٠,	ر-	<del>\</del>	<b>~</b> ~	- V	20	_
	-	08	85. 57					7	· ·	(F	B)	tol:	. /		=//	4~	207		, , رکر	[A			· ls	Į.	<b>~</b> )	, L.	, , E ,	٠ر	L.	-ly	•
		0	19	9					ai Rei	7 j CL	6 b	ete	925 2 b	Yca Y 6	85				,				.,		(1)	<u></u>	74	- ,		- υ ρ •	
		0'	90				-		, د	OZ	J.~	03	بولا	35	3	2	10	e/,	42	<b>\$0</b> (	1		•		(/	\	50	0 p.	1	70	7
				N																											
	Lor	<b>(</b>	T.													Read	d and	Und	lersto	ood E	By	\			· · · · · ·	ed fro				1/	9
-	72	<u>=</u> 2	// Si	gned		124			-	4	9-	Date	V Z d e	9Z.	<b>3</b> B-20	)4	<u> </u>	2m		Sig	ned	) u	u	-d	<u> </u>		1-	19	-23 Date		-

Date: /-/9-23			-			·				Page
Sample Location: Bloss-EFF	-2				Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	JOA 9260	UL-VOA 8260LL	MA DWW/ 607	cal Req	ora Werris	ANIONS/ALK	105 Suzaboc	XGMD
Sample Number	-	1 4			<u> </u>	13		<u> </u>	Y	Charge Number
2301170852	3	1/2	<b> </b>	X						
- 0853 (FB)	3	A		V						٠.
0854	1	A			X		·			• •
2301190852 	1	A				X				
- 0856 (FB)	1	A				X				٠.
- 0857	2	A					X			
0828	2	A						X		• •
Sample Location:				A	nalytic	al Requ	iremen			
Pertinent Notes (if any)	· · · · ·									
Sample Number	# of Containers	Sample Matrix*	PERCHUPATE 10850	NO2/NO3 353.2	TDS 67					XCMD Charge Number
2301170859	1	A			X					, (
<del></del>	_1	9	X							•
0901	1	A		X					•	÷ _
,										
Relinquished by: Date /					A	cepted	by:			Date / Time:
-11902			6	10	' T V		u	d	1-20	1

* Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other: ___

WSTF 381C (05/2016)

												5	<i>/</i> Ç	nd	•							. ~		- Constanting	- 11				Section .
; !OJECT	F	>	6	<u> </u>		1 M	) E	=_	- 2	, 	V	J 1	ر 	Ez	200	1 52	,	<b>Not</b> e	ebo inued	ok i I fron	No. n pag	P(	a	JA	; :	17			
Marie 820	4	٠,		FRA	s/l	6411	16 (1	7-~	5-8		<b>ツ</b> 7	7	, 7	- 4	e d	جر - ۵	- ;	5¢	-,4,	18	ے '	<b>S</b>	-	~	/ 1	4	1	$\overline{+}$	7
Par	t	•	-6	Lei	-	ر ا حر		> <u>~</u>	6	~~	ا ده	ص د د	ر رو	e Le	١	۹۲	3	×		\$					70	<u> </u>	2	#	1
Cc	( <u>V</u>	) =	4														-					- 7	7			<u> </u>	<u></u>		
Bo Ti		- 1		+ e			Qu		رم		1	- +12		\$		_,_		16		2		14	_		=	8/	27		
PL			7. (	36			-		/1		1	7	-	-,)	_/	0			10			30	2			1/2	3		
001			12	550	rs/c				2		at t																	_	
Phi	e		7.0	7/	0.0	169	).Zc		EX	8	//3	1/2	761 3																
Ph:	05	1-	//	00	2//	Ø. 6	<u>۲</u>																						
Ser	an (	21	e#	<b>=</b>	1	Łn.	-(	<b>4</b> 5	ıS		در بد ا	7P	و	<u>'</u>	<u>-</u>	۷	0	T= Vo	Ħ	٠	4	4,0	2	و	ے۔	<u> </u>			
230//	909	15	<i>F</i>				4 P	-	<b>E</b> )					~ .				, ,			-	الع	G	<u>5</u> )°	10	· Jen	0.	04	
	09					N	OM	418	ne:	N/2	مرمد	507	C E	10	t	O (	00	930 P	N F	<u>,                                     </u>							nzl us (		
	09	18	1 1			4,	n. o.	^ 5	14	110	,			<u>.</u>							•,					•			> 4/
	07	20	,				701	ch'	le (e	101	oy (	100	9	 د که د			,				,	,	(	リソ	12	٠ د د	n ( n(	Pe	7
	07	2/					102	./~	03	by	35.	<i>J.</i> C		/	+22									a	) C	>0	~[	· Par	,'Y
			ļ				-																					_	
								,																					
									-																			_	_
								-				_												-					
																						Con	ntinue	ed fr	om p	age	N	1/1	
		1								<u> </u>	1	<u></u>			- 1	1		ood E		L									
		1						_	19	二年	re	923	,	000	4	) Dri	ا	V		$\setminus \iota$	lu	-0	k			-1	9 -:	23	
•	•	Si	gned						•	Date	е		В-	206	χ	•		Sig	jned								Date		

Date: 1-19-23										Page of
Sample Location: BUSS-IN F	-7				Analytic	cal Req	uireme	nt		·
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9260	17-10A 8260LL	NOMA / DMN/ 607	1	Tom Werms	AUTONS/ALK	105 SNZSHOC	X6MD Charge Number
2301190914	5	A	×							
- 0915 (FB	5	A	Х							- 1
- 0916	1	$\mathcal{A}$			X					
	2	A					X			
0918	2	4						X		, ,
- 0919	1	A							X	• (
0120	1	A-	_							
Sample Location:  Pertinent Notes (if any)	,			A	nalytic	al Requ	iremen	t		
Sample Number	# of Containers	Sample Matrix*	VERCHIMPATE 1850	NO2/NO3 353.2						XGMD Charge Number
730190920 		A	x							~ ·
0921	(	A		X						~ ~
									•	
						-				
	/ Times	ــــــــــــــــــــــــــــــــــــــ		TA	Ao	cepted	bv:	+		Date / Time:
Relinquished by: Date	1 mile:		<del> </del>	<del>-     - /</del>	1	//		- h - 1		
Relinquished by: Date	3 ( e	933 C	9)	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1 1		lu	1	1-20	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

U ROJECT_	Bl	m · (	0-4	188				€.	W	['] ਹਟ	5 T.	3					NOT Cont	inue	OK d fro	NO. m pa	 ge _	<u>し</u>	ےد	<del></del> /		<b>2</b> (C	<b>:</b> J	
AC,	More	78	5 0	- 7	01	*	70	0	Ξz	.م	ro.	p T	er.	7	3		رر	Sag	12	E _		5	cl	.e.a	in	4	5	(
79,5	1) E	766	4	۱۱ ار	5	ج	PI	n	s E	人	ð	5.7	9-a	P	رة /	(	25	/ <b>a</b> {	1	A c	de	ر ای	cA	170	8	70	7	-
6/40	liFn	براص		_	152	4-	1	رعر	_	_ /	1 5	- ~7		1		en	m	A		E	-0	he 2	الم	(10	4	ا . ـ ا	_	
Agua.	- (	UM	7 <del>e</del>	1	a	u	rl	(7	3		PA	~~	9n	`	5	حے	<u>/(</u> E	eT	تعا	- /	-n	<b>~</b> ~	, ,	7	1~	5,7	4	
Agua	Trod	( )	00	<	41	25.	Dy.	6-	3																	_		
Salil	na7	مدرة	s																									
Doso	5450	م	G4 (	`J.	12		SA	14n	47	لت	L	JA	7z-	1														
COND	5E-	VS.	1	cal	1	. ,	~	14	17	4	5/0	M		51	- Par		no	/								$ \bot $		
pt 5	EVS	n		ac	(d	/.	<b>/</b>	4	7,	10	Ł	>L F	FE	715	_												$\perp$	
Tur	5 5 E	130	1	CA	C.J	1	~	2	ے د	10	h:	57.	4-0	da	rol											_	_	
							0																				$\dashv$	
_				500	2		4	24	m	سع	78	25		^	(			,				1.	`				-	
Ample		اسيسا	1/42	401		4(*)	3/0					U	01	M51	$\langle \rangle$	01	$\varphi$	(M	<i>i</i> ) <i>l</i>	8. 2.0	mf	) ( _e	.)		4.1			
230/05	07 095	1 1		1)				1	5	•			05		!		. 2			70 70		ļ		1 1	2. c		_	
1 1 1	05	1		1,4		9.2		7	7	7			.0			1	۔ د ک	1		l I		45	-		2. 2.	04	,	
	4/		-	1,1					7				, ,				. <b>C</b>	<b>9</b>										
							5	A	np	1=	5																	
SAMO	£#		4	ANU	7hy	515					P.	250	54	j				_c	s.i	7						44		
23010		<b>20</b>		ВZ	60						1	رت	4	1			(	3)	46	2/0	al.	<b>S</b>				AL.		
	100			1	()	43)				-		1,							11							11		
+	100			6	Ro	<b>)</b>					-	li							11							h	-	
	100	3c		l l	0	'						10	Ē					(1)	1 (1	An	50	n				514		
+++				- 1		m	1					1.							l j			-		-		11		
	100	1 1		L	_	⁴ 5)						10							)t It		-					11		
	100	1	-	- 1	D		_	1.					1	1.1				2		,						A (	5	
	100	7C				l m			-			10	1 t	3				رع	1	ml	269					1,		
	100			- 1	D	1	-64	در				1	(					11	7	50,	a 1.4	ماماد				11		
		oc		- 1				477			<del> </del>	//						١.		5	•	1 /			-	(1		
	101	1 c		1	0.	ch! /2	la					10	2/	4, 9	a			1	1	SOA						4		
		120		8	2-	0							10	'C	/							7						
							ļ																ļ.,					
						-																-						
						-							-	_								L	<u>_</u>	<u></u>	<u></u>			<del></del>
										<u> </u>				<u> </u>	<u></u>	<u> </u>	<u> </u>				Col	ntinu	ed fro	om pa	age			
													Read	d and	Und	lersto	ood E	$\Delta$			Λ							
4	v	$\mathcal{L}$	1					/ · .	5.	2	3			4	). Ori			$/ \setminus$	u	u_	S	<u></u>		١	-6	, -2	3	
	Si	gne <i>(</i> )							Dat	е		B-20	08	*	<i>\( \( \sigma \)</i>		∠	gned					_			Date		

Date: 1-5.23										Page of
Sample Location: B/n-6, 488  Pertinent Notes (if any)		-		Α	nalytic	al Req	uiremer	nt		
Sample Number	# of Containers	Sample Matrix*	8260	680	007	772084	DRO			Charge Number
230/05/0000			X							
100/c (Fix)			X							
730105/0000 100/c (Fis) 				X						
/003c					$\lambda$					
- 1004c				-		X				
- 1004c - 1005c (FB) - 1006c						冷				
1006c				·			X			
Sample Location:		-		A	nalytic	al Req	uiremei	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	Fatel substan	K-Dhier AD	TDS	PHU STORAL	702/705	るてつい		Charge Number
1007c			ス							
- 1008c				カ						
- 1009c					x					
- 1010C						X				
- 1011C							X			
10120								$\times$		
Relinquished by: Da	ate / Time		>		Mu V	ccepte	d by:	d	1-6	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

D32#127c19 Notebook No. __ PROJECT BM · 10-517 ENU. 0053 TON TOREZ & AL MONTES PRESENTON 1-3.23, Thewarter asing a dedicated Teflow staden pump. Samples collected from From A Troite Agua Plan 500 Comboy 6. 7 mas E. Calibrations Do called my 100% SATEMOTIONS PH ac'd in 4,7,10 Buffers al Tot ask not that calid in 1817 45/cm 57 mardand TURBIDITY CAL'D WITH ZONTU SUANDAND PARAMETENS PH Do uns Sample # 230/03/540c1,0296 76ce 478 186.2 7.66 - 154/c 1,022.3 18.70 5.01 7.66 7.60 - 154261,024 6 4.70 18.60 DAMPLES Preser SAMPLET ANALY 51 3) Your was 230/03/545c 824011 with! 11 (F3) 1546c (WOMA) 1547c 1) 14 Ambon SUI 11 (FB) 1548c 1548c TOTALMETAS 15500 607 Continued from page Read and Understood By 1-3-23 July unch 1-4-23

Date: /-3-23										Page	<u></u>
Sample Location: B/m 10 517  Pertinent Notes (if any)	)			1	Analyti	cal Req	uiremen	t			
	# of Containers	Sample Matrix*	BNGOL	してかかみ	total motals	907				X6m1 Charge Number	•
230103 1545c	3	A	X								
1546 c	3		X								
1587c	1			k							
Sample Number	ı			×							
1549c	2				X						
1550c	1	<u> </u>				×					
Sample Location:  Pertinent Notes (if any)	_			A	Analytic	al Requ	uiremen	t ·	Γ.		
Sample Number	# of Containers	Sample Matrix*								Charge Number	
						-				Onuigo Trumbor	
		_									
D.U											
Relinquished by: Date	7 Time	163	io .		Un (	tecepter	d by:	d	) - L	Date / Time: -23 / 0900	
											•

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

36 ROJE	EC	т_	Bl.	Μ	15	·	3	05	•	W	SI	EN	V · (	<u>&gt;0</u> \$	3			_		. ,•						No. m pa			2 #	120	. (A			
Marc Docs	1	-  -		براہ مند	٦,	8		(A)			cio,		(27)		10	No A		-				-			1	نكو	١ .		وبن	[]	اند	l de	1	
X I I'M	'		1	· 1	1)	4										6	~~~	u~		۵. و ۱	W 1	<i>[]</i>	الم	وي	W0V			O C) 3	210	(	2 V	~~		
To.	3	ί,	J	A	109	4-	Te	0(1	- (	\$00		Car	poy	G	2	7				•										)				
				· ·			-	_											+					. ,				۸		١.,	,		-	
Calib		الم أي	, , ,	<b>S</b>	16	۲۱.	4	۷.	7.	1	οΛ	-											10	4,e	16	571	ν.	1	છ\	. \U			-	
ond.			, , , ,	1	أحد			14	(3	N	s/c v		47														-2	,						
514 -		Ç,			sì	1	)	Ý	2	10	7		1.5	U	В	y fl	ध ऽ										. •							
vb.	_	C			sin	- 1 1		0	N	tv.	8.	ā			'				-												•.			
aran	1		۱).	٠٧	7	-	_	10.	امند	()		<u>C</u>	2	US	im.		DL	1	+		Ø	D		6	<u></u>		-1	-h	w	.)		071	h) ((	77
23		- 1			_		1		νγ\ ). <b>!</b>	ı	1	1	41	9	·	<u>/</u>	1	1	$\neg$			. 3		1.0	26	•	<u> </u>	, ide	ابر ر ح	1.61		262		. •
)—		1 -	- 1		A			•	. <	1			39	. 2				80				. 2		1.	13			١.	21			-	• • •	
)					A				. <			1 '	13	7			!	88	Į.			٤.	1	٥.	96			1.	56				(1	
		_			-	-	_					-		<u> </u>	_																			
	ļ	+			-	+				-	<u> </u>	ļ			-		·	1	-															
Same		壯			<del>                                     </del>		-			1	(		-			<del> </del> ,	ın.	mple	1				_	1.		٠			Lot				ماه ا	
23016			<u>-</u>	A			1		16		ipsi	عرب					re. Uc	Jen.					3)	NO	1	viel			264				A(s	,
					٠		. •		301	.3		FB					. ,	:		Ì		•			:		•		:				•	
+	_	14	<b>5</b> 2	A.		1			60	7/	Reco	441	1				-	Te	•			(	IJ,	LA	Mp	٠,			0100	1301	4		512	<u> -</u>
+	-	- 1		A								وا				ļ <u>.</u> ,	1	N03	<i>/</i> ''			(	12).	25	w	<b>(29</b> )	4		1	42			4	5
+	<u> </u>	T-		41	1				•	. 1	1 -	IK	1	-			16		2	ام	15		ļ		• ;		•			I/A		•	,	
	-			4	1	+			74	X	SM.	254	2		1.		سد	I	ء '	e	10			25					08.	805	AAS/	G	•	
				A.								68					<u>ال</u>	-/	-	5						ĄC			200	10			'!	
-		17	2	IH					100		003	`3'	<b>33</b> 1				4.5	\$0.	4)	7	u		(13	25	0 24	امما	17		220	119				
	-	-																																
												-																					,	
اما		+					_	11		-	-		-				-	-	_								,	<u> </u>						
K	U	48	_	180	(Le	<b>- V</b>	V	۷/۱	-		-	-	<u> </u>		-		-	+	+					ļ										
7		<b>n</b>	[[_	5	20	۔ ۔			1	_	-			+-				+	+															
Intel	'	514	Hot	,7	10	<b>\</b>	LU			- 3	3	-					-		$\dagger$															
													ŀ.														Cor	ntinu	ed fr	om p	age			
				1									•					Re	ad/	and	Unc	lerst	ood I	Зу										
1	۱۸	1	, 1	$\langle V \rangle$	4								17	4 1 1	) 7			•	4	X		1)	( /	′\	\u.		1		•	1-	11).	-23	3	
	V	4	-	Si	aned	l					_		-1_	Dat	<u>~</u> Э		B-2	212	-}		W		Si	aned	1			-	<del>-</del> ;	Ľ	<u></u>	Date		

Date: 1/9/23									]	Pagel ofl
Sample Location: \$1M.15.305				A	Analytic	al Requ	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8260	607/Bro	T. Mals	Aniors/Alk	705	Por hlorale		Charge Number
2301091450A	3	A	V							KGMD
A 12 M	3	1	X							1
1425 Y	1			X						
AEZYI	5				X					
1454 A	2					X				
1455 A	١						X		-	
1456 A	١	1						X		
Sample Location:				1	Analyti	cal Req	uireme	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	NO2 NO 5							
Sample Number	#	Š		<u> </u>			1			Charge Number
2301 14CTA	1	A	X							Xano
				_			<u> </u>	!		
·										
Relinquished by: Date	/ Tim	e:			<i>,</i> \	Accepte	d by:			Date / Time:
1/9/23	<u> </u>	600			On!	$\bigcup$	Jim	<u>-d</u>	-	0-23/0830
					\					ş
, .					VI					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: ______

MW

19/23

B-214

yu Signed um

Read and Understood By

1-10-23

Date

Date: 1/4/23									]	Page of
Sample Location: BIM · 17 · 550	)	•		F	Analytic	cal Req	uiremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	8160	657/RGO	T. Mudals	Priors AK	103		i	Charge Number
230 109 1020 A	3	A	X							Xano
230107 1021 A (FB)	3	1	X							1
1022 A	\			X						
- 1023A (Dup)	1			X						
1029 A	2				X					
	2				İ	X				
1026 A	1	1					X			J
Sample Location:				1	Analyti	cal Req	uiremei	nt	-	
Pertinent Notes (if any)	# of Containers	Sample Matrix*	Percharate	NO2 NOS				i		Charge Number
Sample Number		<u> </u>	./		<u> </u>					
230169 1027 A 1628 A	\	<u>1</u>		X						7 XVMD
Relinquished by:	Date / Time	<u>.</u>		1/		Accepte	ed by:			Date / Time:
	s e //c				J. C		١.	-ch		0-23 /0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT BULLB 430 WSI ENU. DD53

Al Moures & BOB TUCKS PRESENT. MEATHERE IS CROWDY SPAINS. WELL WILL BE PURCED W/ A DEDIGATED BUSTOR FUNC. SAURES WILL BE SOILERTON USING A NEW TERION PIECURER TUBE. PARAMETERS WILL BE MONTHORED USING ON INSTITUTED CARBOLI G- 3 WITHL DTW 398.53 CALIBATIONS 10N 2 200 D-1 100% SATURATION an- in 1413 us/an 510 OM - 417, 10 WELTU SUFFORES TIRB-10 HTD STD COND US TEMPEC ORP 841 PARAMETERS 398.84 76.3 925,53 1.08 7.67 17.30 2301170935 75.3 7.68 901,40 -0949 17.11 75.3 7.68 11.03 910,12 0945 DANNES 6 LO 1# SINCLEH ANALY \$15 CONTRUER PRESERV 7649/ 23 01 17 0950 A VOA 8260 3.40 MU VALS ice. Hel ( Sup) 6951 A (AB M352 A ILT ALLER 0100301M 501 8953A word . One 32 667 16= (BUP) 0254 A 220421 115 2-125m Pay M55A TOTAL MEMIS ICE HNO 2.125mc Pani OGGBA ANIONS/ALL ICE . DHEND 125 ML 8-4 0957A 1 6 405 10x/2/3 FULL PERCHLORATE 0450A 750me Roy 220919 NP2 NO3 1ce. H7500 nagad 3. Vome Viais VIDA BZGWBC 1105A CE HEC 26491 0100341 H 100 Auger NOMEON (BC 1106A ICE 2-125m 2us 220Y 21 TOTAL MERIL (BC ICE-HNO 1107A Continued from page

1.17.23

Read and Understood By

Date: 1.17 - 23										Page/_ of/_
Sample Location: BW. 13.430	)		::	A	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UOA ON SO	607	1- NUIAY	\$2-02v 4)				Charge Number
2301170950	3	A	×							Charge Tunneer
	3	1	×							
0951 NP	3		X							
0953	!			X						
- 0954 DO	ĺ		•	X						
0955	Z				X		,			
0956	2					X				
Sample Location:		l		F	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	+05	QUE UT JOR.	222 273	DOC DOC	607	イ かきて		Charge Number
×30117 0957	(	A	×							
0958	1	A		X						
0959	1	A			X					
110SA BC	3	1				×				
1106A BC	1			,			×			
1107 A BC	2							X		
					N.					
	/ Time		,	T	/	cepte		0	1 10	Date / Time:
1.17-23		11:15	) an		<u>or (</u>	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	un		1-18	3-23 /0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT JER-1-483 FLYTE ENV-0020 Continued from page a tony torrez present Weather is partly change, Cold and breeze will be purged and spaged using a Flute System. Samples will contected lesing a dedicated discharge hose Purge pressure set at 248 PS: spare pressure at 227 ps; Flowmiter set at 3 ps; bubble stable at 5 ps; recovery between proges, monimum of 4 college Durged prior to Sampling, Carbay 63 in uses Pre-Sunte Parameters nuter TO Transducer P4/COND = 92 +7,42 NA TURB = 7 TUMP = 19.58 50 30.3 :000 = 1154 205 350.7 NB =1.80 L=T 3210946 EUP = 1/23 Time = 2301115033 =7.56 Temp = 19.9° 15 = 1157 uslam TUB = 1.73 His ) 2 ~ 7.03-1005 (18.1°C) 24Post = 7.01.1903 SUMPLES Preserv Analysis. 420 Coatainer 10 W (10 012 (8) 2649 8210 11 ITE! HU 23011/5363 Voc (FB) 15373 0100301 SRI 1) IL Amber 15383 amous " (FB) 15393 BLLS 1540B DS20 W DWGEL 050920 Continued from page Read and Understood By

Date: 1-11-2023		-								Page/	of	f
Sample Location: SER-1-483				A	nalytic	al Req	uireme	nt				
Pertinent Notes (if any)					4							
	2	*		77	500G - 51 M							
	# of Containers	Sample Matrix*	ک	かんころ	,							
	Con	ıple l	いのり	Č	) છ  લ					1	~ ^ ^	
Sample Number	# of	San		2	15		-			X 6 Cha	rge Nu	ımber
2301111536B	3	A	Ø									
1537 B	3		9			·						
1538 B	,			×								<del></del>
1539 B	1			9								
1540 B	)			<u> </u>	R							
7370					/							-
Sample Location:				A	nalytic	al Reg	uireme:	nt			e e	
Pertinent Notes (if any)										-		
	,,	*										
	ainer	fatrix				:						
	# of Containers	Sample Matrix*										
Sample Number	Jo#	Sam								Cha	ırge Nu	ımber
				_								
Relinquished by: Date	l :/ Time	) :			\ A	ccepte	d by:			Date /	/ Time:	
W 1-11.2023		1625		1	rul	rack ig/ ig	u-	-cl	1-12	-23	108	30
									,			
				,,		<i> </i>						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 1/28 月 COJECT JER-1-563 FLYTE ENV-0020 Continued from page presents weather is party Cloudy, cold and breeze John Jorres will be project and sampled using a FLATE System. a dredicated discharge hose, Purga Pressure sat at 248 851, male persone of 227 ps: Flowmeter set of 3 ps: Dubbler stable of 5 ps: make recovery between Proges minimum of 4 gallons purged prior Ming. Carday 63 in use. -e-Sangle Parameters PHICOND NA 12 = 12 6 206 = 50.7 , B = 2.73 107 2109W Ep: 1/23 = 23011/5/03 80.8 = 11911 uslan = 2.68 Nu's -702-10.04 (18.1°C) 50.01.ED.C. SAMPLES Preserve 515 DMOIE (3) 40nl v:2 Ay 8240 2301111555 B TCO HEL " (EQ) +1556B 0100301 -1557 B Ice (B) 1558 B45 (1) 200 m) amber 059722 1559 Continued from page Read and Understood By

1-11-5033

Date: 1 - 11 - 2023										Page of
Sample Location: $5 \in 2 - 1 - 5 \in 3$ Pertinent Notes (if any)				A	nalytic	al Req	uireme	nt		
	# of Containers	Sample Matrix*	500	NOW! CL	Suga - 51M					x 6m0
Sample Number		N N	N		V ,					Charge Number
2301111555 B	3	A	7							
1556B FB	3	1	9							
1557 B	1			7						
1558 B FB	1	Ц_		P						
1559 B	1	\			$\sim$					
					-					
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Requ	uiremei	nt	ı	
	ofContainers	Sample Matrix*								
Sample Number	#	Š								Charge Number
						<u>.                                      </u>				
Relinquished by: Date	/ Time	:: ७२५			h l	ccepte	by:	-cl	~	Date / Time: 2-23 0830

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

$\overline{\tau}$	ماد	~	14	2	10(	se			101	* 14	To	-	2	Or		42	,	هـ ( ما	17				Da.	٧.,	C	10	لمريا		7.1	ſ	9/0	1
	7	. 3	-	201	~e	w:	//	be	Pu	2	ارد	۵,	77	5	AM	914	4	u	5.~			¢ L	47.		5.45	ter		SA	4D)	23	W	i. N
																															P	
																															5 6	
						ورو																										
						bay								,								7			`			`				
				<b>_</b>	ļ	ļ`		-	ļ																							
B	<u>k</u> .	<u>-</u>	ومد	L.	R	on	uk	ws_	ļ					10	22	clu	cu	_						m	wh	<u> </u>	TΩ					
8	_		14	_	+	ľ	-	-					P	<b>3</b> i:	- 4	۱.<	6	ļ					-		49	إر.	2 VX	> =	93	<b>L</b>		
	-	F	2 10	<b>P</b>	+ 10	2.9	-						7	mP	4	<b>३</b> ७.	اجا	•	_							π	22	=	つ			
	╀-	С	01	<b>b</b>	<del> </del>	193	<b>_</b>				-		Q	GTA	=	12	8	5					ļ			5	πD	=	50	.3		
	-	7	4	8	+ B	9	\$	-																		R	<b></b>	7	50	ما ا		
	-				-	-	-	ļ	-																					٩७	6	
	7					ļ	-	-																	-	G	WP.	*	ı/a	3	$\vdash$	
	1	1		1 .		13	14.	<del>20</del>	3																						$\vdash$	
<u> </u>	1				5		<u> </u>	ļ															-	-							$\vdash \vdash$	
	1				.o°				-																							
	1	- 1		1	1	us	1	1			,							-												-		
						1										-								ļ								
				1		٥.ح	1	רנ	٠.	C	)																					
5.77	X°	· \$\		J. 6	32-	10,	0)	<u> </u>	<u> </u>				2 \													*						
50		D./	#	<u> </u>		†					حن	<u>P '</u>	27	70		_					\											
	Т				3	-	1	1	٥				_			eev		-				•					Lo				_#	NB C
	ŧ				B		}	1	4 4	l	פ רו					6(1)	C)					m)					کاو					DLS
,	-			77.1		<del> </del>		# 1/×		<u></u>						و			(	ادر		Gm/	an L				2106	20				2014
											•	54	W	۶L	ر																	
54	~	816	<del>ાવ=</del> ઉ				1	~	-/ 9	: <			· · ·			2879	L			C.	4	in	. ~				آبر آ					LNB
				25	В		I .	_	8		a L	<u></u>				دوا			(			<i>(1</i> )		١			ر عر					کیدی
	_			26	1			,	7		,,(	FB	)		7	۱,	-7			-		1)						,				•
	_	٦.		27			No	w							7	ce				$\odot$	JL	An	عط	~			Ole	9	(0)			SRL
-	L	_	14:	8	В		h			، (ر	טת	<u>C</u> 9				,						),						)				1)
	1	-	14:	29	В	<u> </u>	h		,		ξB				1	ر												3				•
	_	_	14	5)	8	:	Śυ.	٥٩,	. 5	In					4					$\omega$	うく	0 11	10	, de	•	•	১১৩	/33				NS
	-				ļ															-												
	-	$\dashv$			_	<u> </u>																										
					<u></u>																					Con	tinue	d fro	m pa	ige		
																		Read	and	Und	ersto	od B	3v									

de

1-13-5033

B-222

On Signed umch

1-17-23

Nate

Date: 1.12-2023						-			Pa	ge J	of _ \
Sample Location: \( \sum_{\mathbb{C}-1} - \log 83 \)				A	Analyti	cal Rec	luiremer	nt			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	SO 2	NOW L						X6m Charge 1	
230112 0710 B TB	3	1	$\nearrow$								
1425 B	3		8							,	
1426B FB	3		Y								
07113 TB	)			9							
14278	J			7							-
	)	Ш.		y							
1429B FB	1	Į.		Y							
Sample Location:  Pertinent Notes (if any)	r	_		A	nalyti	cal Req	uiremen	t			
retinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	5008,51M							Charge N	
2301121451B	)	D			****			7			
											:
				-							
			-								
					\ <u> </u>						
Relinquished by: Date	/ Time	:: 1630	2	V		ACCEPATE	d by: U	L	1-17-	Date / Time	e: 0810

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

Date Date

B-224

Signed Lunch

1-24-23

Date

Date: 1-23-2023								Page _ of _
Sample Location: SEQ. 2.504				A	nalytical	l Requiren	nent	
Pertinent Notes (if any)				. 1				
	<u>8</u>	**		7	5109-51M			
	# of Containers	Sample Matrix*	900	NONA	1			
	f Cor	nple	9	(a)	50(			X Gnub X
Sample Number	<u> </u>	Saı			Kn			Charge Number
23012307BB TB	<b>3</b> 3	1	7	_				
1416B		(	7					
1417B FB	3		8					
0711B TB	1			X				
1455	1			X				
-1456 FB	1			Q				
1457	1	1			Q			
Sample Location:		<b>4</b>		I	Analytica	l Requiren	nent	
Pertinent Notes (if any)							:	
	S	*						
	taine	 Matri						
	of Containers	Sample Matrix*						
Sample Number	**	Sar						Charge Number
	/ Tim	e:			Ac	cepted by	:	Date / Time:
1-23-203	3	163	$\sigma$					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

bennia

B-226

Read and Understood By

Or Signed unde

1-24-23

Continued from page

` Date

Date: 1 - 2 3 - 2 = 2 3							Page of
Sample Location: SEQ-2-554			A	nalytica	al Require	ment	
Pertinent Notes (if any)				٤			
* lets	rix*		C	5.3			
# of Containers	Sample Matrix*	000 000	UDMA CO	500k -			
# of C	Sampl	2	ΩQ.	ر ا			Y 6 NO Charge Number
Sample Number	╮ .			VII			Charge Number
	<del>}</del>	3					
, , , ,	-	8	<u> </u>				
1515 B 1	$\mathcal{H}$		7				
1516 B	/		×	<b>\</b>			
1517 B 1				9			<u> </u>
1518 B	5		<del>-</del>	70			
Sample Location:			A	nalytic	al Require	ment	
Pertinent Notes (if any)							
lers	rix*						
of Containers	Sample Matrix*						
of C	ampl						
Sample Number #	2	$\overline{}$	<del></del>				Charge Number
			_				
			_				
			· · · · ·				
Relinquished by: Date / Time:				F	accepted b	y:	Date / Time:
1-53.5053 1	63	a					
			1				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page e Tony Torrez present. Weather is cloudy and cold. This "> De paged and sompled which a Flyte system. Somples win be 14:ng a dedicated discharge hose Purse present st of 265 psi, sample 2424 ps. Founded of set at 305. Subbler stable at a ps. 15 minute recorner purses. moinum of y colors pursed Prior to sampling, Carbon BI in use re- South TO 83: PAICOND 7 61 ZUL TU 18 = 21 news uzdale 50 70.12 15th = 205 310.14 L - - 2109 66 G16 . 1/23 ine 32301241435B = 8.07 = 1700 ~ 1037 uden 5),15 wtws 10.03-10.05(16.10C) =7.01-10.03 SAMPLES Preserve 23012411450B Ice HU (3) 40 ml v:cl 1451B " (FB) 1452 B DOMA DIL Amber Ice 100 30. 1453 B (FB) 3 11454 B SUGAL 5100 Daso WI AWAR 45 Contro) Bichal BA 2301241455B WOMA (DIL AMAR Iac 23mm/58A JR= Continued from page Read and Understood By

Signed

1-24-2003

Date: 1-24 2023										P	age\	_ of
Sample Location: 582-2	684				A	nalytica	al Requ	iremen	t			
Pertinent Notes (if ar		# of Containers	Sample Matrix*	Uoa	UDMA LL	500-51M					х бт	
Sample Number		3				' <b>Y</b>					Charge	Number
2301241450 B	FB	3	A 1	9				-				
1452 B		1			4							
1453 8	FB	1			P							
145\$ 3	Bc	1	<del>                                     </del>		7							•
14543		1	<u> </u>			4						
Sample Location:			<u> </u>		A	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if a		# of Containers	Sample Matrix*			,						
Sample Number		#	Say								Charge	e Number
Relinquished by:	Date	e / Tim	ne:				ccepte	d by:			Date / T	ime:
	F 34-303	3	154	5		in U	\	lh_	d	1-24	<u>5-23</u>	10915

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page AI MANTES 3 BOB TO FOR PRESENT, WEATHER IS COLDS BEEFLY. WOLL WILL BE POROSO USING A DEPLATED BLADDAR PURP. SOMPLE 10 : CL BE COLLECTED LIENE A NEW THEIDN TUBE PARAMETERS WILL BE MONTORED W/A INSTUADUR TROCK CARROY 5.3 CALIBRATIONS INTIAL DITU - NA DO-100% SAWENTED AIR & 64/may/No PH-W/1851 BUREER 4,7,10 Zame Ma COND-W/1413 US/CM 5TD TUPS - W/ INSITU THE STO TEUPO OPP COUD "72 TURES WID PARAMETARS 00 0747 5.30 18.64 127 7 0.54 986 76 NA 2301131010A 18.73 127.8 985.60 0.43 -1015A 122,8 5 26 D. 71 -1020A SAUPCES Suftett PRESERV LAP CONTAINER ANALYSIS 2004 11 8260 26491 3.40 ML VIAUS 23018 1025 A ALS ICF. HCC (FB) -1026A -1427A NOMA-OMN-BRO. GOT 0100301 11 ice | 14 Auser 501 -128A LLNDM LI NOMA (FB) -1029 A ,

Read and Understood By

Continued from page UA

Date: 1.12.23										Page of
Sample Location: JP.1.424				A	Analytic	al Requ	iiremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	71 BN 40	607	772050					Charge Number
23011810ZSA	3	A	×					100		
1026A FB	3		X	7,						
1027A	1			X						
1028A	1			-	X					
1029A FB					X					
Sample Location:				A	Analytic	al Req	uiremer	ıt		
Pertinent Notes (if any)		,								
	# of Containers	Sample Matrix*								
Sample Number	"-									Charge Number
				سر ا						
Relinquiched by: Date  1.18.23	e / Time	: Au			n V	ccepte	d by:	d	1-1	Date / Time:
				$\rightarrow$		· · · · /			-	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>D32#1264</u> PROJECT JP.2.447 WTI. ENVIOUS 3 Continued from page ________ Unit & BOBTUTTO PRESENT. WEATHER 23, 4200 3 WKI BE PURCO USING A DEDICATED BURDON PUMP-FRAMETERS WICK WILL BE THEN TWIN A NEW TOPION TURES. MSITE AQUA TROPIC CHURRATIONS 009-50T ALR @ 64/mm/40 INTIAC DEW - NA NAW W/ INSITE BUSPER 4.7.10 - W/14/34500 STD ERD WINDIN THES STO TEUR") ORP CONDUS THER NO DAAAMETERS PH 19.3 6.23 0.98 2301181500 1010,9 079 6.25 19.33 11505 1000,1 19.28 1510 010.7 (18 SALAPTE ANALUSIS CONTAINOR CO 14 SMP/EH 2301181520A LL 3260 ICE HU 3.40M VIAU 24421 (FB 1) Anside 61003014 CH 21 Continued from page NA Read and Understood By Junch _ 1.19.23

Date: 1.18.23									P	age	_of_(
				P	nalytic	al Requ	irement				
Sample Location: JP. 2. 447  Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	CT 88 7 7	AZ NAMA						Charge	e Number
2301181520A	3	A	×							Charge	e rumoer
1521 A (FB)	3	A	×								
1522 A	1	4		×			-				
1523A (FE	1	À		×				- 4			
Sample Location:			<u></u>		Analytic	al Requ	uirement				
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*								OI.	N. I
Sample Number										Charg	e Number
					_						
Religguished by: Da	ite / Tim	е: Ч <b>р</b> м		1	On (	ccepte	1	_d	-	Date / T	ime: 10830
		14 200			v w	<del>-                                    </del>		-v -	`	1	1
				7			/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 59-3-509 WII ENU 0053

Dresen 4. weather is cold & windy & B. TUFts using This well will be taken using a dedicated bladder pump. discharge tobe. Samples will be a teflon taken using Ensite Aquation 500 carbon calibrations Initial DTW - WA IDCU - 2,0001 DO - 100% saturated air @ 641 mm/Hg PH - Insity Buffers 4,7.10 4.7.10 Gond - 14/3 us/cm 570 Turb - Insitu Turb STD Turbanu) condesan PH Sto TEMOSED Parameters DO ORP 23012309554 7.66 19.61 106 5.34 58 MANG 2020 1114 768 1108 5.10 102 1000A 19.68 5 19.72 512 7/45 1110 54 1005A 109 Samples Preservative Sample Analusis Lab Lat (3)40 ne vials 826961 230123 1010A TOP/HCC 26491 ALS U (FB) ( c CC 10 WA 607 (1) 12 Amber - 10 1RA Ice 010030114 SRI LUNDMA ( 1013A SRI cc (FB) 10 c c 1014A SRI IRE/HUS3 (2) 125M Bla 1013A T. Metals 220725 ( ( ( ( ( ( ) ) ) c L 1016 A BLE () RSML Poly Anion 5/ALK Ice/een N.S 1017 A 11 012020-2020 COT Trose 1018A Ice/1/3 45 Perchlorate 14 1019 A NO2/NO3 (1) ISO ML Poly ICO/ 42504 1020A ALS 220919 Continued from page

Read and Understood By

Moth Da

1/83/23

Signed Umch 1-24-23
Date

Date: 1 23/23	,								Page of
Sample Location: $57-3-509$		·		A	nalytic	al Requ	irement		
Pertinent Notes (if any)			.77		4				
	2	*	2 (	_	) M.	7			
	taine	Matri	9	0	5	7			
	# of Containers	Sample Matrix*	8260	607	LLNDMA	T. Motols			
Sample Number	# 0	San	$\Box$		7	ド			Charge Number
2301231010A	3	A	X						YGMD
1011A (FB	) 3	)	X						1
1012A	1			X					
10134	1				X				
1014A (FI	3) ]				X				
lo15A	2					×			
-1016A (DUP)	) 2	N.				X			V
Sample Location: 37-3-506	4			A	nalytic	al Requ	uirement		
Pertinent Notes (if any)			ALK		ه	~			7
	ည	*	4		+ y	,0			
	taine	Matri	7	5	0,10	1/2			
	# of Containers	Sample Matrix*	Anions/	105	Perchlorate	1/201		]	
Sample Number	# of	San	4	1	ريم الإي				Charge Number
2301231017A	2	A	X						X6ND
1018A	)			X					1
1019 A	1				X				
10204	(	V				X			1
	ate / Tim	e:			A	ccepte	d by:		Date / Time:
Matt Soira 1/23/23	3_1	1101	113						333333333
	,								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

NOOLO	'				-0	-	<u></u>	7.	J(		U	<u> 20</u>	2	3	-				Co	ntinu	ed fro	om p	age _		12					* 1
M. Ca	دواء		1 5	3.1	لی	412	- 1	Pre	SEN	7	L	Je	241	400	Ţ.,	5	C	12	à	<u>d</u> .	w	in	H.		-	'n		u	01	<u> </u>
4111	⊥b	e	$Q \downarrow$	010	RC.	1	U	41/2	La	0	ے ا	<b>k</b> =	A 5	<b>\</b>	L		6	ما				٨.	1	<u> </u>	<		الم			
be c	الم	SC.	te	<b>\</b>	٤	1 iv	Na.	0		te	<del>1</del> 1c	n	Ld	150	h	100	10	1	Jt	رو	Î		2 10	1	01	7	To	K.		14
usin	4	1	ns	1-	w	A	90	a.	tro	11	SC	0	. (	ar	60		<del>,</del> (	65					1						7/1	
															,								L	m	10	1	DT	27	2	327
490a			Co																				-	LI	کر	_ ر	- 2	.50	na l	
00	1	269	6	Sat	Un	at-	ed	a	<u>(                                    </u>	6	) (	94	1/2	nm	140														J-11	
BH	+1	ns.	lu	Bu	£	er	5	4,	7.	10																				
20nd	- 1	41	3 v	5/c	m	5	T D		L																					
Turb.	- P	nsi	tu	Tu	dr	3	$\mathcal{L}\mathcal{D}$																			1				
			<u> </u>																											
Lavan	1e	در	5			Te	M	o ^c	ے	an	d٥	1/cm		DI	1	0	86		ſ	00	)/L		Ti	أنمو				D.	Γų	17
23012	23	14	15/	4			٥.			111			•	7.7		11	_			99				15	_	1.			0. 2	
	+		20,			2	0.	17	1	112	Ó			1.7	0	i	1		1	0			T	17				1	"	-
	- 1	49	54	F		2	0.	22	-	١١	۱5	_		1.6			0			94			T	99	Ì				<u>ر ر</u>	
																				-										
																										1				
											S	<b>XY</b>	ol	eΣ											ļ .					
gmp	e				Av	ale	5	_		$\rho_{l}$	ese	1110	Hu	2	_	Co	4	ala	e 7			L	0 +	-				L	,6	
23012	31				8	26	οι	ر					HCL						via				.49	1			1		رح	
	- 1	43	14				FB.				1	( c					( c						c						د د	
	14	13	24		_(	90	ת				I	æ				1)1	LA	lini	bes			61	OC	30	1/-	ļ.	1	5	RI	_
	14	13.	3 <i>A</i>		Ç	- (1	45)				•	ı					( (						11		•			1	1.	
	14	3	IA		L	<u> </u>	D	NA			e	•					۲ ر						"						¢.	
	14	35	A			د (	<u>F</u> B				٠ د	د					2						e						^c	
	14	34	4		T	, ,	re i	مام	5		Iæ	14	3م		(a)	) l2	EM.	L F	ماي		Z.	20	12	5					Al	5
	14	37	A		4	nic	9h5	· LA	LK		Ic	2/z	cre	U,S			l c		ت			N							(1	
	14	38	Δ		_1	205	5				1	ce	•	-	(1)	25	MO	L	Pol	4	01	202	- م	24	10				11	
##	1 :	39	_	$\perp$	P	erc	رماء د/ء	al	2		Tc	e/	/3	H5.	(1	) ເ໘	51	16	Pol	4		N						_	11	
++-	14	40	A	$\dashv$	4	10	-//	10	3		I	e/	ΗZ	304	<u>(I)</u>	25	Øm	الما	Poli	ر م	Z	200	119						/,	
-	ļi		_																J	<b>7</b>										
-																														
				_																										
	-																													
			_	4																										
							ł						Ì																	
	!	- 1	- 1			+	-+					-														L	1	1		
																							Con	tinue	d fro	om p	age			

WAT IS

1/23/23 Date B-236 on Wuch

1-24-23

Date: 1/23/23							STODI RE	 Page _ \ of
Sample Location: 5P -3-689				A	nalytic	al Requ	irement	
Pertinent Notes (if any)	# of Containers	Sample Matrix*	Bauore	(00)	LL NOMA	Metals		
Sample Number	<u> </u>	Sample	83	9	77	4		Charge Number
2301231430A	3	A	Y					XGMO
1431A (FB)	3		X					)
1432A	١			X				
1433A (MS)	1			X				
14344	١				X			
1435A (FB)	,				X			
1436A	2	V				×		<b>V</b>
Sample Location: 5P.3-689				A	nalytic	al Requ	irement	
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	Anions / ALK	TD5	Archlorate	No2/203		Charge Number
2301231437A	7	A	Х					XGMD
1438A	1			X	٠			1
1439 1	ı				X			
(440 A	(	W				X		V
Relinquished by: Date  Muth Jan 1/23/23	: / Time	e: 505l	1/5		A	Accepted	d by:	Date / Time:

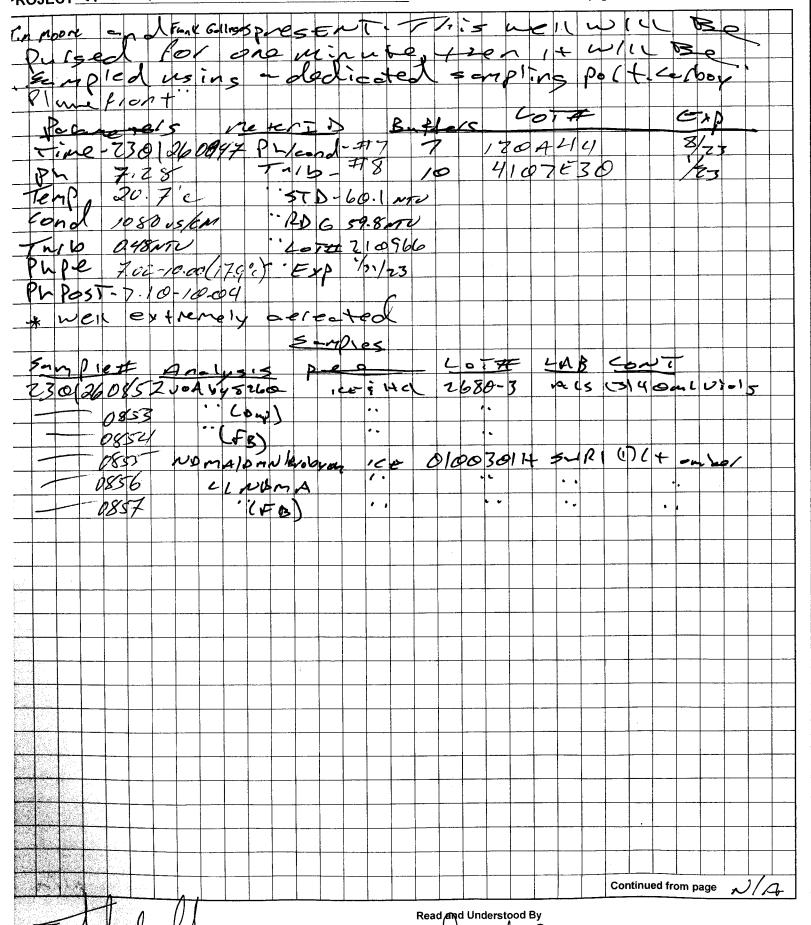
^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT PFE-4A WILL BO PURSON I real college present. The and 11 1+ WILL BOS Supled 5 = 1 ling port. Celber Plane front CXP 201# Parameter meril Buffels 730 7609/8 Ph/tord 8/23 20A44 4107 430 5TD-60.1 NTU 4014 210966 h Pe 7.02-10.00(9.80) EXP hpost-7.10/10.001 well extremly appeared S=m0.1es 20 TH LAB 9027 5-000 lett A15 (3)4001 Jial 1,000 7680-3 10A 5 48260 2301260925 ( FA) 20R( C) Lt = m Ser 100 NO MAIDIN BIS BY GOT \$1003014 0928 KUNDMA (sup) -0930 Continued from page

Read and Understood By

Date: 1-26-23				-		·····				Page( of
Sample Location: PFE-YA					Analytic	cal Req	uireme	nt	*	
Pertinent Notes (if any)	# of Containers	Sample Matrix*	× 10A 8260	1-VOA 8260LL	ROWACIL 607	W Level	Torn Werms	JIONS/ALL	rds suzabe	XGMD
Sample Number		S	12		50	3	4	<u> </u>	F	Charge Number
230176 0925	3	A	N .							
9726 (FB)	3	A	X							• •
0927	1	A			X					• •
- 0978 - 0979(oup) - 0930(FB)	(	$\mathcal{A}$				Х.				
- 0729(oup)	,	A				X.				• •
0930(FB)	j	A				X				•
Sample Location:  Pertinent Notes (if any)				A	nalytica	al Requ	iremen	t		
	# of Containers	Sample Matrix*	Verchurate 1850	NO2/NO3 353.2						XGMD
Sample Number	#	Sa	W.	<u>2</u>						Charge Number
Relinquished by: Date / 1 - 26-23				10	V	cepted I	Dy:			Date / Time:
1-26-23		175	J	1 On	<u> </u>	1			1-26	-23/1000

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other: _____


24 PROJECT_	PFE-	5 431		0082	Notebo Continued	ok No from page^	1/4	
w Moore	mode	Enk Sallgo fres	-~-	74.5	well	WILL	Re	
Pus	ed e	0/ 000	min.	te to	17	- m/cc	Be	
5000	pol f.	van de	licated	1 sample.	A PO	14. Car	204	
Par	chete!	s nexel	ユレ	Buffe	15 4	017	ريم	sp.
- ne	230/19/		end #		1 4	2444	8	25
Ph	7.97	10	113 #8	10	410	7 E30		23
Terry	1 234	2 2	TN 20	120				
cono	// /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vcas K	96 39.	8270				
Turk		w/0 2	01# cx	10966				
111.	1 9 1	10.02 (1921) 'E	x p /3/	/22				
0.	257			5				
	7'							
			5-10	<b>e</b> \$				
Samo	rett A	7 - Lysis 1	e e	4075		ar c	720	
23019/	210	104 64840	1683	14 7636	7-3	245 155	10ml vi	) بـ
1/2	0/1	·(FB)	·	4 1	·	1		
+ 1	012	romal-2 nulbioby	607 10	E 0100	030145	wel (1)	t-mb	200
						Continu	ed from page	NIA
		<del>-                                     </del>		Read and Unde	erstood By			
	1			/ )		\	. 04	02
		19	TANDER3	for	U/	uuck	1-20	-23
-7-	Signed		Date	B-240	Signed			Date

	Date: 1-19-23										Page \ of \
	Sample Location: PFE-5					Analyti	cal Req	uireme	nt		
	Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9260	11-VOA 8260LL	100	<del></del>	33,5		TOS SNZSYDO	XGMD Charge Number
+	230119,010	3	A	V							
+	- 1011 (FB)	3	A	×							• .
+	1012	1	A			X					• •
-											
-											
-											
-											
-	Sample Location:  Pertinent Notes (if any)						al Requ	iremen	t		
	Sample Number	# of Containers	Sample Matrix*	VERCHURATE 1850	NO2/NO3 353.2						XGMD
				<u> </u>							Charge Number
-		-									
	Relinquished by: Date /	Time:			1/	) Ja	cepted	by			Data / Time
	-1/8lh 1-15-23		30	)	Jan.	1 1	- Cepicu 1	lim	1	1-20	Date / Time: -27 10900

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

25

Continued from page 11/4



Signed

Date: 1-26-23										Page of
Sample Location: PFE-7					Analyti	cal Req	uireme	nt .		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	UDA 9260	11-10A 8260LL	NOMA/DWW/b07	Low Level	Tom Werms	ANIONS/ALK	105 SN2Sfoc	X GMD Charge Number
230 260852	_ 3	Д	×							′ .
08531	mp) 3		X							,
2301260852 08531 08541	FB) 3	A	X							/\
0755	1	A			入					• ` `
0856	1	A				X				٠,
0857F	B) 1	A				X				• •
Sample Location:  Pertinent Notes (if any)			ļ		nalytic	al Requ	iremen	t		
Sample Number	# of Containers	Sample Matrix*	PERCHINAMTE 10850	NO2/NO3 353.2	·					XG MD Charge Number
Palistandshod he										
Relinquished by: I	Date / Time	:: :994	5")		Ac r	depted	by:	d	1-21	Date / Time:

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Robert Burrows & Craig Del Ferraro present. Weather is cloudy, breezy, & cold. This well will be purged using a dedicated bladder pump. Samples will be collected using a tertion discharge hase. Water quality parameters will be monitore using an In-Situ Aqua Troll 500 Carboy Gain use Dosensor - calibrated in 100% saturation Pond sensor - calibrated using 1413 us/cm std. solution PH sensor - calibrated using 4, 7, \$ 10 buffers. Turb, sensor + calibrated in 20 NTU std Trip blanks - Water purification system Sample Analysis Preservative (3)40ml vials VOA by 8260LL ice/ HCL 2649-1 2301240840C SRI (i) IL Amber --- 0841C Low Level NDMA ice 01003014 Turb(NTUS) condlus/con Parameters (time) DTW St. temp(c) PH ORP DO 1.40 230124 1025 C 18.43 7.36 487.60 951.88 141.3 8.03 - 1028C 487.60 8.39 949 46 140.4 8.02 1.33 7.12 7.99 487.60 - 1031 C 943.70 6.87 139.6 18.32 Precervative Container Analysis / ab (3)40ml vials 2649-1 VOA by 8260 LL 23012410350 ice / HU 1036C n (Dupl.) u (FB) 10370 (1) IL Amber Low Level NDMA 10380 0100301H ce - 1039C a (FB) Initial DTW + 487.43 Ft. Total gallons purger - 1,5 Continued from page NA

Grang Del Ferro

Read and Understood By

Date: 1/24/23										Page	of_	1_
Sample Location: PL-1-486				A	nalytic	al Requ	uiremer	nt				
Pertinent Notes (if any)				_								
	2	**	77	NDMA								
	# of Containers	Sample Matrix*	8260	121								
	f Cor	nple	326	7								
Sample Number	#	Sar	3	7						Cha	rge Num	ber
2301240840c (TB)	3	A	~							Xo	JMD	)
0841C (TB)	1	A					•				ч	
1035C	3	A									ч	
1036C (Dypl)	3	A									u	
1037C (FB)	3	A									·	
1038C	1	A		~							4	
1039C (FB)	1	A		V	_						ч	
Sample Location:				A	nalytic	al Requ	uiremer	nt				
Pertinent Notes (if any)				·								
	ırs	* .×										
	 ntaine	Matri										
	# of Containers	Sample Matrix*										
Sample Number	#	Sa							1	Cha	ge Num	ber
						_						
					\							
	Time			4	) 1	ccepte	d by:	į.	1 0	Date /		
Craig Del Ferro 1/24/23/	/Ш(	ohrs	5.	+1	m 1	$\Delta L$	Jlu	-N	1-2	6-23	109	15
,												-

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Robert Burraws & Craig Del Ferram present Weather is cloudy, cold & windy this zone will be sampled using 5 triple rinsed, stainless street sample tubes are used. Ben, no use. Probe # 4951. Surface checks performed on probe prior to sampling.  30 Min. Equipment blanks = Carbon G3  Sample	PROJE	3080 304																		T					<b>3</b> - →				, ,		, !	
USE. Probe # 4951. Surface checks performed on probe perior to Sampling.  30 Min. Equipment blanks - Corboy 63  Sample	Robe	4	Bi	rro	ws	٤	Cı	aic	D	el i	Fer	rar	o f	ve.	sen	<i>+</i> .	We	pat	her	is	C	lou	dy.	, co	ld,	٤	WI	ind	y.	4	4/5	
USE. Probe # 4951. Surface checks performed on probe perior to Sampling.  30 Min. Equipment blanks - Corboy 63  Sample	Zone	w	11	be	S	em j	) le	1	ISI	ng	5	tri	ple	2 r	'ns	ec	1,	<b>s</b> +	ain	les	\$	te	el	Sai	MP	le	tų 1	215	0	ien	-1	<u>n</u>
30 Min. Conjugate of black 5 - Corbanac Cot Lab  Sample	use.	Pa	be	# 1	19:	51.	Sı	e g L	ace	c	rec	tes	P	esf	ori	12	d c	n_	pr	ىط ە	e p	ric		40	Sa.	mp	/ir	9.		<b></b>		
Sample   Hoolysis   Preservative   Container   Lab   23012314304   Voa by 826011   rice / HC1   (3)40m vials 2649-1   ALS		• •				}							•													′						
Sample   Hoolysis   Preservative   Container   Lab   23012314304   Voa by 826011   rice / HC1   (3)40m vials 2649-1   ALS							30	W	lin	. E	94	ion	nev	14	6la	nk	-5		Ca	rbo	94	<u>63</u>										
230 23 1 430 Y VOR by 8260 L ice / HC/ (3) 40m vials 2649-1 ALS  - 143 Y Low Level NDMA ice (1) II Amber 01003014 SRT  This had Parameters Time - 2301231505 Y PH cond - 91 PH - 8.12  The - 2301231505 Y PH - 8.62  Time - 20.2 C  Cond - 1080 Uslem	5	10						An	al.	1.51		7	Pre	ser	Vq	tiv	re			or	Ja	ine	_		L	+			La	6		
Thi had Parameters This had Parameters Time - 2301231505Y PH - 8.62 Think - 2301231505Y PH - 8.62 Think - 20.2 C Cond - 1093us/cm This - 0.81 Antis Turb - 0.81 Antis Turb - 0.81 Antis Turb - 0.71 Antis Turb - 0.81 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0.71 Antis Turb - 0				+30	V																l .			1 1		1			AL	S		
Toilial Parameters  Time - 2201231505Y  PH - 8.72  PH - 8.72  Time - 2301231555Y  PH   Cond - 91  The P - 20.2 'C  Cond - 1093 us/cm  Turb - 0.87 MTV S  PH pre - 7.17/10.14 (11.3°C)  PH pre - 7.18/10.14 (11.3°C)  PH pre - 7.18/10.14  DTW - 471,21ft  Atmos - 12.11psia  Atmos - 12.11psia  Amalysis  Dample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Sample S  Continued from page N/A  HS.67 HS.67 HS.68	1777		1	1											CP	•				1	ì			i 1				4		!!!	.	
Time - 2201231505Y PH - 8.72 PH - 8.62 Temp - 19.8 C  Temp - 19.8 C  Cond - 10.93 us/cm Turb - 0.87 MTV  PH pre - 717/10.14 (11.3 c)  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718			_	1	1																											
Time - 2201231505Y PH - 8.72 PH - 8.62 Temp - 19.8 C  Temp - 19.8 C  Cond - 10.93 us/cm Turb - 0.87 MTV  PH pre - 717/10.14 (11.3 c)  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718/10.14  PH pre - 718	7.1	• . (	P		4	0.00								1		1									И	۔ ص	DV	- 7	-r	,		
PH - 8.72  Temp - 19.8C  Cond - 1093 us/cm  Cond - 1090 us/cm  Turb - 0.87 MD/5  Turb - 0.87 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 0.11 MD/5  Turb - 1093 us/cm  Upt - 1090 us/cm  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 6  To std - 425  Turb - 1090 us/cm  Upt - 20066  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 1090 us/cm  Upt - 20066  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 1090 us/cm  Upt - 20066  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 1090 us/cm  Upt - 20066  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb - 0.11 MD/6  Turb -					1		I	,	<u> </u>			<u> </u>	_	1 .		I	130	12	<b>31</b>	55	<b>&lt;</b> \	,									,	
Temp - 20.2°C  Cord - 10.93 us/cm  Turb - 0.87 MTV5  Turb - 0.87 MTV5  PH pre - 7.18/10.14 (11.3°)  PH pre - 7.18/10.15 (10.8°C)  A ph pre - 7.18/10.14  DTW - 471.21ft  Homes - 12.11 psia  A malysis  Freservotive  23012315304  VOA by 826011  ice / HCL  (3)40ml vials  2649-1  Als  Freservotive  (1)11 Am her 0100301H  SET  Runs 1) 45.65 2) 45.68 3) 45.69  55.38  55.41  55.46  55.36  55.41  55.46  15.62  HS.67  HS.68  Continued from page N/A						12.	3	7						PU	ite	_		1	1	بر							· '	1		- /		
Cond - 1093 us/cm  Turb - 0.87 MTV'S  Turb - 0.71 MTV'S  H pre - 7.17/10.14 (11.3°)  PH pre - 7.18/10.15 (10.8°C)  H pre - 7.18/10.14  DTW - 4711.21ft  H mos - 12.11 gsia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13 psia  Thurb - 12.13	1 1		1	1	1	ļ Ī			-				-													4	1		J	4	75	-
Turb - 0.81 MTV'S  PH pre - 7.17/10.14 (11.3°)  PH pre - 7.18/10.15 (10.8°)  H post - 7.16/10.14  DTW - 471.21ft  Hmos - 12.11psia  Atmps - 12.13 psia  To 4107E30 1/23  Sample  Sample  Sample  Sample  Sample  Sample  Sample  Sample  Sample  Sample  Sample  To 4107E30 1/23  Festervative  Container  Let Lab  10.4107E30 1/23  Sample  Sample  Sample  Sample  Sample  (in) IL Amber 0100301H  SET  Runs  S5.38  S5.41  S5.46  S5.36  S5.41  S5.46  S5.36  S5.41  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46  S5.46	ایا اما		ĺ	1	1									-			1	1		1 1												
pH pre = 7.17/10.14 (11.3 c) pH pre = 7.18/10.14  pH post = 7.16/10.14  Buffers Lot Exp  H pre = 7.18/10.14  Drw = 471.23  Tow = 471.23  Tow = 471.23  Tow = 471.23  Tow = 471.23  Tow = 471.23  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  Tow = 471.33  T	1 1			1	1	1	_ `						-													4						
Host - 7.16/10.14   pHpot - 7.16/10.14   Buffers Lot Exp     DTW - 471.21ft   DTW - 471.33ft   Buffers Lot Exp     Atmos - 12.11psia   Atmos - 12.13psia   7 1202444   8/23     TDW - 1/2 gal.   10 4107E30   1/23     Sample   Amalysis   Preservative   Container Lot Lab     2301231530Y   VOA by 826011   ice / HCL   (3)40ml vials 2649-1   ALS     1531Y   Low Level NDMA   ice   (1)11   Am Der 0100301H   SET     Runs 1) 45.65   2) 45.68   3) 45.69     55.38   55.41   55.46     55.36   55.41   55.48     45.62   45.67   45.68   Continued from page N/A								1.		2																u				1 1	•	
DTW - 471, 21ft									<u> </u>	(2)												0.	8.5	)		Lu		C	P-	1[3	112	3
Sample  Analysis Preservative Container Lot Lab 23012315304 VOA by 826011 ice / HCL (3)40ml vials 2649-1 ALS — 15314 Low Level NDMA ice (1)11 Am per 01003014 SRE  Runs 1) 45.65 2) 45.68 3) 45.69 55.36 55.41 55.46 55.36 55.41 55.48 45.62 45.67 45.68  Continued from page N/A	PHOOS	×:	-7	16	/	10.	14	-		ļ				Pt	po	ct		1.16	1	0.	14				P 1	1		1	1		~	-
Sample  Analysis Preservative Container Lot Lab 23012315304 VOA by 826011 ice / HCL (3)40ml vials 2649-1 ALS — 15314 Low Level NDMA ice (1)11 Am per 01003014 SRE  Runs 1) 45.65 2) 45.68 3) 45.69 55.36 55.41 55.46 55.36 55.41 55.48 45.62 45.67 45.68  Continued from page N/A	Dru	)	- 1	#71	.21	1++	-	-				ļ		D	L		i	1	1	1	1.			4	DUY			1 1			<u>C</u> )	华
Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sample 5 Sam	Atmo	S	-	12.	119	810		-	-	<u> </u>											ja					1	l	1 1	1 1	1		
Sample Analysis Preservative Container Lat Lab 23012315304 VOA by 826011 ice/HCL (3)40ml vials 2649-1 ALS ————————————————————————————————————				-	•	<b>'</b>	ļ						ļ	I	Du			1/2	90	и.						10	4	107	E3	6	_1	23
Sample Analysis Preservative Container Lat Lab 23012315304 VOA by 826011 ice/HCL (3)40ml vials 2649-1 ALS ————————————————————————————————————							-	-				ļ	ļ			-	<u> </u>						<u> </u>									
Sample Analysis Preservative Container Lat Lab 23012315304 VOA by 826011 ice/HCL (3)40ml vials 2649-1 ALS ————————————————————————————————————				ļ	ļ	ļ	ļ	ļ	_					ļ <u>.</u>		1			ļ										ļ			
2301231530Y VOA by 826011 ice/HCL (3)40ml vials 2649-1 ALS					ļ	ļ		<u> </u>		L.				<u>59</u>	mp	le	5,		ļ	ļ		١,							ļ			
2301231530Y VOA by 826011 ice/HCL (3)40ml vials 2649-1 ALS  1531Y Low Level NDMA ice (1)11 Amber 0100301H SES  Runs 1) 45 65 2) 45 68 3) 45 69  55 38 55.41 55.46  55 36 55.41 55 48  45 62 45 67 45 68  Continued from page N/A	Sam	ام	e_						Ar	al.	15	S		R	esi	2//	rol	<i>ve</i>		ļ	Co	nte	u'n	er			tal	<u> </u>		La	Ь	
Runs 1) 45 65 2) 45 68 3) 45 69 55 38 55 41 55 46 55 36 55 41 55 48 45 62 45 67 45 68  Continued from page N/A	2301	23	3 1 :	530	7		V	οA	by	8	260	L			ic	e /	HC	1		(	3)4	On	J v	ial	S	26	49	-1				
Runs 1) 45 65 2) 45 68 3) 45 69 55 38 55 41 55 46 55 36 55 41 55 48 45 62 45 67 45 68  Continued from page N/A			19	331	y								A			ic	e			(	MI	A	m	ber	- (	910	030	ìН		SE	1	
55 38					1																										•	
55 38																																
55 38																																
55 38																																
55 38									1					1																		
55 38				<del> </del>																<del> </del>							-					
55 38	R	_	λ	216	1	5		7	L	. ,	0		か	4=	100		-							ļ								
55,36 55,41 55,48 45,62 45,68 Continued from page N/A	TANT	<b>}</b>	4				-	<del>X)</del>					עכ					<del>                                     </del>	-	<del> </del>	<del> </del>			<u> </u>								
45.62 45.67 45.68 Continued from page N/A			ı	ı	1	l	-	+	1				-	1	1		+-	-								-	-					
Continued from page N/A			1	1	1	r	_	+	1.	1 .				1	1	Γ		-	<del> </del> -			<u> </u>				-						
MATERIAL PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE				CT	1.6.	4		+	#13	4. د	1		-	442	,68	5		_							C		0 d d.			1	<b>.</b>	
		<u></u>	<u> </u>	<u></u>		<u></u>		<u> </u>					<u></u>			<u></u>		<u></u>		<u></u>	<u> </u>	<u> </u>	<u> </u>	1	COI	านทน	eu Tr	— ра	aye	<u>N / 4</u>	1	

Date: 1/23/23									P	age of
Sample Location: PL-6-545				A	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any)										
	ers	ix*	ہـ	LL NDWA						
	# of Containers	Sample Matrix*	8260 LI	5						
	of Cc	ample	82(	7						
Sample Number	1					***			<u> </u>	Charge Number
2301231430y (EB)	3	A	V							XGMD
1431 y (EB)	1	A		/						ц
1530y	3	A	<u> </u>							у —
1531y	1	A		✓						u
								,		
Sample Location:				P	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	SIS	*X	-							
·	# of Containers	Sample Matrix*								
	oJ Co	mple								
Sample Number	#	Sa					<u> </u>			Charge Number
Relinquished by: Date	7 Time	e:			A	Accepte	d by:			Date / Time:
Relinquished by: Date Charg Del Fune 1/23/23	/16	rohr	-ج,							
•	•									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Container Lot Analysis Preservative Sample ab (3)40m/vials 2649-1 VOA by 8260LL ice/HCL Low Level NDMA ice 23011714154 (1) 11 Amper 01003014 14164 * Sampling crew encountered several mechanical issues with both westbay trucks. This coursed 2) 124.12 Runs 1) 124.18 34.01 133.93 Several delays throughout the day along with weather (rain) delays as well.

Samples

TOW- 1/2 gal.

Continued from page NA

King Del Leuro

124.17

133.87

124.16

1 17 23
Date
B-248

B-248

Date

Date

Date

10 4107 E30

Date: 1/17/23				CIIA		1 00				Page of
Sample Location: PL-6-725				A	nalytic	al Requ	iremen	nt		
Pertinent Notes (if any)										
	ners	trix*	77	LL NOMA						
	# of Containers	Sample Matrix*	8260 6	7						
Sample Number	fo #	San	$\omega$	7						Charge Number
2301170800y (78)	3	Α	~							XGMD
		A		~		-				ч
1020Y (EB)	3	A	~							a
loaly (EB)	1	Α		~						ч
1415y	3	A	~							4
1416y	1	A		<b>✓</b>						ч
1										
Sample Location:	ample Location:						uiremer	nt		
Pertinent Notes (if any)										
	ers	*xi								
	# of Containers	Sample Matrix*								
	ofCc	ample								
Sample Number	#	N N								Charge Number
	_									
				·						
Delin mich ed h	/ T:				; 1 .	\ \@	11.	*		D-4- / T:-
9 001	Time	e: ·50 h		1	/ \	ccepte	d by: \Uu		1-10	Date / Time: 7 / 0 8 30
(ray all Termo 1/17/23	117	<u> 30 r</u>	113.	\\	in \		Jun	-v ~		0 2)   0
	_						<del></del>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1/11/23		•							]	Pageof
Sample Location: PL-6-915				A	nalytic	al Requi	iremen	t		
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	VOA by 8260LL	, L09	LL NDMA					Charge Number
2301110850y (TB)	3	A	~							XGMD
-0851y (TB)	1	A			~					и
1300y (EB)	3	A		•						ų
1301y (EB)	1	A			~					и
1410y	3	A	~							И
14114	1	Α		/						u
1435y	1	A						:		u
Sample Location: PL-6-915  Pertinent Notes (if any)				A	nalytic	al Requi	iremen	t		
Sample Number	# of Containers	Sample Matrix*	LL NOMA	Total Metals						Charge Number
2301111436y (Dupl.)	1	A	~							XGMD
1505y	ð	Α		/						4
1540y (Dupl)	2	A		/				-		u
Relinquished by: Date Pray Del Terro 1/11/23/	Time	e: IShr	5	0	- 11	ccepted	by: Uu—	L	1-12	Date / Time: -23 /0830
						)				1

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Craig Ill Lewo

1323

B-252 Ou Signed unch

Read and Understood By

1-4-23

Continued from page

Date

Date: 1 3 23	•			-					P	age of	_
Sample Location: PL-10-484				A	nalytica	al Requ	iremen	t			
Pertinent Notes (if any)				-							
	şs	*>	-	LLNDMA	100						
	# of Containers	Sample Matrix*	8260 11	20	Dioxane				i		
	Cont	ple N	26	7.	.0				İ		
Sample Number	# of	Sam	∞	7	17					Charge Number	
23010311004 (78)	3	A	/							XGMD	
1101y (TB)	1	A		V						и	
1400Y (EB)	3	A								u	
1401y (EB)	1	A		/						и	
1510y	3	A	~							<i>(</i> )	
ISIIY	1	A		V						tı	
1540y	1	A			~					4	
Sample Location:				A	nalytic	al Requ	uiremer	ıt			
Pertinent Notes (if any)											
	<u>s</u>	*									
	taine	Matri									
	of Containers	Sample Matrix*									
Sample Number	# of	San								Charge Number	
										··- ·· · · ·	
		1			4						
						_					
Relinquished by: Date	/ Tim	e:	"		) A	ccepté	d by:			Date / Time:	
Craig Ill Ferro 1/3/23/	162	20hr	5.	1	04	$\lambda \angle$	Ju	-d_	1-4	-23 /0900	)
$\sigma$										· 	
				J			<del></del>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tufts & Craig Del Ferraro present Weather is clear & cold. This zone will be sampled using a steam CO triple rinsed, stainless steel sample tupes. Gen. in use. Probe # 2213. Surface checks performed on probe prior to sampling. 30 Min Equipment blanks - Carboy Analysis Preservative Container Sample VOA by B260 LL ice / HCL (3) 40ml vials Low Level NDMA ice (1) IL Amber 1,4 Dioxane by B270D u (1) 250ml amb. 2649-1 ALS 230104 1300y SRI 01003014 - 1301 Ý (1)250m amb. 050922-165 A/ < -1302V Initial Parameters Final Meter ID Time - 23010413404 PH - 8.63 pH/cond-91 Time - 23010414184 8.55 -21,3°C Temp - 21.1'C Cond - 1244us/cm Cond + 125445/cm Turb + 1.45 NTU'S -210966 pt pre - 7.10/10.13 (16.5 °c) Hore - 7.08/10.10 (18.20) Exp - 1/31/23 pH post - 7,08/10.13 post - 7.05/10.12 Buffers DTW - 465.85 Ft DTW - 465 72 Ft Atmos - 12.10 psia Atmos - 12.14 psia 1202A44 IDW - 1/2 gal. 10 4107E36 Samples. Preservative Analysis Container Sample LOW Level NDMA ice/HCL 3)40ml vials 2649-1 23010414154 lice () LAmber 0100301H -14164ALS (1) 250ml amb. 050922-1GJ -14174 1,4 Dioxane by 8270D 2) 69.98 Runs 70.10 66.32 66,27 66.28 66,24 69.89 70.01 Continued from page N/4 Read and Understood By

Cray Del Ferra

1/4/23

Signed Uma

1-6-23

Date: 1 4 23							I	Page of
Sample Location: PL-10-592			A	nalytic	al Requiremen	t		
Pertinent Notes (if any)				1.				
SE	* *	ہا	LL NDMA	Dioxane				
# of Containers	Sample Matrix*	826011	N	OX6				
	mple	82	1	Ä				
Sample Number #	Sa							Charge Number
2301041300y (EB) 3	A	~						XGMD
1301y (EB) 1	A		~					
1302y (EB) 1	A		۷.	سي				ч
—— 1415y 3	A							4
	<b>A</b>		~	-			_	
14174 / 164	A			<b>*</b>				u
Sample Location:			A	nalytic	al Requiremen	ıt		
Pertinent Notes (if any)								
l sers	rix*							
ontair	e Mat							
# of Containers	Sample Matrix*							
Sample Number #	S							Charge Number
			_					
Relinquished by: Date / Time:				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	accepted by:			Date / Time:
Relinquished by: Date / Time: Cray Del Ferro 1/4/23/1510	1	<	1	n t	umal		1-6	
11712/1310	<u> </u>	J	<del>-   \</del> '	vu. V	V		. ,	-//
			1					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT 1 12 6-1142 1037 504-0050	Continued from page N/H
Bob Tufts & Craig Del Ferraro present	- Weather is clear & cold. This zone will be
analed using 5 steam cleaned Et	riole vinced stainlers steel somple tupes (lon
use Probe #4951 Surface check	ks performed on probe prior to sampling.
Trip blanks-1	water purification system
Sample Analysis	Preservative Container Lot Lab
2301050915 Y VOA by 8260LL	ice/HCL (3)40ml rials 2649-1 ALS
- Og164 Low Level NDMA	ice (1) IL Amber 0100301H SRI
30 Min Equip	oment blanks - Carboy GI
Sample Anglysis	Preservative Container Lot Lab
230105 12504 VOA by 8260 LL	
- 12514 Low Level NDMA	4 ice (NIL Amber 01003014 SPI
1252 y Total Metals	ice (HNO3 (2) 125ml poly 22-07-25 AL5
Initial Parameters	Final Meter ID
ime - 230105/4/04	Time - 23011013544 PHICOND - 91
'H - 8.52	PH - 8.31 Turb - 6
emp - 23,2°C	Temp - 22.2°C " Std - 4.25
ond - 1984 uslcm	Cond - 1995 us/cm a rdg + 4.22
urb - 7.67 ptv's	Turb - 4.67 NTUS 4 10966
H pre - 7.07/10.10 (19.4c)	pHpre - 7.04/10.07 (19.8°) . Exp-1/31/83
Hpost +7.08/10/13	54 ort - 706/10/11
Dtw -470.93ft.	DTW - 470.70Ft. Buffers Lot Exp
Hmos - 12.14psia	Atmos - 12.16 psia 7 1202A44 8/23
·	IDW - 1/2 gal 10 4107 E30 1/23
	Samples
Sample Analysis	Preservative Contouner 1st Carb
2301051440y VOA by 8260LL	ice(HCL (3)40m yigs 2649-1 ALS
1441 Y GOYBromacil	ice (I) 11 Amber 01003014 SRI
230110 1100V Level NDMA	u u u
230110 1100 Total Metals	ice/HNO3 (a) 125ml poly 5 22-07-25 ALS
Anions/Alk.	ice o a NA u
1351Y TDS by SMZS40C	(i) \$250 m poly 083021-2140 4
1352y Perchlorate by 6850	a (1) 125mm poly N/A u
1 1 3	Continued from page 1/A CO
	Read and Understood By

Samples Analysis Preservative Container Noz/M3 by 353 2 ice/H2SO4 (1)250m/ 20/y Sample 23011013534 2) 30 3) 328.75 4) 328.68 Runs 1) 330.50 330 38 337. 28 337.39 run. 337.76 337.26 Canceled 337.37 run canceled 336.33 330,44 328.72 337 31 due to com. 330,29 * Two sets of EBS required due to volume of water needed. * Sampling event resumed on 110 after O-rings on connectors (and various other small parts) were replaced 5) 330.64 6 330.39 338.16 338.16 338.17 338.19 330.60 330.33 Continued from page

Garg Del Ferra

1/10/23

.3

B-257 Signed

Read and Understood By

1-11-23

Date: 1/5/23						-			Page of
Sample Location: PL-6-1195				F	Analytic	al Requ	irement	-	
Pertinent Notes (if any)						2			-
	SIS	<b>*</b> .≚	1		NDMA	eta			
	ntaine	Matr	70,	109	25	13			
	# of Containers	Sample Matrix*	826011	0	7	) Hal			
Sample Number	#	Sa			7	17			Charge Number
2301050915y (TB)	3	A	~						XGMD
0916y (TB)	1	A			<b>/</b>				a
1250y (EB)	3_	A	~						u
1251y (£B)	1	A			~	-			ч
1252y (EB)	2	A							и
1440 y	3	A	V						4
14414	1	A							4
Sample Location:				A	nalytic	al Requi	irement		
Pertinent Notes (if any)									
	rs	* X							
	ntaine	Matr							
	# of Containers	Sample Matrix*	!						
Sample Number	#	Sa							Charge Number
				1		1		"-	
Relinquished by: Date	/ Time				\ A	ccepted	11		Date / Time:
Craig let Ferno 1/5/23/	164	ohrs	5.	10	<u>u V</u>	<u> </u>	pu oh	1-6	-23 /0900
				$\bot$			<u> </u>		/
				J					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1 10 23										Page <u>2</u> of <u>2</u>
Sample Location: PL-6-1195				A	nalytic	al Requ	uiremen	nt		
Pertinent Notes (if any)	ntainers	Matrix*	NDMA	Metals	ns/A/K.	Tos	Perhlorate	/NO3		
Sample Number	# of Containers	Sample Matrix*	۲۲	Total	Anions/		Perch	Nor/		Charge Number
23011011004	1_	Α	/							XGMD
11014	ર	Α								и
	2	A			/					ч
\35\y	1	A			_	~				4
135ay		A								и
—— \353y	1	A								и
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Requ	iremen	t		
retinent Notes (if any)										
	ners	trix*								
	# of Containers	Sample Matrix*								
Sample Number	) jo#	Samp								
Sample Number							<u> </u>			Charge Number
	_									
				+	-					
						_				
			_							
				-						
Relinquished by: Date	/ Time	<u>_</u> <u></u>		$-\sqrt{1}$	\ A	cepted	by:			Date / Time:
Relinquished by: Date ,	167	Shr	3	10		7	un c		] -]]	-23 0830
7	186	٠٠٠٠		1	<del>V.V.</del>	$\overline{}$	VV (		1 11	<i></i>
				1)	<del>-</del>					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: _____

10 PROJECT ₋	6/.	(e ·	13	35			Reso	mp(	L.	CJ.	ent	•	-							No. m pa			#	<u>(ડા</u>	<u>X</u>		
Marcus	Avalo	5 8	18	obe	4	Bu	(+ UW	5	Ne:	w	F .	W	لع	لمبه	. (	\<	pr	عد	54	+	W	W W	٨.	Th	ĸ	Zone	
Marcus will be tubes.	2 5a	how	w	V	sic	١ <u>ح</u>	5	- 5	tain.	ess		lee	$\int_{-\infty}^{\infty}$	2	عم	1 0	/ea	ned	1	7 . 1	le	ŗ	, se		an	NL.	
tubes	Gran	in	٥٤٥		54	ster	م رآ	201	\$ (	أبحد	ON	rec	0	<u> </u>	rop		# 1	દ્યું	1		) Liga			Jan	. 1	1	
Carboy	(م. ۱	ļ			. 1			-	'																	J	
		ļ																									
	,							_	1	<u>()</u> ·	Mi	_	Co	· han	m		Jan	4	,			-1			_ ,		-
Sample f	#				1na	पुत्रं	5		-	pre	بحعر	V.L				Co	rtai	Z				lot			_\	dp	
23031011	00 X	-		on	بر او	العر	WW	A	-		Ic	٧_			-(1	()	1	M	res	-	0	100	361	H		SPI	
								-																			
	0	<u> </u>							ļ									1									
Initial	Param	بابره	5					109	.								_		بوز	$\sim$	$\widehat{\mathcal{O}}$	_	-				
Time -	2303	101	145	X			230	- 1	\$20	X							bΉ	16	ام	v	$\mathcal{N}$				•		4
PH -	- 7,	07					(a.	48	-						·		7,	d		_	Ä	٤,	\			_	-
Temp -		7.8					24	.1.6	<u> </u>									<b>E</b>	150	<b>5</b> -	7]	.5	3 1	17	' ,		
(ond)		23					12	. 18	ws/										W	<u>ہ</u> ۔	(	١. ٤	2	V	J		-
Tuc6 -		( .)							uru									_`	rof	ر	1	100	44				_
The -	(6.9	4/10	.63	(1	8.8		( . ·	\$/	ن ، ن	<u> </u>								- 1	حبو	-	- 5	\$ /3	1/2	3		5	<u> </u>
Peop HI	6.9	4/10	05	•					0.03								<b>N</b> O		`		•					<u> </u>	<u> </u>
DIM.		.50					47	9.9	8							βυ	ffu	5	<b>\</b>	lo	+		ļ	9	χę		
Almos -	- 12	.53	29	مر			12.	49	psi								7			70	2 A	44	1	8	12	3	.  .
							Fin	9/7	ρw	-	0.	5	بروا			·	0			درع	7	927		7	(2	1	
													2														-
,										enf	کعا					•			<u>.</u>			_				_	
Sample &	<b>-</b>				An	مراباخا	S			į	(ds	.VL				(Pu	Auch	v				10	ļ			do	1.
2303101	1307			له	w	يوس	JN	4116	ς		7				(	<u> </u>	1	m	25		C	\OC	301	Н		507	-
	231 X		-			*	$(D_{0})$	67				c	-				5					2				=	_
									_				-										-				
													-										<u> </u>		-		
										<u> </u>			-														-
Runs!)	388	<u>or.</u>		2	) ઢ	જિ	. 27		3) :	87	80	•	ļ						<u> </u>								<del> </del>
	398.	28		ļ			. 28		3	98	2	5								ļ							_
	398.	23		<u> </u>	3	ઉશ	.21		3	98.	23								ļ <u>.</u>				<u> </u>		7		
	388.	72	<u> </u>		3	88	.31		3	87	83							ļ									-
			ļ					_		ļ			-														+
										ļ														ļ			
										ļ						•		-									
																					Cor	ntinu	ed fr	om pa	age		
													Read	d ane	Und	ersto	ood E	Зу	_								
	۸۸			V				. ^	. /-						) -		1.1	/				1		2	. 10	3-23	
	/\\\	$  \lambda $	1	<i>S</i>				91	0 2	کر		B-26	0		00	<u> </u>	V'	<u> </u>		W	<u> </u>	h	_	3	-/ :	7-4)	

Da	ate: 3/10/23											Page /	of
	mple Location: Pl. Ce.	1335				F	Analytic	cal Req	uireme	nt			
	Pertinent Notes (if a				2								
			go.	*	LowlevelNOMA								
			# of Containers	Sample Matrix*	مريع								
			Cont	ple M	NO								
	Sample Number	•	# of	Sam	4							Chara	e Number
7	303101100 X	(EB)	١	A	1								e ivumber
		(LD)	1	/			_					YGMD	
	1230X		1		LX.								
	- 1231X		-		X								
ļ													
		,											
Saı	mple Location:					A	nalytic	al Req	uiremer	nt			
	Pertinent Notes (if a	iny)											
			Š	*.									
			ainer	<b>fatri</b> y									
			# of Containers	Sample Matrix*									
	Sample Number		yo#	Sam								Charge	e Number
			_			<del>:</del>				· <u>-</u>			
													-
						_							
		· · · · · ·						1					
N.	Relinquished by:		/ Time			+b	1	dcepte	d by:	1)	1 1	Date / Ti	me:
1\	MA MA	3/10/23@	133	5			u l		Illu	_ch	2-1:	3-23	0845
			. <u>.</u> .			+							
	_					"							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page ____

<u></u>	, ,	Ha	\v ₀	د ع	en	•	-14	2000	7	910	ષ્ટ	- Ç	۲۰	ځوه	4.	1x	نوص	ナア	٠,	i	5	c /a	47	9.1	\d	ر	ل او	_	ኊ:	5		
			1	1	1		I	_	1		ı	l .		l	1	ì			5	i .	1		t	<b>~</b> 6)			1	1		4	He	<u> </u>
us	:00	<u>, a</u>	ر	الخفا	ca	ب	Ĭ,	<b>ک</b> : د	c'	5	e_	10	جو	P	274	e P	cs:	ىدى	re	Se		4	22	&	P5:		54	up'	e.			,
																								3							wf	
																								20								
			1 -		. ~	1	1	]													_		<u></u>									
																							ļ									
255	<u>. S</u>	-24	کد	B	-	4	_					_	To	2	2	NC	22						2	we be	71	بد	<u>e</u>					
45			٠. 4	1										N	10									P	4	٠.,	0.0	3	92	2		
FLS	8	<del>-</del> 2	٠.٢	1	<u> </u>															ļ					•	70	<u> </u>	=	2			
معا	, م	- 1	2)	<u>.                                    </u>															<u>.</u>							5	Q7	₹	50	3		
[VS	B.	۲ )	10	<b>5</b>															ļ				<u></u>			R	<i>0</i> €	3	50	ها.		
				<u> </u>																						1	-07	3,	Q K	وا9و	6	
																										(	gr	-3	1):	23		
				ļ	ļ			_	Τc	-0	B	141	L	<u> </u>													•		•			
<u> 50-</u>	190	r 1				C	Jorg.	72	3					P	وح	erv	u.		_	ى	1	30	40				10	Γ			W	3
<u> </u>	100		ינכי	0 7	\$ ,					, L					ı	!	ري		C	<i>ک</i> ہ	10.	11	via	)							12	ی
_		8	ונע	3		No	n	( <u>a</u>	L						ود	L			G	21	1	mE	er				ļ				58	-
						ļ																					<u> </u>					
<u> </u>	<u> </u>	rf	-																													
<u></u> 6	~€	4	23	910	9/5	500	3																									
PH				410																												
<u>Fen</u>	95	۲,	20	5	ر			ļ														<u> </u>										
			1	1	3) c	w																										
100	B	• )	.0	5 3	Y	`5				<u> </u>									<u>.</u>			ļ										
346	ne_	-	٦.<	2-	10.	03	()	<u>) .</u>	٥	$\langle \cdot \rangle$																						
64	Pos		٦.	3.	10.	50	1																				<u> </u>					
_					_					ļ		5	AN	14.	<u>٤</u> 5	_											.					
5~	NPI	٤			<u> </u>	7	30	e.	sì	_				_3	حو	5-8-1	عماح		ļ	Co	1	250	2				7	T			10	B
<u> 232</u>	100	/5	3	B	-	v	م در	De	2	60	LL				T	el'	1+2		(	<i>5</i> ) .	1	1	1	)						Ш	U	ىد
		·/5	3)	3			()	ļ.,		" (	EC	7				۵,						<b>}</b> ,					-					•
		15	33	3	<del> </del>		W		4						_ 5	C				(D)	1	94	or.	-							2	RT
_	<del></del>	15	<u>25</u>	3	1	1,		'	_	6	3				1	,					'	>					<u> </u>			Ш		",
<del></del>			_	$\perp$	ļ				ļ						ļ																	
					ļ																						<u> </u>					
					ļ																											
																									Cor	ntinu	ed fro	om p	age			
									_																							

M

Signed

1-9-2023

for U

1-10-23

D

B-262

Date

Date: 1-9-2023											Page 1	_of <u>\</u>
Sample Location: 57-7-	453				A	nalyti	cal Req	uireme	nt			_
Pertinent Notes (if a	ny)										1	
Sample Number		# of Containers	Sample Matrix*	500 0	7780000						Хбл Charge	Number
2301090710B	TB	3		2								
1530 3		3		٦								
1531 3		3		R								
5711 B	TB	1			L							
1532 3		1			4							
1533 B	FB	)	,		4							
	,											
Sample Location:			-		A	nalytic	al Req	uireme	nt			
Rertinent Notes (if a	ny)						-					
		#/of Containers	Sample Matrix*						·			
Sample Number	•	# 1			<del></del>						Charge	Number
												<del></del>
									-			
												<u> </u>
Relinquished by:	Date	/ Time	<u> </u>		1	, A	cepté	Nhv.			Date / Tin	ne.
mo	1-9-2023				To the second	ri	Tecpit.	llu-	-cl	1-10		0830
					1			/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT ST-7-544 FLAGE END.0020

Continued from page _

an H	\ <u></u>	C 5		_	Tor		το	دوم	٦.	Dr.	<b>8.5</b> e	4	ل	اعدا	ميمار	٦	د,'	c	Je.		30	L	رم	εJ,	7	۲.	<b>S</b>	رمح	w.	
		6.	- s	11 -	1		. a.	اعلاد	7	us	~	۵	<u> </u>	$\Gamma \overline{\wedge}$	Te		45	ken	<b>_</b> _	<b>D</b>	15 M	-	m'	1	DY.	<u></u>	116	C154	4	4
				4	2	_1		1	~ 4	1	~S	e.	Pus	~ •	0	res	34	·e	يک	4	4	2:	58	6:	٠.	SA	MPI	٠		4
			1	1	2	4	7		۱ ، م		5.	4	4	30	5:	. 1	Let	701	6	27	do	٠.	47	8	6 <b>2</b> ,	-	12		_	4
re se	ی ا	وره	ne r	, Y	4.	w	25	Q	150	وي	r		·m	w	0.	2	49	والم	25	pu	<i>c</i> 2.	لم	<b>\</b>	<u> </u>	-	0	<del>} ~;</del>	ac	_+	4
* mp/:	~	Cen.	-	<u>}</u>	3	0	4	e.			ļ				-		-			-	-	-	-	<u> </u>		-	-			-1
												_	-		-		-	-	-		_	-			-	-	<u> </u>			_
re-\$	190	e R	, a.	nete	45	-				<u> </u>	-	1	عحم	1	c	-	-	-		-	-		184			-	62	-		
14 -	٦.	oi			-					-	-	1	10	-	-	-	-	-	-	<del> </del> -	-	-	PH.	L .		1	74			- 7
M2 =	19	3	-			-			-	-	-		-	_	-	-	+-	-	-	-	-		+-	1	18		-	7		
· aa.	11	16	-		-	-		-	-	-	-	-	-		-	-	-	-	+	+-	-	-	-	l.	1	1	50			
,43	0.5	عاذ	-	-	-	-		-	<u> </u>	-	+	-	-	-	-	-	+	-	-	+	-	+-	+		1 7		So	296		
1	_		-	-	-	-	-	-	<del> </del>	-	-		+-		1	+-		+-	-		+-	+	-				1)2		<b>6</b>	
			_		-	-		ļ		+	-	-	+-	-	-	-		+	+	+-	-	+-	-	-	( SAL		<i>'</i>			П
ZERM			-	_	-	•	-	+	+-	-			-	-		-		-	+-			+	1			$\top$				
: 1900	5		1	- 1	10	3			-	+	+	-	-	$\dagger$	+			-		+-		1								
4	-				-	+-	-	-	+	-	+			+	-	+	+	$\top$												
¿mp				1		+	$\vdash$	+-	+-			+		+	+		+													
010	3	- 1	ì	f			$\vdash$		+																					
U.B UPre	- ].	ع . ر <u>ح</u>			<u>~</u> 1	1	200	,	$\downarrow$						1												_	$\perp$		
H Per						1	*	-	1	1																			<u> </u>	1
MYS	1	7.0	7	,0,0																					_			_		1
				_			$\top$		T	•	42	WB	Les	5										-		-			-	1
19,1100	- XX	_			2	lan.	. < ;	_					جو ع	i	ve				Co.	4	<u> </u>	4	_	_	4	1	_	-		B
30109		48	3		الاعم		٩	- 1	L				19					3	1/2	in c	יטי	5		_	$\perp$	-	-		10	کلا
1.30.0	15	1	i		٠,٢	2			(FC	1				1,					_	1			_	_		-	-	+	+-	1
	155				np	ng	L						T	ce_			_	D	1	de	بلطر	<u>.</u>		-	-	$\dashv$	-			RE
	155		1		١,		,,	25	(8)				45	_	_	$\perp$	_	-		1)		-		+	-	+	-	+	+-'	<u>'}                                    </u>
														_		_			-	_	-	_		-	-	-			+	+
									_							_	_	-		$-\downarrow$	_	-	-		_	$\dashv$				+
													_	_	_	_		-	_	_	_	+				-			+-	+-
								_	_		_			+		_	_	+			$- \dotplus$	-	-	_	+		-	-	-	+-
							$\perp$		$\perp$	$\perp$		_	-	-	_		$\dashv$	-	-	-	-		-	$\dashv$	-	$\dashv$	$\dashv$	-	+-	+
										_			_							-	_	$\dashv$	+	_	_			+	-	+
						-	_ -	_		_				_	_	_	_	-	$\dashv$	_	+	+	-+	Comt	inus	d fro	m pa			
																									ue	110	Pa			

1.9-2023

B-264

Oh Munch

1-10-23

Date

Date: 1-9-2023									-	Page)	of
Sample Location: 57-7-544				A	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)								ė.			
	2	* *		了							
	# of Containers	Sample Matrix*	7000	DOWA						,	
	f Con	nple		0						180	200
Sample Number	0#	San		2							Number
230109/548 3	3	A	8								
15493 FB	3	17	2								
15503	1			9	_						
1551 B FB	)			P							
				·	_						
	-				_						
		,						<u></u>			• · ·
Sample Location:	<u> </u>			A	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if any)										-	
	g	*									
	tainer	Matrix									
	# of Containers	Sample Matrix*									
Sample Number	#	Sar								Charge	e Number
				ŕ							
									<u> </u>		
					_						<u>-</u>
·						"					-
Relinquished by: Date	/ Time	e:			) (A	ccepte	d by:	Ŋ		Date / Tr	
W 1-9-3053	<u> </u>	1630	c	10	<del>u</del>	M	Jun	-d	1-1	0-23	10830
				$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$							
				U			/				

WSTF 381C (05/2016)

^{*} Sample Matrix Types: G -- Gaseous; A -- Aqueous; S -- Solid; O -- Other:

PROJECT ST- 7-779 FLUTE ENV-0020

Continued from page

$\frac{2}{2}$	Ι,	12-1		550	Ι.,								Ι.		1.	L . \\				,								Γ <u></u>			
					B																										20
					5:-																										2
					suc																										<u>_,                                    </u>
					ec																										31
					7-6								2								-	3113		4"	.9	<i>U</i> 1					
			2.			3					•																				
Pa	د <u>-</u> 5	5. n.E	SIE	Rec	a area	der 6	s				_		03	duc	* *								7	my	ų j	£	۵				
24		-	7.	25									۱/ د														On	->-	92	2	
M	2	•	21	4	(																						18		ר		
				50																							1 1		50.	3	
Tu	2,	<u>-</u>	0	55	<u>†                                    </u>																						05				
																										1	-1		i 1		,
	ļ	ļ		-																						1	<b>W</b>	1			
		-	-	_	-					<u> </u>	23	71	νK	2														J			
<u> </u>	m6	16	-		_	V	رهر	جن	۲.		_		Pre	Ser.	w			ے	90	ta:	Cat 1	-	1		1	16				15	×13
23	917	9 9	71.	Z ?	<u> </u>	UD	w 0	L	L				<b>T</b>	:دو				$\omega$	14	20	ومط	<b>.</b>								-	5 RT
_			-	-	-	-								-																	
			ike.	1	<u> </u>					-																					
		1	4		101	33	o B												-												
64		1	1	1,5	1																										
	.6	1			٥	1																									
	10		/0	46	ريم	500			-																						
	tB.				5	NA	4		۵																			-			
	०न्र	1	1.	03.	. 10	.04	. ( )	٤. :	2											,											+
	free		17.5	3-2	, , ,	0.0	3		~			-		<b>.</b>																$\dashv$	
<u> </u>		7	<b>-</b>				^					<i>`</i> ∂	MA								\										
	wb		<b>,</b> , , ,		_			حاب				_			ł	<u>v 7.3</u>	1			1 1		-		-		F	Tø	-	_		30
— 23	11,			5 <u>7</u> 6 3	1	<b>\</b>	1, ) <i>oo</i>	-	٦,		0 LI				T	e] \- "	ių			<b>3</b> )	70	m	JIG	)							4 <u>6</u> 5
	<u> </u>			2 3			112	w			( <u>r</u> (	ン								/. ``	1/		\.		•						
	-	1	5 8 5 8				いしい	1410	7		FB	7				.حد	-			(ر)	, 17	1714	<i>1</i> <del>1</del>	-				-		-	5RT
			9 0	1,72							, ບ	ر				<b>`</b>															
															L				~								$\dashv$		$\dashv$	-	
													-																		
																									Con	tinue	ed fro	m pa	age .		
			•	٠,		·	ئــــا	- 1									Read	and	Und	ersto	od B	v		1							

Signed

1-10-5053

B-266_

Ou Signed um of

1-11-23

Date: 5-1-10-20.	53					·				Page of
Sample Location: 57-7-735				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)				7						
	S.	   * 		77						,
	# of Containers	Sample Matrix*	ک	5						
	f Cor	nple	00 A	0000 V						X6mo
Sample Number	#	Saı		2						Charge Number
2301101355 B	3	A	<b>&gt;</b>							
1356B FB	3	1	9							
-0710B TB	3			9						
- 1357B	1			4						
13583 FB	1			9						
Sample Location:	•			A	nalytic	al Requ	uireme	nt	•	
Pertinent Notes (if any)										
	S.	*×								
	tane	Matri								
	# of Containers	Sample Matrix*								
Sample Number	#	Sar								Charge Number
·										
						·				
Relinquished by: Date	/ Time	e:			1	ccepte	d by:	<u> </u>		Date / Time:
1.10.2023	14	140		Mr.	4		llu-	<u>cl</u>	1-11	-23 /0830
	·			$\perp \! \! \perp \! \! \Delta$						
						,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32#128 B OJECT ST- 7-970 FLUTE EUV-0020 Continued from page on the works of tong torres present. Weather is faithy Cloudy and cold. This en a chedicated discharge have Puris pressure set at 228 pais sample pressure 207 ps. Flowmeter set at 385: biblior stable at 825: 15 minute recovery meno proceso misimum de al galores proced proc to tamplingo Carbon - 50 mole Per ramables Transchucer PA/CO10 =93 NIA = 8.0b P = 19 2 اسراع اء ا 5.0 \$50.3 38.60 ROG = 50.7 13 - 0.71 LoT = 210966 EN 31/23 tameter 5 -2301101338 B 3 19 30 C = 852 uslan 30.64 x+4/5 =7.03-10.04 (18.1°C) Pagy - 7.02-10.03 SAMPLES Preserve Container EVAS analysis 21411 100 / 8300 FT TGE/HE) (Bil) In o HE) 230 110 1407 B · (FB) - 1408 3 DIL amper 1409 B NDMO L \$R-11. Thee * (FB) 1410 B

Read and Understood By

1-10-2023 B-268 DW

m U

Signed Mu—U

|-||-23

Continued from page

Date

Date: 1-10-2023										Page of
Sample Location: 51-7-970		••		A	nalytic	cal Req	uireme	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	600	TOWN TO						XGMD
Sample Number	3	V.	~						<u> </u>	Charge Number
2301101407B 14108B FB	3	1	4							
1409 B	1			Q						
1410B FB	1	1		£					-	
Sample Location:  Pertinent Notes (if any)				A	nalytic	al Req	uireme	nt	·	
	# of Containers	Sample Matrix*								
Sample Number	#	S								Charge Number
	-									
										· · · · · · · · · · · · · · · · · · ·
					1					
Relinquished by: Date  1-10-202	e / Time	: 1440	0	0	n A	ccepte	d by:	d	1-11	Date / Time: -23 / 0830
				1)		/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Say lef Ferris

1/18/23

B-270 Du Signed Lumck

1-19-23

Date: 1/18/23									F	age	of1
Sample Location: WW-5-459				A	nalytic	al Requ	iremen	t			
Pertinent Notes (if any)				_							
	ers	rix*	ור	LL NOMA							
	# of Containers	Sample Matrix*	8260 LL	2							
	t of C	sampl	8	1							27 1
Sample Number	<u> </u>			:							ge Number
23011814408	3	A								XG	mD
1441B (FB)	3	A	~								4
1520B		A		V							и
1521B (FB)	_	A									u
,											
Sample Location:	,			A	nalytic	al Requ	iremer	nt			
Pertinent Notes (if any)											
	ers	rix*									
		Mat									
	# of Containers	Sample Matrix*									
Sample Number	#	Š								Char	ge Number
	ļ <u>-</u>								:		
				•							
					<u> </u>						
011	e / Tim					Adcepte	١	Ti	1 1/	Date /	
Cray Ol Ferro 1/18/23	/ 160	00 h	rs.	+	ou	$\mathcal{A}$	Jun	- <u>L</u>	1-16	-23	10830
				+	)—		-				
				'	,		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1 18 23								Pag	ge of
Sample Location: $\omega\omega$ -5-579				A	nalytic				
Pertinent Notes (if any)									
Sample Number	# of Containers	Sample Matrix*	77 0928	LL NDMA					Charge Number
2301181500B	3	A	~						XGMD
1501B (MS)	3	A	✓						и
1502 ₽ (FB)	3	Α	/						ч
1535B	1	A		~					и
15368 (FB)	1	A		~					и
Sample Location:			Analytical Requirement						
Pertinent Notes (if any)	of Containers	Sample Matrix*							
Sample Number	#	<u> </u>							Charge Number
									1100
					$\bigcap$				
Relinquished by: Date  Gray Whera 1/18/23/	/ Time	ohrs			Ori	ccepted	IDX:	1	Date / Time: -13   0830
				\	1		,		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

(O0LOT 90 W 5 DOT : 2010 W3 2:0V 9020 1)	Ontinued from page 1777
an Halvorsen & Craia Del Ferrara present. Wes	ther is clear & cool. This zone will be purged
id sampled using a FLUTE system. Samp	la sillatat usia a dalik tal
is sampled asmall tole system. Jamp	les will be conected using a dealtated
Ischarge hose. lurge pressure set @ 224p	os, sample pressure set @ 203, flow meter
et @ 3 psi, and bubbler stable @ 7 psi	There will be a 15 minute recovery time
studen purges. A minimum of 4 gallon	is will be purged prior to sample collection
he first 350 ml of worter collected tus	+ prior to sampling will be discarded.
arboy G1 in use.	11 10 10 10 10 10 10 10 10 10 10 10 10 1
ar programme as a second	
	- purification system
Dample Analysis Presery	afire Container Lot Lab
230119 0740B VOA by 8260LL ice/1	HCL (3) 40ml via) 5 2649-1 ALS
- 0741B Low Level NOMA ice	
THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O	2 CITIC FINDER SIGNATURE
	ucer Meter ID
7H - 8.70 pressure	2-38.02 psia pH/cond - 61
2mp - 17.2°C temp	-24.21 - Turb -21
	-87.70ft " std - 10.25 NTUS
urb -0.37 NTU'S	
W 0 70.3 /NT09	4 rag - 10.18 NTUS
	a 10+-210966
arameters	Exp-1/31/23
ime - 2301191410B	
H - 8.59	Buffers Lot Exp
	7 1202A44 8123
ond +971us/cm	10 4107 € 30 1/23
urb + 0.30 prus	
Hpre, -7.13/10.10(14.0°c)	
Hpost - 7.11/10.08	
	amples , , , , , , , , , , , , , , , , , , ,
Sample Analysis Pres	errative Continuer Lot Lab
230191415B VDA by 8260LL 10	ce/HCL (3)40ml vias 2649-1 ALS
1416B u (FB)	
	ice (1)11 Amper 01003014 SRI
11108	ice (1)11 Amber 01003014 SRI
1417B Low Level NDMA 1418B u (Dupl.) 1419B u (FB)	a u u de
1419B 4 (FB)	a la la la la la la la la la la la la la
-Dw-4.5 gallons	Continued from page
	Read and Understood By
$\wedge$	Troud data oridoratood by

Craig Ill Leuro

1/19/23

B-274 Signed

1-20-23

### WSTF INTERNAL SAMPLE CHAIN OF CUSTODY RECORD

Date: 119/23		,				·				Page _		of	1
Sample Location: $\omega\omega$ -5-809				A	nalytic	al Requ	uiremer	ıt					
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	770928	LLNDMA						Ch	arge N	Jumb	er
2301190740B (TB)	3	A								X	i Ml	>	
0741B (TB)		A		V							и		
14158	3	A	~								<u>u</u> _		-
1416B (F8)	3	A	V								4		
14178	1	A		/							ч		-
1418B (Dupl.)	1	A									ч		
1419B (FB)		A			-						4		
Sample Location:  Pertinent Notes (if any)	<del>                                     </del>	Γ		A	nalytic	al Req	uiremer	nt					
	# of Containers	Sample Matrix*		•									
Sample Number	#									Ch	arge 1	Numb	er
				· -									
Relinquished by: Date	e/ Time	a.			r A	ccepte	d by:			Date	/ Tim	۰.	
Cray Offerno 1/19/23		50h	rs.		$I \setminus I$	-/1	d by.		1-20	23	$\overline{}$	90C	,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvorsen & Craig Del Ferraro present, Weather is clear & cool this zone will be purged and sampled using a FLOTE system. Samples will be collected asing a dedicated discharge hose. Purge pressure set @ 224 psi, sample pressure set @ 203 psi, flow meter set @ 3psi, and bubbler stable @ 7psi. There will be a 15 minute recovery time between purged. A minimum of 4 gallons will be purged prior to sampling, the first 350ml of water collected just prior to sampling will be discarded. Car boy Gl in use Meter ID Pre-sample parameters Transducer PH/cond - 94 GI pressure - 38.02 psi PH - 8.49 - 24.21.4 Temp-17.8° -10.2 NOV'S Cond - 1278 us/cm depth - 87.70ft. rdy - 10.18 WTV'S Turb - 042 NTU'S 107 - 210966 Exp-1/31/23 Parameters Time - 2301191434B PH - 8.44 Temp - 17.3°C Buffers 1202A44 4107530 1/23 Cord - 1265 us/cm - 0.36 NT U'S pH pre - 7.12/10.08 (16.3°C) pH post - 7.13/10.06 Preservative Sample 2301191435B 2649-1 VOA by 8260LL ice/HCL ___1436B (1) 11 Amber ice - 1437B ow Level NOMA 0100301H u (FB) -1438B IDW 4.5 gallons Continued from page

Cray le Ferro

Read and Understood By Jumel 1-20-23

### WSTF INTERNAL SAMPLE CHAIN OF CUSTODY RECORD

Date: 1/19/23										Page	of
Sample Location: WW-5-909				A	nalytic	al Requ	uiremen	ıt			
Pertinent Notes (if any)  Sample Number	# of Containers	Sample Matrix*	826011	LL NDMA						Char	ge Number
2301191435B	3	A	~							XG	
1436B (FB)	3	Α								ų	<u>.</u>
1437B	١	A		~						4	
1438B (FB)	1	A								и	
						-					-
								- <u>-</u>			
									_		·
Sample Location:  Pertinent Notes (if any)		Γ		A	nalytic	al Requ	uiremer	nt 		-	
Sample Number	# of Containers	Sample Matrix*								Char	ge Number
	_										
											· · · · · · · · · · · · · · · · · · ·
Relinquished by: Date	/ Time	 e:		$\Box$	7 A	Écepte	d by:			Date /	Time:
Craig Del Leuro 1/19/23/	155	Tohi	rs.		in \		lu-	Ĺ	91	-20-23	3/0900
				ĮΨ.							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Appendix C Chemical Analytical Program (Internal QA reports)



# Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

November 2022

NM8800019434

Report Submitted: April 10, 2023

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

#### 1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in November 2022.
- The quantity and type of quality control samples collected or prepared in November 2022.
- Quality control sample percentages in annual period immediately preceding and during November 2022.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

### 2.0 Data Quality

#### 2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

#### 2.2 Notable Anomalies

Because of a 41.2 pg/L detection of 2,3,7,8-TCDD in SW-846 Method 8290A sample 2211010939A collected from BLM-3-182 on 11/1/2022, resampling was conducted 12/15/2022. The sample collected 12/15/2022 was lost due to an error at the analytical laboratory. BLM-3-182 was sampled again on 1/24/2023 for analysis by SW-846 Method 8290A. The 2,3,7,8-TCDD result for resample 2301241350C was non-detect with a 3.14 pg/L detection limit.

#### 3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in November 2022. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for November 2022

1 able 1 – 5	ampie Evei
Well ID	<b>Event Date</b>
BLM-3-182	11/1/2022
BLM-8-418	11/1/2022
ST-5-485	11/1/2022
ST-5-655	11/1/2022
BLM-24-565	11/2/2022
BLM-17-493	11/3/2022
BLM-36-610	11/3/2022
BLM-36-860	11/3/2022
BLM-36-350	11/4/2022
BLM-36-800	11/4/2022
BLM-26-404	11/7/2022
BLM-32-543	11/7/2022
BLM-32-571	11/7/2022
BLM-32-632	11/7/2022
BLM-38-480	11/7/2022
BLM-38-620	11/7/2022

Well ID	<b>Event Date</b>
BW-5-295	11/7/2022
200-I-795	11/8/2022
PL-7-560	11/8/2022
WW-4-419	11/8/2022
WW-4-589	11/8/2022
200-I-490	11/9/2022
200-I-675	11/9/2022
ST-1-473	11/9/2022
WW-4-848	11/9/2022
WW-4-948	11/9/2022
200-I-185	11/10/2022
200-I-300	11/10/2022
200-I-375	11/10/2022
B650-EFF-1	11/10/2022
B650-INF-1	11/10/2022
B655-EFF-2	11/10/2022

Well ID	<b>Event Date</b>
B655-INF-2	11/10/2022
PL-12-570	11/10/2022
PL-12-800	11/10/2022
100-D-176	11/14/2022
MPE-1	11/14/2022
MPE-9	11/14/2022
BLM-22-570	11/15/2022
BLM-2-630	11/15/2022
MPE-10	11/15/2022
MPE-11	11/15/2022
NASA 6	11/16/2022
ST-1-541	11/16/2022
ST-1-630	11/16/2022
ST-4-589	11/16/2022
400-C-143	11/17/2022

**Table 2 – Quantity of Quality Control Samples** 

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0
Nitrosamines by EPA Method 607	30	0	1	0	1	3	1
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	2	0	0	0	0	0	0
PCBs by SW-846 Method 8082	2	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	2	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	29	19	10	4	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	18	13	5	4	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	7	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	4	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	2	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	2	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0
Anions by Various EPA Methods	5	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	14	1	2	0	1	2	0
Nitrosamines by Low-Level Method	21	16	5	7	1	2	1
Total Dissolved Solids by Standard Method 2540C	7	0	0	0	0	0	0

**Table 3 – Quality Control Sample Percentages** 

Quality Control Requirement	Requirement %	Samp. Qty. since 12/1/2021	QC Qty. since 12/1/2021	QC % since 12/1/2021	Sample Quantity November 2022	QC Quantity November 2022	QC % November 2022
VOA Duplicates	10	530	55	10	47	4	9
VOA Matrix Spikes	2	530	12	2	47	1	2

Quality Control Requirement	Requirement %	Samp. Qty. since 12/1/2021	QC Qty. since 12/1/2021	QC % since 12/1/2021	Sample Quantity November 2022	QC Quantity November 2022	QC % November 2022
607 Duplicates	10	304	32	11	30	3	10
607 Matrix Spikes	2	304	9	3	30	1	3
607 Equipment Blanks	2	304	9	3	30	1	3
607 Field Blanks	2	304	8	3	30	0	0
NDMA_LL Duplicates	10	321	35	11	21	2	10
NDMA_LL Matrix Spikes	2	321	11	3	21	1	5
Metals Duplicates	10	213	24	11	14	2	14
Metals Matrix Spikes	2	213	7	3	14	0	0
Metals Equipment Blanks	5	213	11	5	14	2	14
Metals Field Blanks	5	213	10	5	14	1	7

Quality Control Requirement	Requirement %	Sample Events since 12/1/2021	QC Qty. since 12/1/2021	QC % since 12/1/2021	Sample Events November 2022	QC Quantity November 2022	QC % November 2022
VOA Equipment Blanks and Field Blanks	Should approach 100%	530	530	100%	47	47	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	319	319	100%	21	21	100%

Quality Control Requirement	Requirement %	Shipments since 12/1/2021	TB Qty. since 12/1/2021	TB % since 12/1/2021	Shipments in November 2022	TB Quantity November 2022	QC % November 2022
VOA Trip Blank (per shipment)	Should approach 100%	105	105	100%	9	9	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	103	103	100%	8	8	100%

**Table 4 – Definitions of Data Qualifiers** 

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualifier	Definition					
RB	The analyte was detected in the method blank.					
S	The result was determined by the method of standard addition.					
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.					
T	The sample was analyzed outside the specified holding time or temperature.					
TB	The analyte was detected in the trip blank.					
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.					

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	99	0	0	0	0	0	1	0
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	42	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	14	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	12	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	2162	1	0	0	4	0	0	0
Low Level Volatile Organics by SW-846 Method 8260C	1172	0	0	1	0	0	1	0
Semi-Volatile Organics by SW-846 Method 8270D	1069	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	75	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	2	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	2	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0	0
Anions by Various EPA Methods	20	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	432	0	0	0	0	0	0	0
Nitrosamines by Low-Level Method	46	10	4	5	0	0	0	0
Total Dissolved Solids by Standard Method 2540C	7	0	0	0	0	0	0	0

Table 6 – Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11 % 11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	99	0	0	0	0	0	0	2	0	4
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0	0	2
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	42	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	14	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	12	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	2162	0	19	0	0	0	0	0	0	40
Low Level Volatile Organics by SW-846 Method 8260C	1172	0	23	0	0	0	0	0	0	7
Semi-Volatile Organics by SW-846 Method 8270D	1069	236	6	0	0	0	218	0	0	0
Dioxins/Furans by SW-846 Method 8290	75	2	0	0	0	4	0	0	0	6
Cyanide by SW-846 Method 9012B	2	1	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	2	0	0	0	0	0	0	0	0	0

Method	Total Result Records	11411	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	20	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	432	0	0	0	0	7	0	0	0	84
Nitrosamines by Low-Level Method	46	0	0	0	0	12	0	0	0	4
Total Dissolved Solids by Standard Method 2540C	7	0	0	0	0	0	0	0	0	0

**Table 7 – Quality Assurance Narratives** 

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
BLM-38-480	11/7/2022	For Low Level SW-846 Method 8260C, 2-propanol (11 ug/L) was detected below the
		reporting limit and silane, methoxytrimethyl- (12.0 ug/L) and silanol, trimethyl- (5.3 ug/L)
		were tentatively identified by a GC/MS library search in the trip blank (2211070910Y).
		Affected data are appropriately qualified.
PL-7-560	11/8/2022	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2211081031Y
		for vinyl chloride (73%) was outside laboratory control limits (74-159%). Affected data
		are appropriately qualified.
BLM-22-570	11/15/2022	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (5.8 ug/L) was
		tentatively identified by a GC/MS library search in sample 2211151510A.
BLM-38-480	11/7/2022	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (6.3 ug/L) was
		tentatively identified by a GC/MS library search in sample 2211071325Y.
BLM-32-543	11/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
		methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the
		method blank for analytical batch 785182. No groundwater data are affected by this method
		blank contamination.
BLM-32-571	11/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
		methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the
		method blank for analytical batch 785182. No groundwater data are affected by this method
DI 14 22 622	11/7/2022	blank contamination.
BLM-32-632	11/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
		methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the
		method blank for analytical batch 785182. No groundwater data are affected by this method blank contamination.
BLM-38-480	11/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
DLW1-30-400	11///2022	methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in
		the method blank for analytical batch 785182. Affected data are appropriately qualified.
BLM-38-620	11/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
DEIVI 30 020	11///2022	methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the
		method blank for analytical batch 785182. No groundwater data are affected by this method
		blank contamination.
PL-7-560	11/8/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane,
		methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the
		method blank for analytical batch 785182. No groundwater data are affected by this method
		blank contamination.
BLM-32-543	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of
		the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were
		no detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is the result of a
		standard discrepancy; we are working with the vendor to correct the issue. The analytes
		affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-32-571	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of
		the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were
		no detections of the analyte(s) in the associated field samples. The discrepancy associated

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
		with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-32-632	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-38-480	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-38-620	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-8-418	11/1/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no detections of the analyte in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analyte is flagged in the LCS Summary. Affected data are appropriately qualified.
PL-7-560	11/8/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
ST-5-485	11/1/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no detections of the analyte in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analyte is flagged in the LCS Summary. Affected data are appropriately qualified.
ST-5-655	11/1/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no detections of the analyte in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analyte is flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-589	11/8/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
		with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-848	11/9/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-948	11/9/2022	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendors to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
B650-EFF-1	11/10/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	11/10/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-22-570	11/15/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-24-565		For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-32-543		For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-32-571		For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-32-632	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-38-480	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-38-620	11/7/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
BLM-8-418		For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-7-560	11/8/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-4-589	11/16/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-5-485	11/1/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-5-655	11/1/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-4-589		For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-4-848	11/9/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-4-948	11/9/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-24-565	11/2/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-589	11/8/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BLM-24-565	11/2/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	11/10/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2	11/10/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-22-570	11/15/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-24-565	11/2/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-24-565		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-32-543		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-571	11///2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
BLM-32-632		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-38-480		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-38-620		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-8-418		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-7-560		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-7-560		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-589		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-5-485		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
		* *
ST-5-655		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WW-4-419		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-4-589		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-4-848		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-4-848		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
WW-4-948	11/9/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
200-I-300	11/10/2022	For SW-846 Method 8260C in blind control sample (2211101125Y), the percent recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (130%), trichloroethene (150%), tetrachloroethene (130%), and trichlorofluoromethane (135%) were outside of the
OT 1 541	11/1//2022	standard limits (75-125%). Affected data are appropriately qualified.
ST-1-541	11/16/2022	For SW-846 Method 8260C, 2-propanol (16 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (7.1 ug/L) was tentatively identified by a GC/MS library search in the field blank (2211161031A). Affected data are appropriately qualified.
200-I-185	11/10/2022	For SW-846 Method 8260C, 2-propanol (3.6 ug/L) was detected in the equipment blank (2211101345Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
200-I-490	11/9/2022	For SW-846 Method 8260C, 2-propanol (9.5 ug/L) was detected below the reporting limit and silanol, trimethyl- (5.2 ug/L) was tentatively identified by a GC/MS library search in the equipment blank (2211091300Y). No groundwater data are affected by this equipment blank contamination.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 22.8%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for trichloroethene (TCE) was 1.6%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for trichlorofluoromethane (CFC 11) was 24.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350		For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for tetrachloroethene (PCE) was 3.3%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 16.5%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, field duplicate samples 2211041130Y and 2211041131Y the relative percent difference for dichlorofluoromethane (CFC 21) was 0.0%. Upper acceptance limit for relative percent difference is 25%.
B650-INF-1	11/10/2022	For SW-846 Method 8260C, field duplicate samples 2211100830 and 2211100831 the relative percent difference for trichloroethene (TCE) was 3.0%. Upper acceptance limit for relative percent difference is 25%.
PL-12-800	11/10/2022	For SW-846 Method 8260C, field duplicate samples 2211101425C and 2211101426C the relative percent difference for trichloroethene (TCE) was 1.9%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
PL-12-800		For SW-846 Method 8260C, field duplicate samples 2211101425C and 2211101426C the
12 12 000	11/10/2022	relative percent difference for trichlorofluoromethane (CFC 11) was 4.5%. Upper acceptance limit for relative percent difference is 25%.
PL-12-800	11/10/2022	For SW-846 Method 8260C, field duplicate samples 2211101425C and 2211101426C the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 3.0%. Upper acceptance limit for relative percent difference is 25%.
100-D-176	11/14/2022	For SW-846 Method 8260C, field duplicate samples 2211140930A and 2211140932A the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper acceptance limit for relative percent difference is 25%.
100-D-176	11/14/2022	For SW-846 Method 8260C, field duplicate samples 2211140930A and 2211140932A the relative percent difference for trichloroethene (TCE) was 0.0%. Upper acceptance limit for relative percent difference is 25%.
200-I-490	11/9/2022	For SW-846 Method 8260C, one unknown compound (6.5 ug/L) was tentatively identified by a GC/MS library search in sample 2211091400Y.
200-I-795	11/8/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (18 ug/L) and silane, fluorotrimethyl- (28 ug/L) were tentatively identified by a GC/MS library search in sample 2211081520Y.
BLM-26-404	11/7/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (5 ug/L) was tentatively identified by a GC/MS library search in sample 2211071450C.
ST-1-541	11/16/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (7.7 ug/L) and silane, fluorotrimethyl- (5.5 ug/L) were tentatively identified by a GC/MS library search in sample 2211161030A.
PL-12-570	11/10/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (8.6 ug/L) and one unknown compound were tentatively identified by a GC/MS library search in sample 2211100902C.
100-D-176	11/14/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (9.3 ug/L) and silane, fluorotrimethyl- (8 ug/L) were tentatively identified by a GC/MS library search in sample 2211140930A.
NASA 6	11/16/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (9.5 ug/L) and silane, fluorotrimethyl- (7.2 ug/L) were tentatively identified by a GC/MS library search in sample 2211161012B.
PL-12-800	11/10/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (9.5 ug/L), silane, fluorotrimethyl- (6.6 ug/L), and silanol, trimethyl- (5.8 ug/L) were tentatively identified by a GC/MS library search in sample 2211101425C.
200-I-795	11/8/2022	For SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane, methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the method blank for analytical batch 785182. Affected data are appropriately qualified.
BLM-26-404	11/7/2022	For SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane, methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the method blank for analytical batch 785182. Affected data are appropriately qualified.
BW-5-295	11/7/2022	For SW-846 Method 8260C, sulfur dioxide (1.28 ug/L) and silane, methoxytrimethyl- (2.90 ug/L) were tentatively identified by a GC/MS library search in the method blank for analytical batch 785182. No groundwater data are affected by this method blank contamination.
200-I-795	11/8/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is the result of a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-17-493	11/3/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was not performed because the low recovery is due to a standard

BLM-26-404		discrepancy; we are working with the vendor to correct the issue. The analytes affected
BLM-26-404		·
BLM-26-404		are flagged in the LCS Summary. Affected data are appropriately qualified.
	11/7/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is the result of a
		standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-3-182	11/1/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
DL/VI-J-102	11/1/2022	Laboratory Control Sample (LCS) was exceeded for one analyte. There were no
		detections of the analyte in the associated field samples. The discrepancy associated with
		reduced recovery equates to a potential low bias. Additional analysis of the associated
		field samples was not performed because the low recovery is the result of a standard
		discrepancy; we are working with the vendors to correct the issue. The analyte is flagged
		in the LCS Summary. Affected data are appropriately qualified.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is due to a standard
		discrepancy; we are working with the vendor to correct the issue. The analytes affected
DI M 26 250	11/4/2022	are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is the result of a
		standard discrepancy; we are working with the vendors to correct the issue. The analytes
		affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-36-610	11/3/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is due to a standard
		discrepancy; we are working with the vendor to correct the issue. The analytes affected
DI M 26 000	11/4/2022	are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-36-800	11/4/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is due to a standard
		discrepancy; we are working with the vendor to correct the issue. The analytes affected
		are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-36-860	11/3/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
RW_5_205	11/7/2022	
D 11-3-473	11///4044	
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is the result of a
BW-5-295	11/7/2022	associated field samples was not performed because the low recovery is due to a standard discrepancy; we are working with the vendor to correct the issue. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified. For SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
		standard discrepancy; we are working with the vendor to correct the issue. The analytes
		affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-419	11/8/2022	For SW-846 Method 8260C, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was not performed because the low recovery is the result of a
		standard discrepancy; we are working with the vendors to correct the issue. The analytes
100-D-176	11/14/2022	affected are flagged in the LCS Summary. Affected data are appropriately qualified.
100-D-1/6	11/14/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-185	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
200-1-103	11/10/2022	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-300	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-375	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-490	11/9/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-675	11/9/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
200 1 705	11/9/2022	was not significantly affected and no further corrective action was taken.
200-I-795	11/8/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
400-0-143	11/1//2022	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B650-INF-1	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
2000 11 11 1	11/10/2022	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B655-INF-2	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-2-630	11/15/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-26-404	11/7/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-3-182	11/1/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BW-5-295	11/7/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
MPE-1	11/14/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
MPE-10	11/15/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
MPE-11	11/15/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
MPE-9	11/14/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
NASA 6	11/16/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
DI 10 570	11/10/2022	was not significantly affected and no further corrective action was taken.
PL-12-570	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
DI 12 000	11/10/2022	was not significantly affected and no further corrective action was taken.
PL-12-800	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
OT 1 472	11/0/2022	was not significantly affected and no further corrective action was taken.
ST-1-473	11/9/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
ST-1-541	11/16/2022	was not significantly affected and no further corrective action was taken.
51-1-341	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRI in the associated field samples, the quantitation is not affected. The data quality
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
ST 1 620	11/16/2022	was not significantly affected and no further corrective action was taken.
ST-1-630	11/10/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
WW-4-419	11/8/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
200-I-375	11/10/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
200-I-490	11/9/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
200-I-675	11/9/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BLM-3-182	11/1/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BLM-36-350	11/4/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-1-473	11/9/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-419	11/8/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
200-I-185	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-I-300	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-I-375	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
400-C-143	11/17/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
NASA 6		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-12-570	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-12-800	11/10/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-1-541	11/16/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-1-630	11/16/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-I-300		For SW-846 Method 8260C, there were no detections in the equipment blank.
200-I-375		For SW-846 Method 8260C, there were no detections in the equipment blank.
200-I-675		For SW-846 Method 8260C, there were no detections in the equipment blank.
200-I-795		For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-350		For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-610		For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-800		For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-860	11/3/2022	For SW-846 Method 8260C, there were no detections in the equipment blank.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
100-D-176	11/14/2022	For SW-846 Method 8260C, there were no detections in the field blank.
400-C-143	11/17/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	11/10/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2	11/10/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-17-493	11/3/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-2-630	11/15/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-26-404	11/7/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-3-182	11/1/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BW-5-295	11/7/2022	For SW-846 Method 8260C, there were no detections in the field blank.
MPE-1	11/14/2022	For SW-846 Method 8260C, there were no detections in the field blank.
MPE-10	11/15/2022	For SW-846 Method 8260C, there were no detections in the field blank.
MPE-11	11/15/2022	For SW-846 Method 8260C, there were no detections in the field blank.
MPE-9	11/14/2022	For SW-846 Method 8260C, there were no detections in the field blank.
NASA 6	11/16/2022	For SW-846 Method 8260C, there were no detections in the field blank.
PL-12-570	11/10/2022	For SW-846 Method 8260C, there were no detections in the field blank.
PL-12-800	11/10/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-1-473	11/9/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-1-630	11/16/2022	For SW-846 Method 8260C, there were no detections in the field blank.
100-D-176	11/14/2022	For SW-846 Method 8260C, there were no detections in the trip blank.
BLM-2-630	11/15/2022	For SW-846 Method 8260C, there were no detections in the trip blank.
PL-12-570	11/10/2022	For SW-846 Method 8260C, there were no detections in the trip blank.
ST-1-541	11/16/2022	For SW-846 Method 8260C, there were no detections in the trip blank.
200-I-675	11/9/2022	For SW-846 Method 8260C, two unknown compounds were tentatively identified by a GC/MS library search in sample 2211090955Y.

Well ID	<b>Event Date</b>	Modified EPA Method 607 QA Narratives
200-I-300	11/10/2022	For Modified EPA Method 607 in blind control sample (2211101126Y), all recoveries were within standard limits.
NASA 6	11/16/2022	For Modified EPA Method 607, concentrations of NDMA and DMN in sample 2211161013B exceeded calibration range. Sample extract was diluted 10-fold and reanalyzed.
BLM-36-350	11/4/2022	For Modified EPA Method 607, field duplicate samples 2211041132Y and 2211041155Y the relative percent difference for N-nitrosodimethylamine was 4.4%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For Modified EPA Method 607, field duplicate samples 2211041132Y and 2211041155Y the relative percent difference for N-nitrodimethylamine was 5.4%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/4/2022	For Modified EPA Method 607, field duplicate samples 2211041132Y and 2211041155Y the relative percent difference for bromacil was 2.9%. Upper acceptance limit for relative percent difference is 25%.
MPE-9	11/14/2022	For Modified EPA Method 607, field duplicate samples 2211141350 and 2211141351 the relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative percent difference is 25%.
MPE-9	11/14/2022	For Modified EPA Method 607, field duplicate samples 2211141350 and 2211141351 the relative percent difference for N-nitrodimethylamine was 2.3%. Upper acceptance limit for relative percent difference is 25%.
MPE-9	11/14/2022	For Modified EPA Method 607, field duplicate samples 2211141350 and 2211141351 the relative percent difference for N-nitrosodimethylamine was 2.0%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	Modified EPA Method 607 QA Narratives
ST-1-630	11/16/2022	For Modified EPA Method 607, field duplicate samples 2211161532A and 2211161533A the relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
ST-1-630		For Modified EPA Method 607, field duplicate samples 2211161532A and 2211161533A the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-24-565	11/2/2022	For Modified EPA Method 607, matrix spike recoveries for sample 2211021336A for bromacil (16%) were outside laboratory control limits (40-190%). Affected data are appropriately qualified.
200-I-375	11/10/2022	For Modified EPA Method 607, there were no detections in the equipment blank.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
BLM-2-630	11/15/2022	For Low Level Nitrosamine Method in blind control sample (2211151110A), all recoveries were within standard limits.
BLM-32-632	11/7/2022	For Low Level Nitrosamine Method, matrix spike recoveries for samples 2211071605B and 2211071606B were within laboratory control limits.
BLM-24-565	11/2/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.35 ng/L) was detected in the trip blank (2211021251A) below the reporting limit. Affected data are appropriately qualified.
BLM-32-632	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.36 ng/L) was detected in the field blank (2211071607B) below the reporting limit. Affected data are appropriately qualified.
WW-4-848	11/9/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.36 ng/L) was detected in the field blank (2211091421B) below the reporting limit. Affected data are appropriately qualified.
BLM-32-571	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.38 ng/L) was detected in the field blank (2211071453B) below the reporting limit. Affected data are appropriately qualified.
BLM-2-630	11/15/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the field blank (2211151035A) below the reporting limit. Affected data are appropriately qualified.
BLM-8-418	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the field blank (2211011511A) below the reporting limit. Affected data are appropriately qualified.
ST-5-655	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the equipment blank (2211010946Y) below the reporting limit. Affected data are appropriately qualified.
WW-4-419	11/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the field blank (2211081436B) below the reporting limit. Affected data are appropriately qualified.
BLM-24-565	11/2/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in the field blank (2211021338A) below the reporting limit. Affected data are appropriately qualified.
ST-4-589	11/16/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in the trip blank (2211170700C) below the reporting limit. Affected data are appropriately qualified.
BLM-2-630	11/15/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.57 ng/L) was detected in the trip blank (2211150731A). Affected data are appropriately qualified.
BLM-32-543	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in method blank PB22L10CM1. Affected data are appropriately qualified.
BLM-32-571		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in method blank PB22L10CM1. Affected data are appropriately qualified.
BLM-32-632	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in method blank PB22L10CM1. Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
BLM-38-480	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in
		method blank PB22L10CM1. Affected data are appropriately qualified.
BLM-38-620	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in
		method blank PB22L10CM1. Affected data are appropriately qualified.
PL-7-560	11/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in
WW-4-419	11/9/2022	method blank PB22L10CM1. Affected data are appropriately qualified.  For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in
W W-4-419	11/6/2022	method blank PB22L10CM1. Affected data are appropriately qualified.
WW-4-589	11/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.60 ng/L) was detected in
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,0,2022	method blank PB22L10CM1. Affected data are appropriately qualified.
BLM-24-565	11/2/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.65 ng/L) was detected in
		method blank PB22L07CM1. Affected data are appropriately qualified.
BLM-8-418	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.65 ng/L) was detected in
		method blank PB22L07CM1. Affected data are appropriately qualified.
ST-5-485	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.65 ng/L) was detected in
ST E CEE	11/1/2022	method blank PB22L07CM1. Affected data are appropriately qualified.
ST-5-655	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.65 ng/L) was detected in method blank PB22L07CM1. Affected data are appropriately qualified.
BLM-22-570	11/15/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.68 ng/L) was detected in
BEN1-22-370	11/13/2022	the field blank (2211151513A). Affected data are appropriately qualified.
BLM-38-620	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.77 ng/L) was detected in
		the equipment blank (2211071431Y). Affected data are appropriately qualified.
ST-5-485	11/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.79 ng/L) was detected in
		the equipment blank (2211011351Y). Affected data are appropriately qualified.
BLM-32-543	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.92 ng/L) was detected in
DI M 20 400	11/7/2022	the field blank (2211071413B). Affected data are appropriately qualified.
BLM-38-480	11///2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.03 ng/L) was detected in the trip blank (2211070911Y). Affected data are appropriately qualified.
BLM-38-480	11/7/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.46 ng/L) and N-
		nitrodimethylamine (0.39 ng/L) were detected in the equipment blank (2211071001Y)
		below the reporting limit for N-nitrodimethylamine only. Affected data are appropriately
		qualified.
BLM-2-630	11/15/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples
DI 12 570	11/10/2022	2211151033A and 2211151034A were within control limits or below the calculable range.
PL-12-570	11/10/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2211100904C and 2211100905C were within control limits or below the calculable range.
BLM-24-565	11/2/2022	For Low Level Nitrosamine Method, the recovery of N-nitrodimethylamine (134%) in the
BEN 24 303	11/2/2022	laboratory fortified blank (LFB22L07CM1) was outside laboratory control limits (70-130%).
		No groundwater data are affected by this QC issue.
BLM-8-418	11/1/2022	For Low Level Nitrosamine Method, the recovery of N-nitrodimethylamine (134%) in the
		laboratory fortified blank (LFB22L07CM1) was outside laboratory control limits (70-130%).
		No groundwater data are affected by this QC issue.
ST-5-485	11/1/2022	For Low Level Nitrosamine Method, the recovery of N-nitrodimethylamine (134%) in the
		laboratory fortified blank (LFB22L07CM1) was outside laboratory control limits (70-130%). No groundwater data are affected by this QC issue.
ST-5-655	11/1/2022	For Low Level Nitrosamine Method, the recovery of N-nitrodimethylamine (134%) in the
31-3-033	11/1/2022	laboratory fortified blank (LFB22L07CM1) was outside laboratory control limits (70-130%).
		No groundwater data are affected by this QC issue.
B650-EFF-1	11/10/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
B655-EFF-2		For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-12-570		For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-12-570		For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-12-800		For Low Level Nitrosamine Method, there were no detections in the field blank.
1 L-12-000	11/10/2022	Tot Low Level introsamme interior, there were no detections in the field offank.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
PL-7-560	11/8/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-7-560	11/8/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-4-589	11/16/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-4-589	11/8/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-4-848	11/9/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-4-948	11/9/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-4-589		For Low Level Nitrosamine Method, trip blank was collected after sampling event and covers offsite shipping trip only.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
100-D-176	11/14/2022	For SW-846 Method 8270D, 1H-benzotriazole, 4-methyl- (12 ug/L) was tentatively identified by a GC/MS library search in sample 2211140935A.
WW-4-589	11/8/2022	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (110 ug/L), toluene (15 ug/L), benzene, chloro- (5.7 ug/L), and four unknown compounds were tentatively identified by a GC/MS library search in sample 2211081548B.
WW-4-848	11/9/2022	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (21 ug/L) was tentatively identified by a GC/MS library search in sample 2211091518B for analytical batch 410097.
WW-4-419	11/8/2022	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (240 ug/L), 1,3,5-cycloheptatriene (14 ug/L), benzene, chloro- (4.1 ug/L), and four unknown compounds were tentatively identified by a GC/MS library search in sample 2211081520B.
WW-4-948	11/9/2022	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (29 ug/L) was tentatively identified by a GC/MS library search in sample 2211091600B for analytical batch 410097.
WW-4-848	11/9/2022	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (31 ug/L) and two unknown compounds were tentatively identified by a GC/MS library search in sample 2211091518B for analytical batch 410832.
400-C-143	11/17/2022	For SW-846 Method 8270D, diethyl phthalate (2.4 ug/L) was detected below the reporting limit and two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 410324. Affected data are appropriately qualified.
100-D-176	11/14/2022	For SW-846 Method 8270D, methylene chloride (5.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 410241. No groundwater data are affected by this method blank contamination.
WW-4-848	11/9/2022	For SW-846 Method 8270D, one unknown compound (11 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 410832. Affected data are appropriately qualified.
WW-4-948	11/9/2022	For SW-846 Method 8270D, one unknown compound (11 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 410832. No groundwater data are affected by this method blank contamination.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the analysis of one or more samples was initially attempted within holding time but was not useable due to an analytical system or QC failure. Efforts were made to reanalyze the sample(s) as soon as possible after the analytical system was back in control. However, the reanalysis of the sample(s) was performed past the recommended holding time. The results from the reanalysis are reported. The data are qualified to indicate the holding time exceedance.
WW-4-948	11/9/2022	For SW-846 Method 8270D, the analysis of one or more samples was initially attempted within holding time but was not useable due to an analytical system or QC failure. Efforts were made to reanalyze the sample(s) as soon as possible after the analytical system was back in control. However, the reanalysis of the sample(s) was performed past the recommended holding time. The results from the reanalysis are reported. The data are qualified to indicate the holding time exceedance.
WW-4-419	11/8/2022	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for the associated field samples. The data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
WW-4-589	11/8/2022	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for the associated field samples. The data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in the sample(s). Since the exceedance may indicate a potential bias in the analytical batch, all associated field samples were re-extracted and reanalyzed.
WW-4-948	11/9/2022	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in the sample(s). Since the exceedance may indicate a potential bias in the analytical batch, all associated field samples were re-extracted and reanalyzed.
100-D-176	11/14/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples could not be performed because insufficient sample remained for testing. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-3-182	11/1/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Duplicate Laboratory Control Sample (LCSD) was exceeded for one or more analyte. The Laboratory Control Sample (LCS) passed limits. There were no detections of the analyte(s) in the associated field samples. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-948	11/9/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Duplicate Laboratory Control Sample (LCSD) was exceeded for one or more analyte. The Laboratory Control Sample (LCS) passed limits. There were no detections of the analyte(s) in the associated field samples. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-4-948	11/9/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
100-D-176	11/14/2022	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
BLM-3-182		For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-D-176	11/14/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
400-C-143	11/17/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-419	11/8/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-589	11/8/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-848	11/9/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
WW-4-948	11/9/2022	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
100-D-176	11/14/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/1/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
WW-4-419		For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-4-589	11/8/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-4-948	11/9/2022	For SW-846 Method 8270D, three unknown compounds were tentatively identified by a GC/MS library search in sample 2211091600B for analytical batch 410832.
400-C-143	11/17/2022	For SW-846 Method 8270D, three unknown compounds were tentatively identified by a GC/MS library search in sample 2211170923C.

Well ID	<b>Event Date</b>	Total Metals QA Narratives
200-I-300		For Total Metals, blind control sample (2211101127Y) was prepared at a concentration below the reporting limits for boron and iron. The results for these metals are not qualified based on this control.
200-I-300		For Total Metals, calcium (0.3 mg/L), magnesium (0.1 mg/L), and strontium (0.04 mg/L) were detected in the equipment blank (2211100936Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
200-I-490	11/9/2022	For Total Metals, calcium (0.7 mg/L), magnesium (0.2 mg/L), and strontium (0.08 mg/L) were detected in the equipment blank (2211091301Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
NASA 6	11/16/2022	For Total Metals, cobalt (0.0009 mg/L) was detected in the field blank (2211161011B) below the reporting limit. No groundwater data are affected by this field blank contamination.
BLM-3-182		For Total Metals, cobalt (0.001 mg/L) was detected in the method blank for analytical batch 409623 below the reporting limit. Affected data are appropriately qualified.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for strontium was 1.3%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for sodium was 1.2%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for magnesium was 1.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for chromium was 1.9%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for calcium was 0.9%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for iron was 1.9%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-493	11/3/2022	For Total Metals, field duplicate samples 2211030933A and 2211030934A the relative percent difference for nickel was 0.9%. Upper acceptance limit for relative percent difference is 25%.
ST-1-541	11/16/2022	For Total Metals, field duplicate samples 2211161033A and 2211161034A the relative percent difference for strontium was 0.4%. Upper acceptance limit for relative percent difference is 25%.
ST-1-541	11/16/2022	For Total Metals, field duplicate samples 2211161033A and 2211161034A the relative percent difference for sodium was 0.3%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	Total Metals QA Narratives
ST-1-541	11/16/2022	For Total Metals, field duplicate samples 2211161033A and 2211161034A the relative percent difference for magnesium was 0.4%. Upper acceptance limit for relative percent difference is 25%.
ST-1-541	11/16/2022	For Total Metals, field duplicate samples 2211161033A and 2211161034A the relative percent difference for calcium was 0.8%. Upper acceptance limit for relative percent difference is 25%.
400-C-143	11/17/2022	For Total Metals, iron (0.08 mg/L) was detected in the method blank for analytical batch 410340 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-2-630	11/15/2022	For Total Metals, iron (0.08 mg/L) was detected in the method blank for analytical batch 410340 below the reporting limit. Affected data are appropriately qualified.
NASA 6	11/16/2022	For Total Metals, iron (0.08 mg/L) was detected in the method blank for analytical batch 410340 below the reporting limit. Affected data are appropriately qualified.
ST-1-541	11/16/2022	For Total Metals, iron (0.08 mg/L) was detected in the method blank for analytical batch 410340 below the reporting limit. Affected data are appropriately qualified.
200-I-300	11/10/2022	For Total Metals, iron (0.12 mg/L) was detected in the method blank for analytical batch 410464 below the reporting limit. Affected data are appropriately qualified.
200-I-375	11/10/2022	For Total Metals, iron (0.12 mg/L) was detected in the method blank for analytical batch 410464 below the reporting limit. Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	Miscellaneous QA Narratives
400-C-143	11/17/2022	For SW-846 Method 8081B, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV) on one detector. All recoveries were acceptable on the secondary detector. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8081B, the RPD between the LCS and the LCSD was greater than the RPD limit. The percent recovery limit was met for both the LCS and the LCSD. No groundwater data are qualified based on this RPD exceedance.
400-C-143	11/17/2022	For SW-846 Method 8081B, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/1/2022	For SW-846 Method 8081B, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8082A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2022	For SW-846 Method 8151A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/1/2022	For SW-846 Method 8290A, due to high detection of 2,3,7,8-TCDD (41.2 pg/L) in sample 2211010939A, resampling was conducted 12/15/2022. The 12/15/2022 sample was lost due to an error at the analytical laboratory and final resampling was conducted 1/24/2023.

Well ID	<b>Event Date</b>	Miscellaneous QA Narratives
400-C-143	11/17/2022	For SW-846 Method 8290A, OCDD (0.811 pg/L), 1,2,3,4,6,7,8-HpCDD (0.235 pg/L), and total hepta-dioxins (0.235 pg/L) were detected in the method blank WBLANK_22NOV22
BLM-3-182	11/1/2022	below the reporting limit. Affected data are appropriately qualified.  For SW-846 Method 8290A, OCDD (1.86 pg/L) was detected in the method blank  WBLANK 08NOV22 below the reporting limit. Affected data are appropriately qualified.
BLM-3-182	11/1/2022	For SW-846 Method 9012, for sample 2211010943A the pH was <9 when tested immediately prior to testing, indicating that chemical preservation was not added or was inadequate to meet the preservation requirement. Affected data are appropriately qualified.

**Table 8 – WSTF Blank Sample Detections** 

Table 8 – WS1F Blank Sample Detections									
Well ID	<b>Event Date</b>	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
ST-1-541	11/16/2022	Carboy G1	8260	VOA-FB	67-63-0	2-Propanol	16	ug/L	J FB
BLM-38-480	11/7/2022	Carboy G3	8260_LL	VOA-TB	1825-61-2	Silane, methoxytrimethyl-	12	ug/L	TIC RB TB
BLM-38-480	11/7/2022	Carboy G3	8260_LL	VOA-TB	67-63-0	2-Propanol	11	ug/L	J TB
200-I-490	11/9/2022	Carboy G3	8260	VOA-EB	67-63-0	2-Propanol	9.5	ug/L	J EB
ST-1-541	11/16/2022	Carboy G1	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	7.1	ug/L	TIC FB
BLM-38-480	11/7/2022	Carboy G3	8260_LL	VOA-TB	1066-40-6	Silanol, trimethyl-	5.3	ug/L	TIC TB
200-I-490	11/9/2022	Carboy G3	8260	VOA-EB	1066-40-6	Silanol, trimethyl-	5.2	ug/L	TIC EB
200-I-185	11/10/2022	Carboy G1	8260	VOA-EB	67-63-0	2-Propanol	3.6	ug/L	J EB
BLM-38-480	11/7/2022	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	1.46	ng/L	RB TB EB
BLM-38-480	11/7/2022	Carboy G3	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	1.03	ng/L	RB TB EB
BLM-32-543	11/7/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.92	ng/L	RB FB
ST-5-485	11/1/2022	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.79	ng/L	RB EB
BLM-38-620	11/7/2022	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.77	ng/L	RB EB
200-I-490	11/9/2022	Carboy G3	METALS	METALS-EB	7440-70-2	Calcium, Total	0.7	mg/L	J EB
BLM-22-570	11/15/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.68	ng/L	FB
BLM-2-630	11/15/2022	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.57	ng/L	TB FB
ST-4-589	11/16/2022		NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.47	ng/L	J TB
BLM-24-565	11/2/2022	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.47	ng/L	J RB TB FB
BLM-8-418	11/1/2022	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J RB FB
ST-5-655	11/1/2022	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J RB EB
WW-4-419	11/8/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J RB FB
BLM-2-630	11/15/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.39	ng/L	J TB FB
BLM-38-480	11/7/2022	Carboy G3	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.39	ng/L	J EB
BLM-32-571	11/7/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.38	ng/L	J RB FB
WW-4-848	11/9/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.36	ng/L	J FB
BLM-32-632	11/7/2022	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.36	ng/L	J RB FB
BLM-24-565	11/2/2022	Carboy G3	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.35	ng/L	J RB TB FB
200-I-300	11/10/2022	Carboy G1	METALS	METALS-EB	7440-70-2	Calcium, Total	0.3	mg/L	J EB
200-I-490	11/9/2022	Carboy G3	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.2	mg/L	J EB
200-I-300	11/10/2022	Carboy G1	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.1	mg/L	J EB
200-I-490	11/9/2022	Carboy G3	METALS	METALS-EB	7440-24-6	Strontium, Total	0.08	mg/L	J EB
200-I-300	11/10/2022	Carboy G1	METALS	METALS-EB	7440-24-6	Strontium, Total	0.04	mg/L	J EB
NASA 6	11/16/2022	Carboy G3	METALS	METALS-FB	7440-48-4	Cobalt, Total	0.0009	mg/L	J FB



# Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

December 2022

NM8800019434

Report Submitted: April 10, 2023

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

#### 1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in December 2022.
- The quantity and type of quality control samples collected or prepared in December 2022.
- Quality control sample percentages in annual period immediately preceding and during December 2022.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

### 2.0 Data Quality

#### 2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

#### 2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the December 2022 QAR.

#### 3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in December 2022. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for December 2022

I those I	oumpie z ven	to for Decemb	1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1							
Well ID	<b>Event Date</b>		Well ID	<b>Event Date</b>						
200-G-420	12/1/2022		200-G-340	12/5/2022						
200-G-495	12/1/2022		BLM-7-509	12/5/2022						
ST-4-481	12/1/2022		PL-11-470	12/5/2022						
ST-4-690	12/1/2022		PL-11-530	12/5/2022						
200-G-220	12/5/2022		WW-1-452	12/5/2022						

Well ID	<b>Event Date</b>
PL-11-710	12/6/2022
PL-11-820	12/6/2022
PL-11-980	12/6/2022
WW-2-489	12/6/2022
WW-2-664	12/6/2022

Well ID	<b>Event Date</b>
200-G-175	12/7/2022
ST-3-486	12/7/2022
ST-6-528	12/7/2022
ST-6-568	12/7/2022
B655-EFF-2	12/8/2022
B655-INF-2	12/8/2022
ST-3-666	12/8/2022
ST-3-735	12/8/2022
ST-6-678	12/8/2022

Well ID	<b>Event Date</b>
ST-6-824	12/8/2022
ST-6-970	12/8/2022
B650-EFF-1	12/9/2022
B650-INF-1	12/9/2022
BLM-27-270	12/12/2022
PL-2-504	12/12/2022
PL-4-464	12/12/2022
WW-3-569	12/12/2022
700-B-510	12/13/2022

Well ID	<b>Event Date</b>
BLM-42-569	12/13/2022
BLM-42-709	12/13/2022
BW-7-211	12/13/2022
WW-3-469	12/13/2022
PL-8-455	12/14/2022
PL-8-605	12/14/2022
ST-3-586	12/15/2022

**Table 2 – Quantity of Quality Control Samples** 

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	3	0	0	0	0	0	0
Nitrosamines by EPA Method 607	17	0	0	0	1	2	0
Perchlorate by SW-846 Method 6850	3	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	16	11	5	1	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	24	20	4	6	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	8	1	0	0	0	1	1
Anions by Various EPA Methods	3	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	8	1	1	0	1	1	0
Nitrosamines by Low-Level Method	25	21	4	8	1	3	1
Total Dissolved Solids by Standard Method 2540C	3	0	0	0	0	0	0

**Table 3 – Quality Control Sample Percentages** 

Quality Control Requirement	Requirement %	Samp. Qty. since 1/1/2022	QC Qty. since 1/1/2022	QC % since 1/1/2022	Sample Quantity December 2022	QC Quantity December 2022	QC % December 2022
VOA Duplicates	10	527	55	10	40	4	10
VOA Matrix Spikes	2	527	12	2	40	1	2
607 Duplicates	10	302	31	10	17	2	12
607 Matrix Spikes	2	302	9	3	17	0	0
607 Equipment Blanks	2	302	9	3	17	0	0
607 Field Blanks	2	302	8	3	17	0	0
NDMA_LL Duplicates	10	320	35	11	25	3	12
NDMA_LL Matrix Spikes	2	320	11	3	25	1	4
Metals Duplicates	10	212	24	11	8	1	12
Metals Matrix Spikes	2	212	7	3	8	0	0
Metals Equipment Blanks	5	212	11	5	8	1	12
Metals Field Blanks	5	212	11	5	8	1	12

Quality Control Requirement	Requirement %	Sample Events since 1/1/2022	QC Qty. since 1/1/2022	QC % since 1/1/2022	Sample Events December 2022	QC Quantity December 2022	QC % December 2022
VOA Equipment Blanks and Field Blanks	Should approach 100%	527	527	100%	40	40	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	318	318	100%	25	25	100%

Quality Control Requirement	Requirement %	Shipments since 1/1/2022	TB Qty. since 1/1/2022	TB % since 1/1/2022	Shipments in December 2022	TB Quantity December 2022	QC % December 2022
VOA Trip Blank (per shipment)	Should approach 100%	105	105	100%	7	7	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	103	103	100%	8	8	100%

**Table 4 – Definitions of Data Qualifiers** 

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	3	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	57	0	0	0	1	0	0	0
Perchlorate by SW-846 Method 6850	3	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1307	0	0	0	8	2	0	0

Method		"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Low Level Volatile Organics by SW-846 Method 8260C	1634	0	0	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	11	2	0	0	0	0	0	0
Anions by Various EPA Methods	12	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	243	0	1	0	0	0	0	0
Nitrosamines by Low-Level Method	56	8	5	1	2	0	0	0
Total Dissolved Solids by Standard Method 2540C	3	0	0	0	0	0	0	0

Table 6 – Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method		11*11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	Records 3	0	0	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	57	0	0	0	0	0	0	0	0	2
Perchlorate by SW-846 Method 6850	3	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1307	0	0	0	0	0	2	0	0	10
Low Level Volatile Organics by SW-846 Method 8260C	1634	0	0	0	0	0	65	0	0	6
Semi-Volatile Organics by SW-846 Method 8270D	11	0	0	0	0	0	2	0	0	1
Anions by Various EPA Methods	12	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	243	0	0	0	0	2	0	0	0	50
Nitrosamines by Low-Level Method	56	0	0	0	0	9	0	0	0	11
Total Dissolved Solids by Standard Method 2540C	3	0	0	0	0	0	0	0	0	0

**Table 7 – Quality Assurance Narratives** 

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
ST-4-690	12/1/2022	For Low Level SW-846 Method 8260C, 2-butanone (MEK) (0.91 ug/L) was detected in the field blank (2212011411A) below the reporting limit. No groundwater data are affected by this field blank contamination.
ST-6-678	12/8/2022	For Low Level SW-846 Method 8260C, for sample 2212081430B the analysis was initially performed within the recommended holding time. Reanalysis due to surrogate failure was required. The reanalysis was performed past the recommended holding time. Both sets of data are reported. Affected data are appropriately qualified.
BLM-42-709	12/13/2022	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2212131442A were within laboratory control limits.
WW-3-469	12/13/2022	For Low Level SW-846 Method 8260C, silane, fluorotrimethyl- (7.1 ug/L) was tentatively identified by a GC/MS library search in sample 2212131320Y.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, silane, fluorotrimethyl- (7.7 ug/L) was tentatively identified by a GC/MS library search in sample 2212011025A.
PL-11-980	12/6/2022	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (8 ug/L) was tentatively identified by a GC/MS library search in sample 2212061436B.
ST-6-824	12/8/2022	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (9.3 ug/L) was tentatively identified by a GC/MS library search in sample 2212081448B.
WW-2-664	12/6/2022	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (9.5 ug/L) and one unknown compound (11 ug/L) were tentatively identified by a GC/MS library search in sample 2212061535C.
PL-11-470	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (5.3 ug/L) and silane, methoxytrimethyl- (6.1 ug/L) were tentatively identified by a GC/MS library search in the field blank (2212051411B). Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
WW-1-452		For Low Level SW-846 Method 8260C, sulfur dioxide (5.3 ug/L) was tentatively identified by a GC/MS library search in the field blank (2212051531C). No groundwater data are affected by
		this field blank contamination.
PL-11-470	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (5.8 ug/L) was tentatively identified
DI 1	10/5/0000	by a GC/MS library search in sample 2212051410B.
BLM-7-509		For Low Level SW-846 Method 8260C, sulfur dioxide (6.6 ug/L) was tentatively identified by a GC/MS library search in sample 2212050925C.
BLM-7-509	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 787845. Affected data are appropriately qualified.
PL-11-470	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 787845. Affected data are appropriately qualified.
PL-11-530	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.4 ug/L) was tentatively identified by
		a GC/MS library search in the method blank for analytical batch 787845. No groundwater data are affected by this method blank contamination.
WW-1-452	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.4 ug/L) was tentatively identified by
W W 1 132	12/3/2022	a GC/MS library search in the method blank for analytical batch 787845. No groundwater data are affected by this method blank contamination.
BLM-7-509	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.7 ug/L) and silane,
		methoxytrimethyl- (5.2 ug/L) were tentatively identified by a GC/MS library search in the
		field blank (2212050926C). Affected data are appropriately qualified.
BLM-7-509	12/5/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (8.2 ug/L) was tentatively identified
		by a GC/MS library search in the trip blank (2212050700C). Affected data are
2022	10/0/000	appropriately qualified.
B650-EFF-1	12/9/2022	For Low Level SW-846 Method 8260C, the control limits were exceeded for one or more
		surrogates. A reanalysis was not performed because of holding time constraints and the samples had no positive detections. No further corrective action was possible. Affected surrogate results
		are appropriately qualified.
ST-6-824	12/8/2022	For Low Level SW-846 Method 8260C, the control limits were exceeded for one or more
		surrogates in field blank 2212081449B. A reanalysis was not performed because of holding
		time constraints and the samples had no positive detections. No further corrective action was
		possible. No groundwater data are affected by this control limit exceedance.
ST-6-970	12/8/2022	For Low Level SW-846 Method 8260C, the control limits were exceeded for one or more
		surrogates. A reanalysis was not performed because of holding time constraints and the samples
		had no positive detections. No further corrective action was possible. Affected surrogate results are appropriately qualified.
BLM-7-509	12/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
BEIVI ( 30)	12/3/2022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-11-470	12/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
PL-11-530	12/5/2022	The data quality was not significantly affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
FL-11-330	12/3/2022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
S	40/1/22:	The data quality was not significantly affected and no further corrective action was taken.
ST-4-690	12/1/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-6-678	12/8/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
WW-1-452	12/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-42-569	12/13/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.
BLM-42-709	12/13/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
DI 0 455	10/14/2022	corrective action was appropriate.
PL-8-455	12/14/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-8-605	12/14/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
FL-6-003	12/14/2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
2101	12/1/2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.
ST-4-690	12/1/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.
ST-6-678	12/8/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.
WW-3-469	12/13/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
WWW 2 7 6 2	10/10/2022	corrective action was appropriate.
WW-3-569	12/12/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data are not significantly affected. No further
		corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
B650-EFF-1		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	12/8/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-42-569		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-42-709		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-8-455	12/14/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-8-605	12/14/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-4-690	12/1/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-678		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-824		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-970	12/8/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
WW-3-469		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-3-569	12/12/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	12/9/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-42-569	12/13/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-42-709	12/13/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-530	12/5/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-710	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-820	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-980	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-8-455	12/14/2022	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-8-605	12/14/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-8-605	12/14/2022	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-481	12/1/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-528	12/7/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-6-528	12/7/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-568	12/7/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-678	12/8/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-6-678	12/8/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-824	12/8/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-970	12/8/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-489	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-489	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
WW-2-664	12/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-3-469	12/13/2022	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WW-3-569	12/12/2022	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-6-678	12/8/2022	For Low Level SW-946 Method 8260C, for trip blank 2212080700B the control limits were exceeded for one or more surrogates. A reanalysis was not performed because of holding time constraints and the samples had no positive detections. No further corrective action was possible.
BLM-27-270	12/12/2022	For SW-846 Method 8260C in blind control sample (2212121030C), the percent recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (196%), trichloroethene (198%), tetrachloroethene (192%), and trichlorofluoromethane (220%) were outside of the standard limits (75-125%). Additionally, 1,1-dichloroethene (0.3 ug/L) was detected below the reporting limit but none was added. Affected data are appropriately qualified.
200-G-175	12/7/2022	For SW-846 Method 8260C, field duplicate samples 2212071349Y and 2212071352Y the relative percent difference for trichlorofluoromethane (CFC 11) was 27.2%. This value is outside the upper acceptance limit for relative percent difference of 25%.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, field duplicate samples 2212081025 and 2212081026 the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
B655-INF-2		For SW-846 Method 8260C, field duplicate samples 2212081025 and 2212081026 the relative
		percent difference for tetrachloroethene (PCE) was 3.4%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, field duplicate samples 2212081025 and 2212081026 the relative
		percent difference for trichlorofluoromethane (CFC 11) was 8.7%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, field duplicate samples 2212081025 and 2212081026 the relative percent difference for trichloroethene (TCE) was 5.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, field duplicate samples 2212120935C and 2212120936C the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 11.1%. Upper acceptance limit for relative percent difference is 25%.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, field duplicate samples 2212120935C and 2212120936C the relative percent difference for trichlorofluoromethane (CFC 11) was 4.9%. Upper acceptance limit for relative percent difference is 25%.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, field duplicate samples 2212120935C and 2212120936C the relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 3.9%. Upper acceptance limit for relative percent difference is 25%.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, field duplicate samples 2212120935C and 2212120936C the relative percent difference for dichlorofluoromethane (CFC 21) was 6.3%. Upper acceptance limit for relative percent difference is 25%.
ST-3-586	12/15/2022	For SW-846 Method 8260C, field duplicate samples 2212151008C and 2212151009C the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper acceptance limit for relative percent difference is 25%.
ST-3-586	12/15/2022	For SW-846 Method 8260C, field duplicate samples 2212151008C and 2212151009C the relative percent difference for trichlorofluoromethane (CFC 11) was 4.5%. Upper acceptance limit for relative percent difference is 25%.
ST-3-586	12/15/2022	For SW-846 Method 8260C, field duplicate samples 2212151008C and 2212151009C the relative percent difference for trichloroethene (TCE) was 8.7%. Upper acceptance limit for relative percent difference is 25%.
200-G-175	12/7/2022	For SW-846 Method 8260C, silane, fluorotrimethyl- (13 ug/L) and silane, methoxytrimethyl- (14 ug/L) were tentatively identified by a GC/MS library search in sample 2212071349Y.
BW-7-211	12/13/2022	For SW-846 Method 8260C, silane, fluorotrimethyl- (5.4 ug/L) was tentatively identified by a GC/MS library search in sample 2212130826C.
200-G-340	12/5/2022	For SW-846 Method 8260C, silane, fluorotrimethyl- (7.3 ug/L) was tentatively identified by a GC/MS library search in sample 2212051304Y.
PL-4-464	12/12/2022	For SW-846 Method 8260C, silane, fluorotrimethyl- (7.5 ug/L) was tentatively identified by a GC/MS library search in sample 2212120925B.
200-G-420	12/1/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (5.2 ug/L) was tentatively identified by a GC/MS library search in the equipment blank (2212011400Y). No groundwater data are affected by this equipment blank contamination.
200-G-495	12/1/2022	For SW-846 Method 8260C, sulfur dioxide (6 ug/L) was tentatively identified by a GC/MS library search in the equipment blank (2212010940Y). No groundwater data are affected by this equipment blank contamination.
200-G-495		For SW-846 Method 8260C, sulfur dioxide (7.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 787845. No groundwater data are affected by this method blank contamination.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, the analysis was initially performed within the recommended holding time. Reanalysis at a dilution was required. The reanalysis was performed past the recommended holding time. Affected data are appropriately qualified.
200-G-220	12/5/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
200-G-340		For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
200-G-495	12/1/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
700-B-510	12/13/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	12/9/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BW-7-211	12/13/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-2-504	12/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-4-464	12/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-3-666	12/8/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-3-735	12/8/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
700-B-510	12/13/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
B650-INF-1	12/9/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
B655-INF-2		For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was
BLM-27-270	12/12/2022	appropriate.  For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BW-7-211	12/13/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-2-504	12/12/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-4-464	12/12/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-3-586	12/15/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-3-666	12/8/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-3-735	12/8/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
B650-INF-1	12/9/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
ST-3-586		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-3-666	12/8/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-3-735	12/8/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-G-175	12/7/2022	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-G-220	12/5/2022	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-G-340	12/5/2022	For SW-846 Method 8260C, there were no detections in the equipment blank.
700-B-510	12/13/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	12/9/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2	12/8/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2	12/8/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-27-270	12/12/2022	For SW-846 Method 8260C, there were no detections in the field blank.
BW-7-211	12/13/2022	For SW-846 Method 8260C, there were no detections in the field blank.
PL-2-504	12/12/2022	For SW-846 Method 8260C, there were no detections in the field blank.
PL-4-464	12/12/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-486	12/7/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-586	12/15/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-666	12/8/2022	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-735	12/8/2022	For SW-846 Method 8260C, there were no detections in the field blank.
PL-4-464	12/12/2022	For SW-846 Method 8260C, there were no detections in the trip blank.
PL-2-504	12/12/2022	For SW-846 Method 8260C, two unknown compounds were tentatively identified by a GC/MS library search in sample 2212121410A.

Well ID	<b>Event Date</b>	Modified EPA Method 607 QA Narratives
BLM-27-270	12/12/2022	For Modified EPA Method 607 in blind control sample (2212121031C), the percent recovery for N-nitrosodimethylamine (0%) was outside of the standard limits (13-109%). Affected data are appropriately qualified.
ST-3-666	12/8/2022	For Modified EPA Method 607, field duplicate samples 2212081002C and 2212081003C the relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	12/8/2022	For Modified EPA Method 607, field duplicate samples 2212081028 and 2212081029 the relative percent difference for bromacil was 2.9%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	12/8/2022	For Modified EPA Method 607, field duplicate samples 2212081028 and 2212081029 the relative percent difference for N-nitrodimethylamine was 2.0%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	12/8/2022	For Modified EPA Method 607, field duplicate samples 2212081028 and 2212081029 the relative percent difference for N-nitrosodimethylamine was 3.1%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
ST-6-568		For Low Level Nitrosamine Method in blind control sample (2212071530B), the percent
		recovery for N-nitrosodimethylamine (199.6%) was outside of the standard limits (70.0-
		130.0%). Additionally, N-nitrodimethylamine (1.34 ng/L) was detected but none was
		added. Affected data are appropriately qualified.
PL-8-605	12/14/2022	For Low Level Nitrosamine Method, due to a chain of custody error results are reported for
		equipment blank 2212141045Y. The correct sample number is 2212141046Y.
WW-2-489	12/6/2022	For Low Level Nitrosamine Method, for field blank 2212060953C the recovery of the internal standard NDMA-d6 (4.65%) was outside laboratory control limits (10-100%). The sample could not be re-extracted due to lack of reserve. The signal to noise ratio for these samples were well above the minimum of 3 (the lowest signal was > 890) allowing for detection of native NDMA above the MDL. No additional corrective action was required.
PL-4-464	12/12/2022	For Low Level Nitrosamine Method, matrix spike recoveries for sample 2212120928B and 2212120929B were within laboratory control limits.
PL-4-464	12/12/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.38 ng/L) was detected in the trip blank (2212120731B) below the reporting limit. Affected data are appropriately qualified.
WW-1-452	12/5/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.38 ng/L) was detected in the field blank (2212051533C) below the reporting limit. Affected data are appropriately qualified.
PL-11-470	12/5/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.44 ng/L) was detected in the field blank (2212051413B) below the reporting limit. Affected data are appropriately qualified.
PL-4-464	12/12/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.44 ng/L) was detected in the field blank (2212120930B) below the reporting limit. Affected data are appropriately qualified.
ST-4-690	12/1/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the field blank (2212011413A) below the reporting limit. No groundwater data are affected by this field blank contamination.
ST-6-678	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the field blank (2212081536B) below the reporting limit. Affected data are appropriately qualified.
B650-EFF-1	12/9/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
B655-EFF-2	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
PL-4-464		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
ST-6-678	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
ST-6-824	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
ST-6-970	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
WW-3-569		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in method blank PB22M15HE1 below the reporting limit. Affected data are appropriately qualified.
PL-8-455	12/14/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.5 ng/L) was detected in the equipment blank (2212141454Y). Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
WW-3-469	12/13/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.53 ng/L) was detected in
		the equipment blank (2212131046Y). Affected data are appropriately qualified.
B650-EFF-1	12/9/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.62 ng/L) was detected in the field blank (2212090539). Affected data are appropriately qualified.
ST-6-970	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.66 ng/L) was detected in
31-0-770	12/0/2022	the field blank (2212081513B). Affected data are appropriately qualified.
ST-6-824	12/8/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.82 ng/L) was detected in
		the field blank (2212081451B). Affected data are appropriately qualified.
WW-3-569	12/12/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.82 ng/L) was detected in the equipment blank (2212120931Y). Affected data are appropriately qualified.
PL-8-605	12/14/2022	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.02 ng/L) was detected in
1 L-6-003	12/14/2022	the equipment blank (2212141046Y). Affected data are appropriately qualified.
PL-11-710	12/6/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples
		2212061403B and 2212061404B were within control limits or below the calculable range.
ST-6-678	12/8/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples
NUL 2 560	10/10/2022	2212081432B and 2212081535B were within control limits or below the calculable range.
WW-3-569	12/12/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2212121316Y and 2212121317Y were within control limits or below the calculable range.
B655-EFF-2	12/8/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-42-569		For Low Level Nitrosamine Method, there were no detections in the trip blank.
BLM-42-569		For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-42-709		For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-7-509		For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-7-509	12/5/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-11-530	12/5/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-710	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-820	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-980	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-8-605	12/14/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-4-481	12/1/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-4-481	12/1/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-6-528	12/7/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-6-528	12/7/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-568	12/7/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-678	12/8/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-2-489	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-2-489	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-2-664	12/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
PL-11-530	12/5/2022	For SW-846 Method 8270D, 1,4-dioxane (2.1 ug/L) was detected in the field blank (2212051435B). Affected data are appropriately qualified.
ST-6-678	12/8/2022	For SW-846 Method 8270D, field duplicate samples 2212081537B and 2212081538B the relative percent difference for 1,4-dioxane was 9.5%. Upper acceptance limit for relative percent difference is 25%.
PL-8-605	12/14/2022	For SW-846 Method 8270D, matrix spike recoveries for sample 2212141408Y were within laboratory control limits.
PL-8-605	12/14/2022	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates due to suspected matrix interferences. Affected surrogate results are appropriately qualified.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
PL-11-530		For SW-846 Method 8270D, the extraction of sample 2212051434B was initially performed within holding time, but was re-extracted due to a QC failure. Efforts were made to re-extract the samples as soon as possible. The re-extraction was performed past the recommended holding time. The data are flagged to indicate the holding time exceedance.
PL-8-605		For SW-846 Method 8270D, the extraction of sample 2212141407Y was initially performed within holding time, but was re-extracted due to a QC failure. Efforts were made to re-extract the samples as soon as possible. The re-extraction was performed past the recommended holding time. The data are flagged to indicate the holding time exceedance.

Well ID	<b>Event Date</b>	Total Metals QA Narratives
BLM-27-270	12/12/2022	For Total Metals, blind control sample (2212121032C) was prepared at a concentration below
		the reporting limits for iron. The results for these metals are not qualified based on this control.
700-B-510	12/13/2022	For Total Metals, field duplicate samples 2212131547C and 2212131548C the relative percent
		difference for sodium was 0.5%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/13/2022	For Total Metals, field duplicate samples 2212131547C and 2212131548C the relative percent difference for calcium was 0.9%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/13/2022	For Total Metals, field duplicate samples 2212131547C and 2212131548C the relative percent difference for strontium was 1.1%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/13/2022	For Total Metals, field duplicate samples 2212131547C and 2212131548C the relative percent difference for magnesium was 0.0%. Upper acceptance limit for relative percent difference is 25%.
200-G-220	12/5/2022	For Total Metals, magnesium (0.07 mg/L), sodium (0.3 mg/L), strontium (0.02 mg/L), and vanadium (0.0007 mg/L) were detected in the equipment blank (2212051435Y) below the reporting limit. Affected data are appropriately qualified.
200-G-420	12/1/2022	For Total Metals, sodium (0.3 mg/L) and vanadium (0.001 mg/L) were detected in the method
		blank for analytical batch 411237 below the reporting limit. No groundwater data are affected
		by this method blank contamination.
200-G-495	12/1/2022	For Total Metals, sodium (0.3 mg/L) and vanadium (0.001 mg/L) were detected in the method blank for analytical batch 411237 below the reporting limit. No groundwater data are affected by this method blank contamination.
200-G-340	12/5/2022	For Total Metals, sodium (0.3 mg/L) was detected in the field blank (2212051342Y) below the
200-G-340	12/3/2022	reporting limit. No groundwater data are affected by this field blank contamination.
200-G-220	12/5/2022	For Total Metals, sodium (0.3 mg/L), and vanadium (0.001 mg/L) were detected in the method blank for analytical batch 411237 below the reporting limit. Affected data are appropriately qualified.
200-G-340	12/5/2022	For Total Metals, sodium (0.3 mg/L), and vanadium (0.001 mg/L) were detected in the method blank for analytical batch 411237 below the reporting limit. Affected data are appropriately qualified.
200-G-220	12/5/2022	For Total Metals, the Contract Required Detection Limit Standard (CRDL) recovery was above the required limit for sodium. The CRDL concentration was less than ten times the concentration in the associated samples or less than the Method Reporting Limit (MRL). Contamination is deemed insignificant relative to the reported samples and the data are reported with no further corrective action required.
200-G-340	12/5/2022	For Total Metals, the Contract Required Detection Limit Standard (CRDL) recovery was above the required limit for sodium. The CRDL concentration was less than ten times the concentration in the associated samples or less than the Method Reporting Limit (MRL). Contamination is deemed insignificant relative to the reported samples and the data are reported with no further corrective action required.

Table 8 – WSTF Blank Sample Detections

1 able o	Table 8 – WSTF Blank Sample Detections											
Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag			
BLM-7-509	12/5/2022	Carboy G2	8260_LL	VOA-TB	7446-09-5	Sulfur Dioxide	8.2	ug/L	TIC RB TB FB			
BLM-7-509	12/5/2022	Carboy G2	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	7.7	ug/L	TIC RB TB FB			
PL-11-470	12/5/2022	Carboy G5	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	6.1	ug/L	TIC FB			
200-G-495	12/1/2022	Carboy G1	8260	VOA-EB	7446-09-5	Sulfur Dioxide	6	ug/L	TIC RB EB			
WW-1-452	12/5/2022	Carboy G2	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	5.3	ug/L	TIC RB FB			
PL-11-470	12/5/2022	Carboy G5	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	5.3	ug/L	TIC RB FB			
200-G-420	12/1/2022	Carboy G1	8260	VOA-EB	1825-61-2	Silane, methoxytrimethyl-	5.2	ug/L	TIC EB			
BLM-7-509	12/5/2022	Carboy G2	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	5.2	ug/L	TIC FB			
PL-11-530	12/5/2022	Carboy G5	8270	SVOA_SIM-FB	123-91-1	1,4-Dioxane	2.1	ug/L	FB			
PL-8-605	12/14/2022	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	2.02	ng/L	EB			
ST-6-824	12/8/2022	Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.92	ng/L	RB FB			
ST-4-690	12/1/2022	Carboy G3	8260_LL	VOA-FB	78-93-3	2-Butanone (MEK)	0.91	ug/L	J FB			
WW-3-569	12/12/2022	Carboy	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.82	ng/L	RB EB			
ST-6-970	12/8/2022	Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.66	ng/L	RB FB			
B650-EFF-1	12/9/2022	Carboy	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.62	ng/L	RB FB			
WW-3-469	12/13/2022		NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.53	ng/L	EB			
PL-8-455	12/14/2022	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.5	ng/L	EB			
ST-4-690	12/1/2022	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.46	ng/L	J FB			
ST-6-678	12/8/2022	Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.46	ng/L	J RB FB			
PL-4-464	12/12/2022	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.44	ng/L	J RB TB FB			
PL-11-470	12/5/2022	Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.44	ng/L	J FB			
PL-4-464	12/12/2022	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.38	ng/L	J RB TB FB			
WW-1-452	12/5/2022	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.38	ng/L	J FB			
200-G-340	12/5/2022	Carboy G1	METALS	METALS-FB	7440-23-5	Sodium, Total	0.3	mg/L	J RB FB			
200-G-220	12/5/2022	Carboy G1	METALS	METALS-EB	7440-23-5	Sodium, Total	0.3	mg/L	J RB EB			
200-G-220	12/5/2022	Carboy G1	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.07	mg/L	J EB			
200-G-220	12/5/2022	Carboy G1	METALS	METALS-EB	7440-24-6	Strontium, Total	0.02	mg/L	J EB			
200-G-220	12/5/2022	Carboy G1	METALS	METALS-EB	7440-62-2	Vanadium, Total	0.0007	mg/L	J RB EB			



### Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

January 2023

NM8800019434

Report Submitted: April 10, 2023

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

#### 1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in January 2023.
- The quantity and type of quality control samples collected or prepared in January 2023.
- Quality control sample percentages in annual period immediately preceding and during January 2023.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

### 2.0 Data Quality

### 2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

#### 2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the January 2023 QAR.

#### 3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in January 2023. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for January 2023

Well ID	<b>Event Date</b>
BLM-10-517	1/3/2023
PL-10-484	1/3/2023
PL-10-592	1/4/2023
BLM-6-488	1/5/2023
PL-6-1195	1/5/2023

Well ID	<b>Event Date</b>
BLM-15-305	1/9/2023
BLM-17-550	1/9/2023
ST-7-453	1/9/2023
ST-7-544	1/9/2023
PL-6-1335	1/10/2023

Well ID	<b>Event Date</b>
ST-7-779	1/10/2023
ST-7-970	1/10/2023
JER-1-483	1/11/2023
JER-1-563	1/11/2023
PL-6-915	1/11/2023

Well ID	<b>Event Date</b>
JER-1-683	1/12/2023
400-A-151	1/17/2023
BLM-18-430	1/17/2023
PL-6-725	1/17/2023
JP-1-424	1/18/2023
JP-2-447	1/18/2023
WW-5-459	1/18/2023
WW-5-579	1/18/2023
B650-EFF-1	1/19/2023
B650-INF-1	1/19/2023

Well ID	<b>Event Date</b>
B655-EFF-2	1/19/2023
B655-INF-2	1/19/2023
PFE-5	1/19/2023
WW-5-809	1/19/2023
WW-5-909	1/19/2023
JER-2-504	1/23/2023
JER-2-584	1/23/2023
JP-3-509	1/23/2023
JP-3-689	1/23/2023
PL-6-545	1/23/2023

Well ID	<b>Event Date</b>
100-F-358	1/24/2023
100-G-223	1/24/2023
JER-2-684	1/24/2023
PL-1-486	1/24/2023
300-F-175	1/25/2023
600-G-138	1/25/2023
PFE-4A	1/26/2023
PFE-7	1/26/2023

**Table 2 – Quantity of Quality Control Samples** 

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Chloride by EPA Method 300.0	1	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	14	0	0	0	0	0	0
Nitrosamines by EPA Method 607	22	1	0	0	1	2	1
Perchlorate by SW-846 Method 6850	14	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	3	0	0	0	0	0	0
PCBs by SW-846 Method 8082	3	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	3	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	11	11	0	0	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	32	25	7	10	0	1	1
Semi-Volatile Organics by SW-846 Method 8270D	15	1	1	0	0	1	0
Dioxins/Furans by SW-846 Method 8290	3	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	3	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	3	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	3	0	0	0	0	0	0
Anions by Various EPA Methods	14	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	17	1	1	0	1	2	0
Nitrosamines by Low-Level Method	36	28	8	11	1	5	0
Total Dissolved Solids by Standard Method 2540C	14	0	0	0	0	0	0

**Table 3 – Quality Control Sample Percentages** 

Quality Control Requirement	Requirement %	Samp. Qty. since 2/1/2022	QC Qty. since 2/1/2022	QC % since 2/1/2022	Sample Quantity January 2023	QC Quantity January 2023	QC % January 2023
VOA Duplicates	10	524	56	11	43	5	12
VOA Matrix Spikes	2	524	12	2	43	1	2
607 Duplicates	10	304	30	10	22	2	9
607 Matrix Spikes	2	304	10	3	22	1	5
607 Equipment Blanks	2	304	8	3	22	0	0
607 Field Blanks	2	304	8	3	22	1	5
NDMA_LL Duplicates	10	322	36	11	36	5	14
NDMA_LL Matrix Spikes	2	322	10	3	36	0	0

Quality Assurance Report – January 2023

Quality Control Requirement	Requirement %	Samp. Qty. since 2/1/2022	QC Qty. since 2/1/2022	QC % since 2/1/2022	Sample Quantity January 2023	QC Quantity January 2023	QC % January 2023
Metals Duplicates	10	212	24	11	17	2	12
Metals Matrix Spikes	2	212	6	3	17	0	0
Metals Equipment Blanks	5	212	11	5	17	1	6
Metals Field Blanks	5	212	11	5	17	1	6

Quality Control Requirement	Requirement %	Sample Events since 2/1/2022	QC Qty. since 2/1/2022	QC % since 2/1/2022	Sample Events January 2023	QC Quantity January 2023	QC % January 2023
VOA Equipment Blanks and Field Blanks	Should approach 100%	524	524	100%	43	43	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	319	319	100%	35	35	100%

Quality Control Requirement	Requirement %	Shipments since 2/1/2022	TB Qty. since 2/1/2022	TB % since 2/1/2022	Shipments in January 2023	TB Quantity January 2023	QC % January 2023
VOA Trip Blank (per shipment)	Should approach 100%	108	1071	99%	11	101	91%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	104	104	100%	11	11	100%

¹ Due to a scheduling and shipping oversight, 1/12/2023 VOA shipment did not include a trip blank.

**Table 4 – Definitions of Data Qualifiers** 

Qualifier	Definition					
*	User defined qualifier. See quality assurance narrative.					
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.					
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.					
D	The reported result is from a dilution.					
EB	The analyte was detected in the equipment blank.					
FB	The analyte was detected in the field blank.					
G	The result is an estimated value greater than the upper calibration limit.					
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.					
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.					
NA	The value/result was either not analyzed for or not applicable.					
ND	The analyte was not detected above the detection limit.					
Q	The result for a blind control sample was outside standard limits.					
QD	The relative percent difference for a field duplicate was outside standard limits.					
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.					
RB	The analyte was detected in the method blank.					
S	The result was determined by the method of standard addition.					
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.					
T	The sample was analyzed outside the specified holding time or temperature.					
TB	The analyte was detected in the trip blank.					
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.					

Table 5 – Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"ТВ"	"Q"	"QD"	"SP"	"R"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	14	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	72	0	0	0	0	0	0	0
Perchlorate by SW-846 Method 6850	14	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	63	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	21	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	18	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	982	0	0	0	6	0	0	0
Low Level Volatile Organics by SW-846 Method 8260C	2153	0	0	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	491	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	75	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	3	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	3	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	3	0	0	0	0	0	0	0
Anions by Various EPA Methods	56	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	513	0	1	0	1	0	0	0
Nitrosamines by Low-Level Method	78	10	10	2	1	2	0	0
Total Dissolved Solids by Standard Method 2540C	14	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11411	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	14	0	0	0	0	0	0	0	0	1
Nitrosamines by EPA Method 607	72	0	0	0	0	0	0	2	0	4
Perchlorate by SW-846 Method 6850	14	0	0	0	0	0	0	0	0	3
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	63	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	21	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	18	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	982	0	0	0	0	0	0	0	0	15
Low Level Volatile Organics by SW-846 Method 8260C	2153	0	0	0	0	0	0	0	0	8
Semi-Volatile Organics by SW-846 Method 8270D	491	0	9	0	0	0	18	0	0	0
Dioxins/Furans by SW-846 Method 8290	75	0	0	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	3	0	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	3	1	0	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	3	0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	56	0	0	0	0	0	0	0	1	1
Total Metals by Various SW-846 Methods	513	0	0	0	0	3	0	0	0	111
Nitrosamines by Low-Level Method	78	2	0	0	0	4	0	0	0	6
Total Dissolved Solids by Standard Method 2540C	14	0	0	0	0	0	0	0	0	0

**Table 7 – Quality Assurance Narratives** 

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
JER-1-483	1/11/2023	For Low Level SW-846 Method 8260C, 1,4-dioxane, 2,5-dimethyl- (6.4 ug/L) was tentatively identified by a GC/MS library search in sample 2301111536B.
WW-5-579	1/18/2023	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2301181501B were within laboratory control limits.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, one unknown compound (10 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2301250720C). No groundwater data are affected by this trip blank contamination.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, one unknown compound (13 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 791829. Affected data are appropriately qualified.
JER-1-563	1/11/2023	For Low Level SW-846 Method 8260C, one unknown compound (5.3 ug/L) was tentatively identified by a GC/MS library search in sample 2301111555B.
JER-2-504	1/23/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792658. No groundwater data are affected by this method blank contamination.
JER-2-584	1/23/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792658. No groundwater data are affected by this method blank contamination.
JP-3-509	1/23/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792658. No groundwater data are affected by this method blank contamination.
JP-3-689	1/23/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792658. No groundwater data are affected by this method blank contamination.
PL-6-545	1/23/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792658. No groundwater data are affected by this method blank contamination.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified by a GC/MS library search in the field blank (2301121426B). Affected data are appropriately qualified.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, one unknown compound (7.4 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 793256. Affected data are appropriately qualified.
PL-1-486	1/24/2023	For Low Level SW-846 Method 8260C, relative percent differences (RPD) for duplicate samples 2301241035C and 2301241036C were within control limits or below the calculable range.
JER-2-584	1/23/2023	For Low Level SW-846 Method 8260C, silane, fluorotrimethyl- (12 ug/L) was tentatively identified by a GC/MS library search in sample 2301231434B.
JP-1-424	1/18/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.
JP-2-447	1/18/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.
PL-6-725	1/17/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.
WW-5-459	1/18/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.
WW-5-579	1/18/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
WW-5-459		For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (6.6 ug/L) was tentatively identified by a GC/MS library search in the field blank (2301181441B). No groundwater data
		are affected by this field blank contamination.
PL-6-1195	1/5/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (6.8 ug/L) was tentatively identified by a GC/MS library search in sample 2301051440Y.
PL-6-725	1/17/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (7.9 ug/L) was tentatively identified by a GC/MS library search in the equipment blank (2301171020Y). No groundwater data are affected by this equipment blank contamination.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (8.9 ug/L), 1,4-dioxane, 2,5-dimethyl- (12 ug/L), and one unknown compound (12 ug/L) were tentatively identified by a GC/MS library search in sample 2301121425B.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, sulfur dioxide (11 ug/L) was tentatively identified by a GC/MS library search in sample 2301250945C.
PL-6-1195	1/5/2023	For Low Level SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 790928. No groundwater data are affected by this method blank contamination.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, sulfur dioxide (8.0 ug/L) and one unknown compound (6.3 ug/L) were tentatively identified by a GC/MS library search in the field blank (2301250946C). Affected data are appropriately qualified.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, sulfur dioxide (8.4 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2301120710B). Affected data are appropriately qualified.
100-F-358	1/24/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	1/19/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	1/19/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-10-517	1/3/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
JER-2-684	1/24/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
JP-1-424	1/18/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
JP-2-447	1/18/2023	data quality was not significantly affected and no further corrective action was taken.  For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
PL-10-484	1/3/2023	data quality was not significantly affected and no further corrective action was taken.  For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
	17372023	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-10-592	1/4/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-1-486	1/24/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-6-725	1/17/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-5-459	1/18/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-5-579	1/18/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-5-809	1/19/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WW-5-909	1/19/2023	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/24/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
100-G-223	1/24/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BLM-10-517	1/3/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
JER-1-483	1/11/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
JER-1-563	1/11/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
JER-2-684	1/24/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-10-484	1/3/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-10-592	1/4/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-1-486	1/24/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-6-1335	1/10/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PL-6-915	1/11/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-7-453	1/9/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-7-544	1/9/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
ST-7-779		For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
ST-7-970	1/10/2023	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
100-F-358	1/24/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/25/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	1/19/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	1/19/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-10-517	1/3/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JER-1-483	1/11/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JER-1-563	1/11/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JER-1-683	1/12/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
JER-2-684	1/24/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-10-484	1/3/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-10-592	1/4/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-1-486	1/24/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-1335	1/10/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-915	1/11/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-453	1/9/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-544	1/9/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-779	1/10/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-970	1/10/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-5-809	1/19/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
WW-5-909	1/19/2023	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/24/2023	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
100-G-223		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B650-EFF-1		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-10-517		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-1-483		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-1-563		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-504		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-504		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JER-2-584		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-684		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-1-424		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-2-447		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-3-509		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-3-689		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-10-484		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-10-484		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-10-592		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-1-486		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-1-486		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-1195		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-1195		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-1335		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-545		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-725		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-915		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-915		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-7-453	1/9/2023	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-453	1/9/2023	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-7-544	1/9/2023	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-779		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-970		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-579	1/18/2023	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-809		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-809		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
WW-5-909		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-18-430		For SW-846 Method 8260C in blind control sample (2301171105A), the percent recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (135%), trichloroethene (130%), and trichlorofluoromethane (130%) were outside of the standard limits (75-125%). Affected
		data are appropriately qualified.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
BLM-18-430		For SW-846 Method 8260C, field duplicate samples 2301170950A and 2301170951A the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 14.6%. Upper
		acceptance limit for relative percent difference is 25%.
BLM-18-430	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301170950A and 2301170951A the
		relative percent difference for trichlorofluoromethane (CFC 11) was 15.4%. Upper acceptance
		limit for relative percent difference is 25%.
BLM-18-430	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301170950A and 2301170951A the
		relative percent difference for trichloroethene (TCE) was 14.3%. Upper acceptance limit for
		relative percent difference is 25%.
400-A-151	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301171435A and 2301171436A the
		relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper acceptance
		limit for relative percent difference is 25%.
400-A-151	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301171435A and 2301171436A the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 1.1%. Upper acceptance
		limit for relative percent difference is 25%.
400-A-151	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301171435A and 2301171436A the
		relative percent difference for dichlorofluoromethane (CFC 21) was 2.2%. Upper acceptance
		limit for relative percent difference is 25%.
400-A-151	1/17/2023	For SW-846 Method 8260C, field duplicate samples 2301171435A and 2301171436A the
		relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 0.0%. Upper
2022	1 /1 0 /2 0 2 2	acceptance limit for relative percent difference is 25%.
B650-INF-1	1/19/2023	For SW-846 Method 8260C, field duplicate samples 2301190800 and 2301190801 the relative
		percent difference for trichloroethene (TCE) was 16.9%. Upper acceptance limit for relative
DEE 7	1/26/2022	percent difference is 25%.
PFE-7	1/26/2023	For SW-846 Method 8260C, field duplicate samples 2301260852 and 2301260853 the relative
		percent difference for trichloroethene (TCE) was 3.7%. Upper acceptance limit for relative
PFE-7	1/26/2022	percent difference is 25%.  For SW-846 Method 8260C, field duplicate samples 2301260852 and 2301260853 the relative
FFL-/	1/20/2023	percent difference for trichlorofluoromethane (CFC 11) was 3.5%. Upper acceptance limit for
		relative percent difference is 25%.
PFE-7	1/26/2023	For SW-846 Method 8260C, field duplicate samples 2301260852 and 2301260853 the relative
TTL /	1/20/2023	percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 6.7%. Upper acceptance limit
		for relative percent difference is 25%.
600-G-138	1/25/2023	For SW-846 Method 8260C, one unknown compound (5.2 ug/L) was tentatively identified
000 0 100	1,20,2020	by a GC/MS library search in sample 2301251300A.
PFE-7	1/26/2023	For SW-846 Method 8260C, one unknown compound (5.6 ug/L) was tentatively identified
	-,,	by a GC/MS library search in the field blank (2301260854). Affected data are
		appropriately qualified.
PFE-4A	1/26/2023	For SW-846 Method 8260C, one unknown compound (5.7 ug/L) was tentatively identified
		by a GC/MS library search in sample 2301260925.
600-G-138	1/25/2023	For SW-846 Method 8260C, one unknown compound (5.8 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2301251301A). Affected data are
		appropriately qualified.
PFE-4A	1/26/2023	For SW-846 Method 8260C, one unknown compound (5.8 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2301260926). Affected data are
		appropriately qualified.
600-G-138	1/25/2023	For SW-846 Method 8260C, one unknown compound (7.4 ug/L) was tentatively identified
		by a GC/MS library search in the method blank for analytical batch 793256. Affected data
		are appropriately qualified.
PFE-4A	1/26/2023	For SW-846 Method 8260C, one unknown compound (7.4 ug/L) was tentatively identified
		by a GC/MS library search in the method blank for analytical batch 793256. Affected data
		are appropriately qualified.
PFE-7	1/26/2023	For SW-846 Method 8260C, one unknown compound (7.4 ug/L) was tentatively identified
		by a GC/MS library search in the method blank for analytical batch 793256. Affected data
		are appropriately qualified.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
400-A-151		For SW-846 Method 8260C, silane, methoxytrimethyl- (11 ug/L) and silane, fluorotrimethyl- (5.7 ug/L) were tentatively identified by a GC/MS library search in sample 2301171435A.
400-A-151	1/17/2023	For SW-846 Method 8260C, silane, methoxytrimethyl (11 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792439. Affected data are appropriately qualified.
BLM-6-488	1/5/2023	For SW-846 Method 8260C, silane, methoxytrimethyl- (17 ug/L) was tentatively identified by a GC/MS library search in the field blank (2301051001C). No groundwater data are affected by this field blank contamination.
BLM-18-430	1/17/2023	For SW-846 Method 8260C, silane, methoxytrimethyl (6.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 792268. No groundwater data are affected by this method blank contamination.
BLM-6-488	1/5/2023	For SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 790928. No groundwater data are affected by this method blank contamination.
PFE-7	1/26/2023	For SW-846 Method 8260C, sulfur dioxide (6.5 ug/L) and one unknown compound (5.9 ug/L) and (6.3 ug/L) were tentatively identified by a GC/MS library search in sample 2301260852 and duplicate sample 2301260853.
400-A-151	1/17/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
600-G-138	1/25/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	1/19/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	1/19/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-18-430	1/17/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PFE-4A	1/26/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PFE-5	1/19/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PFE-7	1/26/2023	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	1/19/2023	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
BLM-15-305		For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was
BLM-17-550	1/9/2023	appropriate.  For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
PFE-5	1/19/2023	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
400-A-151	1/17/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
600-G-138	1/25/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	1/19/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	1/19/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-15-305	1/9/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-17-550	1/9/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-4A	1/26/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-5	1/19/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	<b>Event Date</b>	SW-846 Method 8260C QA Narratives
PFE-7	1/26/2023	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
400-A-151	1/17/2023	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	1/19/2023	For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2	1/19/2023	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-15-305	1/9/2023	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-17-550	1/9/2023	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-18-430	1/17/2023	For SW-846 Method 8260C, there were no detections in the field blank.
PFE-5	1/19/2023	For SW-846 Method 8260C, there were no detections in the field blank.

Well ID	<b>Event Date</b>	Modified EPA Method 607 QA Narratives
BLM-18-430	1/17/2023	For Modified EPA Method 607 in blind control sample (2301171106A), all recoveries were within standard limits.
BLM-17-550	1/9/2023	For Modified EPA Method 607, field duplicate samples 2301091022A and 2301091023A the relative percent difference for bromacil was 3.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-550	1/9/2023	For Modified EPA Method 607, field duplicate samples 2301091022A and 2301091023A the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-550	1/9/2023	For Modified EPA Method 607, field duplicate samples 2301091022A and 2301091023A the relative percent difference for N-nitrosodimethylamine was 4.1%. Upper acceptance limit for relative percent difference is 25%.
JP-3-689	1/23/2023	For Modified EPA Method 607, matrix spike recoveries for sample 2301231433A were within laboratory control limits.
BLM-18-430	1/17/2023	For Modified EPA Method 607, relative percent differences (RPD) for duplicate samples 2301170953A and 2301170954A were within control limits or below the calculable range.
100-G-223	1/24/2023	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
JER-2-684	1/24/2023	For Low Level Nitrosamine Method in blind control sample (2301241455B), the percent recovery for N-nitrosodimethylamine (222.9%) was outside of the standard limits (70.0-130.0%). Additionally, N-nitrodimethylamine (6.49 ng/L) was detected but none was added. Affected data are appropriately qualified.
ST-7-779	1/10/2023	For Low Level Nitrosamine Method, due to a chain of custody error results were incorrectly reported as 2301100710B for the trip blank. The correct sample number is 2301100715B.
PL-6-915	1/11/2023	For Low Level Nitrosamine Method, field duplicate samples 2301111435Y and 2301111436Y the relative percent difference for N-Nitrosodimethylamine was 18.2%. Upper acceptance limit for relative percent difference is 25%.
JER-1-683	1/12/2023	For Low Level Nitrosamine Method, field duplicate samples 2301121427B and 2301121428B the relative percent difference for N-nitrosodimethylamine was 6.8%. Upper acceptance limit for relative percent difference is 25%.
WW-5-809	1/19/2023	For Low Level Nitrosamine Method, field duplicate samples 2301191417B and 2301191418B the relative percent difference for N-nitrosodimethylamine was 60.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.
PFE-4A	1/26/2023	For Low Level Nitrosamine Method, field duplicate samples 2301260928 and 2301260929 the relative percent difference for N-nitrodimethylamine was 21.0%. Upper acceptance limit for relative percent difference is 25%.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
PFE-4A	1/26/2023	For Low Level Nitrosamine Method, field duplicate samples 2301260928 and 2301260929 the relative percent difference for N-nitrosodimethylamine was 6.2%. Upper acceptance limit for relative percent difference is 25%.
JER-1-483	1/11/2023	For Low Level Nitrosamine Method, for field blank 2301111539B the recovery of the internal standard NDMA-d6 (8.76%) was outside laboratory control limits (10-100%). Additionally, method blank PB23A19HE1 recoveries of internal standards NDMA-d6 (4.98%) and DMN-d6 (7.17%) were outside laboratory control limits (10-100%). Reextraction of the samples was not possible due to a lack of reserve. However, since the signal to noise exceeded the minimum of 3 (lowest signal >245 in method blank PB23A19HE1), the laboratory concluded that sufficient signal strength was seen in the above mentioned samples for the detection of native NDMA. Native NDMA was detected above the MDL in method blank PB23A19HE1. The samples were deemed valid and no further corrective action was required by the lab. Associated groundwater data are qualified with an asterisk (*).
JER-1-563	1/11/2023	For Low Level Nitrosamine Method, for field blank 2301111558B the recovery of the internal standard NDMA-d6 (8.88%) was outside laboratory control limits (10-100%). Additionally, method blank PB23A19HE1 recoveries of internal standards NDMA-d6 (4.98%) and DMN-d6 (7.17%) were outside laboratory control limits (10-100%). Reextraction of the samples was not possible due to a lack of reserve. However, since the signal to noise exceeded the minimum of 3 (lowest signal >245 in method blank PB23A19HE1), the laboratory concluded that sufficient signal strength was seen in the above mentioned samples for the detection of native NDMA. Native NDMA was detected above the MDL in method blank PB23A19HE1. The samples were deemed valid and no further corrective action was required by the lab. Associated groundwater data are qualified with an asterisk (*).
ST-7-544	1/9/2023	For Low Level Nitrosamine Method, for sample 2301091550B the recovery of the internal standard NDMA-d6 (6.33%) was outside laboratory control limits (10-100%). The sample could not be re-extracted due to lack of reserve. The signal to noise ratio for this sample was well above the minimum of 3 (the lowest signal was > 185) allowing for detection of native NDMA above the MDL. No additional corrective action was required. Associated groundwater data are qualified with an asterisk (*).
PL-6-545 WW-5-809		For Low Level Nitrosamine Method, for sample 2301231531Y the recovery of the internal standard NDMA-d6 (4.80%) was outside laboratory control limits (10-100%). The sample could not be re-extracted due to lack of reserve. The signal to noise ratio for these samples were well above the minimum of 3 (the lowest signal was > 263) allowing for detection of native NDMA above the MDL. No additional corrective action was required. Affected data are qualified with an asterisk (*).  For Low Level Nitrosamine Method, for trip blank 2301190741B the recovery of the internal standard NDMA-d6 (8.27%) was outside laboratory control limits (10-100%). The sample could not be re-extracted due to lack of reserve. The signal to noise ratio for these samples were well above the minimum of 3 (the lowest signal was > 89) allowing for
300-F-175	1/25/2023	detection of native NDMA above the MDL. No additional corrective action was required.  Affected data are qualified with an asterisk (*).  For Low Level Nitrosamine Method, for trip blank 2301250721C the recovery of the internal standard DMN-d6 (117%) was outside laboratory control limits (10-100%). High recovery has no negative impact to the data quality since the signal to noise is sufficient for detection of native DMN. No additional action was required by the lab.
PL-6-725	1/17/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.35 ng/L) was detected in the trip blank (2301170801Y) below the reporting limit. No groundwater data are affected by this trip blank contamination.
ST-7-779	1/10/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.35 ng/l) was detected in the field blank (2301101358B) below the reporting limit. Affected data are appropriately qualified.
300-F-175	1/25/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.37 ng/L) was detected in the trip blank (2301250721C) below the reporting limit. Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
B655-EFF-2		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.37 ng/L) was detected in the field blank (2301190856) below the reporting limit. No groundwater data are affected by this field blank contamination.
ST-7-970	1/10/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.38 ng/L) was detected in the field blank (2301101410B) below the reporting limit. Affected data are appropriately
JP-1-424	1/18/2023	qualified.  For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the field blank (2301181029A) below the reporting limit. Affected data are appropriately qualified.
JP-3-509	1/23/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the field blank (2301231014A) below the reporting limit. No groundwater data are affected by this field blank contamination.
WW-5-909	1/19/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the field blank (2301191438B) below the reporting limit. No groundwater data are affected by this field blank contamination.
JER-2-504	1/23/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.4 ng/L) was detected in the field blank (2301231456B) below the reporting limit. Affected data are appropriately qualified.
ST-7-453	1/9/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.4 ng/L) was detected in the field blank (2301091533B) below the reporting limit. Affected data are appropriately qualified.
ST-7-544	1/9/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.41 ng/L) and N-nitrodimethylamine (0.38 ng/L) were detected in the field blank (2301091551B) below the reporting limit. Affected data are appropriately qualified.
JER-1-483	1/11/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.48 ng/L) was detected in method blank PB2A19HE1 below the reporting limit. Affected data are appropriately qualified.
JER-1-563	1/11/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.48 ng/L) was detected in method blank PB2A19HE1 below the reporting limit. Affected data are appropriately qualified.
JER-1-683	1/12/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.48 ng/L) was detected in method blank PB2A19HE1 below the reporting limit. Affected data are appropriately qualified.
B650-EFF-1	1/19/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.53 ng/L) was detected in the field blank (2301190751). Affected data are appropriately qualified.
PL-10-592	1/4/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in the equipment blank (2301041301Y). Affected data are appropriately qualified.
BLM-6-488	1/5/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.56 ng/L) was detected in the field blank (2301051005C). Affected data are appropriately qualified.
PFE-4A	1/26/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.56 ng/L) was detected in the field blank (2301260930). No groundwater data are affected by this field blank contamination.
PL-10-484	1/3/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.69 ng/L) was detected in the equipment blank (2301031401Y). Affected data are appropriately qualified.
BLM-10-517		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.73 ng/L) was detected in the field blank (2301031548C). Affected data are appropriately qualified.
JER-2-504	1/23/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.34 ng/L) was detected in the trip blank (2301230711B). Affected data are appropriately qualified.
PL-6-1195		For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.34 ng/L) was detected in the equipment blank (2301051251Y). Affected data are appropriately qualified.
PL-6-1335	1/10/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.89 ng/L) and N-nitrodimethylamine (0.92 ng/L) were detected in the equipment blank (2301101431Y). Affected data are appropriately qualified.
PL-6-915	1/11/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (4.17 ng/L) and N-nitrodimethylamine (0.51 ng/L) were detected in the equipment blank (2301111301Y). Affected data are appropriately qualified.

Well ID	<b>Event Date</b>	Low-Level Nitrosamine Method QA Narratives
PL-6-545	1/23/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (4.53 ng/L) and N-nitrodimethylamine (0.58 ng/L) were detected in the equipment blank (2301231431Y). Affected data are appropriately qualified.
JER-2-684	1/24/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (4.55 ng/L) was detected in the field blank (2301241453B). Affected data are appropriately qualified.
PL-6-725	1/17/2023	For Low Level Nitrosamine Method, N-nitrosodimethylamine (6.45 ng/L) and N-nitrodimethylamine (0.82 ng/L) were detected in the equipment blank (2301171021Y). Affected data are appropriately qualified.
100-F-358	1/24/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
100-G-223	1/24/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
300-F-175	1/25/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-483	1/11/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-563	1/11/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-683	1/12/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-683	1/12/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
JER-2-584	1/23/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-2-447	1/18/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-3-689	1/23/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
PFE-7	1/26/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-10-484	1/3/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-1-486	1/24/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-1-486	1/24/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-6-1195	1/5/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-6-915	1/11/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-7-453	1/9/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-7-779	1/10/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-5-459	1/18/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-579	1/18/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-809	1/19/2023	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-809	1/19/2023	For Low Level Nitrosamine Method, there were no detections in the trip blank.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
JER-1-683	1/12/2023	For SW-846 Method 8270D, 1.4-dioxane (0.059 ug/L) was detected in the method blank for analytical batch 413241. No groundwater data are affected by this method blank contamination.
JER-2-584		For SW-846 Method 8270D, field duplicate samples 2301231517B and 2301231518B the relative percent difference for 1,4-dioxane was 6.1%. Upper acceptance limit for relative percent difference is 25%.
100-F-358	1/24/2023	For SW-846 Method 8270D, sample 2301241025A was received with insufficient hold time remaining to complete the PAH analysis within the recommended limit. The analysis was performed as soon as possible after receipt by the laboratory. Affected data are qualified to indicate the holding time exceedance.
100-G-223	1/24/2023	For SW-846 Method 8270D, sample 2301241426A was received with insufficient hold time remaining to complete the PAH analysis within the recommended limit. The analysis was performed as soon as possible after receipt by the laboratory. Affected data are qualified to indicate the holding time exceedance.
BLM-6-488	1/5/2023	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.

Well ID	<b>Event Date</b>	SW-846 Method 8270D QA Narratives
BLM-6-488		For SW-846 Method 8270D, the lower control limit for the spike recovery of the Duplicate Laboratory Control Sample (LCSD) was exceeded for one or more analyte. The
		Laboratory Control Sample (LCS) passed limits. There were no detections of the
		analyte(s) in the associated field samples. The analytes affected are flagged in the LCS
		Summary. Affected data are appropriately qualified.
100-F-358	1/24/2023	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
100-G-223	1/24/2023	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
BLM-6-488	1/5/2023	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data are not significantly affected. No further corrective action was appropriate.
100-F-358	1/24/2023	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/25/2023	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-6-488	1/5/2023	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-10-592	1/4/2023	For SW-846 Method 8270D, there were no detections in the equipment blank.
300-F-175	1/25/2023	For SW-846 Method 8270D, there were no detections in the field blank.
100-F-358	1/24/2023	For SW-846 Method 8270D, toluene (16 ug/L), benzene,chloro- (5.8 ug/L), and two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 413876. Affected data are appropriately qualified.
100-G-223	1/24/2023	For SW-846 Method 8270D, toluene (16 ug/L), benzene,chloro- (5.8 ug/L), and two unknown compounds were tentatively identified by a GC/MS library search in sample 2301241426A.
100-G-223	1/24/2023	For SW-846 Method 8270D, toluene (16 ug/L), benzene,chloro- (5.8 ug/L), and two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 413876. Affected data are appropriately qualified.
100-F-358	1/24/2023	For SW-846 Method 8270D, toluene (22 ug/L), benzene,chloro- (8.1 ug/L), and two unknown compounds were tentatively identified by a GC/MS library search in sample 2301241025A.

Well ID	<b>Event Date</b>	Total Metals QA Narratives
PL-6-915	1/11/2023	For Total Metals, field duplicate samples 2301111505Y and 2301111540Y the relative percent difference for strontium was 0.9%. Upper acceptance limit for relative percent difference is 25%.
PL-6-915	1/11/2023	For Total Metals, field duplicate samples 2301111505Y and 2301111540Y the relative percent difference for magnesium was 1.7%. Upper acceptance limit for relative percent difference is 25%.
PL-6-915	1/11/2023	For Total Metals, field duplicate samples 2301111505Y and 2301111540Y the relative percent difference for calcium was 1.6%. Upper acceptance limit for relative percent difference is 25%.
PL-6-915	1/11/2023	For Total Metals, field duplicate samples 2301111505Y and 2301111540Y the relative percent difference for sodium was 1.5%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/23/2023	For Total Metals, field duplicate samples 2301231015A and 2301231016A the relative percent difference for strontium was 0.4%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/23/2023	For Total Metals, field duplicate samples 2301231015A and 2301231016A the relative percent difference for calcium was 0.1%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/23/2023	For Total Metals, field duplicate samples 2301231015A and 2301231016A the relative percent difference for magnesium was 0.1%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509		For Total Metals, field duplicate samples 2301231015A and 2301231016A the relative percent difference for sodium was 0.2%. Upper acceptance limit for relative percent difference is 25%.
BLM-18-430	1/17/2023	For Total Metals, for blind control sample (2301171107A) the percent recovery for selenium (73.3%) was outside of the standard limits (75.0-125.0%). Additionally, the control was prepared at a concentration below the reporting limits for iron and aluminum. Affected data are appropriately qualified.
400-A-151	1/17/2023	For Total Metals, silver (0.0009 mg/L) was detected in the method blank for analytical batch 413559 below the reporting limit. No groundwater data are affected by this method blank contamination.
B655-EFF-2	1/19/2023	For Total Metals, silver (0.0009 mg/L) was detected in the method blank for analytical batch 413559 below the reporting limit. Affected data are appropriately qualified.
B655-INF-2	1/19/2023	For Total Metals, silver (0.0009 mg/L) was detected in the method blank for analytical batch 413559 below the reporting limit. Affected data are appropriately qualified.
BLM-18-430	1/17/2023	For Total Metals, silver (0.0009 mg/L) was detected in the method blank for analytical batch 413559 below the reporting limit. Affected data are appropriately qualified.
PL-6-1195	1/5/2023	For Total Metals, strontium (0.003 mg/L), vanadium (0.0009 mg/L), and zinc (0.005 mg/L) were detected in the equipment blank (2301051252Y) below the reporting limit. Affected data are appropriately qualified.
BLM-10-517	1/3/2023	For Total Metals, the upper control limit was exceeded for boron in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-15-305	1/9/2023	For Total Metals, the upper control limit was exceeded for selenium in the CRDL. The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-17-550	1/9/2023	For Total Metals, the upper control limit was exceeded for selenium in the CRDL. The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-1195	1/5/2023	For Total Metals, the upper control limit was exceeded for selenium in the CRDL. The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-1335	1/10/2023	For Total Metals, the upper control limit was exceeded for selenium in the CRDL. The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method

Well ID	<b>Event Date</b>	Total Metals QA Narratives
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-915	1/11/2023	For Total Metals, the upper control limit was exceeded for selenium in the CRDL. The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/24/2023	For Total Metals, the upper control limit was exceeded for thallium in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For Total Metals, the upper control limit was exceeded for thallium in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/25/2023	For Total Metals, the upper control limit was exceeded for thallium in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
600-G-138	1/25/2023	For Total Metals, the upper control limit was exceeded for thallium in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For Total Metals, there were no detections in the field blank.

Well ID	<b>Event Date</b>	Miscellaneous QA Narratives
B655-INF-2	1/19/2023	For EPA Method 300.0, for sample 2301190918 the Method Reporting Limit (MRL) for fluoride was elevated due to the matrix of the sample. Affected data are appropriately qualified.
100-F-358	1/24/2023	For SW-846 Method 8081B, the RPD between the LCS and the LCSD was greater than the RPD limit. The percent recovery limit was met for both the LCS and the LCSD. No data are qualified based on this RPD exceedance.
100-G-223	1/24/2023	For SW-846 Method 8081B, the RPD between the LCS and the LCSD was greater than the RPD limit. The percent recovery limit was met for both the LCS and the LCSD. No data are qualified based on this RPD exceedance.
300-F-175	1/25/2023	For SW-846 Method 8082A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/24/2023	For SW-846 Method 8151A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/24/2023	For SW-846 Method 8151A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/25/2023	For SW-846 Method 8151A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)

Well ID	<b>Event Date</b>	Miscellaneous QA Narratives						
		above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.						
		as not significantly affected and no further corrective action was taken.						
100-F-358	1/24/2023	For SW-846 Method 9034, for sample 2301241038A the pH was <9 when tested						
		immediately prior to testing, indicating that chemical preservation was not added or was						
		inadequate to meet the preservation requirement for sulfide analysis. Affected data are						
		qualified with an asterisk (*).						

**Table 8 – WSTF Blank Sample Detections** 

Table	0 - WSIF	DIAIIK Sai	Blank Sample Detections						
Well ID	<b>Event Date</b>	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
BLM-6-488	1/5/2023	Carboy G3	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	17	ug/L	TIC FB
300-F-175	1/25/2023	Carboy G1	8260_LL	VOA-TB	TIC	Unknown	10	ug/L	TIC RB TB
JER-1-683	1/12/2023	Carboy G3	8260_LL	VOA-TB	7446-09-5	Sulfur Dioxide	8.4	ug/L	TIC RB TB FB
300-F-175	1/25/2023	Carboy G1	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	8	ug/L	TIC RB FB
PL-6-725	1/17/2023	Carboy G1	8260_LL	VOA-EB	1825-61-2	Silane, methoxytrimethyl-	7.9	ug/L	TIC RB EB
WW-5-459	1/18/2023	Carboy G1	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	6.6	ug/L	TIC RB FB
JER-1-683	1/12/2023	Carboy G3	8260_LL	VOA-FB	TIC	Unknown	6.6	ug/L	TIC RB TB FB
PL-6-725	1/17/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	6.45	ng/L	EB
300-F-175	1/25/2023	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	6.3	ug/L	TIC FB
600-G-138	1/25/2023		8260	VOA-FB	TIC	Unknown	5.8	ug/L	TIC RB FB
PFE-4A	1/26/2023	Carboy PF1	8260	VOA-FB	TIC	Unknown	5.8	ug/L	TIC RB FB
PFE-7	1/26/2023	Carboy PF1	8260	VOA-FB	TIC	Unknown	5.6	ug/L	TIC FB
JER-2-684	1/24/2023	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	4.55	ng/L	FB Q
PL-6-545	1/23/2023	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	4.53	ng/L	EB
PL-6-915	1/11/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	4.17	ng/L	EB
PL-6-1335	1/10/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	2.89	ng/L	EB
PL-6-1195	1/5/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	1.34	ng/L	EB
JER-2-504	1/23/2023	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	1.34	ng/L	TB FB
PL-6-1335	1/10/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.92	ng/L	EB
PL-6-725	1/17/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.82	ng/L	EB
BLM-10-517	1/3/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.73	ng/L	FB
PL-10-484	1/3/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.69	ng/L	EB
PL-6-545	1/23/2023	Carboy G3	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.58	ng/L	EB
BLM-6-488	1/5/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.56	ng/L	FB
PFE-4A	1/26/2023	Carboy PF1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.56	ng/L	FB
PL-10-592	1/4/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.54	ng/L	EB
B650-EFF-1	1/19/2023	Carboy PF1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.53	ng/L	FB
PL-6-915	1/11/2023	Carboy G1	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.51	ng/L	EB
ST-7-544	1/9/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.41	ng/L	J FB
JER-2-504	1/23/2023	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.4	ng/L	J TB FB
ST-7-453	1/9/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.4	ng/L	J FB
JP-1-424	1/18/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.39	ng/L	J FB
JP-3-509	1/23/2023	Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.39	ng/L	J FB
WW-5-909	1/19/2023	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.39	ng/L	J FB
ST-7-544	1/9/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	4164-28-7	N-Nitrodimethylamine	0.38	ng/L	J FB
ST-7-970	1/10/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.38	ng/L	J FB

Well ID	<b>Event Date</b>	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
B655-EFF-2	1/19/2023	Carboy PF1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.37	ng/L	J FB
300-F-175	1/25/2023	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.37	ng/L	J TB
ST-7-779	1/10/2023	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.35	ng/L	J FB
PL-6-725	1/17/2023	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.35	ng/L	J TB EB
PL-6-1195	1/5/2023	Carboy G1	METALS	METALS-EB	7440-66-6	Zinc, Total	0.005	mg/L	J EB
PL-6-1195	1/5/2023	Carboy G1	METALS	METALS-EB	7440-24-6	Strontium, Total	0.003	mg/L	J EB
PL-6-1195	1/5/2023	Carboy G1	METALS	METALS-EB	7440-62-2	Vanadium, Total	0.0009	mg/L	J EB

# Appendix D Comparison to Cleanup Levels

Appendix D.1: Groundwater Monitoring Wells Appendix D.2: PFTS Appendix D.3: MPITS Appendix D.1 Groundwater Monitoring Wells

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
400-A-151	1/17/2023	607	2301171438A	N-Nitrosodimethylamine	7.6	μg/L	0.048	0.024	52	D
400-C-143	11/17/2022	607	2211170922C	N-Nitrosodimethylamine	2.21	μg/L	0.0095	0.0048	47	
BLM-15-305	1/9/2023	607	2301091452A	N-Nitrosodimethylamine	10.42	μg/L	0.094	0.047	47	D
BLM-17-493	11/3/2022	607	2211030932A	N-Nitrosodimethylamine	0.76	μg/L	0.0096	0.0048	44	
BLM-17-550	1/9/2023	607	2301091022A	N-Nitrosodimethylamine	0.5	μg/L	0.0095	0.0048	47	
BLM-17-550	1/9/2023	607	2301091023A	N-Nitrosodimethylamine	0.48	μg/L	0.0097	0.0049	47	
BLM-18-430	1/17/2023	607	2301170954A	N-Nitrosodimethylamine	0.02	$\mu g/L$	0.0094	0.0047	52	
BLM-18-430	1/17/2023	607	2301170953A	N-Nitrosodimethylamine	0.02	$\mu g/L$	0.0094	0.0047	52	
BLM-26-404	11/7/2022	607	2211071452C	N-Nitrosodimethylamine	0.14	$\mu g/L$	0.0094	0.0047	44	
BLM-27-270	12/12/2022	607	2212120938C	N-Nitrosodimethylamine	2.32	$\mu g/L$	0.0098	0.0049	47	Q
BLM-32-571	11/7/2022	NDMA_LL	2211071452B	N-Nitrosodimethylamine	1.61	ng/L	0.48	0.35		RB FB
BLM-36-350	11/4/2022	607	2211041132Y	N-Nitrosodimethylamine	0.44	$\mu g/L$	0.0098	0.0049	44	
BLM-36-350	11/4/2022	607	2211041155Y	N-Nitrosodimethylamine	0.46	$\mu g/L$	0.0095	0.0048	44	
BLM-6-488	1/5/2023	NDMA_LL	2301051004C	N-Nitrosodimethylamine	1.36	ng/L	0.48	0.35		FB
BW-5-295	11/7/2022	607	2211070952C	N-Nitrosodimethylamine	0.43	$\mu g/L$	0.0098	0.0049	44	
BW-7-211	12/13/2022	607	2212130828C	N-Nitrosodimethylamine	0.96	$\mu g/L$	0.0094	0.0047	47	
JER-1-683	1/12/2023	NDMA_LL	2301121427B	N-Nitrosodimethylamine	1.68	ng/L	0.49	0.35		RB
JER-1-683	1/12/2023	NDMA_LL	2301121428B	N-Nitrosodimethylamine	1.57	ng/L	0.49	0.35		RB
JER-2-504	1/23/2023	NDMA_LL	2301231455B	N-Nitrosodimethylamine	2.52	ng/L	0.48	0.35		TB FB
JER-2-584	1/23/2023	NDMA_LL	2301231515B	N-Nitrosodimethylamine	3.24	ng/L	0.48	0.35		
JER-2-684	1/24/2023	NDMA_LL	2301241452B	N-Nitrosodimethylamine	4.15	ng/L	0.49	0.36		FB Q
NASA 6	11/16/2022	607	2211161013B	N-Nitrosodimethylamine	6.49	$\mu g/L$	0.094	0.047	47	D
PL-10-484	1/3/2023	NDMA_LL	2301031511Y	N-Nitrosodimethylamine	1.81	ng/L	0.48	0.35		EB
PL-11-470	12/5/2022	NDMA_LL	2212051412B	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.35		FB
PL-12-570	11/10/2022	NDMA_LL	2211100905C	N-Nitrosodimethylamine	1.14	ng/L	0.49	0.35		
PL-12-800	11/10/2022	NDMA_LL	2211101435C	N-Nitrosodimethylamine	1.74	ng/L	0.5	0.36		
PL-2-504	12/12/2022	607	2212121412A	N-Nitrosodimethylamine	0.02	$\mu g/L$	0.0095	0.0048	47	
PL-6-1195	1/5/2023	NDMA_LL	2301101100Y	N-Nitrosodimethylamine	5.18	ng/L	0.48	0.35		EB
PL-6-1335	1/10/2023	NDMA_LL	2301110935Y	N-Nitrosodimethylamine	44.03	ng/L	0.48	0.35		
PL-6-545	1/23/2023	NDMA_LL	2301231531Y	N-Nitrosodimethylamine	9.58	ng/L	0.48	0.35		* EB
PL-6-725	1/17/2023	NDMA_LL	2301171416Y	N-Nitrosodimethylamine	10.33	ng/L	0.48	0.35		EB
PL-6-915	1/11/2023	NDMA_LL	2301111435Y	N-Nitrosodimethylamine	1.25	ng/L	0.48	0.35		EB
PL-6-915	1/11/2023	NDMA_LL	2301111436Y	N-Nitrosodimethylamine	1.5	ng/L	0.48	0.35		EB
ST-1-473	11/9/2022	607	2211091442C	N-Nitrosodimethylamine	0.19	$\mu g/L$	0.01	0.005	44	

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
ST-1-541	11/16/2022	607	2211161032A	N-Nitrosodimethylamine	1.32	μg/L	0.0094	0.0047	47	_
ST-1-630	11/16/2022	607	2211161533A	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0094	0.0047	47	
ST-1-630	11/16/2022	607	2211161532A	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0094	0.0047	47	
ST-3-486	12/7/2022	607	2212070932C	N-Nitrosodimethylamine	0.04	μg/L	0.0096	0.0048	47	
ST-3-586	12/15/2022	607	2212151011C	N-Nitrosodimethylamine	0.01	$\mu g/L$	0.01	0.005	47	
ST-3-666	12/8/2022	607	2212081002C	N-Nitrosodimethylamine	0.05	μg/L	0.0094	0.0047	47	
ST-3-666	12/8/2022	607	2212081003C	N-Nitrosodimethylamine	0.05	$\mu g/L$	0.0095	0.0048	47	
ST-3-735	12/8/2022	607	2212081402C	N-Nitrosodimethylamine	0.26	$\mu g/L$	0.0095	0.0048	47	
WW-4-419	11/8/2022	NDMA_LL	2211081435B	N-Nitrosodimethylamine	2.21	ng/L	0.47	0.34		RB FB
WW-5-459	1/18/2023	NDMA_LL	2301181520B	N-Nitrosodimethylamine	1.22	ng/L	0.47	0.34		
WW-5-579	1/18/2023	NDMA_LL	2301181535B	N-Nitrosodimethylamine	1.49	ng/L	0.48	0.35		
WW-5-809	1/19/2023	NDMA_LL	2301191418B	N-Nitrosodimethylamine	1.13	ng/L	0.47	0.34		QD
WW-5-809	1/19/2023	NDMA_LL	2301191417B	N-Nitrosodimethylamine	2.1	ng/L	0.47	0.34		QD
WW-5-909	1/19/2023	NDMA_LL	2301191437B	N-Nitrosodimethylamine	4.41	ng/L	0.47	0.34		

CAS Nun	nber 127-18-4	Analyte	Tetrachloroethene (PCE)							
Cleanup	Level 5 ug/L	Sour	ce GMP							
Well ID	Event Analysi Date Metho		Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	OA Flag	
Well ID	Date 1770ths	- Sample	Constituent	Result	Units	Limit	Limit	2	QA Flag	
ST-1-541	11/16/2022 8260	2211161030A	Tetrachloroethene (PCE)	8.2	ug/L	1	0.21			

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
200-I-185	11/10/2022	8260	2211101540Y	Trichloroethene (TCE)	14	ug/L	1	0.2		
200-I-300	11/10/2022	8260	2211101035Y	Trichloroethene (TCE)	30	ug/L	1	0.2		Q
600-G-138	1/25/2023	8260	2301251300A	Trichloroethene (TCE)	33	ug/L	1	0.2		
BLM-17-493	11/3/2022	8260	2211030930A	Trichloroethene (TCE)	53	ug/L	1	0.2		
BLM-17-550	1/9/2023	8260	2301091020A	Trichloroethene (TCE)	83	ug/L	1	0.2		
BLM-18-430	1/17/2023	8260	2301170950A	Trichloroethene (TCE)	15	ug/L	1	0.2		Q
BLM-18-430	1/17/2023	8260	2301170951A	Trichloroethene (TCE)	13	ug/L	1	0.2		Q
BLM-26-404	11/7/2022	8260	2211071450C	Trichloroethene (TCE)	21	ug/L	1	0.2		
BLM-3-182	11/1/2022	8260	2211010932A	Trichloroethene (TCE)	13	ug/L	1	0.2		
BLM-36-350	11/4/2022	8260	2211041130Y	Trichloroethene (TCE)	63	ug/L	1	0.2		
BLM-36-350	11/4/2022	8260	2211041131Y	Trichloroethene (TCE)	64	ug/L	1	0.2		
PL-12-800	11/10/2022	8260	2211101425C	Trichloroethene (TCE)	5.4	ug/L	1	0.2		
PL-12-800	11/10/2022	8260	2211101426C	Trichloroethene (TCE)	5.3	ug/L	1	0.2		
PL-2-504	12/12/2022	8260	2212121410A	Trichloroethene (TCE)	50	ug/L	1	0.2		
ST-1-473	11/9/2022	8260	2211091440C	Trichloroethene (TCE)	180	ug/L	1	0.2		
ST-1-541	11/16/2022	8260	2211161030A	Trichloroethene (TCE)	150	ug/L	1	0.2		
ST-1-630	11/16/2022	8260	2211161530A	Trichloroethene (TCE)	49	ug/L	1	0.2		
ST-3-586	12/15/2022	8260	2212151008C	Trichloroethene (TCE)	12	ug/L	1	0.2		
ST-3-586	12/15/2022	8260	2212151009C	Trichloroethene (TCE)	11	ug/L	1	0.2		
ST-3-666	12/8/2022	8260	2212081000C	Trichloroethene (TCE)	19	ug/L	1	0.2		
ST-3-735	12/8/2022	8260	2212081400C	Trichloroethene (TCE)	14	ug/L	1	0.2		

Appendix D.2 PFTS

## **Analytical Results for PFTS and PFE Wells that Exceed Clean Up Levels**

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

	<b>Event</b>	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
B650-INF-1	11/10/2022	607	2211100833	N-Nitrosodimethylamine	0.007	μg/L	0.01	0.005	45	J
B650-INF-1	1/19/2023	607	2301190803	N-Nitrosodimethylamine	0.009	μg/L	0.0097	0.0049	52	J
B650-INF-1	12/9/2022	607	2212090559	N-Nitrosodimethylamine	0.008	$\mu g/L$	0.0099	0.005	47	J
PFE-4A	1/26/2023	NDMA_LL	2301260929	N-Nitrosodimethylamine	13.05	ng/L	0.47	0.34		
PFE-4A	1/26/2023	NDMA_LL	2301260928	N-Nitrosodimethylamine	13.89	ng/L	0.48	0.35		
PFE-4A	1/26/2023	607	2301260927	N-Nitrosodimethylamine	0.008	μg/L	0.0096	0.0048	56	J
PFE-5	1/19/2023	607	2301191012	N-Nitrosodimethylamine	0.39	$\mu g/L$	0.0095	0.0048	52	
PFE-7	1/26/2023	NDMA_LL	2301260856	N-Nitrosodimethylamine	1.75	ng/L	0.49	0.36		

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

Well ID	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
PFE-5	1/19/202	23 8260	2301191010	Trichloroethene (TCE)	60	ug/L	1	0.2			
PFE-7	1/26/202	23 8260	2301260852	Trichloroethene (TCE)	5.5	ug/L	1	0.2			
PFE-7	1/26/202	23 8260	2301260853	Trichloroethene (TCE)	5.3	ug/L	1	0.2			

Appendix D.3 MPITS

### Analytical Results for MPITS and MPE Wells that Exceed Clean Up Levels

CAS Num	ber 62	-75-9	Analyte	N-Nitrosodimethylamine						
Clean Up	Level	0.0011 ug/L	(1.1 ng/L)	Source GMP						
Well ID	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	OA Flag
WEILID	Date	1,1001104	Sample	Constituent	Kesuit	Units	Lillit	Lillit	21110	QA Flag
B655-INF-2	12/8/20	22 607	2212081028	N-Nitrosodimethylamine	1.89	/T	0.0000	0.005	47	
		00,	2212001020	N-Nitrosodimetnyiamine	1.89	μg/L	0.0099	0.005	47	
B655-INF-2	12/8/20	22 607	2212081029	N-Nitrosodimethylamine	1.95	μg/L μg/L	0.0099	0.005	47	
B655-INF-2 B655-INF-2				•						

2.79

3.02

0.13

3.54

3.47

μg/L

 $\mu g/L$ 

μg/L

 $\mu g/L$ 

μg/L

0.0096

0.01

0.01

0.0095

0.0094

0.0048

0.005

0.005

0.0048

0.0047

45

45

45

45

45

MPE-1

MPE-10

MPE-11

MPE-9

MPE-9

11/14/2022 607

11/15/2022 607

11/15/2022 607

11/14/2022 607

11/14/2022 607

2211141333

2211151303

2211151245

2211141351

2211141350

N-Nitrosodimethylamine

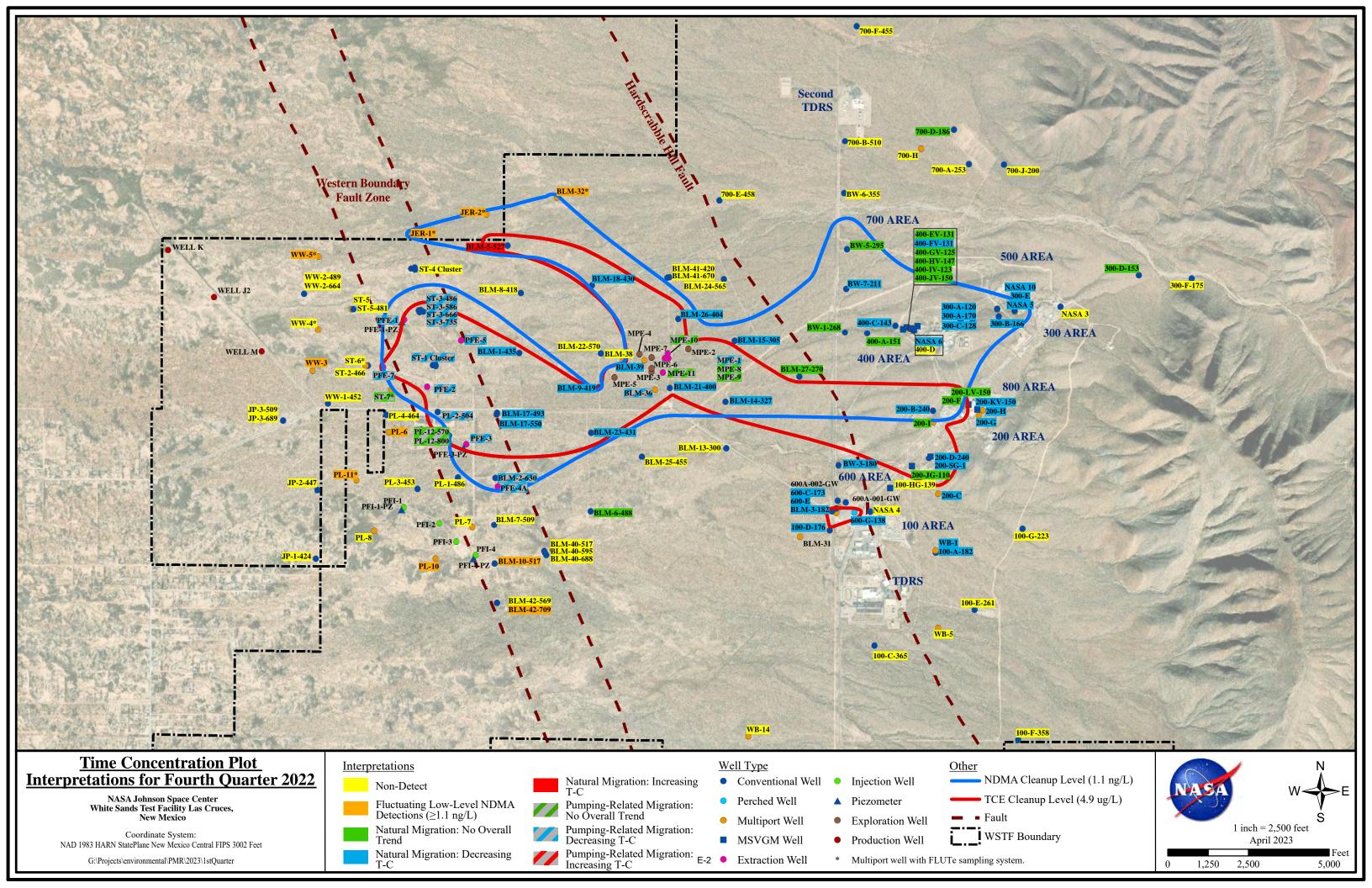
N-Nitrosodimethylamine

N-Nitrosodimethylamine

N-Nitrosodimethylamine

N-Nitrosodimethylamine

CAS Number 79-01-6 Analyte Trichloroethene (TCE)


Clean Up Level 4.9 ug/L Source GMP

Event Analysis Quant Det Xtrct

Well ID Date Method Semple Constituent Possible Units Limit Effic OA Flog

	Event	Analysis					Quant	Det	Xtrct		
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag	
B655-INF-2	12/8/2022	2 8260	2212081025	Trichloroethene (TCE)	58	ug/L	1	0.2			
B655-INF-2	12/8/2022	2 8260	2212081026	Trichloroethene (TCE)	61	ug/L	1	0.2			
B655-INF-2	1/19/2023	3 8260	2301190914	Trichloroethene (TCE)	79	ug/L	1	0.2			
B655-INF-2	11/10/2022	2 8260	2211100916	Trichloroethene (TCE)	51	ug/L	1	0.2			
MPE-1	11/14/2022	2 8260	2211141331	Trichloroethene (TCE)	76	ug/L	1	0.2			
MPE-10	11/15/2022	2 8260	2211151301	Trichloroethene (TCE)	71	ug/L	1	0.2			
MPE-11	11/15/2022	2 8260	2211151243	Trichloroethene (TCE)	5.1	ug/L	1	0.2			
MPE-9	11/14/2022	2 8260	2211141348	Trichloroethene (TCE)	99	ug/L	1	0.2			

Appendix E Time Concentration Plots



## Appendix E:

Reporting Period: 1Q/2023

Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

## **Upgradient Well Group**

Well	1st	Interpretation	Freon	Freon 11 Concentration (ug/L)			PCE	Concer	ntration (u	g/L)	TCI	Conce	ntration (u	ıg/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Concentration	n (ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year Last	Year
100-F-358 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2023	0.43 DL	2010	0.21 DL	2023	0.63 DL	2010	0.2 DL	2023	0.005 DL	NP	2012	0.004 DL	NP	2023	N/A	N/A	
100-G-223 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2023	0.43 DL	2010	0.21 DL	2023	0.63 DL	2010	0.2 DL	2023	0.005 DL	NP	2012	0.004 DL	NP	2023	N/A	N/A	
300-F-175 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2023	0.43 DL	2010	0.21 DL	2023	0.63 DL	2010	0.2 DL	2023	0.005 DL	NP	2016	0.004 DL	NP	2023	N/A	N/A	
NASA 3 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A	N/A	

## 100/600 Area Well Group

Well	1st	Interpretation	Freon	Freon 11 Concentration (ug/L)				Concen	tration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	entration	ı (ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-C-365 Conv	1989	Non Detect	1.00 DL	2010	0.24 DL	2022	1.00 DL	2010	0.21 DL	2022	1.00 DL	2010	0.2 DL	2022	0.05 RL	NP	1992	0.004 DL	NP	2022	N/A		N/A	
100-D-176 Conv	1997	Natural Migration (Decreasing)	1.60 DL	2003	0.24 DL	2022	2.00 DL	1999	0.21 DL	2022	9.60	1999	3.50	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	N/A		N/A	
100-HG-139 MSVGM	2011	Non Detect	0.79 J	2011	0.24 DL	2022	0.33 J	2015	0.21 DL	2022	10	2014	0.2 DL	2022	0.005 DL	NP	2020	0.004 DL	NP	2022	0.93 RB FB	2012	0.93 RB FB	2012
600-C-173 Conv	1988	Natural Migration (Decreasing)	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	9.00	1998	2.10	2022	0.1	NP	1988	0.004 DL	NP	2022	N/A		N/A	
600-E WestBay	1998	Natural Migration (Decreasing)	1.60 DL	2002	0.24 DL	2022	2.00 DL	1999	0.21 DL	2022	2.00 DL	1999	0.62 J	2022	0.005 DL	NP	2016	0.004 DL	NP	2022	N/A		N/A	
600-G-138 Conv	2011	Natural Migration (Decreasing)	5.10	2017	0.48 J	2023	0.3 DL	2018	0.21 DL	2023	130	2012	33	2023	0.1 DL	NP	2021	0.004 DL	NP	2022	0.96 RB FB	2012	0.96 RB FB	2012
BW-3-180 Conv	1988	Natural Migration (Decreasing)	10	1988	0.33 J	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	N/A		N/A	
NASA 4 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	3.50	2009	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
WB-1 WestBay	1990	Natural Migration (Decreasing)	15	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.33 J	2022	0.05 RL	NP	1993	0.004 DL	NP	2022	N/A		N/A	

# 200 Area Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
200-B-240 Conv	1989	Natural Migration (Decreasing)	280	1996	90	2022	15 QD	1989	1.90	2022	290 QD	1989	47	2022	1.60	25	1993	0.3	44	2022	N/A		N/A	
200-C WestBay	1993	Natural Migration (Decreasing)	51	1996	12	2022	2.50 RL	1996	0.21 DL	2022	4.30	2003	1.90	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
200-D-240 Conv	1988	Natural Migration (Decreasing)	240 QD	1995	53	2022	2.50 RL	1995	0.34 J	2022	110	1990	15	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
200-F WestBay	1995	Natural Migration (No Overall Trend)	41	2005	4.70	2022	2.50 RL	1996	0.21 DL	2022	34	2009	21	2022	0.41 J A	1	2021	0.004 DL	NP	2022	N/A		N/A	
200-G WestBay	1995	Natural Migration (Decreasing)	55	1995	4.60 QD	2022	2.50 RL	1996	0.21 DL	2022	4.80	2004	1.70	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	N/A		N/A	
200-H WestBay	1994	Natural Migration (Decreasing)	6.00	2003	1.00	2022	2.50 RL	1996	0.21 DL	2022	3.00 J	1997	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
200-I WestBay	1997	Natural Migration (No Overall Trend)	2.40 J	1999	0.36 J Q	2022	2.00 DL	1999	0.53 J	2022	35	2019	30 Q	2022	0.021 J	42	2006	0.004 DL	NP	2022	N/A		N/A	
200-JG-110 MSVGM	2012	Natural Migration (No Overall Trend)	17	2013	8.30	2022	2.20	2020	1.90	2022	25	2013	24	2022	0.005 DL	NP	2012	0.004 DL	NP	2022	0.93 J	2012	0.93 J	2012
200-KV-150 MSVGM	2015	Natural Migration (Decreasing)	90	2020	11	2022	0.3 DL	2015	0.21 DL	2022	22	2020	1.90	2022	0.005 DL	NP	2020	0.004 DL	NP	2022	N/A		N/A	
200-LV-150 Conv	2018	Natural Migration (No Overall Trend)	0.27 DL	2018	0.26 J	2022	0.3 DL	2018	0.21 DL	2022	0.89 J Q	2018	0.53 J	2022	0.004 DL	NP	2018	0.004 DL	NP	2022	N/A		N/A	
200-SG-1 MSVGM	2004	Natural Migration (Decreasing)	81	2008	8.80	2022	17	2007	4.30	2022	380	2007	100	2022	0.016 J	44	2008	0.004 DL	NP	2022	N/A		N/A	
BLM-3-182 Conv	1988	Natural Migration (Decreasing)	10	1988	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	41	1991	13	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	

## 300/400 Area Well Group

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concen	tration (u	g/L)	TCI	E Conce	ntration (u	g/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
300-A-120	1988	Natural	4300	1996	34	2022	2.50	1996	0.21	2022	2.50	2004	0.2 DL	2022	46	24	1990	2.50	43	2022	N/A		N/A	
Conv		Migration (Decreasing)	FB				RL		DL															

Well	1st	Interpretation	Freon	11 Con	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCI	E Conce	ntration (ເ	ug/L)		NDMA	607 Cond	centration	ı (ug/L)		NDMA	LL Conc	entratior	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
300-A-170 Conv	1988	Natural Migration (Decreasing)	6000	1988	240	2022	2.50 RL	1996	0.21 DL	2022	7.00	1988	1.00 J	2022	48 QD	21	1995	3.30	47	2022	N/A		N/A	
300-B-166 Conv	1988	Natural Migration (Decreasing)	1600	1988	180	2022	2.50 RL	1996	0.21 DL	2022	8.00	1988	0.32 J	2022	14	39	1991	6.70	49	2022	N/A		N/A	
300-C-128 Conv	1988	Natural Migration (Decreasing)	3000	1988	380	2022	2.50 RL	1996	0.21 DL	2022	3.70 J	1996	2.20	2022	47	32	2000	7.60	41	2022	N/A		N/A	
300-D-153 Conv	1988	Natural Migration (No Overall Trend)	6.30	2013	2.90	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
300-E WestBay	1995	Natural Migration (Decreasing)	180	1996	8.10	2022	2.50 RL	1996	0.21 DL	2022	9.30	1997	1.20	2022	49 A	1	2021	0.015 J	45	2022	N/A		N/A	
400-A-151 Conv	1989	Natural Migration (No Overall Trend)	450	1990	190	2023	2.50 RL	1996	0.21 DL	2023	2.50 RL	1996	0.78 J	2023	280	18	1991	15 D	52	2023	N/A		N/A	
400-C-143 Conv	1989	Natural Migration (Decreasing)	1600	1989	190	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	1.00	2022	93	15	1989	4.70	47	2022	N/A		N/A	
400-EV-131 MSVGM	2017	Natural Migration (No Overall Trend)	520	2017	350	2022	0.3 DL	2018	0.21 DL	2022	13	2017	1.20	2022	3.30	46	2020	2.00	40	2022	N/A		N/A	
400-FV-131 MSVGM	2017	Natural Migration (Decreasing)	290	2021	13	2022	0.3 DL	2018	0.21 DL	2022	1.90	2021	0.2 DL	2022	3.30	60	2020	0.93	41	2022	N/A		N/A	
400-GV-125 MSVGM	2017	Natural Migration (No Overall Trend)	320	2021	180	2022	0.3 DL	2018	0.21 DL	2022	1.80	2022	1.30	2022	5.70	44	2021	2.80	46	2022	N/A		N/A	
400-HV-147 MSVGM	2017	Natural Migration (No Overall Trend)	240	2021	130	2022	0.3 DL	2018	0.21 DL	2022	2.00	2017	0.51 J	2022	320 D	53	2021	320 D	41	2022	N/A		N/A	
400-IV-123 MSVGM	2017	Natural Migration (No Overall Trend)	430	2017	160	2022	0.93 J	2018	0.21 DL	2022	0.29 J	2021	0.2 DL	2022	0.041	87	2017	0.014 J	41	2022	N/A		N/A	
400-JV-150 MSVGM	2017	Natural Migration (No Overall Trend)	970	2021	540	2022	0.3 DL	2018	0.21 DL	2022	1.50	2017	0.65 J	2022	5.90	44	2021	4.80	40	2022	N/A		N/A	
BW-1-268 Conv	1989	Natural Migration (No Overall Trend)	1100	1989	230	2022	2.50 RL	1996	0.21 DL	2022	5.00	1989	1.60	2022	130	18	1991	8.20	43	2022	N/A		N/A	
BW-5-295 Conv	1989	Natural Migration (No Overall Trend)	360	1989	60	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.31 J	2022	1.90	49	1997	0.98	44	2022	N/A		N/A	

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BW-7-211 Conv	1989	Natural Migration (Decreasing)	2400	1991	150	2022	2.50 RL	1995	0.21 DL	2022	13	1989	1.30	2022	17	34	1994	2.00	47	2022	N/A		N/A	
NASA 10 Conv	1988	Natural Migration (Decreasing)	250	1996	11	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	4.70	19	1996	0.093 QD	43	2022	N/A		N/A	
NASA 5 Conv	1988	Natural Migration (Decreasing)	350	1991	23 Q	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	13	19	1996	1.10	43	2022	N/A		N/A	
NASA 6 Conv	1988	Natural Migration (Decreasing)	1300	1996	74	2022	2.50 RL	1996	0.21 DL	2022	5.00	1990	0.63 J	2022	95	21	1996	14 D	47	2022	N/A		N/A	

# Northern Boundary Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	E Conce	ntration (u	g/L)		NDMA	607 Con	centration	ı (ug/L)		NDMA	LL Conce	ntration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
700-A-253 Conv	1990	Non Detect	2.50 RL	1996	0.16 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	N/A		N/A	
700-B-510 Conv	1990	Non Detect	2.50 RL	1995	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	2.50 RL	1995	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
700-D-186 Conv	1990	Natural Migration (No Overall Trend)	2.50 RL	1995	0.57 J	2022	2.50 RL	1995	0.21 DL	2022	2.50 RL	1995	0.44 J	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
700-E-458 Conv	1990	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
700-F-455 Conv	1991	Non Detect	2.50 RL	1996	0.37 DL	2005	2.50 RL	1996	0.27 DL	2005	2.50 RL	1996	0.52 DL	2005	0.05 RL	NP	1997	0.005 DL	NP	2005	N/A		N/A	
700-H WestBay	1999	Non Detect	1.60 DL	2003	0.16 DL	2022	0.62 DL	2004	0.21 DL	2022	1.90 RB TB EB	2021	0.2 DL	2022	0.005 DL	NP	2013	0.004 DL	NP	2022	N/A		N/A	
700-J-200 Conv	1999	Non Detect	1.60 DL	2003	0.16 DL	2022	0.62 DL	2004	0.21 DL	2022	3.70	2005	0.2 J	2022	0.005 DL	NP	2017	0.004 DL	NP	2022	N/A		N/A	
BLM-24-565 Conv	1991	Non Detect	2.50 RL	1995	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	2.50 RL	1995	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
BLM-32 WestBay	1997	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2022	2.00 DL	1999	0.21 DL	2022	2.00 DL	1999	0.2 DL	2022	0.016 J	36	2004	0.004 DL	NP	2022	21	2015	1.6 RB FB	2022
BLM-41-420 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.3 DL	2013	0.21 DL	2022	1.00	2013	0.2 DL	2022	0.005 DL	NP	2015	0.004 DL	NP	2022	5.40	2017	5.40 FB	2015
BLM-41-670 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.28 DL	2018	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.005 DL	NP	2013	0.004 DL	NP	2022	5.50 FB	2017	5.50 FB	2017

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	g/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BW-6-355 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.32	37	2004	0.004 DL	NP	2022	N/A		N/A	
JER-1 WestBay	2004	Fluctuating LL NDMA	0.6 DL	2004	0.24 DL	2023	0.62 DL	2004	0.21 DL	2023	0.72	2011	0.2 DL	2023	0.014 J	41	2005	0.004 DL	NP	2022	360	2009	1.70 RB	2023
JER-2 WestBay	2004	Fluctuating LL NDMA	0.6 DL	2004	0.24 DL	2023	0.62 DL	2004	0.21 DL	2023	0.63 DL	2010	0.2 DL	2023	0.016 J	43	2005	0.004 DL	NP	2022	290 QD	2006	4.20 FB Q	2023

## **Southern Boundary Well Group**

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	(ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-E-261 Conv	1989	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1996	0.004 DL	NP	2022	N/A		N/A	
BLM-13-300 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
BLM-25-455 Conv	1991	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
BLM-40-517 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.3 DL	2017	0.21 DL	2022	0.22 DL	2017	0.2 DL	2022	0.005 DL	NP	2018	0.004 DL	NP	2022	1.10	2017	1.10	2017
BLM-40-595 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.28 DL	2018	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.005 DL	NP	2019	0.004 DL	NP	2022	0.67 FB	2014	0.67 FB	2014
BLM-40-688 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.3 DL	2016	0.21 DL	2022	0.22 DL	2016	0.2 DL	2022	0.005 DL	NP	2015	0.004 DL	NP	2022	0.74	2016	0.74	2016
BLM-6-488 Conv	1990	Natural Migration (No Overall Trend)	3.10 J	1999	0.24 DL	2023	2.50 RL	1996	0.21 DL	2023	14	1999	2.20	2023	0.05 RL	NP	1997	0.004 DL	NP	2023	45 FB	2001	1.40 FB	2023
WB-14 WestBay	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.33 J	2022	0.05 RL	NP	1993	0.004 DL	NP	2022	N/A		N/A	
WB-5 WestBay	1990	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1991	0.005 DL	NP	2022	N/A		N/A	

# **MPCA Well Group**

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concen	itration (u	g/L)	TCE	Concer	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Concentrat	on (ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year Last	Year
BLM-14-327 Conv	1990	Natural Migration (Decreasing)	230	1995	92	2022	9.20	2002	1.40	2022	180	1995	57	2022	1.20	18	2002	0.44	41	2022	N/A	N	4
BLM-15-305 Conv	1989	Natural Migration (Decreasing)	770	1991	110	2023	2.50 RL	1996	0.21 DL	2023	22	1989	1.90	2023	150 A	8	1989	22 D	47	2023	N/A	N	4

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Conce	ntration (u	g/L)		NDMA	607 Con	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-18-430 Conv	1989	Natural Migration (Decreasing)	120 QD	2005	21 Q	2023	2.50 RL	1996	0.52 J	2023	58	2009	15 Q	2023	0.15 QD	31	2009	0.038	52	2023	N/A		N/A	
BLM-21-400 Conv	1991	Natural Migration (Decreasing)	320	1996	34	2022	12	1995	0.85 J	2022	220	1991	18	2022	5.60	16	1995	0.85	40	2022	N/A		N/A	
BLM-22-570 Conv	1990	Non Detect	2.50 RL	1995	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	2.50 RL	1995	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
BLM-23-431 Conv	1990	Natural Migration (Decreasing)	240	1995	43 Q	2022	8.00	1991	1.80 Q	2022	240	1995	55 Q	2022	1.10	33	2006	0.46	46	2022	N/A		N/A	
BLM-26-404 Conv	1991	Natural Migration (Decreasing)	110	2008	65	2022	2.50 RL	1996	0.48 J	2022	28	2008	21	2022	1.20	50	1991	0.32	44	2022	N/A		N/A	
BLM-27-270 Conv	1991	Natural Migration (No Overall Trend)	500	2010	420 Q	2022	2.50 RL	1996	0.43 J Q	2022	2.50 RL	1996	1.40 Q	2022	13	41	2006	4.90 Q	47	2022	N/A		N/A	
BLM-36 WestBay	2000	Pumping Related Migration (Decreasing)	98	2011	42	2022	4.40	2011	3.10	2022	97	2008	64	2022	2.00	43	2007	1.00	44	2022	N/A		N/A	
BLM-38 WestBay	2000	Non Detect	1.60 DL	2003	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.7 DL	2003	0.2 DL	2022	0.024 J	33	2002	0.004 DL	NP	2022	N/A		N/A	
BLM-39 WestBay	2000	Natural Migration (Decreasing)	340	2005	100	2022	10	2007	6.50	2022	330 QD	2002	180	2022	9.70	19	2002	5.50	42	2022	N/A		N/A	
BLM-5-527 Conv	1988	Natural Migration (Incr easing)	23	2020	22	2022	2.50 RL	1996	0.84 J	2022	31	2022	31	2022	0.26	43	2022	0.23	44	2022	220 G	2017	220 G	2017
BLM-8-418 Conv	1988	Non Detect	2.50 RL	1996	0.24 J	2022	2.50 RL	1996	0.21 DL	2022	3.80 QD	2001	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
BLM-9-419 Conv	1989	Natural Migration (Decreasing)	320	1991	6.20	2022	12	1989	0.21 DL	2022	240	1989	3.00	2022	8.80	16	1995	0.004 DL	NP	2022	N/A		N/A	

# Main Plume Well Group

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	itration (u	g/L)	TCI	E Concei	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-1-435 Conv	1988	Natural Migration (Decreasing)	270	1991	45	2020	18	1988	2.40	2020	360	1988	62	2020	5.90	108	1997	1.30	68	2020	N/A		N/A	
BLM-17-493 Conv	1989	Natural Migration (Decreasing)	480	1989	50	2022	31	1989	2.40	2022	430	1989	53	2022	11 A Q	7	1989	1.70	44	2022	N/A		N/A	

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCI	E Conce	ntration (ເ	ıg/L)		NDMA	607 Con	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-17-550 Conv	1990	Natural Migration (Decreasing)	440	1991	91	2023	20	1990	3.30	2023	390	1991	83	2023	8.10	16	1995	1.10	47	2023	N/A		N/A	
BLM-2-630 Conv	1988	Pumping Related Migration (Decreasing)	470 QD	1988	0.24 DL	2022	8.00	1991	0.21 DL	2022	310 QD	1988	0.2 J	2022	1.30	31	2002	0.004 DL	NP	2022	N/A		N/A	
PL-1-486 Conv	1988	Non Detect	190	1996	0.25 J	2023	4.60	2004	0.21 DL	2023	180	2004	0.2 DL	2023	0.093	43	2005	0.004 DL	NP	2022	260 QD	2002	0.34 DL	2023
PL-2-504 Conv	1989	Pumping Related Migration (Decreasing)	230	1996	38	2022	2.50 RL	1996	0.83 J	2022	180	2004	50	2022	0.45 QD	58	2021	0.042	47	2022	300 G RB Q	2020	300 G RB Q	2020
ST-1-473 Conv	1989	Pumping Related Migration (Decreasing)	610	1996	110	2022	13	2010	3.10	2022	370	2005	180	2022	1.70	27	2009	0.43	44	2022	N/A		N/A	
ST-1-541 Conv	1992	Pumping Related Migration (Decreasing)	790	1995	160	2022	37	1995	8.20	2022	650	1995	150	2022	4.80 QD	37	2003	2.80	47	2022	N/A		N/A	
ST-1-630 Conv	1992	Pumping Related Migration (Decreasing)	410	2006	39	2022	19 QD	2007	2.30	2022	440	2000	49	2022	1.90	40	2019	0.11	47	2022	N/A		N/A	
ST-3-486	1991	Pumping Related Migration (Decreasing)	800	1996	18	2022	19	2003	0.21 DL	2022	690	1991	4.30	2022	4.40	45	2011	0.085	47	2022	N/A		N/A	
ST-3-586 Conv	1992	Pumping Related Migration (Decreasing)	640 T TB Q	1996	6.80	2022	15	2007	0.43 J	2022	320	2005	12	2022	3.80 QD	37	2003	0.021	47	2022	N/A		N/A	
ST-3-666 Conv	1992	Pumping Related Migration (Decreasing)	280	2009	12	2022	15	2009	0.65 J	2022	320	2009	19	2022	3.70	30	2006	0.11	47	2022	N/A		N/A	
ST-3-735 Conv	1992	Pumping Related Migration (Decreasing)	240	2005	8.00	2022	14	2007	0.21 DL	2022	320	2005	14	2022	7.80 QD	32	2009	0.55	47	2022	N/A		N/A	

## Plume Front Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	itration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	ug/L)		NDMA	LL Cond	centration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-10-517 Conv	1988	Natural Migration (No Overall Trend)	5.00 RL	1988	0.47 J	2023	2.50 RL	1996	0.21 DL	2023	4.40	2012	0.2 DL	2023	0.095 RL	NP	1988	0.004 DL	NP	2023	5.90	2020	0.64 FB	2023
BLM-7-509 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.09 J	32	1996	0.004 DL	NP	2022	0.76 FB	2018	0.45 J	2022
PL-3-453 Conv	1989	Non Detect	5.00 RL	1989	0.24 DL	2020	2.50 RL	1996	0.21 DL	2020	2.50 RL	1996	0.2 DL	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	3.80 RB FB	2005	3.80 RB FB	2005
PL-4-464 Conv	1990	Non Detect	28	2005	0.27 J	2022	2.50 RL	1996	0.21 DL	2022	21	2005	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	2.70 RB FB	2005	0.45 J RB TB FB	2022
PL-6 WestBay	1992	Fluctuating LL NDMA	4.10 J	1996	0.24 DL	2023	5.60	1996	0.21 DL	2023	4.90 J	1996	0.2 DL	2023	0.64	28	1999	0.004 DL	NP	2023	44	2023	44.03	2023
PL-7 WestBay	1993	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	4.90	2021	0.5 RB	2022
ST-2-466 Conv	1989	Non Detect	2.50 RL	1995	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	2.50 RL	1995	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	2.60 RB	2004	2.60 RB	2004
ST-4-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	1.80 FB	2012	0.5	2022
ST-4-589 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	1.10 RB Q	2008	0.4 J TB	2022
ST-4-690 Conv	1992	Non Detect	3.00 J	1998	0.24 DL	2022	2.50 RL	1995	0.21 DL	2022	10	1998	0.2 DL	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	2.70	2008	0.35 DL	2022
ST-5 WestBay	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	7.20	2017	0.8 RB EB	2022
ST-5-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.005 DL	NP	2022	0.7 FB	2002	0.7 FB	2002
ST-6 WestBay	1998	Non Detect	21 EB	2005	0.24 DL	2022	2.00 DL	1999	0.21 DL	2022	67	2004	0.26 J	2022	0.012	90	2017	0.004 DL	NP	2022	28 RB FB Q	2005	0.47 J RB FB	2022
ST-7 WestBay	1999	Pumping Related Migration (No Overall Trend)	1.70	2022	1.40	2023	0.62 DL	2004	0.21 DL	2023	1.90	2022	1.60	2023	0.005 DL	NP	2013	0.004 DL	NP	2022	3.80 FB	2002	0.5 FB	2023
WW-1-452 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.3 T	30	2006	0.004 DL	NP	2022	3.20 RB FB	2012	0.85 FB	2022

## **Sentinel Well Group**

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	n (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-A-182 Conv	1989	Natural Migration (Decreasing)	5.00	1995	1.90	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	N/A		N/A	
400-D WestBay	1995	Non Detect	3.30 J EB	1996	0.24 DL	2022	3.50 J	1998	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.29	34	1996	0.004 DL	NP	2022	N/A		N/A	
BLM-42-569 Conv	2020	Non Detect	0.24 DL	2022	0.24 DL	2022	0.21 DL	2022	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.004 DL	NP	2021	0.004 DL	NP	2021	1.60 RB * TB FB	2021	0.41 J	2022
BLM-42-709 Conv	2020	Fluctuating LL NDMA	0.24 DL	2022	0.24 DL	2022	0.21 DL	2022	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.004 DL	NP	2020	0.004 DL	NP	2021	1.50 RB * FB	2021	1.10	2022
JP-1-424 Conv	1988	Non Detect	5.50	2001	0.24 DL	2023	2.50 RL	1996	0.21 DL	2023	2.50 RL	1996	0.2 DL	2023	0.061 J	36	1998	0.004 DL	NP	2023	15 RB QD	2004	0.5 FB	2023
JP-2-447 Conv	1988	Non Detect	2.50 RL	1996	0.24 DL	2023	2.50 RL	1996	0.21 DL	2023	4.50	2001	0.2 DL	2023	0.05 RL	NP	1997	0.004 DL	NP	2021	14	2000	0.34 DL	2023
JP-3-509 Conv	2013	Non Detect	0.27 DL	2019	0.24 DL	2023	0.28 DL	2019	0.21 DL	2023	0.2 DL	2023	0.2 DL	2023	0.004 DL	NP	2017	0.004 DL	NP	2023	0.85 * TB	2021	0.34 DL	2023
JP-3-689 Conv	2014	Non Detect	0.27 DL	2019	0.24 DL	2023	0.28 DL	2019	0.21 DL	2023	0.2 DL	2023	0.2 DL	2023	0.005 DL	NP	2014	0.004 DL	NP	2023	1.80 TB FB	2021	0.39 J	2023
PL-10 WestBay	2002	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2023	0.62 DL	2004	0.21 DL	2023	0.62 DL	2004	0.2 DL	2023	0.005 DL	NP	2021	0.005 DL	NP	2021	6.10	2019	1.80 EB	2023
PL-11 FLUTe	2017	Fluctuating LL NDMA	0.45 J	2019	0.31 J	2022	0.28 DL	2018	0.21 DL	2022	0.25 J	2022	0.25 J	2022	0.005 DL	NP	2017	0.004 DL	NP	2022	5.90 SP	2019	1.40 FB	2022
PL-12-570 Conv	2020	Pumping Related Migration (No Overall Trend)	17	2020	4.20	2022	0.46 J	2020	0.21 DL	2022	20	2020	4.40	2022	0.004 DL	NP	2020	0.004 DL	NP	2022	3.60	2020	1.10	2022
PL-12-800 Conv	2020	Pumping Related Migration (No Overall Trend)	14	2020	4.50	2022	0.24 J	2021	0.21 DL	2022	17	2020	5.40	2022	0.004 DL	NP	2021	0.004 DL	NP	2022	4.60 FB	2021	1.70	2022
PL-8 WestBay	2000	Non Detect	1.60 DL	2002	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.7 DL	2003	0.2 DL	2022	0.005 DL	NP	2015	0.004 DL	NP	2022	12 FB	2002	0.56 EB	2022
WW-2-489 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.28 DL	2018	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.005 DL	NP	2014	0.004 DL	NP	2021	0.41 J FB	2016	0.34 DL	2022
WW-2-664 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2022	0.28 DL	2018	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.005 DL	NP	2014	0.004 DL	NP	2021	1.80 RB * FB	2021	0.34 DL	2022
WW-3 WestBay	2001	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.7 DL	2003	0.2 DL	2022	0.012 J	40	2004	0.004 DL	NP	2021	95 RB *	2007	1.10 RB EB	2022

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Conc	entration	(ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
WW-4 WestBay	2001	Non Detect	1.60 DL	2002	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.7 DL	2003	0.2 DL	2022	0.005 DL	NP	2016	0.004 DL	NP	2022	35	2016	0.71	2022
WW-5 WestBay	2001	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2023	0.62 DL	2004	0.21 DL	2023	0.62 DL	2004	0.2 DL	2023	0.005 DL	NP	2016	0.004 DL	NP	2022	6.50 *	2021	4.40	2023

# Other Well Group

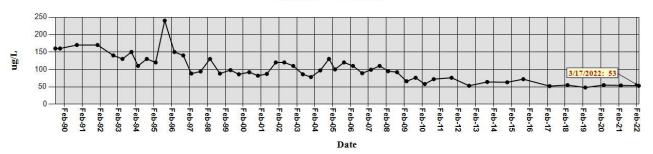
Well	1st	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)						NDMA LL Concentration (ng/L)			
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
MPE-1 Conv*	1999	Pumping Related Migration (Decreasing)	560	2005	140	2022	8.70	2010	3.80	2022	180	2010	76	2022	25	30	2009	6.20	45	2022	N/A		N/A	
MPE-10 Conv*	2004	Pumping Related Migration (No Overall Trend)	150	2017	120	2022	3.50	2022	3.50	2022	71	2022	71	2022	8.50	40	2021	6.70	45	2022	N/A		N/A	
MPE-11 Conv*	2004	Pumping Related Migration (No Overall Trend)	65	2008	7.80	2022	1.60	2008	0.26 J	2022	41	2008	5.10	2022	1.60	40	2007	0.29	45	2022	N/A		N/A	
MPE-8 Conv*	2003	Pumping Related Migration (No Overall Trend)	200	2020	78	2022	4.20	2021	2.70	2022	88	2021	61	2022	6.50	40	2021	4.80	46	2022	N/A		N/A	
MPE-9 Conv*	2004	Pumping Related Migration (No Overall Trend)	250	2015	130	2022	5.60	2018	4.80	2022	130	2018	99	2022	13	35	2019	7.90	45	2022	N/A		N/A	
PFE-1 Conv*	2000	Pumping Related Migration (Decreasing)	110	2010	3.80	2021	4.80	2010	0.32 J	2021	140	2005	5.90	2021	0.39	36	2017	0.12	53	2021	N/A		N/A	
PFE-2 Conv*	2000	Pumping Related Migration (Decreasing)	170	2007	62	2022	7.60	2007	2.40	2022	220	2007	58	2022	0.39	38	2021	0.34	44	2022	N/A		N/A	
PFE-3 Conv*	1991	Pumping Related Migration (Decreasing)	290	2006	37	2021	18	2004	1.80	2021	340	2004	44	2021	3.90	18	1991	0.34	38	2021	N/A		N/A	
PFE-4A Conv*	2001	Pumping Related Migration (Decreasing)	190	2004	1.30	2023	8.40	2007	0.21 DL	2023	240	2004	1.70	2023	0.26	36	2010	0.014 J	56	2023	N/A		N/A	

Well	1st	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)						NDMA LL Concentration (ng/L)			
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
PFE-7 Conv*	2001	Pumping Related Migration (Decreasing)	32	2004	5.80	2023	0.81 J	2004	0.21 J	2023	41	2004	5.50	2023	0.022	44	2004	0.004 DL	NP	2023	N/A		N/A	

### Notes:

T-C plot interpretations are based on a review of all T-C plots for a given well. This table generalizes the historical maximum concentration and last concentrations for four of the primary VOCs in groundwater. Evaluation of the data in this table should be used in conjunction with T-C plots as the maximum and current values do not always accurately represent the overall T-C plot trend.

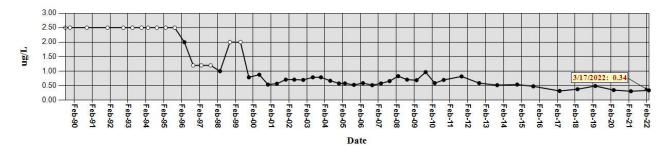
NDMA analytical results using two methods: 1) Method 607 (ug/L), extraction efficiency provided, the applicable detection limit is typically 0.004 to 0.005 ug/L; and 2) Low Level (ng/L), the applicable detection limit is 0.22 to 0.23 ng/L.


For wells with several maximum concentrations with the same value (typically the detection limit), the latest sampling event for which the detection limit applied was used for the sample year.

- J = Concentration values between the detection limit and practical quantitation limit.
- FB = Detected in field blank
- EB = Detected in equipment blank
- NP = NDMA Method 607 extraction efficiency not provided where the analytical result is non-detect (eg, 0.004DL or 0.05RL)
- TB = Detected in trip blank
- QD = duplicate error
- RL = Concentration presents half of the reporting limit. The maximum reporting limits and most recent year it was used are reported in the table. Reporting limits can change over time, typically decreasing as analytical techniques improve.
- DL = Maximum detection limit and most recent year they were used are reported in the table. Detection limits can change over time, typically decreasing as analytical techniques improve.

Well ID: 200-D-240 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

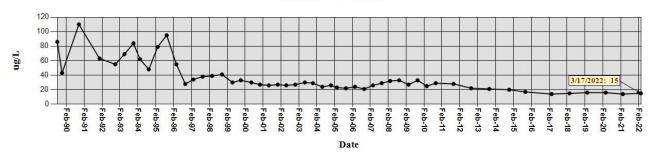
Analysis: 8260






Well ID: 200-D-240 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

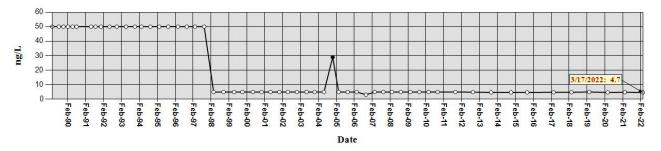

#### --- Non-Detect --- Detection



Well ID: 200-D-240 CAS RN: 79-01-6 Trichloroethene

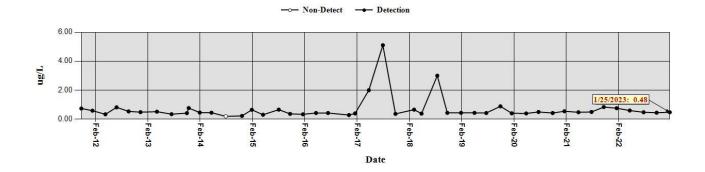
Analysis: 8260

### → Non-Detect → Detection



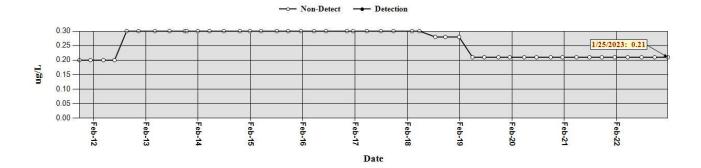

Well ID: 200-D-240 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607


Results are Corrected for Extraction Efficiency

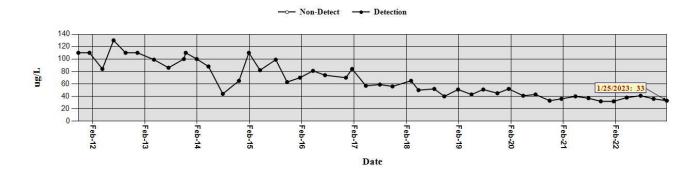





Well ID: 600-G-138 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

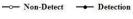
Analysis: 8260

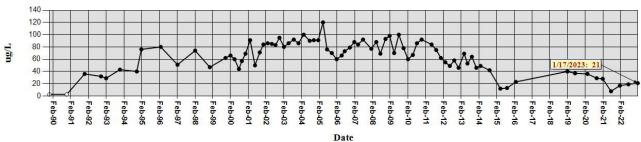



Well ID: 600-G-138 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260



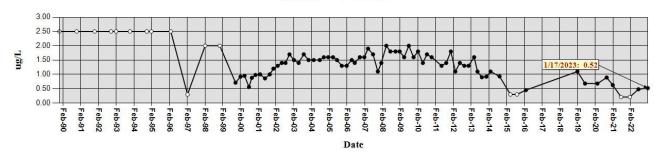

Well ID: 600-G-138 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260



### Well ID: BLM-18-430 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

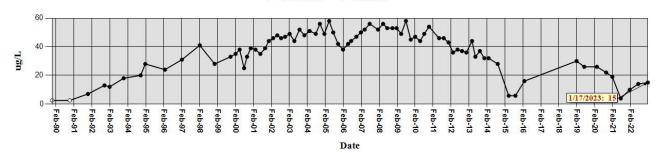
Analysis: 8260






### Well ID: BLM-18-430 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

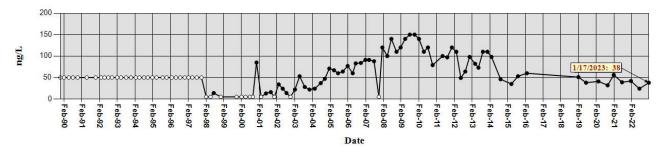

### → Non-Detect → Detection



# Well ID: BLM-18-430 CAS RN: 79-01-6 Trichloroethene

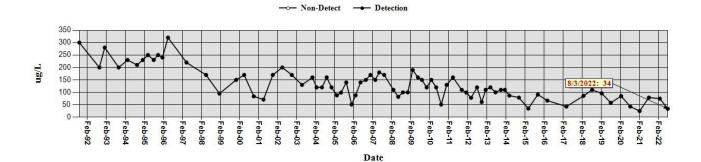
Analysis: 8260

### → Non-Detect → Detection



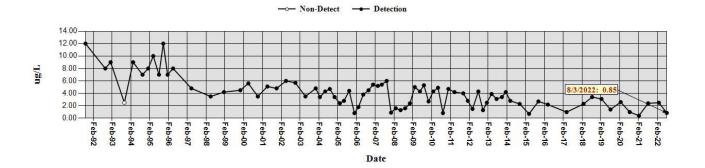

# Well ID: BLM-18-430 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607


Results are Corrected for Extraction Efficiency

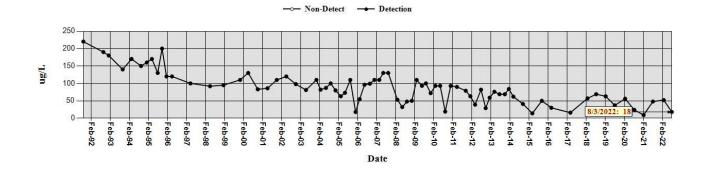





### Well ID: BLM-21-400 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



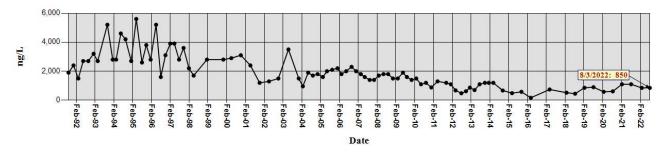

### Well ID: BLM-21-400 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260



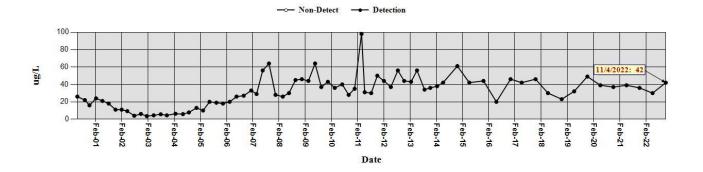
### Well ID: BLM-21-400 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260



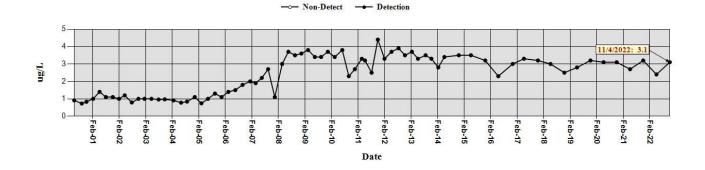

Well ID: BLM-21-400 CAS RN: 62-75-9 N-Nitrosodimethylamine

### Analysis: 607


Results are Corrected for Extraction Efficiency

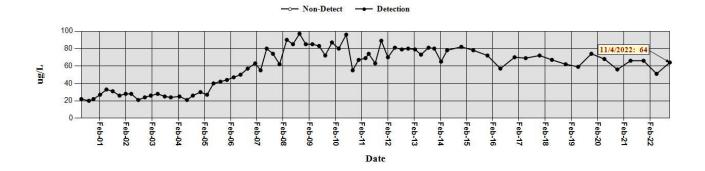





### Well ID: BLM-36-350 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



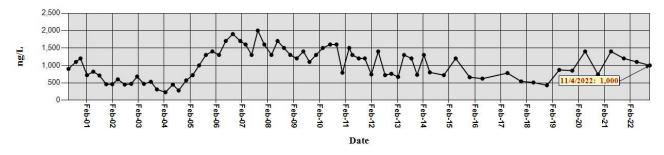

### Well ID: BLM-36-350 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260



### Well ID: BLM-36-350 CAS RN: 79-01-6 Trichloroethene

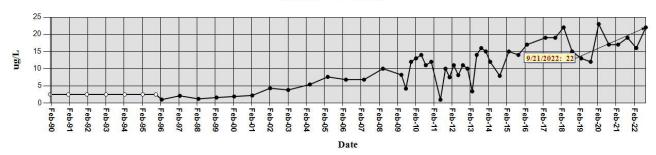
Analysis: 8260




## Well ID: BLM-36-350 CAS RN: 62-75-9 N-Nitrosodimethylamine

### Analysis: 607

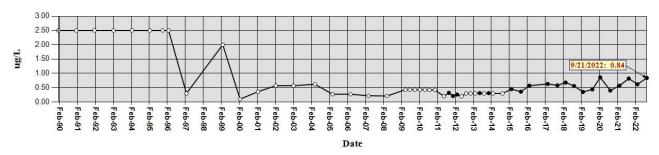
Results are Corrected for Extraction Efficiency






### Well ID: BLM-5-527 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

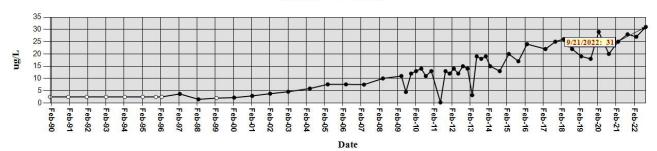
Analysis: 8260





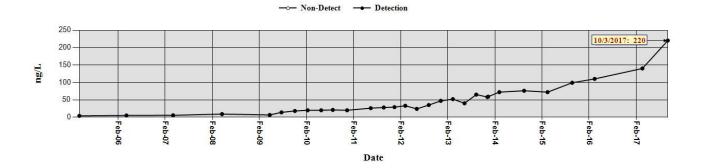

### Well ID: BLM-5-527 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260


#### -->- Non-Detect --> Detection

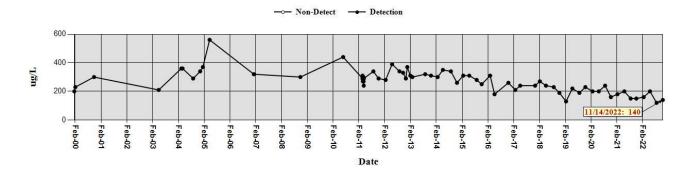


### Well ID: BLM-5-527 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

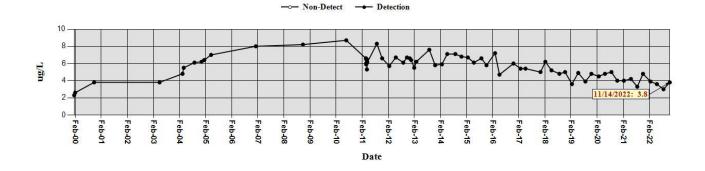
### → Non-Detect → Detection




## Well ID: BLM-5-527 CAS RN: 62-75-9 N-Nitrosodimethylamine

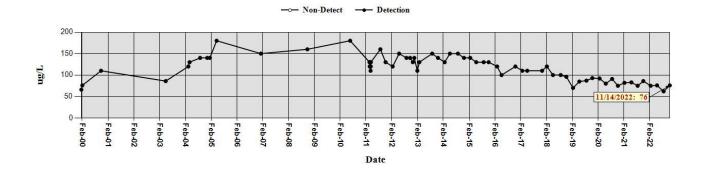
Analysis: NDMA_LL



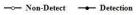

Well ID: MPE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

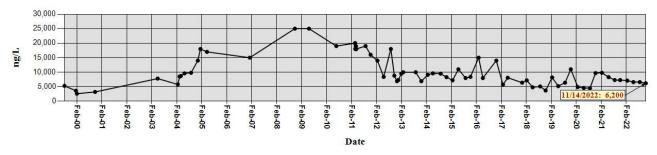
Analysis: 8260



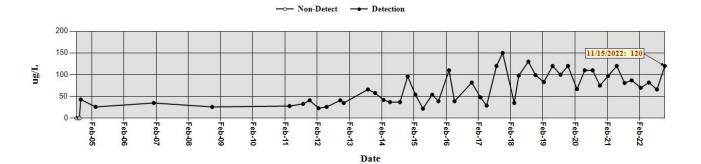

Well ID: MPE-1 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260



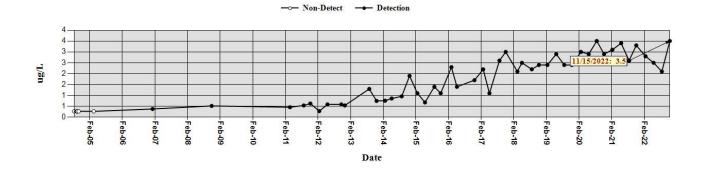


Well ID: MPE-1 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

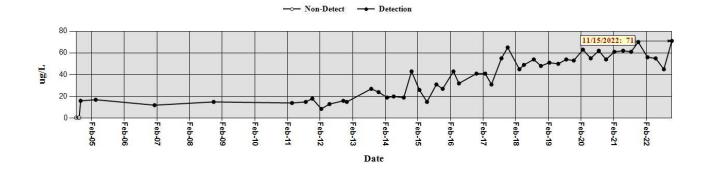



Well ID: MPE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine



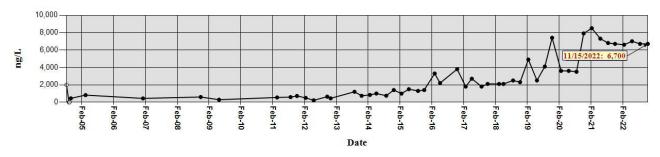



Well ID: MPE-10 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

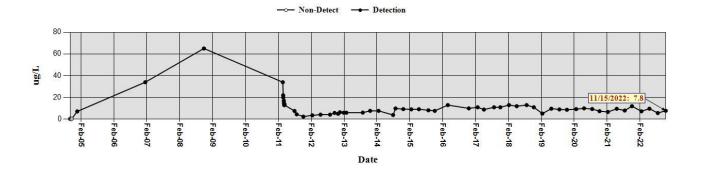



Well ID: MPE-10 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

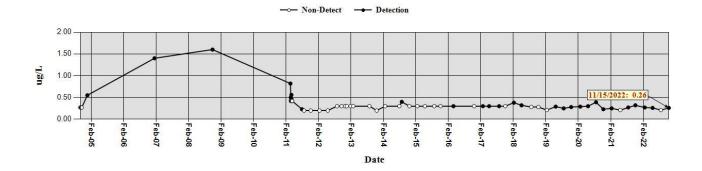



Well ID: MPE-10 CAS RN: 79-01-6 Trichloroethene

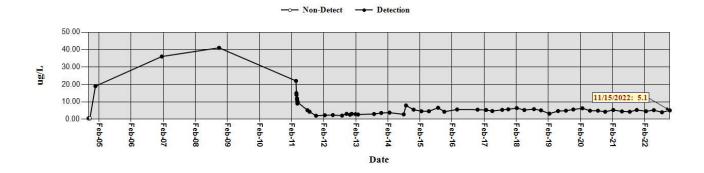



Well ID: MPE-10 CAS RN: 62-75-9 N-Nitrosodimethylamine



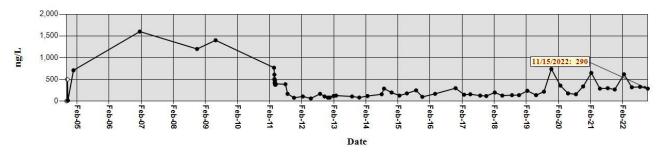



Well ID: MPE-11 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

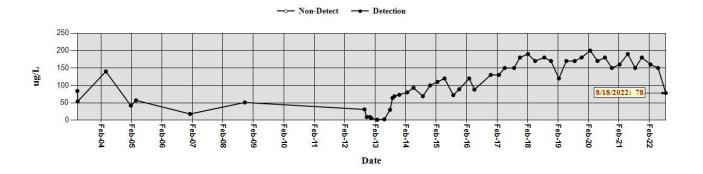



Well ID: MPE-11 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260




Well ID: MPE-11 CAS RN: 79-01-6 Trichloroethene

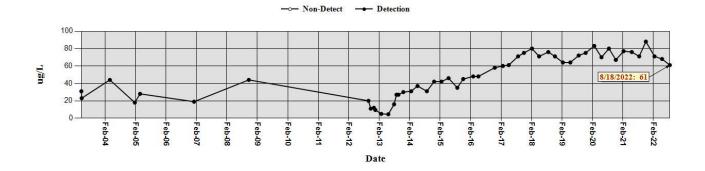



Well ID: MPE-11 CAS RN: 62-75-9 N-Nitrosodimethylamine



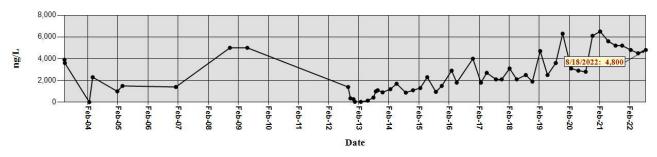


Well ID: MPE-8 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

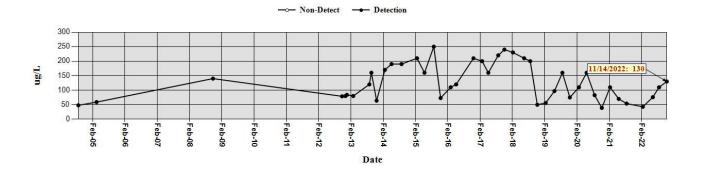



Well ID: MPE-8 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

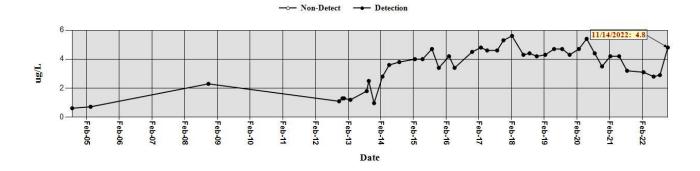



Well ID: MPE-8 CAS RN: 79-01-6 Trichloroethene

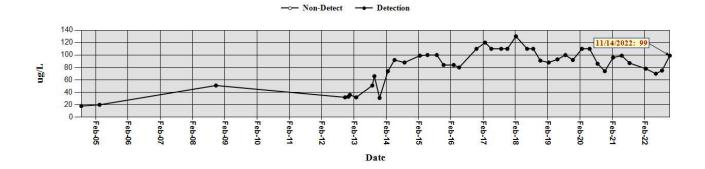



Well ID: MPE-8 CAS RN: 62-75-9 N-Nitrosodimethylamine



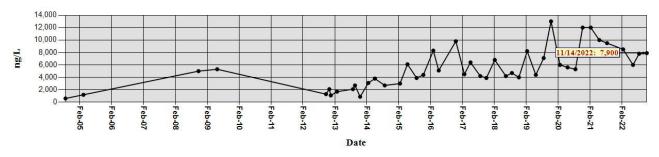



Well ID: MPE-9 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

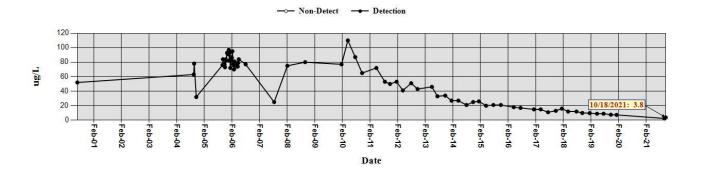



Well ID: MPE-9 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

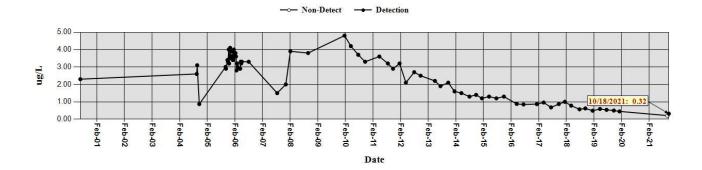



Well ID: MPE-9 CAS RN: 79-01-6 Trichloroethene

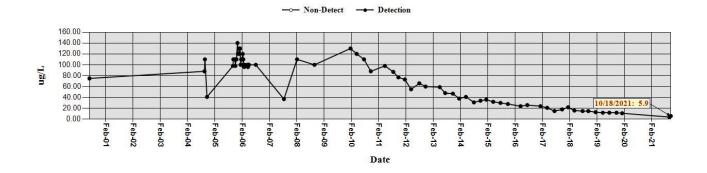



Well ID: MPE-9 CAS RN: 62-75-9 N-Nitrosodimethylamine



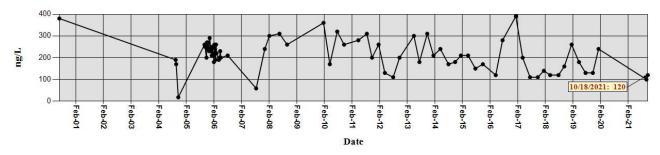



Well ID: PFE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

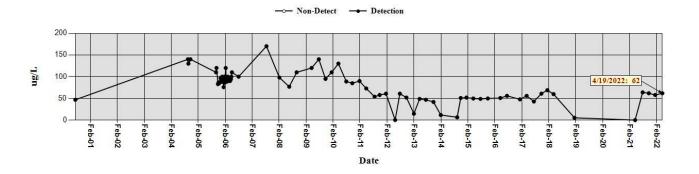



Well ID: PFE-1 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

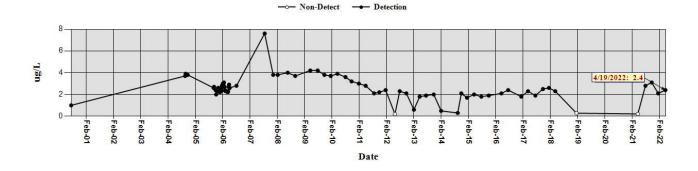



Well ID: PFE-1 CAS RN: 79-01-6 Trichloroethene

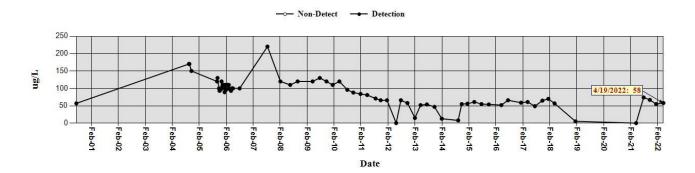



Well ID: PFE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine

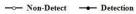


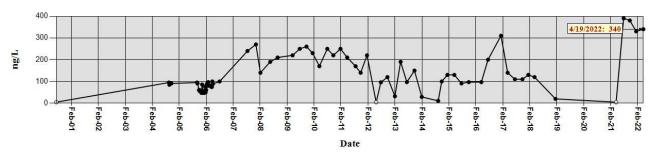



Well ID: PFE-2 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

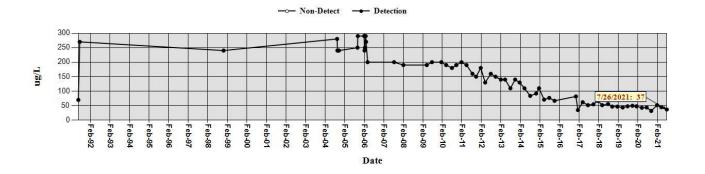



Well ID: PFE-2 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

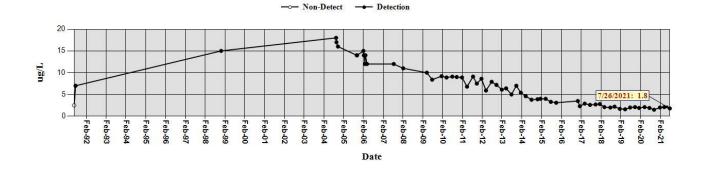



Well ID: PFE-2 CAS RN: 79-01-6 Trichloroethene

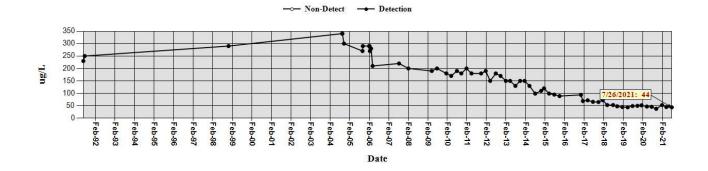



Well ID: PFE-2 CAS RN: 62-75-9 N-Nitrosodimethylamine



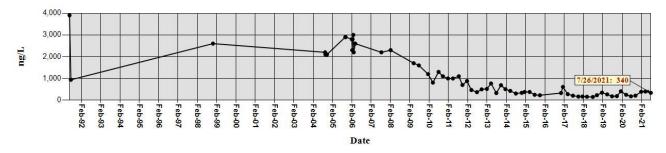



Well ID: PFE-3
CAS RN: 75-69-4 F11 - Trichlorofluoromethane

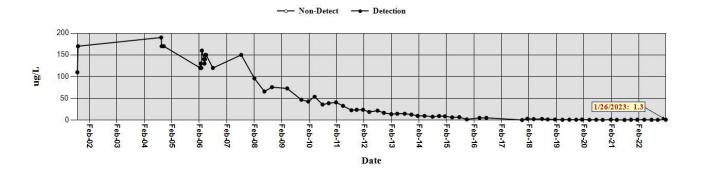



Well ID: PFE-3 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

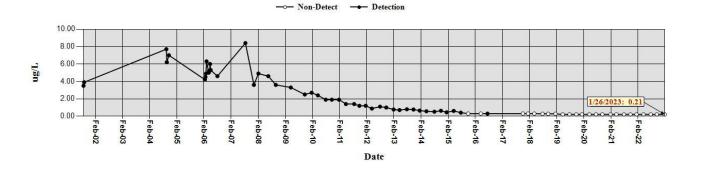



Well ID: PFE-3 CAS RN: 79-01-6 Trichloroethene

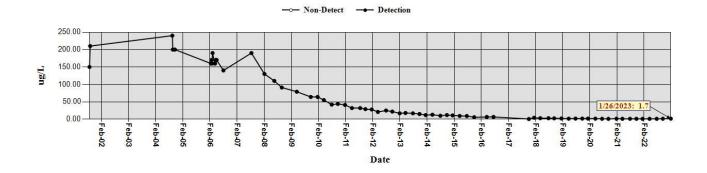



Well ID: PFE-3 CAS RN: 62-75-9 N-Nitrosodimethylamine

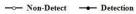


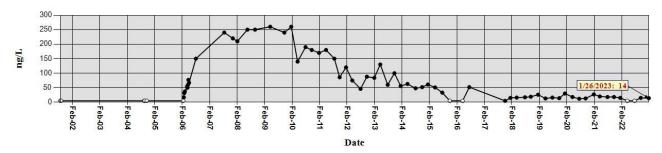



Well ID: PFE-4A CAS RN: 75-69-4 F11 - Trichlorofluoromethane

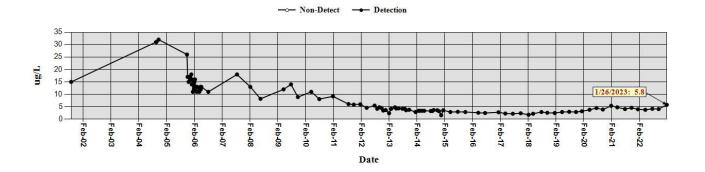



Well ID: PFE-4A CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

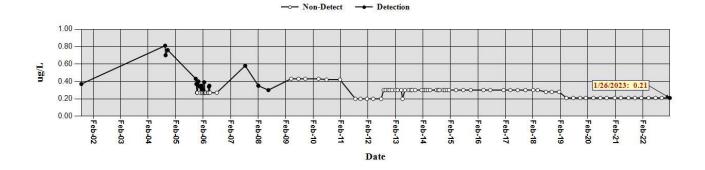



Well ID: PFE-4A CAS RN: 79-01-6 Trichloroethene

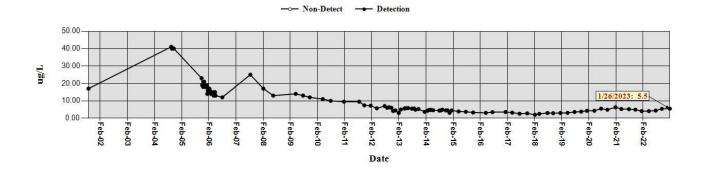



Well ID: PFE-4A CAS RN: 62-75-9 N-Nitrosodimethylamine



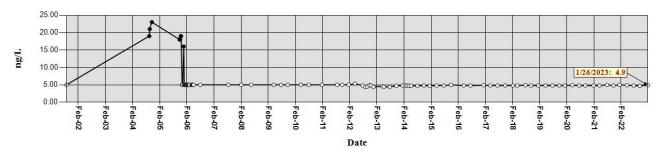



Well ID: PFE-7 CAS RN: 75-69-4 F11 - Trichlorofluoromethane




Well ID: PFE-7
CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260




Well ID: PFE-7 CAS RN: 79-01-6 Trichloroethene



Well ID: PFE-7 CAS RN: 62-75-9 N-Nitrosodimethylamine





Appendix F Summary of Source Area Investigations

# Appendix F Summary of Groundwater Monitoring Projects and Source Area Investigations

# 1.0 Groundwater Monitoring Well Abandonment, Installation, and Reconfiguration

# 1.1 Well Abandonment and Replacement

NASA performed significant fieldwork related to scheduled well abandonment or replacement projects in the first quarter of 2023.

#### 1.1.1 Wells BLM-42 and PL-12

In 2019, NASA plugged and abandoned (P&A) wells BLM-37 and PL-5 in accordance with the *Work Plan for Abandonment of NASA WSTF Monitoring Well BLM-37 and Replacement with Monitoring Well BLM-42* (NASA, 2018a) and the *NASA WSTF Drilling Work Plan for Groundwater Monitoring Well PL-12* (NASA, 2017a). NASA replaced these wells with BLM-42 and PL-12, respectively. NASA submitted the *Well Completion Report for BLM-42* on May 4, 2020 (NASA, 2020e). NMED reviewed the report and issued an approval with modifications on May 6, 2021 (NMED, 2021l). NASA submitted a response to the approval with modifications of the BLM-42 well completion report on May 18, 2021 (NASA, 2021h). NASA also submitted the *Well Completion Report for Well PL-12* on May 4, 2020 (NASA, 2020f). NMED reviewed the report and issued an approval on May 6, 2021 (NMED, 2021k).

A comprehensive summary of activities and correspondence related to wells BLM-42 and PL-12 was provided in the *Periodic Monitoring Report – Third Quarter 2021* (NASA, 2021y).

#### 1.1.2 Well BLM-28

NASA abandoned well BLM-28 in the first quarter of 2023 and continued planning the installation of replacement well 600C-001-GW. NASA submitted the *Abandonment Report for NASA Well BLM-28* on March 14, 2023 (NASA, 2023h). See also Section 1.4.1.

#### 1.1.3 Well BLM-30

NASA abandoned well BLM-30 in the first quarter of 2023 and continued planning the installation of replacement well BLM-43. See also Section 1.4.2.

#### 1.1.4 Well NASA 9

In June 2020, NASA attempted to remove the dedicated low-flow bladder pump from well NASA 9 to extend the tubing and lower the pump intake due to declining water levels. During removal activities, the tubing bundle separated from the pump, and the pump then dropped into the 5-foot (ft) well sump. During attempts to recover the pump using special fishing tools, NASA discovered that the inside of the 2-inch stainless-steel casing was obstructed with small roots just above and below the static water level. Numerous attempts to lock onto the top of the pump with the fishing tool were unsuccessful and the bladder pump could not be retrieved. On November 15, 2021, NMED approved the 2021 Groundwater Monitoring Plan (GMP) with a modification that directed NASA to submit a work plan for abandoning and replacing well NASA 9 (NMED, 2021q). NASA prepared and submitted the *Work Plan for Abandonment of NASA WSTF NASA 9 and Replacement with Monitoring Well 400-001-GW* on April 29, 2022 (NASA, 2022i). NMED approved the work plan on October 31, 2022 (NMED, 2022o). NASA

abandoned well NASA 9 in the first quarter of 2023 and continued planning the installation of replacement well 400-001-GW at a future date.

#### 1.2 Well Abandonment

NASA completed several well abandonment projects in the first quarter of 2023.

#### 1.2.1 200-SG Wells

On September 13, 2018, NMED approved NASA's April 24, 2018 GMP update for 2018 (NMED, 2018a; NASA, 2018b) with modifications, one of which required NASA to provide additional information on wells 200-SG-2 and 200-SG-3 and provide the rationale for not including them in the sampling schedule. NASA's December 3, 2018 response provided the required information and indicated that NASA would evaluate wells 200-SG-2 and 200-SG-3 for potential future sampling (NASA, 2018d). In April 2019, NASA evaluated the performance of the two wells, and determined that the groundwater levels in each are inadequate to allow for the collection of representative samples. NASA also determined that the relatively low concentrations of WSTF COC in these wells are not representative of groundwater within the Gardner Spring Arroyo in which monitoring well 200-D-109 is installed.

In their January 25, 2021 Approval with Modifications of the NASA Groundwater Monitoring Plan 2020 Update, NMED directed NASA to prepare and submit a work plan for abandonment of monitoring wells 200-SG-2 and 200-SG-3 and installation of replacement wells, to be submitted for review no later than November 30, 2021 (NMED, 2021b). NASA submitted the Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3 for NMED review on November 30, 2021 (NASA, 2021aa). NMED approved the work plan on January 10, 2022 (NMED, 2022a).

NASA plugged and abandoned the groundwater monitoring components of these wells in the first quarter of 2023 and does not intend to replace these wells. NASA submitted the *Reconfiguration Report for NASA Wells 200-SG-2 and 200-SG-3* on March 21, 2023 (NASA, 2023j).

#### 1.2.2 Additional Wells

In addition to wells 200-SG-2, 200-SG-3, BLM-28, BLM-30, and NASA 9, NASA abandoned seven other inactive wells in the first quarter of 2023. On September 7, 2022, NASA provided a copy of the plugging plan for well 400-C-118 to NMED while submitting the *Well Plugging Plan of Operations for NASA Wells NASA 9 and LRG-17519-POD4* (NASA, 2022m) to the New Mexico Office of the State Engineer. On September 20, 2022, NASA submitted the *Plugging and Abandonment of WSTF Wells 400-KV-142, 400-LV-125, BLM-2-482, NASA 8, PFE-4, and PFE-6* (NASA, 2022o), notifying NMED of the intent to plug and abandon six wells as indicated in plugging plans submitted to the New Mexico Office of the State Engineer. NASA submitted the *Abandonment Report for NASA Wells 400-C-118, 400-KV-142, 400-LV-125, BLM-2-482, and NASA 8* on March 30, 2023 (NASA, 2023k). NASA submitted the *Abandonment Report for PFE-4 and PFE-6* on March 9, 2023 (NASA, 2023g).

#### 1.3 Well Installation

NASA performed well installation fieldwork and additional project planning in the first quarter of 2023.

#### 1.3.1 New Well 600C-001-GW

On April 25, 2022, NMED (NMED, 2022g) approved NASA's August 31, 2021 *Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW* (NASA, 2021u, pp1-2). NASA performed project planning activities during the first quarter of 2023.

#### 1.3.2 New Wells 600A-003-GW and 600A-004-GW

As part of the ongoing investigation at the WSTF wastewater lagoons (NMED, 2022i), NASA installed two additional perched groundwater monitoring wells in the 600 Area. Wells 600A-003-GW and 600A-004-GW were installed during the first quarter 2023. Additional information on these wells will be provided in project-specific reports and future PMR.

### 1.4 Westbay Well Reconfiguration

Prior to calendar year 2020, NASA had reconfigured two Westbay wells (JP-3 and WW-2) to dual-zone dedicated low-flow bladder pumps and seven Westbay wells (BLM-32, JER-1, JER-2, ST-6, ST-7, WW-4, and WW-5) to multiport Water FLUTe sampling systems.

#### 1.4.1 BLM-28

NASA submitted the *Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon* on May 4, 2020 (NASA, 2020i). On November 19, 2020, NMED provided requirements for abandonment and replacement of the well (NMED, 2020k). The requirements were that after complete evaluation of all available data and information, NASA would then either submit a work plan for a replacement monitoring well or formally notify NMED that BLM-28 will not be replaced no later than January 31, 2022.

Following NMED's direction from the November 19, 2020 response for reconfiguring BLM-28, NASA submitted a work plan for abandonment of well BLM-28 on April 29, 2021 (NASA, 2021g). NASA then determined that a replacement well is necessary and developed and submitted the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW* on August 31, 2021 (NASA, 2021t, p1). NMED approved the work plan with modifications on April 25, 2022 (NMED, 2022g). NASA abandoned well BLM-28 in the first quarter of 2023 and continued planning the installation of replacement well 600C-001-GW. NASA submitted the *Abandonment Report for NASA Well BLM-28* on March 14, 2023 (NASA, 2023h).

#### 1.4.2 BLM-30

On November 5, 2020, NMED issued an approval with modifications (NMED, 2020i) of NASA's plan to P&A well BLM-30 and replace it with new well BLM-43. NMED directed NASA to perform geophysical logging and to provide a well completion report for BLM-43 no later than November 30, 2021. NASA submitted the *Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43* on February 3, 2021 (NASA, 2021a) and corresponded with the New Mexico Office of the State Engineer (NASA, 2021d) on the plugging plan for well BLM-30 and application for a permit to drill well BLM-43 on March 15, 2021. On September 28, 2021, NASA submitted the *Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43* (NASA, 2021x). NMED approved the request on October 27, 2021, which extended the due date for submittal of the report to November 30, 2022 (NMED, 2021p). NASA submitted the *Request for Second Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment* 

and Installation of Replacement Monitoring Well BLM-43 on April 26, 2022 (NASA, 2022f). NMED approved the request on June 6, 2022 (NMED, 2022g), extending the due date for submittal of the well completion report to April 28, 2023. NASA abandoned well BLM-30 in the first quarter of 2023 and continued planning the installation of replacement well BLM-43.

#### 1.4.3 BW-4

NASA determined that the well BW-4 can be reconfigured for continued use and submitted a well reconfiguration work plan for well BW-4 on June 29, 2021 (NASA, 2021m, p5). NMED approved the work plan on January 28, 2022 (NMED, 2022b) with modifications and direction to submit a well reconfiguration report no later than March 30, 2023 and a revised work plan no later than March 11, 2022. NASA submitted the *Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4* on March 8, 2022 (NASA, 2022c). NASA abandoned the lower portion of the borehole in January 2023 and continued planning for final reconfiguration of the well (sampling system acquisition and installation). NASA submitted the *Reconfiguration Report for NASA Well BW-4* on March 21, 2023 (NASA, 2023i).

# 1.4.4 Data Representativeness and Westbay Well Reconfiguration Plan

The FLUTe Data Representativeness investigation took the form of isolation and serial sampling of four zones of well WW-4 with the FLUTe liner removed. NASA completed the groundwater data representativeness evaluation performed at groundwater monitoring well WW-4 and submitted the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* to NMED on February 27, 2020 (NASA, 2020c, pp2-13). NMED reviewed the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* (2/27/2020) and on June 3, 2021 issued an Approval with Modifications (NMED, 2021m). This approval required a change to the investigation report indicating a need for an expanded investigation, and a subsequent work plan for the investigation. NASA submitted a response to the approval with modifications on August 17, 2021 (NASA, 2021s, p14). NASA followed that with submittal of the *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation* on November 2, 2021 (NASA, 2021z). NMED approved the work plan on August 8, 2022 (NMED, 2022l). NASA has performed the required fieldwork and is developing the investigation report, which is due to NMED no later than April 28, 2023.

The Westbay Well Reconfiguration Plan required time extensions to allow NASA to evaluate data from FLUTe sampling systems currently in place at WSTF, in the form of data from Westbay wells converted to FLUTe, and from laboratory testing of the FLUTe sample components. Beginning in 2020, NMED approved an extension request to submit the well reconfiguration work plan no later than December 31, 2020 (NMED, 2020a). On November 30, 2020, NASA submitted a *Request for Fourth Extension of Time for Well Reconfiguration Work Plan* (NASA, 2020r). NMED approved the fourth extension request for submittal of the well reconfiguration work plan for wells PL-6, PL-7, PL-8, PL-10, ST-5, and WW-3 on January 25, 2021 (NMED, 2021a). NASA submitted the *Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3* to NMED on April 29, 2021 (NASA, 2021f, pp2-4). NMED continued reviewing the work plan in the fourth quarter of 2022.

#### 2.0 Source Area Investigations

#### 2.1 200 Area

At the start of 2020, NMED approved a request for extension on January 16, 2020 for NASA to respond to 12 comments and submit a revised investigation report by February 3, 2020 (NMED, 2020b). NASA developed the required responses to the 12 comments in NMED's June 5, 2019 Disapproval 200 Area

and 600 Area Vapor Intrusion Assessment Report (NMED, 2019b) and submitted the NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report on January 30, 2020 (NASA, 2020b). NMED disapproved the report on September 20, 2022 and directed NASA to address three multipart comments and submit a revised report no later than April 28, 2023 (NMED, 2022n). NASA continued addressing NMED's comments in the first quarter of 2023.

#### 2.2 300 Area

Work in the 300 Area is primarily related to investigation and closure of the adjacent 400 Area. Prior to 2020, NASA's May 30, 2019 300 Area Supplemental Abbreviated Drilling Work Plan (NASA, 2019f) was the first document submitted. NMED disapproved the work plan on March 19, 2021 (NMED, 2021g) and directed NASA to address four comments and submit a revised work plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan on July 14, 2021 (NASA, 2021o). NMED continued reviewing the work plan in the first quarter of 2023.

#### 2.3 400 Area

Prior to 2020, NASA's last submittal for the 400 Area was the December 30, 2019 400 Area Closure Investigation Report (NASA, 2019q; revised). NMED disapproved report on March 19, 2021 (NMED, 2021h) and directed NASA to address 17 comments and submit a revised report no later than July 30, 2021. NASA submitted the NASA WSTF 400 Area Closure Investigation Report – NMED Third Disapproval Response on July 27, 2021 (NASA, 2021r, Response Table). NASA also submitted the 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on May 29, 2019 (NASA, 2019d) and the related 300 Area Supplemental Abbreviated Drilling Work Plan (NASA, 2019f) for two additional multiport soil vapor and groundwater monitoring wells in the 300 Area. NMED disapproved the 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on March 15, 2021 (NMED, 2021f), and NMED directed NASA to address three comments and submit a revised monitoring plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on July 14, 2021 (NASA, 2021p, Response Table). NMED continued reviewing the plans in the first quarter of 2023.

# 2.4 600 Area Perched Groundwater Investigations

#### 2.4.1 600 Area Perched Groundwater Extraction

NASA initiated extraction of perched groundwater from monitoring well 600-G-138 on April 19, 2013 in accordance with the NMED-approved 600 Area Perched Groundwater Extraction Pilot Test Work Plan (NASA, 2012). NASA has continued to extract groundwater in accordance with the plan and submit annual status reports. NASA submitted the 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 9 on April 26, 2022 (NASA, 2022e). NMED approved the report on January 6, 2023 (NMED, 2023a). During the first quarter of 2023, NASA began working on the interim status report for the tenth year of the project.

# 2.4.2 600 Area Perched Groundwater Investigation.

At the start of 2020, a 600 Area Perched Groundwater investigation and report was scheduled in accordance with the *Abbreviated Investigation Work Plan for 600 Area Perched Groundwater* (NASA, 2016b). This work plan was subsequently changed per NASA's August 7, 2019 *Request to Remove Electrical Resistivity Component of the 600 Area Perched Groundwater Geophysical Survey based on Geophysical Subcontractor Input Received during the Procurement Process* (NASA, 2019j) and NMED's August 23, 2019 approval (NMED, 2019e).

In 2019, a seismic reflection and reflection survey was completed in accordance with the AIWP and work scope modification (NASA, 2019o). NASA provided the *Synopsis of the Findings of the 600 Area Closure Geophysical Seismic Refraction Tomography and Reflection Surveys with Revised Soil Boring Locations Submitted for NMED Approval* on December 19, 2019 (NASA, 2019p). Because of an indeterminate review period for that status report and the start of drilling dependent on approval of the boring locations recommended therein, NASA had submitted a *Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report* on March 24, 2020 (NASA, 2020d). NMED approved the extension on July 1, 2020 to 150 days after NMED provides comments (NMED, 2020e).

On December 22, 2020, NMED issued its *Approval with Modifications 600 Area Closure Geophysical Survey Status Report* (NMED, 2020l) and established a due date for the 600 Area Perched Groundwater Investigation Report of December 31, 2021. On May 18, 2021, NASA provided the *Response to NMED Approval with Modifications for the 600 Area Closure Geophysical Survey Status Report – Comment 2 (Further Investigation*) (NASA, 2021i) in which NASA proposed a different approach for collection of geophysical data up- and down-gradient of the 600 Area Closure. The accuracy of the 600 Area geophysical survey would be assessed by comparing the actual bedrock depths from six NMED-approved perched groundwater investigation borings to the predicted depths from the geophysical survey before expanding the geophysical survey. NMED concurred with the approach on July 6, 2021 (NMED, 2021n). During the remainder of 2021, NASA performed planning and procurement activities in preparation for investigation fieldwork, which was initiated in January 2022 as described in Section 6.4.4 of the report.

NASA suspended extraction of perched groundwater from monitoring well 600-G-138 for much of January 2022 to reduce the impact on the perched groundwater aguifer and maximize the potential of locating perched groundwater during the perched groundwater investigation. NASA completed soil boring installation field activities for the perched groundwater investigation in accordance with NMED's Approval with Modifications 600 Area Closure Geophysical Survey Status Report (NMED, 2020m). The off-site subcontract drilling company installed all six soil borings between January 4 and January 27, 2022 in the vicinity of the 600 Area Closure to depths of approximately 145 to 180 feet bgs. The soil borings were located in potential bedrock lows identified using the geophysical seismic survey performed previously as part of the investigation. The soil borings transcended the alluvial overburden into the top of the andesite bedrock in search of perched groundwater on the alluvial-bedrock interface. NASA identified perched groundwater at one location adjacent to the north corner of the Closure and installed groundwater well 600A-001-GW. NASA also installed a conventional monitoring well 600A-002-GW downgradient to the west of the Closure in andesite bedrock. This boring encountered the deeper fractured bedrock aquifer at the projected total depth of the soil boring and was subsequently drilled deeper than the planned depth to facilitate installation of the groundwater monitoring well. The remaining four soil borings did not encounter perched groundwater and were plugged and abandoned in accordance with the NMEDapproved work plan. NASA performed colloidal borescope evaluations at the two new wells 600A-001-GW and 600A-002-GW, existing perched groundwater monitoring well 600-G-138, and 12 other conventional wells in the fractured bedrock aquifer with significant locations relative to the evaluation of regional flow.

NASA developed new conventional monitoring wells 600A-001-GW and 600A-002-GW, and in May 2022, NASA performed initial sampling in accordance with the current NMED-approved Groundwater Monitoring Plan. NASA prepared and submitted the *Request for a "Contained-in" Determination for Contaminated Media Associated with the 600 Area Perched Groundwater Abbreviated Investigation Work Plan* on March 22, 2022 (NASA, 2022d). NMED approved the request and granted a "no longer contained in determination" on April 18, 2022 (NMED, 2022e). NASA prepared and submitted the 600 Area Perched Groundwater Investigation Report on June 29, 2022 (NASA, 2022j) and provided the fee for review of the report on August 9, 2022 (NASA, 2022k). NASA shipped the soil cuttings generated

from the drilling activities off-site on June 15, 2022 for disposal as solid waste. NASA suspended regularly scheduled sampling of wells 600A-001-GW and 600A-002-GW in December 2022 because of equipment failure. NASA obtained replacement sampling equipment in December 2022 for use in January 2023. Upon further evaluation, NASA determined that previous development of these wells using on-site equipment after colloidal borescope tests may have been inadequate. NASA is working to acquire the services of an off-site subcontractor to perform additional development at these wells prior to sampling. NASA will provide an update on well development progress in future reports to NMED.

# 2.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

# 2.5.1 100 Area Lagoons

On May 29, 2019, NASA submitted the NASA WSTF (White Sands Test Facility) 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report (NASA, 2019e). NMED responded to that report on May 14, 2020 (NMED, 2020d) and informed NASA that comments would be incorporated into the SWMU 2 Investigation Report. NASA submitted the NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report on August 3, 2020 (NASA, 2020j). NMED disapproved the report on July 5, 2022 (NMED, 2022j) and directed NASA to provide a revised report no later than January 31, 2023. NASA continued reviewing and addressing NMED comments in the first quarter of 2023.

After completing investigation fieldwork at the 200 Area lagoons in February 2023, NASA and the subcontracted drilling company moved drilling equipment to the 100 Area lagoons. In late February and March 2023, NASA completed the installation of all required soil borings at the 100 Area lagoons. The required soil samples were collected at each boring and submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the *Request for Extension of Time for NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report Response to Disapproval* on January 18, 2023 (NASA, 2023a).

# 2.5.2 200 Area Lagoons

NASA submitted the NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report to NMED on November 25, 2019 (NASA, 2019n). NMED disapproved the report on June 6, 2022 (NMED, 2022h) and directed NASA to provide a revised report no later than December 30, 2022. NASA prepared and submitted the Request for Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval on December 8, 2022 (NASA, 2022q), requesting the due date for submittal of the revised report be extended to March 30, 2023. NASA continued reviewing and addressing NMED comments in the first quarter of 2023.

In February 2023, NASA and the subcontracted drilling company completed the nine soil borings at the 200 Area lagoons then decontaminated tooling and moved drilling equipment to the 100 Area lagoons. All samples were submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation report. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the *Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval on March 8, 2023 (NASA, 2023e).* 

# 2.5.3 600 Area Lagoons

NASA submitted the NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report to NMED on November 26, 2019 (NASA, 20190). NMED disapproved the report on June 16, 2022 (NMED, 2022i). NASA prepared and submitted the Request for Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval on December 8, 2022 (NASA, 2022r), requesting the due date for submittal of the revised report be extended to March 30, 2023. NASA continued reviewing and addressing NMED comments in the first quarter of 2023.

In January 2023, NASA mobilized the subcontracted drilling company to WSTF and initiated the installation of soil borings and monitoring wells in accordance with the plan. NASA completed soil boring 600L-SB-28 at a location topographically and hydrogeologically downgradient from the 600 Area wastewater lagoons. NASA collected the required soil samples from the boring, which intercepted perched groundwater at approximately 151 feet below ground surface. NASA installed a groundwater monitoring well in the borehole and monitored groundwater as it recovered to approximately 145 feet below ground surface. In January and February 2023, NASA completed the installation and sampling of all required soil borings within the 600 Area wastewater lagoon. All samples were submitted to the offsite laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the *Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval* on March 8, 2023 (NASA, 2023f).

# 2.5.4 STGT Lagoons

In February 2020, NASA and a subcontracted drilling company completed installation of the five remaining soil borings at the STGT Wastewater Lagoons. NASA collected and managed samples of subsurface soil and shipped them to the off-site laboratories for analysis. This activity completed soil sampling described in the NMED-approved work plan. NASA conducted soil vapor sampling at the STGT Wastewater Lagoons in March 2020. This completed all investigation fieldwork described in the NMED-approved work plan. NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report on October 13, 2020 (NASA, 2020o, p42). NMED disapproved the report on July 25, 2022 (NMED, 2022k) and directed NASA to submit a revised report no later than February 28, 2023. NASA continued reviewing and addressing NMED comments in the first quarter of 2023.

After completing the drilling and soil sampling at the 100 Area lagoons in early March 2022, NASA and the subcontracted drilling company decontaminated all downhole drilling tools, moved operations to the STGT Area lagoons, and completed the seven soil borings for these lagoons. All drilling equipment and tooling were decontaminated, and the subcontracted drilling company demobilized from WSTF on March 23, 2023. The required soil samples were collected at each boring and submitted to the off-site laboratories for analysis. During the first quarter of 2023, NASA began reviewing chemical analytical data in preparation for revising the disapproved investigation reports. To provide sufficient time to complete data review and preparation of the revised investigation report, NASA submitted the *Request for Extension of Time for NASA White Sands Test Facility (WSTF) Second Tracking and Data Relay Satellite Ground Terminal (STGT) Wastewater Lagoons Closure (Area of Concern [AOC] 51) Investigation Report Response to Disapproval on January 18, 2023 (NASA, 2023b).* 

#### 2.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines)

NASA provided the Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report to NMED on July 30, 2019 (NASA, 2019i). On November 16, 2020, NMED disapproved the revised report (NMED, 2020j) and directed NASA to address 16 comments and perform resampling along the HWTL by August 30, 2021. On May 19, 2021, NASA requested that the due date for submittal of a revised report be extended from August 30, 2021 to November 30, 2021 (NASA, 2021k). NMED approved this extension on July 6, 2021 (NMED, 2021o). NASA completed the collection of replacement soil samples for the analysis of volatile organic compounds along the HWTL on August 31, 2021. NASA installed 12 soil vapor implants at the sampling locations nearest the 200 Area occupied buildings and collected soil vapor samples using 1-liter SUMMA canisters on September 23, 2021. Due to ongoing drilling and laboratory contractor backlog due to COVID, on September 14, 2021, NASA then requested a second extension to submit the revised IR by January 31, 2022 (NASA, 2021v). NMED approved the request on January 25, 2022 (NMED, 2022c), extending the due date for submittal of the report to February 28, 2022. During the first quarter of 2023, NMED continued reviewing the Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report (March 4, 2022) (NASA, 2022a) and the Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) IR Risk Assessment Report (March 4, 2022) (NASA, 2022b).

#### 2.7 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

Preliminary investigation fieldwork was performed at the 600 Area BLM Off-Site Soil Pile in November and December 2015. NASA submitted the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report on February 25, 2016 (NASA, 2016a). NMED disapproved three revisions of the report prior to 2020. NMED provided the Approval with Modifications 600 Area Bureau of Land Management Off-Site Soil Pile (SWMU 16) Revised Investigation Report on May 6, 2021 (NMED, 2021k). The Approval with Modifications required submittal of an Accelerated Corrective Measures work plan no later than September 30, 2021. NASA submitted the Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report on July 20, 2021 (NASA, 2021q) and then submitted the Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) on September 28, 2021 (NASA, 2021w, p9). NMED approved the Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) with modifications on February 10, 2023 (NMED, 2023c). NASA is addressing NMED's two comments and revising the work plan for submittal to NMED no later than May 31, 2023.

# 2.8 SWMUs 18–20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank, and 800 Area Oxidizer Burner)

NMED reviewed the Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report (NASA, 2019g) and issued the Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report on August 27, 2020 (NMED, 2020h).

#### 2.9 SWMUs 21–27 (Septic Tanks)

NMED disapproved NASA's July 23, 2019, Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (NASA, 2019h, the revised IR) on January 29, 2021 and directed NASA to address six comments no later than May 30, 2021 (NMED 2021c). NASA addressed the six comments and submitted the Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27) Investigation Report on May 18, 2021 (NASA, 2021j, Response Table). NMED approved the revised NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27)

*Investigation Report* on March 16, 2023 (NMED, 2023d). NASA is addressing two comments and revising the report for submittal to NMED no later than June 16, 2023.

# 2.10 SWMUs 29-31 (Small Arms Firing Ranges)

Leading up to 2020, NASA completed additional fieldwork required to respond to NMED's February 21, 2019, Second Disapproval of Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. NMED (NMED, 2019a) approved NASA's October 28, 2019 request to extend the due date for submittal of the disapproval response and revised remedy completion report from December 31, 2019 to February 28, 2020 (NASA, 2019l). NASA determined that additional time was required to complete the planned human and ecological health risk assessment for the three SWMUs and submitted the Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report on January 29, 2020 (NASA, 2020a). NMED approved the request on March 21, 2020 (NMED, 2020c), extending the due date for submittal of the report from February 28, 2020 to April 24, 2020. NASA prepared the response to NMED's February 21, 2019 Second Disapproval of Small Arms Firing Ranges (SWMUs 29–31) Remedy Completion Report (March 30, 2018) and submitted the Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report on August 3, 2020 (NASA, 2020k). NMED approved the reports on November 16, 2022 with modifications (NMED, 2022r) and directed NASA to address six comments and submit revised reports no later than January 31, 2023. NASA addressed NMED's comments and submitted the Response to Approval w/Mods – Revised Small Arms Firing Range (SWMUs 29-31) RCR on January 27, 2023 (NASA, 2023d). No additional work is planned at these units. NMED and NASA will evaluate their status after the RCRA Permit takes effect.

# 2.11 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

Anticipating closure of Test Stand 302 apart from a full closure, NASA submitted the 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) (NASA, 2020k) on August 17, 2020. NMED disapproved the work plan on May 9, 2022 (NMED, 2022f). NMED directed NASA to address the comments and submit a revised work plan no later than September 15, 2022. NASA addressed NMED's 13 comments and submitted the Response to Disapproval of NASA WSTF 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) on September 14, 2022 (NASA, 2022n). NMED continued reviewing the IWP and HIS in the first quarter of 2023.

#### 2.12 SWMU 47 (500 Area Fuel Storage Area)

NASA submitted the 500 Area Fuel Storage (SWMU 47) Investigation Work Plan on September 26, 2018 (NASA, 2018c). NMED disapproved the work plan on August 8, 2019 (NMED, 2019d) and directed NASA to address 14 comments and submit a revised work plan by November 25, 2019. NASA submitted the *Response to Disapproval of 500 Area (SWMU 47) Investigation Work Plan* on November 21, 2019 (NASA, 2019m). NMED disapproved the revised work plan on March 19, 2021 and directed NASA to address five comments and submit a revised IWP no later than July 31, 2021 (NMED, 2021i). NASA addressed NMED's comments and submitted the *Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan* on June 29, 2021 (NASA, 2021n, Response Table). NMED continued reviewing the revised work plan in the fourth quarter of 2022.

#### **2.13** SWMU 49 (700 Area Landfill)

NASA submitted the NASA White Sands Test Facility (WSTF) SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan (IWP) and Historical Information Summary (HIS) on December 28, 2017

(NASA, 2017b). NMED disapproved the work plan (NMED, 2018b) and directed NASA to address eight comments and submit a revised work plan by May 31, 2019. NASA submitted the *Response to NMED Disapproval SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary* on March 28, 2019 (NASA, 2019b). NMED approved the work plan with modification on June 6, 2019 (NMED, 2019c). The planned investigation includes Phase 1A and Phase 1B soil vapor sampling and surface geophysics. In November 2019 and December 2019, NASA deployed 159 passive soil vapor samplers and completed the Phase 1A soil vapor survey. NASA and the subcontracted geophysics firm performed the EMI and magnetic gradient field surveys between February 24 and 28, 2020.

Because of project delays created by the COVID-19 pandemic, NASA submitted a *Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on May 4, 2020 (NASA, 2020g). NMED approved the request on July 1, 2020 (NMED, 2020f), extending the date for submittal of the Phase 1 investigation report to March 31, 2021. Meanwhile, NASA completed procurement of the ground penetrating radar and passive seismic surveys as described in the NMED-approved landfill investigation work plan. Due to the ongoing pandemic, NASA submitted a *Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on February 3, 2021 (NASA, 2021b). NMED approved the request on March 15, 2021 (NMED, 2021e), extending the due date for submittal of the Phase 1 investigation report to April 29, 2022. NMED approved the *700 Area Landfill Closure (SWMU 49) Phase I Investigation Report* on February 10, 2023 (NMED, 2023b) and directed NASA to provide a Phase II work plan no later than October 31, 2023.

#### 2.14 SWMU 50 (First TDRSS Diesel Release)

NASA submitted the *First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report* on March 14, 2019 (NASA, 2019a). NMED disapproved the report on July 8, 2020 (NMED, 2020g) and directed NASA to address 17 NMED comments and submit a revised report no later than October 30, 2020. NASA submitted the *Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report on November 9, 2020 (NASA, 2020p). NMED approved the reports on November 16, 2022 with modifications (NMED, 2022q) and directed NASA to address seven comments and submit revised reports no later than January 31, 2023. NASA addressed NMED's seven comments and submitted the <i>Response to Approval with Modification of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report* on January 26, 2023 (NASA, 2023c).

# 2.15 SWMU 52 (Second TDRSS UST)

On August 11, 2020, NASA discovered a diesel fuel leak in the area of the SWMU 52 Underground Storage Tank (UST), which is located north of WSTF at the White Sands Complex. NASA initiated a preliminary investigation and confirmed that the leak originated from a puncture in the return fuel line between emergency generator and the UST. NASA informed the NMED HWB of the release via email on August 13, 2020 and in writing in the August 17, 2020 NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification (NASA, 2020m). NASA submitted the Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report to NMED HWB on February 18, 2021 (NASA, 2021c).

Parallel activities were performed with notifications and approvals provided to the NMED Petroleum Storage Tank Bureau (PSTB). During August and September 2020, White Sands Complex personnel coordinated corrective action for this release through the NMED PSTB. On September 21, 2020, NASA submitted the *NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update* (NASA, 2020n. p7). The update summarized corrective action performed to date, including the removal of 32 vd³ of diesel-contaminated soil from the area of the leak. NASA then submitted the *Second* 

TDRSS UST Minimum Site Assessment Work Plan (NASA, 2020q) to the PSTB on November 18, 2020. The work plan described an investigation to determine the extent and magnitude of soil contamination caused by the diesel release. On February 4, 2021 (NMED PSTB, 2021), the NMED PSTB approved NASA's Second TDRSS UST Minimum Site Assessment Work Plan of November 18, 2020 (NASA, 2020r, pp3-6). NASA submitted the Second TDRSS UST Minimum Site Assessment Report to the NMED PSTB on June 25, 2021 (NASA, 2021l). The HWB was copied. The work conducted for the investigation and report had been under a PSTB-approved Minimum Site Investigation Work Plan (NMED, 2021d).

In December 2020, NASA completed shipping the remaining petroleum contaminated soil previously removed from the release location soil to the Valencia Regional Landfill and Recycling Facility for bioremediation and disposal. In total, approximately 214 yd³ of contaminated soil was removed from the release area. NASA drilled five boreholes for characterization of the release from March 22 through March 26, 2021 in accordance with the work plan.

The NMED HWB disapproved the Second TDRSS UST Minimum Site Assessment Report on March 1, 2022 and directed NASA to address four NMED comments and submit a revised report no later than May 6, 2022 (NMED, 2022d). NASA submitted the Response to Disapproval of NASA WSTF Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report on April 26, 2022 (NASA, 2022g). NMED approved the report with a modification on August 8, 2022 (NMED, 2022m). An additional submittal was not required.

#### 2.16 SWMU 54 (500 Area Former Oxidizer Burner)

NASA identified the location of a former 500 Area oxidizer as a potential new SWMU. On October 16, 2019, NASA submitted the Fifteen-Day Notification of a Newly Identified SWMU within the WSTF 500 Area (NASA, 2019k). NMED acknowledged receipt of NASA's fifteen-day notification on November 13, 2019 (NMED, 2019f) and directed NASA to provide a Release Assessment Report no later than May 29, 2020. NASA researched historical information on the newly identified SWMU and submitted the 500 Area Newly Identified SMWU Release Assessment Report on June 22, 2020 (NASA, 2020h, p4). NMED approved the report on December 20, 2021 and directed NASA to prepare and submit an investigation work plan for the unit no later than August 31, 2022 (NMED, 2021r). NASA completed preparation of the historical investigation summary and investigation work plan for the former oxidizer burner in the 500 Area. The unit will be identified as a SWMU in the Permit at an appropriate time. NASA submitted the 500 Area Former Oxidizer Burner (FOB) Investigation Work Plan (IWP) and Historical Information Summary (HIS) on August 25, 2022 (NASA, 20221). NASA submitted the Notice of a Class 1 Permit Modification Request for the NASA White Sands Test Facility (WSTF) Hazardous Waste Permit No. NM8800019434 on October 4, 2022 (NASA, 2022p), which notified NMED of a modification to the Permit by adding the FOB as SWMU 54. On November 15, 2022 NMED notified NASA that the unit had been added to the Permit as SWMU 54 and that the change would be fully addressed in the upcoming Permit renewal (NMED, 2022p). The unit is identified as SWMU 54 in the 2023 RCRA Permit (NMED, 2023e).

#### 3.0 References

NASA Johnson Space Center White Sands Test Facility. (2012, November 13). 600 Area Perched Groundwater Extraction Pilot Test Work Plan. Las Cruces, NM.

NASA Johnson Space Center White Sands Test Facility. (2016a, February 25). NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2016b, June 28). *Abbreviated Investigation Work Plan for the 600 Area Perched Groundwater*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017a, December 27). NASA WSTF Drilling Work Plan for Groundwater Monitoring Well PL-12. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017b, December 28). NASA White Sands Test Facility (WSTF) SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018a, January 30). Work Plan for Abandonment of NASA WSTF Monitoring Well BLM-37 and Replacement with Monitoring Well BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018b, April 24). NASA WSTF Groundwater Monitoring Plan Update for 2018. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018c, September 26). 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018d, December 3). Response to NMED Approval with Modifications WSTF 2018 Groundwater Monitoring Plan Correction. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019a, March 14). First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, March 28). Response to NMED Disapproval SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019d, May 29). 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, May 29). NASA WSTF (White Sands Test Facility) 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019f, May 30). 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019g, June 27). Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019h, July 23). Response to Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019i, July 30). *Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report.* Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2019j, August 7). Request to Remove Electrical Resistivity Component of the 600 Area Perched Groundwater Geophysical Survey based on Geophysical Subcontractor Input Received during the Procurement Process. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019k, October 16). Fifteen-Day Notification of a Newly Identified SWMU within the WSTF 500 Area. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019l, October 28). Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29 31) Response to Second Disapproval Remedy Completion Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019m, November 21). Response to Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019n, November 25). NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019o, November 26). NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019p, December 19). Synopsis of the Findings of the 600 Area Closure Geophysical Seismic Refraction Tomography and Reflection Surveys with Revised Soil Boring Locations Submitted for NMED Approval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019q, December 30). *NASA WSTF 400 Area Closure Investigation Report NMED Second Disapproval Response*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, January 29). Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29 31) Response to Second Disapproval Remedy Completion Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, January 30). NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, February 27). *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020d, March 24). Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020e, May 4). NASA White Sands Test Facility (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020f, May 4). NASA White Sands Test Facility (WSTF) Well Completion Report for PL-12. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020g, May 4). Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2020h, May 4). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020i, June 22). 500 Area Newly Identified SWMU Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020j, August 3). NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020k, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020l, August 17). NASA White Sands Test Facility (WSTF) 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020m, August 17). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020n, September 21). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020o, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020p, November 9). Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Las Cruces, NM.
- NASA White Sands Complex. (2020q, November 18). Second TDRSS UST Minimum Site Assessment Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020r, November 30). Request for Fourth Extension of Time for Well Reconfiguration Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021a, February 3). Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, February 3). Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, February 18). Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2021d, March 15). Application for Permit to Drill Monitoring Well (BLM-43) with No Consumptive Use of Water at NASA-JSC White Sands Test Facility. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, March 15). Well Plugging Plan of Operations for NASA Well BLM-30. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, April 29). *Well Abandonment Work Plan for Well BLM-28*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021h, May 18). Response to Approval with Modifications for NASA White Sands Test Facility (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, May 18). Response to NMED Approval with Modifications for the 600 Area Closure Geophysical Survey Status Report Comment 2 (Further Investigation). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, May 19). Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021l, June 25). Second TDRS UST Minimum Site Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, June 29). *NASA WSTF Well Reconfiguration Work Plan for Well BW-4*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021n, June 29). Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021o, July 14). Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021p, July 14). Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021q, July 20) Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021r, July 27). NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2021s, August 17). Response to Approval with Modifications for Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021t, August 31). Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021u, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021v, September 14). Request for Second Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021w, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021x, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021y, October 28). *NASA WSTF Periodic Monitoring Report Third Quarter 2021*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021z, November 2). *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021aa, November 30). Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022a, March 4). Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022b, March 4). Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) IR Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022c, March 8). Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022d, March 22). Request for a "Contained-in" Determination for Contaminated Media Associated with the 600 Area Perched Groundwater Abbreviated Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022e, April 26). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 9. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2022f, April 26). Request for Second Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022g, April 26). Response to Disapproval of NASA WSTF Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022h, April 29). NASA White Sands Test Facility (WSTF) 700 Area Landfill Closure (SWMU 49) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022i, April 29). NASA WSTF Work Plan for Abandonment of NASA WSTF NASA 9 and Replacement with Monitoring Well 400-001-GW. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022j, June 29). 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022k, August 9). Fee Assessment for the 600 Area Perched Groundwater Investigation Report (NMED Invoice Number HWB-NASA-22-009). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022l, August 25). NASA White Sands Test Facility (WSTF) 500 Area Former Oxidizer Burner (FOB) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022m, September 7). Well Plugging Plan of Operations for NASA Wells NASA 9 and LRG-17519-POD4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022n, September 14). Response to Disapproval of NASA WSTF 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022o, September 20). *Plugging and Abandonment of WSTF Wells 400-KV-142, 400-LV-125, BLM-2-482, NASA 8, PFE-4, and PFE-6*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022p, October 4). Notice of a Class 1 Permit Modification Request for the NASA White Sands Test Facility (WSTF) Hazardous Waste Permit No. NM8800019434. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022q, December 8). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022r, December 8). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2023a, January 18). Request for Extension of Time for NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023b, January 18). Request for Extension of Time for NASA White Sands Test Facility (WSTF) Second Tracking and Data Relay Satellite Ground Terminal (STGT) Wastewater Lagoons Closure (Area of Concern [AOC] 51) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023c, January 26). Response to Approval with Modification of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023d, January 27). Approval with Modifications Revised Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report; NMED Comment 1.b. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023e, March 8). Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (IR) Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023f, March 8). Request for Second Extension of Time for NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report Response to Disapproval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023g, March 9). *Abandonment Report for NASA Wells PFE-4 and PFE-6*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023h, March 14). *Abandonment Report for NASA Well BLM-28*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023i, March 21). *Reconfiguration Report for NASA Well BW-4*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023j, March 21). *Reconfiguration Report for NASA Wells 200-SG-2 and 200-SG-3*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2023k, March 30). *Abandonment Report for NASA Wells 400-C-118, 400-KV-142, 400-LV-125, BLM-2-482, and NASA 8.* Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2018a, September 13). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2018b, November 29). Disapproval SWMU 49, 700 Area Landfill Phase I Investigation Work Plan and Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019a, February 21). Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019b, June 5). Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2019c, June 6). *Approval with Modifications SWMU 49, 700 Area Landfill Phase I Investigation Work Plan and Historical Information Summary*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019d, August 8). Disapproval 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019e, August 23). Work Scope Modification Request Abbreviated Investigation Work Plan for 600 Area Perched Groundwater. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019f, November 13). Fifteen-Day Notification of a Newly Identified SWMU Within WSTF 500 Area. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020a, January 16). *Approval Request for Extension of Time for Well Reconfiguration Work Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020b, January 16). Approval Request for Second of Extension of Time for Response to Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020c, March 21). Approval Request for Second Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020d, May 14). 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020e, July 1). Approval Request for Extension of Time for Submittal of 600 Area Perched Groundwater Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020f, July 1). Approval Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020g, July 8). Disapproval First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020h, August 27). Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020i, November 5). Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement With Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020j, November 16). Disapproval 200 Area Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020k, November 19). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020l, December 22). Approval with Modifications 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2021a, January 25). *Approval Request for Fourth Extension of Time for Well Reconfiguration Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, January 25). *Approval with Modifications Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021c, January 29). Disapproval Revised WSTF Septic Tanks (SWMUs 21-27) Investigation Report. Santa Fe, NM.
- NMED Petroleum Storage Tank Bureau. (2021d, February 4). *Technical Approval of Minimum Site Assessment Workplan for White Sand Complex*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021e, March 15). Approval Request for Extension of Time for Submittal of The SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021f, March 15). Disapproval 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021g, March 19). *Disapproval 300 Area Supplemental Abbreviated Drilling Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021h, March 19). *Disapproval 400 Area Closure Investigation Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021i, March 19). Disapproval 500 Area Fuel Storage (SWMU 47) Investigation Work Plan: Phase I. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021j, May 6). *Approval PL-12 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021k, May 6). Approval with Modifications 600 Area Bureau of Land Management Off-Site Soil Pile (SWMU 16) Revised Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021l, May 6). *Approval with Modification BLM-42 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021m, June 3). *Approval with Modifications Groundwater Data Representativeness Phase I: Water FLUTe Well Evaluation Abbreviated Investigation Report.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021n, July 6). 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021o, July 7). Approval Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021p, October 27). Approval Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021q, November 15). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan.* Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2021r, December 20). *Approval 500 Area Newly Identified SWMU Release Assessment Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022a, January 10). *Approval Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022b, January 18). *Approval with Modifications Well Reconfiguration Work Plan for BW-4*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022c, January 25). Approval Request for Third Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022d, March 1). Disapproval Second TRDSS Underground Storage Tank (SWMU 52) Release Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022e, April 18). Approval Request for "Contained-In" Determination for Contaminated Media Associate With the 600 Area Perched Groundwater Investigation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022f, May 9). Disapproval 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Report Plan and Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022g, June 6). Approval Request for Second Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022h, June 6). Disapproval 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022i, June 16). Disapproval 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022j, July 5). *Disapproval 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022k, July 25). *Disapproval STGT Wastewater Lagoons Closure* (AOC 51) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (20221, August 8). Approval Abbreviated Investigation Work Plan for Groundwater Data Representativeness Phase 2: Water FLUTe Well Evaluation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022m, August 8). Approval with Modification Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022n, September 20). *Disapproval 200 and 600 Area Vapor Intrusion Assessment Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022o, October 31). *Approval Abbreviated Work Plan for Abandonment of NASA WSTF NASA 9 and Replacement with Monitoring Well 400-001-GW*. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2022p, November 15). NASA's October 4, 2022 Notice of a Class I Permit Modification Request for the NASA White Sands Test Facility Hazardous Waste Permit No. NM8800019434. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022q, November 16). Approval with Modifications Revised First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022r, November 16). Approval with Modifications Revised Small Arms Firing Ranges (SWMU 29-31) Remedy Completion Report and Risk Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023a, January 6). Approval Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Project Year 9. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023b, February 10). *Approval 700 Area Closure (SWMU 49) Phase I Investigation Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023c, February 10). Approval with Modifications 600 Area Bureau of Land Management Off-site Soil Pile (SWMU 16) Accelerated Corrective Measures Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023d, March 16). *Approval with Modifications Revised WSTF Septic Tanks (SWMU 21-27) Investigation Report.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2023e, April 27). *Hazardous Waste Permit No. NM8800019434*. Santa Fe, NM.