National Aeronautics and Space Administration **Lyndon B. Johnson Space Center White Sands Test Facility** P.O. Box 20 Las Cruces, NM 88004-0020

April 29, 2022

Reply to Attn of:

RE-22-055

Mr. Rick Shean, Bureau Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Subject: NASA WSTF Periodic Monitoring Report – First Quarter 2022

Enclosed is the NASA WSTF Periodic Monitoring Report (PMR) for the first quarter of 2022. This report provides detailed information about routine groundwater, Plume Front Treatment System (PFTS), and Mid-plume Interception and Treatment System (MPITS) monitoring performed between November 1, 2021 and January 31, 2022. Analytical data processed through the WSTF data management system, operational and performance data for both treatment systems, and site-wide potentiometric surface data are also provided for the same reporting period. Activity updates not associated with or reliant upon analytical data are reported for the previous calendar quarter.

This submittal includes an Executive Summary of the PMR that provides important events and observations as Enclosure 1, suggestions for installing and using WSTF PMR Databases as Enclosure 2, a bound paper copy of the main body of the report (pages i-78) as Enclosure 3, a DVD-ROM containing the entire report, the accompanying historical analytical databases, an Excel spreadsheet comprising groundwater data for the last four calendar quarters (February 2021 to January 2022) as Enclosure 4, and a CD-ROM containing analytical lab reports for the reporting period as Enclosure 5.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RE-22-055 2

If you have any questions or comments concerning this submittal, please contact Antonette Doherty of my staff at 575-202-5406.

AMANDA Digitally signed by AMANDA SKARSGARD Date: 2022.04.29 08:29:49 -06'00'

For: Timothy J. Davis

Chief, Environmental Office

5 Enclosures

cc: (*with CD only) Mr. Gabriel Acevedo Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

*Ms. Melanie Sandoval Ground Water Quality Bureau New Mexico Environment Department 1190 St. Francis Drive Santa Fe, NM 87502

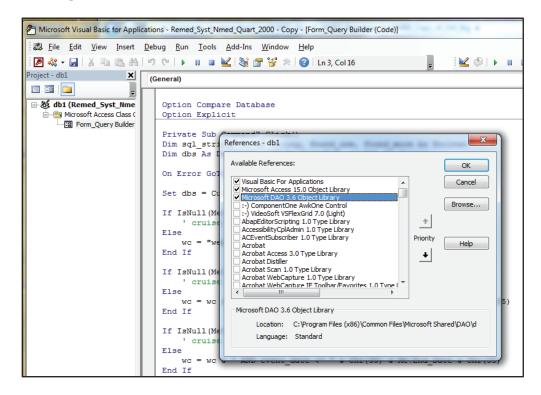
Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to groundwater monitoring wells, PFTS, and MPITS samples collected between November 1, 2020 and January 31, 2021. The data were processed through the WSTF data management system during the first calendar quarter of 2021.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.


NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2020f). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

RE-22-055

Suggestions for Installing and Using WSTF PMR Databases

- 1. Ensure Microsoft Access 2013 is installed.
- 2. Ensure the following Microsoft libraries are installed:
 - Visual Basic for Applications
 - Microsoft Access 15.0 Object Library
 - Microsoft DAO 3.6 Object Library

To verify the presence of these libraries, choose any table, click "Database Tools" on the menu bar, then click the "Visual Basic" button. A new window will open (see example below). Click "Tools" on the menu bar, then click "References". Another window will open (see example below), showing the libraries available. Ensure the boxes are checked for the three required libraries.

- 3. Copy the database files from the DVD to your hard drive. This will improve the performance of databases.
- 4. After running a query, you can export the data to Excel by selecting *External Data* on the menu bar, then click the *Export to Excel* button.

NASA WSTF Periodic Monitoring Report for First Quarter 2022 NM8800019434

NASA WSTF Periodic Monitoring Report for First Quarter 2022

Reporting Period: November 1, 2021 through January 31, 2022

Report Deadline: April 29, 2022

NM8800019434

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

AMANDA SKARSGARD Digitally signed by AMANDA SKARSGARD Date: 2022.04.29 08:40:07

See Electronic Signature

For: Timothy J. Davis

Chief, NASA Environmental Office

Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to groundwater monitoring wells, PFTS, and MPITS samples collected between November 1, 2021 and January 31, 2022. The data were processed through the WSTF data management system during the first calendar quarter of 2022.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.

NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2021b). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

Table of Contents

	Executive Summaryii				
Tab	le of Co	ntents	iv		
List	of Figu	res	vi		
List	of Tabl	es	vii		
List	of Acro	nyms and Abbreviations	viii		
1.0	Intr	oduction	1		
2.0		oe of Activities			
3.0		nup Levels			
3.1		HARGE STANDARDS FOR PFTS AND MPITS EFFLUENT			
3.2		DETECTIONS			
4.0	Rou	tine Groundwater Monitoring	3		
4.1		RENT STATUS AND MONITORING PERFORMED			
4.2		UNDWATER MONITORING RESULTS			
	4.2.1	Groundwater Elevations	4		
	4.2.2	Groundwater Quality Measurements (Indicator Parameters)	4		
4.3		UNDWATER CHEMICAL ANALYTICAL RESULTS			
5.0	Trea	ntment System Monitoring	5		
5.1	PLUN	ME FRONT TREATMENT SYSTEM			
	5.1.1	PFTS Operational Status			
	5.1.2	PFTS Performance			
	5.1.3	Extraction and Injection Well Performance.			
	5.1.4	PFTS Monitoring Results			
	5.1.5	PFTS Chemical Analytical Results			
<i>-</i> 2	5.1.6	PFTS Mass Removal			
5.2		PLUME INTERCEPTION AND TREATMENT SYSTEM			
	5.2.1	MPITS Monitoring Results			
	5.2.2 5.2.3	MPITS Operational Status. MPITS Performance			
	5.2.3	MPITS Extraction Well and Infiltration Basin Performance			
	5.2.5	MPITS Chemical Analytical Results			
	5.2.6	MPITS Mass Removal			
5.3		EDIATION SYSTEMS OPERATION COSTS			
6.0		ussion and Conclusions			
6.1		MARY OF GROUNDWATER MONITORING PROJECTS			
	6.1.1	Monitoring Well Performance or Sampling Equipment Issues			
	6.1.2	Monitoring Well Installation and Well Plugging and Abandonment			
	6.1.3	Westbay Well Reconfiguration	13		
	6.1.4	Groundwater Monitoring Data Representativeness			
6.2		PARISON OF ANALYTICAL DATA TO CLEANUP LEVELS	14		
	6.2.1	Groundwater Monitoring Wells			
	6.2.2	Plume Front Treatment System			
	6.2.3	Mid-plume Interception and Treatment System			
6.3		FAMINANT PLUME EVALUATION			
	6.3.1	Groundwater Elevations and Iso-concentration Maps			
	6.3.2	Combined Plume Isoconcentration Maps and Potentiometric Surface Map			
<i>c</i> 1	6.3.3	Time-concentration Plots and Groundwater Data Analytical Trends			
6.4		MARY OF SOURCE AREA INVESTIGATIONS			
	6.4.1 6.4.2	200 Area			
	6.4.3	400 Area			
	6.4.4	600 Area Perched Groundwater Extraction and Investigations			
	6.4.5	SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)			
	-	, , , , , , , , , , , , , , , , , , , ,			

Table of Contents

	6.4.6	SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])	20				
	6.4.7	SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)	21				
	6.4.8	SWMUs 18-20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank, and	1				
	800 Are	a Oxidizer Burner)	21				
	6.4.9	SWMUs 21–27 (Septic Tanks)	21				
	6.4.10	SWMUs 29–31 (Small Arms Firing Ranges)					
	6.4.11	SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)	22				
	6.4.12	SWMU 47 (500 Fuel Storage Area)					
	6.4.13	SWMU 49 (700 Area Landfill)	22				
	6.4.14	SWMU 50 (First TDRSS Diesel Release)	23				
	6.4.15	SWMU 52 (Second TDRSS UST)	23				
	6.4.16	Newly Identified SWMU	23				
7.0	Plan	ned Activities	23				
7.1	GRO	UNDWATER MONITORING AND RELATED PROJECTS	23				
	7.1.1	Groundwater Monitoring	23				
	7.1.2	Monitoring Well Performance or Sampling Equipment Issues	23				
	7.1.3	Westbay Well Reconfiguration.					
	7.1.4	Monitoring Well Installation	24				
7.2	GRO	UNDWATER REMEDIATION SYSTEM MONITORING	24				
8.0	Refe	rences	24				
Figu	ıres		28				
		Indicator Parameters and Analytical Data					
		.1 Monitor Well Indicator Parameters					
		.2 Monitor Well Analytical Data					
		.3 PFTS Indicator Parameters					
		.4 PFTS Analytical Data					
		.5 MPITS Indicator Parameters					
		.6 MPITS Analytical Data					
		Sampling Event Logbook Entries and Internal CoC Forms					
		Chemical Analytical Program (Internal QA reports)					
		Comparison to Cleanup Levels					
App	endix D	.1 Groundwater Monitoring Wells	D-1				
		.2 PFTS					
App	endix D	3 MPITS	D-3				
		Time-Concentration Plots					
	Appendix F Summary of Source Area InvestigationsF						
ԻԻ	CHUIA I	Zammar J VI Nour et 1 men in resugnitoris					

NASA White Sands Test Facility

List of Figures

FIGURE 1.1	WSTF LOCATION MAP	.29
FIGURE 1.2	WSTF WELL LOCATION MAP	.30
FIGURE 4.1	GROUNDWATER ELEVATIONS AND GENERALIZED FLOW DIRECTIONS FOR THE REPORTING PERIOD	.31
FIGURE 4.2	SITE-WIDE N-NITROSODIMETHYLAMINE (NDMA) CONCENTRATIONS FOR THE REPORTING PERIOD	.32
FIGURE 4.3	SITE-WIDE TRICHLOROETHENE (TCE) CONCENTRATIONS FOR THE REPORTING PERIOD	.33
FIGURE 6.1	PLUME FRONT GROUNDWATER ELEVATIONS FOR THE REPORTING PERIOD	.34
FIGURE 6.2	MID-PLUME GROUNDWATER ELEVATIONS FOR THE REPORTING PERIOD	.35
FIGURE 6.3	N-NITROSODIMETHYLAMINE CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIOD	
FIGURE 6.4	TRICHLOROETHENE CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIOD	.37
FIGURE 6.5	PLUME FRONT GROUNDWATER ELEVATIONS AND TRICHLOROETHENE CONCENTRATIONS FOR THE REPORTING PERIOD	.38

NASA White Sands Test Facility

List of Tables

TABLE 3.1	DP-1255 DISCHARGE STANDARDS AND GROUNDWATER CLEANUP LEVELS FOR WSTF COC	40
TABLE 3.2	ACCEPTED NEW DETECTIONS FOR – THIS REPORTING PERIOD	41
TABLE 3.3	UNCONFIRMED NEW DETECTIONS – RESOLUTION PENDING	42
TABLE 3.4	UNCONFIRMED DETECTIONS RESOLVED THIS REPORTING PERIOD	43
TABLE 4.1	GROUNDWATER MONITORING WELLS/ZONES ANALYZED FOR THE REPORTING PERIOD	
TABLE 4.2	GROUNDWATER ELEVATION DATA	46
TABLE 5.1	PFTS AND MPITS OPERATIONAL STATUS FOR THE REPORTING PERIOD	49
TABLE 5.2	PFTS AND MPITS SYSTEM SHUTDOWNS FOR THE REPORTING PERIOD	50
TABLE 5.3	PFTS AIR STRIPPER AND UV REACTOR PERFORMANCE FOR THE REPORTING PERIOD	51
TABLE 5.4	PFTS EXTRACTION AND INJECTION WELL FLOW RATES FOR THE REPORTING PERIOD	52
TABLE 5.5	COMPARISON OF SPECIFIC CAPACITIES FOR THE PLUME FRONT WELLS	53
TABLE 5.6	PLUME FRONT MASS REMOVAL ¹	54
TABLE 5.7	MPITS AIR STRIPPER AND UV REACTOR PERFORMANCE FOR THE REPORTING PERIOD	55
TABLE 5.8	MID-PLUME MASS REMOVAL ¹	56
TABLE 5.9	GROUNDWATER TREATMENT SYSTEM OPERATION COSTS (\$ / 1,000 GALS)	57
TABLE 6.1	STATUS OF WELLS WITH SAMPLING ISSUES	58

List of Acronyms and Abbreviations

μg/L
 AOC
 bgs
 Below ground surface
 BLM
 Bureau of Land Management
 COC
 Contaminant of concern
 CoC
 Chain-of-Custody
 DP
 Discharge Plan

EPA Environmental Protection Agency

FLUTe Flexible Liner Underground Technologies, LLC

Freon 11 Trichlorofluoromethane

ft Foot/feet g Gram

GMP Groundwater Monitoring Plan

gpm Gallons per minute

gpm/ft Gallons per minute per foot
HIS Historical Information Summary
HWTL Hazardous Waste Transmission Lines

IDWInvestigation-Derived WasteIWPInvestigation Work PlanJDMBJornada del Muerto BasinJERJornada Experimental Range

kg Kilogram L Liter

MDL Method detection limit MPCA Mid-plume Constriction Area

MPE Mid-plume Extraction

MPITS Mid-plume Interception and Treatment System NASA National Aeronautics and Space Administration

ND Not detected

NDMA N-nitrosodimethylamine ng/L Nanograms per liter

NMED New Mexico Environment Department

NMED HWB New Mexico Environment Department Hazardous Waste

Bureau

PCE Tetrachloroethene
PFE Plume Front Extraction
PFI Plume Front Injection

PFTS Plume Front Treatment System PMR Periodic Monitoring Report

QA Quality Assurance

RSMP Remediation System Monitoring Plan scfm Standard cubic feet per minute STGT Second TDRSS Ground Terminal SWMU Solid Waste Management Unit

T-C Time-concentration TCE Trichloroethene

TDRSS Tracking and Data Relay Satellite System

UV Ultraviolet

VOC Volatile Organic Compound

NASA White Sands Test Facility

WBFZ Western Boundary Fault Zone WSTF White Sands Test Facility

1.0 Introduction

National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) is located at 12600 NASA Road near Las Cruces, New Mexico. WSTF (U.S. Environmental Protection Agency [EPA] and New Mexico Environment Department [NMED] Facility Identification Number NM8800019434) currently operates as a field test facility under the NASA Lyndon B. Johnson Space Center in Houston, Texas. Figure 1.1 is a map showing the location of WSTF in southern Doña Ana County.

The facility provides testing services to NASA for United States space programs and support for the Department of Defense, Department of Energy, private industry, and foreign government agencies. The primary WSTF mission is to develop, qualify, and test the limits of spacecraft propulsion systems and subsystems. The installation also operates several laboratory facilities that conduct simulated use tests for space station materials, as well as compatibility testing.

WSTF historical operations resulted in a groundwater contaminant plume that requires extensive investigation activities and associated corrective actions. NASA developed and implemented a strategy for remediating contaminated WSTF groundwater in 1996, based on an analysis of potential risk to human health and the environmental and hydrogeological characteristics of the site. This strategy involves a sequential three-phase approach: 1) to stabilize the leading edge of the plume in the alluvial aquifer at the Plume Front area through operation of the Plume Front Treatment System (PFTS); 2) to intercept a high-concentration portion of the plume within fractured bedrock in the Mid-plume area through operation of the Mid-plume Interception and Treatment System (MPITS); and 3) to investigate contaminant source areas and remediate, as appropriate, any remaining sources of contamination identified during ongoing investigations.

There are currently 215 active groundwater monitoring locations (treatment system sample ports, extraction wells, conventional wells, and multiport well zones) in use at WSTF. Figure 1.2 provides a map of the facility and shows the locations of groundwater monitoring wells and components of the PFTS and the MPITS. Routine groundwater monitoring is performed in accordance with the NMED Hazardous Waste Permit (Permit; NMED, 2009, p68), the Groundwater Monitoring Plan (GMP; NASA, 2021a), and the Remediation System Monitoring Plan (RSMP; NASA, 2021d).

This report provides details of groundwater (routine and related to corrective actions), PFTS, and MPITS samples processed through the WSTF data management system during the first quarter of 2022. Between November 1, 2021 and January 31, 2021, groundwater samples were collected at 113 groundwater monitoring wells or zones (114 sample events), six PFTS sampling locations (10 sample events), and six MPITS sampling locations (10 sample events). Specific monitoring activities for routine groundwater sampling are discussed in Section 4.0. The individual sampling activity at each monitoring well, well zone, or other sampling point is identified as a discrete, sampling event (by location and sampling date). This report includes and discusses these sampling events.

The PFTS was operational on 82 of 92 days during the reporting period at an average flow rate of 780 gallons per minute (gpm) while running. Approximately 234 acre-feet (ft) of groundwater were treated at the PFTS during this timeframe. Specific information related to operation, maintenance, and monitoring of the PFTS is included in Section 5.1 of this report. The MPITS was operational on 88 of 92 days during the reporting period, treating approximately 3.22 acre-ft of groundwater including investigation-derived waste (IDW). Specific information on MPITS operation, maintenance, monitoring, and related activities is provided in Section 5.2.

2.0 Scope of Activities

Groundwater and remediation systems sampling event analytical results and remediation systems operational data are provided for the reporting period. Updates for activities that are not associated with or reliant upon groundwater analytical data are provided for the calendar quarter.

NASA routinely collects groundwater and treatment system samples for the analysis of volatile organic compounds (VOC), N-nitrosodimethylamine (NDMA), and several inorganic compounds. The GMP (NASA, 2021a) identifies the specific samples that are to be collected at each groundwater monitoring well. The RSMP (NASA, 2021d) provides sampling requirements for the PFTS and the MPITS.

Groundwater quality data, collectively referred to as indicator parameters, are collected during each sampling event. Indicator parameters may include temperature, pH, conductivity, turbidity, and (at wells sampled using low-flow procedures) oxidation-reduction potential and dissolved oxygen. Depth to groundwater (DTW) is also measured at each conventional monitoring well during the sampling event. Indicator parameters associated with sampling events during the reporting period are included in Appendix A as follows: groundwater monitoring wells (Section 4.2.2) – Appendix A.1; PFTS (Section 5.1.4.2) – Appendix A.3; and MPITS (Section 5.2.1.2) – Appendix A.5.

Chemical analytical data (detections only) for sampling events during the reporting period are discussed in the following sections: Groundwater monitoring wells (Section 4.3) – <u>Appendix A.2</u>; PFTS (Section 5.1.5) – <u>Appendix A.4</u>; and MPITS (Section 5.2.5) – <u>Appendix A.6</u>.

Field data and the recording of other specific sampling-related details for each sampling event are discussed in Sections 4.0, 5.1, and 5.2 of this report. Logbook entries and internal chain-of-custody (CoC) forms from sampling events included in the report are provided in Appendix B. The external CoC forms associated with the sampling events can be found in the Lab Reports included on the enclosed DVD. Appendix C provides internal monthly WSTF Quality Assurance (QA) Reports for the reporting period. Appendix D includes the comparison of analytical results from groundwater monitoring wells (Appendix D.), the PFTS (Appendix D.2), and the MPITS (Appendix D.3) with cleanup levels. Only results that exceed cleanup levels are included in these appendices.

During the course of groundwater, PFTS, MPITS, and other related sampling, IDW such as decontamination water and purged groundwater is produced. This IDW is treated by the MPITS as specified in the GMP (NASA, 2021a).

3.0 Cleanup Levels

Cleanup levels for all hazardous constituents detected in WSTF groundwater are summarized in the GMP update (NASA, 2021a) for 2021, submitted to NMED on April 19, 2021. That document outlines the process for developing cleanup levels as specified in Attachment 15 of the Permit (NMED, 2009, p24).

3.1 Discharge Standards for PFTS and MPITS Effluent

The Ground Water Discharge Permit Renewal and Modification, DP-1255 (NMED, 2017) specifies that "Remediated groundwater discharged from the two remediation systems shall not exceed the concentrations in the most recent version of NMED's *Risk Assessment Guidance for Investigation and Remediation Table A-1 Soil Screening Levels for Tap Water...*" for NDMA, trichloroethene (TCE), tetrachloroethene (PCE), and chloroform (NMED, 2019). <u>Table 3.1</u> includes the updated DP-1255 discharge standards for the four constituents. Please note that previous versions of the quarterly periodic

monitoring reports (PMRs) included constituents that are not listed in the current version of DP-1255 (NMED, 2017). This PMR only lists the four constituents required by the current DP-1255 (NDMA, TCE, PCE, and chloroform).

3.2 New Detections

The GMP requires that NASA report new detections of hazardous constituents in groundwater (NASA, 2021b). Each quarter, NASA adds several new constituents to the list of analytes detected at certain WSTF groundwater wells. As a result, a number of new detections have been reported in sampling results at those wells. Most of the new detections are consistent with regional groundwater chemistry and require no action beyond continued monitoring and reporting. New detections, including non-hazardous constituents, reported in sampling events during the reporting period are provided in <u>Table 3.2</u>.

The GMP also requires detection monitoring at specific compliance points downgradient of the closures and operational areas of the facility. The wells specified are BLM-3-182 (for the 100 and 600 Areas), 200-B-240 and 200-SG-1 (for the 200 Area), 300-A-120 (for the 300 Area), and 400-C-118 (for the 400 Area). Detection monitoring was performed at well BLM-3-182 during the reporting period.

In addition to the inorganic constituents that are characteristic of regional groundwater, NASA observed several new detections that require further evaluation. The hazardous constituents in <u>Table 3.3</u> have not been previously detected at the wells listed in the table. As specified in Section 3.3 of the GMP, NASA has scheduled resampling of these wells to confirm these detections (NASA, 2021a). <u>Table 3.4</u> lists the resampling date and the resolution of some of the unconfirmed detections reported in previous PMRs. The wells were resampled as required and the new detections were resolved as indicated in the table.

4.0 Routine Groundwater Monitoring

A variety of groundwater monitoring data are collected from monitoring wells and the groundwater treatment systems during routine WSTF operations. These data consist of measured groundwater elevations, calculated groundwater piezometric elevations, the graphical representations of groundwater elevation generated from these data, and groundwater indicator parameters (field water quality measurements).

Data presented in this section, including groundwater elevations and indicator parameters, were collected from various groundwater monitoring locations during the reporting period. Groundwater chemical analytical data also from this timeframe, while not considered monitoring data in some contexts, are also presented in this section.

4.1 Current Status and Monitoring Performed

NASA continues to monitor groundwater to maintain a complete understanding of plume characteristics, contaminant migration, and the overall impact of ongoing corrective action efforts. This section discusses the results of routine groundwater samples collected from groundwater monitoring wells or zones during the reporting period and processed using the WSTF data management system during the first quarter of 2022. Table 4.1 provides a list of the monitoring wells, PFTS and MPITS sampling locations, and their associated sampling events for which analytical data are presented in this report.

4.2 Groundwater Monitoring Results

This section provides the results of groundwater monitoring, including groundwater elevations and groundwater quality measurements.

4.2.1 Groundwater Elevations

Groundwater elevations at WSTF's conventional monitoring wells, piezometers, and exploration wells are determined by manually measuring the water level. Piezometric elevations at Westbay^{®1} multiport wells are calculated based on the groundwater formation pressures measured at target monitoring zones. Piezometric elevations for Flexible Liner Underground Technologies, LLC (FLUTeTM) multiport monitoring wells are calculated from dedicated pressure transducer measurements at specified monitoring zones. DTW or formation pressures are measured quarterly and during each sampling event.

Formation pressures at multiport wells in the Plume Front and Mid-plume areas are typically measured during the same week as quarterly DTW measurements at conventional wells. Groundwater elevations from Westbay zones are calculated from pressure data typically collected at the uppermost sampling ports (proximal to the water table) using Westbay pressure measurement equipment. Potentiometric data from multiport wells in other areas of the site are also available. Groundwater elevations are subject to quality review prior to their use in data presentations. Anomalous or erroneous values are flagged as unusable and excluded from the dataset used to generate graphical presentations of groundwater elevation.

The groundwater surface depicted in Figure 4.1 was developed by hand-contouring the most recent water level dataset that corresponds to the analytical reporting period. These data were collected from November 24 to 29, 2021 and are provided in Table 4.2. In Figure 4.1 Groundwater elevation contours depict a general westward groundwater flow across the facility. Subtle variations in groundwater elevation may occur within discrete transmissive flow paths at varying depths below ground surface (bgs) in the fractured bedrock aquifer located east of the Western Boundary Fault Zone (WBFZ). Due to the scale, these local elevation variations may not be reflected in the figure. The prominent transition in the hydraulic gradient from the WSTF pediment area east of the WBFZ (0.05 ft/ft) to the relatively flat southern Jornada del Muerto Basin (JDMB) of the WSTF Plume Front area (0.0002 ft/ft) is also evident in the figure. No contours are depicted in the Plume Front area because the range of observed water elevations in that area is less than the contour interval (40 ft). Further discussion of Plume Front and Midplume groundwater elevations is provided in Section 6.3.1 of this report.

4.2.2 Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters are obtained from field quality measurements performed during each sampling event. The groundwater indicator parameters associated with the groundwater monitoring well sampling events included in this report (see <u>Table 4.1</u>) are provided in <u>Appendix A.1</u>.

Indicator parameters and other specific sampling-related details associated with each monitor well sampling event are recorded by technicians in the field sampling record. Appendix B provides the field sampling records and field/internal CoC forms for each sampling event performed during the reporting period. The WSTF external CoC forms for groundwater samples collected during these sampling events are provided in the Lab Reports on the enclosed DVD.

¹ Westbay is a registered trademark of Nova Metrix Ground Monitoring (Canada) Ltd.

4.3 Groundwater Chemical Analytical Results

<u>Table 4.1</u> lists groundwater monitoring wells sampled during the reporting period. Groundwater chemical analytical data from these wells were processed through the WSTF data management system during the first calendar quarter of 2022 and detections are included in Appendix A.2.

NASA has also included a copy of the historical analytical database with this report. The database is provided to facilitate NMED's review of groundwater analytical data provided in this report and to allow for the historical comparisons required by the Permit (NMED, 2009; page 85). NASA's historical database is an operational tool developed, maintained, and used by NASA environmental staff to manage and archive environmental data. It is not intended to serve specifically as a regulatory reporting mechanism. NASA reserves the right to implement changes to the database that are deemed appropriate to meet the WSTF internal environmental data management requirements. Any changes will not affect the integrity of historical analytical data. The amount of historical data has exceeded the capacity of a Microsoft Access^{®2} database, and as a result, all the historical data cannot be contained in the database included with this report for use by NMED. Historical data prior to 2000 was removed from the reporting database to facilitate database operation and ease of use by NMED. Pre-2000 historical data of significance in decision-making is appropriately reflected in the time-concentration (T-C) plots presented in Appendix E.

A summary of internal QA methods applied to groundwater chemical analytical data is provided in Appendix C. The QA reports included in Appendix C apply to analytical results from sampling events performed during the reporting period. All laboratory analytical reports corresponding to the analytical data presented in this report are also provided electronically (.pdf format) with this submittal.

The most recent chemical analytical data, which includes data processed in the first quarter of 2022, were used to develop manually contoured plume isoconcentration maps for NDMA (<u>Figure 4.2</u>) and TCE (<u>Figure 4.3</u>). The lowest iso-concentration contour on each map corresponds to the required cleanup level for that analyte.

5.0 Treatment System Monitoring

This section provides information related to NASA's environmental remediation systems at WSTF. It provides the current operational status of the treatment systems and includes a discussion of the capabilities and performance of the treatment systems, pertinent monitoring data from the systems, and applicable chemical analytical data associated with remediation system monitoring.

5.1 Plume Front Treatment System

The PFTS is a pump and treat groundwater remediation system that utilizes air stripping and ultraviolet (UV) photolysis to remove VOC and nitrosamines from contaminated groundwater. The system is an interim measures presumptive remedy located at the leading edge of the WSTF contaminant plume. It was implemented during the first phase of NASA's remediation strategy to stabilize plume migration. This section provides information related to PFTS operation, performance, and monitoring during the reporting period. Chemical analytical data from PFTS sampling events that occurred during the reporting period are also provided.

_

² Microsoft Access is a registered trademark of the Microsoft Corporation.

5.1.1 PFTS Operational Status

The operational status of the PFTS is summarized in Table 5.1 and Table 5.2.

5.1.2 PFTS Performance

This section summarizes the performance of the air strippers and UV reactor for the reporting period. Additional operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the PFTS is properly functioning and is adequately treating the WSTF contaminants of concern (COC).

Operational records indicate that the PFTS performed favorably during the reporting period. System availability statistics, which exclude scheduled shutdowns for planned maintenance, indicate that the system was operational for 100% of January, 90.44% of February, and 97.2% of March 2022. Notable events during the reporting period included the following:

- The submersible motor on extraction well PFE-1 failed on January 1, 2022 and the well remained offline throughout the reporting period. PFE-3, which experienced a motor failure in December 2021, also remained offline for the reporting period. As a result, total system flow was reduced relative to the preceding quarter. The selection of replacement motors and pumps for wells PFE-1 and PFE-3 is pending the completion of groundwater flow modeling and pipe flow analyses being conducted to evaluate optimum flow rates needed at the PFTS extraction wells to maintain hydraulic capture of the plume front and maximize contaminant mass removal.
- NASA conducted a planned shutdown of the system on January 20, 2022 upgrade the electric power line feeding wells PFE-2 and PFE-7.
- NASA completed scheduled testing on February 15, 2022 to verify the accuracy of the flow meter used to monitor discharges to the ModuTank.
- NASA investigated leak detection alarms on February 4 and March 29, 2022 which resulted from condensate build up in the extraction well network dual-wall piping.
- NASA reactivated the PFTS following power outages on February 16 and March 6, 2022.

5.1.2.1 Air Stripper Capabilities and Performance

The PFTS consists, in part, of two multi-sieve tray air strippers that operate in a parallel configuration to treat the WSTF VOC of concern. A single air stripper can be used when the system is operating at 650 gpm or less. Both air strippers are used when the system flow rate is greater than 650 gpm. The air strippers must maintain an air flow rate between 3,600 standard cubic feet per minute (scfm) and 4,680 scfm to ensure treatment of VOC. Table 5.3 provides the VOC performance data for the air strippers during the reporting period. Chemical analytical data provided in this report demonstrate that DP-1255 discharge limits and Permit-required cleanup levels were achieved throughout the reporting period.

5.1.2.2 UV Reactor Capabilities and Performance

The PFTS includes a 12-lamp Rayox^{®3} UV reactor that uses UV photolysis to break down nitrosamines (specifically NDMA) in groundwater. The UV reactor is designed to operate at a minimum hydraulic flow rate of 200 gpm and a maximum flow rate of 3,000 gpm. <u>Table 5.3</u> provides the NDMA treatment performance data for the UV reactor during the reporting period. As indicated by these data, system design parameters and cleanup levels for NDMA were achieved during the reporting period.

5.1.3 Extraction and Injection Well Performance

Extraction and injection well performance for the reporting period, as based on volumetric flow rates, extraction well drawdown, and water levels and injection well specific capacities, is summarized below. Average Plume Front injection (PFI) well flow rates and average Plume Front extraction (PFE) well flow rates for the reporting period are provided in <u>Table 5.4</u>. Additional events relevant to the performance of individual extraction or injection wells during the report period are summarized below.

Well PFI-1 started producing excessive gravel during backflushing in March 2019 and was taken offline in December 2019. In April, August, and September 2021 NASA attempted to remove the downhole equipment from PFI-1 using a pump hoist truck so that the well casing and screen could be inspected with a downhole video camera and potentially repaired. All efforts to remove the equipment from PFI-1 were unsuccessful due to the presence of a large volume of gravel pack within the well screen, along with a suspected breach in the well casing and/or screen that is acting as a subsurface obstruction to prevent the removal of the equipment. Based on this finding, NASA concluded that well PFI-1 is permanently out of service. An evaluation regarding options to either replace PFI-1 or redistribute treated groundwater produced by the PFTS is underway.

Wells PFE-1 and PFE-3 went out of service on January 1, 2022 and December 6, 2021, respectively, due to submersible motor failures believed to have been caused by overheating. Work to repair PFE-1 and PFE-3 is pending the completion of groundwater flow modeling studies to evaluate various extraction well flow rate scenarios with respect to maintaining plume front capture zones, as well as to evaluate the potential use of intermittent (pulse) pumping to increase contaminant mass removal. The findings of these evaluation are anticipated to determine if smaller replacement pumps and motors, which may be less susceptible to overheating, could be utilized in PFE-1 and PFE-3. Pipe flow and pressure distribution analysis of the extraction well network is also underway to evaluate motor sizing requirements under dynamic head conditions.

5.1.3.1 Extraction and Injection Well Flow Rates and Specific Capacities

Flow rates for extraction and injection wells were measured and monitored throughout the reporting period. While in operation during the reporting period, flow rates for extraction wells PFE-2, PFE-4A, PFE-5 and PFE-7 were stable and approximately unchanged from the previous reporting period. As noted above, wells PFE-1 and PFE-3 were offline during the reporting period.

Injection wells PFI-2 and PFI-3 operated within the design flow rate during the reporting period. Well PFI-4 operated above the design flow rate throughout the reporting period. As previously discussed, well PFI-1 was shut down in December 2019 to investigate a suspected casing breach. Attempts to remove the

_

³ Rayox is a registered trademark of Calgon Carbon Corporation.

downhole equipment from the well were unsuccessful, resulting in the determination that the well cannot be placed back into service.

Flow rates for extraction wells PFE-2 and PFE-7 were slightly greater than their design flow rates during the reporting period, whereas PFE-4A and PFE-5 operated below their design flow rates. Because wells PFE-1, PFE-3, and PFI-1 were not operational during the reporting period, the overall production of the PFTS was reduced during this period.

Specific capacities for the PFE and PFI wells are provided in <u>Table 5.5</u> and are expressed in gallons per minute per foot (gpm/ft). Generally, PFE well specific capacities are higher than PFI well specific capacities. This is due to the differences between extraction and injection well hydraulics.

5.1.3.2 Injection Well Water Level Variations, Well Monitoring, and Maintenance

Water levels at the PFI wells are monitored on a continual basis using dedicated pressure transducers that record the levels at 3-minute intervals. Specific well capacities are tracked daily while the system is in operation. Periodic backflushing of the injection wells is performed when the wells exhibit rising water levels associated with decreased well capacities and during start-ups and shutdowns. Operations personnel have been using static water table levels as a guide for setting the injection flow rates to each well to maintain a stable injection operation. This has lowered the initial design rates at the PFI wells. The original design flow rates in <u>Table 5.4</u> were not reduced to account for the one nonoperational extraction well.

5.1.4 PFTS Monitoring Results

System monitoring involves the evaluation of a variety of data collected during routine PFTS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from the data (Section 6.3.3), and groundwater indicator parameters (water quality field measurements). The data presented in this section were collected from PFTS monitoring locations during the reporting period. Groundwater chemical analytical data from PFTS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.1.4.1 PFTS Monitoring Events

This section and associated appendices discuss the results of routine PFTS samples processed through the WSTF data management system during the reporting period. Groundwater samples processed and included in this report were collected at six PFTS monitoring locations during the reporting period. Table 4.1 provides a list of the PFTS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.1.4.2 PFTS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by field technicians in the field sampling record. The groundwater indicator parameters measured at each PFTS sampling event in <u>Table 4.1</u> are provided in <u>Appendix A.3</u>. <u>Appendix B</u> provides the field sampling records and internal CoC forms and the lab reports include laboratory CoC forms for each of the PFTS sampling events discussed in this section.

5.1.5 PFTS Chemical Analytical Results

This section and associated appendices provide the groundwater chemical analytical data processed through the WSTF data management system during the first calendar quarter of 2022. Appendix A.4 provides the analytical results (detections only) from PFTS sampling events performed during the reporting period. A summary of internal QA methods applied to groundwater chemical analytical data is provided in Appendix C.

5.1.6 PFTS Mass Removal

Table 5.6 uses available analytical data to calculate the mass of the various WSTF COC removed by the PFTS between February 1, 2021 and January 31, 2022. During this 12-month period, the PFTS removed approximately 27 kilograms (kg) of TCE, 25 kg of trichlorofluoromethane (Freon^{®4} 11), 885 grams (g) of PCE, and 198 g of NDMA.

The contaminant mass removal was calculated as follows:

Mass Removal =
Total Volume Treated x (Influent Concentration – Effluent Concentration)

5.2 Mid-plume Interception and Treatment System

The MPITS is the major component of the second phase of NASA's overall groundwater plume remediation strategy. This interim measure has been designed to intercept high COC concentrations within the fractured bedrock aquifer of the Mid-plume Constriction Area (MPCA).

The operational status of the MPITS is summarized below. Component/system failures, repair, and scheduled maintenance activities accounted for the majority of the short duration shutdowns during the reporting period.

5.2.1 MPITS Monitoring Results

System monitoring involves the collection and evaluation of a variety of data during routine MPITS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from these data (refer to Section 6.3.1), and groundwater indicator parameters (water quality field measurements).

The data presented in this section were collected from six MPITS monitoring locations during the reporting period. Groundwater chemical analytical data from MPITS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.2.1.1 MPITS Monitoring Events

This section and associated appendices discuss the results of routine MPITS samples collected during the reporting period and processed by the WSTF data management system during the reporting period.

⁴ Freon is a registered trademark of The Chemours Company CF, LLC.

<u>Table 4.1</u> includes the MPITS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.2.1.2 MPITS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by the field technicians in the field sampling record. The groundwater indicator parameters measured at each MPITS sampling event listed in Table 4.1 are provided in Appendix B provides the field sampling records and internal CoC for each of the MPITS sampling events discussed in this section. The laboratory CoC for each of the MPITS sampling events discussed in this section are provided in the Lab Reports enclosed on the DVD.

5.2.2 MPITS Operational Status

The operational status of the MPITS is included in <u>Table 5.1</u> and <u>Table 5.2</u>.

5.2.3 MPITS Performance

This section summarizes the MPITS air stripper and UV reactor performance during the reporting period. Operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the MPITS is functioning properly and effectively treating the WSTF groundwater for COC reduction.

Operational records indicate that the MPITS performed favorably during the reporting period. System availability statistics, which exclude scheduled shutdowns for planned maintenance, indicate that the system was operational for 100% of January, 95% of February, and 94.1% of March 2022. Notable events during the reporting period included the following:

- NASA installed a new motor in well MPE-9 to replace a motor that failed in September 2021. Well MPE-9 was reactivated on January 5, 2022.
- Disruptions in the off-site electrical power supply caused system shutdowns on February 16, March 6, and March 31, 2022.
- NASA completed a planned Local Area Network outage on February 24, 2022.
- NASA completed a planned shutdown of the system on March 22, 2022 to replace damaged electrical wiring in the UV system power distribution cabinet.

5.2.3.1 Air Stripper Capabilities and Performance

The MPITS consists of a single sieve tray air stripper designed to treat WSTF groundwater VOCs of concern at flow rates up to 125 gpm. Table 5.7 provides the VOC performance data for the air stripper based on MPITS analytical data for the reporting period. As indicated by these data, system design parameters and discharge limits for the VOCs were achieved during the reporting period. The MPITS influent is composed of groundwater from operational Mid-plume extraction (MPE) wells and IDW generated during groundwater sampling, well maintenance, well evaluation activities, and other groundwater-related operations at WSTF. Effluent sample results will be closely monitored to ensure the air stripper continues to function properly.

5.2.3.2 UV Reactor Capabilities and Performance

The MPITS uses a 72-lamp UV photolysis reactor to break down nitrosamines in groundwater. The UV reactor is designed to operate at flow rates between 20 and 125 gpm. The reactor is capable of automatically adjusting power to the lamps to meet a target of 4.1 orders of magnitude reduction in contaminant concentrations. However, electrical power to the lamps is currently set manually at 100% to comply with current internal NASA operational requirements. The UV reactor achieved approximately four orders of magnitude reduction during the reporting period. Table 5.7 shows the UV reactor's performance for the reporting period. As indicated by these data, system design parameters and discharge limits for NDMA were achieved during the reporting period. Effluent sample results will be closely monitored to ensure the UV Reactor continues to function properly.

5.2.4 MPITS Extraction Well and Infiltration Basin Performance

Wells MPE-1, MPE-8, MPE-9, MPE-10, and MPE-11 operated at various flow rates during the reporting period. Well MPE-9 was repaired and placed back into service on March 23, 2022. There were no MPITS infiltration basin performance anomalies during the reporting period.

5.2.4.1 Extraction Well Flow Rates and Production Capacities

The MPE wells are completed in a fractured bedrock aquifer. Reduced well production capacity has resulted in cyclic operation of the extraction wells. Extraction well performance is characterized by evaluating well pumping rates and drawdown of water levels during pumping at each extraction well. No extraction well performance anomalies with respect to pumping rates and water-level drawdowns were observed during the reporting period.

5.2.4.2 Infiltration Basin Performance, Monitoring, and Maintenance

The MPITS infiltration basin was designed to accept up to 200 gpm. The treatment system must run at a minimum of 25 gpm to discharge to the infiltration basin. No operational or performance issues were identified during the reporting period.

5.2.5 MPITS Chemical Analytical Results

<u>Appendix A.6</u> provides the MPITS chemical analytical data for the analytical reporting period (detections only). A summary of internal QA methods applied to groundwater chemical analytical data is provided in <u>Appendix C</u>.

5.2.6 MPITS Mass Removal

Table 5.8 summarizes the mass of the various WSTF COC removed by the MPITS between February 1, 2021, and January 31, 2022. Approximately 2.8 kg of COC mass was removed by the MPITS during this 12-month period. In addition to groundwater extracted in the MPCA, the MPITS accepts and treats IDW generated during other groundwater investigations. The contaminant mass removal was calculated as follows:

 $Mass\ Removal = \\ Volume\ of\ Water\ Extracted\ at\ Each\ Well\ x\ (Contaminant\ Concentration\ at\ Each\ Well\ -\ MPITS\ Effluent\ Concentration)$

5.3 Remediation Systems Operation Costs

<u>Table 5.9</u> presents the costs for operating the PFTS and MPITS for the 12 months from February 1, 2021 to January 31, 2022. The table summarizes the cost of the labor and materials for operation and maintenance of both systems, and includes the electrical costs associated with system operations.

6.0 Discussion and Conclusions

Routine groundwater monitoring is conducted at WSTF to support a variety of projects. The primary objectives of routine groundwater monitoring at WSTF are to delineate the extensive contaminant plume resulting from historical contaminant releases at the facility, support the development and implementation of corrective actions, and monitor the impact of these corrective actions during implementation and operation. Groundwater sampling at WSTF is currently focused on the Plume Front and Mid-plume areas, both of which are critical to NASA's overall remediation efforts.

This section provides discussion and conclusions based on the results of groundwater monitoring conducted at WSTF. Also included is a summary discussion of the remediation systems' performance, monitoring results, system modifications, and compliance with discharge requirements and/or applicable cleanup levels. Chemical analytical results from the PFTS, MPITS, and routine groundwater monitoring are compared to cleanup levels (refer to <u>Appendix D</u>). This section also provides NASA's anticipated future groundwater monitoring and related activities at WSTF.

6.1 Summary of Groundwater Monitoring Projects

Routine groundwater monitoring was performed during this quarter in accordance with currently approved permits, plans, and other regulatory requirements. In general, the WSTF contaminant plume is relatively stable in nature and extent. The potential for continued migration of the plume resulted in the development of the phased approach to groundwater remediation discussed in Section 1.0. NASA continues to collect a variety of groundwater data from the comprehensive WSTF groundwater monitoring network. Monitoring results are presented in detail in the relevant sections of this report and in later sections of this summary. Several noteworthy projects related to routine groundwater monitoring are discussed below.

6.1.1 Monitoring Well Performance or Sampling Equipment Issues

NASA was unable to sample three wells during the reporting period (November 1, 2021 – January 31, 2022) because of mechanical or well performance issues only. This section does not address wells that were not sampled due to resource limitations.

- In October 2021, NASA could not sample wells PL-3-453 and 400-C-118 because the water levels were inadequate for the collection of representative groundwater samples. NASA attempted to sample the wells in November 2021, but low water level conditions persisted.
- Wells ST-1-541 and ST-1-630 were rescheduled from November to December 2021 because of degraded sampling equipment following reactivation after recent TMRP pumping at these wells.
- In January 2022, NASA was unable to sample well 400-IV-123 because the water level was inadequate for sample collection.

The current new occurrences of sampling issues, backlog of prior unresolved issues, and issues resolved this quarter are shown on Table 6.1.

6.1.2 Monitoring Well Installation and Well Plugging and Abandonment

There was no physical well installation or plugging and abandonment activity this quarter. Other first quarter 2022 activity included:

- In its January 25, 2021 Approval with Modifications of the NASA Groundwater Monitoring Plan 2020 Update, NMED (2021a) directed NASA to submit a work plan for abandonment of monitoring wells 200-SG-2 and 200-SG-3 and installation of replacement wells by November 30, 2021. On November 30, 2021, NASA submitted a letter to NMED that attached a draft New Mexico Office of the State Engineer (NMOSE) Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3 with an attachment indicating why NASA does not intend to replace the wells (NASA, 2021q). NMED approved the plan on January 10, 2022 (NMED, 2022a).
- NMED is reviewing the NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW (BLM-28 replacement), submitted to NMED on August 31, 2021 (NASA, 2021j).
- NMED is reviewing the Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF) (deeper well adjacent to BLM-10-517), submitted to NMED on August 31, 2021 (NASA, 2021k).

6.1.3 Westbay Well Reconfiguration

There was no physical well reconfiguration activity the first quarter of 2022. Historical information and full submittal history for well reconfiguration projects are provided in Appendix F.

- NMED is reviewing the *Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3*, submitted on April 29, 2021 (NASA, 2021b).
- NMED approved the NASA WSTF Well Reconfiguration Work Plan for Well BW-4, submitted on June 29, 2021 (NASA, 2021e), with modifications on January 18, 2022 (NMED, 2022b). In that approval, NMED provided two comments and directed NASA to provide a response no later than March 11, 2022. NASA prepared the response and submitted the Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4 on March 8, 2022 (NASA, 2022c). NMED also directed NASA to provide a well reconfiguration report for BW-4 no later than March 30, 2023.
- In the October 24, 2017 Approval with Modifications Detections of NDMA (N-Nitrosodimethylamine) and TCE (Trichloroethylene) In WSTF Groundwater Monitoring Wells BLM-30, PL-5, PL-6, PL-7, PL-8, PL-10, ST-5, and WW-3, NMED directed NASA to provide a well reconfiguration work plan that included well PL-6 (NMED, 2017*). NASA determined that the well is not suitable for reconfiguration and plans to plug and abandon the well and replace it. NASA submitted the NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-002-GW and Abandonment of PL-6 on February 1, 2022 (NASA, 2022b).

6.1.4 Groundwater Monitoring Data Representativeness

Activities in the first quarter 2022 included the following:

• NMED is reviewing the *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation*, submitted to NMED on November 2, 2021 (NASA, 2021p).

6.2 Comparison of Analytical Data to Cleanup Levels

This section and the associated appendix compare the chemical analytical data obtained from groundwater remediation system sampling points and groundwater monitoring wells to the approved cleanup levels provided in the GMP (NASA, 2021a). <u>Appendix D</u> provides a comparison of groundwater data to cleanup levels for the current analytical reporting period.

6.2.1 Groundwater Monitoring Wells

Appendix D.1 includes a comparison of groundwater monitoring well data to applicable cleanup levels for the analytical reporting period. Only analytical results that exceed cleanup levels are included in the tables.

6.2.2 Plume Front Treatment System

Groundwater samples were collected from the PFTS influent and effluent as required by the RSMP (NASA, 2021d) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.1.5 and <u>Appendix A.4</u>. <u>Appendix D.2</u> includes any PFTS influent data that exceeded cleanup levels during the current analytical reporting period. The PFTS effluent met all DP-1255 discharge limits and Permit cleanup levels.

6.2.3 Mid-plume Interception and Treatment System

Groundwater samples were collected from the MPITS influent and effluent as required by the RSMP (NASA, 2021d) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.2.5 and <u>Appendix A.6</u>. <u>Appendix D.3</u> includes any MPITS influent data that exceeded cleanup levels during the current analytical reporting period.

6.3 Contaminant Plume Evaluation

The plume evaluation for the first quarter of 2022 includes potentiometric surface maps and a variety of chemical analytical data.

6.3.1 Groundwater Elevations and Iso-concentration Maps

A manually contoured potentiometric surface map (<u>Figure 6.1</u>) is provided for the WSTF Plume Front area that correlates with the end of the current reporting period. Data used to generate contours for this map are identical to the data used to generate the site-wide contours (<u>Figure 4.1</u>). The 40-ft contour used in the site-wide piezometric map is supplemented by 2-ft contours in the Plume Front potentiometric surface map. Arrows indicate the direction of groundwater flow. The influence of PFTS operation is evident by the depression in the potentiometric surface that is caused by pumping at the PFE wells. The hydraulic mound produced by injecting treated water at the PFI wells is apparent at the southern edge of the figure.

Groundwater elevations measured in the MPCA during this analytical reporting period are presented in the manually contoured Mid-plume potentiometric surface map (Figure 6.2). The data used to generate contours for this map are the same values used to generate the site-wide potentiometric map (Figure 4.1). The general west-trending groundwater flow direction through the Mid-plume area is apparent in Figure 6.2, though local variations may exist within discrete fractures or higher conductivity flow zones

within the fractured bedrock aquifer in this area. Groundwater elevation is generally depressed downgradient of well MPE-11 near well MPE-6 Plume isoconcentration maps.

Figure 6.3 and Figure 6.4 present manually contoured isoconcentration maps of the Plume Front for NDMA and TCE using data processed during this reporting period. The manual contouring method allows a geologist to evaluate plume contaminants against interpreted hydrogeological features in order to create a realistic representation of the contaminant plume. Hydrogeological conditions considered during the manual contouring of contaminant concentrations are primarily hydrostratigraphic units or significant structural features that cause the juxtaposition of variable hydraulic conductivities. The lowest value solid isoconcentration line on each map corresponds to the required cleanup level for the analyte presented. The isoconcentration maps are consistent with the maps presented in previous reports (i.e., a like-to-like comparison in the case of NDMA), the monthly evaluation of contaminant concentrations, and site-wide plume maps that have been provided to NMED over the last several years.

Three exceedances of the NDMA cleanup level were observed in the northern Plume Front Area this quarter. These included NDMA detections at wells at well BLM-32 (1.8 ng/L), JER-1 (1.4 ng/L), and well JER-2 (1.8 ng/L). Six exceedances of NDMA cleanup levels were observed in sentinel wells this quarter. These included NDMA detections at wells PL-7 (2.9 ng/L), PL-8 (2.8 ng/L), PL-11 (5.1 ng/L), ST-5 (1.1 ng/L), WW-3 (2.2 ng/L), and WW-5 (2.3 ng/L). VOCs were not detected at or above the cleanup level at these wells. The following quality exceptions exist:

- The NDMA result at well PL-7 was qualified with an "*" data quality exception.
- The NDMA result at well PL-8 was qualified with "EB" data quality exception.
- The NDMA result at well ST-5 was qualified with "EB" data quality exceptions.

"A" indicates NDMA for a laboratory control sample, initial calibration verification or continuing calibration verification was outside standard limits. "EB" indicates NDMA was detected in the equipment blank. "FB" indicates NDMA was detected in the field blank. "RB" indicates NDMA was detected in the reference blank. "QD" indicates the relative percent difference for a field duplicate was outside standard limits. "*" indicates a user defined qualifier and to see the quality assurance narrative.

6.3.2 Combined Plume Isoconcentration Maps and Potentiometric Surface Map

<u>Figure 6.5</u> shows the interrelationship of the Plume Front potentiometric surface and manually contoured TCE plume for the current analytical reporting period. TCE was selected because it is the most widely distributed health-risk-driving contaminant in the conceptualized contaminant plume.

6.3.3 Time-concentration Plots and Groundwater Data Analytical Trends

T-C plots are used to evaluate and summarize contaminant concentration trends in WSTF wells over time on a quarterly basis as presented in this report. A detailed interpretation of the concentration trends shown in T-C plots over the year is provided in the fourth quarter annual comprehensive monitoring report submitted in January.

To facilitate the evaluation of T-C plots, WSTF monitoring wells are grouped as listed in Table 5 of the GMP (NASA, 2021a). T-C plots are generated using analytical data from each monitoring and remediation well where sufficient data are available. The concentration trends for four of the primary COC (Freon 11, TCE, PCE and NDMA) in groundwater are reviewed by technical personnel to develop the summary table presented in Appendix E. This table includes the historical maximum contaminant concentrations, the latest concentrations, and an interpretation of the current concentration trend for each

well. For NDMA, results are presented for both EPA Method 607 and low-level laboratory analysis. T-C trend evaluation places greater emphasis on the most recent analytical results reported over the last several years. As a result, the current T-C interpretation may therefore not reflect the full historical variability in T-C behavior through the life of the well, particularly for the older wells at WSTF installed in the mid-1980 through the 1990s.

The determination of a trend for an anomalous COC concentration within a specific well is based on the evaluation of analytical data collected over at least several quarters (typically a minimum of three to four sampling events). Concentrations are evaluated in conjunction with other potentially influencing factors (including hydrogeology, aquifer recharge conditions, monitoring well development activities, and changes in the operational status of remediation wells) before a modification to the T-C plot interpretation is performed. This approach is necessary to avoid the premature identification of a trend that represents a short-term fluctuation that reverts back to previous conditions.

A summary site-wide well map and analytical table depicting the most recent interpreted T-C trend for each individual well is included in <u>Appendix E</u>. A summary evaluation of each of the GMP well groups is provided in the following paragraphs, along with a discussion of the T-C plots for specific wells identified within the group. T-C plots (for the specific wells where identified) are also provided as attachments in <u>Appendix E</u>.

Upgradient Well Group: Four wells designated as upgradient monitoring wells are located east of the WSTF industrialized areas. There have been no confirmed VOC or NDMA detections in groundwater for these wells, and all four wells are classified as not detected (ND).

100/600 Area Well Group: Monitoring wells in this group are located within the 100 Area and adjacent easternmost part of the 600 Area. These wells are located in the vicinity of the southeastern boundary of the contaminant source areas and groundwater plume. Where located within the footprint of the groundwater plume, the wells typically reflect a decreasing groundwater concentration trend for Freon 11, TCE, and PCE. This trend is applicable to both wells within the primary bedrock aquifer and for well 600-G-138 (T-C plot provided) that is screened across a localized perched groundwater horizon identified on the top of andesite bedrock at the bedrock-alluvial interface. NDMA is derived primarily from the northern source areas and is not identified within the 100 and 600 Areas.

200 Area Well Group: The 200 Area represents the primary historical source of contamination for the TCE and Freon 11 components of the groundwater plume. Maximum concentrations for these contaminants in groundwater were identified in the late 1980s through mid-1990s. Over the last 30 years, the majority of 200 Area T-C plots have displayed a significant decreasing trend in contaminant concentrations for these VOCs. As an example, TCE in well 200-D-240 (T-C plot provided) has decreased from 110 μ g/L in 1990 to 14 μ g/L in 2021. The declines are interpreted to reflect natural plume migration and degradation under the influence of a steep horizontal hydraulic gradient of 0.05 ft/ft within a relatively porous fractured limestone bedrock aquifer, in conjunction with the implementation of effective waste management practices at WSTF that eliminated waste discharges. Wells that display more irregular concentrations with no distinct trend are typically associated with screened intervals characterized by lower hydraulic conductivity and reduced groundwater flow.

300/400 Area Well Group: The T-C plots for monitoring wells generally show groundwater VOC concentration trends that have been either fluctuating (most notably wells installed recently in January 2017 within poorly fractured andesite bedrock as part of the 400 Area Closure Investigation) or have declined since initial well installation. Declining concentrations primarily correlate to wells characterized by higher hydraulic conductivity and/or groundwater flow screened across the andesite bedrock-alluvium

interface. These wells are located within or adjacent to the 300/400 Area primary arroyo that experiences greater natural recharge. Wells that do not display declines are typically located off the axis of recharge drainages and may also be protected from infiltration by localized less permeable surfaces such as the Closure impoundment caps. Similar to the 200 Area, the predominant declines in the 300 and 400 Areas reflect the influence of migration related to the strong hydraulic gradient of 0.05 ft/ft along the WSTF pediment slope in conjunction with the implementation of effective waste management practices that eliminated waste discharges. Local disparities for concentrations reported within adjacent bedrock monitoring wells (particularly for NDMA) is interpreted to be a result of both the limited connectivity of andesite bedrock fractures, and the position of the screened intervals relative to the andesite bedrockalluvial interface. Higher hydraulic conductivity, groundwater flow, and declining contaminant concentrations are usually attributed to screened intervals across the interface of alluvium on top of bedrock.

Northern Boundary Well Group: The monitoring wells in this group are generally characterized by low-level contaminant concentrations that do not display any sustained T-C trends or are ND. Fluctuating low-level NDMA is reported this quarter from the latest samples collected in four wells BLM-32 (1.8 ng/L), BLM-41-420 (1.6 ng/L), JER-1 (1.4 ng/L), and JER-2 (1.8 ng/L). All four wells are located adjacent to the boundary of the northwest-trending plume arm that coincides with northwest-trending structural controls in the bedrock (identified from seismic geophysical surveys) that extend northwest from the Midplume constriction area.

Southern Boundary Well Group: Monitoring wells in this group are located south of the NDMA and TCE plumes, do not exceed the low-level NDMA cleanup level of 1.1 ng/L, and are classified as ND. A single well (BLM-6-488, T-C plot provided) continues to show a low fluctuating concentration of TCE (0.57 μ g/L) below the NMED cleanup level and is characterized as exhibiting "natural migration - no overall T-C trend."

MPCA Well Group: T-C plots for monitoring wells in this group that characterize the MPCA generally show declining contaminant trends associated with either natural plume migration and degradation or the effect of system stresses imparted by MPITS pumping since startup in 2011. T-C plots for wells BLM-21-400, BLM-36-30, BLM-18-430, and BLM-5-527 are included in Appendix E.

Well BLM-21-400 is located adjacent and south of the MPITS extraction wells and immediately downgradient of the interpreted primary confluence of the TCE and NDMA groundwater plume from their respective source areas (Freon 11 and TCE originate from the 200 Area [upgradient well BLM-14-327] and NDMA originates from the 300 and 400 Areas [upgradient well BLM-15-305]). Contaminant concentrations in BLM-21-400 since installation in 1991 show a natural decreasing trend for Freon 11 (320 to 79 μ g/L), TCE (220 to 48 μ g/L), PCE (12 to 2.4 μ g/L), and NDMA (5.6 to 1.1 μ g/L). This well continues to be monitored with respect to potential pumping-related migration under the influence of nearby extraction well MPE-11.

Multiport well BLM-36 is located downgradient and to the south-southwest of the MPITS. The T-C plots for the shallow zone in well BLM-36 (BLM-36-350) identify groundwater contamination that has not been detected in deeper zones of this well, providing a significant location for vertical delineation in the Mid-plume. BLM-36-350 has shown fluctuating but relatively consistent concentrations for groundwater contaminants since activation of the MPITS and is currently classified as "pumping-related migration – no overall trend."

Wells BLM-18-430 and BLM-5-527 are located in the northwest-trending arm of the WSTF groundwater contaminant plume that extends from the MPCA. These wells are monitored to determine the effect of

operation of the MPITS on the migration of groundwater contaminants into this area. The T-C plot for well BLM-18-430 shows a decline in contaminant concentrations since startup of the MPITS, inferred to be related to the arrest of contaminant migration to the northwest arm through continued operation of the MPE wells. Well BLM-5-527 is currently interpreted to display a "natural migration – increasing T-C" trend. Increases in this well are inferred to reflect the migration of contaminants into low conductivity rhyolite bedrock of the extreme northwest section of the northwest-trending arm not impacted since the inception of MPITS pumping. Pumping activity (13,350 gallons extracted) within well BLM-5-527 between April 6, 2020 and May 5, 2020 as part of the Targeted Mobile Remediation Process Pilot Test at WSTF may also have impacted contaminant concentrations in the area by temporarily creating a cone of depression.

Monitoring well BLM-38 has historically been characterized as ND and is located on the north side of the Mid-plume constriction. A low-level NDMA detection is reported this quarter from the latest sample collected (2.05 ng/L). This detection will be monitored with respect to any developing T-C trend.

Main Plume Well Group: Wells in this group are located within the western section of the groundwater plume at the Plume Front and show widespread declining trends related to natural migration or pumping depending on proximity to the PFTS remediation wells. Contaminant concentrations within this well group typically decline significantly during intervals of system operation and rebound during quiescent periods.

Plume Front Well Group: Monitoring wells within this group are generally located outside the boundary of the contaminant plume and groundwater analytical results are typically ND. Well BLM-10-517 (located south of the southern plume boundary, T-C plot provided) has displayed periodic trace detections of TCE and Freon 11, particularly between early 2012 and early 2016. The latest groundwater sampling indicated that the Freon 11 (detection limit 0.24 μ g/L) and TCE (detection limit 0.21 μ g/L) are both ND. Low-level NDMA was also below the detection limit of 0.4 μ g/L. Well ST-7 is located west of PFTS extraction well PFE-2 and south of extraction well PFE-7. Low-level TCE (1.40 μ g/L) may have migrated northward to ST-7 as a result of continued pumping of well PFE-7. The fluctuating concentrations of TCE and Freon 11 in the area of ST-7 demonstrate pumping related migration of contaminants through the heterogeneity of the alluvial aquifer. For this quarter, fluctuating low-level NDMA detections were identified in two Plume Front wells (PL-7 [2.9 μ g/L] and ST-5 [1.1 μ g/L].

Sentinel Well Group: Monitoring wells within this group form a more distal tier located outside the groundwater contaminant plume and have all historically shown analytical results that are ND. For this quarter, fluctuating low-level NDMA detections have been identified in four of the sentinel wells (PL-11 [5.1 ng/L], PL-8 [2.8 ng/L], WW-2-664 [1.8 ng/L], WW-3 [2.2 ng/L], and WW-5 [2.3 ng/L]).

Other Well Group – Mid-plume Extraction Wells: The T-C plots for the five MPITS wells are included in <u>Appendix E</u>. The COC concentrations for Freon 11 and TCE in wells MPE-8 and MPE-10 have displayed a generally increasing trend since 2013, under the influence of pumping-related plume migration. Wells MPE-1 (decreasing), MPE-9 (fluctuating), and MPE-11 (fluctuating) are also influenced by continued operation of the MPITS.

Other Well Group – Plume Front Extraction Wells: The T-C Plots for the six PFTS wells; PFE-1, PFE-2, PFE-3, PFE-4A, PFE-5, and PFE-7 are included in <u>Appendix E</u>. The high-volume extraction wells exhibit declining trends due to pumping-related plume dilution within the alluvial aquifer at the Plume Front. Well PFE-5 was installed further east with a screened zone primarily in fractured bedrock within the WBFZ displays significantly lower well yield, with a relatively high concentration of NDMA.

6.4 Summary of Source Area Investigations

The following subsections summarize the status of each solid waste management unit (SWMU) or hazardous waste management unit (HWMU) at WSTF and provide specific information on work performed during the first calendar quarter of 2022: January 1, 2022 – March 31, 2022. Historical information through the end of 2019 including investigation status, and full submittal history for each potential source area is provided in Appendix F.

6.4.1 200 Area

NASA continues work associated with the investigation of two HWMUs and SWMUs in the 200 Area. NASA performed a wide-area soil vapor survey in the 200 and 600 Areas to assess the potential risk to workers posed by soil vapor intrusion into the buildings adjacent to areas with the greatest soil vapor concentrations. NMED disapproved NASA's report on the assessment, stating that the vapor intrusion pathway is complete from the standpoint of risk assessment. During the first quarter of 2022, activities related to this SWMU included:

• NMED is reviewing the NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report (NASA, 2020a).

6.4.2 300 Area

NASA performed routine groundwater sampling at the 300 Area and recommended a corrective measures study in conjunction with the 400 Area. There was activity at the 300 Area based on NMED's prior disapproval of the 300 Area *Supplemental Abbreviated Drilling Work Plan* (NASA, 2019b) and resulting direction. See next Section and Appendix F, Section 2.2.

6.4.3 400 Area

There were no document submittals for the 400 Area in the first quarter of 2022. Recent and ongoing activity includes:

- NMED is reviewing the *Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan* (July 14, 2021; NASA, 2021h).
- NMED is reviewing the NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response (July 27, 2021; NASA, 2021i).
- NMED is reviewing the *Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan* (July 14, 2021; NASA, 2021g).

6.4.4 600 Area Perched Groundwater Extraction and Investigations

NASA is currently conducting a perched groundwater extraction pilot test in the 600 Area and investigating the presence of additional perched groundwater beneath and adjacent to the 600 Area Closure. During the first quarter of 2022, activities related to this SWMU included:

 NASA suspended continued extraction of perched groundwater from monitoring well 600-G-138 for much of January 2022 to reduce the impact on the perched groundwater aquifer and maximize the potential of locating perched groundwater during the perched groundwater investigation. On February 1, 2022 NASA resumed groundwater extraction in accordance with NMED's March 1, 2013, Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area. Approximately 366 gallons of perched groundwater were removed from 600-G-138 between January and March 2022 and transported to the MPITS for treatment.

- NASA completed soil boring installation field activities for the perched groundwater investigation in accordance with NMED's Approval with Modifications 600 Area Closure Geophysical Survey Status Report (NMED, 2020). The off-site subcontract drilling company installed all six soil borings between January 4 and January 27, 2022 in the vicinity of the 600 Area Closure to depths of approximately 145 to 180 feet bgs. The soil borings were located in potential bedrock lows identified using the geophysical seismic survey performed previously as part of the investigation. The soil borings transcended the alluvial overburden into the top of the andesite bedrock in search of perched groundwater on the alluvial-bedrock interface. NASA identified perched groundwater at one location adjacent to the north corner of the Closure and installed groundwater well 600A-001-GW. NASA also installed a conventional monitoring well 600A-002-GW downgradient to the west of the Closure in andesite bedrock. This boring encountered the deeper fractured bedrock aquifer at the projected total depth of the soil boring and was subsequently drilled deeper than the planned depth to facilitate installation of the groundwater monitoring well. The remaining four soil borings did not encounter perched groundwater and were plugged and abandoned in accordance with the NMED-approved work plan.
- NASA performed colloidal borescope evaluations at the two new wells 600A-001-GW and 600A-002-GW, existing perched groundwater monitoring well 600-G-138, and 12 other conventional wells in the fractured bedrock aquifer with significant locations relative to the evaluation of regional flow. Ongoing fieldwork includes well development, surveying, and sampling.
- The final investigation report is due to NMED by May 31, 2022, though NASA requested an extension of time to June 30, 2022.

6.4.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

NASA continued work required to investigate and close the WSTF Wastewater Lagoons in the 100, 200, and 600 Areas and at the Second Tracking and Data Relay Satellite (TDRS) Ground Terminal (STGT). Activities during the first quarter of 2022 included:

- NMED is reviewing the NASA WSTF 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report (NASA, 2020b).
- NMED is reviewing the NASA WSTF 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (NASA, 2019d).
- NMED is reviewing the NASA WSTF 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report (NASA, 2019e).
- NMED is reviewing the NASA White Sands Test Facility WSTF STGT Wastewater Lagoons Closure (AOC 51) Investigation Report (NASA, 2020e).

6.4.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])

NASA performed an investigation of the abandoned HWTL that consisted of HWTL excavation, pipeline removal, soil sampling, and the submittal of an investigation report. Activities during the first quarter of 2022 included the following:

- Recognizing the need to address recent revisions to the NMED Risk Assessment Guidance, NASA submitted a request for extension of time for submittal of the revised investigation report on January 11, 2022 (NASA, 2022a). NMED approved the request on January 25, 2022 (NMED, 2022c), extending the report due date to February 28, 2022.
- NASA submitted the Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report on March 4, 2022 (NASA, 2022c).
- 6.4.7 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

NASA completed a multi-part investigation of the 600 Area BLM Off-Site Soil Pile and has addressed NMED comments on multiple iterations of the investigation report. Activities in the first quarter of 2022 were:

- NMED is reviewing the Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU
 16 (600 Area BLM Off-Site Soil Pile), submitted) to NMED on September 28, 2021 (NASA,
 2021m).
- 6.4.8 SWMUs 21–27 (Septic Tanks)

Activities during the first quarter of 2022 included the following:

- NMED is reviewing NASA's Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (May 18, 2021; revised IR; NASA, 2021c).
- 6.4.9 SWMUs 29–31 (Small Arms Firing Ranges)

During the fourth first quarter of 2022, activities related to these SWMUs included:

- NMED is reviewing the *Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report* (August 3, 2020; NASA, 2020c).
- 6.4.10 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

During the first quarter of 2022, activities related to this SWMU included:

- NMED is reviewing the 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) IWP and HIS.
- 6.4.11 SWMU 47 (500 Fuel Storage Area)

NASA plans to perform an investigation of the 500 Area Fuel Storage Area (SWMU 47). During the first quarter of 2022, activities related to this SWMU included the following:

- NMED is reviewing NASA's Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan (June 29, 2021; revised IWP; NASA, 2021f).
- 6.4.12 SWMU 49 (700 Area Landfill)

NASA continued NMED-approved investigation work at the closed landfill as described in the *Response* to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan

and Historical Information Summary (NASA, 2019c). Activities during the first quarter of 2022 include the following:

- NASA reviewed soil vapor data from the Phase 1A soil vapor survey and concluded that a Phase 1B survey would not provide any more useful information. NASA submitted a letter, *Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation*, on the lack of need to perform for a Phase 1B SVS for the 700 Area Landfill to NMED on October 19, 2021 (NASA, 2021o). NMED disapproved the approach and asked for clarification on November 12 (NMED, 2021c). NASA provided a revised discussion on December 21, 2021 (NASA, 2021s). NASA received NMED's February 11, 2022 approval of the *Revised Discussion Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation* (NMED, 2022d) and will forgo the Phase IB passive soil vapor survey.
- NASA completed the plugging and abandonment of shallow soil borings installed for the Phase IA survey in accordance with the March 2019 SWMU 49 700 Area Landfill Phase I Investigation Work Plan (NASA, 2019c) and subsequent response to the NMED Disapproval.
- The Phase I field investigation report is due April 29, 2022.

6.4.13 SWMU 50 (First TDRSS Diesel Release)

NASA performed NMED-approved investigation fieldwork at SWMU 50 and provided the results to NMED in the *First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report* (NASA, 2019a). Activities during the first quarter of 2022 include the following:

• NMED is reviewing NASA's Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report (November 9, 2020; NASA, 2020f).

6.4.14 SWMU 52 (Second TDRSS UST)

On August 11, 2020, NASA discovered a diesel fuel leak in the area of the SWMU 52 Underground Storage Tank (UST), which is located north of WSTF at the White Sands Complex. SWMU 52 related activities performed during the fourth quarter of 2021 included the following:

• On March 1, 2022, NMED provided the Disapproval Second TRDSS Underground Storage Tank (SWMU 52) Release Assessment Report (NMED, 2022e). NASA is addressing NMED's four comments and preparing the revised report, which is due to NMED no later than May 6, 2022

6.4.15 Newly Identified SWMU

While researching documentation related to the Fuel Treatment Unit, NASA identified the location of a former 500 Area oxidizer as a potential new SWMU. Activities during the first quarter of 2022 include the following:

• In the December 20, 2021, Approval 500 Area Newly Identified SWMU Release Assessment Report (NMED, 2021e), NMED directed NASA to list the former oxidizer burner as a SWMU requiring corrective action in the WSTF Hazardous Waste Permit (during a Permit renewal or modification, as applicable) and to submit an investigation work plan for the unit no later than

August 31, 2022. During the first quarter of 2022, NASA continued development of the investigation work plan and the accompanying Historical Information Summary (HIS).

7.0 Planned Activities

This section discusses NASA's planned activities related to groundwater monitoring at WSTF.

7.1 Groundwater Monitoring and Related Projects

7.1.1 Groundwater Monitoring

NASA plans to continue routine groundwater monitoring in accordance with the GMP (NASA, 2021a). Sampling for per- and polyfluoroalkyl substances will be included in 2022 per NMED's November 15, 2021 *Approval with Modifications of the 2021 GMP* (NMED, 2021d), and will be reflected in the GMP update for 2022. NASA committed to PFAS sampling in its *Response to Approval with Modifications of NASA WSTF Groundwater Monitoring Plan Update for 2021* (NASA, 2021r).

7.1.2 Monitoring Well Performance or Sampling Equipment Issues

This section presents plans to address wells that could not be sampled in the data reporting period (November 1, 2021 through January 31, 2022) due to mechanical or well performance issues and were not resolved by the end of the period. The backlog of prior unresolved issues is shown on <u>Table 6.1</u>. The section also presents issues that have been resolved.

- In October 2021, well JP-3-509 was not sampled because the sampling system was not operational. NASA repaired the sampling system and sampled the well in December 2022.
- In the Approval with Modifications of the 2021 GMP update, NMED stated, "Due to reported damage associated with root growth at monitoring well NASA 9, a work plan for abandonment and replacement of the monitoring well must be submitted to NMED for approval... The work plan for abandonment and replacement of monitoring well NASA 9 must be submitted no later than April 29, 2022" (NMED, 2021d). NASA plans to prepare and consider and submit the required well replacement work plan.
- In November 2021, NASA was unable to sample well ST-1-531 and ST-1-630 because the sampling systems were not operational. NASA planned and performed required troubleshooting, determined the cause of the sampling system failure, repaired the sampling systems, and performed sampling in December 2022.
- NASA was unable to sample well 400-IV-123 because the water level was insufficient for sample collection. NASA plans to monitor the water level in this well and sample if the water level recovers enough to obtain a representative sample.

7.1.3 Westbay Well Reconfiguration

NASA expects to plug and abandon well BLM-28. NASA plans to plug and abandon the borehole at former monitoring well BLM-30 in conjunction with drilling and completing replacement well BLM-43. NASA plans to plug and abandon Westbay well PL-6.

7.1.4 Monitoring Well Installation

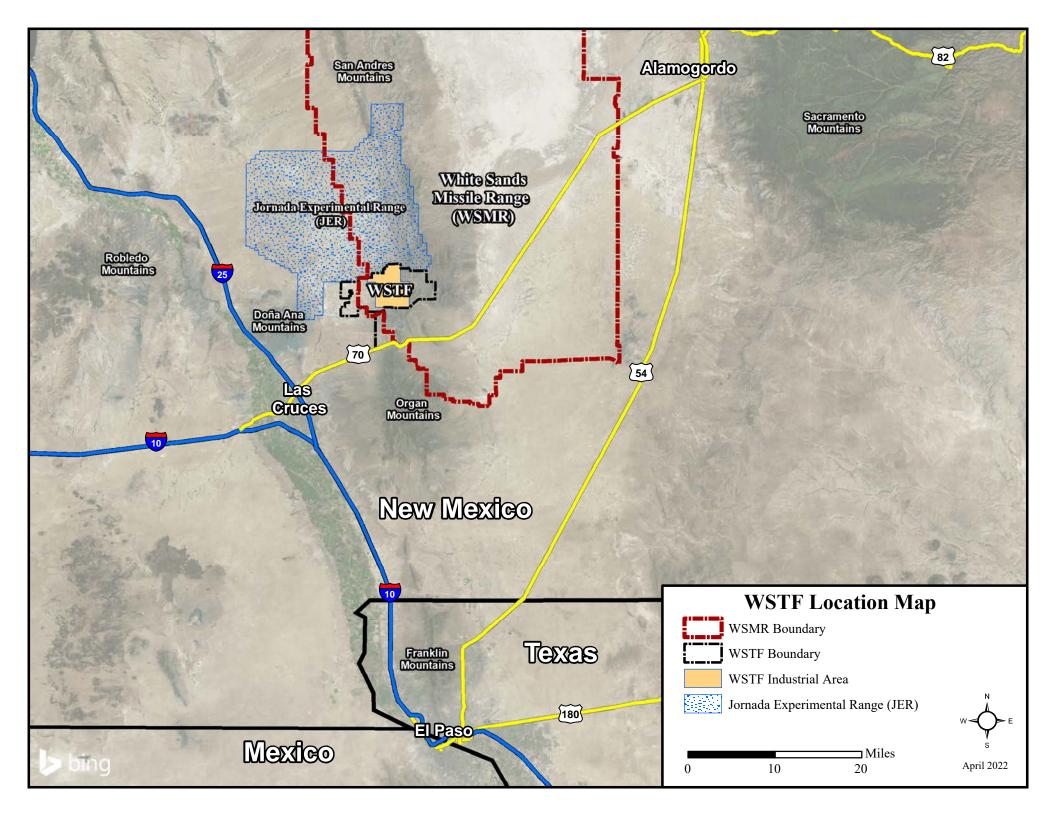
In addition to replacement well BLM-43 mentioned in the preceding section, NASA plans to replace well BLM-28 and to install a deeper monitoring well adjacent to existing well BLM-10-517. NASA also plans to replace Westbay monitoring well PL-6.

7.2 Groundwater Remediation System Monitoring

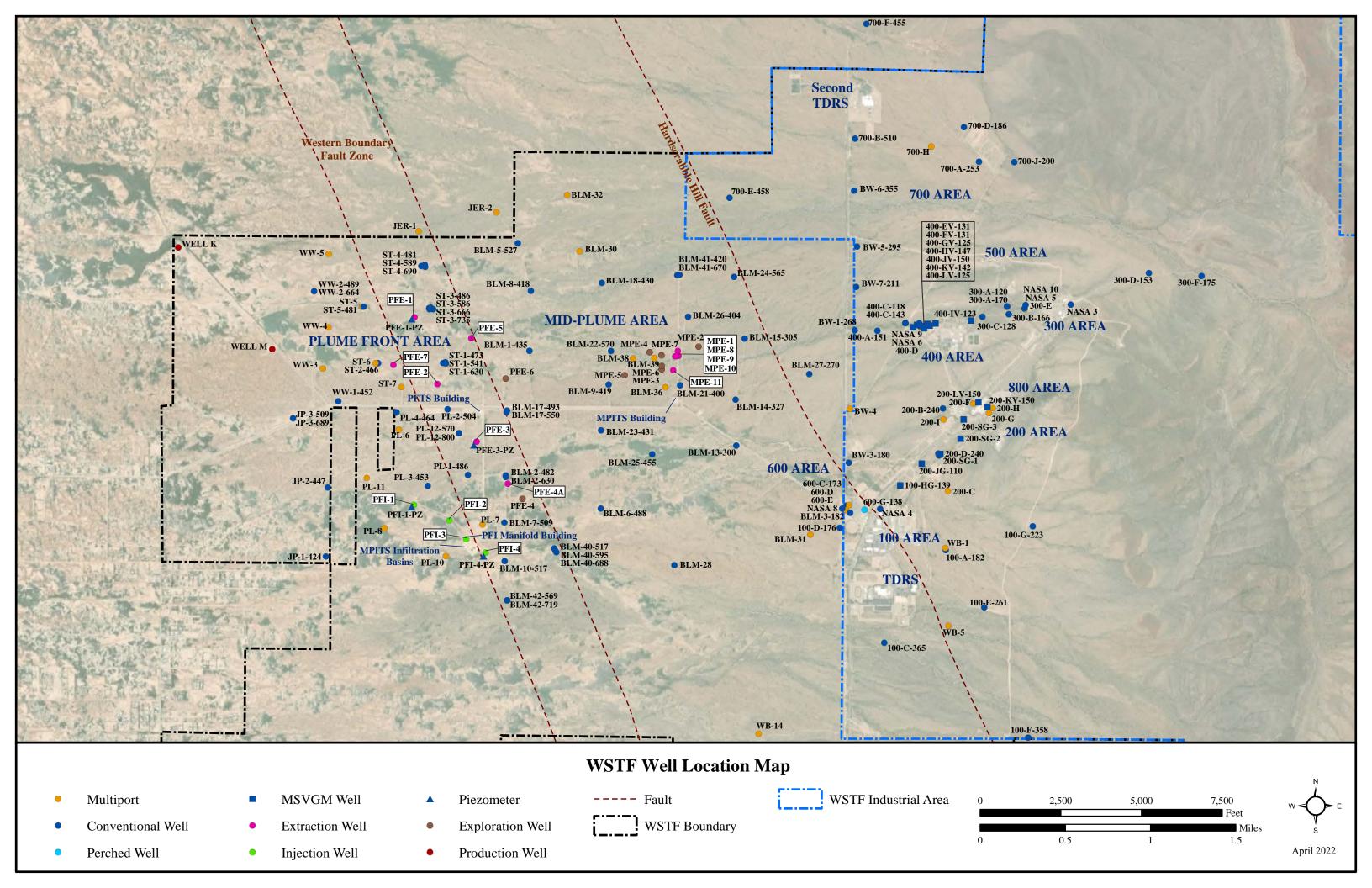
The RSMP (NASA, 2021d) and DP-1255 (NMED, 2017) include provisions for monitoring the effectiveness of the PFTS and MPITS. Sampling at designated locations, including extraction wells and remediation system sampling points, will continue as required during remediation system operational periods in accordance with the RSMP and/or DP-1255. Monitoring well sampling to assess remediation system effectiveness will continue in accordance with the GMP (NASA, 2021a).

8.0 References

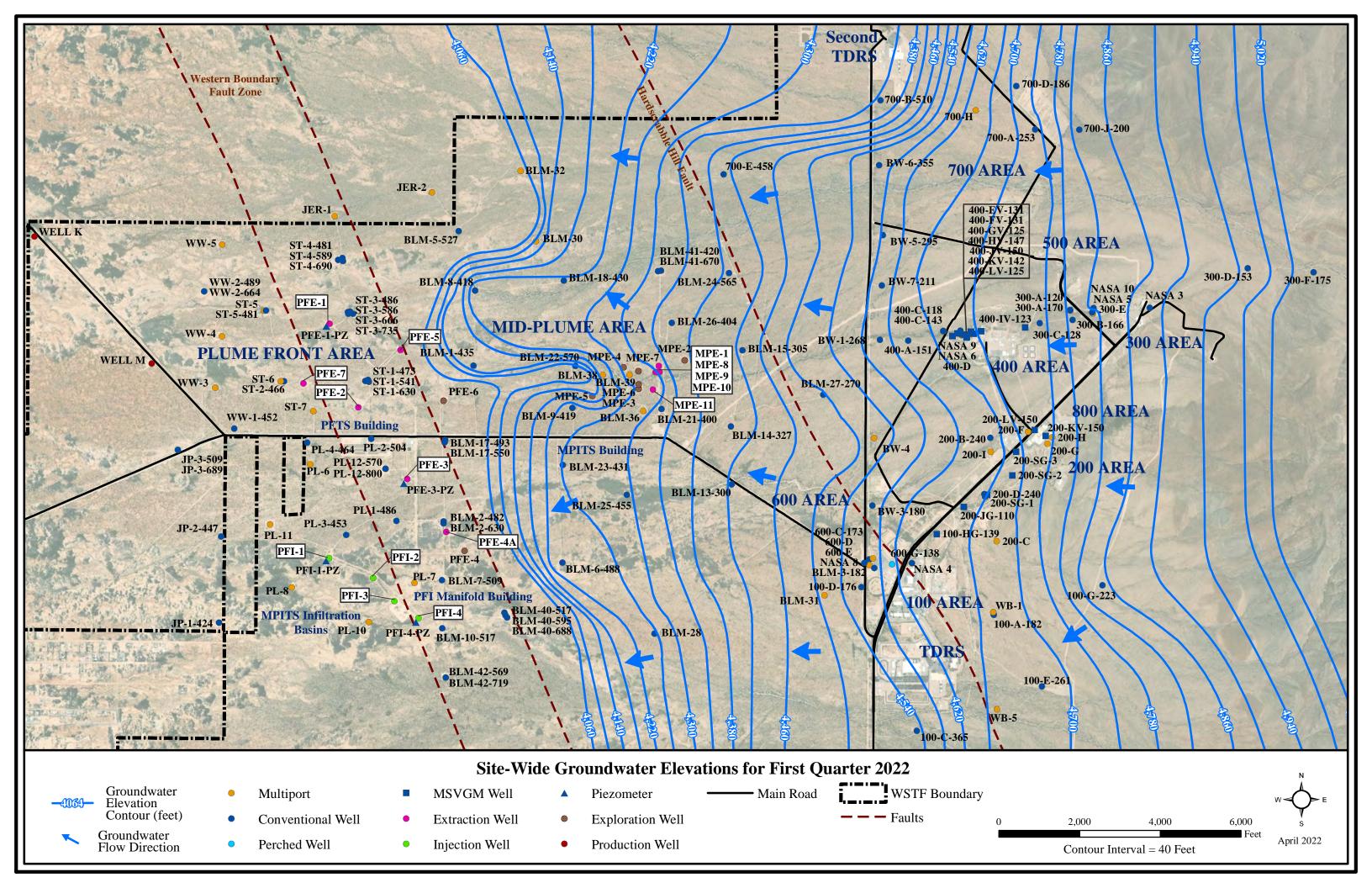
- NASA Johnson Space Center White Sands Test Facility. (2019a, March 14). First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, May 30). 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019c, August 8). Response to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019d, November 25). NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, November 26). NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, January 30). NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, August 3). NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020d, August 17). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification. Las Cruces, NM.

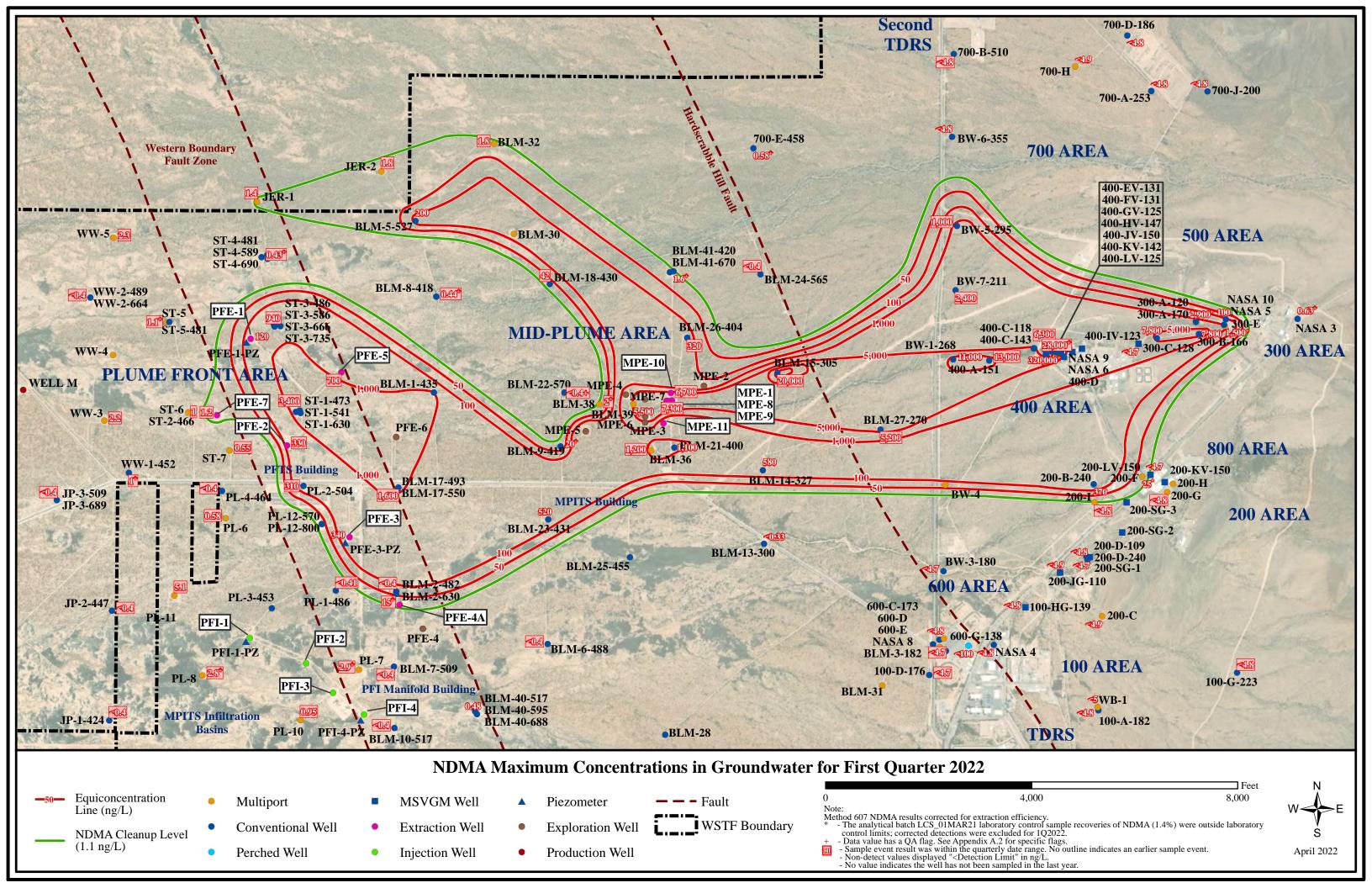

- NASA Johnson Space Center White Sands Test Facility. (2020e, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020f, November 9). Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021a, April 19). NASA White Sands Test Facility (WSTF) Groundwater Monitoring Plan (GMP) Update for 2021. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021d, June 29). NASA WSTF Remediation System Monitoring Plan Annual Update for 2021. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, June 29). NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, June 29). *Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, July 14). Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021h, July 14). Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, July 27). NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, August 31). NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021l, September 14). Request for Second Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.

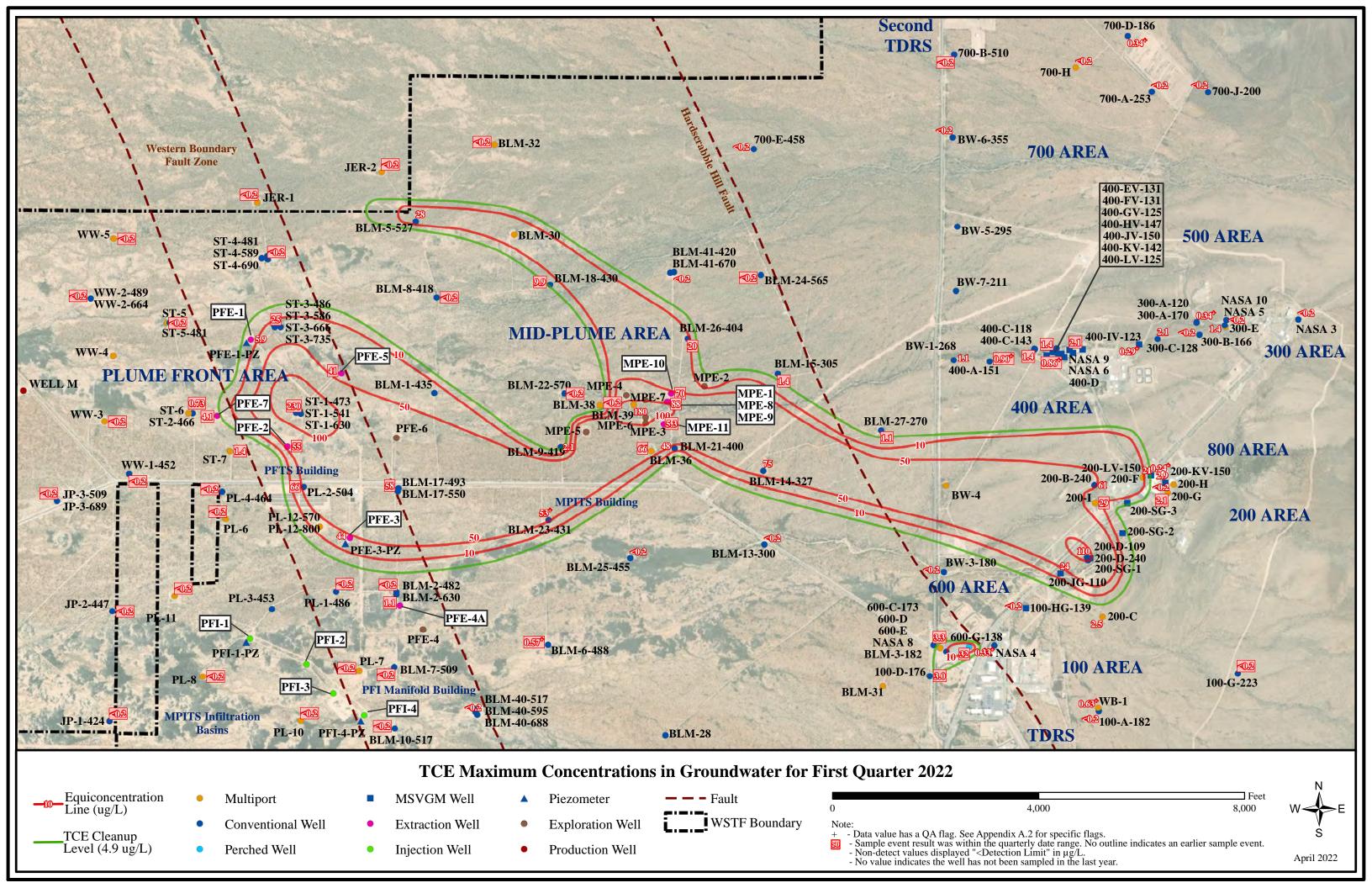
- NASA Johnson Space Center White Sands Test Facility. (2021n, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021o, October 19). Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021p, November 2). *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021q, November 30). Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021r, December 21). Response to Approval with Modifications of NASA WSTF Groundwater Monitoring Plan Update for 2021. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021s, December 21). Revised Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022a, January 11). Request for Third Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022b, February 1). *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-002-GW and Abandonment of PL-6*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022c, March 4). Response to Second Disapproval of NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2022d, March 8). Response to Approval with Modifications of NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2009, November 3). Hazardous Waste Permit No. NM8800019434 (modified December 2019). Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013b, March 1). Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area. Santa Fe, NM.
- NMED Ground Water Quality Bureau. (2017, July 14). *Discharge Permit Renewal and Modification, DP-1255, NASA White Sands Testing Facility.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019, June 19 [Revision 2]). Risk Assessment Guidance for Investigations and Remediation. Santa Fe, NM.

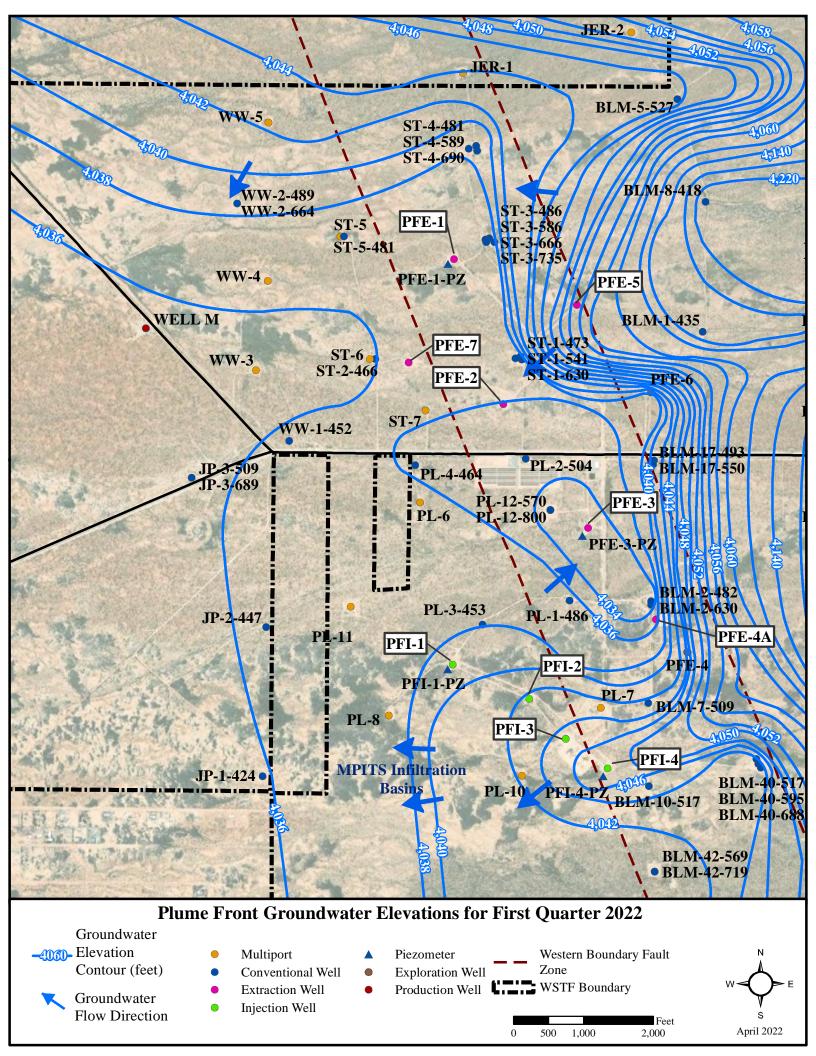

- NMED Hazardous Waste Bureau. (2020, December 22). Approval with Modifications 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021a, January 25). *Approval with Modifications Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, January 29). (SWMUs 21-27) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021c, November 12). Disapproval 700 Area Landfill (SWMU 49) Phase I Investigation Soil Vapor Survey. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021d, November 15). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021e, December 20). *Approval 500 Area Newly Identified SWMU Release Assessment Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022a, January 10). *Approval Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022b, January 18). *Approval with Modifications Well Reconfiguration Work Plan for BW-4*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022c, January 25). Approval Request for Third Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022d, February 11). *Approval Revised Discussion Phase 1A and Phase 1B Soil Vapor Survey (SVS) 700 Area Landfill Phase I Investigation*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022e, March 1). Disapproval Second TRDSS Underground Storage Tank (SWMU 52) Release Assessment Report. Santa Fe, NM.

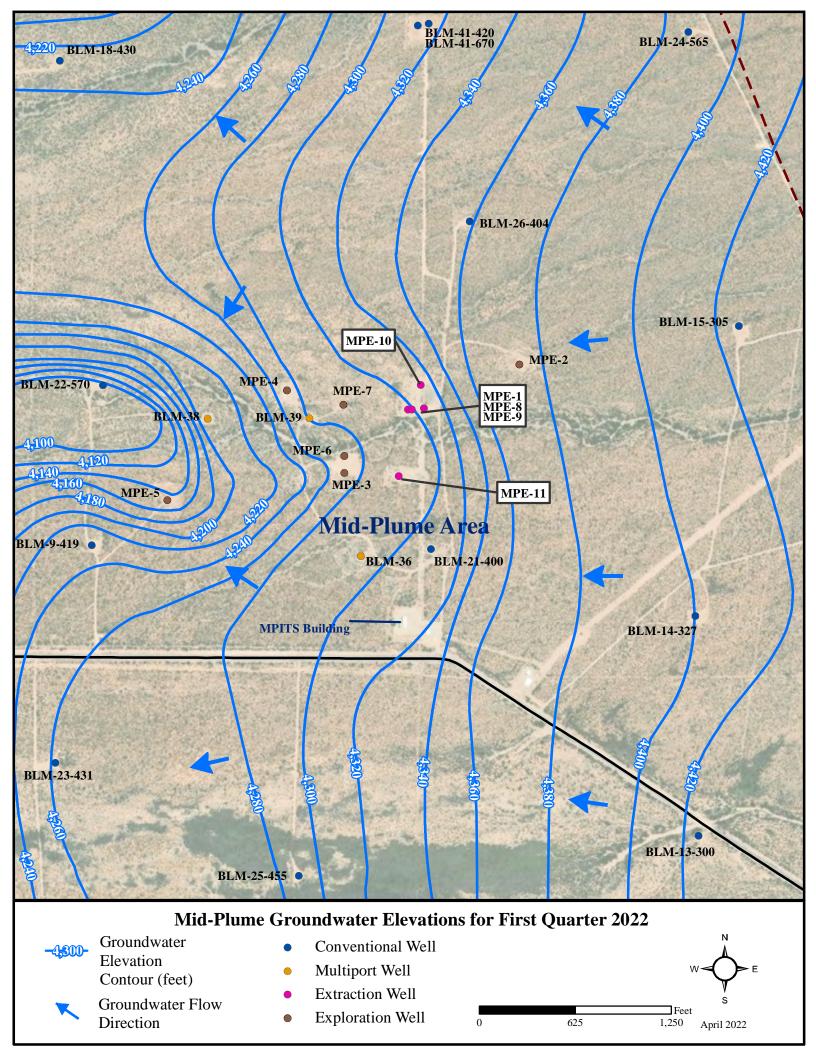
Figures


(SEE NEXT PAGE)


(SEE NEXT PAGE)


Figure 4.1	Groundwater Elevations and Generalized Flow Directions for the Reporting Period
	(SEE NEXT PAGE)


Figure 4.2	Site-Wide N-Nitrosodimethylamine (NDMA) Concentrations for the Reporting Period
	(SEE NEXT PAGE)
	(SEL NEXT TAGE)



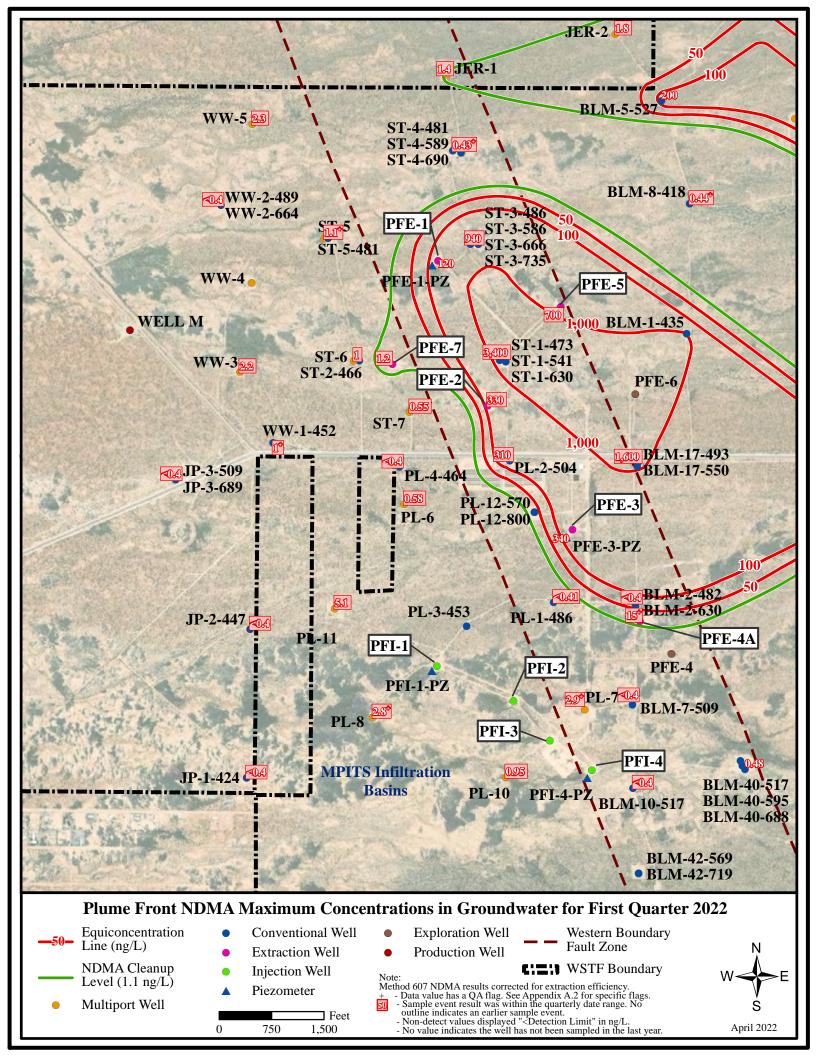


Figure 6.1	Plume Front Groundwater Elevations for the Reporting Period					
	(SEE NEXT PAGE)					

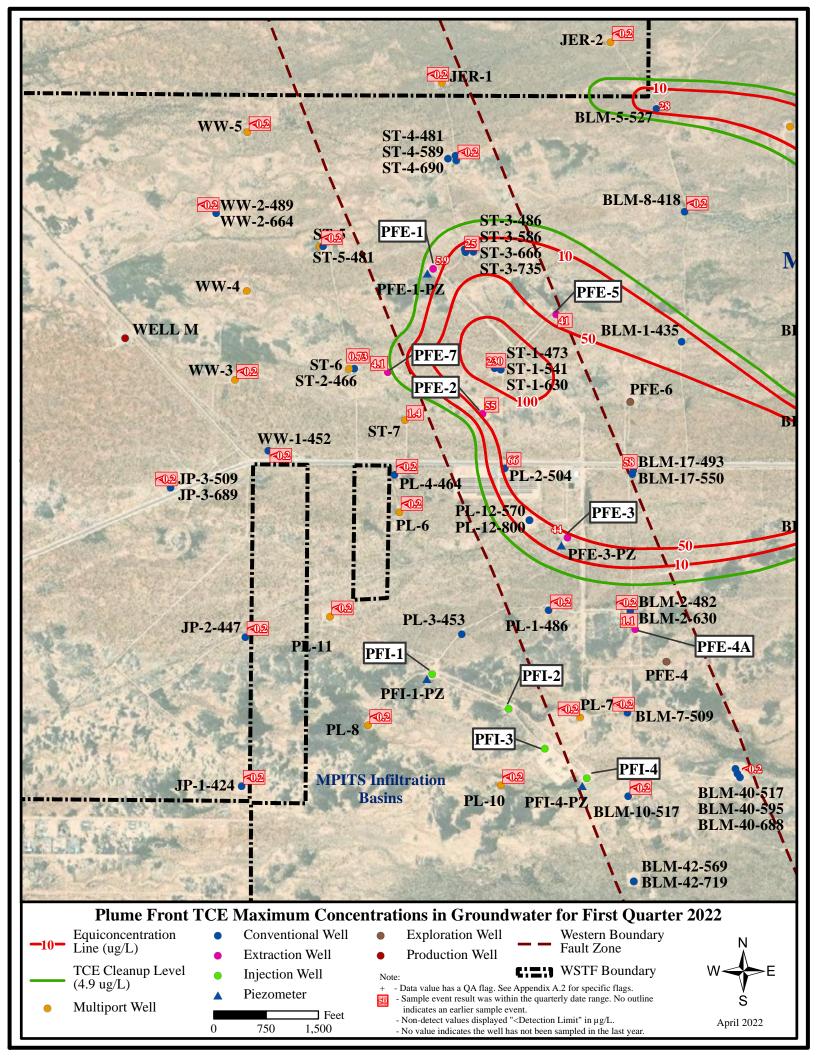


Figure 6.2	N Nitrogadimethylamina Concentrations at the Pluma Front for the Departing Pariod
rigure 0.5	N-Nitrosodimethylamine Concentrations at the Plume Front for the Reporting Period
	(CEE NEVT DA CE)
	(SEE NEXT PAGE)

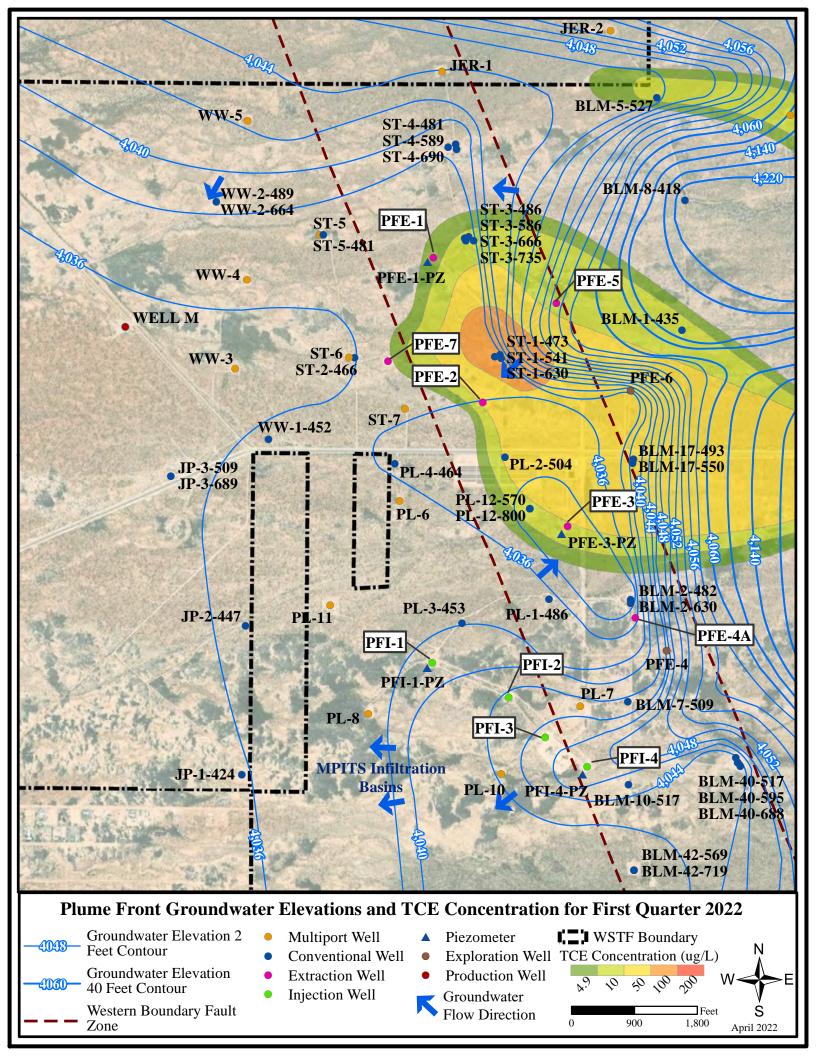


Figure 6.4	Trichloroethene Concentrations at the Plume Front for the Reporting Period
	1 8
	(SEE NEXT PAGE)

Figure 6.5	Plume Front Groundwater Elevations and Trichloroethene Concentrations for the Reporting Period

(SEE NEXT PAGE)

Tables

Table 3.1 DP-1255 Discharge Standards and Groundwater Cleanup Levels for WSTF COC

Contaminant	Chemical Abstract Number	DP-1255 Standard (μg/L)	Cleanup Level (µg/L)
	Carcinog	ens	
NDMA	62-75-9	0.0049	0.0011^{1}
TCE	79-01-6	2.59	4.9^{1}
PCE	127-18-4	40.3	5.0^{2}
Chloroform	67-66-3	2.29	2.2^{1}

Notes:

Cleanup Level based on EPA RSL equivalent to the most conservative value equivalent to 1E-05 risk for carcinogens or H=1 for non-carcinogens as updated in the 2021 GMP update (NASA, 2021a).

Cleanup Level based on Maximum Contaminant Levels found in 40 Code of Federal Regulations Parts 141: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=a4752225928ed82c597f05b633d21806&mc=true&n=pt40.25.141&r=PART&ty=HTML

 Table 3.2
 Accepted New Detections for This Reporting Period

Well ID	CAS Number	Analyte	
BLM-17-493	7440-38-2	Arsenic, Total	
BLM-17-550	7440-38-2	Arsenic, Total	
BLM-18-430	7439-89-6	Iron, Total	

Table 3.3 Unconfirmed New Detections – Resolution Pending

Well ID	CAS Number	Analyte	Scheduled Resample Date
ST-2-466	314-40-9	Bromacil	2/2/2022
BLM-13-300	314-40-9	Bromacil	3/4/2022
BLM-42-709	117-81-7	Bis(2-ethylhexyl) Phthalate	3/13/2022
BLM-42-709	62-75-9	N-Nitrosodimethylamine	3/14/2022
WW-4-948	314-40-9	Bromacil	3/18/2022
BLM-40-517	314-40-9	Bromacil	4/1/2022
BLM-40-517	62-75-9	N-Nitrosodimethylamine	4/4/2022
PL-10-484	123-91-1	1,4-Dioxane	4/11/2022
BLM-14-327	7429-90-5	Aluminum, Total	4/15/2022
BLM-8-418	314-40-9	Bromacil	5/6/2022
BLM-38-480	314-40-9	Bromacil	5/11/2022
WB-1-200	75-15-0	Carbon Disulfide	5/18/2022
ST-6-568	117-81-7	Bis(2-ethylhexyl) Phthalate	9/15/2022
ST-6-678	314-40-9	Bromacil	9/16/2022
PL-3-453	314-40-9	Bromacil	10/4/2022
ST-7-779	7440-50-8	Copper, Total	10/6/2022
JER-2-584	7440-66-6	Zinc, Total	10/13/2022
JER-1-483	314-40-9	Bromacil	10/14/2022
BLM-41-420	314-40-9	Bromacil	10/18/2022
WW-5-459	117-81-7	Bis(2-ethylhexyl) Phthalate	10/19/2022
WW-5-809	117-81-7	Bis(2-ethylhexyl) Phthalate	10/20/2022
400-C-143	7429-90-5	Aluminum, Total	11/17/2022
700-B-510	314-40-9	Bromacil	12/9/2022
BLM-40-595	14797-73-0	Perchlorate	4/12/2023
PL-10-484	314-40-9	Bromacil	10/6/2023
ST-2-466	314-40-9	Bromacil	2/2/2022
BLM-13-300	314-40-9	Bromacil	3/4/2022
BLM-42-709	117-81-7	Bis(2-ethylhexyl) Phthalate	3/13/2022
BLM-42-709	62-75-9	N-Nitrosodimethylamine	3/14/2022

Table 3.4 Unconfirmed Detections Resolved This Reporting Period

			1 8	
Well ID	CAS Number	Analyte	Scheduled Resample Date	Resolution
BLM-2-630	7440-02-0	Nickel, Total	11/9/2021	Confirmed
ST-1-541	7440-47-3	Chromium, Total	11/11/2021	Unconfirmed
200-I-795	314-40-9	Bromacil	11/18/2021	Confirmed
200-I-795	62-75-9	N-Nitrosodimethylamine	11/18/2021	Unconfirmed
PL-6-1195	7440-47-3	Chromium, Total	1/6/2022	Confirmed
PL-6-1335	4164-28-7	N-Nitrodimethylamine	1/7/2022	Unconfirmed
100-F-358	12672-29-6	Aroclor 1248	1/20/2022	Unconfirmed
100-F-358	314-40-9	Bromacil	1/20/2022	Unconfirmed
BLM-2-630	7440-02-0	Nickel, Total	11/9/2021	Confirmed
ST-1-541	7440-47-3	Chromium, Total	11/11/2021	Unconfirmed

Table 4.1 Groundwater Monitoring Wells/Zones Analyzed for the Reporting Period

Well Name	Event Date	Well Group	Well Name	Event Date	Well Group	Well Name	Event Date	Well Group
100-D-176	11/11/21	100/600	BLM-22-570	11/10/21	Mid-plume	JP-2-447	01/04/22	Sentinel
100-F-358	01/18/22	Upgradient	BLM-24-565	11/02/21	N. Boundary	JP-3-509	12/09/21	Sentinel
100-G-223	01/18/22	Upgradient	BLM-2-630	11/09/21	In Plume	JP-3-509	01/06/22	Sentinel
200-G-175	12/06/21	200	BLM-26-404	11/03/21	Mid-plume	JP-3-689	01/06/22	Sentinel
200-G-220	12/02/21	200	BLM-27-270	12/15/21	Mid-plume	NASA 6	11/15/21	300/400
200-G-340	12/02/21	200	BLM-3-182	11/02/21	100/600	PL-10-484	01/11/22	Sentinel
200-G-420	12/01/21	200	BLM-32-543	11/01/21	N. Boundary	PL-10-592	01/10/22	Sentinel
200-G-495	12/01/21	200	BLM-32-571	11/01/21	N. Boundary	PL-11-470	12/01/21	Sentinel
200-I-185	11/10/21	200	BLM-32-632	11/01/21	N. Boundary	PL-11-530	12/01/21	Sentinel
200-I-300	11/16/21	200	BLM-36-350	11/03/21	Mid-plume	PL-11-710	12/02/21	Sentinel
200-I-375	11/16/21	200	BLM-36-610	11/02/21	Mid-plume	PL-11-820	12/02/21	Sentinel
200-I-490	11/15/21	200	BLM-36-800	11/03/21	Mid-plume	PL-11-980	12/02/21	Sentinel
200-I-675	11/15/21	200	BLM-36-860	11/02/21	Mid-plume	PL-12-570	11/03/21	In Plume
200-I-795	11/12/21	200	BLM-38-480	11/04/21	Mid-plume	PL-12-800	11/03/21	In Plume
300-F-175	01/19/22	Upgradient	BLM-38-620	11/04/21	Mid-plume	PL-1-486	01/10/22	In Plume
400-A-151	01/05/22	300/400	BLM-42-569	12/13/21	Sentinel	PL-2-504	12/10/21	In Plume
400-C-143	11/17/21	300/400	BLM-42-709	12/13/21	Sentinel	PL-4-464	12/15/21	Plume Front
400-EV-131	11/01/21	300/400	BLM-6-488	01/05/22	S. Boundary	PL-6-1195	01/12/22	Plume Front
400-FV-131	01/18/22	300/400	BLM-7-509	12/06/21	Plume Front	PL-6-1335	01/13/22	Plume Front
400-GV-125	11/02/21	300/400	BLM-8-418	11/04/21	Mid-plume	PL-6-545	01/19/22	Plume Front
400-HV-147	01/18/22	300/400	BW-5-295	11/04/21	300/400	PL-6-725	01/19/22	Plume Front
400-JV-150	11/01/21	300/400	BW-7-211	12/15/21	300/400	PL-6-915	01/18/22	Plume Front
600-G-138	01/19/22	100/600	JER-1-483	01/06/22	N. Boundary	PL-7-480	11/08/21	Plume Front
700-B-510	12/09/21	N. Boundary	JER-1-563	01/06/22	N. Boundary	PL-7-560	11/08/21	Plume Front
BLM-10-517	01/03/22	Plume Front	JER-1-683	01/07/22	N. Boundary	PL-8-455	12/08/21	Sentinel
BLM-15-305	01/12/22	Mid-plume	JER-2-504	01/05/22	N. Boundary	PL-8-605	12/08/21	Sentinel
BLM-17-493	11/03/21	In Plume	JER-2-584	01/05/22	N. Boundary	ST-1-473	11/15/21	In Plume
BLM-17-550	01/03/22	In Plume	JER-2-684	01/05/22	N. Boundary	ST-1-541	12/16/21	In Plume
BLM-18-430	01/13/22	Mid-plume	JP-1-424	01/04/22	Sentinel	ST-1-630	12/16/21	In Plume

NASA White Sands Test Facility

Well Name	Event Date	Well Group	Well Name	Event Date	Well Group	Well Name	Event Date	Well Group
ST-3-486	12/09/21	In Plume	ST-6-528	12/06/21	Plume Front	WW-1-452	12/06/21	Plume Front
ST-3-586	12/13/21	In Plume	ST-6-568	12/06/21	Plume Front	WW-2-489	12/14/21	Sentinel
ST-3-666	12/15/21	In Plume	ST-6-678	12/07/21	Plume Front	WW-2-664	12/14/21	Sentinel
ST-3-735	12/14/21	In Plume	ST-6-824	12/07/21	Plume Front	WW-3-469	12/07/21	Sentinel
ST-4-481	12/08/21	Plume Front	ST-6-970	12/07/21	Plume Front	WW-3-569	12/07/21	Sentinel
ST-4-589	11/02/21	Plume Front	ST-7-453	01/03/22	Plume Front	WW-5-459	01/10/22	Sentinel
ST-4-690	12/08/21	Plume Front	ST-7-544	01/03/22	Plume Front	WW-5-579	01/10/22	Sentinel
ST-5-485	11/01/21	Plume Front	ST-7-779	01/04/22	Plume Front	WW-5-809	01/11/22	Sentinel
ST-5-655	11/01/21	Plume Front	ST-7-970	01/04/22	Plume Front	WW-5-909	01/11/22	Sentinel

Plume Front				
Well Name	Event Date			
B650-EFF-1	11/02/21			
B650-EFF-1	12/06/21			
B650-EFF-1	01/06/22			
B650-INF-1	11/02/21			
B650-INF-1	12/06/21			
B650-INF-1	01/06/22			

Plume Front			
Well Name Event Date			
PFE-2	01/12/22		
PFE-4A	01/11/22		
PFE-5	01/11/22		
PFE-7	01/12/22		
1112-/	01/12/22		

Mid-plume				
Well Name	Event Date			
B655-EFF-2	11/02/21			
B655-EFF-2	12/06/21			
B655-EFF-2	01/07/22			
B655-INF-2	11/02/21			
B655-INF-2	12/06/21			
B655-INF-2	01/07/22			

Mid-plume					
Well Name Event Date					
MPE-1	11/04/21				
MPE-10	11/04/21				
MPE-11	11/04/21				
MPE-8	11/04/21				

Table 4.2	Groundwater	Elevation Data
1 abic 4.2	Groundwater	Lievation Data

Well Name 100-A-182 100-C-365	Total Depth (ft bgs) 198 391	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation	Measurement
100-C-365		100	(~ ~ 5 ~)	(ft amsl)	Date
•	391	104	192	4,669.69	11/29/21
		365	386	4,535.06	11/29/21
100-D-176	201	176	196	4,568.79	11/29/21
100-E-261	277	261	271	4,681.96	11/29/21
100-F-358	378	358	368	4,713.07	11/29/21
100-G-223	238	223	233	4,851.26	11/29/21
100-HG-139	165	139	159	4,647.21	11/29/21
200-B-240	255	240	250	4,647.00	11/29/21
200-C(170) ⁱ	290	N/A	N/A	4,680.80	11/24/21
200-D-240	280	240	250	4,661.89	11/29/21
200-F(370) ⁱ	590	N/A	N/A	4,715.01	11/24/21
200-G(220) ⁱ	515	N/A	N/A	4,722.98	11/24/21
200-H(331) ⁱ	458	N/A	N/A	4,734.06	11/24/21
200-I(300) ⁱ	815	N/A	N/A	4,651.95	11/24/21
200-JG-110	150	110	130	4,655.35	11/29/21
200-KV-150	175	150	170	4,726.03	11/29/21
200-LV-150	175	150	170	4,727.86	11/29/21
200-SG-1	138	123	138	4,652.16	11/29/21
300-A-120	151	120	146	4,785.43	11/29/21
300-B-166	181	165	176	4,773.22	11/29/21
300-C-128	160	128	154	4,739.78	11/29/21
300-D-153	179	153	174	4,949.42	11/29/21
300-E(138) ⁱ	395	N/A	N/A	4,805.40	11/24/21
300-F-175	195	175	185	5,043.80	11/29/21
400-A-151	187	151	176	4,636.53	11/29/21
400-C-143	159	143	153	4,669.24	11/29/21
400-D(275) ⁱ	380	N/A	N/A	4,663.73	11/24/21
600-E(280) ⁱ	690	N/A	N/A	4,559.00	11/24/21
700-A-253	269	253	263	4,723.73	11/29/21
700-B-510	550	510	531	4,341.58	11/29/21
700-D-186	202	186	196	4,720.45	11/29/21
700-H(350) ⁱ	695	N/A	N/A	4,636.90	11/24/21
700-J-200	230	200	220	4,834.07	11/29/21
BLM-10-517	532	517	527	4,045.95	11/29/21
BLM-13-300	316	300	310	4,421.92	11/29/21
BLM-1-435	451	435	446	4,145.52	11/29/21
BLM-14-327	343	327	337	4,400.19	11/29/21
BLM-15-305	321	305	315	4,423.02	11/29/21
BLM-17-493	519	493	513	4,041.53	11/29/21

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
BLM-18-430	456	430	451	4,226.22	11/29/21
BLM-21-400	413	400	410	4,312.85	11/29/21
BLM-22-570	597	570	592	4,095.55	11/29/21
BLM-23-431	447	431	441	4,261.06	11/29/21
BLM-24-565	590	565	585	4,385.44	11/29/21
BLM-25-455	470	455	465	4,283.40	11/29/21
BLM-2-630	498	482	493	4,037.36	11/29/21
BLM-26-404	420	404	414	4,358.22	11/29/21
BLM-27-270	286	270	280	4,498.03	11/29/21
BLM-28 (Borehole) ⁱ	555	N/A	N/A	4,257.99	11/29/21
BLM-3-182	208	182	203	4,568.73	11/29/21
BLM-36(350)ii	905	604	614	4,334.88	11/24/21
BLM-38(480) ⁱⁱ	641	475	485	4,207.47	11/24/21
BLM-39(385)ii	595	379	389	4,282.31	11/24/21
BLM-40-517	532	517	527	4,043.46	11/29/21
BLM-41-420	435	420	430	4,317.81	11/29/21
BLM-5-527	560	527	538	4,045.90	11/29/21
BLM-6-488	503	488	498	4,231.32	11/29/21
BLM-7-509	525	509	520	4,041.99	11/29/21
BLM-8-418	434	418	428	4,223.67	11/29/21
BLM-9-419	445	419	440	4,226.99	11/29/21
BW-1-268	294	268	289	4,606.70	11/29/21
BW-3-180	205	180	200	4,565.24	11/29/21
BW-5-295	311	295	305	4,581.65	11/29/21
BW-6-355	381	355	376	4,573.22	11/29/21
BW-7-211	225	211	222	4,606.91	11/29/21
JP-1-424	440	424	434	4,035.57	11/29/21
JP-2-447	462	446	457	4,036.75	11/29/21
MPE-2	600	400	580	4,372.21	11/29/21
MPE-5	590	450	570	4,145.22	11/29/21
MPE-6	603	383	602	4,269.62	11/29/21
MPE-7	600	401	600	4,231.24	11/29/21
NASA 10	135	110	130	4,823.11	11/29/21
NASA 3	144	119	139	4,889.30	11/29/21
NASA 4	171	146	166	4,637.64	11/29/21
NASA 5	135	110	130	4,792.49	11/29/21
NASA 6	153	128	148	4,690.09	11/29/21
NASA 8	197	172	192	4,568.49	11/29/21
PFE-1-PZ	609	588	598	4,037.48	11/29/21

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
PFE-3-PZ	620	590	600	4,032.07	11/29/21
PFE-4	877	397	876	4,042.78	11/29/21
PFE-6	539	434	534	4,038.21	11/29/21
PFI-1-PZ	619	589	599	4,034.43	11/29/21
PFI-4-PZ	600	398	600	4,047.18	11/29/21
PL-10(484) ⁱⁱ	1000	479	489	4,041.23	11/24/21
PL-1-486	502	486	496	4,037.14	11/29/21
PL-2-504	520	504	514	4,033.83	11/29/21
PL-3-453	469	453	464	4,037.98	11/29/21
PL-4-464	480	464	474	4,036.01	11/29/21
PL-6(545) ⁱⁱ	1860	540	550	4,034.66	11/24/21
PL-7(480) ⁱⁱ	655	475	485	4,042.81	11/24/21
PL-8(455) ⁱⁱ	1000	448	458	4,036.76	11/24/21
ST-1-473	488	473	483	4,034.63	11/29/21
ST-2-466	481	466	476	4,035.91	11/29/21
ST-3-486	502	486	496	4,038.03	11/29/21
ST-4-481	497	481	491	4,038.97	11/29/21
ST-5-481	497	481	491	4,038.33	11/29/21
WB-14(520) ⁱ	545	N/A	N/A	4,432.71	11/24/21
WB-5(250) ⁱ	400	N/A	N/A	4,667.13	11/24/21
WW-1-452	468	452	462	4,036.58	11/29/21
WW-3(469)ii	1014	464	474	4,035.94	11/24/21

Notes:

Depth to top and bottom of screen are indicated as not applicable (N/A) for multiport Westbay wells that are completed in an open borehole. The depth of the Westbay monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation were calculated from the formation pressure at the indicated port depth.

The screen depths listed for retrofit multiport wells indicate the top and bottom of the screen in the outer casing of the well that corresponds to the measurement port used at that location. The depth of the monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation for Westbay multiport monitoring wells were calculated from the formation pressure at the indicated port depth. Depth to water and groundwater elevation for FLUTe multiport monitoring wells were calculated from pressure transducer readings collected on the measurement date.

Table 5.1 PFTS and MPITS Operational Status for the Reporting Period

	Plume	Front Treatm	ent System	Mid-plume Treatment System		
Month	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)
Nov-21	29 of 30	789	90.2	28 of 30	9.6	0.99
Dec-21	22 of 31	776	68.7	29 of 31	8.8	0.98
Jan-22	31 of 31	776	75.8	31 of 31	9.1	1.25

Table 5.2 PFTS and MPITS System Shutdowns for the Reporting Period

Shutdown Date	Restart Date	Type of Shutdown	Description
Plume Front Tre	atment System S	Shutdowns	
11/2/21	11/2/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
11/11/21	11/11/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
11/13/21	11/15/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
11/15/21	11/16/21	Unplanned	The system shut down automatically because of a communication error at well PFI-4.
11/18/21	11/19/21	Planned	NASA shut the system down to accommodate a scheduled outage at the WSTF Data Center.
12/2/21	12/2/21	Unplanned	The system shut down automatically because of a communication loss at well PFI-4.
12/11/21	12/12/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
12/12/21	12/21/21	Planned	NASA shut the system down to accommodate scheduled maintenance to replace a portion of the recirculation piping, install an isolation valve at each air stripper, and install a new electrical power recloser.
1/20/22	1/20/22	Planned	NASA shut the system down to support a planned power outage for an arc-flash upgrade project.
Mid-plume Inter	ception and Tre	atment System Shutd	owns
11/6/21	11/8/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
11/13/21	11/13/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply.
11/13/21	11/15/21	Planned	NASA left the down to accommodate a scheduled local area network outage.
12/1/21	12/1/21	Planned	NASA shut the system down to modify the air stripper exhaust stack.
12/7/21	12/7/21	Planned	NASA shut the system down to add an extension to the air stripper exhaust stack.
12/16/21	12/19/21	Planned	NASA shut the system down to accommodate installation of a new electrical power recloser.

Table 5.3 PFTS Air Stripper and UV Reactor Performance for the Reporting Period

	Analyte	Unit	Design	Nov-21	Dec-21	Jan-22
	TCE	μg/L	130	25	18	16
Air Stripper	PCE	$\mu g/L$	0.66	0.97 J	0.82 J	1
Influent Concentrations	Freon 11	$\mu g/L$	860	19	16	25
Concentrations	Chloroform	$\mu g/L$	NA^1	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
Aire Carrier or ore	TCE	μg/L	5.0	< 0.202	$< 0.20^2$	$< 0.20^2$
Air Stripper Effluent	PCE	$\mu g/L$	5.0	$< 0.21^2$	$< 0.21^2$	$< 0.21^2$
Concentrations	Freon 11	$\mu g/L$	100	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
	Chloroform	μg/L	NA ¹	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
UV Reactor Influent Concentrations	NDMA ³	ng/L	2,000	142ª	168 ^b	186°
UV Reactor Effluent Concentrations	NDMA ⁴	ng/L	< 2.0	<0.42	0.74 FB	<0.42

FB - The analyte was detected in the field blank.J - The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS – Not sampled during the reporting period.

RB - The analyte was detected in the method blank.

TB - The analyte was detected in the trip blank.

¹ Chloroform was not included as an analyte in the system design criteria; not applicable (NA).

² Analytical result for the constituent was below the method detection limit (MDL; provided).

³ Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 53%^a, 59%^b, 43%^c

⁴ Analytical results from the low-level NDMA analytical method. NDMA was not detected by modified Method 607.

Table 5.4 PFTS Extraction and Injection Well Flow Rates for the Reporting Period

1 abic 5.4	Well Name	Design Flow Rate (gpm)	Operational Average Flow Rate ¹ (gpm)	Overall Average Flow Rate ² (gpm)	Operational Percent of Well Design	Overall Percent of Well Design
	PFE-1	288	256	1	89%	0%
	PFE-2	224	224	212	100%	95%
Extraction Wells	PFE-3	213	N/O	N/O	N/O	N/O
(gpm)	PFE-4A	200	165	156	82%	78%
	PFE-5	5.5	4.0	3.8	72%	69%
	PFE-7	125	150	142	120%	113%
	PFI-1	269	N/O	N/O	N/O	N/O
Injection Wells	PFI-2	269	189	179	70%	66%
(gpm)	PFI-3	344	211	200	61%	58%
	PFI-4	194	157	148	81%	76%

¹ Operational averages are averages based on when a well was in operating status. Backwashing and downtime events are not included.

Overall averages are averages based on the overall status of the well and include backwashing and downtime events.

N/O - Not operating during reporting period.

Table 5.5 Comparison of Specific Capacities for the Plume Front Wells

Well Name	Specific Capacity at Installation	Specific Capacity Apr-21	Specific Capacity Jul-21	Specific Capacity Oct-21	Specific Capacity Dec-22 ³
PFE-1	8.3	NA^1	NA^1	6.6	6.9
PFE-2	5.7	6.4	6.5	6.6	6.4
PFE-3	19.4	10.6	10.0	10.5	NA^1
PFE-4A	3.1	2.3	2.7	2.4	2.8
PFE-5	0.14	< 0.1	NA^1	0.1	0.1
PFE-7	6	5.9	6.0	5.8	5.9
Well Name	Specific Capacity at Installation (Ideal Range)	Specific Capacity Apr-21	Specific Capacity Jul-21	Specific Capacity Oct-21	Specific Capacity Dec-22 ³
PFI-1	2.8–5	NA ¹	NA ¹	NA ¹	NA ¹

Notes: Specific capacities are used to measure well performances and have units of gallons per minute per foot of drawdown.

2.2

1.9

1.6

1.6

2.0

1.5

1.7

1.9

1.4

2.8-7

2–4

2.3 - 3.5

PFI-2

PFI-3

PFI-4

2.3

2.3

2.3

NA¹ – Not Applicable due to well being inoperative during reporting period.

NA² – Not Applicable due to questionable transducer readings during reporting period.

^{3 –} Measurements are from December 2021 were used because not all wells experienced a drawdown and recovery cycle in January 2022.

Table 5.6 Plume Front Mass Removal¹

Date	TCE (kg)	Freon 11 (kg)	Chloroform(g)	PCE (g)	NDMA (g)
Feb-21	1.4	0.91	ND	23	16
Mar-21	1.5	1.4	ND	57	15
Apr-21	1.4	1.3	ND	36	8.5
May-21	3.7	3.9	ND	115	27
Jun-21	3.3	3.4	ND	99	24
Jul-21	4.4	3.7	ND	172	28
Aug-21	4.0	4.1	ND	159	23
Sep-21	0.45	0.28	ND	13	3.9
Oct-21	0.26	0.15	ND	ND	5.9
Nov-21	2.8	2.1	ND	85	16
Dec-21	1.5	1.3	ND	52	14
Jan-22	2.4	2.3	ND	74	17
Total ²	27	25	ND	885	198

¹⁾ Mass removed calculated as: (Influent concentration - Effluent concentration) * volume of water extracted

²⁾ Total mass removed during the period covered by this table.

Table 5.7 MPITS Air Stripper and UV Reactor Performance for the Reporting Period

	Analyte	Unit	Design Parameter	Nov-21	Dec-21	Jan-22
Air Stripper	TCE	μg/L	140	49	39	51
Influent	PCE	$\mu g/L$	6.4	2.6	1.9	2.8
Concentrations	Freon 11	$\mu g/L$	240	80	78	110
(MPE Wells)	Chloroform	$\mu g/L$	NA^2	< 0.241	< 0.241	< 0.241
Air Stripper	TCE	μg/L	140	NS	NS	32
Influent	PCE	$\mu g/L$	6.4	NS	NS	< 0.211
Concentrations	Freon 11	$\mu g/L$	240	NS	NS	0.76 J
(Well 600-G-138)	Chloroform	$\mu g/L$	NA^2	NS	NS	0.28 J
	TCE	μg/L	1.0	< 0.201	< 0.201	< 0.201
Air Stripper Effluent	PCE	$\mu g/L$	1.0	< 0.211	< 0.211	< 0.211
Emuent Concentrations	Freon 11	$\mu g/L$	50	$< 0.24^{1}$	$< 0.24^{1}$	$< 0.24^{1}$
	Chloroform	$\mu g/L$	NA^2	< 0.241	< 0.241	$< 0.24^{1}$
UV Reactor Influent Concentrations (MPE Wells)	NDMA ³	ng/L	25,500	3,400ª	2,700 ^b	4,400°
UV Reactor Influent Concentrations (Well 600-G-138)	NDMA	ng/L	25,500	NS	NS	NS
UV Reactor Effluent Concentrations ⁴	NDMA ⁴	ng/L	< 2.0	<0.42	1.1 FB	<0.4 ²

^{* =} For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (179%) in the laboratory fortified blank (LFB21A28CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.

FB = The analyte was detected in the field blank.J = The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS = Not sampled during the reporting period. Well 600-G-138 is sampled annually for NDMA in accordance with the GMP (NASA, 2021a). Analytical data are provided in this table when available.

RB = The analyte was detected in the method blank.

¹ Analytical result for the constituent was below the MDL (provided).

² Chloroform was not included in the design analyte list; not applicable (NA).

Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 53%, 59%, 43%.

⁴ Analytical results from low-level analytical method and was below the MDL (provided). Results for Method 607 were ND.

Table 5.8 Mid-plume Mass Removal¹

Date	TCE (g)	F11 (g)	Chloroform (g)	PCE (g)	NDMA (g)
Feb-21	94	190	0.01	4.0	11
Mar-21	120	190	0.01	5.2	14
Apr-21	100	210	0.01	4.4	12
May-21	69	150	ND	3.1	6.2
Jun-21	83	179	ND	3.6	7.3
Jul-21	70	151	ND	3.1	6.2
Aug-21	65	113	ND	2.8	6.0
Sep-21	62	121	ND	2.5	5.3
Oct-21	35	70	ND	1.4	3.0
Nov-21	65	123	ND	3.1	4.1
Dec-21	63	120	ND	3.0	4.4
Jan-22	72	138	ND	3.4	5.0
Total ²	898	1755	0.03	40	85

¹⁾ Mass calculation: volume of water extracted at each well * (contaminant concentration at each well – MPITS effluent concentration)

²⁾ Total mass removed during the period covered by this table.

Table 5.9 Groundwater Treatment System Operation Costs (\$ / 1,000 gals)

Date	Gallons ¹ Treated	ECO Labor + Materials	TEST Labor + Materials	L+M cost per 1,000 gal	Energy Cost	Energy Cost per 1,000 gal	Total Cost	Total Cost per 1,000 gal treated
Feb-21	22,918,654	\$60,571	\$62,487	\$5.37	\$23,938	\$1.04	\$146,996	\$6.41
Mar-21	24,723,395	\$60,571	\$89,304	\$6.06	\$21,923	\$0.89	\$171,798	\$6.95
Apr-21	26,173,206	\$48,457	\$56,956	\$4.03	\$24,106	\$0.92	\$129,519	\$4.95
May-21	28,802,957	\$60,547	\$53,940	\$3.97	\$23,373	\$0.81	\$137,860	\$4.79
Jun-21	26,672,390	\$118,079	\$66,298	\$6.91	\$29,110 ²	\$1.09	\$213,487	\$8.00
Jul-21	28,005,674	\$65,147	\$49,923	\$4.11	\$38,4212	\$1.37	\$153,491	\$5.48
Aug-21	33,533,267	\$101,792	\$49,614	\$4.52	\$40,390 ²	\$1.20	\$191,796	\$5.72
Sep-21	9,661,806	\$122,151	\$55,846	\$18.42	\$20,0212	\$2.07	\$198,017	\$20.49
Oct-21	24,289,224	\$81,434	\$45,431	\$5.22	\$26,150 ²	\$1.08	\$153,015	\$6.30
Nov-21	29,904,475	\$101,792	\$50,793	\$5.10	\$19,193	\$0.64	\$171,779	\$5.74
Dec-21	23,578,185	\$81,434	\$49,834	\$5.57	\$18,756	\$0.80	\$150,024	\$6.36
Jan-22	27,294,811	\$61,075	\$35,658	\$3.54	\$22,271	\$0.82	\$119,004	\$4.36
12-Month Total	305,558,044	\$963,050	\$666,084	\$5.33	\$307,652	\$1.01	\$1,936,786	\$6.34

¹⁾ Gallons treated reflects amount of water extracted during power reporting period.

²⁾ Includes peak demand rates.

		Table 6.1 Status of W	ells with Sampling Iss	ues
Well	Date of Discovery	Description	Scheduled for Sampling this Qtr? / Next Sampling Date per GMP	Description of Future Plan or Resolution
New Occurre	ences this Qua	rter		
ST-1-541	Nov-21	Sampling system not operational		NASA planned and performed required troubleshooting, determined the cause of the sampling system failure, repaired the sampling system, and performed sampling in December 2021.
ST-1-630	Nov-21	Sampling system not operational		NASA planned and performed required troubleshooting, determined the cause of the sampling system failure, repaired the sampling system, and performed sampling in December 2021.
400-IV-123	Jan-22	The water level in the well was insufficient for sample collection.		
Unresolved I	ssues			
BLM-1-435	Apr-20	Sampling failed, as there was not enough water in the screen to fill the sample bottles. Failed again, in April 2021 and October 2021.	Yes / Apr-22	The well does not provide sufficient water for representative sampling. NASA recommends plugging and abandoning this well as described in the 2022 GMP update.
400-C-118	Nov-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	NA	The well does not provide sufficient water for representative sampling. NASA recommends plugging and abandoning this well as described in the 2022 GMP update.
400-C-143	Apr-21	Unable to collect groundwater sample because the water level in the well was insufficient for sampling.	No / Apr-22	Monitor the water level in this well and sample if the water level recovers enough to obtain a representative sample.

Well	Date of Discovery	Description	Scheduled for Sampling this Qtr? / Next Sampling Date per GMP	Description of Future Plan or Resolution
PL-3-453	Dec-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	NA	The well does not provide sufficient water for representative sampling. NASA recommends plugging and abandoning this well as described in the 2022 GMP update.
WW-4	Jul-19 (FLUTe removal)	Water FLUTe sampling system removed Data Representativeness Phase 1: Water FLUTe Well Evaluation.	No / TBD (quarterly)	NASA installed a new Water FLUTe system in the well in February 2022 and plans to resume routine groundwater sampling in accordance with the GMP.
NASA 9	Oct-20	Could not be sampled - intrusion of roots into the well casing and screen.	NA	A work plan for abandonment and possible replacement of the monitoring well will be submitted to NMED for approval no later than April 29, 2022.
Issues Resol	ved this Quarto	er (will not appear in future Periodic Moni	toring Reports)	
JP-3-509	Oct-21	Sampling system not operational	Yes / Apr 22	NASA repaired the sampling system and sampled the well in December 2021 and January 2022.
ST-1-541	Nov-21	Sampling system not operational		NASA planned and performed required troubleshooting, determined the cause of the sampling system failure, repaired the sampling system, and performed sampling in December 2021.
ST-1-630	Nov-21	Sampling system not operational		NASA planned and performed required troubleshooting, determined the cause of the sampling system failure, repaired the sampling system, and performed sampling in December 2021.

Appendix A Indicator Parameters and Analytical Data

Appendix A.1: Monitoring Well Indicator Parameters
Appendix A.2: Monitoring Well Analytical Data
Appendix A.3: PFTS Indicator Parameters
Appendix A.4: PFTS Analytical Data
Appendix A.5: MPITS Indicator Parameters
Appendix A.6: MPITS Analytical Data

Appendix A.1 Monitor Well Indicator Parameters

Summary of Water Quality Parameters for the Sampling Events in this Reporting Period

Well ID 10	0-D-176	Event Date	11/11/2021		
Sample	Parameter		Result	Units	
2111111000A	Conductivity		3190	μS/cm	
2111111000A	DO		6.21	mg/L	
2111111000A	DTW		183.82	ft	
2111111000A	ORP		44	mV	
2111111000A	pH		7.05	NA	
2111111000A	Temperature		25.25	°C	
2111111000A	Turbidity		13.1	NTU	
2111111002A	Conductivity		3210	μS/cm	
2111111002A	DO		6.17	mg/L	
2111111002A	DTW		184.21	ft	
2111111002A	ORP		44	mV	
2111111002A	pН		7.06	NA	
2111111002A	Temperature		25.22	°C	
2111111002A	Turbidity		13.2	NTU	
2111111004A	Conductivity		3210	μS/cm	
2111111004A	DO		6.18	mg/L	
2111111004A	DTW		184.80	ft	
2111111004A	ORP		41	mV	
2111111004A	pН		7.09	NA	
2111111004A	Temperature		25.24	°C	
2111111004A	Turbidity		12.9	NTU	

Well ID	100-F-358	Event Date	1/18/2022		
Sample	Parameter		Result	Units	
22011809200	C Conductivity		1218	μS/cm	
22011809200	C DO		1.31	mg/L	
22011809200	C ORP		137	mV	
22011809200	С рН		6.96	NA	
22011809200	C Temperature		21.35	°C	
22011809200	C Turbidity		0.36	NTU	
22011809210	C Conductivity		1203	μS/cm	
22011809210	DO DO		1.43	mg/L	
22011809210	ORP		137	mV	
22011809210	С рН		6.97	NA	
22011809210	C Temperature		21.35	°C	
22011809210	C Turbidity		0.33	NTU	
22011809220	C Conductivity		1210	μS/cm	
22011809220	DO DO		1.38	mg/L	
22011809220	ORP		136	mV	
22011809220	С рН		6.97	NA	
22011809220	C Temperature		21.37	°C	
22011809220	C Turbidity		0.38	NTU	
	Turbidity 100-G-223	Event Date	0.38 1/18/2022	NTU	
	-	Event Date		Units	
Well ID	100-G-223 Parameter	Event Date	1/18/2022		
Well ID Sample	100-G-223 Parameter Conductivity	Event Date	1/18/2022 Result	Units	
Well ID Sample 22011814250	Parameter C Conductivity DO	Event Date	1/18/2022 Result	Units μS/cm	
Well ID Sample 22011814250 22011814250	Parameter C Conductivity DO C ORP	Event Date	1/18/2022 Result	Units μS/cm mg/L	
Well ID Sample 22011814250 22011814250 22011814250	Parameter C Conductivity DO ORP pH	Event Date	1/18/2022 Result 1065 2.63 192	Units μS/cm mg/L mV	
Well ID Sample 22011814250 22011814250 22011814250 22011814250	Parameter Conductivity DO CORP PH Comperature	Event Date	1/18/2022 Result 1065 2.63 192 7.04	Units μS/cm mg/L mV NA	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250	Parameter Conductivity DO ORP PH Temperature Turbidity	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34	Units μS/cm mg/L mV NA °C	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250	Parameter Conductivity DO CORP PH Comperature Turbidity Conductivity	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52	Units μS/cm mg/L mV NA °C NTU	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250 22011814250	Parameter Conductivity DO CORP PH Temperature Turbidity Conductivity DO	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067	Units μS/cm mg/L mV NA °C NTU μS/cm	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260	Parameter Conductivity DO CORP PH Temperature Turbidity Conductivity DO CORP CONTROL OF THE TEMPERATURE CONTROL OF THE TEMPERATU	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260	Parameter Conductivity DO ORP H Temperature Turbidity Conductivity DO ORP	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260	Parameter Conductivity DO ORP H Temperature Turbidity CORP DO ORP Turbidity CONDUCTIVITY DO ORP TO DO TO	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260 22011814260 22011814260	Parameter Conductivity DO CORP H Temperature Turbidity CORP CORP DO CORP Turbidity CORP DO CORP Turbidity CORP Turbidity CORP Turbidity CORP Turbidity CORP Turbidity CORP Turbidity	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03 20.38	Units µS/cm mg/L mV NA °C NTU µS/cm mg/L mV NA	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260	Parameter Conductivity DO CORP PH CTemperature Turbidity CORP CORP CONCUCTOR CONCUCTO	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03 20.38 0.48	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260	Parameter Conductivity DO CORP PH Conductivity COORP CONDUCTIVE C	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03 20.38 0.48 1073	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814260 22011814270 22011814270	Parameter Conductivity DO CORP PH Conductivity COORD CONDUCTION C	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03 20.38 0.48 1073 2.65	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Well ID Sample 22011814250 22011814250 22011814250 22011814250 22011814260 22011814260 22011814260 22011814260 22011814260 22011814270 22011814270 22011814270 22011814270	Parameter Conductivity DO CORP PH Temperature Turbidity CORP PH Temperature Turbidity CORP CORP CORP CORP CORP CORP CORP CORP	Event Date	1/18/2022 Result 1065 2.63 192 7.04 20.34 0.52 1067 2.61 192 7.03 20.38 0.48 1073 2.65 192	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID 200	0-G-175 Event Date	12/6/2021		
Sample	Parameter	Result	Units	
2112061000Y	Atmospheric Pressure	12.55	psia	
2112061000Y	Conductivity	1075	μS/cm	
2112061000Y	DTW	173.13	ft	
2112061000Y	Formation Pressure	23.27	psia	
2112061000Y	pН	8.58	NA	
2112061000Y	Temperature	19.8	°C	
2112061000Y	Turbidity	1.53	NTU	
2112061330Y	Atmospheric Pressure	12.52	psia	
2112061330Y	Conductivity	1088	μS/cm	
2112061330Y	DTW	173.19	ft	
2112061330Y	рН	8.45	NA	
2112061330Y	Temperature	20.1	°C	
2112061330Y	Turbidity	1.34	NTU	
Well ID 200	0-G-220 Event Date	12/2/2021		
Sample	Parameter	Result	Units	
2112021100Y	Atmospheric Pressure	12.54	psia	
2112021100Y	Conductivity	1531	μS/cm	
2112021100Y	DTW	173.01	ft	
2112021100Y	Formation Pressure	42.85	psia	
2112021100Y	pН	7.51	NA	
2112021100Y	Temperature	22.8	°C	
211202110037		2.05	NTU	
2112021100Y	Turbidity	2.03	1110	
2112021100 Y 2112021351Y	Turbidity Atmospheric Pressure	12.53	psia	
	•			
2112021351Y	Atmospheric Pressure	12.53	psia	
2112021351Y 2112021351Y	Atmospheric Pressure Conductivity	12.53 1514	psia μS/cm	
2112021351Y 2112021351Y 2112021351Y	Atmospheric Pressure Conductivity DTW	12.53 1514 173.13	psia μS/cm ft	
2112021351Y 2112021351Y 2112021351Y 2112021351Y	Atmospheric Pressure Conductivity DTW pH	12.53 1514 173.13 7.63	psia μS/cm ft NA	

Well ID 200	O-G-340 Event Date	12/2/2021		
Sample	Parameter	Result	Units	
2112020809Y	Atmospheric Pressure	12.56	psia	
2112020809Y	Conductivity	2380	μS/cm	
2112020809Y	DTW	172.88	ft	
2112020809Y	Formation Pressure	122.66	psia	
2112020809Y	pН	8.10	NA	
2112020809Y	Temperature	21.2	°C	
2112020809Y	Turbidity	3.88	NTU	
2112020925Y	Atmospheric Pressure	12.56	psia	
2112020925Y	Conductivity	2400	μS/cm	
2112020925Y	DTW	173.01	ft	
2112020925Y	pН	8.14	NA	
2112020925Y	Temperature	20.9	°C	
2112020925Y	Turbidity	2.95	NTU	
Well ID 200	0-G-420 Event Date	12/1/2021		
C 1				
Sample	Parameter	Result	Units	
2112011355Y	Parameter Atmospheric Pressure	Result	Units psia	
2112011355Y	Atmospheric Pressure	12.57	psia	
2112011355Y 2112011355Y	Atmospheric Pressure Conductivity	12.57 2400	psia μS/cm	
2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW	12.57 2400 172.76	psia μS/cm ft	
2112011355Y 2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.57 2400 172.76 185.30	psia μS/cm ft psia	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.57 2400 172.76 185.30 7.96	psia μS/cm ft psia NA	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.57 2400 172.76 185.30 7.96 22.6	psia μS/cm ft psia NA °C	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.57 2400 172.76 185.30 7.96 22.6 4.71	psia μS/cm ft psia NA °C NTU	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.57 2400 172.76 185.30 7.96 22.6 4.71	psia μS/cm ft psia NA °C NTU psia	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011446Y 2112011446Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.57 2400 172.76 185.30 7.96 22.6 4.71 12.59 2420	psia μS/cm ft psia NA °C NTU psia μS/cm	
2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011355Y 2112011446Y 2112011446Y 2112011446Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.57 2400 172.76 185.30 7.96 22.6 4.71 12.59 2420 172.88	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 20	0-G-495 Even	t Date 12/1/2021		
Sample	Parameter	Result	Units	
2112011010Y	Atmospheric Pressure	12.54	psia	
2112011010Y	Conductivity	2460	μS/cm	
2112011010Y	DTW	172.68	ft	
2112011010Y	Formation Pressure	217.68	psia	
2112011010Y	pН	8.55	NA	
2112011010Y	Temperature	20.7	°C	
2112011010Y	Turbidity	4.43	NTU	
2112011101Y	Atmospheric Pressure	12.52	psia	
2112011101Y	Conductivity	2440	μS/cm	
2112011101Y	DTW	172.76	ft	
2112011101Y	pН	8.37	NA	
2112011101Y	Temperature	20.4	°C	
2112011101Y	Turbidity	3.49	NTU	
21120111011	Turorany	3.47	1110	
	•	t Date 11/10/2021		
			Units	
Well ID 20	0-I-185 Even	t Date 11/10/2021		
Well ID 200 Sample	0-I-185 Even Parameter	t Date 11/10/2021 Result	Units	
Well ID 200 Sample 2111100925Y	0-I-185 Even Parameter Atmospheric Pressure	t Date 11/10/2021 Result	Units psia	
Well ID 200 Sample 2111100925Y 2111100925Y	D-I-185 Even Parameter Atmospheric Pressure Conductivity	t Date 11/10/2021 Result 12.43 1942	Units psia μS/cm	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y	D-I-185 Even Parameter Atmospheric Pressure Conductivity DTW	11/10/2021 Result 12.43 1942 214.40	Units psia μS/cm ft	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	11/10/2021 Result 12.43 1942 214.40 13.19	Units psia μS/cm ft psia	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	11/10/2021 Result 12.43 1942 214.40 13.19 8.10	Units psia μS/cm ft psia NA	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	11/10/2021 Result 12.43 1942 214.40 13.19 8.10 16.6	Units psia μS/cm ft psia NA °C	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	11/10/2021 Result 12.43 1942 214.40 13.19 8.10 16.6 0.82	Units psia μS/cm ft psia NA °C NTU	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111110925Y 21111101925Y 21111101925Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	11/10/2021 Result 12.43 1942 214.40 13.19 8.10 16.6 0.82 12.47	Units psia μS/cm ft psia NA °C NTU psia	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111111431Y 2111111431Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	11/10/2021 Result 12.43 1942 214.40 13.19 8.10 16.6 0.82 12.47 1967	Units psia μS/cm ft psia NA °C NTU psia μS/cm	
Well ID 200 Sample 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111100925Y 2111111431Y 2111111431Y 2111111431Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	11/10/2021 Result 12.43 1942 214.40 13.19 8.10 16.6 0.82 12.47 1967 214.42	Units psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 200	0-I-300 Event Date	11/16/2021		
Sample	Parameter	Result	Units	
2111161335Y	Atmospheric Pressure	12.37	psia	
2111161335Y	Conductivity	701	μS/cm	
2111161335Y	DTW	215.00	ft	
2111161335Y	Formation Pressure	63.39	psia	
2111161335Y	pН	7.97	NA	
2111161335Y	Temperature	18.7	°C	
2111161335Y	Turbidity	1.59	NTU	
2111161426Y	Atmospheric Pressure	12.39	psia	
2111161426Y	Conductivity	714	μS/cm	
2111161426Y	DTW	215.11	ft	
2111161426Y	pН	7.86	NA	
2111161426Y	Temperature	18.6	°C	
2111161426Y	Turbidity	1.30	NTU	
Well ID 200)-I-375 Event Date	11/16/2021		
Sample	Parameter	Result	Units	
Sample 2111160910Y	Parameter Atmospheric Pressure	Result	Units psia	
-				
2111160910Y	Atmospheric Pressure	12.41	psia	
2111160910Y 2111160910Y	Atmospheric Pressure Conductivity	12.41 989	psia μS/cm	
2111160910Y 2111160910Y 2111160910Y	Atmospheric Pressure Conductivity DTW	12.41 989 214.87	psia μS/cm ft	
2111160910Y 2111160910Y 2111160910Y 2111160910Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.41 989 214.87 98.20	psia μS/cm ft psia	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.41 989 214.87 98.20 8.08	psia μS/cm ft psia NA	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.41 989 214.87 98.20 8.08 17.7	psia μS/cm ft psia NA °C	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.41 989 214.87 98.20 8.08 17.7 1.35	psia μS/cm ft psia NA °C NTU	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111161011Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.41 989 214.87 98.20 8.08 17.7 1.35	psia μS/cm ft psia NA °C NTU psia	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111161011Y 2111161011Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.41 989 214.87 98.20 8.08 17.7 1.35 12.38 1003	psia μS/cm ft psia NA °C NTU psia μS/cm	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111161011Y 2111161011Y 2111161011Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.41 989 214.87 98.20 8.08 17.7 1.35 12.38 1003 215.00	psia μS/cm ft psia NA °C NTU psia μS/cm ft	
2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111160910Y 2111161011Y 2111161011Y 2111161011Y 2111161011Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH	12.41 989 214.87 98.20 8.08 17.7 1.35 12.38 1003 215.00 8.01	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

	11/15/2021	Event Date)-I-490	Well ID 200
Units	Result		Parameter	Sample
psia	12.46	re	Atmospheric Pressure	2111151340Y
μS/cm	1026		Conductivity	2111151340Y
ft	214.72		DTW	2111151340Y
psia	174.94		Formation Pressure	2111151340Y
NA	7.99		pH	2111151340Y
°C	18.6		Temperature	2111151340Y
NTU	0.75		Turbidity	2111151340Y
psia	12.44	e	Atmospheric Pressure	2111151439Y
μS/cm	1017		Conductivity	2111151439Y
ft	214.87		DTW	2111151439Y
NA	7.88		pH	2111151439Y
°C	19.0		Temperature	2111151439Y
NTU	0.70		Turbidity	2111151439Y
	11/15/2021	Event Date	0-I-675	Well ID 200
Units	Result		Parameter	Sample
psia	12.41	re	Atmospheric Pressure	2111150950Y
μS/cm	1450		Conductivity	2111150950Y
ft	214.58		DTW	2111150950Y
psia	254.24		Formation Pressure	2111150950Y
NA	7.98		pH	2111150950Y
°C	18.3		Temperature	2111150950Y
NTU	0.72		Turbidity	2111150950Y
psia	12.43	e	Atmospheric Pressure	2111151101Y
μS/cm	1433		Conductivity	2111151101Y
ft	214.72		DTW	2111151101Y
NA	8.05		pH	2111151101Y
200	10.6			
°C	18.6		Temperature	2111151101Y
°C NTU psia µS/cm ft NA	18.3 0.72 12.43 1433 214.72 8.05	е	Temperature Turbidity Atmospheric Pressure Conductivity DTW pH	2111150950Y 2111150950Y 2111151101Y 2111151101Y 2111151101Y 2111151101Y

2111120900Y C 2111120900Y E 2111120900Y F 2111120900Y p 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y E 2111121011Y E 2111121011Y p 2111121011Y T	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature Turbidity	Result 12.42 1994 214.42 305.55 8.00 16.7 0.57 12.44 1982 214.58 7.86	Units psia μS/cm ft psia NA °C NTU psia μS/cm ft	
2111120900Y C 2111120900Y E 2111120900Y F 2111120900Y p 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y E 2111121011Y E 2111121011Y p 2111121011Y T	Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	1994 214.42 305.55 8.00 16.7 0.57 12.44 1982 214.58	μS/cm ft psia NA °C NTU psia μS/cm	
2111120900Y E 2111120900Y F 2111120900Y p 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y E 2111121011Y p 2111121011Y p 2111121011Y T	DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	214.42 305.55 8.00 16.7 0.57 12.44 1982 214.58	ft psia NA °C NTU psia μS/cm	
2111120900Y F 2111120900Y p 2111120900Y T 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y E 2111121011Y p 2111121011Y T	Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	305.55 8.00 16.7 0.57 12.44 1982 214.58	psia NA °C NTU psia μS/cm	
2111120900Y p 2111120900Y T 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y E 2111121011Y p 2111121011Y T	pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	8.00 16.7 0.57 12.44 1982 214.58	NA °C NTU psia μS/cm	
2111120900Y T 2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y D 2111121011Y p 2111121011Y T	Temperature Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	16.7 0.57 12.44 1982 214.58	°C NTU psia µS/cm	
2111120900Y T 2111121011Y A 2111121011Y C 2111121011Y D 2111121011Y p 2111121011Y T	Turbidity Atmospheric Pressure Conductivity DTW pH Temperature	0.57 12.44 1982 214.58	NTU psia μS/cm	
2111121011Y A 2111121011Y C 2111121011Y D 2111121011Y p 2111121011Y T	Atmospheric Pressure Conductivity DTW pH Temperature	12.44 1982 214.58	psia μS/cm	
2111121011Y C 2111121011Y D 2111121011Y p 2111121011Y T	Conductivity DTW pH Temperature	1982 214.58	μS/cm	
2111121011Y D 2111121011Y p 2111121011Y T	DTW pH Temperature	214.58	•	
2111121011Y p 2111121011Y T	pH Femperature		ft	
2111121011Y T	Temperature	7.86		
	_		NA	
2111121011Y T	Turbidity	16.9	°C	
	•	0.54	NTU	
Well ID 300-F-	-175 Event Date	1/19/2022		
Sample	Parameter	Result	Units	
2201190921C C	Conductivity	1150	μS/cm	
2201190921C D	DO	9.83	mg/L	
2201190921C C	ORP	202	mV	
2201190921C p	рН	6.04	NA	
2201190921C T	Геmperature	18.55	°C	
2201190921C T	Turbidity	1.20	NTU	
2201190923C	Conductivity	1147	μS/cm	
2201190923C D	DO	9.80	mg/L	
2201190923C C	ORP	201	mV	
2201190923C p	рН	6.02	NA	
2201190923C T	Temperature	18.51	°C	
2201190923C T	Turbidity	1.18	NTU	
2201190925C C	Conductivity	1151	$\mu S/cm$	
2201190925C D	DO	9.82	mg/L	
2201190925C C	ORP	201	mV	
2201190925C p	рН	6.03	NA	
2201190925C T	T	18.52	°C	
2201190925C T	Temperature	1.17	NTU	

Well ID 4	00-A-151	Event Date	1/5/2022		
Sample	Parameter		Result	Units	
2201050945A	Conductivity		1261	μS/cm	
2201050945A	DO		4.47	mg/L	
2201050945A	DTW		163.30	ft	
2201050945A	ORP		248	mV	
2201050945A	pН		6.97	NA	
2201050945A	Temperature		19.27	°C	
2201050945A	Turbidity		0.72	NTU	
2201050948A	Conductivity		1258	μS/cm	
2201050948A	DO		4.43	mg/L	
2201050948A	DTW		162.98	ft	
2201050948A	ORP		246	mV	
2201050948A	pН		6.97	NA	
2201050948A	Temperature		20.12	°C	
2201050948A	Turbidity		0.68	NTU	
2201050951A	Conductivity		1254	μS/cm	
2201050951A	DO		4.50	mg/L	
2201050951A	DTW		162.90	ft	
2201050951A	ORP		247	mV	
2201050951A	pН		6.98	NA	
2201050951A	Temperature		19.87	°C	
2201050951A	Turbidity		0.66	NTU	

Well ID 400)-C-143	Event Date	11/17/2021		
Sample	Parameter		Result	Units	
2111171045C	Conductivity		1317	μS/cm	
2111171045C	DO		7.04	mg/L	
2111171045C	DTW		143.65	ft	
2111171045C	ORP		83	mV	
2111171045C	pН		6.91	NA	
2111171045C	Temperature		20.43	°C	
2111171045C	Turbidity		4.81	NTU	
2111171048C	Conductivity		1310	μS/cm	
2111171048C	DO		6.81	mg/L	
2111171048C	DTW		143.86	ft	
2111171048C	ORP		78	mV	
2111171048C	pH		6.94	NA	
2111171048C	Temperature		20.50	°C	
2111171048C	Turbidity		4.14	NTU	
2111171051C	Conductivity		1306	μS/cm	
2111171051C	DO		6.62	mg/L	
2111171051C	DTW		143.86	ft	
2111171051C	ORP		76	mV	
2111171051C	pH		6.95	NA	
2111171051C	Temperature		20.56	°C	
2111171051C	Turbidity		3.93	NTU	

Well ID 400	0-EV-131	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
2111010930C	Conductivity		1370	μS/cm	
2111010930C	DO		7.68	mg/L	
2111010930C	DTW		141	ft	
2111010930C	ORP		99	mV	
2111010930C	pH		6.79	NA	
2111010930C	Temperature		20.50	°C	
2111010930C	Turbidity		0.79	NTU	
2111010935C	Conductivity		1369	μS/cm	
2111010935C	DO		6.54	mg/L	
2111010935C	DTW		141.84	ft	
2111010935C	ORP		99	mV	
2111010935C	pН		6.78	NA	
2111010935C	Temperature		20.48	°C	
2111010935C	Turbidity		0.88	NTU	
2111010940C	Conductivity		1362	μS/cm	
2111010940C	DO		6.50	mg/L	
2111010940C	DTW		141.84	ft	
2111010940C	ORP		99	mV	
2111010940C	pH		6.40	NA	
2111010940C	Temperature		20.51	°C	
2111010940C	Turbidity		0.72	NTU	
Well ID 400)-FV-131	Event Date	1/18/2022		
-					
	Parameter		Result	Units	
Sample 2201181340A	Parameter Conductivity		Result	Units μS/cm	
Sample 2201181340A					
Sample 2201181340A 2201181340A	Conductivity		1464	μS/cm	
Sample 2201181340A 2201181340A 2201181340A	Conductivity DTW		1464 129.80	μS/cm ft	
Sample 2201181340A 2201181340A 2201181340A 2201181340A	Conductivity DTW pH		1464 129.80 4.67	μS/cm ft NA	
Sample	Conductivity DTW pH Temperature		1464 129.80 4.67 19.6	μS/cm ft NA °C	
Sample 2201181340A 2201181340A 2201181340A 2201181340A 2201181340A	Conductivity DTW pH Temperature Turbidity		1464 129.80 4.67 19.6 1.04	μS/cm ft NA °C NTU	
Sample 2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity		1464 129.80 4.67 19.6 1.04	μS/cm ft NA °C NTU μS/cm	
2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity DTW		1464 129.80 4.67 19.6 1.04 1479 130.60	μS/cm ft NA °C NTU μS/cm ft	
2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH		1464 129.80 4.67 19.6 1.04 1479 130.60 7.79	μS/cm ft NA °C NTU μS/cm ft NA	
2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A 2201181342A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature		1464 129.80 4.67 19.6 1.04 1479 130.60 7.79	μS/cm ft NA °C NTU μS/cm ft NA °C	
2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A 2201181342A 2201181342A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity		1464 129.80 4.67 19.6 1.04 1479 130.60 7.79 19.1	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A 2201181342A 2201181342A 2201181342A 2201181342A 2201181342A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity		1464 129.80 4.67 19.6 1.04 1479 130.60 7.79 19.1 0.90	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 2201181340A 2201181340A 2201181340A 2201181340A 2201181340A 2201181342A 2201181342A 2201181342A 2201181342A 2201181342A 2201181344A 2201181344A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW		1464 129.80 4.67 19.6 1.04 1479 130.60 7.79 19.1 0.90 1470 130.60	μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Well ID 400	0-GV-125	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111020943B	Conductivity		1502	μS/cm	
2111020943B	pН		7.43	NA	
2111020943B	Temperature		20.2	°C	
2111020943B	Turbidity		0.39	NTU	
2111020945B	Conductivity		1506	μS/cm	
2111020945B	pН		7.40	NA	
2111020945B	Temperature		20.1	°C	
2111020945B	Turbidity		0.41	NTU	
2111020947B	Conductivity		1501	μS/cm	
2111020947B	pН		7.44	NA	
2111020947B	Temperature		20.2	°C	
2111020947B	Turbidity		0.38	NTU	
Well ID 400	D-HV-147	Event Date	1/18/2022		
Sample	Parameter		Result	Units	
2201180910A	Conductivity		2060	μS/cm	
2201180910A	DTW		139.82	ft	
2201180910A	pН		7.84	NA	
2201180910A	Temperature		17.3	°C	
2201180910A	Turbidity		0.58	NTU	
				G /	
2201180912A	Conductivity		2010	μS/cm	
2201180912A 2201180912A	Conductivity DTW		2010 140.20	μS/cm ft	
				•	
2201180912A	DTW		140.20	ft	
2201180912A 2201180912A	DTW pH		140.20 7.32	ft NA	
2201180912A 2201180912A 2201180912A	DTW pH Temperature		140.20 7.32 17.6	ft NA °C	
2201180912A 2201180912A 2201180912A 2201180912A	DTW pH Temperature Turbidity		140.20 7.32 17.6 0.94	ft NA °C NTU	
2201180912A 2201180912A 2201180912A 2201180912A 2201180914A	DTW pH Temperature Turbidity Conductivity		140.20 7.32 17.6 0.94 2020	ft NA °C NTU μS/cm	
2201180912A 2201180912A 2201180912A 2201180912A 2201180914A 2201180914A	DTW pH Temperature Turbidity Conductivity DTW		140.20 7.32 17.6 0.94 2020 140.20	ft NA °C NTU μS/cm ft	

Well ID 400	0-JV-150	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
2111011425C	Conductivity		1760	μS/cm	
2111011425C	DO		3.55	mg/L	
2111011425C	DTW		145.59	ft	
2111011425C	ORP		91	mV	
2111011425C	pН		6.65	NA	
2111011425C	Temperature		21.77	°C	
2111011425C	Turbidity		0.63	NTU	
2111011430C	Conductivity		1760	μS/cm	
2111011430C	DO		3.60	mg/L	
2111011430C	DTW		146.90	ft	
2111011430C	ORP		91	mV	
2111011430C	pН		6.65	NA	
2111011430C	Temperature		21.71	°C	
2111011430C	Turbidity		0.59	NTU	
2111011435C	Conductivity		1770	μS/cm	
2111011435C	DO		3.65	mg/L	
2111011435C	DTW		146.90	ft	
2111011435C	ORP		91	mV	
2111011435C	pН		6.65	NA	
2111011435C	Temperature		21.70	°C	
2111011435C	Turbidity		0.55	NTU	
Well ID 600	0-G-138	Event Date	1/19/2022		
Sample	Parameter		Result	Units	
2201191100A	Conductivity		1651	μS/cm	
2201191100A	DTW		144.80	ft	
2201191100A	pН		7.82	NA	
2201191100A	Temperature		20.9	°C	
2201191100A	Turbidity		4.23	NTU	
2201191110A	Conductivity		1658	μS/cm	
2201191110A	DTW		145.27	ft	
2201191110A	pН		7.94	NA	
	_		21.2	$^{\circ}\mathrm{C}$	
2201191110A	Temperature		21.2	-C	

Well ID 70	0-B-510	Event Date	12/9/2021		
Sample	Parameter		Result	Units	
2112091410A	Conductivity		578	μS/cm	
2112091410A	DO		3.66	mg/L	
2112091410A	DTW		464.80	ft	
2112091410A	ORP		297	mV	
2112091410A	pН		7.90	NA	
2112091410A	Temperature		21.34	°C	
2112091410A	Turbidity		0.63	NTU	
2112091412A	Conductivity		574	μS/cm	
2112091412A	DO		3.49	mg/L	
2112091412A	DTW		465.70	ft	
2112091412A	ORP		296	mV	
2112091412A	pН		7.88	NA	
2112091412A	Temperature		21.40	°C	
2112091412A	Turbidity		0.34	NTU	
2112091414A	Conductivity		575	μS/cm	
2112091414A	DO		3.11	mg/L	
2112091414A	DTW		465.70	ft	
2112091414A	ORP		295	mV	
2112091414A	pН		7.83	NA	
2112091414A	Temperature		21.44	°C	
2112091414A	Turbidity		0.44	NTU	

Well ID BI	LM-10-517	Event Date	1/3/2022		
Sample	Parameter		Result	Units	
2201031035A	Conductivity		997	μS/cm	
2201031035A	DO		6.54	mg/L	
2201031035A	DTW		493.34	ft	
2201031035A	ORP		306	mV	
2201031035A	рН		6.91	NA	
2201031035A	Temperature		17.30	°C	
2201031035A	Turbidity		1.19	NTU	
2201031038A	Conductivity		999	μS/cm	
2201031038A	DO		6.38	mg/L	
2201031038A	DTW		493.44	ft	
2201031038A	ORP		303	mV	
2201031038A	pН		6.95	NA	
2201031038A	Temperature		17.34	$^{\circ}\mathrm{C}$	
2201031038A	Turbidity		1.02	NTU	
2201031041A	Conductivity		1006	μS/cm	
2201031041A	DO		6.10	mg/L	
2201031041A	DTW		493.44	ft	
2201031041A	ORP		302	mV	
2201031041A	pН		6.96	NA	
2201031041A	Temperature		17.41	°C	
2201031041A	Turbidity		0.96	NTU	
Well ID BI	LM-15-305	Event Date	1/12/2022		
Well ID BI Sample	LM-15-305 Parameter	Event Date	1/12/2022 Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result	μS/cm	
Sample 2201121410C	Parameter Conductivity	Event Date	Result		
Sample 2201121410C 2201121410C	Parameter Conductivity DO	Event Date	Result 1130 1.38	μS/cm mg/L	
Sample 2201121410C 2201121410C 2201121410C	Parameter Conductivity DO ORP pH	Event Date	1130 1.38 164	μS/cm mg/L mV	
2201121410C 2201121410C 2201121410C 2201121410C 2201121410C	Parameter Conductivity DO ORP	Event Date	Result 1130 1.38 164 7.52	μS/cm mg/L mV NA	
2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C	Parameter Conductivity DO ORP pH Temperature	Event Date	Result 1130 1.38 164 7.52 21.04	μS/cm mg/L mV NA °C	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	Result 1130 1.38 164 7.52 21.04 1.85	μS/cm mg/L mV NA °C NTU	
2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 1130 1.38 164 7.52 21.04 1.85	μS/cm mg/L mV NA °C NTU μS/cm	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43	μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55 20.79	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55 20.79 1.52	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55 20.79 1.52	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity Conductivity	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55 20.79 1.52 1133 1.48	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Sample 2201121410C 2201121410C 2201121410C 2201121410C 2201121410C 2201121411C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity DO ORP	Event Date	Result 1130 1.38 164 7.52 21.04 1.85 1139 1.43 164 7.55 20.79 1.52 1133 1.48 164	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID BI	LM-17-493	Event Date	11/3/2021		
Sample	Parameter		Result	Units	
2111030945B	Conductivity		1227	μS/cm	
2111030945B	DTW		500.20	ft	
2111030945B	pН		7.66	NA	
2111030945B	Temperature		17.9	°C	
2111030945B	Turbidity		1.00	NTU	
2111030947B	Conductivity		1243	μS/cm	
2111030947B	DTW		500.95	ft	
2111030947B	pН		7.54	NA	
2111030947B	Temperature		18.4	°C	
2111030947B	Turbidity		1.17	NTU	
2111030949B	Conductivity		1176	μS/cm	
2111030949B	DTW		500.95	ft	
2111030949B	pН		7.57	NA	
2111030949B	Temperature		18.7	°C	
2111030949B	Turbidity		0.98	NTU	
Well ID BI	LM-17-550	Event Date	1/3/2022		
Well ID BI Sample	LM-17-550 Parameter	Event Date	1/3/2022 Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result		
Sample 2201031420A	Parameter Conductivity	Event Date	Result	μS/cm	
Sample 2201031420A 2201031420A	Parameter Conductivity DO	Event Date	Result 1164 7.20	μS/cm mg/L	
Sample 2201031420A 2201031420A 2201031420A	Parameter Conductivity DO ORP	Event Date	Result 1164 7.20 128	μS/cm mg/L mV	
Sample 2201031420A 2201031420A 2201031420A 2201031420A	Parameter Conductivity DO ORP pH	Event Date	Result 1164 7.20 128 6.85	μS/cm mg/L mV NA	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A	Parameter Conductivity DO ORP pH Temperature	Event Date	Result 1164 7.20 128 6.85 18.89	μS/cm mg/L mV NA °C	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	Result 1164 7.20 128 6.85 18.89 1.69	μS/cm mg/L mV NA °C NTU	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 1164 7.20 128 6.85 18.89 1.69	μS/cm mg/L mV NA °C NTU μS/cm	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90	μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85 19.01	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85 19.01 1.72	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85 19.01 1.72	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85 19.01 1.72 1151 6.72	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Sample 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031420A 2201031423A	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity DO ORP	Event Date	Result 1164 7.20 128 6.85 18.89 1.69 1155 6.90 130 6.85 19.01 1.72 1151 6.72 133	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID BL	M-18-430	Event Date	1/13/2022		
Sample	Parameter		Result	Units	
2201130955C	Conductivity		994	μS/cm	
2201130955C	DO		8.21	mg/L	
2201130955C	ORP		225	mV	
2201130955C	pН		6.73	NA	
2201130955C	Temperature		18.89	°C	
2201130955C	Turbidity		0.60	NTU	
2201130957C	Conductivity		991	μS/cm	
2201130957C	DO		8.19	mg/L	
2201130957C	ORP		223	mV	
2201130957C	pН		6.70	NA	
2201130957C	Temperature		18.87	°C	
2201130957C	Turbidity		0.62	NTU	
2201130959C	Conductivity		992	μS/cm	
2201130959C	DO		8.16	mg/L	
2201130959C	ORP		223	mV	
2201130959C	pH		6.74	NA	
2201130959C	Temperature		18.91	°C	
2201130959C	Turbidity		0.61	NTU	
Well ID BL	M-22-570	Event Date	11/10/2021		
Sample	Parameter		Result	Units	
2111101430B	Conductivity		1323	μS/cm	
2111101430B	pH		7.95	NA	
2111101430B	Temperature		22.9	°C	
2111101420D	Turbidity		0.42	NTU	
2111101430B	Turbidity		0.43	1110	
2111101430B 2111101432B	Conductivity		1337	μS/cm	
	•				
2111101432B	Conductivity		1337	μS/cm	
2111101432B 2111101432B	Conductivity pH		1337 7.90	μS/cm NA	
2111101432B 2111101432B 2111101432B	Conductivity pH Temperature		1337 7.90 22.5	μS/cm NA °C	
2111101432B 2111101432B 2111101432B 2111101432B	Conductivity pH Temperature Turbidity		1337 7.90 22.5 0.21	μS/cm NA °C NTU	
2111101432B 2111101432B 2111101432B 2111101432B 2111101434B	Conductivity pH Temperature Turbidity Conductivity		1337 7.90 22.5 0.21	μS/cm NA °C NTU μS/cm	

Well ID	BLM-24-565	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021430	OC Conductivity		1304	μS/cm	
2111021430	OC pH		10.53	NA	
2111021430	C Temperature		22.3	°C	
2111021430	OC Turbidity		0.37	NTU	
2111021445	5C Conductivity		1310	μS/cm	
2111021445	5C pH		10.48	NA	
2111021445	5C Temperature		22.5	°C	
2111021445	5C Turbidity		0.27	NTU	
Well ID	BLM-2-630	Event Date	11/9/2021		
Sample	Parameter		Result	Units	
2111091410	OC Conductivity		924	μS/cm	
2111091410	OC DO		6.90	mg/L	
2111091410	OC ORP		-30	mV	
2111091410	OC pH		7.17	NA	
2111091410	C Temperature		21.72	°C	
2111091410	OC Turbidity		32	NTU	
2111091415	5C Conductivity		921	μS/cm	
2111091415	5C DO		6.59	mg/L	
2111091415	5C ORP		-31	mV	
2111091415	5C pH		7.18	NA	
2111091415	5C Temperature		21.75	°C	
2111091415	5C Turbidity		30	NTU	
2111091420	OC Conductivity		922	μS/cm	
2111091420	OC DO		6.63	mg/L	
2111091420	OC ORP		-31	mV	
2111091420	OC pH		7.10	NA	
2111091420	OC Temperature		21.59	°C	
2111091420	OC Turbidity		29	NTU	

Well ID BL	M-26-404	Event Date	11/3/2021		
Sample	Parameter		Result	Units	
2111031445B	Conductivity		1105	μS/cm	
2111031445B	DTW		310.65	ft	
2111031445B	pH		7.78	NA	
2111031445B	Temperature		22.0	°C	
2111031445B	Turbidity		1.77	NTU	
2111031447B	Conductivity		1097	μS/cm	
2111031447B	DTW		310.90	ft	
2111031447B	pH		7.69	NA	
2111031447B	Temperature		22.7	°C	
2111031447B	Turbidity		1.36	NTU	
2111031449B	Conductivity		1041	μS/cm	
2111031449B	DTW		310.90	ft	
2111031449B	pН		7.41	NA	
2111031449B	Temperature		21.8	°C	
	T 1. 1. 114		1.64	NTU	
2111031449B	Turbidity		1.04	1110	
	LM-27-270	Event Date	12/15/2021	Nic	
	•	Event Date		Units	
Well ID BL	M-27-270	Event Date	12/15/2021		
Well ID BL Sample	.M-27-270 Parameter	Event Date	12/15/2021 Result	Units	
Well ID BL Sample 2112150920A	Parameter Conductivity	Event Date	12/15/2021 Result	Units μS/cm	
Well ID BL Sample 2112150920A 2112150920A	Parameter Conductivity DTW	Event Date	12/15/2021 Result 912 233.91	Units μS/cm ft	
Well ID BL Sample 2112150920A 2112150920A 2112150920A	Parameter Conductivity DTW pH	Event Date	12/15/2021 Result 912 233.91 8.43	Units μS/cm ft NA	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A	Parameter Conductivity DTW pH Temperature	Event Date	12/15/2021 Result 912 233.91 8.43 19.5	Units μS/cm ft NA °C	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150920A	Parameter Conductivity DTW pH Temperature Turbidity	Event Date	12/15/2021 Result 912 233.91 8.43 19.5 0.82	Units μS/cm ft NA °C NTU	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	12/15/2021 Result 912 233.91 8.43 19.5 0.82 920	Units μS/cm ft NA °C NTU μS/cm	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	912 233.91 8.43 19.5 0.82 920 234.15	Units μS/cm ft NA °C NTU μS/cm ft	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH	Event Date	912 233.91 8.43 19.5 0.82 920 234.15 8.45	Units μS/cm ft NA °C NTU μS/cm ft NA	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature	Event Date	12/15/2021 Result 912 233.91 8.43 19.5 0.82 920 234.15 8.45 19.4	Units μS/cm ft NA °C NTU μS/cm ft NA °C	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity	Event Date	912 233.91 8.43 19.5 0.82 920 234.15 8.45 19.4 0.75	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	12/15/2021 Result 912 233.91 8.43 19.5 0.82 920 234.15 8.45 19.4 0.75 923	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Well ID BL Sample 2112150920A 2112150920A 2112150920A 2112150920A 2112150920A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A 2112150923A	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	12/15/2021 Result 912 233.91 8.43 19.5 0.82 920 234.15 8.45 19.4 0.75 923 234.15	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft NA °C NTU	

Well ID BI	LM-3-182	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021336B	Conductivity		5300	μS/cm	
2111021336B	DTW		179.70	ft	
2111021336B	pН		7.28	NA	
2111021336B	Temperature		22.2	°C	
2111021336B	Turbidity		7.41	NTU	
2111021338B	Conductivity		5370	$\mu S/cm$	
2111021338B	DTW		180.50	ft	
2111021338B	pH		7.27	NA	
2111021338B	Temperature		22.1	°C	
2111021338B	Turbidity		7.36	NTU	
2111021340B	Conductivity		5320	μS/cm	
2111021340B	DTW		180.50	ft	
2111021340B	pН		7.24	NA	
2111021340B	Temperature		22.1	°C	
2111021340B	Turbidity		7.30	NTU	
Well ID BI	M-32-543	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
2111011445B	Conductivity		1010	μS/cm	
2111011445B	pН		8.37	NA	
2111011445B	Temperature		23.2	°C	
2111011445B	Turbidity		0.69	NTU	
	Turbidity				
2111011559B	Conductivity		1011	μS/cm	
2111011559B 2111011559B			1011 8.42	μS/cm NA	
	Conductivity				
2111011559B	Conductivity pH		8.42	NA	
2111011559B 2111011559B 2111011559B	Conductivity pH Temperature	Event Date	8.42 23.1	NA °C	
2111011559B 2111011559B 2111011559B	Conductivity pH Temperature Turbidity	Event Date	8.42 23.1 0.27	NA °C	
2111011559B 2111011559B 2111011559B Well ID BI	Conductivity pH Temperature Turbidity	Event Date	8.42 23.1 0.27 11/1/2021	NA °C NTU	
2111011559B 2111011559B 2111011559B Well ID BI Sample	Conductivity pH Temperature Turbidity LM-32-571 Parameter	Event Date	8.42 23.1 0.27 11/1/2021 Result	NA °C NTU Units	
2111011559B 2111011559B 2111011559B Well ID BI Sample 2111011500B	Conductivity pH Temperature Turbidity LM-32-571 Parameter Conductivity	Event Date	8.42 23.1 0.27 11/1/2021 Result	NA °C NTU Units μS/cm	
2111011559B 2111011559B 2111011559B Well ID BI Sample 2111011500B 2111011500B	Conductivity pH Temperature Turbidity LM-32-571 Parameter Conductivity pH	Event Date	8.42 23.1 0.27 11/1/2021 Result	NA °C NTU Units μS/cm NA	
2111011559B 2111011559B 2111011559B Well ID BI Sample 2111011500B 2111011500B 2111011500B	Conductivity pH Temperature Turbidity LM-32-571 Parameter Conductivity pH Temperature	Event Date	8.42 23.1 0.27 11/1/2021 Result 990 7.95 21.9	NA °C NTU Units μS/cm NA °C	
2111011559B 2111011559B 2111011559B Well ID BI Sample 2111011500B 2111011500B 2111011500B 2111011500B	Conductivity pH Temperature Turbidity LM-32-571 Parameter Conductivity pH Temperature Turbidity	Event Date	8.42 23.1 0.27 11/1/2021 Result 990 7.95 21.9 0.36	NA °C NTU Units μS/cm NA °C NTU	
2111011559B 2111011559B 2111011559B Well ID BI Sample 2111011500B 2111011500B 2111011500B 2111011500B 2111011512B	Conductivity pH Temperature Turbidity LM-32-571 Parameter Conductivity pH Temperature Turbidity Conductivity	Event Date	8.42 23.1 0.27 11/1/2021 Result 990 7.95 21.9 0.36 986	NA °C NTU Units μS/cm NA °C NTU μS/cm	

Well ID	BLM-32-632	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
21110115191	B Conductivity		998	μS/cm	
21110115191	В рН		8.43	NA	
21110115191	B Temperature		21.9	°C	
21110115191	B Turbidity		0.18	NTU	
21110115381	B Conductivity		1002	μS/cm	
21110115381	В рН		8.51	NA	
21110115381	B Temperature		21.8	°C	
21110115381	B Turbidity		0.24	NTU	
Well ID	BLM-36-350	Event Date	11/3/2021		
Sample	Parameter		Result	Units	
2111031325	Y Atmospheric Pressu	re	12.51	psia	
2111031325	Y Conductivity		1203	μS/cm	
2111031325	Y Formation Pressure		32.71	psia	
2111031325	Y pH		7.83	NA	
2111031325	Y Temperature		21.9	°C	
2111031325	Y Turbidity		0.50	NTU	
2111031450	Y Atmospheric Pressur	re	12.53	psia	
2111031450	Y Conductivity		1191	μS/cm	
2111031450	Y pH		7.75	NA	
2111031450	Y Temperature		22.4	°C	
2111031450	Y Turbidity		0.44	NTU	
Well ID	BLM-36-610	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111020932	Y Atmospheric Pressu	re	12.50	psia	
2111020932	Y Conductivity		1026	μS/cm	
2111020932	Y Formation Pressure		100.28	psia	
2111020932	Y pH		8.40	NA	
2111020932	Y Temperature		20.0	°C	
2111020932	Y Turbidity		2.48	NTU	
2111021036	Y Atmospheric Pressur	re	12.48	psia	
2111021036	Y Conductivity		1036	μS/cm	
2111021036	Y pH		8.26	NA	
2111021036	Y Temperature		19.8	°C	
2111021036	Y Turbidity		1.77	NTU	

Well ID BI	LM-36-800	Event Date	11/3/2021		
Sample	Parameter		Result	Units	
2111030950Y	Atmospheric Pressure		12.45	psia	
2111030950Y	Conductivity		1060	μS/cm	
2111030950Y	Formation Pressure		176.43	psia	
2111030950Y	рН		8.35	NA	
2111030950Y	Temperature		19.9	°C	
2111030950Y	Turbidity		1.25	NTU	
2111031032Y	Atmospheric Pressure		12.47	psia	
2111031032Y	Conductivity		1070	μS/cm	
2111031032Y	pН		8.17	NA	
2111031032Y	Temperature		20.3	°C	
2111031032Y	Turbidity		1.13	NTU	
Well ID BI	LM-36-860	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021410Y	Atmospheric Pressure		12.47	psia	
2111021410Y	Conductivity		988	μS/cm	
2111021410Y	Formation Pressure		138.54	psia	
2111021410Y	pН		8.04	NA	
2111021410Y	Temperature		22.9	°C	
2111021410Y	Turbidity		8.86	NTU	
2111021442Y	Atmospheric Pressure		12.49	psia	
2111021442Y	Conductivity		985	μS/cm	
2111021442Y	pН		7.89	NA	
2111021442Y	Temperature		23.0	$^{\circ}\mathrm{C}$	
2111021442Y	Turbidity		3.13	NTU	
Well ID BI	LM-38-480	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111041432Y	Atmospheric Pressure		12.51	psia	
2111041432Y	Conductivity		892	μS/cm	
2111041432Y	DTW		402.12	ft	
2111041432Y	Formation Pressure		40.05	psia	
2111041432Y	pН		7.91	NA	
2111041432Y	Temperature		19.7	°C	
2111041432Y	Turbidity		0.44	NTU	
2111041515Y	Atmospheric Pressure		12.48	psia	
2111041515Y	Conductivity		869	μS/cm	
2111041515Y	DTW		402.26	ft	
2111041515Y	pН		7.85	NA	
2111041515Y	Temperature		19.8	°C	
2111041515Y	Turbidity		0.41	NTU	

Well ID BI	M-38-620 Ev	vent Date	11/4/2021		
Sample	Parameter		Result	Units	
2111041055Y	Atmospheric Pressure		12.59	psia	
2111041055Y	Conductivity		970	μS/cm	
2111041055Y	DTW		401.96	ft	
2111041055Y	Formation Pressure		87.34	psia	
2111041055Y	pН		8.05	NA	
2111041055Y	Temperature		18.5	°C	
2111041055Y	Turbidity		0.43	NTU	
2111041312Y	Atmospheric Pressure		12.62	psia	
2111041312Y	Conductivity		978	μS/cm	
2111041312Y	DTW		402.12	ft	
2111041312Y	pН		8.13	NA	
2111041312Y	Temperature		18.9	$^{\circ}\mathrm{C}$	
2111041312Y	Turbidity		0.39	NTU	
Well ID BI	M-42-569 Ev	vent Date	12/13/2021		
Sample	Parameter		Result	Units	
2112131000A	Conductivity		654	μS/cm	
				27.4	
2112131000A	рН		8.53	NA	
2112131000A 2112131000A	•		8.53 18.7	NA °C	
	pН				
2112131000A	pH Temperature		18.7	°C	
2112131000A 2112131000A	pH Temperature Transducer		18.7 14.01	°C ft	
2112131000A 2112131000A 2112131000A	pH Temperature Transducer Turbidity		18.7 14.01 2.29	°C ft NTU	
2112131000A 2112131000A 2112131000A 2112131003A	pH Temperature Transducer Turbidity Conductivity		18.7 14.01 2.29 661	°C ft NTU µS/cm	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A	pH Temperature Transducer Turbidity Conductivity pH		18.7 14.01 2.29 661 8.50	°C ft NTU µS/cm NA	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A 2112131003A	pH Temperature Transducer Turbidity Conductivity pH Temperature		18.7 14.01 2.29 661 8.50 18.9	°C ft NTU µS/cm NA °C	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A 2112131003A 2112131003A	pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer		18.7 14.01 2.29 661 8.50 18.9 14.01	°C ft NTU μS/cm NA °C ft	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A 2112131003A 2112131003A	pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity		18.7 14.01 2.29 661 8.50 18.9 14.01	°C ft NTU	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A 2112131003A 2112131003A 2112131003A 2112131003A	pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity		18.7 14.01 2.29 661 8.50 18.9 14.01 1.88	°C ft NTU	
2112131000A 2112131000A 2112131000A 2112131003A 2112131003A 2112131003A 2112131003A 2112131003A 2112131006A 2112131006A	pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity		18.7 14.01 2.29 661 8.50 18.9 14.01 1.88	°C ft NTU μS/cm NA °C ft NTU μS/cm NA	

Well ID	BLM-42-709	Event Date	12/13/2021		
Sample	Parameter		Result	Units	
2112131405	SA Conductivity		626	μS/cm	
2112131405	SA pH		8.12	NA	
2112131405	A Temperature		19.0	°C	
2112131405	A Transducer		14.01	ft	
2112131405	A Turbidity		0.77	NTU	
2112131408	3A Conductivity		630	μS/cm	
2112131408	BA pH		8.09	NA	
2112131408	3A Temperature		19.4	°C	
2112131408	3A Transducer		14.01	ft	
2112131408	3A Turbidity		0.79	NTU	
2112131411	A Conductivity		635	μS/cm	
2112131411	.A pH		8.07	NA	
2112131411	A Temperature		19.5	°C	
2112131411	A Transducer		14.01	ft	
2112131411	A Turbidity		0.67	NTU	
Well ID	BLM-6-488	Event Date	1/5/2022		
Sample	Parameter		Result	Units	
2201051430	A Conductivity		1413	μS/cm	
2201051430 2201051430	•		1413 5.28	μS/cm mg/L	
	OA DO				
2201051430	OA DO OA DTW		5.28	mg/L	
2201051430 2201051430	DA DO DA DTW DA ORP		5.28 359.90	mg/L ft	
2201051430 2201051430 2201051430	DA DO DA DTW DA ORP DA pH		5.28 359.90 269	mg/L ft mV	
2201051430 2201051430 2201051430 2201051430	DA DO DA DTW DA ORP DA pH DA Temperature		5.28 359.90 269 6.86	mg/L ft mV NA	
2201051430 2201051430 2201051430 2201051430 2201051430	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity		5.28 359.90 269 6.86 22.10	mg/L ft mV NA °C	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051430	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA Conductivity		5.28 359.90 269 6.86 22.10 1.39	mg/L ft mV NA °C NTU	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051430 2201051433	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA Conductivity DA DO		5.28 359.90 269 6.86 22.10 1.39	mg/L ft mV NA °C NTU μS/cm	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA Conductivity DA DO DA DTW		5.28 359.90 269 6.86 22.10 1.39 1419 5.10	mg/L ft mV NA °C NTU μS/cm mg/L	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA DO DA DTW DA DTW DA TORDER DA DTW DA DO DA DTW		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33	mg/L ft mV NA °C NTU μS/cm mg/L ft	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA DO DA DTW DA PH DA TOPPERATURE DA TURBIDITY DA DO DA DTW DA DO DA DTW D		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33	mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA PH DA Temperature DA Turbidity DA Conductivity DA DTW DA Temperature DA Turbidity DA DO DA DTW DA		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA pH DA Temperature DA Turbidity DA DO DA Turbidity DA Tomberature DA Turbidity DA DO DA DTW DA Turbidity DA DO DA DTW DA		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA PH DA Temperature DA Turbidity DA DO DA DTW DA Temperature DA Turbidity DA DO DA DTW DA DO DA DTW		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18 1.33	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA PH DA Temperature DA Turbidity DA DO DA DTW DA Temperature DA Turbidity DA DO DA DTW DA DO DA DTW		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18 1.33	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433	DA DO DA DTW DA ORP DA PH DA Temperature DA Turbidity DA DO DA DTW DA Temperature DA Turbidity DA DO DA DTW DA DTW DA ORP DA DTW DA ORP DA DTW		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18 1.33 1422 5.00	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051436 2201051436	DA DO DA DTW DA DTW DA PH DA Temperature DA Turbidity DA DO DA DTW DA Temperature DA Turbidity DA DO DA DTW DA DO DA DTW DA DO DA DTW DA DO DA DTW DA		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18 1.33 1422 5.00 360.33	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm g/L ft ft ft mV NA rec NTU μS/cm mg/L ft	
2201051430 2201051430 2201051430 2201051430 2201051430 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051433 2201051436 2201051436 2201051436	DA DO DA DTW DA DTW DA PH DA Temperature DA Turbidity DA DO DA DTW DA Temperature DA Turbidity DA DO DA DTW DA DO DA DTW DA DO DA DTW DA DO DA DTW DA DO DA DTW DA DTW DA DO DA DTW DA DO DA DTW DA DT		5.28 359.90 269 6.86 22.10 1.39 1419 5.10 360.33 269 6.85 22.18 1.33 1422 5.00 360.33 269	mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft ft mV NA	

Well ID	BLM-7-509	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112060945A	A Conductivity		1009	μS/cm	
2112060945A	A DO		6.29	mg/L	
2112060945A	A DTW		492.80	ft	
2112060945A	A ORP		375	mV	
2112060945A	Λ pH		6.88	NA	
2112060945A	A Temperature		19.76	°C	
2112060945A	A Turbidity		0.81	NTU	
2112060947A	A Conductivity		1005	μS/cm	
2112060947A	A DO		6.83	mg/L	
2112060947A	A DTW		492.85	ft	
2112060947A	A ORP		376	mV	
2112060947A	Λ pH		6.94	NA	
2112060947A	A Temperature		19.72	°C	
2112060947A	A Turbidity		0.65	NTU	
2112060949A	A Conductivity		998	μS/cm	
2112060949A	A DO		6.43	mg/L	
2112060949A	A DTW		492.85	ft	
2112060949A	A ORP		376	mV	
2112060949A	A pH		6.90	NA	
2112060949A	A Temperature		19.78	°C	
2112060949A	A Turbidity		0.55	NTU	

Well ID B	LM-8-418	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111041000B	Conductivity		1014	μS/cm	
2111041000B	DO		7.15	mg/L	
2111041000B	DTW		337.10	ft	
2111041000B	ORP		90	mV	
2111041000B	pН		7.12	NA	
2111041000B	Temperature		20.50	°C	
2111041000B	Turbidity		0.40	NTU	
2111041002B	Conductivity		1024	μS/cm	
2111041002B	DO		7.22	mg/L	
2111041002B	DTW		337.15	ft	
2111041002B	ORP		91	mV	
2111041002B	pН		7.18	NA	
2111041002B	Temperature		20.47	°C	
2111041002B	Turbidity		0.32	NTU	
2111041004B	Conductivity		1021	μS/cm	
2111041004B	DO		7.09	mg/L	
2111041004B	DTW		337.15	ft	
2111041004B	ORP		91	mV	
2111041004B	pН		7.17	NA	
2111041004B	Temperature		20.54	°C	
2111041004B	Turbidity		0.51	NTU	
Well ID B	W-5-295	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111041400B	Conductivity		790	μS/cm	
2111041400B	DO		6.63	mg/L	
2111041400B	ORP		87	mV	
2111041400B	pН		7.55	NA	
2111041400B	Temperature		20.88	°C	
2111041400B	Turbidity		0.47	NTU	
2111041402B	Conductivity		785	μS/cm	
2111041402B	DO		6.75	mg/L	
2111041402B	ORP		88	mV	
2111041402B	pН		7.54	NA	
2111041402B	Temperature		20.92	°C	
2111041402B	Turbidity		0.50	NTU	
2111041404B	Conductivity		787	μS/cm	
2111041404B	DO		6.54	mg/L	
2111041404B	ORP		89	mV	
2111041404B	pН		7.56	NA	
2111041404B	Temperature		20.85	°C	
2111041404B	Turbidity		0.43	NTU	

Well ID BV	V-7-211	Event Date	12/15/2021		
Sample	Parameter		Result	Units	
2112150830C	Conductivity		1250	μS/cm	
2112150830C	DO		8.32	mg/L	
2112150830C	ORP		292	mV	
2112150830C	pН		7.05	NA	
2112150830C	Temperature		21.15	°C	
2112150830C	Turbidity		0.62	NTU	
2112150832C	Conductivity		1251	μS/cm	
2112150832C	DO		8.29	mg/L	
2112150832C	ORP		291	mV	
2112150832C	pН		7.07	NA	
2112150832C	Temperature		21.18	°C	
2112150832C	Turbidity		0.86	NTU	
2112150834C	Conductivity		1250	μS/cm	
2112150834C	DO		8.22	mg/L	
2112150834C	ORP		291	mV	
2112150834C	pН		7.04	NA	
2112150834C	Temperature		21.5	°C	
2112150834C	Turbidity		0.79	NTU	
Well ID JE	R-1-483	Event Date	1/6/2022		
Sample	Parameter		Result	Units	
2201061340B	Conductivity		1036	μS/cm	
2201061340B	pН		8.17	NA	
2201061340B	Temperature		20.4	°C	
2201061340B	Turbidity		0.69	NTU	
2201061420B	Conductivity		1044	μS/cm	
2201061420B 2201061420B	Conductivity pH			μS/cm NA	
			1044		
2201061420B	рН		1044 8.11	NA	
2201061420B 2201061420B 2201061420B	pH Temperature Turbidity	Event Date	1044 8.11 19.8	NA °C	
2201061420B 2201061420B 2201061420B Well ID JE	pH Temperature Turbidity	Event Date	1044 8.11 19.8 0.57	NA °C	
2201061420B 2201061420B 2201061420B	pH Temperature Turbidity R-1-563	Event Date	1044 8.11 19.8 0.57 1/6/2022	NA °C NTU	
2201061420B 2201061420B 2201061420B Well ID JE Sample	pH Temperature Turbidity R-1-563 Parameter	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result	NA °C NTU Units	
2201061420B 2201061420B 2201061420B Well ID JE Sample 2201061440B	pH Temperature Turbidity R-1-563 Parameter Conductivity pH	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result 1046 8.08	NA °C NTU Units μS/cm	
2201061420B 2201061420B 2201061420B Well ID JE Sample 2201061440B 2201061440B	pH Temperature Turbidity R-1-563 Parameter Conductivity	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result	NA °C NTU Units μS/cm NA	
2201061420B 2201061420B 2201061420B Well ID JE Sample 2201061440B 2201061440B 2201061440B	pH Temperature Turbidity R-1-563 Parameter Conductivity pH Temperature	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result 1046 8.08 19.8	NA °C NTU Units μS/cm NA °C	
2201061420B 2201061420B 2201061420B Well ID JE Sample 2201061440B 2201061440B 2201061440B 2201061440B	pH Temperature Turbidity R-1-563 Parameter Conductivity pH Temperature Turbidity	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result 1046 8.08 19.8 0.85	NA °C NTU Units μS/cm NA °C NTU	
2201061420B 2201061420B 2201061420B Well ID JE Sample 2201061440B 2201061440B 2201061440B 2201061440B 2201061440B	pH Temperature Turbidity R-1-563 Parameter Conductivity pH Temperature Turbidity Conductivity	Event Date	1044 8.11 19.8 0.57 1/6/2022 Result 1046 8.08 19.8 0.85 1031	NA °C NTU Units μS/cm NA °C NTU μS/cm	

Well ID JE	R-1-683	Event Date	1/7/2022		
Sample	Parameter		Result	Units	
2201071332B	Conductivity		1103	μS/cm	
2201071332B	pН		8.47	NA	
2201071332B	Temperature		19.9	°C	
2201071332B	Turbidity		0.76	NTU	
2201071341B	Conductivity		1095	μS/cm	
2201071341B	pН		8.35	NA	
2201071341B	Temperature		20.0	°C	
2201071341B	Turbidity		0.68	NTU	
Well ID JE	R-2-504	Event Date	1/5/2022		
Sample	Parameter		Result	Units	
2201051440B	Conductivity		1008	μS/cm	
2201051440B	pН		8.47	NA	
2201051440B	Temperature		18.4	°C	
2201051440B	Turbidity		0.58	NTU	
2201051450B	Conductivity		1012	μS/cm	
2201051450B	pН		8.49	NA	
2201051450B	Temperature		18.9	°C	
2201051450B	Turbidity		0.52	NTU	
Well ID JE	R-2-584	Event Date	1/5/2022		
Sample	Parameter		Result	Units	
2201051459D	Conductivity		1043	μS/cm	
2201051458B	•				
2201051458B 2201051458B	pН		8.14	NA	
			8.14 19.1	NA °C	
2201051458B	pН				
2201051458B 2201051458B	pH Temperature		19.1	°C	
2201051458B 2201051458B 2201051458B	pH Temperature Turbidity		19.1 0.63	°C NTU	
2201051458B 2201051458B 2201051458B 2201051510B	pH Temperature Turbidity Conductivity		19.1 0.63 1034	°C NTU μS/cm	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B	pH Temperature Turbidity Conductivity pH		19.1 0.63 1034 8.23	°C NTU μS/cm NA	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B	pH Temperature Turbidity Conductivity pH Temperature	Event Date	19.1 0.63 1034 8.23 19.3	°C NTU μS/cm NA °C	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B	pH Temperature Turbidity Conductivity pH Temperature Turbidity	Event Date	19.1 0.63 1034 8.23 19.3 0.59	°C NTU μS/cm NA °C	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684	Event Date	19.1 0.63 1034 8.23 19.3 0.59	°C NTU μS/cm NA °C NTU	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B Well ID JE Sample	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result	°C NTU µS/cm NA °C NTU	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B Well ID JE Sample 2201051520B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter Conductivity	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result	°C NTU μS/cm NA °C NTU Units μS/cm	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B 2201051520B 2201051520B 2201051520B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter Conductivity pH	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result	°C NTU μS/cm NA °C NTU Units μS/cm NA	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B 2201051520B 2201051520B 2201051520B 2201051520B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter Conductivity pH Temperature	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result 1034 8.24 19.1	°C NTU μS/cm NA °C NTU Units μS/cm NA °C	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B 2201051520B 2201051520B 2201051520B 2201051520B 2201051520B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter Conductivity pH Temperature Turbidity	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result 1034 8.24 19.1 1.11	°C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU	
2201051458B 2201051458B 2201051458B 2201051510B 2201051510B 2201051510B 2201051510B 2201051520B 2201051520B 2201051520B 2201051520B 2201051520B 2201051533B	pH Temperature Turbidity Conductivity pH Temperature Turbidity R-2-684 Parameter Conductivity pH Temperature Turbidity Conductivity	Event Date	19.1 0.63 1034 8.23 19.3 0.59 1/5/2022 Result 1034 8.24 19.1 1.11 1020	°C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm	

Well ID JP	-1-424	Event Date	1/4/2022		
Sample	Parameter		Result	Units	
2201040925A	Conductivity		1000	μS/cm	
2201040925A	DO		5.55	mg/L	
2201040925A	DTW		413.20	ft	
2201040925A	ORP		251	mV	
2201040925A	pН		6.76	NA	
2201040925A	Temperature		18.22	°C	
2201040925A	Turbidity		0.55	NTU	
2201040926A	Conductivity		1009	μS/cm	
2201040926A	DO		5.46	mg/L	
2201040926A	DTW		413.20	ft	
2201040926A	ORP		251	mV	
2201040926A	pН		6.77	NA	
2201040926A	Temperature		18.25	°C	
2201040926A	Turbidity		0.67	NTU	
2201040927A	Conductivity		1005	μS/cm	
2201040927A	DO		5.48	mg/L	
2201040927A	DTW		413.20	ft	
2201040927A	ORP		251	mV	
2201040927A	pН		6.78	NA	
2201040927A	Temperature		18.20	°C	
2201040927A	Turbidity		0.45	NTU	
Well ID JP	-2-447	Event Date	1/4/2022		
Sample	Parameter		Result	Units	
2201041455A	Conductivity		1042	μS/cm	
2201041455A 2201041455A	Conductivity DO		1042 6.48	μS/cm mg/L	
2201041455A	DO		6.48	mg/L	
2201041455A 2201041455A	DO ORP		6.48 245	mg/L mV	
2201041455A 2201041455A 2201041455A	DO ORP pH		6.48 245 6.97	mg/L mV NA	
2201041455A 2201041455A 2201041455A 2201041455A	DO ORP pH Temperature		6.48 245 6.97 20.40	mg/L mV NA °C	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A	DO ORP pH Temperature Turbidity		6.48 245 6.97 20.40 0.54	mg/L mV NA °C NTU	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A	DO ORP pH Temperature Turbidity Conductivity		6.48 245 6.97 20.40 0.54	mg/L mV NA °C NTU μS/cm	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO		6.48 245 6.97 20.40 0.54 1039 6.21	mg/L mV NA °C NTU μS/cm mg/L	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP		6.48 245 6.97 20.40 0.54 1039 6.21 245	mg/L mV NA °C NTU μS/cm mg/L mV	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98	mg/L mV NA °C NTU μS/cm mg/L mV NA	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98 20.50	mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98 20.50 0.48	mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98 20.50 0.48	mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98 20.50 0.48 1051 6.33	mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2201041455A 2201041455A 2201041455A 2201041455A 2201041455A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041456A 2201041457A 2201041457A	DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP		6.48 245 6.97 20.40 0.54 1039 6.21 245 6.98 20.50 0.48 1051 6.33 245	mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	

Well ID J	P-3-509	Event Date	12/9/2021		
Sample	Parameter		Result	Units	
2112090955A	Conductivity		1007	μS/cm	
2112090955A	DO		6.61	mg/L	
2112090955A	ORP		344	mV	
2112090955A	pН		7.74	NA	
2112090955A	Temperature		20.85	°C	
2112090955A	Turbidity		0.66	NTU	
2112090957A	Conductivity		1013	μS/cm	
2112090957A	DO		6.69	mg/L	
2112090957A	ORP		343	mV	
2112090957A	pН		7.82	NA	
2112090957A	Temperature		20.88	°C	
2112090957A	Turbidity		0.45	NTU	
2112090959A	Conductivity		1006	μS/cm	
2112090959A	DO		6.65	mg/L	
2112090959A	ORP		346	mV	
2112090959A	pН		7.80	NA	
2112090959A	Temperature		20.82	°C	
2112090959A	Turbidity		0.79	NTU	
2201060930C	Conductivity		1011	μS/cm	
2201060930C	DO		6.33	mg/L	
2201060930C	ORP		179	mV	
2201060930C	pН		6.99	NA	
2201060930C	Temperature		18.94	°C	
2201060930C	Turbidity		1.59	NTU	
2201060933C	Conductivity		998	μS/cm	
2201060933C	DO		6.13	mg/L	
2201060933C	ORP		182	mV	
2201060933C	pН		7.01	NA	
2201060933C	Temperature		19.01	°C	
2201060933C	Turbidity		1.37	NTU	
2201060936C	Conductivity		993	μS/cm	
2201060936C	DO		5.84	mg/L	
2201060936C	ORP		182	mV	
2201060936C	pН		7.04	NA	
2201060936C	Temperature		19.08	°C	
2201060936C	Turbidity		1.30	NTU	

Well ID JP	-3-689	Event Date	1/6/2022		
Sample	Parameter		Result	Units	
2201061400C	Conductivity		1025	μS/cm	
2201061400C	DO		3.73	mg/L	
2201061400C	ORP		262	mV	
2201061400C	pH		7.68	NA	
2201061400C	Temperature		20.17	°C	
2201061400C	Turbidity		0.98	NTU	
2201061403C	Conductivity		1020	μS/cm	
2201061403C	DO		3.89	mg/L	
2201061403C	ORP		262	mV	
2201061403C	pН		7.67	NA	
2201061403C	Temperature		20.24	°C	
2201061403C	Turbidity		0.94	NTU	
2201061406C	Conductivity		1047	μS/cm	
2201061406C	DO		4.02	mg/L	
2201061406C	ORP		259	mV	
2201061406C	pН		7.67	NA	
2201061406C	Temperature		20.27	°C	
2201061406C	Turbidity		0.93	NTU	
Well ID NA	ASA 6	Event Date	11/15/2021		
Sample	Parameter		Result	Units	
2111151100C	Conductivity		1579	μS/cm	
2111151100C	DTW		133.00	ft	
2111151100C	pH		7.80	NA	
2111151100C	Temperature		22.2	°C	
2111151100C	Turbidity		16.5	NTU	
2111151115C	Conductivity		1582	μS/cm	
2111151115C	DTW		138.60	ft	
21111311130	pН		7.71	NA	
2111151115C	pm		7.71		
	Temperature		21.9	°C	

Well ID	PL-10-484	Event Date	1/11/2022		
Sample	Parameter		Result	Units	
2201111000	0Y Atmospheric Pressur	e	12.66	psia	
2201111000	OY Conductivity		1116	$\mu S/cm$	
2201111000	OY DTW		464.02	ft	
2201111000	OY Formation Pressure		22.54	psia	
2201111000	OY pH		8.27	NA	
2201111000	OY Temperature		18.7	°C	
2201111000	0Y Turbidity		5.13	NTU	
2201111105	5Y Atmospheric Pressur	e	12.70	psia	
2201111105	5Y Conductivity		1127	$\mu S/cm$	
2201111105	5Y DTW		464.15	ft	
2201111105	5Y pH		8.36	NA	
2201111105	5Y Temperature		18.4	$^{\circ}\mathrm{C}$	
2201111105	5Y Turbidity		3.33	NTU	
Well ID	PL-10-592	Event Date	1/10/2022		
Sample	Parameter		Result	Units	
2201101015	5Y Atmospheric Pressur	e	12.79	psia	
2201101015	5Y Conductivity		114	μS/cm	
2201101015	5Y DTW		463.88	ft	
2201101015	5Y Formation Pressure		69.42	psia	
2201101015	5Y pH		8.26	NA	
2201101015	5Y Temperature		20.0	°C	
2201101015			3.50	NTU	
2201101347	7Y Atmospheric Pressur	e	12.76	psia	
2201101347	7Y Conductivity		1127	μS/cm	
2201101347	7Y DTW		464.02	ft	
2201101347	7Y pH		8.18	NA	
2201101347	7Y Temperature		19.3	$^{\circ}\mathrm{C}$	
2201101347	7Y Turbidity		2.89	NTU	
Well ID	PL-11-470	Event Date	12/1/2021		
Sample	Parameter		Result	Units	
2112011425	5B Conductivity		1260	μS/cm	
2112011425	5B pH		7.93	NA	
2112011425	5B Temperature		19.7	°C	
2112011425	5B Turbidity		0.77	NTU	
2112011436	6B Conductivity		1258	μS/cm	
	6B pH		7.85	NA	
2112011436					
2112011436 2112011436	=		19.7	$^{\circ}\mathrm{C}$	

Well ID PI	-11-530	Event Date	12/1/2021		
Sample	Parameter		Result	Units	
2112011449B	Conductivity		1255	μS/cm	
2112011449B	pН		7.57	NA	
2112011449B	Temperature		19.2	°C	
2112011449B	Turbidity		1.24	NTU	
2112011459B	Conductivity		1250	μS/cm	
2112011459B	pH		7.51	NA	
2112011459B	Temperature		19.3	°C	
2112011459B	Turbidity		0.94	NTU	
Well ID PI	-11-710	Event Date	12/2/2021		
Sample	Parameter		Result	Units	
2112021504B	Conductivity		1260	μS/cm	
2112021504B	pН		7.92	NA	
2112021504B	Temperature		20.2	°C	
2112021504B	Turbidity		0.62	NTU	
2112021514B	Conductivity		1264	μS/cm	
2112021514B	pH		7.97	NA	
2112021514B	Temperature		20.3	°C	
2112021514B	Turbidity		0.59	NTU	
Well ID PI	11-820	Event Date	12/2/2021		
well ID FI	J-11-04U	Event Date	12/2/2021		
Sample Sample	Parameter	Event Date	Result	Units	
		Event Date	Result	Units μS/cm	
Sample	Parameter	Event Date	Result 1124 7.87	μS/cm NA	
Sample 2112021440B	Parameter Conductivity pH Temperature	Event Date	Result	μS/cm	
Sample 2112021440B 2112021440B	Parameter Conductivity pH	Event Date	Result 1124 7.87	μS/cm NA	
Sample 2112021440B 2112021440B 2112021440B	Parameter Conductivity pH Temperature	Event Date	Result 1124 7.87 20.5	μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B	Parameter Conductivity pH Temperature Turbidity	Event Date	Result 1124 7.87 20.5 0.31	μS/cm NA °C NTU	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature	Event Date	Result 1124 7.87 20.5 0.31 1133 7.94 20.7	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH	Event Date	Result 1124 7.87 20.5 0.31 1133 7.94	μS/cm NA °C NTU μS/cm NA	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature	Event Date	Result 1124 7.87 20.5 0.31 1133 7.94 20.7	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B Well ID PI Sample	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-11-980 Parameter		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021450B 2112021450B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-11-980 Parameter Conductivity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021454B 2112021454B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-11-980 Parameter Conductivity pH		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result 1110 8.06	μS/cm NA °C NTU μS/cm NA °C NTU Units	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-11-980 Parameter Conductivity pH Temperature		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result 1110 8.06 20.7	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-980 Parameter Conductivity pH Temperature Turbidity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result 1110 8.06 20.7 0.49	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-980 Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result 1110 8.06 20.7 0.49 1108 8.08 20.6	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112021440B 2112021440B 2112021440B 2112021440B 2112021450B 2112021450B 2112021450B 2112021450B 2112021454B 2112021454B 2112021454B 2112021454B 2112021454B 2112021500B 2112021500B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-980 Parameter Conductivity pH Temperature Turbidity Conductivity		Result 1124 7.87 20.5 0.31 1133 7.94 20.7 0.34 12/2/2021 Result 1110 8.06 20.7 0.49 1108 8.08	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU μS/cm NA	

Well ID PI	L-12-570	Event Date	11/3/2021		
Sample	Parameter		Result	Units	
2111031000C	Conductivity		1010	μS/cm	
2111031000C	DO		5.99	mg/L	
2111031000C	ORP		99	mV	
2111031000C	pН		6.73	NA	
2111031000C	Temperature		21.48	°C	
2111031000C	Turbidity		0.27	NTU	
2111031001C	Conductivity		1017	μS/cm	
2111031001C	DO		6.02	mg/L	
2111031001C	ORP		98	mV	
2111031001C	pH		6.76	NA	
2111031001C	Temperature		21.53	°C	
2111031001C	Turbidity		0.25	NTU	
2111031002C	Conductivity		1018	μS/cm	
2111031002C	DO		6.00	mg/L	
2111031002C	ORP		99	mV	
2111031002C	pH		6.75	NA	
2111031002C	Temperature		21.50	°C	
2111031002C	Turbidity		0.34	NTU	
	Turbidity -12-800	Event Date	0.34	NTU	
		Event Date		Units	
Well ID PI	L-12-800	Event Date	11/3/2021		
Well ID PI Sample	2-12-800 Parameter	Event Date	11/3/2021 Result	Units	
Well ID PI Sample 2111031425C	Parameter Conductivity	Event Date	11/3/2021 Result	Units μS/cm	
Well ID PI Sample 2111031425C 2111031425C	Parameter Conductivity DO	Event Date	11/3/2021 Result	Units μS/cm mg/L	
Well ID PI Sample 2111031425C 2111031425C 2111031425C	Conductivity DO ORP	Event Date	11/3/2021 Result 1012 5.93 91	Units μS/cm mg/L mV	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C	Conductivity DO ORP pH	Event Date	11/3/2021 Result 1012 5.93 91 6.86	Units μS/cm mg/L mV NA	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C	Conductivity DO ORP pH Temperature	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36	Units μS/cm mg/L mV NA °C	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C	Conductivity DO ORP pH Temperature Turbidity	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58	Units μS/cm mg/L mV NA °C NTU	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C	Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025	Units μS/cm mg/L mV NA °C NTU μS/cm	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C	Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C	C-12-800 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C	C-12-800 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C	Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86 22.25	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86 22.25 0.47	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86 22.25 0.47 1019	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86 22.25 0.47 1019 5.95	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID PI Sample 2111031425C 2111031425C 2111031425C 2111031425C 2111031425C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031426C 2111031427C 2111031427C 2111031427C 2111031427C	Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	11/3/2021 Result 1012 5.93 91 6.86 22.36 0.58 1025 5.95 91 6.86 22.25 0.47 1019 5.95 91	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	

Well ID Pl	L -1-486	Event Date	1/10/2022		
Sample	Parameter		Result	Units	
2201100950A	Conductivity		1054	μS/cm	
2201100950A	DO		7.22	mg/L	
2201100950A	DTW		485.30	ft	
2201100950A	ORP		234	mV	
2201100950A	pН		7.09	NA	
2201100950A	Temperature		18.58	°C	
2201100950A	Turbidity		0.61	NTU	
2201100952A	Conductivity		1050	μS/cm	
2201100952A	DO		6.98	mg/L	
2201100952A	DTW		485.55	ft	
2201100952A	ORP		233	mV	
2201100952A	pН		7.12	NA	
2201100952A	Temperature		18.61	°C	
2201100952A	Turbidity		0.53	NTU	
2201100954A	Conductivity		1057	μS/cm	
2201100954A	DO		7.07	mg/L	
2201100954A	DTW		485.55	ft	
2201100954A	ORP		232	mV	
2201100954A	рН		7.10	NA	
2201100954A	Temperature		18.60	°C	
22011000511			0.20	NTU	
2201100954A	Turbidity		0.39	1110	
	•	Event Date	12/10/2021		
	L-2-504 Parameter	Event Date		Units	
Well ID Pl	L-2-504 Parameter	Event Date	12/10/2021	Units	
Well ID Pl Sample	L-2-504	Event Date	12/10/2021 Result		
Well ID Pl Sample 2112100945A	Conductivity DTW	Event Date	12/10/2021 Result	Units μS/cm	
Well ID Pl Sample 2112100945A 2112100945A	Conductivity DTW pH	Event Date	12/10/2021 Result 1079 477.72 7.21	Units μS/cm ft NA	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A	Conductivity DTW	Event Date	12/10/2021 Result 1079 477.72	Units μS/cm ft	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A	Conductivity DTW pH Temperature Turbidity	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3	Units μS/cm ft NA °C	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100945A	Conductivity DTW pH Temperature	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64	Units μS/cm ft NA °C NTU	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075	Units μS/cm ft NA °C NTU μS/cm	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75	Units μS/cm ft NA °C NTU μS/cm ft	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75 7.25	Units μS/cm ft NA °C NTU μS/cm ft NA	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A 2112100947A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75 7.25 19.6	Units μS/cm ft NA °C NTU μS/cm ft NA °C	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A 2112100947A 2112100947A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75 7.25 19.6 0.57	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A 2112100947A 2112100947A 2112100947A 2112100947A 2112100947A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75 7.25 19.6 0.57 1072	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Well ID Pl Sample 2112100945A 2112100945A 2112100945A 2112100945A 2112100947A 2112100947A 2112100947A 2112100947A 2112100947A 2112100949A 2112100949A	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	12/10/2021 Result 1079 477.72 7.21 19.3 0.64 1075 477.75 7.25 19.6 0.57 1072 477.75	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Well ID PL	-4-464	Event Date	12/15/2021		
Sample	Parameter		Result	Units	
2112151400A	Conductivity		1114	μS/cm	
2112151400A	DTW		449.47	ft	
2112151400A	pH		7.90	NA	
2112151400A	Temperature		19.4	°C	
2112151400A	Turbidity		0.77	NTU	
2112151403A	Conductivity		1113	μS/cm	
2112151403A	DTW		449.65	ft	
2112151403A	pН		7.92	NA	
2112151403A	Temperature		19.4	°C	
2112151403A	Turbidity		0.73	NTU	
2112151406A	Conductivity		1109	μS/cm	
2112151406A	DTW		449.65	ft	
2112151406A	pH		7.93	NA	
2112151406A	Temperature		19.6	°C	
2112151406A	Turbidity		0.61	NTU	
Well ID PL	,-6-1195	Event Date	1/12/2022		
Sample	Parameter		Result	Units	
2201121320Y	Atmospheric Pressure		12.77	psia	
2201121320Y	Conductivity		1844	μS/cm	
2201121320Y	Formation Pressure		337.00	psia	
2201121320Y	pН		8.40	NA	
2201121320Y	Temperature		21.5	°C	
2201121320Y	Turbidity		4.49	NTU	
2201121508Y	Atmospheric Pressure		12.79	psia	
2201121508Y	Conductivity		1822	μS/cm	
2201121508Y	pH		8.46	NA	
2201121508Y	Tomanomotivas		21.1	°C	
	Temperature		21.1	C	
2201121508Y	Turbidity		3.88	NTU	
2201121508Y Well ID PL	Turbidity	Event Date			
	Turbidity	Event Date	3.88		
Well ID PL	Turbidity		3.88 1/13/2022	NTU	
Well ID PL Sample	Turbidity z-6-1335 Parameter		3.88 1/13/2022 Result	NTU Units	
Well ID PL Sample	Turbidity -6-1335 Parameter Atmospheric Pressure		3.88 1/13/2022 Result	NTU Units psia	
Well ID PL Sample 2201131040Y 2201131040Y	Turbidity -6-1335 Parameter Atmospheric Pressure Conductivity		3.88 1/13/2022 Result 12.78 2030	NTU Units psia μS/cm	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y	Turbidity -6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure		3.88 1/13/2022 Result 12.78 2030 396.65	NTU Units psia μS/cm psia	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y 2201131040Y	Turbidity 2-6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure pH		3.88 1/13/2022 Result 12.78 2030 396.65 8.38	NTU Units psia μS/cm psia NA	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y	Turbidity 7-6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure pH Temperature		3.88 1/13/2022 Result 12.78 2030 396.65 8.38 21.2	NTU Units psia μS/cm psia NA °C	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y	Turbidity 7-6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure pH Temperature Turbidity		3.88 1/13/2022 Result 12.78 2030 396.65 8.38 21.2 3.65	NTU Units psia μS/cm psia NA °C NTU	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131423Y	Turbidity 7-6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure pH Temperature Turbidity Atmospheric Pressure		3.88 1/13/2022 Result 12.78 2030 396.65 8.38 21.2 3.65 12.79	NTU Units psia μS/cm psia NA °C NTU psia	
Well ID PL Sample 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131040Y 2201131423Y 2201131423Y	Turbidity 7-6-1335 Parameter Atmospheric Pressure Conductivity Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity		3.88 1/13/2022 Result 12.78 2030 396.65 8.38 21.2 3.65 12.79 2040	NTU Units psia μS/cm psia NA °C NTU psia μS/cm	

Well ID P	L-6-545	Event Date	1/19/2022		
Sample	Parameter		Result	Units	
2201191325Y	Atmospheric Pressure		12.65	psia	
2201191325Y	Conductivity		1097	μS/cm	
2201191325Y	Formation Pressure		56.14	psia	
2201191325Y	рН		7.20	NA	
2201191325Y	Temperature		24.1	°C	
2201191325Y	Turbidity		0.62	NTU	
2201191512Y	Atmospheric Pressure		12.67	psia	
2201191512Y	Conductivity		1116	μS/cm	
2201191512Y	pН		7.80	NA	
2201191512Y	Temperature		21.2	°C	
2201191512Y	Turbidity		0.62	NTU	
Well ID P	L-6-725	Event Date	1/19/2022		
Sample	Parameter		Result	Units	
2201191005Y	Atmospheric Pressure		12.64	psia	
2201191005Y	Conductivity		1051	μS/cm	
2201191005Y	Formation Pressure		134.90	psia	
2201191005Y	pН		8.32	NA	
2201191005Y	Temperature		23.1	°C	
2201191005Y	Turbidity		0.32	NTU	
2201191100Y	Atmospheric Pressure		12.71	psia	
2201191100Y	Conductivity		1085	μS/cm	
2201191100Y	DTW		NA	ft	
2201191100Y	pН		7.92	NA	
2201191100Y	Temperature		20.4	°C	
2201191100Y	Turbidity		0.24	NTU	
Well ID P	L-6-915	Event Date	1/18/2022		
Sample	Parameter		Result	Units	
2201181105Y	Atmospheric Pressure		12.64	psia	
2201181105Y	Conductivity		952	μS/cm	
2201181105Y	Formation Pressure		217.45	psia	
2201181105Y	pН		8.41	NA	
2201181105Y	Temperature		22.0	°C	
2201181105Y	Turbidity		1.51	NTU	
2201181434Y	Atmospheric Pressure		12.61	psia	
2201181434Y	Conductivity		967	μS/cm	
2201181434Y	pН		8.50	NA	
2201181434Y	Temperature		22.4	°C	
2201181434Y	Turbidity		1.23	NTU	

Well ID PL	-7-480 Event Date	11/8/2021		
Sample	Parameter	Result	Units	
2111081350Y	Atmospheric Pressure	12.56	psia	
2111081350Y	Conductivity	955	μS/cm	
2111081350Y	DTW	481.16	ft	
2111081350Y	Formation Pressure	14.11	psia	
2111081350Y	pН	8.26	NA	
2111081350Y	Temperature	19.6	°C	
2111081350Y	Turbidity	1.05	NTU	
2111091015Y	Atmospheric Pressure	12.54	psia	
2111091015Y	Conductivity	971	μS/cm	
2111091015Y	DTW	481.23	ft	
2111091015Y	pН	8.08	NA	
2111091015Y	Temperature	18.9	°C	
2111091015Y	Turbidity	0.95	NTU	
Well ID PL	-7-560 Event Date	11/8/2021		
Sample	_	Result	Units	
Sample	Parameter	Result	Units	
2111080915Y	Parameter Atmospheric Pressure	12.53	psia	
-				
2111080915Y	Atmospheric Pressure	12.53	psia	
2111080915Y 2111080915Y	Atmospheric Pressure Conductivity	12.53 918	psia μS/cm	
2111080915Y 2111080915Y 2111080915Y	Atmospheric Pressure Conductivity DTW	12.53 918 481.00	psia μS/cm ft	
2111080915Y 2111080915Y 2111080915Y 2111080915Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.53 918 481.00 48.47	psia μS/cm ft psia	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.53 918 481.00 48.47 8.61	psia μS/cm ft psia NA	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.53 918 481.00 48.47 8.61 18.5	psia μS/cm ft psia NA °C	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.53 918 481.00 48.47 8.61 18.5 0.62	psia μS/cm ft psia NA °C NTU	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.53 918 481.00 48.47 8.61 18.5 0.62 12.53	psia μS/cm ft psia NA °C NTU psia	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080945Y 2111080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.53 918 481.00 48.47 8.61 18.5 0.62 12.53 931	psia μS/cm ft psia NA °C NTU psia μS/cm	
2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080915Y 2111080945Y 2111080945Y 2111080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.53 918 481.00 48.47 8.61 18.5 0.62 12.53 931 481.16	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID PL	-8-455 Event Date	12/8/2021		
Sample	Parameter	Result	Units	
2112081410Y	Atmospheric Pressure	12.64	psia	
2112081410Y	Conductivity	1069	μS/cm	
2112081410Y	DTW	438.67	ft	
2112081410Y	Formation Pressure	23.15	psia	
2112081410Y	pH	8.27	NA	
2112081410Y	Temperature	22.5	°C	
2112081410Y	Turbidity	2.10	NTU	
2112090836Y	Atmospheric Pressure	12.59	psia	
2112090836Y	Conductivity	1081	μS/cm	
2112090836Y	DTW	438.76	ft	
2112090836Y	pН	8.13	NA	
2112090836Y	Temperature	20.9	°C	
2112090836Y	Turbidity	1.77	NTU	
Well ID PL	-8-605 Event Date	12/8/2021		
C 1 .			Units	
Sample	Parameter	Result	Units	
2112080945Y	Parameter Atmospheric Pressure	12.65	psia	
2112080945Y	Atmospheric Pressure	12.65	psia	
2112080945Y 2112080945Y	Atmospheric Pressure Conductivity	12.65 970	psia μS/cm	
2112080945Y 2112080945Y 2112080945Y	Atmospheric Pressure Conductivity DTW	12.65 970 438.50	psia μS/cm ft	
2112080945Y 2112080945Y 2112080945Y 2112080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.65 970 438.50 88.13	psia μS/cm ft psia	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.65 970 438.50 88.13 8.37	psia μS/cm ft psia NA	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.65 970 438.50 88.13 8.37 20.4	psia μS/cm ft psia NA °C	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.65 970 438.50 88.13 8.37 20.4 2.25	psia μS/cm ft psia NA °C NTU	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112081110Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.65 970 438.50 88.13 8.37 20.4 2.25	psia μS/cm ft psia NA °C NTU psia	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112081110Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.65 970 438.50 88.13 8.37 20.4 2.25 12.63 983	psia μS/cm ft psia NA °C NTU psia μS/cm	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112081110Y 2112081110Y 2112081110Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.65 970 438.50 88.13 8.37 20.4 2.25 12.63 983 438.67	psia μS/cm ft psia NA °C NTU psia μS/cm ft	
2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112080945Y 2112081110Y 2112081110Y 2112081110Y 2112081110Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH	12.65 970 438.50 88.13 8.37 20.4 2.25 12.63 983 438.67 8.31	psia μS/cm ft psia NA °C NTU psia μS/cm ft NA	

Well ID S	T-1-473	Event Date	11/15/2021		
Sample	Parameter		Result	Units	
2111151405A	Conductivity		1266	μS/cm	
2111151405A	DO		10.81	mg/L	
2111151405A	DTW		473.22	ft	
2111151405A	ORP		85	mV	
2111151405A	pН		7.04	NA	
2111151405A	Temperature		24.60	°C	
2111151405A	Turbidity		2.94	NTU	
2111151407A	Conductivity		1262	μS/cm	
2111151407A	DO		10.76	mg/L	
2111151407A	DTW		473.61	ft	
2111151407A	ORP		83	mV	
2111151407A	pН		7.01	NA	
2111151407A	Temperature		24.63	°C	
2111151407A	Turbidity		2.89	NTU	
2111151409A	Conductivity		1265	μS/cm	
2111151409A	DO		10.80	mg/L	
2111151409A	DTW		473.61	ft	
2111151409A	ORP		83	mV	
2111151409A	pН		7.02	NA	
2111151409A	Temperature		24.62	°C	
2111151409A	Turbidity		2.92	NTU	
Well ID S	T-1-541	Event Date	12/16/2021		
Sample	Parameter		Result	Units	
2112160940A	Conductivity		1249	μS/cm	
2112160940A	DTW		471.44	ft	
2112160940A	pН		8.06	NA	
2112160940A	Temperature		17.7	°C	
2112160940A	m 1.1.11		0.70	NTU	
	Turbidity		0.72	NIO	
2112160943A	Turbidity Conductivity		1251	μS/cm	
2112160943A 2112160943A					
	Conductivity		1251	μS/cm ft NA	
2112160943A	Conductivity DTW		1251 471.63	$\mu S/cm \\$ ft	
2112160943A 2112160943A	Conductivity DTW pH		1251 471.63 8.04	μS/cm ft NA	
2112160943A 2112160943A 2112160943A	Conductivity DTW pH Temperature		1251 471.63 8.04 17.6	μS/cm ft NA °C	
2112160943A 2112160943A 2112160943A 2112160943A	Conductivity DTW pH Temperature Turbidity		1251 471.63 8.04 17.6 0.59	μS/cm ft NA °C NTU	
2112160943A 2112160943A 2112160943A 2112160943A 2112160946A	Conductivity DTW pH Temperature Turbidity Conductivity		1251 471.63 8.04 17.6 0.59	μS/cm ft NA °C NTU μS/cm	
2112160943A 2112160943A 2112160943A 2112160943A 2112160946A 2112160946A	Conductivity DTW pH Temperature Turbidity Conductivity DTW		1251 471.63 8.04 17.6 0.59 1248 471.63	μS/cm ft NA °C NTU μS/cm ft	

Well ID ST	-1-630	Event Date	12/16/2021		_
Sample	Parameter		Result	Units	
2112160950C	Conductivity		1057	μS/cm	
2112160950C	DO		8.93	mg/L	
2112160950C	ORP		349	mV	
2112160950C	pН		6.89	NA	
2112160950C	Temperature		19.45	°C	
2112160950C	Turbidity		1.88	NTU	
2112160952C	Conductivity		1056	μS/cm	
2112160952C	DO		8.90	mg/L	
2112160952C	ORP		351	mV	
2112160952C	pН		6.92	NA	
2112160952C	Temperature		19.47	°C	
2112160952C	Turbidity		1.38	NTU	
2112160954C	Conductivity		1059	μS/cm	
2112160954C	DO		8.91	mg/L	
2112160954C	ORP		350	mV	
2112160954C	pН		6.91	NA	
2112160954C	Temperature		19.44	°C	
2112160954C	Turbidity		1.41	NTU	
Well ID ST	-3-486	Event Date	12/9/2021		
Sample	Parameter		Result	Units	
2112090930C	Conductivity		1214	μS/cm	
2112090930C	pН		7.83	NA	
2112090930C	Temperature		18.6	°C	
2112090930C	Turbidity		5.10	NTU	
2112090932C	Conductivity		1188	μS/cm	
2112090932C	pН		7.31	NA	
2112090932C	Temperature		18.3	°C	
2112090932C	Turbidity		6.37	NTU	
2112090934C	Conductivity		1187	μS/cm	
2112090934C	pН		7.24	NA	
2112090934C	Temperature		19.6	°C	
2112090934C	Turbidity		5.76	NTU	

Well ID ST	-3-586	Event Date	12/13/2021		
Sample	Parameter		Result	Units	
2112130928C	Conductivity		961	μS/cm	
2112130928C	DO		6.61	mg/L	
2112130928C	DTW		462.20	ft	
2112130928C	ORP		338	mV	
2112130928C	pН		6.95	NA	
2112130928C	Temperature		19.66	°C	
2112130928C	Turbidity		1.58	NTU	
2112130930C	Conductivity		966	μS/cm	
2112130930C	DO		6.60	mg/L	
2112130930C	ORP		339	mV	
2112130930C	pН		6.92	NA	
2112130930C	Temperature		19.64	°C	
2112130930C	Turbidity		0.80	NTU	
2112130932C	Conductivity		962	μS/cm	
2112130932C	DO		6.60	mg/L	
2112130932C	ORP		338	mV	
2112130932C	pН		6.96	NA	
2112130932C	Temperature		19.65	°C	
2112130932C	Turbidity		0.92	NTU	
Well ID ST	-3-666	Event Date	12/15/2021		
Well ID ST Sample	-3-666 Parameter	Event Date	12/15/2021 Result	Units	
	Parameter	Event Date			
Sample		Event Date	Result	μS/cm	
Sample 2112151400C	Parameter Conductivity	Event Date	Result		
Sample 2112151400C 2112151400C	Parameter Conductivity DO ORP	Event Date	967 7.41	μS/cm mg/L	
Sample 2112151400C 2112151400C 2112151400C	Parameter Conductivity DO ORP pH	Event Date	967 7.41 352	μS/cm mg/L mV	
Sample 2112151400C 2112151400C 2112151400C 2112151400C	Parameter Conductivity DO ORP	Event Date	967 7.41 352 6.90	μS/cm mg/L mV NA	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C	Parameter Conductivity DO ORP pH Temperature	Event Date	967 7.41 352 6.90 21.25	μS/cm mg/L mV NA °C	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	967 7.41 352 6.90 21.25 6.39	μS/cm mg/L mV NA °C NTU	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	967 7.41 352 6.90 21.25 6.39 965	μS/cm mg/L mV NA °C NTU μS/cm	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38	μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88 21.28	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88 21.28 6.26	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88 21.28 6.26	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151404C 2112151404C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88 21.28 6.26	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Sample 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151400C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151402C 2112151404C 2112151404C 2112151404C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Conductivity DO ORP	Event Date	967 7.41 352 6.90 21.25 6.39 965 7.38 350 6.88 21.28 6.26 968 7.40 352	μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID ST	-3-735	Event Date	12/14/2021		
Sample	Parameter		Result	Units	
2112141245C	Conductivity		978	μS/cm	
2112141245C	DO		6.00	mg/L	
2112141245C	ORP		362	mV	
2112141245C	pН		7.01	NA	
2112141245C	Temperature		20.91	°C	
2112141245C	Turbidity		3.15	NTU	
2112141247C	Conductivity		975	μS/cm	
2112141247C	DO		5.97	mg/L	
2112141247C	ORP		360	mV	
2112141247C	pН		7.04	NA	
2112141247C	Temperature		20.94	°C	
2112141247C	Turbidity		3.30	NTU	
2112141249C	Conductivity		976	μS/cm	
2112141249C	DO		5.99	mg/L	
2112141249C	ORP		360	mV	
2112141249C	pН		7.05	NA	
2112141249C	Temperature		20.92	°C	
2112141249C	Turbidity		3.32	NTU	
2112141249C	Turbidity -4-481	Event Date	3.32 12/8/2021	NTU	
2112141249C	•	Event Date		Units	
2112141249C Well ID ST	-4-481	Event Date	12/8/2021		
2112141249C Well ID ST Sample	-4-481 Parameter	Event Date	12/8/2021 Result	Units	
2112141249C Well ID ST Sample 2112080950C	Parameter Conductivity	Event Date	12/8/2021 Result	Units μS/cm	
2112141249C Well ID ST Sample 2112080950C 2112080950C	Parameter Conductivity DO	Event Date	12/8/2021 Result 982 6.13	Units μS/cm mg/L	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C	Parameter Conductivity DO ORP	Event Date	12/8/2021 Result 982 6.13 380	Units μS/cm mg/L mV	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C	Parameter Conductivity DO ORP pH	Event Date	12/8/2021 Result 982 6.13 380 6.74	Units μS/cm mg/L mV NA	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C	Parameter Conductivity DO ORP pH Temperature	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45	Units μS/cm mg/L mV NA °C	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45 0.50	Units μS/cm mg/L mV NA °C NTU	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45 0.50 980	Units μS/cm mg/L mV NA °C NTU μS/cm	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45 0.50 980 6.12	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C	C-4-481 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45 0.50 980 6.12 378	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	12/8/2021 Result 982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75 20.42	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75 20.42 0.45	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75 20.42 0.45 984	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080954C 2112080954C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75 20.42 0.45 984 6.13	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2112141249C Well ID ST Sample 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080950C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080952C 2112080954C 2112080954C 2112080954C 2112080954C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	982 6.13 380 6.74 20.45 0.50 980 6.12 378 6.75 20.42 0.45 984 6.13 378	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID ST	-4-589	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021000C	Conductivity		735	μS/cm	
2111021000C	DO		1.81	mg/L	
2111021000C	ORP		88	mV	
2111021000C	pH		7.56	NA	
2111021000C	Temperature		21.35	°C	
2111021000C	Turbidity		0.21	NTU	
2111021001C	Conductivity		739	μS/cm	
2111021001C	DO		2.01	mg/L	
2111021001C	ORP		88	mV	
2111021001C	pН		7.51	NA	
2111021001C	Temperature		21.28	°C	
2111021001C	Turbidity		0.38	NTU	
2111021002C	Conductivity		738	μS/cm	
2111021002C	DO		1.78	mg/L	
2111021002C	ORP		88	mV	
2111021002C	pH		7.57	NA	
2111021002C	Temperature		21.30	°C	
2111021002C	Turbidity		0.31	NTU	
	Turbidity -4-690	Event Date	0.31 12/8/2021	NTU	
	-	Event Date		Units	
Well ID ST	-4-690	Event Date	12/8/2021		
Well ID ST Sample	-4-690 Parameter	Event Date	12/8/2021 Result	Units	
Well ID ST Sample 2112081500C	-4-690 Parameter Conductivity	Event Date	12/8/2021 Result	Units μS/cm	
Well ID ST Sample 2112081500C 2112081500C	-4-690 Parameter Conductivity DO	Event Date	12/8/2021 Result 786 3.43	Units μS/cm mg/L	
Well ID ST Sample 2112081500C 2112081500C 2112081500C	-4-690 Parameter Conductivity DO ORP	Event Date	12/8/2021 Result 786 3.43 346	Units μS/cm mg/L mV	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C	-4-690 Parameter Conductivity DO ORP pH	Event Date	786 3.43 346 7.66	Units μS/cm mg/L mV NA	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C	-4-690 Parameter Conductivity DO ORP pH Temperature	Event Date	786 3.43 346 7.66 20.14	Units μS/cm mg/L mV NA °C	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	786 3.43 346 7.66 20.14 1.89	Units μS/cm mg/L mV NA °C NTU	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	786 3.43 346 7.66 20.14 1.89	Units μS/cm mg/L mV NA °C NTU μS/cm	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17	Units µS/cm mg/L mV NA °C NTU µS/cm mg/L mV NA	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17 1.83	Units µS/cm mg/L mV NA °C NTU µS/cm mg/L mV NA	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17 1.83 784 3.41	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081504C 2112081504C 2112081504C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17 1.83 784 3.41 345	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081504C 2112081504C 2112081504C 2112081504C 2112081504C	-4-690 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17 1.83 784 3.41 345 7.62	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID ST Sample 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081500C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081502C 2112081504C 2112081504C 2112081504C	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	786 3.43 346 7.66 20.14 1.89 783 3.42 345 7.61 20.17 1.83 784 3.41 345	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID ST	-5-485 I	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
2111011335Y	Atmospheric Pressure		12.59	psia	
2111011335Y	Conductivity		902	μS/cm	
2111011335Y	DTW		466.33	ft	
2111011335Y	Formation Pressure		40.20	psia	
2111011335Y	pH		7.95	NA	
2111011335Y	Temperature		19.8	°C	
2111011335Y	Turbidity		3.84	NTU	
2111011430Y	Atmospheric Pressure		12.61	psia	
2111011430Y	Conductivity		894	μS/cm	
2111011430Y	DTW		466.44	ft	
2111011430Y	pH		7.99	NA	
2111011430Y	Temperature		20.0	°C	
2111011430Y	Turbidity		2.26	NTU	
Well ID ST	'-5-655 I	Event Date	11/1/2021		
Sample	Parameter		Result	Units	
2111010945Y	Atmospheric Pressure	_	12.56	psia	
2111010945Y	Conductivity		772	μS/cm	
2111010945Y	DTW		466.20	ft	
2111010945Y	Formation Pressure		113.83	psia	
2111010945Y	pH		8.29	NA	
2111010945Y	Temperature		18.6	°C	
2111010945Y	Turbidity		3.06	NTU	
2111011017Y	Atmospheric Pressure		12.59	psia	
2111011017Y	Conductivity		761	μS/cm	
2111011017Y	DTW		466.33	ft	
2111011017Y	pH		8.34	NA	
2111011017Y	Temperature		18.9	°C	
2111011017Y	Turbidity		1.91	NTU	
Well ID ST	7-6-528 I	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061400B	Conductivity		1083	μS/cm	
2112061400B	pН		8.79	NA	
2112061400B	Temperature		14.9	°C	
2112061400B	Turbidity		0.59	NTU	
	Conductivity		1079	μS/cm	
2112061444B	Conductivity				
2112061444B 2112061444B	рН		8.71	NA	
	· ·		8.71 14.9	NA ℃	

Well ID ST	-6-568	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061410B	Conductivity		1040	μS/cm	
2112061410B	pН		8.73	NA	
2112061410B	Temperature		12.7	°C	
2112061410B	Turbidity		0.73	NTU	
2112061510B	Conductivity		1041	μS/cm	
2112061510B	pH		8.69	NA	
2112061510B	Temperature		12.8	°C	
2112061510B	Turbidity		0.77	NTU	
Well ID ST	-6-678	Event Date	12/7/2021		
Sample	Parameter		Result	Units	
2112071400B	Conductivity		1006	μS/cm	
2112071400B	pН		8.67	NA	
2112071400B	Temperature		16.4	°C	
2112071400B	Turbidity		1.12	NTU	
2112071440B	Conductivity		1010	μS/cm	
2112071440B	pH		8.62	NA	
2112071440B	Temperature		16.5	°C	
2112071440B	Turbidity		0.98	NTU	
Well ID ST	-6-824	Event Date	12/7/2021		
well ib Si	0 02 1	_, , ,, _ , , , , ,	12///2021		
Sample	Parameter		Result	Units	
			Result	Units μS/cm	
Sample 2112071411B 2112071411B	Parameter		916 8.55	μS/cm NA	
Sample 2112071411B 2112071411B 2112071411B	Parameter Conductivity pH Temperature		916 8.55 16.2	μS/cm NA °C	
Sample 2112071411B 2112071411B	Parameter Conductivity pH		916 8.55	μS/cm NA	
Sample 2112071411B 2112071411B 2112071411B	Parameter Conductivity pH Temperature		916 8.55 16.2	μS/cm NA °C	
Sample 2112071411B 2112071411B 2112071411B 2112071411B	Parameter Conductivity pH Temperature Turbidity		916 8.55 16.2 0.42 920 8.44	μS/cm NA °C NTU μS/cm NA	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature		916 8.55 16.2 0.42 920 8.44 16.2	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH		916 8.55 16.2 0.42 920 8.44	μS/cm NA °C NTU μS/cm NA	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature	Event Date	916 8.55 16.2 0.42 920 8.44 16.2	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		916 8.55 16.2 0.42 920 8.44 16.2 0.51	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		916 8.55 16.2 0.42 920 8.44 16.2 0.51	μS/cm NA °C NTU μS/cm NA °C	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity C-6-970 Parameter		Result 916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU Units	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-6-970 Parameter Conductivity pH Temperature		Result 916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B Well ID ST Sample 2112071414B 2112071414B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity C-6-970 Parameter Conductivity pH		Result 916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU Units	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071414B 2112071414B 2112071414B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 2-6-970 Parameter Conductivity pH Temperature		916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071414B 2112071414B 2112071414B 2112071414B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity C-6-970 Parameter Conductivity pH Temperature Turbidity		Result 916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result 997 7.07 16.6 0.95	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071414B 2112071414B 2112071414B 2112071414B 2112071510B 2112071510B 2112071510B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity C-6-970 Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result 997 7.07 16.6 0.95 996 7.10 16.6	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2112071411B 2112071411B 2112071411B 2112071411B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071456B 2112071414B 2112071414B 2112071414B 2112071414B 2112071510B 2112071510B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity C-6-970 Parameter Conductivity pH Temperature Turbidity		916 8.55 16.2 0.42 920 8.44 16.2 0.51 12/7/2021 Result 997 7.07 16.6 0.95 996 7.10	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU	

Parameter		Result	T T •.	
		Result	Units	
Conductivity		1081	μS/cm	
ЭΗ		8.25	NA	
Геmperature		17.9	°C	
Γurbidity		1.60	NTU	
Conductivity		1082	μS/cm	
		8.20	NA	
Геmperature		17.9	°C	
Γurbidity		1.55	NTU	
544	Event Date	1/3/2022		
Parameter		Result	Units	
Conductivity		1084	μS/cm	
ЭΗ		8.42	NA	
Геmperature		15.6	°C	
Γurbidity		1.60	NTU	
Conductivity		1072	μS/cm	
ЭΗ		8.40	NA	
Геmperature		15.8	°C	
Γurbidity		1.56	NTU	
779	Event Date	1/4/2022		
Parameter		Result	Units	
Conductivity		936	μS/cm	
Н		8.72	NA	
Геmperature		18.5	°C	
Γurbidity		0.91	NTU	
Conductivity		933	μS/cm	
Н		8.75	NA	
Геmperature		18.5		
Γurbidity		0.87	NTU	
970	Event Date	1/4/2022		
Parameter		Result	Units	
Conductivity		871	μS/cm	
		8.51	NA	
Γemperature		18.7	°C	
Γurbidity		1.67	NTU	
Conductivity		874	μS/cm	
эН		8.47	NA	
Геmperature		18.7	°C	
	Conductivity pH Temperature Turbidity 544 Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 779 Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity Temperature Turbidity Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity	Conductivity pH Temperature Turbidity 544 Event Date Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity 779 Event Date Parameter Conductivity pH Temperature Turbidity 779 Event Date Parameter Conductivity pH Temperature Turbidity Conductivity	Turbidity 1.60 Conductivity 1082 pH 8.20 Temperature 17.9 Turbidity 1.55 544 Event Date 1/3/2022 Parameter Result Conductivity 1084 pH 8.42 Temperature 15.6 Turbidity 1.60 Conductivity 1072 pH 8.40 Temperature 15.8 Turbidity 1.56 779 Event Date 1/4/2022 Parameter Result Conductivity 936 pH 8.72 Temperature 18.5 Turbidity 0.91 Conductivity 933 pH 8.72 Temperature 18.5 Turbidity 0.91 Conductivity 933 pH 8.75 Temperature 18.5 Turbidity 0.91 Conductivity 933 pH 8.75 Temperature 18.5 Turbidity 0.87 POO Event Date 1/4/2022 Parameter Result Conductivity 933 pH 8.75 Temperature 18.5 Turbidity 0.87 POO Event Date 1/4/2022 Parameter Result Conductivity 933 pH 8.75 Temperature 18.5 Turbidity 0.87	Purbidity 1.60 NTU Conductivity 1082 μS/cm pH 8.20 NA Temperature 17.9 °C Furbidity 1.55 NTU 544 Event Date 1/3/2022 Parameter Result Units Conductivity 1084 μS/cm pH 8.42 NA 15.6 °C Turbidity NTU Conductivity 1.60 NTU Conductivity 1.60 NTU Octional Conductivity 1.56 NTU PARAMETER 1.58 °C Turbidity 1.56 NTU PAPARAMETER PS/cm PS/cm pH 8.72 NA pH 8.72 NA pH 8.72 NA remperature 18.5 °C Turbidity 0.91 NTU Conductivity 933 μS/cm pH 8.75

Well ID	WW-1-452	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061415A	Conductivity		1005	μS/cm	
2112061415A	DO		6.16	mg/L	
2112061415A	DTW		422.35	ft	
2112061415A	ORP		358	mV	
2112061415A	рН		6.84	NA	
2112061415A	Temperature		21.21	°C	
2112061415A	Turbidity		0.37	NTU	
2112061417A	Conductivity		1012	μS/cm	
2112061417A	DO		6.16	mg/L	
2112061417A	DTW		422.85	ft	
2112061417A	ORP		358	mV	
2112061417A	рН		6.83	NA	
2112061417A	Temperature		21.22	°C	
2112061417A			0.28	NTU	
2112061419A	Conductivity		1010	μS/cm	
2112061419A	DO .		6.23	mg/L	
2112061419A			422.85	ft	
2112061419A	ORP		358	mV	
2112061419A	рН		6.87	NA	
2112061419A	Temperature		21.10	°C	
~112001T17/	i i ciliperature		21.19	C	
2112061419A			0.59	NTU	
2112061419A		Event Date			
2112061419A	Turbidity	Event Date	0.59		
2112061419A Well ID	Turbidity WW-2-489 Parameter	Event Date	0.59 12/14/2021	NTU Units	
2112061419A Well ID Sample 2112140935A	Turbidity WW-2-489 Parameter Conductivity	Event Date	0.59 12/14/2021 Result	NTU	
2112061419A Well ID Sample 2112140935A 2112140935A	Turbidity WW-2-489 Parameter Conductivity pH	Event Date	0.59 12/14/2021 Result	NTU Units μS/cm	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A	Turbidity WW-2-489 Parameter Conductivity pH Temperature	Event Date	0.59 12/14/2021 Result 967 8.68	NTU Units μS/cm NA	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer	Event Date	0.59 12/14/2021 Result 967 8.68 17.1	NTU Units μS/cm NA °C	
Well ID Sample	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26	NTU Units μS/cm NA °C ft	
Well ID Sample 2112140935A 2112140935A 2112140935A 2112140935A 2112140935A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50	NTU Units μS/cm NA °C ft NTU	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970	NTU Units μS/cm NA °C ft NTU μS/cm	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A 2112140938A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64	NTU Units μS/cm NA °C ft NTU μS/cm NA	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A 2112140938A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64 17.4	NTU Units μS/cm NA °C ft NTU μS/cm NA °C	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A 2112140935A 2112140938A	Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Temperature Transducer Turbidity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64 17.4 20.36	NTU Units μS/cm NA °C ft NTU μS/cm NA °C	
2112061419A Well ID Sample 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A	Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64 17.4 20.36 2.24	NTU Units µS/cm NA °C ft NTU µS/cm NA °C ft NTU	
Well ID Sample 2112140935A 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64 17.4 20.36 2.24 968	NTU Units μS/cm NA °C ft NTU μS/cm NA °C ft NTU μS/cm	
Well ID Sample 2112140935A 2112140935A 2112140935A 2112140935A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A 2112140938A 2112140941A 2112140941A	Turbidity WW-2-489 Parameter Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity pH Temperature Transducer Turbidity Conductivity	Event Date	0.59 12/14/2021 Result 967 8.68 17.1 20.26 2.50 970 8.64 17.4 20.36 2.24 968 8.62	NTU Units μS/cm NA °C ft NTU μS/cm NA °C ft NTU μS/cm NA	

Well ID WY	W-2-664 Ev	ent Date	12/14/2021		
Sample	Parameter		Result	Units	
2112141355A	Conductivity		970	μS/cm	
2112141355A	рН		8.35	NA	
2112141355A	Temperature		19.8	°C	
2112141355A	Transducer		20.41	ft	
2112141355A	Turbidity		3.32	NTU	
2112141358A	Conductivity		968	μS/cm	
2112141358A	pН		8.37	NA	
2112141358A	Temperature		19.8	°C	
2112141358A	Transducer		20.31	ft	
2112141358A	Turbidity		3.16	NTU	
2112141401A	Conductivity		964	μS/cm	
2112141401A	pН		8.37	NA	
2112141401A	Temperature		20.1	°C	
2112141401A	Transducer		20.27	ft	
2112141401A	Turbidity		2.85	NTU	
Well ID W	W-3-469 Ev	ent Date	12/7/2021		
Sample	Parameter		Result	Units	
2112071407Y	Atmospheric Pressure		12.49	psia	
2112071407Y	Conductivity		1132	μS/cm	
2112071407Y	DTW		410.02	ft	
2112071407Y	Formation Pressure		38.84	psia	
2112071407Y	pН		8.04	NA	
2112071407Y	Temperature		22.8	$^{\circ}\mathrm{C}$	
2112071407Y	Turbidity		3.96	NTU	
2112071432Y	Atmospheric Pressure		12.51	psia	
2112071432Y	Conductivity		1117	μS/cm	
2112071432Y	DTW		410.11	ft	
2112071432Y	pН		7.98	NA	
2112071432Y	Temperature		22.5	°C	
2112071432Y	Turbidity		3.11	NTU	

Well ID W	W-3-569	Event Date	12/7/2021		
Sample	Parameter		Result	Units	
2112071030Y	Atmospheric Pressur	e	12.54	psia	
2112071030Y	Conductivity		1094	μS/cm	
2112071030Y	DTW		409.88	ft	
2112071030Y	Formation Pressure		82.16	psia	
2112071030Y	pН		8.29	NA	
2112071030Y	Temperature		21.5	$^{\circ}\mathrm{C}$	
2112071030Y	Turbidity		2.57	NTU	
2112071103Y	Atmospheric Pressur	e	12.56	psia	
2112071103Y	Conductivity		1105	μS/cm	
2112071103Y	DTW		410.02	ft	
2112071103Y	pН		8.34	NA	
2112071103Y	Temperature		21.3	°C	
2112071103Y	Turbidity		1.82	NTU	
Well ID W	W-5-459	Event Date	1/10/2022		
Sample	Parameter		Result	Units	
2201101340B	Conductivity		1076	μS/cm	
2201101340B	pН		7.38	NA	
2201101340B	Temperature		16.3	°C	
2201101340B	Turbidity		0.79	NTU	
2201101354B	Conductivity		1080	μS/cm	
2201101354B	pН		7.45	NA	
2201101354B	Temperature		16.5	°C	
2201101354B	Turbidity		0.73	NTU	
Well ID W	W-5-579	Event Date	1/10/2022		
Sample	Parameter		Result	Units	
2201101403B	Conductivity		1018	μS/cm	
2201101403B	pН		8.04	NA	
2201101403B	Temperature		18.6	°C	
2201101403B Turbidity			0.57	NTU	
2201101420B Conductivity			1021	μS/cm	
2201101420B pH			8.07	NA	
	pm				
	Temperature		18.5	°C	

Well ID	WW-5-809	Event Date	1/11/2022		
Sample	Parameter		Result	Units	
2201111410	B Conductivity		936	μS/cm	
2201111410)B рH		8.17	NA	
2201111410	B Temperature		19.3	°C	
2201111410	B Turbidity		1.04	NTU	
2201111415	B Conductivity		931	μS/cm	
2201111415	БВ рН		8.13	NA	
2201111415	B Temperature		19.2	°C	
2201111415	B Turbidity		1.01	NTU	
Well ID	WW-5-909	Event Date	1/11/2022		
Well ID Sample	WW-5-909 Parameter	Event Date	1/11/2022 Result	Units	
	Parameter	Event Date		Units μS/cm	
Sample	Parameter DB Conductivity	Event Date	Result		
Sample 2201111430	Parameter OB Conductivity OB pH	Event Date	Result	μS/cm	
Sample 2201111430 2201111430	Parameter DB Conductivity DB pH DB Temperature	Event Date	Result 1260 7.91	μS/cm NA	
Sample 2201111430 2201111430 2201111430	Parameter DB Conductivity DB pH DB Temperature DB Turbidity	Event Date	Result 1260 7.91 19.5	μS/cm NA °C	
2201111430 2201111430 2201111430 2201111430	Parameter DB Conductivity DB pH DB Temperature DB Turbidity DB Conductivity	Event Date	1260 7.91 19.5 1.04	μS/cm NA °C NTU	
Sample 2201111430 2201111430 2201111430 2201111443	Parameter DB Conductivity DB pH DB Temperature DB Turbidity DB Conductivity DB PH	Event Date	Result 1260 7.91 19.5 1.04 1261	μS/cm NA °C NTU μS/cm	

Appendix A.2 Monitor Well Analytical Data

Detections for Monitoring Well Sampling Events in this Reporting Period

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/11/2021	8260	2111111006A	Silane, fluorotrimethyl-	12	ug/L	NA	NA	Line	TIC
11/11/2021	8260	2111111000A 21111111006A	Silane, methoxytrimethyl-	5.3	ug/L ug/L	NA NA	NA NA		TIC
11/11/2021	8260	2111111006A 21111111006A	Trichloroethene (TCE)	3.3	ug/L ug/L	1	0.2		TIC
11/11/2021	8260	2111111000A 21111111006A	1,1,2-Trichloro-1,2,2-Trifluoroethane	23	ug/L ug/L	1	0.2		
11/11/2021	8260	2111111000A 21111111006A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.42	ug/L ug/L	1	0.2		J
11/11/2021	607	2111111000A 21111111008A	Bromacil	0.42	ug/L μg/L	0.0094	0.2	102	J
11/11/2021	8270	2111111008A 21111111009A	Dichloromethane (Methylene Chloride)	6.8	μg/L ug/L	0.0094 NA	0.0047 NA	102	TIC
11/11/2021	8270	2111111009A 21111111009A	Unknown	7.1	ug/L ug/L	NA NA	NA NA		TIC
11/11/2021	8270	2111111009A 21111111009A	Unknown	7.1	ug/L ug/L	NA NA	NA NA		TIC RB
11/11/2021	8270	2111111009A 21111111009A	1H-Benzotriazole, 4-methyl-	19	ug/L ug/L	NA NA	NA NA		TIC
11/11/2021	METALS	2111111009A 21111111012A	Strontium, Total	8.19	mg/L	0.1	0.002		TIC
11/11/2021	METALS	2111111012A 2111111012A	Arsenic, Total	0.0011	mg/L	0.001	0.002		
11/11/2021	METALS	2111111012A 2111111012A	Iron, Total	0.82	mg/L mg/L	0.001	0.0004		
11/11/2021	METALS	2111111012A 2111111012A	Chromium, Total	0.106	mg/L	0.01	0.002		
11/11/2021	METALS	2111111012A 21111111012A	Calcium, Total	180	mg/L mg/L	1	0.3		
11/11/2021	METALS	2111111012A 2111111012A	Boron, Total	1.75	mg/L	0.2	0.02		
11/11/2021	METALS	2111111012A 2111111012A	Barium, Total	0.043	mg/L mg/L	0.02	0.003		
11/11/2021	METALS	2111111012A 2111111012A	Magnesium, Total	143	mg/L	1	0.003		
11/11/2021	METALS	2111111012A 2111111012A	Sodium, Total	272	mg/L mg/L	10	2		
11/11/2021	METALS	2111111012A 2111111012A	Potassium, Total	5.9	mg/L	2	0.4		
11/11/2021	METALS	2111111012A 21111111012A	Nickel, Total	0.321	mg/L mg/L	0.04	0.003		
11/11/2021	METALS	2111111012A 2111111012A	Molybdenum, Total	0.073	mg/L	0.025	0.003		
11/11/2021	METALS	2111111012A 21111111012A	Manganese, Total	0.073	mg/L	0.023	0.003		
11/11/2021	METALS	2111111012A	Vanadium, Total	0.003	mg/L mg/L	0.05	0.0007		J
11/11/2021	METALS	2111111012A	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
11/11/2021	ANIONS	2111111012A	Alkalinity, Total as CaCO3	219	mg/L	2	1.8		3
11/11/2021	ANIONS	2111111013A 2111111013A	Sulfate	793	mg/L mg/L	20	4		
11/11/2021	ANIONS	2111111013A 2111111013A	Chloride	386	mg/L mg/L	8	1.7		
11/11/2021	ANIONS	2111111013A 2111111013A	Fluoride, undistilled	1.13	mg/L mg/L	0.1	0.01		
11/11/2021	SM2540C	2111111013A 2111111014A	Total Dissolved Solids (TDS)	1930	mg/L	29	27		
11/11/2021	353.2	2111111014A 2111111016A	Nitrate+Nitrite as Nitrogen	8.72	mg/L	0.5	0.02		
11/11/2021	333.2	2111111010A	Titate - Titate as Titagen	0.72	mg/L	0.5	0.02		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/18/2022	8290	2201180937C	OCDD	0.732	pg/L	23.6	0.0943		J
1/18/2022	8270	2201180940C	Benzo(k)fluoranthene	0.081	ug/L	0.19	0.07		J
1/18/2022	8270	2201180940C	Unknown	5.8	ug/L	NA	NA		TIC RB
1/18/2022	8270	2201180940C	Unknown	9.9	ug/L	NA	NA		TIC RB
1/18/2022	8270	2201180940C	Benzo(b)fluoranthene	0.083	ug/L	0.19	0.065		J
1/18/2022	8270	2201180940C	Benz(a)anthracene	0.1	ug/L	0.19	0.087		J
1/18/2022	8270	2201180940C	Unknown	5.5	ug/L	NA	NA		TIC
1/18/2022	METALS	2201180943C	Barium, Total	0.031	mg/L	0.02	0.003		
1/18/2022	METALS	2201180943C	Manganese, Total	0.033	mg/L	0.01	0.004		
1/18/2022	METALS	2201180943C	Magnesium, Total	72	mg/L	1	0.03		
1/18/2022	METALS	2201180943C	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
1/18/2022	METALS	2201180943C	Boron, Total	0.07	mg/L	0.2	0.02		J
1/18/2022	METALS	2201180943C	Arsenic, Total	0.0015	mg/L	0.001	0.0004		
1/18/2022	METALS	2201180943C	Strontium, Total	6.64	mg/L	0.1	0.002		
1/18/2022	METALS	2201180943C	Sodium, Total	42	mg/L	1	0.2		
1/18/2022	METALS	2201180943C	Potassium, Total	3.4	mg/L	2	0.4		
1/18/2022	METALS	2201180943C	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
1/18/2022	METALS	2201180943C	Calcium, Total	160	mg/L	1	0.3		
1/18/2022	ANIONS	2201180945C	Sulfate	475	mg/L	20	4		
1/18/2022	ANIONS	2201180945C	Alkalinity, Total as CaCO3	224	mg/L	2	1.8		
1/18/2022	ANIONS	2201180945C	Chloride	33.6	mg/L	2	0.5		
1/18/2022	ANIONS	2201180945C	Fluoride, undistilled	1.25	mg/L	0.1	0.01		
1/18/2022	SM2540C	2201180946C	Total Dissolved Solids (TDS)	997	mg/L	10	9		
1/18/2022	6850	2201180947C	Perchlorate	0.0296	ug/L	0.1	0.025		J
1/18/2022	353.2	2201180948C	Nitrate+Nitrite as Nitrogen	0.007	mg/L	0.05	0.002		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	9270							Line	TIC
1/18/2022		2201181439C	Unknown	4.2	ug/L	NA	NA		
1/18/2022	8270	2201181439C	Unknown	4.3	ug/L	NA	NA		TIC
1/18/2022	8270	2201181439C	Cyclopentasiloxane, decamethyl-	5.1	ug/L	NA	NA		TIC RB
1/18/2022	METALS	2201181442C	Boron, Total	0.07	mg/L	0.2	0.02		J
1/18/2022	METALS	2201181442C	Strontium, Total	3.88	mg/L	0.1	0.002		
1/18/2022	METALS	2201181442C	Sodium, Total	41.4	mg/L	1	0.2		
1/18/2022	METALS	2201181442C	Potassium, Total	2.7	mg/L	2	0.4		
1/18/2022	METALS	2201181442C	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
1/18/2022	METALS	2201181442C	Calcium, Total	127	mg/L	1	0.3		
1/18/2022	METALS	2201181442C	Barium, Total	0.023	mg/L	0.02	0.003		
1/18/2022	METALS	2201181442C	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
1/18/2022	METALS	2201181442C	Zinc, Total	0.003	mg/L	0.02	0.003		J
1/18/2022	METALS	2201181442C	Magnesium, Total	68.2	mg/L	1	0.03		
1/18/2022	ANIONS	2201181443C	Sulfate	339	mg/L	8	1.6		
1/18/2022	ANIONS	2201181443C	Fluoride, undistilled	1.18	mg/L	0.1	0.01		
1/18/2022	ANIONS	2201181443C	Alkalinity, Total as CaCO3	269	mg/L	2	1.8		
1/18/2022	ANIONS	2201181443C	Chloride	37.8	mg/L	2	0.5		
1/18/2022	SM2540C	2201181444C	Total Dissolved Solids (TDS)	817	mg/L	10	9		
1/18/2022	353.2	2201181446C	Nitrate+Nitrite as Nitrogen	0.098	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/6/2021	8260	2112061030Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.1	ug/L	1	0.2		QD
12/6/2021	8260	2112061030Y	Trichloroethene (TCE)	1.4	ug/L	1	0.2		
12/6/2021	8260	2112061030Y	Trichlorofluoromethane (CFC 11)	3.1	ug/L	1	0.24		QD
12/6/2021	8260	2112061031Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.1	ug/L	1	0.2		QD
12/6/2021	8260	2112061031Y	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
12/6/2021	8260	2112061031Y	Trichlorofluoromethane (CFC 11)	4.6	ug/L	1	0.24		QD
12/6/2021	607	2112061032Y	Bromacil	0.41	μg/L	0.0095	0.0048	75	RB
12/6/2021	METALS	2112061110Y	Potassium, Total	13.4	mg/L	2	0.4		
12/6/2021	METALS	2112061110Y	Boron, Total	0.14	mg/L	0.2	0.02		J
12/6/2021	METALS	2112061110Y	Zinc, Total	0.017	mg/L	0.02	0.003		J
12/6/2021	METALS	2112061110Y	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
12/6/2021	METALS	2112061110Y	Strontium, Total	1.91	mg/L	0.1	0.002		
12/6/2021	METALS	2112061110Y	Sodium, Total	50.2	mg/L	1	0.2		
12/6/2021	METALS	2112061110Y	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
12/6/2021	METALS	2112061110Y	Calcium, Total	130	mg/L	1	0.3		
12/6/2021	METALS	2112061110Y	Barium, Total	0.027	mg/L	0.02	0.003		
12/6/2021	METALS	2112061110Y	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
12/6/2021	METALS	2112061110Y	Magnesium, Total	68	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/2/2021	8260	2112021320Y	Trichlorofluoromethane (CFC 11)	0.56	ug/L	1	0.24		J
12/2/2021	607	2112021321Y	Bromacil	0.019	μg/L	0.0095	0.0048	75	RB *
12/2/2021	METALS	2112021350Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
12/2/2021	METALS	2112021350Y	Sodium, Total	31.3	mg/L	1	0.2		
12/2/2021	METALS	2112021350Y	Strontium, Total	15.1	mg/L	1	0.02		
12/2/2021	METALS	2112021350Y	Zinc, Total	0.013	mg/L	0.02	0.003		J
12/2/2021	METALS	2112021350Y	Potassium, Total	2.6	mg/L	2	0.4		
12/2/2021	METALS	2112021350Y	Magnesium, Total	98.8	mg/L	1	0.03		
12/2/2021	METALS	2112021350Y	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
12/2/2021	METALS	2112021350Y	Calcium, Total	202	mg/L	1	0.3		
12/2/2021	METALS	2112021350Y	Boron, Total	0.07	mg/L	0.2	0.02		J
12/2/2021	METALS	2112021350Y	Barium, Total	0.027	mg/L	0.02	0.003		
12/2/2021	METALS	2112021350Y	Manganese, Total	0.06	mg/L	0.01	0.004		
12/2/2021	METALS	2112021350Y	Thallium, Total	0.0001	mg/L	0.001	0.00004		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
— Date		Sample	Constituent	Result	Units	Limit	Limit	LIIIC	QATIag
12/2/2021	607	2112020848Y	Bromacil	0.024	μg/L	0.0095	0.0048	75	RB
12/2/2021	METALS	2112020920Y	Boron, Total	0.06	mg/L	0.2	0.02		J
12/2/2021	METALS	2112020920Y	Strontium, Total	13	mg/L	1	0.02		
12/2/2021	METALS	2112020920Y	Sodium, Total	36	mg/L	1	0.2		
12/2/2021	METALS	2112020920Y	Potassium, Total	2.5	mg/L	2	0.4		
12/2/2021	METALS	2112020920Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J EB
12/2/2021	METALS	2112020920Y	Manganese, Total	0.009	mg/L	0.01	0.004		J
12/2/2021	METALS	2112020920Y	Magnesium, Total	118	mg/L	1	0.03		
12/2/2021	METALS	2112020920Y	Calcium, Total	246	mg/L	1	0.3		
12/2/2021	METALS	2112020920Y	Zinc, Total	0.012	mg/L	0.02	0.003		J EB
12/2/2021	METALS	2112020920Y	Barium, Total	0.021	mg/L	0.02	0.003		
12/2/2021	METALS	2112020920Y	Iron, Total	0.4	mg/L	0.1	0.07		
12/2/2021	ANIONS	2112020921Y	Sulfate	855	mg/L	20	4		
12/2/2021	ANIONS	2112020921Y	Fluoride, undistilled	1.02	mg/L	0.1	0.01		
12/2/2021	ANIONS	2112020921Y	Alkalinity, Total as CaCO3	243	mg/L	2	1.8		
12/2/2021	ANIONS	2112020921Y	Chloride	33.9	mg/L	2	0.5		
12/2/2021	SM2540C	2112020922Y	Total Dissolved Solids (TDS)	1530	mg/L	13	12		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/1/2021	607	2112011421Y	Bromacil	0.05	μg/L	0.0095	0.0048	75	RB
12/1/2021	METALS	2112011445Y	Calcium, Total	406	mg/L	10	3		
12/1/2021	METALS	2112011445Y	Zinc, Total	0.011	mg/L	0.02	0.003		J
12/1/2021	METALS	2112011445Y	Strontium, Total	14.4	mg/L	1	0.02		
12/1/2021	METALS	2112011445Y	Sodium, Total	34.2	mg/L	1	0.2		
12/1/2021	METALS	2112011445Y	Potassium, Total	2.4	mg/L	2	0.4		
12/1/2021	METALS	2112011445Y	Manganese, Total	0.013	mg/L	0.01	0.004		
12/1/2021	METALS	2112011445Y	Iron, Total	0.22	mg/L	0.1	0.07		
12/1/2021	METALS	2112011445Y	Boron, Total	0.08	mg/L	0.2	0.02		J
12/1/2021	METALS	2112011445Y	Barium, Total	0.01	mg/L	0.02	0.003		J
12/1/2021	METALS	2112011445Y	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
12/1/2021	METALS	2112011445Y	Magnesium, Total	147	mg/L	1	0.03		

Event Date	Analysis Method	Campla	Constituent	Dogult	Units	Quant Limit	Det Limit	Xtret	OA Elag
Date	Methou	Sample	Constituent	Result	Units	Lillit	Lillit	Effic	QA Flag
12/1/2021	8260	2112011030Y	Sulfur Dioxide	16	ug/L	NA	NA		TIC RB
12/1/2021	8260	2112011030Y	Carbon Disulfide	0.58	ug/L	1	0.42		J
12/1/2021	607	2112011031Y	Bromacil	0.13	μg/L	0.0096	0.0048	75	RB
12/1/2021	METALS	2112011100Y	Barium, Total	0.011	mg/L	0.02	0.003		J
12/1/2021	METALS	2112011100Y	Boron, Total	0.08	mg/L	0.2	0.02		J
12/1/2021	METALS	2112011100Y	Calcium, Total	503	mg/L	10	3		
12/1/2021	METALS	2112011100Y	Magnesium, Total	147	mg/L	1	0.03		
12/1/2021	METALS	2112011100Y	Manganese, Total	0.011	mg/L	0.01	0.004		
12/1/2021	METALS	2112011100Y	Potassium, Total	2.4	mg/L	2	0.4		
12/1/2021	METALS	2112011100Y	Sodium, Total	34	mg/L	1	0.2		
12/1/2021	METALS	2112011100Y	Strontium, Total	14.1	mg/L	1	0.02		
12/1/2021	METALS	2112011100Y	Zinc, Total	0.013	mg/L	0.02	0.003		J

Event	Analysis					Quant	Det	Xtret	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/10/2021	8260	2111101020Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	6.2	ug/L	1	0.2		
11/10/2021	8260	2111101020Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
11/10/2021	8260	2111101020Y	Tetrachloroethene (PCE)	0.54	ug/L	1	0.21		J
11/10/2021	8260	2111101020Y	Trichloroethene (TCE)	13	ug/L	1	0.2		
11/10/2021	607	2111101021Y	Bromacil	2.6	μg/L	0.0095	0.0048	102	
11/10/2021	METALS	2111110820Y	Nickel, Total	0.007	mg/L	0.04	0.003		J
11/10/2021	METALS	2111110820Y	Magnesium, Total	99.9	mg/L	1	0.03		
11/10/2021	METALS	2111110820Y	Zinc, Total	0.041	mg/L	0.02	0.003		
11/10/2021	METALS	2111110820Y	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
11/10/2021	METALS	2111110820Y	Strontium, Total	3	mg/L	0.1	0.002		
11/10/2021	METALS	2111110820Y	Sodium, Total	197	mg/L	1	0.2		
11/10/2021	METALS	2111110820Y	Potassium, Total	51.2	mg/L	2	0.4		
11/10/2021	METALS	2111110820Y	Manganese, Total	0.005	mg/L	0.01	0.004		J
11/10/2021	METALS	2111110820Y	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
11/10/2021	METALS	2111110820Y	Calcium, Total	152	mg/L	1	0.3		
11/10/2021	METALS	2111110820Y	Boron, Total	1.13	mg/L	0.2	0.02		
11/10/2021	METALS	2111110820Y	Barium, Total	0.059	mg/L	0.02	0.003		
11/10/2021	METALS	2111110820Y	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
11/10/2021	ANIONS	2111110915Y	Fluoride, undistilled	1.73	mg/L	0.1	0.01		
11/10/2021	ANIONS	2111110915Y	Sulfate	500	mg/L	20	4		
11/10/2021	ANIONS	2111110915Y	Chloride	338	mg/L	8	1.7		
11/10/2021	ANIONS	2111110915Y	Alkalinity, Total as CaCO3	321	mg/L	2	1.8		
11/10/2021	6850	2111111010Y	Perchlorate	0.1	ug/L	0.2	0.06		J
11/10/2021	SM2540C	2111111105Y	Total Dissolved Solids (TDS)	1550	mg/L	13	12		
11/10/2021	353.2	2111111245Y	Nitrate+Nitrite as Nitrogen	2.72	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/16/2021	8260	2111161400Y	Trichlorofluoromethane (CFC 11)	0.24	ug/L	1	0.24		J
11/16/2021	8260	2111161400Y	Benzene	0.42	ug/L	1	0.2		J
1/16/2021	8260	2111161400Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	26	ug/L	1	0.2		
1/16/2021	8260	2111161400Y	cis-1,2-Dichloroethene	0.55	ug/L	1	0.23		J
1/16/2021	8260	2111161400Y	Vinyl Chloride	0.24	ug/L	1	0.2		J
1/16/2021	8260	2111161400Y	Tetrahydrofuran (THF)	29	ug/L	5	1.7		
1/16/2021	8260	2111161400Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	20	ug/L	1	0.2		
1/16/2021	8260	2111161400Y	Dichlorofluoromethane (CFC 21)	5.7	ug/L	1	0.2		
1/16/2021	8260	2111161400Y	Tetrachloroethene (PCE)	0.52	ug/L	1	0.21		J
1/16/2021	8260	2111161400Y	Trichloroethene (TCE)	29	ug/L	1	0.2		
1/16/2021	8260	2111161401Y	Trichloroethene (TCE)	28	ug/L	1	0.2		
11/16/2021	8260	2111161401Y	Unknown	7.5	ug/L	NA	NA		TIC
11/16/2021	8260	2111161401Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	25	ug/L	1	0.2		
1/16/2021	8260	2111161401Y	Trichlorofluoromethane (CFC 11)	0.27	ug/L	1	0.24		J
1/16/2021	8260	2111161401Y	Tetrahydrofuran (THF)	33	ug/L	5	1.7		
1/16/2021	8260	2111161401Y	Tetrachloroethene (PCE)	0.55	ug/L	1	0.21		J
1/16/2021	8260	2111161401Y	Dichlorofluoromethane (CFC 21)	5	ug/L	1	0.2		
1/16/2021	8260	2111161401Y	Benzene	0.42	ug/L	1	0.2		J
1/16/2021	8260	2111161401Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	18	ug/L	1	0.2		
1/16/2021	8260	2111161401Y	cis-1,2-Dichloroethene	0.66	ug/L	1	0.23		J
1/16/2021	607	2111161402Y	Bromacil	0.018	μg/L	0.0095	0.0048	115	
1/16/2021	METALS	2111161425Y	Aluminum, Total	0.03	mg/L	0.1	0.03		J
11/16/2021	METALS	2111161425Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
11/16/2021	METALS	2111161425Y	Strontium, Total	2.78	mg/L	0.1	0.002		
11/16/2021	METALS	2111161425Y	Zinc, Total	0.008	mg/L	0.02	0.003		J EB
11/16/2021	METALS	2111161425Y	Sodium, Total	20.3	mg/L	1	0.2		
11/16/2021	METALS	2111161425Y	Potassium, Total	3.5	mg/L	2	0.4		
1/16/2021	METALS	2111161425Y	Manganese, Total	0.005	mg/L	0.01	0.004		J
1/16/2021	METALS	2111161425Y	Magnesium, Total	52.2	mg/L	1	0.03		
1/16/2021	METALS	2111161425Y	Iron, Total	0.44	mg/L	0.1	0.07		
11/16/2021	METALS	2111161425Y	Calcium, Total	87.8	mg/L	1	0.3		
11/16/2021	METALS	2111161425Y	Barium, Total	0.038	mg/L	0.02	0.003		
11/16/2021	METALS	2111161425Y	Boron, Total	0.1	mg/L	0.2	0.02		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/16/2021	METALS	2111161010Y	Sodium, Total	22.6	mg/L	1	0.2		
11/16/2021	METALS	2111161010Y	Iron, Total	0.32	mg/L	0.1	0.07		
11/16/2021	METALS	2111161010Y	Molybdenum, Total	0.017	mg/L	0.025	0.003		J
11/16/2021	METALS	2111161010Y	Potassium, Total	3.2	mg/L	2	0.4		
11/16/2021	METALS	2111161010Y	Manganese, Total	0.007	mg/L	0.01	0.004		J
11/16/2021	METALS	2111161010Y	Magnesium, Total	59.8	mg/L	1	0.03		
11/16/2021	METALS	2111161010Y	Boron, Total	0.09	mg/L	0.2	0.02		J
11/16/2021	METALS	2111161010Y	Barium, Total	0.027	mg/L	0.02	0.003		
11/16/2021	METALS	2111161010Y	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
11/16/2021	METALS	2111161010Y	Strontium, Total	11.9	mg/L	1	0.02		
11/16/2021	METALS	2111161010Y	Calcium, Total	112	mg/L	1	0.3		
11/16/2021	METALS	2111161010Y	Zinc, Total	0.014	mg/L	0.02	0.003		J

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/15/2021	8260	2111151405Y	Benzene	0.47	ug/L	1	0.2		J
11/15/2021	8260	2111151405Y	Tetrahydrofuran (THF)	7.9	ug/L	5	1.7		
11/15/2021	607	2111151406Y	Bromacil	0.073	μg/L	0.0095	0.0048	115	
11/15/2021	METALS	2111151407Y	Molybdenum, Total	0.031	mg/L	0.025	0.003		
11/15/2021	METALS	2111151407Y	Zinc, Total	0.011	mg/L	0.02	0.003		J
11/15/2021	METALS	2111151407Y	Strontium, Total	25.4	mg/L	1	0.02		
11/15/2021	METALS	2111151407Y	Potassium, Total	3.2	mg/L	2	0.4		
11/15/2021	METALS	2111151407Y	Manganese, Total	0.005	mg/L	0.01	0.004		J
11/15/2021	METALS	2111151407Y	Iron, Total	0.42	mg/L	0.1	0.07		
11/15/2021	METALS	2111151407Y	Sodium, Total	22	mg/L	1	0.2		
11/15/2021	METALS	2111151407Y	Calcium, Total	113	mg/L	1	0.3		
11/15/2021	METALS	2111151407Y	Boron, Total	0.08	mg/L	0.2	0.02		J
11/15/2021	METALS	2111151407Y	Barium, Total	0.029	mg/L	0.02	0.003		
11/15/2021	METALS	2111151407Y	Arsenic, Total	0.0082	mg/L	0.001	0.0004		
11/15/2021	METALS	2111151407Y	Magnesium, Total	59.1	mg/L	1	0.03		
11/15/2021	ANIONS	2111151435Y	Fluoride, undistilled	1.97	mg/L	0.1	0.01		
11/15/2021	ANIONS	2111151435Y	Sulfate	257	mg/L	8	1.6		
11/15/2021	ANIONS	2111151435Y	Chloride	41.2	mg/L	2	0.5		
11/15/2021	ANIONS	2111151435Y	Alkalinity, Total as CaCO3	271	mg/L	2	1.8		
11/15/2021	SM2540C	2111151436Y	Total Dissolved Solids (TDS)	739	mg/L	10	9		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/15/2021	8260	2111151025Y	Tetrahydrofuran (THF)	38	ug/L	5	1.7		
11/15/2021	607	2111151026Y	Bromacil	0.014	$\mu g/L$	0.0095	0.0048	115	
11/15/2021	METALS	2111151100Y	Calcium, Total	229	mg/L	1	0.3		
11/15/2021	METALS	2111151100Y	Strontium, Total	25.1	mg/L	1	0.02		
11/15/2021	METALS	2111151100Y	Sodium, Total	26	mg/L	1	0.2		
11/15/2021	METALS	2111151100Y	Potassium, Total	3.8	mg/L	2	0.4		
11/15/2021	METALS	2111151100Y	Zinc, Total	0.017	mg/L	0.02	0.003		J EB
11/15/2021	METALS	2111151100Y	Manganese, Total	0.023	mg/L	0.01	0.004		
11/15/2021	METALS	2111151100Y	Boron, Total	0.09	mg/L	0.2	0.02		J
11/15/2021	METALS	2111151100Y	Barium, Total	0.018	mg/L	0.02	0.003		J
11/15/2021	METALS	2111151100Y	Arsenic, Total	0.0024	mg/L	0.001	0.0004		
11/15/2021	METALS	2111151100Y	Iron, Total	0.79	mg/L	0.1	0.07		
11/15/2021	METALS	2111151100Y	Magnesium, Total	95.9	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
								Line	
11/12/2021	8260	2111120935Y	Styrene	0.26	ug/L	1	0.2		J
11/12/2021	8260	2111120935Y	Tetrahydrofuran (THF)	120	ug/L	5	1.7		
11/12/2021	8260	2111120935Y	Propionitrile	3.3	ug/L	5	3		J
11/12/2021	8260	2111120935Y	2-Propanol	5	ug/L	50	3.4		J
11/12/2021	8260	2111120935Y	Unknown	26	ug/L	NA	NA		TIC
11/12/2021	607	2111120936Y	Bromacil	0.068	μg/L	0.0095	0.0048	102	
11/12/2021	METALS	2111121010Y	Calcium, Total	382	mg/L	10	3		
11/12/2021	METALS	2111121010Y	Strontium, Total	18.3	mg/L	1	0.02		
11/12/2021	METALS	2111121010Y	Sodium, Total	31	mg/L	1	0.2		
11/12/2021	METALS	2111121010Y	Potassium, Total	4.4	mg/L	2	0.4		
11/12/2021	METALS	2111121010Y	Zinc, Total	0.025	mg/L	0.02	0.003		
11/12/2021	METALS	2111121010Y	Manganese, Total	0.019	mg/L	0.01	0.004		
11/12/2021	METALS	2111121010Y	Iron, Total	1.96	mg/L	0.1	0.07		
11/12/2021	METALS	2111121010Y	Boron, Total	0.13	mg/L	0.2	0.02		J
11/12/2021	METALS	2111121010Y	Beryllium, Total	0.0002	mg/L	0.003	0.0002		J
11/12/2021	METALS	2111121010Y	Barium, Total	0.021	mg/L	0.02	0.003		
11/12/2021	METALS	2111121010Y	Magnesium, Total	104	mg/L	1	0.03		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/19/2022	8290	2201190936C	1,2,3,4,6,7,8-HpCDD	0.279	pg/L	11.8	0.0812		J
1/19/2022	8290	2201190936C	Total Hepta-Dioxins	0.279	pg/L	NA	NA		J
1/19/2022	8270	2201190938C	1,4-Dioxane	0.038	ug/L	0.04	0.027		J
1/19/2022	8270	2201190939C	Cyclopentasiloxane, decamethyl-	7.1	ug/L	NA	NA		TIC RB
1/19/2022	METALS	2201190942C	Potassium, Total	2.1	mg/L	2	0.4		
1/19/2022	METALS	2201190942C	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/19/2022	METALS	2201190942C	Zinc, Total	0.007	mg/L	0.02	0.003		J
1/19/2022	METALS	2201190942C	Vanadium, Total	0.0008	mg/L	0.05	0.0007		J
1/19/2022	METALS	2201190942C	Strontium, Total	8.21	mg/L	0.1	0.002		
1/19/2022	METALS	2201190942C	Antimony, Total	0.0005	mg/L	0.001	0.0002		J
1/19/2022	METALS	2201190942C	Calcium, Total	105	mg/L	1	0.3		
1/19/2022	METALS	2201190942C	Sodium, Total	71.4	mg/L	1	0.2		
1/19/2022	METALS	2201190942C	Boron, Total	0.1	mg/L	0.2	0.02		J
1/19/2022	METALS	2201190942C	Barium, Total	0.035	mg/L	0.02	0.003		
1/19/2022	METALS	2201190942C	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
1/19/2022	METALS	2201190942C	Magnesium, Total	77.1	mg/L	1	0.03		
1/19/2022	ANIONS	2201190943C	Alkalinity, Total as CaCO3	257	mg/L	2	1.8		
1/19/2022	ANIONS	2201190943C	Sulfate	388	mg/L	10	2		
1/19/2022	ANIONS	2201190943C	Chloride	53.3	mg/L	2	0.5		
1/19/2022	ANIONS	2201190943C	Fluoride, undistilled	0.77	mg/L	0.1	0.01		
1/19/2022	SM2540C	2201190944C	Total Dissolved Solids (TDS)	913	mg/L	10	9		
1/19/2022	6850	2201190945C	Perchlorate	0.121	ug/L	0.1	0.025		
1/19/2022	353.2	2201190946C	Nitrate+Nitrite as Nitrogen	0.287	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/5/2022	8260	2201051000A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	4.5	ug/L	1	0.2		
1/5/2022	8260	2201051000A	Dichlorofluoromethane (CFC 21)	6.3	ug/L	1	0.2		
1/5/2022	8260	2201051000A	1,1,2-Trichloro-1,2,2-Trifluoroethane	87	ug/L	1	0.2		
1/5/2022	8260	2201051000A	Trichloroethene (TCE)	0.9	ug/L	1	0.2		J
1/5/2022	8260	2201051000A	Trichlorofluoromethane (CFC 11)	230	ug/L	5	1.2		
1/5/2022	607	2201051006A	N-Nitrosodimethylamine	5.9	μg/L	0.0095	0.0048	45	
1/5/2022	607	2201051006A	N-Nitrodimethylamine	3.2	μg/L	0.0095	0.0048	75	
1/5/2022	607	2201051006A	Bromacil	2.6	μg/L	0.0095	0.0048	103	
1/5/2022	METALS	2201051010A	Sodium, Total	96.7	mg/L	1	0.2		
1/5/2022	METALS	2201051010A	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
1/5/2022	METALS	2201051010A	Barium, Total	0.027	mg/L	0.02	0.003		
1/5/2022	METALS	2201051010A	Boron, Total	0.24	mg/L	0.2	0.02		
1/5/2022	METALS	2201051010A	Calcium, Total	98.2	mg/L	1	0.3		
1/5/2022	METALS	2201051010A	Potassium, Total	3.2	mg/L	2	0.4		
1/5/2022	METALS	2201051010A	Strontium, Total	3.06	mg/L	0.1	0.002		
1/5/2022	METALS	2201051010A	Magnesium, Total	70.8	mg/L	1	0.03		
1/5/2022	353.2	2201051013A	Nitrate+Nitrite as Nitrogen	6.79	mg/L	0.5	0.02		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/17/2021	8260	2111171100C	Trichlorofluoromethane (CFC 11)	200	ug/L	2	0.48		
11/17/2021	8260	2111171100C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.4	ug/L	1	0.2		
11/17/2021	8260	2111171100C	1,1,2-Trichloro-1,2,2-Trifluoroethane	87	ug/L	1	0.2		
11/17/2021	8260	2111171100C	Dichlorofluoromethane (CFC 21)	1.7	ug/L	1	0.2		
11/17/2021	8260	2111171100C	Trichloroethene (TCE)	1.4	ug/L	1	0.2		
11/17/2021	8260	2111171101C	Dichlorofluoromethane (CFC 21)	1.5	ug/L	1	0.2		
11/17/2021	8260	2111171101C	Trichloroethene (TCE)	1.3	ug/L	1	0.2		
11/17/2021	8260	2111171101C	Trichlorofluoromethane (CFC 11)	200	ug/L	2	0.48		
11/17/2021	8260	2111171101C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
11/17/2021	8260	2111171101C	1,1,2-Trichloro-1,2,2-Trifluoroethane	83	ug/L	1	0.2		
11/17/2021	607	2111171103C	N-Nitrodimethylamine	4	μ g/L	0.0095	0.0048	92	
11/17/2021	607	2111171103C	Bromacil	4.9	μg/L	0.0095	0.0048	115	
11/17/2021	607	2111171103C	N-Nitrosodimethylamine	3.4	μ g/L	0.0095	0.0048	54	
11/17/2021	METALS	2111171104C	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
11/17/2021	METALS	2111171104C	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
11/17/2021	METALS	2111171104C	Strontium, Total	3.23	mg/L	0.1	0.002		
11/17/2021	METALS	2111171104C	Sodium, Total	89.3	mg/L	1	0.2		
11/17/2021	METALS	2111171104C	Potassium, Total	3.6	mg/L	2	0.4		
11/17/2021	METALS	2111171104C	Nickel, Total	0.008	mg/L	0.04	0.003		J
11/17/2021	METALS	2111171104C	Zinc, Total	0.007	mg/L	0.02	0.003		J
11/17/2021	METALS	2111171104C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
11/17/2021	METALS	2111171104C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
11/17/2021	METALS	2111171104C	Aluminum, Total	0.24	mg/L	0.1	0.03		
11/17/2021	METALS	2111171104C	Iron, Total	0.65	mg/L	0.1	0.07		
11/17/2021	METALS	2111171104C	Chromium, Total	0.052	mg/L	0.01	0.002		
11/17/2021	METALS	2111171104C	Calcium, Total	110	mg/L	1	0.3		
11/17/2021	METALS	2111171104C	Boron, Total	0.3	mg/L	0.2	0.02		
11/17/2021	METALS	2111171104C	Barium, Total	0.045	mg/L	0.02	0.003		
11/17/2021	METALS	2111171104C	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
11/17/2021	METALS	2111171104C	Manganese, Total	0.232	mg/L	0.01	0.004		
11/17/2021	METALS	2111171104C	Magnesium, Total	79.5	mg/L	1	0.03		
11/17/2021	353.2	2111171105C	Nitrate+Nitrite as Nitrogen	8.5	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/1/2021	8260	2111010950C	1,1,2-Trichloro-1,2,2-Trifluoroethane	130	ug/L	1	0.2		
11/1/2021	8260	2111010950C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.21	ug/L	1	0.2		J
11/1/2021	8260	2111010950C	Trichlorofluoromethane (CFC 11)	440	ug/L	5	1.2		
11/1/2021	8260	2111010950C	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
11/1/2021	8260	2111010950C	Dichlorofluoromethane (CFC 21)	0.61	ug/L	1	0.2		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/18/2022	8260	2201181350A	Dichlorofluoromethane (CFC 21)	8	ug/L	1	0.2		
1/18/2022	8260	2201181350A	1,1,2-Trichloro-1,2,2-Trifluoroethane	46	ug/L	1	0.2		
1/18/2022	8260	2201181350A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	7.7	ug/L	1	0.2		
1/18/2022	8260	2201181350A	Trichlorofluoromethane (CFC 11)	130	ug/L	1	0.24		
1/18/2022	8260	2201181350A	Trichloroethene (TCE)	0.86	ug/L	1	0.2		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/2/2021	8260	2111020949B	1,1,2-Trichloro-1,2,2-Trifluoroethane	66	ug/L	1	0.2		
11/2/2021	8260	2111020949B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	4.8	ug/L	1	0.2		
11/2/2021	8260	2111020949B	Trichlorofluoromethane (CFC 11)	180	ug/L	2	0.48		
11/2/2021	8260	2111020949B	Trichloroethene (TCE)	1.4	ug/L	1	0.2		
11/2/2021	8260	2111020949B	Dichlorofluoromethane (CFC 21)	4.7	ug/L	1	0.2		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/18/2022	8260	2201180920A	1,1,2-Trichloro-1,2,2-Trifluoroethane	79	ug/L	1	0.2		
1/18/2022	8260	2201180920A	Chloroform	0.8	ug/L	1	0.24		J
1/18/2022	8260	2201180920A	Dichlorofluoromethane (CFC 21)	4.4	ug/L	1	0.2		
1/18/2022	8260	2201180920A	Trichloroethene (TCE)	0.58	ug/L	1	0.2		J
1/18/2022	8260	2201180920A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
1/18/2022	8260	2201180920A	Trichlorofluoromethane (CFC 11)	180	ug/L	1	0.24		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/1/2021	8260	2111011440C	Trichlorofluoromethane (CFC 11)	590	ug/L	5	1.2		
11/1/2021	8260	2111011440C	Trichloroethene (TCE)	0.95	ug/L	1	0.2		J
11/1/2021	8260	2111011440C	Dichlorofluoromethane (CFC 21)	1.5	ug/L	1	0.2		
11/1/2021	8260	2111011440C	1,1,2-Trichloro-1,2,2-Trifluoroethane	180	ug/L	1	0.2		
11/1/2021	8260	2111011440C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.58	ug/L	1	0.2		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/19/2022	8260	2201191101A	1,1,2-Trichloro-1,2,2-Trifluoroethane	31	ug/L	1	0.2		
1/19/2022	8260	2201191101A	Chloroform	0.27	ug/L	1	0.24		J
1/19/2022	8260	2201191101A	Trichloroethene (TCE)	31	ug/L	1	0.2		
1/19/2022	8260	2201191101A	Trichlorofluoromethane (CFC 11)	0.61	ug/L	1	0.24		J
1/19/2022	8260	2201191101A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.72	ug/L	1	0.2		J
1/19/2022	8260	2201191102A	1,1,2-Trichloro-1,2,2-Trifluoroethane	32	ug/L	1	0.2		
1/19/2022	8260	2201191102A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.66	ug/L	1	0.2		J
1/19/2022	8260	2201191102A	Trichlorofluoromethane (CFC 11)	0.76	ug/L	1	0.24		J
1/19/2022	8260	2201191102A	Chloroform	0.28	ug/L	1	0.24		J
1/19/2022	8260	2201191102A	Trichloroethene (TCE)	32	ug/L	1	0.2		
1/19/2022	METALS	2201191104A	Magnesium, Total	91	mg/L	1	0.03		
1/19/2022	METALS	2201191104A	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
1/19/2022	METALS	2201191104A	Strontium, Total	5.03	mg/L	0.1	0.002		
1/19/2022	METALS	2201191104A	Sodium, Total	134	mg/L	1	0.2		
1/19/2022	METALS	2201191104A	Zinc, Total	0.012	mg/L	0.02	0.003		J
1/19/2022	METALS	2201191104A	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
1/19/2022	METALS	2201191104A	Chromium, Total	0.008	mg/L	0.01	0.002		J
1/19/2022	METALS	2201191104A	Calcium, Total	134	mg/L	1	0.3		
1/19/2022	METALS	2201191104A	Boron, Total	0.68	mg/L	0.2	0.02		
1/19/2022	METALS	2201191104A	Barium, Total	0.049	mg/L	0.02	0.003		
1/19/2022	METALS	2201191104A	Arsenic, Total	0.0015	mg/L	0.001	0.0004		
1/19/2022	METALS	2201191104A	Aluminum, Total	0.05	mg/L	0.1	0.03		J
1/19/2022	METALS	2201191104A	Iron, Total	0.1	mg/L	0.1	0.07		
1/19/2022	METALS	2201191104A	Potassium, Total	4.4	mg/L	2	0.4		
1/19/2022	300.0	2201191105A	Chloride	166	mg/L	8	1.7		
1/19/2022	353.2	2201191106A	Nitrate+Nitrite as Nitrogen	11.2	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret	QA Flag
Date		Sample	Constituent	Result	Units	Lillit	Lillit	Effic	QA Flag
12/9/2021	607	2112091422A	Bromacil	0.019	μ g/L	0.0095	0.0048	93	
12/9/2021	METALS	2112091423A	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
12/9/2021	METALS	2112091423A	Sodium, Total	92.9	mg/L	1	0.2		
12/9/2021	METALS	2112091423A	Selenium, Total	0.007	mg/L	0.01	0.007		J
12/9/2021	METALS	2112091423A	Potassium, Total	1.4	mg/L	2	0.4		J
12/9/2021	METALS	2112091423A	Vanadium, Total	0.008	mg/L	0.05	0.0007		J
12/9/2021	METALS	2112091423A	Calcium, Total	23.3	mg/L	1	0.3		
12/9/2021	METALS	2112091423A	Boron, Total	0.14	mg/L	0.2	0.02		J
12/9/2021	METALS	2112091423A	Barium, Total	0.021	mg/L	0.02	0.003		
12/9/2021	METALS	2112091423A	Arsenic, Total	0.0021	mg/L	0.001	0.0004		
12/9/2021	METALS	2112091423A	Strontium, Total	0.91	mg/L	0.1	0.002		
12/9/2021	METALS	2112091423A	Magnesium, Total	7.8	mg/L	1	0.03		
12/9/2021	METALS	2112091424A	Magnesium, Total	7.8	mg/L	1	0.03		
12/9/2021	METALS	2112091424A	Vanadium, Total	0.008	mg/L	0.05	0.0007		J
12/9/2021	METALS	2112091424A	Strontium, Total	0.92	mg/L	0.1	0.002		
12/9/2021	METALS	2112091424A	Sodium, Total	93.5	mg/L	1	0.2		
12/9/2021	METALS	2112091424A	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
12/9/2021	METALS	2112091424A	Calcium, Total	23.4	mg/L	1	0.3		
12/9/2021	METALS	2112091424A	Boron, Total	0.14	mg/L	0.2	0.02		J
12/9/2021	METALS	2112091424A	Barium, Total	0.021	mg/L	0.02	0.003		
12/9/2021	METALS	2112091424A	Arsenic, Total	0.002	mg/L	0.001	0.0004		
12/9/2021	METALS	2112091424A	Potassium, Total	1.4	mg/L	2	0.4		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/3/2022	9260 II	2201031045A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.47		0.5	0.2		1
	_				ug/L				J
1/3/2022		2201031050A	Potassium, Total	3.8	mg/L	2	0.4		
1/3/2022	METALS	2201031050A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/3/2022	METALS	2201031050A	Barium, Total	0.019	mg/L	0.02	0.003		J
1/3/2022	METALS	2201031050A	Strontium, Total	2.2	mg/L	0.1	0.002		
1/3/2022	METALS	2201031050A	Zinc, Total	0.003	mg/L	0.02	0.003		J
1/3/2022	METALS	2201031050A	Sodium, Total	39.5	mg/L	1	0.2		
1/3/2022	METALS	2201031050A	Magnesium, Total	62.3	mg/L	1	0.03		
1/3/2022	METALS	2201031050A	Boron, Total	0.06	mg/L	0.2	0.02		J
1/3/2022	METALS	2201031050A	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
1/3/2022	METALS	2201031050A	Calcium, Total	97.4	mg/L	1	0.3		
1/3/2022	METALS	2201031050A	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
1/3/2022	ANIONS	2201031052A	Fluoride, undistilled	0.87	mg/L	0.1	0.01		
1/3/2022	ANIONS	2201031052A	Sulfate	341	mg/L	8	1.6		
1/3/2022	ANIONS	2201031052A	Chloride	43.8	mg/L	2	0.5		
1/3/2022	ANIONS	2201031052A	Alkalinity, Total as CaCO3	200	mg/L	2	1.8		
1/3/2022	SM2540C	2201031053A	Total Dissolved Solids (TDS)	774	mg/L	10	9		
1/3/2022	6850	2201031054A	Perchlorate	0.32	ug/L	0.1	0.025		
1/3/2022	353.2	2201031055A	Nitrate+Nitrite as Nitrogen	1.19	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
-		-						Ellic	Q/11 mg
1/12/2022	8260	2201121415C	Bromodichloromethane	2.3	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Trichloroethene (TCE)	1.4	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Silane, methoxytrimethyl-	5.1	ug/L	NA	NA		TIC
1/12/2022	8260	2201121415C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.4	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
1/12/2022	8260	2201121415C	Dichlorofluoromethane (CFC 21)	3.4	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Dibromochloromethane	5.2	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Bromoform	6	ug/L	1	0.25		
1/12/2022	8260	2201121415C	1,1,2-Trichloro-1,2,2-Trifluoroethane	42	ug/L	1	0.2		
1/12/2022	8260	2201121415C	Chloroform	2.4	ug/L	1	0.24		
1/12/2022	607	2201121417C	N-Nitrosodimethylamine	9	μg/L	0.0096	0.0048	46	
1/12/2022	607	2201121417C	N-Nitrodimethylamine	4	μg/L	0.0096	0.0048	74	
1/12/2022	607	2201121417C	Bromacil	0.84	μg/L	0.0096	0.0048	111	
1/12/2022	METALS	2201121418C	Manganese, Total	0.009	mg/L	0.01	0.004		J
1/12/2022	METALS	2201121418C	Potassium, Total	3.5	mg/L	2	0.4		
1/12/2022	METALS	2201121418C	Sodium, Total	93.1	mg/L	1	0.2		
1/12/2022	METALS	2201121418C	Molybdenum, Total	0.012	mg/L	0.025	0.003		J
1/12/2022	METALS	2201121418C	Calcium, Total	99.6	mg/L	1	0.3		
1/12/2022	METALS	2201121418C	Boron, Total	0.23	mg/L	0.2	0.02		
1/12/2022	METALS	2201121418C	Strontium, Total	2.42	mg/L	0.1	0.002		
1/12/2022	METALS	2201121418C	Barium, Total	0.045	mg/L	0.02	0.003		
1/12/2022	METALS	2201121418C	Arsenic, Total	0.007	mg/L	0.01	0.004		J
1/12/2022	METALS	2201121418C	Magnesium, Total	62	mg/L	1	0.03		
1/12/2022		2201121419C	Nitrate+Nitrite as Nitrogen	6.97	mg/L	0.5	0.02		
			3		<i>5</i> –				

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/3/2021	8260	2111030950B	Tetrachloroethene (PCE)	2.2	ug/L	1	0.21		
11/3/2021	8260	2111030950B	Trichloroethene (TCE)	58	ug/L	1	0.2		
11/3/2021	8260	2111030950B	Dichlorofluoromethane (CFC 21)	0.36	ug/L	1	0.2		J
11/3/2021	8260	2111030950B	1,1,2-Trichloro-1,2,2-Trifluoroethane	84	ug/L	1	0.2		
11/3/2021	8260	2111030950B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.71	ug/L	1	0.2		J
11/3/2021	8260	2111030950B	Trichlorofluoromethane (CFC 11)	45	ug/L	1	0.24		
11/3/2021	607	2111030952B	N-Nitrosodimethylamine	0.86	μg/L	0.0094	0.0047	53	
11/3/2021	607	2111030952B	N-Nitrodimethylamine	0.71	μg/L	0.0094	0.0047	94	
11/3/2021	607	2111030952B	Bromacil	0.61	μg/L	0.0094	0.0047	109	
11/3/2021	METALS	2111030953B	Boron, Total	0.07	mg/L	0.2	0.02		J
11/3/2021	METALS	2111030953B	Strontium, Total	3.16	mg/L	0.1	0.002		
11/3/2021	METALS	2111030953B	Magnesium, Total	69.2	mg/L	1	0.03		
11/3/2021	METALS	2111030953B	Zinc, Total	0.01	mg/L	0.02	0.003		J
11/3/2021	METALS	2111030953B	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
11/3/2021	METALS	2111030953B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
11/3/2021	METALS	2111030953B	Potassium, Total	3.6	mg/L	2	0.4		
11/3/2021	METALS	2111030953B	Calcium, Total	121	mg/L	1	0.3		
11/3/2021	METALS	2111030953B	Barium, Total	0.029	mg/L	0.02	0.003		
11/3/2021	METALS	2111030953B	Arsenic, Total	0.001	mg/L	0.001	0.0004		
11/3/2021	METALS	2111030953B	Nickel, Total	0.03	mg/L	0.04	0.003		J
11/3/2021	METALS	2111030953B	Sodium, Total	40.8	mg/L	1	0.2		
11/3/2021	ANIONS	2111030954B	Chloride	70.4	mg/L	2	0.5		
11/3/2021	ANIONS	2111030954B	Fluoride, undistilled	0.86	mg/L	0.1	0.01		
11/3/2021	ANIONS	2111030954B	Alkalinity, Total as CaCO3	195	mg/L	2	1.8		
11/3/2021	ANIONS	2111030954B	Sulfate	370	mg/L	8	1.6		
11/3/2021	SM2540C	2111030955B	Total Dissolved Solids (TDS)	893	mg/L	10	9		
11/3/2021	6850	2111030956B	Perchlorate	0.51	ug/L	0.2	0.06		
11/3/2021	353.2	2111030957B	Nitrate+Nitrite as Nitrogen	2.83	mg/L	0.25	0.008		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/3/2022	8260	2201031430A	Trichloroethene (TCE)	85	ug/L	1	0.2		
1/3/2022	8260	2201031430A	Sulfur Dioxide	10	ug/L	NA	NA		TIC FB
1/3/2022	8260	2201031430A	Trichlorofluoromethane (CFC 11)	98	ug/L	1	0.24		
1/3/2022	8260	2201031430A	Dichlorofluoromethane (CFC 21)	0.53	ug/L	1	0.2		J
1/3/2022	8260	2201031430A	1,1,2-Trichloro-1,2,2-Trifluoroethane	170	ug/L	2	0.4		
1/3/2022	8260	2201031430A	Tetrachloroethene (PCE)	3.6	ug/L	1	0.21		
1/3/2022	8260	2201031430A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
1/3/2022	607	2201031432A	N-Nitrosodimethylamine	0.63	μg/L	0.0094	0.0047	45	
1/3/2022	607	2201031432A	N-Nitrodimethylamine	0.48	μg/L	0.0094	0.0047	75	
1/3/2022	607	2201031432A	Bromacil	0.42	μg/L	0.0094	0.0047	103	
1/3/2022	607	2201031433A	N-Nitrosodimethylamine	0.66	μg/L	0.0094	0.0047	45	
1/3/2022	607	2201031433A	N-Nitrodimethylamine	0.48	μg/L	0.0094	0.0047	75	
1/3/2022	607	2201031433A	Bromacil	0.42	μg/L	0.0094	0.0047	103	
1/3/2022	METALS	2201031434A	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/3/2022	METALS	2201031434A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
1/3/2022	METALS	2201031434A	Strontium, Total	3.2	mg/L	0.1	0.002		
1/3/2022	METALS	2201031434A	Sodium, Total	49.4	mg/L	1	0.2		
1/3/2022	METALS	2201031434A	Potassium, Total	4.2	mg/L	2	0.4		
1/3/2022	METALS	2201031434A	Manganese, Total	0.007	mg/L	0.01	0.004		J
1/3/2022	METALS	2201031434A	Nickel, Total	0.044	mg/L	0.04	0.003		
1/3/2022	METALS	2201031434A	Iron, Total	0.4	mg/L	0.1	0.07		
1/3/2022	METALS	2201031434A	Chromium, Total	0.058	mg/L	0.01	0.002		
1/3/2022	METALS	2201031434A	Calcium, Total	129	mg/L	1	0.3		
1/3/2022	METALS	2201031434A	Boron, Total	0.08	mg/L	0.2	0.02		J
1/3/2022	METALS	2201031434A	Barium, Total	0.032	mg/L	0.02	0.003		
1/3/2022	METALS	2201031434A	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
1/3/2022	METALS	2201031434A	Magnesium, Total	65.9	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/13/2022	8260	2201131005C	Trichloroethene (TCE)	9.9	ug/L	1	0.2		
1/13/2022	8260	2201131005C	Trichlorofluoromethane (CFC 11)	17	ug/L	1	0.24		Q
1/13/2022	8260	2201131005C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.6	ug/L	1	0.2		
1/13/2022	8260	2201131005C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.26	ug/L	1	0.2		J
1/13/2022	607	2201131007C	N-Nitrosodimethylamine	0.014	μg/L	0.0097	0.0049	33	
1/13/2022	607	2201131007C	Bromacil	0.018	μg/L	0.0097	0.0049	104	RB
1/13/2022	METALS	2201131008C	Calcium, Total	102	mg/L	1	0.3		
1/13/2022	METALS	2201131008C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/13/2022	METALS	2201131008C	Strontium, Total	2.59	mg/L	0.1	0.002		
1/13/2022	METALS	2201131008C	Sodium, Total	50.6	mg/L	1	0.2		
1/13/2022	METALS	2201131008C	Potassium, Total	7	mg/L	2	0.4		
1/13/2022	METALS	2201131008C	Zinc, Total	0.01	mg/L	0.02	0.003		J RB
1/13/2022	METALS	2201131008C	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
1/13/2022	METALS	2201131008C	Boron, Total	0.12	mg/L	0.2	0.02		J
1/13/2022	METALS	2201131008C	Barium, Total	0.028	mg/L	0.02	0.003		
1/13/2022	METALS	2201131008C	Arsenic, Total	0.0016	mg/L	0.001	0.0004		
1/13/2022	METALS	2201131008C	Aluminum, Total	0.03	mg/L	0.1	0.03		J
1/13/2022	METALS	2201131008C	Magnesium, Total	57.5	mg/L	1	0.03		
1/13/2022	METALS	2201131008C	Iron, Total	0.12	mg/L	0.1	0.07		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/2/2021	8260	2111021431C	Chloromethane	0.29	ug/L	2	0.28		J TB A
11/2/2021	8260	2111021431C	Silane, fluorotrimethyl-	11	ug/L	NA	NA		TIC
11/2/2021	8260	2111021431C	2-Propanol	5.8	ug/L	50	3.4		J FB
11/2/2021	8260	2111021431C	1,2-Dichloroethane	3	ug/L	1	0.2		
11/2/2021	8260	2111021431C	Silane, methoxytrimethyl-	7	ug/L	NA	NA		TIC TB

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/9/2021	METALS	2111091427C	Chromium, Total	0.325	mg/L	0.01	0.002		
11/9/2021	METALS	2111091427C	Manganese, Total	0.01	mg/L	0.01	0.004		J
11/9/2021	METALS	2111091427C	Strontium, Total	2.62	mg/L	0.1	0.002		
11/9/2021	METALS	2111091427C	Sodium, Total	51.1	mg/L	1	0.2		
11/9/2021	METALS	2111091427C	Potassium, Total	8.5	mg/L	2	0.4		
11/9/2021	METALS	2111091427C	Nickel, Total	0.058	mg/L	0.04	0.003		
11/9/2021	METALS	2111091427C	Molybdenum, Total	0.049	mg/L	0.025	0.003		
11/9/2021	METALS	2111091427C	Vanadium, Total	0.01	mg/L	0.05	0.0007		J
11/9/2021	METALS	2111091427C	Magnesium, Total	49.5	mg/L	1	0.03		
11/9/2021	METALS	2111091427C	Iron, Total	2.05	mg/L	0.1	0.07		
11/9/2021	METALS	2111091427C	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
11/9/2021	METALS	2111091427C	Calcium, Total	81.3	mg/L	1	0.3		
11/9/2021	METALS	2111091427C	Boron, Total	0.09	mg/L	0.2	0.02		J
11/9/2021	METALS	2111091427C	Barium, Total	0.028	mg/L	0.02	0.003		
11/9/2021	METALS	2111091427C	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
11/9/2021	METALS	2111091427C	Copper, Total	0.006	mg/L	0.02	0.004		J
11/9/2021	ANIONS	2111091428C	Alkalinity, Total as CaCO3	174	mg/L	2	1.8		
11/9/2021	ANIONS	2111091428C	Chloride	40.5	mg/L	2	0.5		
11/9/2021	ANIONS	2111091428C	Fluoride, undistilled	0.71	mg/L	0.1	0.01		
11/9/2021	ANIONS	2111091428C	Sulfate	281	mg/L	8	1.6		
11/9/2021	SM2540C	2111091429C	Total Dissolved Solids (TDS)	709	mg/L	10	9		
11/9/2021	6850	2111091430C	Perchlorate	0.25	ug/L	0.2	0.06		
11/9/2021	353.2	2111091431C	Nitrate+Nitrite as Nitrogen	0.775	mg/L	0.05	0.002		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/3/2021	8260	2111031455B	1,1,2-Trichloro-1,2,2-Trifluoroethane	51	ug/L	1	0.2		_
11/3/2021	8260	2111031455B	Dichlorofluoromethane (CFC 21)	0.31	ug/L	1	0.2		J
11/3/2021	8260	2111031455B	Tetrachloroethene (PCE)	0.61	ug/L	1	0.21		J
11/3/2021	8260	2111031455B	Trichloroethene (TCE)	20	ug/L	1	0.2		
11/3/2021	8260	2111031455B	Trichlorofluoromethane (CFC 11)	55	ug/L	1	0.24		
11/3/2021	8260	2111031455B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.4	ug/L	1	0.2		J
11/3/2021	607	2111031457B	N-Nitrodimethylamine	0.072	μ g/L	0.0095	0.0048	94	
11/3/2021	607	2111031457B	Bromacil	0.042	μ g/L	0.0095	0.0048	109	
11/3/2021	607	2111031457B	N-Nitrosodimethylamine	0.17	μ g/L	0.0095	0.0048	53	

	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
		-			Units	Lillit		Effic	QA Flag
12/15/2021	8260	2112150930A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	6.1	ug/L	1	0.2		
12/15/2021	8260	2112150930A	Chloromethane	0.37	ug/L	2	0.28		J
12/15/2021	8260	2112150930A	Dichlorofluoromethane (CFC 21)	5.6	ug/L	1	0.2		
12/15/2021	8260	2112150930A	Trichloroethene (TCE)	0.93	ug/L	1	0.2		J
12/15/2021	8260	2112150930A	Trichlorofluoromethane (CFC 11)	410	ug/L	5	1.2		
12/15/2021	8260	2112150930A	1,1,2-Trichloro-1,2,2-Trifluoroethane	180	ug/L	1	0.2		
12/15/2021	8260	2112150931A	Trichlorofluoromethane (CFC 11)	430	ug/L	5	1.2		
12/15/2021	8260	2112150931A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5.2	ug/L	1	0.2		
12/15/2021	8260	2112150931A	Trichloroethene (TCE)	1.1	ug/L	1	0.2		
12/15/2021	8260	2112150931A	1,1,2-Trichloro-1,2,2-Trifluoroethane	170	ug/L	1	0.2		
12/15/2021	8260	2112150931A	Dichlorofluoromethane (CFC 21)	5.4	ug/L	1	0.2		
12/15/2021	607	2112150933A	N-Nitrosodimethylamine	2.5	μg/L	0.0094	0.0047	50	
12/15/2021	607	2112150933A	N-Nitrodimethylamine	1.2	μg/L	0.0094	0.0047	85	
12/15/2021	607	2112150933A	Bromacil	0.46	μg/L	0.0094	0.0047	82	QD
12/15/2021	607	2112150934A	N-Nitrosodimethylamine	2.6	μg/L	0.0095	0.0048	50	
12/15/2021	607	2112150934A	N-Nitrodimethylamine	1.2	μg/L	0.0095	0.0048	85	
12/15/2021	607	2112150934A	Bromacil	0.19	μg/L	0.0095	0.0048	82	QD
12/15/2021	METALS	2112150935A	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
12/15/2021	METALS	2112150935A	Zinc, Total	0.018	mg/L	0.02	0.003		J
12/15/2021	METALS	2112150935A	Vanadium, Total	0.004	mg/L	0.05	0.0007		J
12/15/2021	METALS	2112150935A	Potassium, Total	3.2	mg/L	2	0.4		
12/15/2021	METALS	2112150935A	Sodium, Total	113	mg/L	1	0.2		
12/15/2021	METALS	2112150935A	Chromium, Total	0.006	mg/L	0.01	0.002		J
12/15/2021	METALS	2112150935A	Magnesium, Total	19	mg/L	1	0.03		
12/15/2021	METALS	2112150935A	Calcium, Total	45.6	mg/L	1	0.3		
12/15/2021	METALS	2112150935A	Boron, Total	0.08	mg/L	0.2	0.02		J
12/15/2021	METALS	2112150935A	Barium, Total	0.047	mg/L	0.02	0.003		
12/15/2021	METALS	2112150935A	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
12/15/2021	METALS	2112150935A	Strontium, Total	1.77	mg/L	0.1	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/2/2021	8260	2111021342B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	3.1	ug/L	1	0.2		
11/2/2021	8260	2111021342B	1,1,2-Trichloro-1,2,2-Trifluoroethane	50	ug/L	1	0.2		
11/2/2021	8260	2111021342B	Trichloroethene (TCE)	3.3	ug/L	1	0.2		
11/2/2021	607	2111021344B	Bromacil	0.33	μg/L	0.0094	0.0047	109	
11/2/2021	8270	2111021345B	Unknown	4.9	ug/L	NA	NA		TIC RB
11/2/2021	8290	2111021348B	OCDD	1.1	pg/L	24.3	0.099		J RB
11/2/2021	METALS	2111021351B	Iron, Total	0.27	mg/L	0.1	0.07		
11/2/2021	METALS	2111021351B	Potassium, Total	8.3	mg/L	2	0.4		
11/2/2021	METALS	2111021351B	Nickel, Total	0.516	mg/L	0.04	0.003		
11/2/2021	METALS	2111021351B	Molybdenum, Total	0.025	mg/L	0.025	0.003		J
11/2/2021	METALS	2111021351B	Manganese, Total	0.006	mg/L	0.01	0.004		J
11/2/2021	METALS	2111021351B	Magnesium, Total	361	mg/L	1	0.03		
11/2/2021	METALS	2111021351B	Selenium, Total	0.061	mg/L	0.01	0.007		
11/2/2021	METALS	2111021351B	Zinc, Total	0.003	mg/L	0.02	0.003		J
11/2/2021	METALS	2111021351B	Chromium, Total	0.039	mg/L	0.01	0.002		
11/2/2021	METALS	2111021351B	Calcium, Total	611	mg/L	10	3		
11/2/2021	METALS	2111021351B	Boron, Total	0.26	mg/L	0.2	0.02		
11/2/2021	METALS	2111021351B	Barium, Total	0.02	mg/L	0.02	0.003		
11/2/2021	METALS	2111021351B	Arsenic, Total	0.0026	mg/L	0.001	0.0004		
11/2/2021	METALS	2111021351B	Strontium, Total	20.4	mg/L	1	0.02		
11/2/2021	METALS	2111021351B	Sodium, Total	233	mg/L	10	2		
11/2/2021	353.2	2111021352B	Nitrate+Nitrite as Nitrogen	7.33	mg/L	0.5	0.02		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/1/2021	607	2111011449B	Bromacil	0.054	μg/L	0.0097	0.0049	109	
11/1/2021	NDMA_LL	2111011527B	N-Nitrosodimethylamine	1.8	ng/L	0.49	0.41		
11/1/2021	8270	2111011529B	Benzenesulfonamide, N-butyl-	2100	ug/L	NA	NA		TIC
11/1/2021	ANIONS	2111011555B	Alkalinity, Total as CaCO3	187	mg/L	2	1.8		
11/1/2021	ANIONS	2111011555B	Chloride	47.8	mg/L	2	0.5		
11/1/2021	ANIONS	2111011555B	Fluoride, undistilled	0.68	mg/L	0.1	0.01		
11/1/2021	ANIONS	2111011555B	Sulfate	323	mg/L	8	1.6		
11/1/2021	SM2540C	2111011556B	Total Dissolved Solids (TDS)	689	mg/L	10	9		
11/1/2021	6850	2111011557B	Perchlorate	0.45	ug/L	0.2	0.06		
11/1/2021	353.2	2111011558B	Nitrate+Nitrite as Nitrogen	1.36	mg/L	0.05	0.002		

Analyti	Analytical Results for Sampling Events at BLM-32-571										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
11/1/2021	NDMA_LL	2111011504B	N-Nitrosodimethylamine	0.88	ng/L	0.47	0.4		FB		

Analyti	Analytical Results for Sampling Events at BLM-32-632										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
11/1/2021	NDMA_LL	2111011523B	N-Nitrosodimethylamine	0.51	ng/L	0.47	0.4		FB		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/3/2021	8260	2111031350Y	cis-1,2-Dichloroethene	0.37	ug/L	1	0.23		J
11/3/2021	8260	2111031350Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	6.6	ug/L	1	0.2		
11/3/2021	8260	2111031350Y	Trichlorofluoromethane (CFC 11)	36	ug/L	1	0.24		
11/3/2021	8260	2111031350Y	Trichloroethene (TCE)	65	ug/L	1	0.2		
11/3/2021	8260	2111031350Y	Tetrachloroethene (PCE)	2.9	ug/L	1	0.21		
11/3/2021	8260	2111031350Y	Dichlorofluoromethane (CFC 21)	7.9	ug/L	1	0.2		
11/3/2021	8260	2111031350Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	85	ug/L	1	0.2		
11/3/2021	8260	2111031351Y	Dichlorofluoromethane (CFC 21)	8	ug/L	1	0.2		
11/3/2021	8260	2111031351Y	Tetrachloroethene (PCE)	3.2	ug/L	1	0.21		
11/3/2021	8260	2111031351Y	Trichloroethene (TCE)	66	ug/L	1	0.2		
11/3/2021	8260	2111031351Y	Trichlorofluoromethane (CFC 11)	35	ug/L	1	0.24		
11/3/2021	8260	2111031351Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	6.5	ug/L	1	0.2		
11/3/2021	8260	2111031351Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	81	ug/L	1	0.2		
11/3/2021	607	2111031352Y	N-Nitrodimethylamine	0.5	μg/L	0.0096	0.0048	94	
11/3/2021	607	2111031352Y	Bromacil	0.87	μg/L	0.0096	0.0048	109	
11/3/2021	607	2111031352Y	N-Nitrosodimethylamine	0.62	μg/L	0.0096	0.0048	53	
11/3/2021	607	2111031420Y	N-Nitrodimethylamine	0.45	μg/L	0.0095	0.0048	94	
11/3/2021	607	2111031420Y	Bromacil	0.9	μg/L	0.0095	0.0048	109	
11/3/2021	607	2111031420Y	N-Nitrosodimethylamine	0.56	$\mu g/L$	0.0095	0.0048	53	

Analyti	Analytical Results for Sampling Events at BLM-36-800										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
11/3/2021	607	2111031031Y	Bromacil	0.025	μg/L	0.0095	0.0048	109			

Analytic	Analytical Results for Sampling Events at BLM-38-480										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
11/4/2021	NDMA_LL	2111041456Y	N-Nitrosodimethylamine	0.97	ng/L	0.47	0.4		EB		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/4/2021	8260_LL	2111041310Y	Styrene	0.25	ug/L	0.5	0.2		J
11/4/2021	8260_LL	2111041310Y	Silane, methoxytrimethyl-	5.1	ug/L	NA	NA		TIC
11/4/2021	8260_LL	2111041310Y	2-Propanol	5.1	ug/L	40	3.4		J
11/4/2021	NDMA_LL	2111041311Y	N-Nitrodimethylamine	0.31	ng/L	0.5	0.21		J EB
11/4/2021	NDMA LL	2111041311Y	N-Nitrosodimethylamine	2.05	ng/L	0.5	0.42		EB

Analyti	Analytical Results for Sampling Events at BLM-42-709										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
12/13/2021	NDMA_LL	2112131417A	N-Nitrosodimethylamine	0.51	ng/L	0.48	0.4				

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/5/2022	8260	2201051440A	Chloromethane	0.28	ug/L	2	0.28		J RB A
1/5/2022	8260	2201051440A	Trichloroethene (TCE)	0.53	ug/L	1	0.2		J
1/5/2022	8260	2201051440A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.25	ug/L	1	0.2		J
1/5/2022	8260	2201051441A	Silane, methoxytrimethyl-	5.4	ug/L	NA	NA		TIC
1/5/2022	8260	2201051441A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.24	ug/L	1	0.2		J
1/5/2022	8260	2201051441A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.22	ug/L	1	0.2		J
1/5/2022	8260	2201051441A	Trichloroethene (TCE)	0.57	ug/L	1	0.2		J
1/5/2022	8260	2201051441A	Unknown	12	ug/L	NA	NA		TIC
1/5/2022	607	2201051444A	Bromacil	0.92	μg/L	0.0094	0.0047	103	
1/5/2022	607	2201051445A	Bromacil	0.93	μ g/L	0.0094	0.0047	103	
1/5/2022	8270	2201051448A	Cyclopentasiloxane, decamethyl-	7.4	ug/L	NA	NA		TIC RB
1/5/2022	METALS	2201051450A	Potassium, Total	5	mg/L	2	0.4		
1/5/2022	METALS	2201051450A	Zinc, Total	0.013	mg/L	0.02	0.003		J
1/5/2022	METALS	2201051450A	Sodium, Total	76.4	mg/L	1	0.2		
1/5/2022	METALS	2201051450A	Nickel, Total	0.572	mg/L	0.04	0.003		
1/5/2022	METALS	2201051450A	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
1/5/2022	METALS	2201051450A	Manganese, Total	0.01	mg/L	0.01	0.004		
1/5/2022	METALS	2201051450A	Magnesium, Total	70.5	mg/L	1	0.03		
1/5/2022	METALS	2201051450A	Chromium, Total	0.036	mg/L	0.01	0.002		
1/5/2022	METALS	2201051450A	Calcium, Total	143	mg/L	1	0.3		
1/5/2022	METALS	2201051450A	Boron, Total	0.11	mg/L	0.2	0.02		J
1/5/2022	METALS	2201051450A	Barium, Total	0.039	mg/L	0.02	0.003		
1/5/2022	METALS	2201051450A	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
1/5/2022	METALS	2201051450A	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
1/5/2022	METALS	2201051450A	Iron, Total	0.31	mg/L	0.1	0.07		
1/5/2022	METALS	2201051450A	Strontium, Total	5.81	mg/L	0.1	0.002		

Analyti	Analytical Results for Sampling Events at BLM-7-509										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
12/6/2021	8260_LL	2112060955A	Chloromethane	0.3	ug/L	0.5	0.28		J RB		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/4/2021	8260_LL	2111041010B	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.36	ug/L	0.5	0.2		J
11/4/2021	8260_LL	2111041010B	Trichlorofluoromethane (CFC 11)	0.25	ug/L	0.5	0.24		J
11/4/2021	NDMA LL	2111041012B	N-Nitrosodimethylamine	0.44	ng/L	0.48	0.4		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/4/2021	8260	2111041410B	Unknown	6.3	ug/L	NA	NA		TIC RB FB
11/4/2021	8260	2111041410B	Silane, fluorotrimethyl-	7.9	ug/L	NA	NA		TIC
11/4/2021	8260	2111041410B	Trichlorofluoromethane (CFC 11)	84	ug/L	1	0.24		
11/4/2021	8260	2111041410B	Trichloroethene (TCE)	0.46	ug/L	1	0.2		J
11/4/2021	8260	2111041410B	1,1,2-Trichloro-1,2,2-Trifluoroethane	6.2	ug/L	1	0.2		
11/4/2021	8260	2111041410B	Dichlorofluoromethane (CFC 21)	0.35	ug/L	1	0.2		J
11/4/2021	8260	2111041411B	1,1,2-Trichloro-1,2,2-Trifluoroethane	6.8	ug/L	1	0.2		
11/4/2021	8260	2111041411B	Dichlorofluoromethane (CFC 21)	0.38	ug/L	1	0.2		J
11/4/2021	8260	2111041411B	Trichloroethene (TCE)	0.38	ug/L	1	0.2		J
11/4/2021	8260	2111041411B	Trichlorofluoromethane (CFC 11)	86	ug/L	1	0.24		
11/4/2021	8260	2111041411B	Unknown	6.6	ug/L	NA	NA		TIC RB FB
11/4/2021	607	2111041413B	Bromacil	0.084	μg/L	0.0096	0.0048	108	QD
11/4/2021	607	2111041413B	N-Nitrosodimethylamine	0.49	μg/L	0.0096	0.0048	52	
11/4/2021	607	2111041413B	N-Nitrodimethylamine	1.9	μg/L	0.0096	0.0048	90	
11/4/2021	607	2111041414B	N-Nitrosodimethylamine	0.54	μg/L	0.0095	0.0048	52	
11/4/2021	607	2111041414B	N-Nitrodimethylamine	2	μg/L	0.0095	0.0048	90	
11/4/2021	607	2111041414B	Bromacil	0.063	μg/L	0.0095	0.0048	108	QD
11/4/2021	METALS	2111041415B	Magnesium, Total	20.7	mg/L	1	0.03		
11/4/2021	METALS	2111041415B	Molybdenum, Total	0.033	mg/L	0.025	0.003		
11/4/2021	METALS	2111041415B	Zinc, Total	0.013	mg/L	0.02	0.003		J
11/4/2021	METALS	2111041415B	Vanadium, Total	0.007	mg/L	0.05	0.0007		J
11/4/2021	METALS	2111041415B	Strontium, Total	1.17	mg/L	0.1	0.002		
11/4/2021	METALS	2111041415B	Chromium, Total	0.009	mg/L	0.01	0.002		J
11/4/2021	METALS	2111041415B	Calcium, Total	33.3	mg/L	1	0.3		
11/4/2021	METALS	2111041415B	Boron, Total	0.55	mg/L	0.2	0.02		
11/4/2021	METALS	2111041415B	Arsenic, Total	0.001	mg/L	0.001	0.0004		J
11/4/2021	METALS	2111041415B	Barium, Total	0.013	mg/L	0.02	0.003		J
11/4/2021	METALS	2111041415B	Potassium, Total	1.3	mg/L	2	0.4		J
11/4/2021	METALS	2111041415B	Sodium, Total	118	mg/L	1	0.2		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/15/2021	8260	2112150838C	1,1,2-Trichloro-1,2,2-Trifluoroethane	7.9	ug/L	1	0.2		Q
12/15/2021	8260	2112150838C	Dichlorofluoromethane (CFC 21)	0.34	ug/L	1	0.2		J
12/15/2021	8260	2112150838C	Trichlorofluoromethane (CFC 11)	130	ug/L	1	0.24		Q
12/15/2021	8260	2112150838C	Trichloroethene (TCE)	1	ug/L	1	0.2		Q
12/15/2021	607	2112150840C	N-Nitrodimethylamine	4.3	μg/L	0.0095	0.0048	85	
12/15/2021	607	2112150840C	Bromacil	3	μg/L	0.0095	0.0048	82	
12/15/2021	607	2112150840C	N-Nitrosodimethylamine	1.2	$\mu g/L$	0.0095	0.0048	50	
12/15/2021	METALS	2112150841C	Magnesium, Total	56.4	mg/L	1	0.03		
12/15/2021	METALS	2112150841C	Sodium, Total	73.4	mg/L	1	0.2		
12/15/2021	METALS	2112150841C	Zinc, Total	0.015	mg/L	0.02	0.003		J
12/15/2021	METALS	2112150841C	Strontium, Total	2.41	mg/L	0.1	0.002		
12/15/2021	METALS	2112150841C	Potassium, Total	3.4	mg/L	2	0.4		
12/15/2021	METALS	2112150841C	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
12/15/2021	METALS	2112150841C	Calcium, Total	78.5	mg/L	1	0.3		
12/15/2021	METALS	2112150841C	Boron, Total	0.21	mg/L	0.2	0.02		
12/15/2021	METALS	2112150841C	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
12/15/2021	METALS	2112150841C	Barium, Total	0.039	mg/L	0.02	0.003		
12/15/2021	METALS	2112150841C	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
12/15/2021	METALS	2112150841C	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
12/15/2021	METALS	2112150841C	Chromium, Total	0.005	mg/L	0.01	0.002		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/6/2022	8260_LL	2201061410B	Toluene	4.6	ug/L	0.5	0.2			
1/6/2022	8270	2201061415B	1,4-Dioxane	0.93	ug/L	0.04	0.027			

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/6/2022	8260_LL	2201061442B	Unknown	7.1	ug/L	NA	NA		TIC
1/6/2022	8260_LL	2201061442B	Toluene	0.53	ug/L	0.5	0.2		
1/6/2022	8260_LL	2201061442B	Vinyl Chloride	0.36	ug/L	0.5	0.2		J
1/6/2022	NDMA_LL	2201061444B	N-Nitrosodimethylamine	1.3	ng/L	0.48	0.4		
1/6/2022	NDMA_LL	2201061444B	N-Nitrodimethylamine	0.91	ng/L	0.48	0.2		
1/6/2022	8270	2201061446B	1,4-Dioxane	2.9	ug/L	0.04	0.027		QD
1/6/2022	8270	2201061447B	1,4-Dioxane	4.1	ug/L	0.04	0.027		QD

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/7/2022	8260_LL	2201071335B	Toluene	0.36	ug/L	0.5	0.2		J
1/7/2022	8260_LL	2201071335B	Sulfur Dioxide	7.5	ug/L	NA	NA		TIC RB
1/7/2022	NDMA_LL	2201071337B	N-Nitrosodimethylamine	1.43	ng/L	0.5	0.42		
1/7/2022	NDMA_LL	2201071337B	N-Nitrodimethylamine	0.7	ng/L	0.5	0.21		*
1/7/2022	8270	2201071339B	1.4-Dioxane	1.5	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/5/2022	8260_LL	2201051442B	Toluene	0.35	ug/L	0.5	0.2		J
1/5/2022	NDMA_LL	2201051444B	N-Nitrosodimethylamine	0.76	ng/L	0.48	0.4		
1/5/2022	8270	2201051446B	1,4-Dioxane	2	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/5/2022	8260_LL	2201051500B	Toluene	0.3	ug/L	0.5	0.2		J
1/5/2022	NDMA_LL	2201051502B	N-Nitrosodimethylamine	1.34	ng/L	0.48	0.4		
1/5/2022	NDMA_LL	2201051502B	N-Nitrodimethylamine	0.22	ng/L	0.48	0.2		J
1/5/2022	8270	2201051504B	1,4-Dioxane	2.8	ug/L	0.04	0.027		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/5/2022	8260_LL	2201051525B	Toluene	0.52	ug/L	0.5	0.2		
1/5/2022	NDMA_LL	2201051527B	N-Nitrosodimethylamine	1.75	ng/L	0.47	0.4		
1/5/2022	8270	2201051529B	1,4-Dioxane	1.4	ug/L	0.04	0.027		

Event	Analysis			-		Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/6/2022	8260_LL	2201060940C	Sulfur Dioxide	8.1	ug/L	NA	NA		TIC RB FB
1/6/2022	8260_LL	2201060940C	1-Propene, 2-methyl-	11	ug/L	NA	NA		TIC
1/6/2022	METALS	2201060944C	Potassium, Total	3.2	mg/L	2	0.4		
1/6/2022	METALS	2201060944C	Zinc, Total	0.009	mg/L	0.02	0.003		J
1/6/2022	METALS	2201060944C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/6/2022	METALS	2201060944C	Strontium, Total	2.32	mg/L	0.1	0.002		
1/6/2022	METALS	2201060944C	Nickel, Total	0.011	mg/L	0.04	0.003		J
1/6/2022	METALS	2201060944C	Sodium, Total	40.1	mg/L	1	0.2		
1/6/2022	METALS	2201060944C	Magnesium, Total	65.9	mg/L	1	0.03		
1/6/2022	METALS	2201060944C	Calcium, Total	99.2	mg/L	1	0.3		
1/6/2022	METALS	2201060944C	Boron, Total	0.06	mg/L	0.2	0.02		J
1/6/2022	METALS	2201060944C	Barium, Total	0.024	mg/L	0.02	0.003		
1/6/2022	METALS	2201060944C	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
1/6/2022	METALS	2201060944C	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
1/6/2022	METALS	2201060945C	Strontium, Total	2.36	mg/L	0.1	0.002		
1/6/2022	METALS	2201060945C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/6/2022	METALS	2201060945C	Sodium, Total	40.1	mg/L	1	0.2		
1/6/2022	METALS	2201060945C	Potassium, Total	3.2	mg/L	2	0.4		
1/6/2022	METALS	2201060945C	Nickel, Total	0.01	mg/L	0.04	0.003		J
1/6/2022	METALS	2201060945C	Magnesium, Total	67.1	mg/L	1	0.03		
1/6/2022	METALS	2201060945C	Calcium, Total	101	mg/L	1	0.3		
1/6/2022	METALS	2201060945C	Boron, Total	0.06	mg/L	0.2	0.02		J
1/6/2022	METALS	2201060945C	Barium, Total	0.024	mg/L	0.02	0.003		
1/6/2022	METALS	2201060945C	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
1/6/2022	METALS	2201060945C	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
1/6/2022	METALS	2201060945C	Zinc, Total	0.009	mg/L	0.02	0.003		J

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/6/2022	8260_LL	2201061410C	Unknown	5.2	ug/L	NA	NA		TIC
1/6/2022	METALS	2201061415C	Boron, Total	0.06	mg/L	0.2	0.02		J
1/6/2022	METALS	2201061415C	Zinc, Total	0.009	mg/L	0.02	0.003		J
1/6/2022	METALS	2201061415C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/6/2022	METALS	2201061415C	Strontium, Total	2.37	mg/L	0.1	0.002		
1/6/2022	METALS	2201061415C	Sodium, Total	40.2	mg/L	1	0.2		
1/6/2022	METALS	2201061415C	Potassium, Total	3.2	mg/L	2	0.4		
1/6/2022	METALS	2201061415C	Nickel, Total	0.01	mg/L	0.04	0.003		J
1/6/2022	METALS	2201061415C	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/6/2022	METALS	2201061415C	Calcium, Total	101	mg/L	1	0.3		
1/6/2022	METALS	2201061415C	Barium, Total	0.024	mg/L	0.02	0.003		
1/6/2022	METALS	2201061415C	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
1/6/2022	METALS	2201061415C	Magnesium, Total	67.2	mg/L	1	0.03		

Analytical Results for Sampling Events at NASA 6

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/15/2021	8260	2111151105C	Trichlorofluoromethane (CFC 11)	150	ug/L	1	0.24		
11/15/2021	8260	2111151105C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	7	ug/L	1	0.2		
11/15/2021	8260	2111151105C	Dichlorofluoromethane (CFC 21)	10	ug/L	1	0.2		
11/15/2021	8260	2111151105C	1,1,2-Trichloro-1,2,2-Trifluoroethane	59	ug/L	1	0.2		
11/15/2021	8260	2111151105C	Trichloroethene (TCE)	0.31	ug/L	1	0.2		J
11/15/2021	607	2111151107C	N-Nitrosodimethylamine	15	μg/L	0.19	0.094	54	D
11/15/2021	607	2111151107C	N-Nitrodimethylamine	11	μg/L	0.19	0.094	92	D
11/15/2021	607	2111151107C	Bromacil	1.3	μg/L	0.0094	0.0047	115	
1/15/2021	607	2111151108C	N-Nitrodimethylamine	10	μg/L	0.19	0.097	92	D
1/15/2021	607	2111151108C	Bromacil	1.3	μg/L	0.0097	0.0049	115	
1/15/2021	607	2111151108C	N-Nitrosodimethylamine	15	μg/L	0.19	0.097	54	D
1/15/2021	METALS	2111151109C	Magnesium, Total	74.1	mg/L	1	0.03		
11/15/2021	METALS	2111151109C	Molybdenum, Total	0.012	mg/L	0.025	0.003		J
11/15/2021	METALS	2111151109C	Nickel, Total	0.049	mg/L	0.04	0.003		
11/15/2021	METALS	2111151109C	Potassium, Total	3.9	mg/L	2	0.4		
1/15/2021	METALS	2111151109C	Sodium, Total	131	mg/L	1	0.2		
1/15/2021	METALS	2111151109C	Strontium, Total	2.62	mg/L	0.1	0.002		
1/15/2021	METALS	2111151109C	Vanadium, Total	0.006	mg/L	0.05	0.0007		J
1/15/2021	METALS	2111151109C	Iron, Total	1.09	mg/L	0.1	0.07		
1/15/2021	METALS	2111151109C	Zinc, Total	0.005	mg/L	0.02	0.003		J
1/15/2021	METALS	2111151109C	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
1/15/2021	METALS	2111151109C	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
1/15/2021	METALS	2111151109C	Chromium, Total	0.208	mg/L	0.01	0.002		
1/15/2021	METALS	2111151109C	Calcium, Total	95	mg/L	1	0.3		
1/15/2021	METALS	2111151109C	Boron, Total	0.42	mg/L	0.2	0.02		
1/15/2021	METALS	2111151109C	Barium, Total	0.115	mg/L	0.02	0.003		
1/15/2021	METALS	2111151109C	Arsenic, Total	0.0013	mg/L	0.001	0.0004		
1/15/2021	METALS	2111151109C	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
1/15/2021	METALS	2111151109C	Aluminum, Total	0.07	mg/L	0.1	0.03		J
1/15/2021	METALS	2111151109C	Copper, Total	0.004	mg/L	0.02	0.004		J
1/15/2021	METALS	2111151109C	Manganese, Total	0.065	mg/L	0.01	0.004		
1/15/2021	METALS	2111151110C	Manganese, Total	0.063	mg/L	0.01	0.004		
1/15/2021	METALS	2111151110C	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
11/15/2021	METALS	2111151110C	Calcium, Total	95.2	mg/L	1	0.3		
1/15/2021	METALS	2111151110C	Nickel, Total	0.049	mg/L	0.04	0.003		
1/15/2021	METALS	2111151110C	Potassium, Total	3.9	mg/L	2	0.4		
1/15/2021	METALS	2111151110C	Sodium, Total	131	mg/L	1	0.2		
1/15/2021	METALS	2111151110C	Strontium, Total	2.62	mg/L	0.1	0.002		

Analytical Results for Sampling Events at NASA 6

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/15/2021	N. CETTAL C								
11/15/2021	METALS	2111151110C	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
11/15/2021	METALS	2111151110C	Zinc, Total	0.005	mg/L	0.02	0.003		J
11/15/2021	METALS	2111151110C	Vanadium, Total	0.006	mg/L	0.05	0.0007		J
11/15/2021	METALS	2111151110C	Aluminum, Total	0.06	mg/L	0.1	0.03		J
11/15/2021	METALS	2111151110C	Iron, Total	1.09	mg/L	0.1	0.07		
11/15/2021	METALS	2111151110C	Copper, Total	0.004	mg/L	0.02	0.004		J
11/15/2021	METALS	2111151110C	Chromium, Total	0.21	mg/L	0.01	0.002		
11/15/2021	METALS	2111151110C	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
11/15/2021	METALS	2111151110C	Boron, Total	0.42	mg/L	0.2	0.02		
11/15/2021	METALS	2111151110C	Barium, Total	0.11	mg/L	0.02	0.003		
11/15/2021	METALS	2111151110C	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
11/15/2021	METALS	2111151110C	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
11/15/2021	METALS	2111151110C	Magnesium, Total	74.2	mg/L	1	0.03		
11/15/2021	353.2	2111151111C	Nitrate+Nitrite as Nitrogen	15.7	mg/L	2.5	0.08		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/11/2022	8260_LL	2201111030Y	Chloromethane	0.36	ug/L	0.5	0.28		J RB A EB
1/11/2022	NDMA_LL	2201111031Y	N-Nitrosodimethylamine	0.95	ng/L	0.48	0.4		
1/11/2022	NDMA_LL	2201111031Y	N-Nitrodimethylamine	0.46	ng/L	0.48	0.2		J EB
1/11/2022	8270	2201111032Y	1,4-Dioxane	0.041	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/10/2022	8260_LL	2201101045Y	Chloromethane	0.43	ug/L	0.5	0.28		J RB A EB
1/10/2022	NDMA_LL	2201101046Y	N-Nitrosodimethylamine	0.45	ng/L	0.48	0.4		J
1/10/2022	NDMA_LL	2201101047Y	N-Nitrosodimethylamine	0.79	ng/L	0.47	0.4		
1/10/2022	NDMA_LL	2201101047Y	N-Nitrodimethylamine	0.3	ng/L	0.47	0.2		J
1/10/2022	8270	2201101345Y	1,4-Dioxane	0.037	ug/L	0.04	0.027		J FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/1/2021	8260_LL	2112011430B	Toluene	0.99	ug/L	0.5	0.2		
12/1/2021	8260_LL	2112011430B	Sulfur Dioxide	6.9	ug/L	NA	NA		TIC RB TB FB
12/1/2021	NDMA_LL	2112011432B	N-Nitrosodimethylamine	5.13	ng/L	0.48	0.4		
12/1/2021	NDMA_LL	2112011432B	N-Nitrodimethylamine	0.7	ng/L	0.48	0.2		
12/1/2021	8270	2112011434B	1,4-Dioxane	1.7	ug/L	0.04	0.027		QD
12/1/2021	8270	2112011435B	1,4-Dioxane	1.3	ug/L	0.04	0.027		QD

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/1/2021	8260_LL	2112011450B	Toluene	0.2	ug/L	0.5	0.2		J
12/1/2021	8260_LL	2112011450B	Sulfur Dioxide	5.3	ug/L	NA	NA		TIC RB
12/1/2021	NDMA_LL	2112011452B	N-Nitrodimethylamine	0.77	ng/L	0.48	0.2		
12/1/2021	NDMA_LL	2112011452B	N-Nitrosodimethylamine	2.14	ng/L	0.48	0.4		
12/1/2021	8270	2112011454B	1,4-Dioxane	1.7	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/2/2021	8260_LL	2112021505B	Toluene	0.2	ug/L	0.5	0.2		J
12/2/2021	NDMA_LL	2112021507B	N-Nitrosodimethylamine	0.78	ng/L	0.48	0.4		
12/2/2021	NDMA_LL	2112021507B	N-Nitrodimethylamine	0.51	ng/L	0.48	0.2		
12/2/2021	NDMA_LL	2112021508B	N-Nitrosodimethylamine	0.68	ng/L	0.49	0.41		
12/2/2021	8270	2112021510B	1,4-Dioxane	0.51	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/2/2021	8260_LL	2112021441B	Toluene	0.24	ug/L	0.5	0.2		J	
12/2/2021	NDMA LL	2112021443B	N-Nitrosodimethylamine	0.67	ng/L	0.48	0.4			

Analyti	Analytical Results for Sampling Events at PL-11-980										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
12/2/2021	8260_LL	2112021455B	Toluene	0.28	ug/L	0.5	0.2		J		

Event	Analysis Method	C	Constituent	D 14	TI24	Quant	Det	Xtrct	OA Elec
Date	Michiga	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/3/2021	8260	2111031003C	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.3	ug/L	1	0.2		
11/3/2021	8260	2111031003C	Trichlorofluoromethane (CFC 11)	5.1	ug/L	1	0.24		
11/3/2021	8260	2111031003C	Trichloroethene (TCE)	7.5	ug/L	1	0.2		
11/3/2021	8260	2111031005C	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.7	ug/L	1	0.2		
11/3/2021	8260	2111031005C	Trichloroethene (TCE)	7.1	ug/L	1	0.2		
11/3/2021	8260	2111031005C	Trichlorofluoromethane (CFC 11)	5.3	ug/L	1	0.24		
11/3/2021	NDMA_LL	2111031006C	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.4		
11/3/2021	NDMA_LL	2111031006C	N-Nitrodimethylamine	0.29	ng/L	0.48	0.2		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/3/2021	8260	2111031430C	Trichloroethene (TCE)	13	ug/L	1	0.2		
11/3/2021	8260	2111031430C	Trichlorofluoromethane (CFC 11)	8.9	ug/L	1	0.24		
11/3/2021	8260	2111031430C	Dichlorofluoromethane (CFC 21)	0.25	ug/L	1	0.2		J
11/3/2021	8260	2111031430C	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.2	ug/L	1	0.2		
11/3/2021	NDMA_LL	2111031432C	N-Nitrodimethylamine	0.67	ng/L	0.51	0.21		
11/3/2021	NDMA_LL	2111031432C	N-Nitrosodimethylamine	3.5	ng/L	0.51	0.43		
11/3/2021	NDMA_LL	2111031434C	N-Nitrosodimethylamine	3.5	ng/L	0.51	0.42		
11/3/2021	NDMA_LL	2111031434C	N-Nitrodimethylamine	0.64	ng/L	0.51	0.21		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/10/2022	8260_LL	2201101000A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.81	ug/L	0.5	0.2			
1/10/2022	8260 LL	2201101000A	Chloromethane	0.33	ug/L	0.5	0.28		J RB A FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/10/2021	8260	2112100950A	Trichloroethene (TCE)	66	ug/L	1	0.2	21110	
12/10/2021	8260	2112100950A	1,1,2-Trichloro-1,2,2-Trifluoroethane	45	ug/L	1	0.2		
12/10/2021	8260	2112100950A	Tetrachloroethene (PCE)	1.3	ug/L	1	0.21		
12/10/2021	8260	2112100950A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.49	ug/L	1	0.2		J
12/10/2021	8260	2112100950A	Dichlorofluoromethane (CFC 21)	1.5	ug/L	1	0.2		
12/10/2021	8260	2112100950A	Trichlorofluoromethane (CFC 11)	43	ug/L	1	0.24		
12/10/2021	607	2112100952A	N-Nitrosodimethylamine	0.16	μg/L	0.0095	0.0048	51	
12/10/2021	607	2112100952A	N-Nitrodimethylamine	0.11	μg/L	0.0095	0.0048	88	
12/10/2021	607	2112100952A	Bromacil	0.058	μg/L	0.0095	0.0048	93	
12/10/2021	607	2112100953A	N-Nitrosodimethylamine	0.14	μg/L	0.0094	0.0047	51	
12/10/2021	607	2112100953A	N-Nitrodimethylamine	0.1	μg/L	0.0094	0.0047	88	
12/10/2021	607	2112100953A	Bromacil	0.066	μg/L	0.0094	0.0047	93	

Analytic	cal Results	for Sampling	Events at PL-4-464							
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
12/15/2021	8260	2112151410A	Trichlorofluoromethane (CFC 11)	0.3	ug/L	1	0.24		J	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/12/2022	NDMA_LL	2201121430Y	N-Nitrosodimethylamine	0.58	ng/L	0.48	0.4		
1/12/2022	NDMA LL	2201121430Y	N-Nitrodimethylamine	0.25	ng/L	0.48	0.2		J
1/12/2022	METALS	2201121431Y	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
1/12/2022	METALS	2201121431Y	Chromium, Total	0.017	mg/L	0.01	0.002		
1/12/2022	METALS	2201121431Y	Zinc, Total	0.025	mg/L	0.02	0.003		
1/12/2022	METALS	2201121431Y	Vanadium, Total	0.015	mg/L	0.05	0.0007		J
1/12/2022	METALS	2201121431Y	Thallium, Total	0.00007	mg/L	0.001	0.00004		J
1/12/2022	METALS	2201121431Y	Strontium, Total	2.18	mg/L	0.1	0.002		
1/12/2022	METALS	2201121431Y	Sodium, Total	241	mg/L	10	2		
1/12/2022	METALS	2201121431Y	Potassium, Total	7.6	mg/L	2	0.4		
1/12/2022	METALS	2201121431Y	Nickel, Total	0.008	mg/L	0.04	0.003		J
1/12/2022	METALS	2201121431Y	Arsenic, Total	0.0026	mg/L	0.001	0.0004		
1/12/2022	METALS	2201121431Y	Aluminum, Total	0.38	mg/L	0.1	0.03		
1/12/2022	METALS	2201121431Y	Barium, Total	0.018	mg/L	0.02	0.003		J
1/12/2022	METALS	2201121431Y	Boron, Total	0.33	mg/L	0.2	0.02		
1/12/2022	METALS	2201121431Y	Calcium, Total	104	mg/L	1	0.3		
1/12/2022	METALS	2201121431Y	Manganese, Total	0.018	mg/L	0.01	0.004		
1/12/2022	METALS	2201121431Y	Iron, Total	0.69	mg/L	0.1	0.07		
1/12/2022	METALS	2201121431Y	Magnesium, Total	40.5	mg/L	1	0.03		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/13/2022	8260_LL	2201131305Y	Chloromethane	0.36	ug/L	0.5	0.28		J
1/13/2022	607	2201131306Y	Bromacil	0.026	μg/L	0.0095	0.0048	104	RB EB
1/13/2022	NDMA_LL	2201131307Y	N-Nitrodimethylamine	0.28	ng/L	0.48	0.2		J EB
1/13/2022	NDMA_LL	2201131307Y	N-Nitrosodimethylamine	0.6	ng/L	0.48	0.4		TB
1/13/2022	METALS	2201131345Y	Strontium, Total	2.48	mg/L	0.1	0.002		
1/13/2022	METALS	2201131345Y	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
1/13/2022	METALS	2201131345Y	Sodium, Total	321	mg/L	10	2		
1/13/2022	METALS	2201131345Y	Potassium, Total	9.5	mg/L	2	0.4		
1/13/2022	METALS	2201131345Y	Zinc, Total	0.01	mg/L	0.02	0.003		J RB
1/13/2022	METALS	2201131345Y	Arsenic, Total	0.0039	mg/L	0.001	0.0004		
1/13/2022	METALS	2201131345Y	Barium, Total	0.018	mg/L	0.02	0.003		J
1/13/2022	METALS	2201131345Y	Molybdenum, Total	0.043	mg/L	0.025	0.003		
1/13/2022	METALS	2201131345Y	Boron, Total	0.43	mg/L	0.2	0.02		
1/13/2022	METALS	2201131345Y	Manganese, Total	0.18	mg/L	0.01	0.004		
1/13/2022	METALS	2201131345Y	Calcium, Total	94.5	mg/L	1	0.3		
1/13/2022	METALS	2201131345Y	Vanadium, Total	0.017	mg/L	0.05	0.0007		J
1/13/2022	METALS	2201131345Y	Magnesium, Total	23.8	mg/L	1	0.03		
1/13/2022	METALS	2201131345Y	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
1/13/2022	ANIONS	2201131346Y	Fluoride, undistilled	0.42	mg/L	0.1	0.01		
1/13/2022	ANIONS	2201131346Y	Sulfate	745	mg/L	20	4		
1/13/2022	ANIONS	2201131346Y	Chloride	142	mg/L	8	1.7		
1/13/2022	ANIONS	2201131346Y	Alkalinity, Total as CaCO3	68.7	mg/L	2	1.8		
1/13/2022	SM2540C	2201131420Y	Total Dissolved Solids (TDS)	1470	mg/L	13	12		
1/13/2022	353.2	2201131422Y	Nitrate+Nitrite as Nitrogen	3.82	mg/L	0.25	0.008		

Analyti	Analytical Results for Sampling Events at PL-6-545										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
1/19/2022	NDMA LL	2201191351Y	N-Nitrosodimethylamine	0.45	ng/L	0.48	0.4		J		

Event	Analysis Method	C 1		D 1/	TT *4	Quant	Det	Xtrct	O A El
Date	Methou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/18/2022	NDMA_LL	2201181327Y	N-Nitrosodimethylamine	0.42	ng/L	0.48	0.4		J
1/18/2022	METALS	2201181400Y	Zinc, Total	0.01	mg/L	0.02	0.003		J EB
1/18/2022	METALS	2201181400Y	Arsenic, Total	0.0024	mg/L	0.001	0.0004		
1/18/2022	METALS	2201181400Y	Barium, Total	0.011	mg/L	0.02	0.003		J
1/18/2022	METALS	2201181400Y	Boron, Total	0.19	mg/L	0.2	0.02		J
1/18/2022	METALS	2201181400Y	Magnesium, Total	30.2	mg/L	1	0.03		
1/18/2022	METALS	2201181400Y	Calcium, Total	47.1	mg/L	1	0.3		
1/18/2022	METALS	2201181400Y	Sodium, Total	134	mg/L	1	0.2		
1/18/2022	METALS	2201181400Y	Chromium, Total	0.004	mg/L	0.01	0.002		J
1/18/2022	METALS	2201181400Y	Potassium, Total	4.6	mg/L	2	0.4		
1/18/2022	METALS	2201181400Y	Silver, Total	0.007	mg/L	0.01	0.0006		J
1/18/2022	METALS	2201181400Y	Strontium, Total	2.3	mg/L	0.1	0.002		
1/18/2022	METALS	2201181400Y	Tin, Total	0.24	mg/L	0.5	0.008		J
1/18/2022	METALS	2201181400Y	Vanadium, Total	0.014	mg/L	0.05	0.0007		J
1/18/2022	METALS	2201181400Y	Selenium, Total	0.008	mg/L	0.01	0.007		J
1/18/2022	METALS	2201181400Y	Molybdenum, Total	0.017	mg/L	0.025	0.003		J
1/18/2022	ANIONS	2201181430Y	Sulfate	301	mg/L	8	1.6		
1/18/2022	ANIONS	2201181430Y	Alkalinity, Total as CaCO3	162	mg/L	2	1.8		
1/18/2022	ANIONS	2201181430Y	Chloride	41.7	mg/L	2	0.5		
1/18/2022	ANIONS	2201181430Y	Fluoride, undistilled	0.49	mg/L	0.1	0.01		
1/18/2022	SM2540C	2201181431Y	Total Dissolved Solids (TDS)	700	mg/L	10	9		
1/18/2022	6850	2201181432Y	Perchlorate	0.253	ug/L	0.1	0.025		
1/18/2022	353.2	2201181433Y	Nitrate+Nitrite as Nitrogen	0.994	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/8/2021	8260_LL	2111081445Y	2-Propanol	7.3	ug/L	40	3.4		J EB
11/8/2021	8260_LL	2111081445Y	Silane, fluorotrimethyl-	7.2	ug/L	NA	NA		TIC
11/8/2021	8260_LL	2111081445Y	Silane, methoxytrimethyl-	6.4	ug/L	NA	NA		TIC
11/8/2021	8260_LL	2111081445Y	Silanol, trimethyl-	5.4	ug/L	NA	NA		TIC
11/8/2021	NDMA_LL	2111081446Y	N-Nitrosodimethylamine	2.87	ng/L	0.48	0.4		*
11/8/2021	NDMA LL	2111081446Y	N-Nitrodimethylamine	0.58	ng/L	0.48	0.2		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/8/2021	NDMA_LL	2111080941Y	N-Nitrodimethylamine	0.35	ng/L	0.48	0.2		J EB
11/8/2021	NDMA_LL	2111080941Y	N-Nitrosodimethylamine	1.69	ng/L	0.48	0.4		* TB EB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
12/8/2021	NDMA_LL	2112081441Y	N-Nitrodimethylamine	0.66	ng/L	0.48	0.2			
12/8/2021	NDMA_LL	2112081441Y	N-Nitrosodimethylamine	2.75	ng/L	0.48	0.4		EB	
12/8/2021	8270	2112090835Y	1,4-Dioxane	0.035	ug/L	0.04	0.027		J	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/8/2021	NDMA_LL	2112081009Y	N-Nitrosodimethylamine	0.89	ng/L	0.47	0.4		QD	
12/8/2021	NDMA LL	2112081035Y	N-Nitrosodimethylamine	1.77	ng/L	0.47	0.4		QD	

Event	Analysis					Quant	Det	Xtret	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/15/2021	8260	2111151415A	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		
11/15/2021	8260	2111151415A	2,2-Dichloro-1,1,1-trifluoroethane (CFC 123)	0.21	ug/L	1	0.2		J
11/15/2021	8260	2111151415A	Dichlorofluoromethane (CFC 21)	0.56	ug/L	1	0.2		J
11/15/2021	8260	2111151415A	Tetrachloroethene (PCE)	6.8	ug/L	1	0.21		
11/15/2021	8260	2111151415A	Trichloroethene (TCE)	230	ug/L	2.5	0.5		
11/15/2021	8260	2111151415A	Trichlorofluoromethane (CFC 11)	170	ug/L	1	0.24		
11/15/2021	8260	2111151415A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.86	ug/L	1	0.2		J
11/15/2021	607	2111151417A	N-Nitrodimethylamine	0.11	μg/L	0.0094	0.0047	92	
11/15/2021	607	2111151417A	Bromacil	0.031	$\mu g/L$	0.0094	0.0047	115	QD
11/15/2021	607	2111151417A	N-Nitrosodimethylamine	0.28	μg/L	0.0094	0.0047	54	
11/15/2021	607	2111151418A	N-Nitrosodimethylamine	0.33	μg/L	0.0098	0.0049	54	
11/15/2021	607	2111151418A	Bromacil	0.019	$\mu g/L$	0.0098	0.0049	115	QD
11/15/2021	607	2111151418A	N-Nitrodimethylamine	0.13	$\mu g/L$	0.0098	0.0049	92	

	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1216/2021 8260 2112160950A Dichloro-I,2,2-Trifluoroethane 350 ug/L 2.5 0.5 1216/2021 8260 2112160950A Dichlorofluoromethane (CFC 21) 1.3 ug/L 1 0.2 1216/2021 8260 2112160950A Trichlorofluoromethane (CFC 11) 160 ug/L 1 0.2 1216/2021 8260 2112160950A 1,2-Dichloro-I,1,2-trifluoroethane (CFC 123a) 1.7 ug/L 1 0.2 1216/2021 8260 2112160950A 1,2-Dichloro-I,1,1-trifluoroethane (CFC 123a) 33 ug/L NA NA NA TC RB 1216/2021 8260 2112160950A Sulfur Dioxide 33 ug/L NA NA NA TC RB 1216/2021 8260 2112160950A Sulfur Dioxide 1.7 ug/L 0.095 0.0048 50 1216/2021 607 2112160952A N-Nitrosodimethylamine 1.7 µg/L 0.0095 0.0048 85 1216/2021 607 2112160952A N-Nitrosodimethylamine 1.1 µg/L 0.0095 0.0048 85 1216/2021 METALS 2112160953A Molybelaum, Total 0.002 mg/L 0.025 0.003 J 1216/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 1216/2021 METALS 2112160953A Vanadium, Total 2.75 mg/L 0.1 0.002 1216/2021 METALS 2112160953A Rossium, Total 2.75 mg/L 0.1 0.00 1216/2021 METALS 2112160953A Rossium, Total 2.75 mg/L 0.1 0.03 1216/2021 METALS 2112160953A Rossium, Total 7.2.2 mg/L 1 0.3 1216/2021 METALS 2112160953A Rossium, Total 0.06 mg/L 0.0 0.004 J 1216/2021 METALS 2112160953A Rossium, Total 0.06 mg/L 0.00 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.06 mg/L 0.00 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.06 mg/L 0.00 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.02 mg/L 0.00 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.02 mg/L 0.0001 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.0006 mg/L 0.001 0.0004 J 1216/2021 METALS 2112160953A Rossium, Total 0.0			•						Eilic	QA Flag
12/16/2021 8260 2112160950A Dichlorofluoromethane (CFC 21) 1.3 ug/L 1 0.2 12/16/2021 8260 2112160950A Trichloroethane (CFC 11) 160 ug/L 1 0.2 12/16/2021 8260 2112160950A 1.2-Dichlorofluoromethane (CFC 123a) 1.7 ug/L 1 0.2 12/16/2021 8260 2112160950A 1.2-Dichloro-I.1,2-trifluoroethane (CFC 123a) 1.7 ug/L 1 0.2 12/16/2021 8260 2112160950A 2.2-Dichloro-I.1,1-trifluorothane (CFC 123a) 1.7 ug/L 1 0.2 12/16/2021 8260 2112160950A 2.2-Dichloro-I.1,1-trifluorothane (CFC 123a) 0.21 ug/L 1 0.2 J 12/16/2021 607 2112160952A N-Nitrosodimethylamine 1.7 ug/L 0.0095 0.0048 85 12/16/2021 607 2112160952A N-Nitrosodimethylamine 1.1 ug/L 0.0095 0.0048 85 12/16/2021 607 2112160952A N-Nitrosodimethylamine 0.23 ug/L 0.0095 0.0048 85 12/16/2021 METALS 2112160952A N-Nitrosodimethylamine 0.002 mg/L 0.0095 0.0048 85 12/16/2021 METALS 2112160953A Molybdenum, Total 0.002 mg/L 0.025 0.0003 0.0048 82 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.003 0.004 12/16/2021 METALS 2112160953A Vanadium, Total 0.004 mg/L 0.003 0.004 12/16/2021 METALS 2112160953A Barium, Total 0.006 mg/L 0.00 0.0004 J 12/16/2021 METALS 2112160953A Barium, Total 0.006 mg/L 0.02 0.003 0.004 J 12/16/2021 METALS 2112160953A Barium, Total 0.006 mg/L 0.02 0.003 0.004 J 12/16/2021 METALS 2112160953A Barium, Total 0.006 mg/L 0.02 0.003 0.004 J 12/16/2021 METALS 2112160953A Sadium, Total 0.006 mg/L 0.02 0.003 0.004 J 12/16/2021 METALS 2112160953A Sadium, Total 0.006 mg/L 0.02 0.003 0.004 J 12/16/2021 METALS 2112160953A Sadium, Total 0.0							1			
12/16/2021 8260 2112160950A Trichlorothene (TCE) 150 ug/L 1 0.2 1 1 0.2 1 1 1 1 1 1 1 1 1						_	2.5			
12/16/2021 8260 2112160950A Trichlorofluoromethane (CFC 11) 160 ug/L 1 0.24 1 1 0.24 1 1 1 1 1 1 1 1 1				` /		ug/L	1			
12/16/2021 8260 2112160950A 1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a) 1.7 ug/L 1 0.2 1 1 1 1 1 1 1 1 1	12/16/2021	8260	2112160950A	. /	150	ug/L	1	0.2		
12/16/2021 8260 2112160950A Sulfur Dioxide 33 ug/L NA NA TIC RB 12/16/2021 8260 2112160950A 2,2-Dichloro-1,1,1-trifluroethane (CFC 123) 0,21 ug/L 1 0,2 J 12/16/2021 607 2112160952A N-Nitrosdimethylamine 1.7 μg/L 0,0095 0,0048 50 12/16/2021 607 2112160952A N-Nitrodimethylamine 1.1 μg/L 0,0095 0,0048 85 12/16/2021 METALS 2112160953A Molybdenum, Total 0,005 mg/L 0,0095 0,0048 82 12/16/2021 METALS 2112160953A Vanadium, Total 0,005 mg/L 0,005 0,0048 82 12/16/2021 METALS 2112160953A Vanadium, Total 0,000 mg/L 0,05 0,0007 J 12/16/2021 METALS 2112160953A Strontium, Total 0,000 mg/L 0,1 0,000 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0,4 12/16/2021 METALS 2112160953A Agagesium, Total 72.2 mg/L 1 0,3 12/16/2021 METALS 2112160953A Boron, Total 117 mg/L 1 0,3 12/16/2021 METALS 2112160953A Boron, Total 0,06 mg/L 0,02 0,003 12/16/2021 METALS 2112160953A Barium, Total 0,06 mg/L 0,02 0,003 12/16/2021 METALS 2112160953A Assenic, Total 0,006 mg/L 0,02 0,003 12/16/2021 METALS 2112160953A Assenic, Total 0,0006 mg/L 0,02 0,003 12/16/2021 METALS 2112160953A Assenic, Total 0,0006 mg/L 0,001 0,0004 J 12/16/2021 METALS 2112160953A Assenic, Total 0,0006 mg/L 0,001 0,0004 J 12/16/2021 METALS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1,8 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 0,5 12/16/2021 ANIONS 2112160955A Chloride 65.2 mg/L 2 0,5 12/16/2021 ANIONS 2112160955A Chloride 65.2 mg/L 0,01 0,001 12/16/2021 ANIONS 2112160955A Chloride 65.2 mg/L 0,02 0,06 12/16/2021 ANIONS 2112160955A Chloride 65.2 mg/L 0,02 0,06 12/16/2021 ANIONS 2112160955A Chloride 0,77	12/16/2021	8260	2112160950A	Trichlorofluoromethane (CFC 11)	160	ug/L	1	0.24		
12/16/2021 8260 2112160952A N-Nitrosodimethylamine 1.7 µg/L 0.0095 0.0048 50 12/16/2021 607 2112160952A N-Nitrosodimethylamine 1.1 µg/L 0.0095 0.0048 85 12/16/2021 607 2112160952A N-Nitrodimethylamine 1.1 µg/L 0.0095 0.0048 85 12/16/2021 607 2112160952A M-Nitrodimethylamine 1.1 µg/L 0.0095 0.0048 85 12/16/2021 METALS 2112160953A Molybdenum, Total 0.005 mg/L 0.025 0.003 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.3 12/16/2021 METALS 2112160953A Magnesium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Barium, Total 0.06 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Barium, Total 0.06 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Sodium, Total 0.006 mg/L 0.00 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 0.0006 mg/L 0.00 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 0.0006 mg/L 0.00 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 0.0006 mg/L 0.00 0.0004 J 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 ANIONS 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 SNZ540C 2112160955A Fluoride, undistilled 0.52 ug/L 0.2 0.06	12/16/2021	8260	2112160950A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
12/16/2021 607 2112160952A N-Nitrosodimethylamine 1.7 μg/L 0.0095 0.0048 50 12/16/2021 607 2112160952A N-Nitrodimethylamine 1.1 μg/L 0.0095 0.0048 85 12/16/2021 607 2112160952A Bromacil 0.23 μg/L 0.0095 0.0048 82 12/16/2021 METALS 2112160953A Molybdenum, Total 0.005 mg/L 0.025 0.003 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Magnesium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Boron, Total 0.029 mg/L 0.2 0.003 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Barium, Total 0.0096 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160955A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160955A Chloride 0.77 mg/L 0.1 0.01 12/16/2021 ANIONS 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 ANIONS 2112160955A Forehlorate 0.52 ug/L 0.2 0.06	12/16/2021	8260	2112160950A	Sulfur Dioxide	33	ug/L	NA	NA		TIC RB
12/16/2021 607 2112160952A N-Nitrodimethylamine 1.1 µg/L 0.0095 0.0048 85 12/16/2021 607 2112160952A Bromacil 0.23 µg/L 0.0095 0.0048 82 12/16/2021 METALS 2112160953A Molybdenum, Total 0.005 mg/L 0.025 0.003 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0096 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Arsenic, Total 40 mg/L 1 0.2 12/16/2021 METALS 2112160953A Arsenic, Total 40 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160955A Cotal Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9	12/16/2021	8260	2112160950A	2,2-Dichloro-1,1,1-trifluoroethane (CFC 123)	0.21	ug/L	1	0.2		J
12/16/2021 607 2112160952A Bromacil 0.23 μg/L 0.0095 0.0048 82 12/16/2021 METALS 2112160953A Molybdenum, Total 0.005 mg/L 0.025 0.003 J J J J J J J J J	12/16/2021	607	2112160952A	N-Nitrosodimethylamine	1.7	μg/L	0.0095	0.0048	50	
12/16/2021 METALS 2112160953A Molybdenum, Total 0.005 mg/L 0.025 0.003 J 12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 SM2540C 2112160955A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	607	2112160952A	N-Nitrodimethylamine	1.1	μg/L	0.0095	0.0048	85	
12/16/2021 METALS 2112160953A Vanadium, Total 0.002 mg/L 0.05 0.0007 J 12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.02 0.02 J 12/16/2021 METALS 2112160953A Arsenic, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg	12/16/2021	607	2112160952A	Bromacil	0.23	μg/L	0.0095	0.0048	82	
12/16/2021 METALS 2112160953A Strontium, Total 2.75 mg/L 0.1 0.002 12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Arsenic, Total 0.009 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L	12/16/2021	METALS	2112160953A	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
12/16/2021 METALS 2112160953A Potassium, Total 4 mg/L 2 0.4 12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 0.1 0.01 <td>12/16/2021</td> <td>METALS</td> <td>2112160953A</td> <td>Vanadium, Total</td> <td>0.002</td> <td>mg/L</td> <td>0.05</td> <td>0.0007</td> <td></td> <td>J</td>	12/16/2021	METALS	2112160953A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
12/16/2021 METALS 2112160953A Magnesium, Total 72.2 mg/L 1 0.03 12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.02 0.02 J 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.001 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10.0 </td <td>12/16/2021</td> <td>METALS</td> <td>2112160953A</td> <td>Strontium, Total</td> <td>2.75</td> <td>mg/L</td> <td>0.1</td> <td>0.002</td> <td></td> <td></td>	12/16/2021	METALS	2112160953A	Strontium, Total	2.75	mg/L	0.1	0.002		
12/16/2021 METALS 2112160953A Calcium, Total 117 mg/L 1 0.3 12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 </td <td>12/16/2021</td> <td>METALS</td> <td>2112160953A</td> <td>Potassium, Total</td> <td>4</td> <td>mg/L</td> <td>2</td> <td>0.4</td> <td></td> <td></td>	12/16/2021	METALS	2112160953A	Potassium, Total	4	mg/L	2	0.4		
12/16/2021 METALS 2112160953A Boron, Total 0.06 mg/L 0.2 0.02 J 12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.001 0.0003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 <td>12/16/2021</td> <td>METALS</td> <td>2112160953A</td> <td>Magnesium, Total</td> <td>72.2</td> <td>mg/L</td> <td>1</td> <td>0.03</td> <td></td> <td></td>	12/16/2021	METALS	2112160953A	Magnesium, Total	72.2	mg/L	1	0.03		
12/16/2021 METALS 2112160953A Barium, Total 0.029 mg/L 0.02 0.003 12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	METALS	2112160953A	Calcium, Total	117	mg/L	1	0.3		
12/16/2021 METALS 2112160953A Arsenic, Total 0.0006 mg/L 0.001 0.0004 J 12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	METALS	2112160953A	Boron, Total	0.06	mg/L	0.2	0.02		J
12/16/2021 METALS 2112160953A Sodium, Total 40 mg/L 1 0.2 12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	METALS	2112160953A	Barium, Total	0.029	mg/L	0.02	0.003		
12/16/2021 ANIONS 2112160954A Alkalinity, Total as CaCO3 229 mg/L 2 1.8 12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	METALS	2112160953A	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
12/16/2021 ANIONS 2112160954A Sulfate 349 mg/L 8 1.6 12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	METALS	2112160953A	Sodium, Total	40	mg/L	1	0.2		
12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	ANIONS	2112160954A	Alkalinity, Total as CaCO3	229	mg/L	2	1.8		
12/16/2021 ANIONS 2112160954A Chloride 65.2 mg/L 2 0.5 12/16/2021 ANIONS 2112160954A Fluoride, undistilled 0.77 mg/L 0.1 0.01 12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	ANIONS	2112160954A	Sulfate	349	mg/L	8	1.6		
12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	ANIONS	2112160954A	Chloride	65.2	mg/L	2	0.5		
12/16/2021 SM2540C 2112160955A Total Dissolved Solids (TDS) 859 mg/L 10 9 12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	ANIONS	2112160954A	Fluoride, undistilled	0.77	mg/L	0.1	0.01		
12/16/2021 6850 2112160956A Perchlorate 0.52 ug/L 0.2 0.06	12/16/2021	SM2540C	2112160955A	Total Dissolved Solids (TDS)	859	mg/L	10	9		
	12/16/2021	6850	2112160956A		0.52	ug/L	0.2	0.06		
	12/16/2021	353.2	2112160957A	Nitrate+Nitrite as Nitrogen	3.03	-	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
12/16/2021	8260	2112161000C	Total ahlamathan a (DCE)	8.4		1	0.21	21114	
12/10/2021	8200	2112101000C	Tetrachloroethene (PCE)	8.4	ug/L	1	0.21		
12/16/2021	8260	2112161000C	Trichloroethene (TCE)	260	ug/L	2.5	0.5		
12/16/2021	8260	2112161000C	Trichlorofluoromethane (CFC 11)	210	ug/L	2.5	0.6		
12/16/2021	8260	2112161000C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.1	ug/L	1	0.2		
12/16/2021	8260	2112161000C	1,1,2-Trichloro-1,2,2-Trifluoroethane	240	ug/L	2.5	0.5		
12/16/2021	8260	2112161000C	Dichlorofluoromethane (CFC 21)	0.57	ug/L	1	0.2		J
12/16/2021	607	2112161002C	Bromacil	0.069	μg/L	0.0094	0.0047	82	
12/16/2021	607	2112161002C	N-Nitrosodimethylamine	0.22	μg/L	0.0094	0.0047	50	
12/16/2021	607	2112161002C	N-Nitrodimethylamine	0.13	μg/L	0.0094	0.0047	85	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
								Line	
12/9/2021	8260	2112090940C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.2	ug/L	1	0.2		
12/9/2021	8260	2112090940C	Tetrachloroethene (PCE)	0.35	ug/L	1	0.21		J
12/9/2021	8260	2112090940C	Trichloroethene (TCE)	3.8	ug/L	1	0.2		
12/9/2021	8260	2112090940C	Trichlorofluoromethane (CFC 11)	2.5	ug/L	1	0.24		
12/9/2021	607	2112090942C	N-Nitrosodimethylamine	0.09	μg/L	0.0095	0.0048	51	
12/9/2021	607	2112090942C	N-Nitrodimethylamine	0.078	μg/L	0.0095	0.0048	88	
12/9/2021	607	2112090942C	Bromacil	0.069	μg/L	0.0095	0.0048	93	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	9260			2		1		Line	
12/13/2021	8260	2112130940C	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	ug/L	1	0.2		
12/13/2021	8260	2112130940C	Trichloroethene (TCE)	0.78	ug/L	1	0.2		J
12/13/2021	8260	2112130940C	Trichlorofluoromethane (CFC 11)	0.5	ug/L	1	0.24		J
12/13/2021	8260	2112130941C	Trichlorofluoromethane (CFC 11)	0.64	ug/L	1	0.24		J
12/13/2021	8260	2112130941C	Trichloroethene (TCE)	0.82	ug/L	1	0.2		J
12/13/2021	8260	2112130941C	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	ug/L	1	0.2		
12/13/2021	607	2112130943C	Bromacil	0.016	$\mu g/L$	0.0094	0.0047	93	
12/13/2021	607	2112130943C	N-Nitrodimethylamine	0.0057	μ g/L	0.0094	0.0047	88	J
12/13/2021	607	2112130943C	N-Nitrosodimethylamine	0.0066	μg/L	0.0094	0.0047	51	J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/15/2021	8260	2112151410C	Trichlorofluoromethane (CFC 11)	2.7	ug/L	1	0.24		
12/15/2021	8260	2112151410C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5	ug/L	1	0.2		
12/15/2021	8260	2112151410C	Tetrachloroethene (PCE)	0.28	ug/L	1	0.21		J
12/15/2021	8260	2112151410C	Trichloroethene (TCE)	4.2	ug/L	1	0.2		
12/15/2021	607	2112151412C	N-Nitrodimethylamine	0.033	μg/L	0.0095	0.0048	85	
12/15/2021	607	2112151412C	Bromacil	0.25	$\mu g/L$	0.0095	0.0048	82	
12/15/2021	607	2112151412C	N-Nitrosodimethylamine	0.046	$\mu g/L$	0.0095	0.0048	50	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
12/14/2021	8260	2112141251C	Tetrachloroethene (PCE)	0.96	ug/L	1	0.21		J
12/14/2021	8260	2112141251C	Trichloroethene (TCE)	25	ug/L	1	0.2		
12/14/2021	8260	2112141251C	Trichlorofluoromethane (CFC 11)	13	ug/L	1	0.24		
12/14/2021	8260	2112141251C	1,1,2-Trichloro-1,2,2-Trifluoroethane	15	ug/L	1	0.2		
12/14/2021	607	2112141253C	N-Nitrosodimethylamine	0.45	μg/L	0.01	0.005	50	
12/14/2021	607	2112141253C	N-Nitrodimethylamine	0.26	μg/L	0.01	0.005	85	
12/14/2021	607	2112141253C	Bromacil	0.096	μg/L	0.01	0.005	82	QD
12/14/2021	607	2112141254C	Bromacil	0.035	μg/L	0.0095	0.0048	82	QD
12/14/2021	607	2112141254C	N-Nitrosodimethylamine	0.47	μg/L	0.0095	0.0048	50	
12/14/2021	607	2112141254C	N-Nitrodimethylamine	0.27	μg/L	0.0095	0.0048	85	

Analyti	cal Results	for Sampling	Events at ST-4-690							
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/8/2021	NDMA_LL	2112081508C	N-Nitrosodimethylamine	0.43	ng/L	0.48	0.4		J	

Analytic	cal Results	for Sampling	Events at ST-5-485							
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
11/1/2021	NDMA_LL	2111011406Y	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		EB	

Analytic	cal Results	for Sampling	Events at ST-5-655						
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/1/2021	NDMA_LL	2111011016Y	N-Nitrosodimethylamine	0.82	ng/L	0.48	0.4		EB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/6/2021	NDMA_LL	2112061432B	N-Nitrosodimethylamine	0.85	ng/L	0.49	0.41		
12/6/2021	8270	2112061434B	1,4-Dioxane	1.6	ug/L	0.04	0.027		
12/6/2021	8270	2112061435B	1,4-Dioxane	1.6	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/6/2021	8260 LL	2112061448B	Toluene	0.26	ug/L	0.5	0.2		J
12/6/2021	8260_LL	2112061448B	Trichloroethene (TCE)	0.73	ug/L	0.5	0.2		
12/6/2021	8260_LL	2112061448B	Trichlorofluoromethane (CFC 11)	0.62	ug/L	0.5	0.24		
12/6/2021	NDMA_LL	2112061450B	N-Nitrosodimethylamine	0.85	ng/L	0.48	0.4		FB
12/6/2021	NDMA_LL	2112061450B	N-Nitrodimethylamine	0.61	ng/L	0.48	0.2		
12/6/2021	NDMA_LL	2112061451B	N-Nitrosodimethylamine	0.63	ng/L	0.48	0.4		FB
12/6/2021	8270	2112061453B	1,4-Dioxane	1.1	ug/L	0.04	0.027		
12/6/2021	8270	2112061454B	1,4-Dioxane	1.2	ug/L	0.04	0.027		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/7/2021	8260_LL	2112071430B	Toluene	0.49	ug/L	0.5	0.2		J	
12/7/2021	8270	2112071434B	1,4-Dioxane	0.66	ug/L	0.04	0.027			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
12/7/2021	8260_LL	2112071448B	Toluene	0.33	ug/L	0.5	0.2		J	
12/7/2021	NDMA LL	2112071450B	N-Nitrosodimethylamine	0.77	ng/L	0.48	0.4			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
12/7/2021	8260_LL	2112071502B	Toluene	0.21	ug/L	0.5	0.2		J	
12/7/2021	NDMA LL	2112071504B	N-Nitrosodimethylamine	1	ng/L	0.48	0.4			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
1/3/2022	NDMA_LL	2201031514B	N-Nitrodimethylamine	0.54	ng/L	0.47	0.2			
1/3/2022	NDMA LL	2201031514B	N-Nitrosodimethylamine	0.55	ng/L	0.47	0.4			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
1/3/2022	8260_LL	2201031522B	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.83	ug/L	0.5	0.2			
1/3/2022	8260_LL	2201031522B	Trichloroethene (TCE)	1.4	ug/L	0.5	0.2			
1/3/2022	8260 LL	2201031522B	Trichlorofluoromethane (CFC 11)	1.5	ug/L	0.5	0.24			

Analyti	Analytical Results for Sampling Events at WW-1-452										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag		
12/6/2021	NDMA LL	2112061427A	N-Nitrosodimethylamine	1	ng/L	0.48	0.4		FB		

Analytic	Analytical Results for Sampling Events at WW-3-469											
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag			
12/7/2021	NDMA_LL	2112071431Y	N-Nitrosodimethylamine	2.16	ng/L	0.48	0.4		_			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/10/2022	8260_LL	2201101345B	Toluene	1.2	ug/L	0.5	0.2		
1/10/2022	NDMA_LL	2201101347B	N-Nitrodimethylamine	0.3	ng/L	0.48	0.2		J
1/10/2022	NDMA LL	2201101347B	N-Nitrosodimethylamine	0.57	ng/L	0.48	0.4		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/10/2022	8260_LL	2201101408B	Chloromethane	0.48	ug/L	0.5	0.28		J RB A
1/10/2022	8260_LL	2201101408B	Toluene	1.8	ug/L	0.5	0.2		
1/10/2022	NDMA LL	2201101410B	N-Nitrosodimethylamine	0.52	ng/L	0.48	0.4		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/11/2022	8260_LL	2201111405B	Toluene	1.7	ug/L	0.5	0.2		
1/11/2022	NDMA_LL	2201111407B	N-Nitrosodimethylamine	1.82	ng/L	0.48	0.4		QD
1/11/2022	NDMA_LL	2201111407B	N-Nitrodimethylamine	0.49	ng/L	0.48	0.2		
1/11/2022	NDMA_LL	2201111408B	N-Nitrodimethylamine	0.33	ng/L	0.48	0.2		J
1/11/2022	NDMA_LL	2201111408B	N-Nitrosodimethylamine	0.59	ng/L	0.48	0.4		QD

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
1/11/2022	8260_LL	2201111435B	Unknown	5.7	ug/L	NA	NA		TIC
1/11/2022	8260_LL	2201111435B	Toluene	3.7	ug/L	0.5	0.2		
1/11/2022	NDMA_LL	2201111437B	N-Nitrodimethylamine	0.51	ng/L	0.47	0.2		
1/11/2022	NDMA LL	2201111437B	N-Nitrosodimethylamine	2.31	ng/L	0.47	0.4		

Appendix A.3
PFTS Indicator Parameters

Summary of Water Quality Parameters for the Plume Front Sampling Events in this Reporting Period

Well ID	B650-EFF-1	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021345	Conductivity		900	μS/cm	
2111021345	pН		7.00	NA	
2111021345	Temperature		25.7	°C	
2111021345	Turbidity		0.21	NTU	
Well ID	B650-EFF-1	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061253	Conductivity		1109	μS/cm	
2112061253	pН		8.24	NA	
2112061253	Temperature		25.1	°C	
2112061253	Turbidity		0.45	NTU	
Well ID	B650-EFF-1	Event Date	1/6/2022		
Sample	Parameter		Result	Units	
2201061000	Conductivity		1183	μS/cm	
2201061000	рH		8.25	NA	
2201061000	Temperature		24.7	°C	
2201061000	Turbidity		0.23	NTU	
Well ID	B650-INF-1	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021420	Conductivity		896	μS/cm	
2111021420	рH		7.05	NA	
2111021420	Temperature		25.2	°C	
2111021420	Turbidity		0.19	NTU	
Well ID	B650-INF-1	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061310	Conductivity		1097	μS/cm	
2112061310	рH		7.31	NA	
2112061310	Temperature		24.9	°C	
2112061310	Turbidity		0.96	NTU	
Well ID	B650-INF-1	Event Date	1/6/2022		
Sample	Parameter		Result	Units	
2201061015	Conductivity		1201	μS/cm	
2201001010			7.07	NA	
2201061015	pН		7.07	1471	
	=		25.1	°C	

Well ID PF	`E-2	Event Date	1/12/2022		
		Event Date		TT *4	
Sample	Parameter		Result	Units	
2201121251	Conductivity		1211	μS/cm	
2201121251	pН		7.24	NA	
2201121251	Temperature		24.5	°C	
2201121251	Turbidity		0.14	NTU	
Well ID PF	E-4A	Event Date	1/11/2022		
Sample	Parameter		Result	Units	
2201111229	Conductivity		1186	μS/cm	
2201111229	pН		7.29	NA	
2201111229	Temperature		23.5	°C	
2201111229	Turbidity		1.15	NTU	
Well ID PF	`E-5	Event Date	1/11/2022		
Sample	Parameter		Result	Units	
2201111250	Conductivity		1046	μS/cm	
2201111250	pН		7.82	NA	
2201111250	Temperature		23.6	°C	
2201111250	Turbidity		0.53	NTU	
Well ID PF	`E-7	Event Date	1/12/2022		
Sample	Parameter		Result	Units	
2201121310	Conductivity		1175	μS/cm	
2201121310	pН		7.14	NA	
2201121310	Temperature		23.6	°C	

Appendix A.4 PFTS Analytical Data

Detections for Plume Front Treatment System Sampling Events in this Reporting Period

Analytical Results for Sampling Events at B650-EFF-1

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
12/6/2021	8260_LL	2112061258	Chloromethane	0.46	ug/L	0.5	0.28		J RB FB
12/6/2021	607	2112061300	Bromacil	0.039	μg/L	0.01	0.005	75	RB
12/6/2021 12/6/2021	NDMA_LL NDMA_LL	2112061301 2112061301	N-Nitrosodimethylamine N-Nitrodimethylamine	0.74 0.39	ng/L ng/L	0.52 0.52	0.43 0.22		FB J
1/6/2022	8260_LL	2201061005	Chloromethane	0.4	ug/L	0.5	0.28		J

Analytical Results for Sampling Events at B650-INF-1

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	0260	-				1		Emc	
11/2/2021	8260	2111021425	Tetrachloroethene (PCE)	0.97	ug/L	1	0.21		J
11/2/2021	8260	2111021425	Trichloroethene (TCE)	25	ug/L	1	0.2		
11/2/2021	8260	2111021425	Trichlorofluoromethane (CFC 11)	19	ug/L	1	0.24		
11/2/2021	8260	2111021425	1,1,2-Trichloro-1,2,2-Trifluoroethane	38	ug/L	1	0.2		
11/2/2021	8260	2111021426	1,1,2-Trichloro-1,2,2-Trifluoroethane	37	ug/L	1	0.2		
11/2/2021	8260	2111021426	Tetrachloroethene (PCE)	1	ug/L	1	0.21		
11/2/2021	8260	2111021426	Trichloroethene (TCE)	25	ug/L	1	0.2		
11/2/2021	8260	2111021426	Trichlorofluoromethane (CFC 11)	18	ug/L	1	0.24		
11/2/2021	607	2111021428	Bromacil	0.013	μg/L	0.0094	0.0047	109	
11/2/2021	607	2111021428	N-Nitrodimethylamine	0.044	μg/L	0.0094	0.0047	94	
11/2/2021	607	2111021428	N-Nitrosodimethylamine	0.075	μg/L	0.0094	0.0047	53	
12/6/2021	8260	2112061315	1,1,2-Trichloro-1,2,2-Trifluoroethane	27	ug/L	1	0.2		
12/6/2021	8260	2112061315	Trichlorofluoromethane (CFC 11)	16	ug/L	1	0.24		
12/6/2021	8260	2112061315	Trichloroethene (TCE)	18	ug/L	1	0.2		
12/6/2021	8260	2112061315	Tetrachloroethene (PCE)	0.82	ug/L	1	0.21		J
12/6/2021	607	2112061317	N-Nitrodimethylamine	0.051	μg/L	0.0095	0.0048	98	
12/6/2021	607	2112061317	Bromacil	0.02	μg/L	0.0095	0.0048	75	RB
12/6/2021	607	2112061317	N-Nitrosodimethylamine	0.099	$\mu g\!/\!L$	0.0095	0.0048	59	
1/6/2022	8260	2201061021	Tetrachloroethene (PCE)	1	ug/L	1	0.21		
1/6/2022	8260	2201061021	1,1,2-Trichloro-1,2,2-Trifluoroethane	42	ug/L	1	0.2		
1/6/2022	8260	2201061021	Trichloroethene (TCE)	26	ug/L	1	0.2		
1/6/2022	8260	2201061021	Trichlorofluoromethane (CFC 11)	25	ug/L	1	0.24		
1/6/2022	607	2201061023	Bromacil	0.012	μg/L	0.0096	0.0048	99	
1/6/2022	607	2201061023	N-Nitrodimethylamine	0.04	μg/L	0.0096	0.0048	72	
1/6/2022	607	2201061023	N-Nitrosodimethylamine	0.08	μg/L	0.0096	0.0048	43	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
- Date		Sample	Constituent	Result	Cints	Eiiiit		EIIIC	Qning
1/12/2022	8260	2201121256	Trichloroethene (TCE)	55	ug/L	1	0.2		
1/12/2022	8260	2201121256	Trichlorofluoromethane (CFC 11)	58	ug/L	1	0.24		
1/12/2022	8260	2201121256	Dichlorofluoromethane (CFC 21)	0.24	ug/L	1	0.2		J
1/12/2022	8260	2201121256	1,1,2-Trichloro-1,2,2-Trifluoroethane	96	ug/L	1	0.2		
1/12/2022	8260	2201121256	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.34	ug/L	1	0.2		J
1/12/2022	8260	2201121256	Tetrachloroethene (PCE)	2.1	ug/L	1	0.21		
1/12/2022	607	2201121258	N-Nitrosodimethylamine	0.15	μg/L	0.0098	0.0049	46	
1/12/2022	607	2201121258	Bromacil	0.021	μg/L	0.0098	0.0049	111	
1/12/2022	607	2201121258	N-Nitrodimethylamine	0.076	$\mu g/L$	0.0098	0.0049	74	
1/12/2022	607	2201121259	N-Nitrosodimethylamine	0.15	μg/L	0.0095	0.0048	46	
1/12/2022	607	2201121259	Bromacil	0.015	$\mu g/L$	0.0095	0.0048	111	
1/12/2022	607	2201121259	N-Nitrodimethylamine	0.077	μg/L	0.0095	0.0048	74	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/11/2022	8260	2201111235	Trichlorofluoromethane (CFC 11)	1.1	ug/L	1	0.24		
1/11/2022	8260	2201111235	Trichloroethene (TCE)	1.1	ug/L	1	0.2		
1/11/2022	8260	2201111235	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.9	ug/L	1	0.2		
1/11/2022	607	2201111237	N-Nitrosodimethylamine	0.0067	μg/L	0.0096	0.0048	46	J
1/11/2022	607	2201111237	Bromacil	0.043	μg/L	0.0096	0.0048	111	

Event	Analysis					Quant	Det	Xtret	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/11/2022	8260	2201111256	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.22	ug/L	1	0.2		J
1/11/2022	8260	2201111256	Tetrachloroethene (PCE)	1.6	ug/L	1	0.21		
1/11/2022	8260	2201111256	1,1,2-Trichloro-1,2,2-Trifluoroethane	13	ug/L	1	0.2		
1/11/2022	8260	2201111256	Trichloroethene (TCE)	41	ug/L	1	0.2		
1/11/2022	8260	2201111256	Trichlorofluoromethane (CFC 11)	18	ug/L	1	0.24		
1/11/2022	8260	2201111256	Dichlorofluoromethane (CFC 21)	0.31	ug/L	1	0.2		J
1/11/2022	607	2201111258	N-Nitrosodimethylamine	0.32	μg/L	0.0099	0.005	46	
1/11/2022	607	2201111258	N-Nitrodimethylamine	0.15	μg/L	0.0099	0.005	74	
1/11/2022	607	2201111258	Bromacil	0.048	μg/L	0.0099	0.005	111	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
1/12/2022	8260	2201121315	Trichloroethene (TCE)	4.1	ug/L	1	0.2		
1/12/2022	8260	2201121315	Trichlorofluoromethane (CFC 11)	4	ug/L	1	0.24		
1/12/2022	8260	2201121315	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.1	ug/L	1	0.2		
1/12/2022	8260	2201121316	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.5	ug/L	1	0.2		
1/12/2022	8260	2201121316	Silane, methoxytrimethyl-	6.3	ug/L	NA	NA		TIC
1/12/2022	8260	2201121316	Trichlorofluoromethane (CFC 11)	3.9	ug/L	1	0.24		
1/12/2022	8260	2201121316	Trichloroethene (TCE)	3.9	ug/L	1	0.2		
1/12/2022	NDMA_LL	2201121319	N-Nitrodimethylamine	0.54	ng/L	0.5	0.21		
1/12/2022	NDMA_LL	2201121319	N-Nitrosodimethylamine	1.18	ng/L	0.5	0.42		

Appendix A.5
MPITS Indicator Parameters

Summary of Water Quality Parameters for the Mid-plume Sampling Events in this Reporting Period

Well ID	B655-EFF-2	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021131	Conductivity		1157	μS/cm	
2111021131	pН		8.40	NA	
2111021131	Temperature		24.4	°C	
2111021131	Turbidity		0.30	NTU	
Well ID	B655-EFF-2	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061355	Conductivity		1148	μS/cm	
2112061355	pН		8.21	NA	
2112061355	Temperature		22.9	°C	
2112061355	Turbidity		0.74	NTU	
Well ID	B655-EFF-2	Event Date	1/7/2022		
Sample	Parameter		Result	Units	
2201070505	Conductivity		1134	μS/cm	
2201070505	pH		8.11	NA	
2201070505	Temperature		21.5	°C	
2201070505	Turbidity		0.25	NTU	
Well ID	B655-INF-2	Event Date	11/2/2021		
Sample	Parameter		Result	Units	
2111021156	Conductivity		1165	μS/cm	
2111021156			7.11	NA	
2111021156	Temperature		24.8	°C	
2111021156	Turbidity		0.46	NTU	
Well ID	B655-INF-2	Event Date	12/6/2021		
Sample	Parameter		Result	Units	
2112061410	Conductivity		1131	μS/cm	
2112061410	pН		7.08	NA	
2112061410	•		23.5	°C	
2112061410	Turbidity		0.32	NTU	
Well ID	B655-INF-2	Event Date	1/7/2022		
	Parameter		Result	Units	
Sample	1 111 11111111111				
Sample 2201070557			1197	μS/cm	
	Conductivity pH		7.05	μS/cm NA	
2201070557	Conductivity pH				

Well ID M	PE-1	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111040915	Conductivity		1264	μS/cm	
2111040915	pН		7.34	NA	
2111040915	Temperature		26.2	°C	
2111040915	Turbidity		0.38	NTU	
Well ID M	PE-10	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111040940	Conductivity		1238	μS/cm	
2111040940	pН		7.28	NA	
2111040940	Temperature		25.6	°C	
2111040940	Turbidity		0.76	NTU	
Well ID M	PE-11	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
2111040900	Conductivity		952	μS/cm	
2111040900	pН		7.50	NA	
2111040900	Temperature		26.2	°C	
2111040900	Turbidity		0.78	NTU	
Well ID M	PE-8	Event Date	11/4/2021		
Sample	Parameter		Result	Units	
			1240		
2111040930	Conductivity		1248	μS/cm	
2111040930 2111040930	Conductivity pH		7.20	μs/cm NA	
	-			•	

Appendix A.6 MPITS Analytical Data

Detections for MPITS Sampling Events in this Reporting Period

Analytical Resul	lts for	Sampling	Events at	B655-EFF-2
-------------------------	---------	----------	-----------	------------

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/2/2021	607	2111021137	Bromacil	0.037	μg/L	0.0095	0.0048	109	
12/6/2021	8260_LL	2112061400	Chloromethane	0.35	ug/L	0.5	0.28		J RB
12/6/2021	607	2112061402	Bromacil	0.081	$\mu g/L$	0.0096	0.0048	75	RB
12/6/2021	NDMA_LL	2112061403	N-Nitrosodimethylamine	1.14	ng/L	0.48	0.4		FB
1/7/2022	607	2201070512	Bromacil	0.0077	μg/L	0.0096	0.0048	99	J
1/7/2022	METALS	2201070515	Strontium, Total	2.58	mg/L	0.1	0.002		
1/7/2022	METALS	2201070515	Boron, Total	0.1	mg/L	0.2	0.02		J
1/7/2022	METALS	2201070515	Barium, Total	0.038	mg/L	0.02	0.003		
1/7/2022	METALS	2201070515	Arsenic, Total	0.001	mg/L	0.001	0.0004		
1/7/2022	METALS	2201070515	Thallium, Total	0.00004	mg/L	0.001	0.00004		J
1/7/2022	METALS	2201070515	Calcium, Total	115	mg/L	1	0.3		
1/7/2022	METALS	2201070515	Sodium, Total	49.2	mg/L	1	0.2		
1/7/2022	METALS	2201070515	Potassium, Total	5.6	mg/L	2	0.4		
1/7/2022	METALS	2201070515	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/7/2022	METALS	2201070515	Magnesium, Total	57.2	mg/L	1	0.03		
1/7/2022	METALS	2201070515	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/7/2022	METALS	2201070516	Potassium, Total	5.4	mg/L	2	0.4		
1/7/2022	METALS	2201070516	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/7/2022	METALS	2201070516	Thallium, Total	0.00004	mg/L	0.001	0.00004		J
1/7/2022	METALS	2201070516	Strontium, Total	2.53	mg/L	0.1	0.002		
1/7/2022	METALS	2201070516	Sodium, Total	48.1	mg/L	1	0.2		
1/7/2022	METALS	2201070516	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
1/7/2022	METALS	2201070516	Magnesium, Total	55.9	mg/L	1	0.03		
1/7/2022	METALS	2201070516	Calcium, Total	112	mg/L	1	0.3		
1/7/2022	METALS	2201070516	Boron, Total	0.1	mg/L	0.2	0.02		J
1/7/2022	METALS	2201070516	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
1/7/2022	METALS	2201070516	Barium, Total	0.037	mg/L	0.02	0.003		
1/7/2022	ANIONS	2201070517	Alkalinity, Total as CaCO3	245	mg/L	2	1.8		
1/7/2022	ANIONS	2201070517	Chloride	49.6	mg/L	2	0.5		
1/7/2022	ANIONS	2201070517	Fluoride, undistilled	0.73	mg/L	0.1	0.01		
1/7/2022	ANIONS	2201070517	Sulfate	313	mg/L	8	1.6		

Analytical Results for Sampling Events at B655-EFF-2

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1/7/2022	SM2540C	2201070518	Total Dissolved Solids (TDS)	804	mg/L	10	9		
1/7/2022	6850	2201070519	Perchlorate	0.319	ug/L	0.1	0.025		
1/7/2022	353.2	2201070520	Nitrate+Nitrite as Nitrogen	2.62	mg/L	0.25	0.008		

Analytical Results for Sampling Events at B655-INF-2

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/2/2021	8260	2111021201	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		
11/2/2021	8260	2111021201	Dichlorofluoromethane (CFC 21)	1.1	ug/L	1	0.2		
11/2/2021	8260	2111021201	Tetrachloroethene (PCE)	2.6	ug/L	1	0.21		
11/2/2021	8260	2111021201	Trichloroethene (TCE)	49	ug/L	1	0.2		
11/2/2021	8260	2111021201	Trichlorofluoromethane (CFC 11)	80	ug/L	1	0.24		
11/2/2021	8260	2111021201	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
11/2/2021	607	2111021203	N-Nitrosodimethylamine	1.8	μg/L	0.0094	0.0047	53	
11/2/2021	607	2111021203	N-Nitrodimethylamine	0.97	μg/L	0.0094	0.0047	94	
11/2/2021	607	2111021203	Bromacil	0.28	μg/L	0.0094	0.0047	109	
12/6/2021	8260	2112061416	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.2	ug/L	1	0.2		
12/6/2021	8260	2112061416	1,1,2-Trichloro-1,2,2-Trifluoroethane	170	ug/L	1	0.2		
12/6/2021	8260	2112061416	Trichlorofluoromethane (CFC 11)	78	ug/L	1	0.24		
12/6/2021	8260	2112061416	Tetrachloroethene (PCE)	1.8	ug/L	1	0.21		
12/6/2021	8260	2112061416	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
12/6/2021	8260	2112061416	Trichloroethene (TCE)	39	ug/L	1	0.2		
12/6/2021	8260	2112061417	1,1,2-Trichloro-1,2,2-Trifluoroethane	160	ug/L	1	0.2		
12/6/2021	8260	2112061417	Tetrachloroethene (PCE)	1.9	ug/L	1	0.21		
12/6/2021	8260	2112061417	Trichloroethene (TCE)	37	ug/L	1	0.2		
12/6/2021	8260	2112061417	Trichlorofluoromethane (CFC 11)	76	ug/L	1	0.24		
12/6/2021	8260	2112061417	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
12/6/2021	8260	2112061417	Dichlorofluoromethane (CFC 21)	1.1	ug/L	1	0.2		
12/6/2021	607	2112061419	Bromacil	0.17	μg/L	0.0095	0.0048	75	RB
12/6/2021	607	2112061419	N-Nitrosodimethylamine	1.6	μ g/L	0.0095	0.0048	59	
12/6/2021	607	2112061419	N-Nitrodimethylamine	0.81	$\mu g/L$	0.0095	0.0048	98	
1/7/2022	8260	2201070604	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	2	0.4		
1/7/2022	8260	2201070604	Dichlorofluoromethane (CFC 21)	1.5	ug/L	1	0.2		
1/7/2022	8260	2201070604	Tetrachloroethene (PCE)	2.8	ug/L	1	0.21		
1/7/2022	8260	2201070604	Trichloroethene (TCE)	51	ug/L	1	0.2		
1/7/2022	8260	2201070604	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
1/7/2022	8260	2201070604	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
1/7/2022	8260	2201070605	Tetrachloroethene (PCE)	2.6	ug/L	1	0.21		
1/7/2022	8260	2201070605	Dichlorofluoromethane (CFC 21)	1.6	ug/L	1	0.2		
1/7/2022	8260	2201070605	Trichloroethene (TCE)	49	ug/L	1	0.2		
1/7/2022	8260	2201070605	Trichlorofluoromethane (CFC 11)	110	ug/L	1	0.24		
1/7/2022	8260	2201070605	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.6	ug/L	1	0.2		

Analytical Results for Sampling Events at B655-INF-2

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	0260							Emc	QIIIIII
1/7/2022	8260	2201070605	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	2	0.4		
1/7/2022	607	2201070607	N-Nitrosodimethylamine	1.9	μg/L	0.0094	0.0047	43	
1/7/2022	607	2201070607	N-Nitrodimethylamine	0.91	μg/L	0.0094	0.0047	72	
1/7/2022	607	2201070607	Bromacil	0.29	$\mu g/L$	0.0094	0.0047	99	
1/7/2022	METALS	2201070608	Barium, Total	0.036	mg/L	0.02	0.003		
1/7/2022	METALS	2201070608	Boron, Total	0.1	mg/L	0.2	0.02		J
1/7/2022	METALS	2201070608	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
1/7/2022	METALS	2201070608	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
1/7/2022	METALS	2201070608	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
1/7/2022	METALS	2201070608	Sodium, Total	46.8	mg/L	1	0.2		
1/7/2022	METALS	2201070608	Potassium, Total	5.3	mg/L	2	0.4		
1/7/2022	METALS	2201070608	Calcium, Total	113	mg/L	1	0.3		
1/7/2022	METALS	2201070608	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
1/7/2022	METALS	2201070608	Magnesium, Total	56.6	mg/L	1	0.03		
1/7/2022	METALS	2201070608	Strontium, Total	2.56	mg/L	0.1	0.002		
1/7/2022	ANIONS	2201070609	Sulfate	297	mg/L	8	1.6		
1/7/2022	ANIONS	2201070609	Alkalinity, Total as CaCO3	244	mg/L	2	1.8		
1/7/2022	ANIONS	2201070609	Chloride	50.3	mg/L	2	0.5		
1/7/2022	ANIONS	2201070609	Fluoride, undistilled	0.74	mg/L	0.1	0.01		
1/7/2022	SM2540C	2201070610	Total Dissolved Solids (TDS)	820	mg/L	10	9		
1/7/2022	6850	2201070611	Perchlorate	0.32	ug/L	0.1	0.025		
1/7/2022	353.2	2201070612	Nitrate+Nitrite as Nitrogen	2.7	mg/L	0.25	0.008		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/4/2021	8260	2111040916	1,1,2-Trichloro-1,2,2-Trifluoroethane	280	ug/L	2.5	0.5		
11/4/2021	8260	2111040916	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
11/4/2021	8260	2111040916	Tetrachloroethene (PCE)	4.8	ug/L	1	0.21		
11/4/2021	8260	2111040916	Trichloroethene (TCE)	86	ug/L	1	0.2		
11/4/2021	8260	2111040916	Trichlorofluoromethane (CFC 11)	150	ug/L	1	0.24		
11/4/2021	8260	2111040916	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.2	ug/L	1	0.2		
11/4/2021	8260	2111040916	Unknown	6.9	ug/L	NA	NA		TIC RB FB
11/4/2021	607	2111040918	Bromacil	0.64	μg/L	0.0095	0.0048	108	
11/4/2021	607	2111040918	N-Nitrodimethylamine	2	μg/L	0.0095	0.0048	90	
11/4/2021	607	2111040918	N-Nitrosodimethylamine	3.8	μg/L	0.0095	0.0048	52	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/4/2021	8260	2111040941	Tetrachloroethene (PCE)	3.3	ug/L	1	0.21	_	
11/4/2021	8260	2111040941	Trichloroethene (TCE)	70	ug/L ug/L	1	0.21		
11/4/2021	8260	2111040941	Trichlorofluoromethane (CFC 11)	87	ug/L	1	0.24		
11/4/2021	8260	2111040941	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.6	ug/L	1	0.2		
11/4/2021	8260	2111040941	Unknown	6.1	ug/L	NA	NA		TIC RB
11/4/2021	8260	2111040941	1,1,2-Trichloro-1,2,2-Trifluoroethane	140	ug/L	1	0.2		
11/4/2021	8260	2111040941	Dichlorofluoromethane (CFC 21)	1.5	ug/L	1	0.2		
11/4/2021	607	2111040943	N-Nitrosodimethylamine	3.5	μg/L	0.0095	0.0048	52	
11/4/2021	607	2111040943	N-Nitrodimethylamine	1.7	μg/L	0.0095	0.0048	90	
11/4/2021	607	2111040943	Bromacil	0.39	μg/L	0.0095	0.0048	108	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
11/4/2021	8260	2111040901	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.7	ug/L	1	0.2		J
11/4/2021	8260	2111040901	Dichlorofluoromethane (CFC 21)	0.57	ug/L	1	0.2		J
11/4/2021	8260	2111040901	Unknown	6.6	ug/L	NA	NA		TIC RB FB
11/4/2021	8260	2111040901	Trichloroethene (TCE)	5.3	ug/L	1	0.2		
11/4/2021	8260	2111040901	Tetrachloroethene (PCE)	0.32	ug/L	1	0.21		J
11/4/2021	8260	2111040901	Trichlorofluoromethane (CFC 11)	12	ug/L	1	0.24		
11/4/2021	8260	2111040901	1,1,2-Trichloro-1,2,2-Trifluoroethane	14	ug/L	1	0.2		
11/4/2021	607	2111040903	N-Nitrosodimethylamine	0.14	μg/L	0.0095	0.0048	52	
11/4/2021	607	2111040903	N-Nitrodimethylamine	0.066	μg/L	0.0095	0.0048	90	
11/4/2021	607	2111040903	Bromacil	0.0086	μg/L	0.0095	0.0048	108	J

Event	Analysis Method	C 1		D 1/	TT *4	Quant	Det	Xtrct	OA EI
Date	Methou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
11/4/2021	8260	2111040931	1,1,2-Trichloro-1,2,2-Trifluoroethane	360	ug/L	5	1		
11/4/2021	8260	2111040931	Unknown	6.2	ug/L	NA	NA		TIC RB FB
11/4/2021	8260	2111040931	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.1	ug/L	1	0.2		
11/4/2021	8260	2111040931	Trichlorofluoromethane (CFC 11)	180	ug/L	1	0.24		
11/4/2021	8260	2111040931	Trichloroethene (TCE)	88	ug/L	1	0.2		
11/4/2021	8260	2111040931	Dichlorofluoromethane (CFC 21)	1.1	ug/L	1	0.2		
11/4/2021	8260	2111040931	Tetrachloroethene (PCE)	4.2	ug/L	1	0.21		
11/4/2021	607	2111040933	Bromacil	0.41	μg/L	0.0095	0.0048	108	
11/4/2021	607	2111040933	N-Nitrosodimethylamine	2.7	μg/L	0.0095	0.0048	52	
11/4/2021	607	2111040933	N-Nitrodimethylamine	1.4	μg/L	0.0095	0.0048	90	

Appendix B
Sampling Event Logbook Entries and Internal CoC Forms

11-11-5051

Date: 11-2021							-			Page of
Sample Location: 100 - D- 176				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	۷٥٩	८०७	८०८८४	620	980	Nreta 15		KG MO Charge Number
2111111006A /1021A (BC)	3	A	8							
1007 A FB	3	١	4		_			,		
1008A /1022A (BC)	1			X						
1009A	2			,	2					
1010A	3					£				
(0)(A	1						X			
1012 A /1023A (BC	2				-			X		
Sample Location:				A	nalytic	al Requ	iremer	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	Anions AIK	703	TK N	No= 1003	Ch/8n: d			Charge Number
211111013A	2	4	X							
1014A	١	1		a		_				X002
- 1016A	1				×				j.) (
— 1016A	1					Y				14
- 1017A	١	١					4			1)
										,
				ļ	,					
Relinquished by: Date	/ Time): ()	10	\(\frac{1}{2}\)) A ru/	ccepted	l by:	ch	11-12	Date / Time: 2-21 / 0930
				J						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

165 WJL 2		Continued from page
Bob Tufts & Craig Del Ferraro	procent Weather is do	col This zees in h
Probe # 2213. Surface checks pe	formed on probe pring t	Sample Toures, Men. In use
30 Min &	quipment Blanks - Carbon (35
Sample Analysis	Preservative Contain	
211110 08254 VOA by 8260	ice/HCL (3)40ml	rials 2596 ALS
	V=/10/M	MAD ALS
Initial Parameters	Final	M.L. Th
Time-2111009254	Time-211111431	Meter ID
PH - 8.10	PH - 7.96	
Temp - 16.6°C	Temp - 17.5°C	Turb 7
Cond - 1942 us/cm	Cond - 1967 us/c	W 5d 44,27
Turb - 0.82 pto'\$	Turb-0.780TV	9
pH pre - 7.14/10.11 (16.3°c)	pt pre - 7.05/10.0	
pH post + 7.14/10.10	pHpost -7.04/10.0	
DTW - 214,40Ft.	Dw -214.42ft	
Atmos - 12.43 psia	Atmns 12 4700	
	IDW - 1/2 gal	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 4103 9 81 7/22
	Samples	
Sample Analys	is Preservative (
2111101020y VOA by B2		ontainer Lot Lab
-1021y 607/Brom		40ml vials 2596 ALS
2111110820y Total Met.	als ice/HNO3 (2)	11 Amber 22004019 SET
- 0915y Anions Al	K. ice	125ml polis 21-09-10 ALS
- 911010y Perchlorate be		25m/ polu "
		23ml poly u u
TKN		u u u
1245y NOz/NOzby 3	53 2	250ml poly 21-04-30 u
1430 Y Chloride		16 1 1
· · · · · · · · · · · · · · · · · · ·	1ce (1)1	25-11 poly N/A
Zuns 1) 12.47 2) 12.47 3) 12	1.43 4) 12.46 5) 10 4	
	J J J J J J J J J J J J J J J J J J J	
		'I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		13.06
7337		
^	Read and Understood F	D

Craig Del Zermo

Illula

Ou Signed which

11-12-21

Date

ROJECT 200-I-185 WIT ENV-0020

ا	2.5	5		8) 1	<u>ي</u> .٠	54		9)	12	.6	0		0)	10	ે. ≲	89		H)	L	۹.	57		12)	16	≀.5	8	-	 	_
	<u>3.0</u>	57 04 54			1	3.	02 99 61	ــــــــــــــــــــــــــــــــــــــ		13	.0	1			16	2.9	9			4	3	 	Q		12	2.9	1			_
1	3.	04			_1	2.	99			12	.97	<u>'</u>			15	3 .0				1	۲. ۵	12 88 57			1	2.8	35 57		 	_
	2	54	-			2.	61			12.	61				16	1.5	59			1	2.	88			1	g .:	57			L
																					2	57							 	_
3)	12	5	4															;												
1	12	51 83 56	5																											
l	2.	83																												
	2	56			,																									
-																									,,,					
	<u> </u>																													
																														1
	† .																					1							 	t
	-																						 		-					t
																						 								t
-																														
-	-						-																-				-			-
-	1						<u> </u>										-													+
-	+																													ł
-	-																													-
	-	<u> </u>																												+
-	+						-										<u> </u>			ļ		-								+
	-											ļ	ļ								-	ļ								-
-	-	<u> </u>					-	<u> </u>				ļ											-							+
	ļ									ļ		ļ					ļ	-								_		\vdash		+
<u> </u>		<u> </u>					<u> </u>																-				-			1
1	-	-									_								-		-	-	ļ				<u> </u>	ļ	 	+
_		<u> </u>							ļ			ļ							_			<u> </u>	-				-			+
_		<u> </u>																			<u> </u>		<u> </u>				ļ		 	+
	1																						<u> </u>							1
																											-	ļ!		1
																														1
1	1					٠.		1																Cor	tinu	ad fr	om p	ane	 	-

Read and Understood By

Date: 11 10 21									F	Page of
Sample Location: 200-I-185				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
	iners	atrix*	٥				e			
	# of Containers	Sample Matrix*	8260	607			ļ			
Sample Number	Jo#	Sam	8							Charge Number
2111100825y (EB)	3	A	/	-						XGMD
10204	3	A	/	. , 						u
10214		A		~						ч
•										
					-					
Sample Location:	ļ			Α	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)										
	SIS	 * .≚								
	ntaine	Matr								
	# of Containers	Sample Matrix*								
Sample Number	#						· · · · · · · · · · · · · · · · · · ·			Charge Number
	:			*****				<u> </u>		
Data da la	/ 753						11.			D.4. /T:
A - m 7	e / Tim	e: 535	1. ~	ψ	en	Accepte	\	de	-	Date / Time:
Crary Ill Jareno 11110/2	1 13	233	N.S.		V W	<u> </u>			11	1 21 / 0 / 10
)	<u></u>	 			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11 11 21										Page 2 of 2
Sample Location: 200-I-185				A	nalytic	al Requ	uiremer	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Total Metals	Anions/Alk	Perchlorate	Tos	TKN	Noz/103	Chloride	Charge Number
2111108204	2	A	~							Xamo
	2	A		/						u
1010 4	1	A			1					u
1105y		A				/				X00 Q
11064		A	:					•		и
12454		A						/		и
1430 Y	1	A								h
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	iiremer	ıt		
r	of Containers	Sample Matrix*								
Sample Number	#	S					- i			Charge Number
Relinquished by: Date	/ Time			/			11.			D (/8"
Craig Del Form 11/1/21		530	hrs.	¢	ant	cpep4ed	i by: WU-0	L	-	Date / Time: 2.21 /0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

B0b7	ruf	¥5	\$	Cro	ug.	De	Fe	r/a	ro	pr	ese,	#	O	Jea	rfh	er	- is	5 0	le	ar	21	1)a	rn	۸.	14	is	70	ne	(i)	11	bo
Sample	4	usi	Λ4	₽.	tri	Dle_		in c	ألمع	. <	tai'n	، اما ،	c	ct	رم-1	ρľ	♦	.	1	1	bos		Ger	. /	n i	use	ر ز ـ ا	Prod	2#	221	3
Susta	ce	ch	ect	ده :	per	Fori	nec	0	1	ro	be	Pr	ìo	<u>~</u>	to	S	am	\$ / ₁	19												
		+-			-	ļ	ļ					•																ļ			
0		-	-	-	3	0	M	m.	<u>وع</u>	uip	nen	<u> B</u>	ماه	nĘ	<u>s-</u>	C	erb	oy	6	5_		_	_					<u> </u>			
Samp		2 .	-	-				y s				ese				4_		والم	Λtο	yn	ec	7		4	4			Lq	6		
211116	1							82				ce				-	(3	3)4	Om	Щ	/19	5	5	25	83			AL	5		
7	71	30	Y	-		ot a	L Y	llet	als	+	t	ce	/#	IN	03	-	(2)1:	25,	n!	Poly	<i>i</i> \$	þ	1	09	-10	>	u			
Initia	03	2 6			 						-	-7				-	-	+-	+	-	-	+-	-		- 1			-			
Time.									-		-	-	_	al	ſ		 	<u> </u>		-	-	+			_	er		_			
		7.9			J3 \	Y					_	Tì	M	. 1		1	1		4	26	4	-	1					60			
Temp		12	,	•							+	PH	- 1	1		1 .	B6	1	+	+	-	+	-		ur	-b		I .	-		
Cond	-		- 1	15/0						+		1	- 11	L !		1	6		+	-	+-	 		-		1		- 44			
Turb	_	1.	59	ATT	1,15	5				-							4 u 30				+	-		-Q	\dashv	. 1		- 4	-		
PHONE							16	2 - 6	\								04				27	ان	+	u		10	<u> </u>	20	04	13	
pt bast					1 1				•								05				χ <i>Ι</i> .	112	'	u	-		(<u>)</u> -	11	301	ચ	\dashv
DIW		2	15	.00	\$1							1.	- 11			ł	15,	-)		- 1			7.	U	2	٢	/_	1		5	
Atmos	_	- 16	2.3	370	sia									1		1	39	1 '						7				356		\mathcal{E}_{3}	13
		-	ļ	ı								Ī	D	W	~	1/2	99	1				1		10	- 1			58L		9/	
	-	-		ļ		_,										, –	J.							•		110	<u> </u>	,01		1/	*
	1	-	-	-						_ _	S a	m	ام	es																	
Samp	e	-	-	-				na				Pa	26	N	q	ve			C	2	cuir	er			L	to.			L_{q}	6	
211116	1		1	-		VD		24 8								CL		6	3)4	On	V	ial	r	0	-	83			41	_	
	1	ļ	ę.					u (T			_		_	(***					u	L				u			u		
		102	11		_		07/		ama	rci l	Ц_	+	ļ.	, 10	ce				1) [4 F	m	2 e(250	000	401	G		SZ	T	
	114	15	Y -	-		4	sta	IN	eta	 \$_		i	æ	#	NO	3		(6	1(4	15,	AL.	0	y ^l s	2	1-0	29-	10		AL	.S	
	-		-				-	-		+-		+-	+	-						-	ļ '		4		1				\perp		
	-	-					_	-		+	-	+-	-	-	_					-	-	<u></u>	-		_		_				
	+				\dashv	+	+		+	-		+-	+	-				·		-	-		+	-	\perp	_	_	-	_		\dashv
		+			\dashv	-		_		_	+-	-	+	-	-					-	-	-	-			-		_	\dashv	-	_
2ms	7	~	a .	RI	+	2)	51	,80	+	3	_	-	١,		\dashv				-		-		-	-	-	-			\dashv	\dashv	_
	* *,		a. 3,:			<i>J</i> 1		.3		7		حر عرق	76			_			-	-			-	-	+	-	\dashv		\dashv	\dashv	\dashv
			3.3			- 1		. 30		+			1	1						-			-	+	+		+	+	-		-
		1 !	2.8	1 1		- 1		8		+	9.	3.3 2.7	N V		\dashv					-	-		-	+	\perp	-		+	+		-
			- 1 J		_		~ \ <u>\</u>	4 Ve			\ \tag{\tau}	×1		+	+								Co	ntin	Lled	fron	n ne	ne l			\dashv
										- 1			Щ.	—⊢ R	—— bea	- }	Unde	rete		L					u		· Pa	a.			

Craig Ill Ferris IIICE

Date: 111621								Pag	ge of
Sample Location: 200-I-300	>			A	nalytica	1 Requireme	ent		
Pertinent Notes (if any)					72				
	srs	ix*			fal				
	ntain	Matr	09	7	Met				
	# of Containers	Sample Matrix*	8260	607	<u>of</u> a/			_	
Sample Number	#	Š			_13				Charge Number
21116 300y (EB)	3	A	<u>اسا</u>						XGMD
[301y (EB)	2	A							Le
1400 y	3	A							ч
14014 (Dupl.)	3	A	-						ч
14024	L	A							<u>ч</u>
14254	2	A							. ц
Sample Location:				F	nalytic	al Requirem	ent		
Pertinent Notes (if any)									
	J.S.	 * <u>*</u>						:	
	# of Containers	Sample Matrix*					į		
	of Co	mple					İ		
Sample Number	#	Sa							Charge Number
Relinquished by: Dat	te / Tin) 1	Accepted by:	0	11 -	Date / Time:
Traig let Jame 11/16/21	15	520/	hrs	14	Or 1	V Ju	mel	11-17	-21 /140
					<u> </u>				ŧ
					U				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

			-				_ 1	_			1	- 1				h					-				т	, 			—	/
306	uf	ts	٤ (ra	19	De		ē ri	ar	o p	res	ent		Wa	ea t	her	- 1	s	le	ar	2	coo	1.	Th	is	201	ب جا	v_{l}	u	ae
am	1.	ı			2	<i>t</i>	1		٠,٠			4	10		c-1	201	٠.	-44.5	1_	Ĭ.,	0.0	C		,		1	1	#	221	2
am) -2/	1	ZIN	9	ر ا		שוע		113-	10	-51	aur	le	J	1	eei	30	MU	je_	THE	es,		len.	ΙV	us	e. 1	COP	2 0	2021	J.
Sart	ce	cr	rect	<u>cs</u>	Per	tor	M	20	٥٨	Pr	obe	P	10	r	to	Sqi	NP	بطن	71						ļ					
					1					l		1					l	Y	J											
					3	0	LA		۶.	иò		1 8	26	L	_	1	L.		6	5										
	1				- 4	2	VI	X 1	-7	MD	WE KI	1_4	T)			\a	<u>/ D</u> (<u>y</u>	01		_		-	1	1			1	1	
Sam	ple	-								ysı			G	se	Ma.	rive		10 (2)	on	w	ner	_		_	土			Ų	ab	
2111	6	28	30	/			DA	Ь	4 8	326	0		ìo	e/	HC	1		(3)	40	ml	vi	2		25	96			A	کر	
			31	7 1			\ -	18	J ~	acì				i	e			(1)						م ما	101	2		SA	7	
		20	- 1 7			٩	- 4	μı	<u> </u>	u C 1				/-	_			L'/	1	110	NUC.		<u>u</u>	UU	701			<u>٠</u> ,		
_													, .		1													-	\rightarrow	
-ni-	ia	2	ara	me	ter	2						\exists	ìn	al								,	\mathcal{M}_{\bullet}	zte	1	II.	2			
		ł I	1		210	1.5						\top	س		21	111	61	DΙΙ	V				H	>11	l ca	nd	-6	3		
)		1		- 1	,,,	1						P	1		1	1	~ \ \		l						آر			7		
- 11	_	0	0	2		+							1			.01								u	ro				\dashv	
emp			7.	L	-							le	mp	-	+ 1	8. ć	Z'C	-							S	td	-4	•		
ond		9	89	us	10	n						C		! -	-1	003	Sus	Cu	м		<u>.</u>			, 1	Y	dg	_4	14	7	
					רט`								urt	l	1	.13										a 1.6 i		- 1	44	5
14									. \			1		1	4	1		1				1		u		I_ 1		- /	<i> </i>	-
Hpa			1 17				14	<u>, 0</u>	C				· I	æ		7.00				18	.6	7		u	(XP	-/	1/3	०/२	4
Hoos	<u>;† </u>	- 7	11	10	.14	t						Þ	Ψc	200	t-	7.0	6/	10.	11							ı				
stu	_	-0	14	8	154							4	7	,	_		5.0						Bat	bor	c	1.1	-		E	χρ
						•						7	11			1	I			1		4	/U1·		7 '	-01			7	
Hmi	72 -	- 1	Y .T	10	SIQ									1	-	16	(,)	Op	sja						1	18 G		- 1	1 7/	23
												1	BU	U	_	1/2	99	١.					10		410	36	81		9/	22
																	J													
												٧		ple	c															
=	ī				$\neg \dagger$	_	Λ	\								 			1	-				Ι.			7			
Dam								ma	45	2					liv	e_					er			٥_			_ <u>_</u>	.91	2	
21111	60	94	DY			VO	4 6	u E	26	b		ì	ce/	H	CL			(3)	40	m	viq	5	2	58	3		A	LS		
	_	94	ı		1		· , ·		,	1 2 1								$\langle J \rangle$	11	A.		·	മാദ) }	216	+	<	21	-	
					-	60-	447	11	1	-		•		e HN	10			7	124	- I	NOP E	٠_		707	Oie		\overrightarrow{A}	1 0	-	
		01	oy			oto	21	Me	Tal	S		(el	MM	1/2			(على	10	m	Po	ys.	J I:	-0'	1-10		-		<u> </u>	
																ļ					<u> </u>	V	2) 2) 2							
+	,				-+											<u> </u>										\vdash				
														ļ	ļ										-	<u> </u>				
Sun.	_		\		2		~	D	_	7.		7	\ c	<	10	-									 					
ZMIZ.		1/	85				2		٧.	72		3	•	1	63	1									ļ					
4			98	, ર	0	_		9	8.	13 06			9	8.	16						·-									
		(9.8	10	0			G	8.	06			9	8	.13															
			85	•	1			Ç	5	70			•		6															
		-	U U	• 14	*			(ر لوا	ıυ				7 7	9.	۳				-			-		4:	a d 6==				
		L																		<u></u>	<u> </u>			COI	nunu	ed fro	, iii pa	aye .		

Craig Del Ferriso 11/16/21

Date: 11 16 21									Page	of
Sample Location: 200-I-375				A	nalytica	al Requir	ement			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	607	Total Motals				Charge	Number
2111160830V (EB)	<u> </u>	A	~						XGM	
0831 v (EB)	1	A		~					u	
09404	3	A	lum.						ų	
- 0941y	1	A		/					ч	
10104	2	A							u	
•										
Complete and in					• •	15				
Sample Location: Pertinent Notes (if any)				A	nalytica	al Requir	rement			
	# of Containers	Sample Matrix*								
Sample Number	#	<i>V</i> 2							Charge 1	Number
						-				
Relinquished by: Date Pay De Leure 11/16/21	/ Time	:	ح ا	to	ru (ccepted t	oy: Uu-0	L 11-	Date / Tin	1010
	777	_	31							
				"	_					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

4 R(OJE	СТ	20	00	-I	1	49	0	w	JI	ع .	N۷	-0	o-2	८०									No n pag		64	#1	<u>28</u>	Cy) _		
S _o	6	Tu	Hs	, E	C	rai	9 3	Del	Te,	ma	O	Pres	ent		We	za tr	er.	is	c.l	ear	٤	Wa	ſm	7	vis	æ	ne	ļω	ill	be		\exists
a	np	ed	us	in.	3	tr	ip	e s	in.	sed	,	sta	inle	ß	st	ee	S	am	ple	fu	bes.		hen	.in	us	e.	roj	be#	122	!13		-
2u	14	ace	C	he	وتا	P	cirt	or	ne c	Lo	Λ	pr	be	P	-10	r ·	to	Sá	mp	lin	g.				_							
-						•		22			-	•			R	1			1	7		72	,		-				-	+		\dashv
_		1						Ŋ	_		_	. B	we	#	. <u>D</u>	lar	t s	- 1	av		_	_		-		1	4	.		7	1	
_		<u> </u>	~	2.0				^			<u>/Sİ.</u>	_					ati		-		ر <u>ي</u> الالا			als		-	183		+	社	<u>d</u>	
2.1	11	15	13	ΟŪ	7		VC	A	рy	٥	461	0			ce.	į	CL	-		ري	774	m	V	413		α				70	5	\exists
_	:]	ia (l Pa	3	•••	, fo	~<							Li	<u> </u>	0								N	0	Per		TD				
_		T	21	l									-			1	2	111	115	14	39	,		-	- 1		- 1		-6	0		
1		1	- 7	1				1							H	l .						l			1	ır			- 7			
e.	mp		1	1.	1									-		-			٥. د	-					ч			, -	44	1.7	7	
ĩ L	nd	_	- 10	1		1 1	lcx	n							2011	1 38	1		1	sle	m				ų		ì	1	4	1		
- u	rb	_	- 0	۲.(5,	πu	۱۲								41	rb				NT					ų		lo	4	-20	204	,4	٤
4	ρv	e ,	<u> </u>						25	1.0)									10.		(۵	7.	1:0)	4		Ex	P +	- ų	130/	21	
#	ρ	st	-7	.01	\bot	ο.	٥ د								批	pa	<u>\$</u> +-	7.	DI.	/ 1c	٥, ٥	3_		\dashv				•	_			
Ž	14)	- 6 - 1	214	ר.	2F	L _								Ž	Te .	1		1 -	87	i . I	•		A	uf.	er	5	<u>Lo</u>			Ċχ	2
4	\mathbf{r}	os.	- 1	۵.۲	1 6	PS	ìa							-		-	1	1 1	1	14		a			7		- 1	ĺĺ	56			
			 					-							I	DL	υ-	- '/	2	9	•				10	. 4	tlo	3 G	81	\dashv	1/2	2
		-																	-										\rightarrow		-	
_		 							/	1	1			_			es	3	 		•	1	١.			1 -	4		1	1		
_	ł				ļ				1		- 1	\$1 <u>\$</u>			Γ.	/	rat		-		7	1	ine		_	<u>ح</u> و	3		<u> </u>			
	11.1	15	140	1	ł			VO	1	L	1	1			10	•	HC	_		1 - 4	1)40	•		• ;		58			1	1ムト 5名		
				06\ 07	4	 			07 ta			Fal	•				e Wi	\) IU			ار	- 1		019 9-			AL		
				135	IL .					1	IA	lk	>		10		e	13		La) 19	u	47	614	, 0		A	10		u		
		_	1	136	1.1		7	71	1 8	1	7	1	OC			и			†	(i	117		م ا	رار			, 11 7			4		
_		ļ		†3°	1.6		1	erc.		1 1	1		85								, ,			0	_		u			10		
		_	1	+38	1		ŀ	10	./٨	05	bu		53.		i	ce	1H	, S(0.,	(1)	25	O _m	Dη	ly.	4	30	116	05		ч		
					1					3	J			_				-	7	ر٠٠,				/								
¥		an	mp le	S	we	re	a	bi	+	æ	rat	ed	•																		-	
R	, , ,	15	1	1	35	1	a		2)	1 -	1 <	6		2	3) 1	24	5.0	_														
1	M	7	+- +	, .	14	1.] -		9	1-	74	7			y 1		1.9	1									,					
				1	_	91	•			1-		9:	3			17	4 9	ĭ													1	
					35		Ĭ			1		6				3	5.5	7														
						1				1							1								Cor	ntinu	ed fro	om pa	age			
				•				•	•		*********		·			•	Pos	4 ~	wl 11 m/	torete												

Graig Del Fermo 11/15/21 Date

	Date: 111521										Page of
	Sample Location: 200 - I - 49	0			A	nalytic	al Requ	iremer	ıt		
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260	607	stal Metals	11, ons /11/K	725	rch lorate		
\	Sample Number	io #	San	3		7	1		70		Charge Number
	211115 1300 Y (EB)	3	A								XGMD
	1405y	3	A								и
			A	*	✓						<u> </u>
` `	1407y	2	A								ч
	1435V	a	A				~				Ĺ,
	14364	1	A					سسسنا			<u>u</u>
	<u> </u>	Î	A								ц
	Sample Location:				A	nalytic	al Requ	iremer	ıt		
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	Jo, 100,							
/	Sample Number										Charge Number
/	211151438 y	1	A								XGMD
							· ·				
	Relinquished by: Date Relinquished by: Date	/ Time		Nr.s.	V	/ \ \ \	ccepted	l by:	L	ll-1L	Date / Time:
					_ U						

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#128(y)Continued from page _ Bob Tusts & Craig Del Ferraro present. Weather is clear & cool this zone will be sampled using 5 triple rin sed, stainless steel sample tukes, hen in use. Probe #2213. Surface checks performed on probe prior to sampling. 30 Trip Blanks - Water Purification System
Analysis Preservative Container Sample (3)40m vias ice HCL VOA by 82GO 2111150800Y 30 Min Equipment Blanter-Carboy G5 Container Preservative Sample Analysis VOA by 8260 ice/HCL 211115 0845 y (3) HO m vials 2583 ice/HNO3 (2) 125ml poly 21-09-10 Total Metals -0846y Time-2111511014

Initial Parameters [ime-21115 0950y -7.98 - 8.05 Temp - 18.6 C - 18.3'C Std-44.27 20rd - 1450 us/cm Cond - 1433 us cm Turb - 0.72 NTU'S Turb - 0.65 NTU'S 200445 PHpre-709/10.14 (17.0°C) Exp-11/30/2 >Hore -7.15(10 18(13.6°C) PHPOST -7.07/10,14 Hoost -7.15 (10.17 DTW -214.5871. Buffers Dtw-214.72ft. Almos - 12. 41psia Atmos- 12.43 psia 7 2108656 TOW - 1/2 gal. 9/22 10 4103681

Preservative Container Sample Analysis 2111151025y VOA by 8260 Lab 3)40ml vials ice/HCL 415 2583 - 1026y Go7 Bromacil Total Metals SAI 02004016 Ce (2) 125m/polys 21-09-10 ALS -1100Y ce/HNO2 * Samples were very aerated

215.49

2) 215.46 3)215.43 1)215,55 254.22 254.24 254.20 254 17 254.20 254.17

215.53

215.40

Grang Del Lemo

Continued from page

Sample Location: On a T											_
Sample Location: 200-I-675	5			A	nalytica	al Require	ement				
Pertinent Notes (if any)		ample Matrix*	8260	607	stal Metals						-
					\Box		1		Charg	e Number	
			V						XGI	MD	
		A							u		
0846y (EB)	1	A							v		
10254	3	A	/						ч		
10264		A		V					<u> </u>		
11004	2	A			V	-			ч		
•											
Sample Location:	T ·· · · · · · ·			A	nalytica	l Require	ment				
Pertinent Notes (if any)	of Containers	mple Matrix*									
Sample Number	#	Sa							Charg	Number	_
,											
					$\overline{}$						
- 001		4	5	(a)	' Y	/ \	- 1	[]-1			
	Sample Number 21115 0800 (TB) 0846 (EB) 1025 (EB) 1026 (EB) Sample Location: Pertinent Notes (if any) Sample Number	Sample Number	Pertinent Notes (if any)	Pertinent Notes (if any)	Pertinent Notes (if any)	Pertinent Notes (if any)	Sample Number Sample Number Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number Relinquished by: Part of Accepted by Accepted by Part of Accepted by Par	Sample Number Sample Number Sample Number Sample Location: Pertinent Notes (if any) Sample Location: Relinquished by: Pate / Time:	Sample Number	Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Retinguished by: Date / Time: Partinent Notes (if any) Sample Number Retinguished by: Date / Time: Date / Time: Date / Time: Charge Sample Number Sample Numbe	

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

Grang Del Ferro 11/12/21

Read and Understood By

267.07

Continued from page

Date: 11/12/21]	Page of
Sample Location: 200-I-795	5			Α	nalytic	al Req	uiremei	nt		
Pertinent Notes (if any)		•			2					
	gs.	*.			40					
	# of Containers	Sample Matrix*	0		Met					
	Cont	ple N	8260	607	4					
Sample Number	# of	Sam	000		191					Charge Number
211120815y (EB)	3	A								XGMD
	3	A		- 1,						,
0935 y	3									it .
0936y	1	A								ų .
10104	2	A								ч
				_						
V - 400				•						
Sample Location:				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										1
, ·	1					l		1		
	2	*.								
	ainers	fatrix*								
	Containers	ple Matrix*								
Sample Number	# of Containers	Sample Matrix*								Charge Number
Sample Number	# of Containers	Sample Matrix*								Charge Number
Sample Number	# of Containers	Sample Matrix*								Charge Number
Sample Number	# of Containers	Sample Matrix*								
	# of Containers	Sample Matrix*								Charge Number
	# of Containers	Sample Matrix*								
	# of Containers	Sample Matrix*								
	# of Containers	Sample Matrix*								
						Adcenté	ed by:			
Relinquished by: Date	e / Tim	e:				Adcepté	1			Date / Time:
	e / Tim	e:	rs		Dr.	Adcepté	ed by:	-d		
Relinquished by: Date	e / Tim	e:	ırs,			Adcepte	1			Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 400-C-143 WJI ENV-0053

Notebook No. D32 # 124 (c) 1
Continued from page _______.

R	1	-	7	+s	-+	^		•	1			-0.		0.0	-	4	_	1.)	اءم	ha	~		٦١	00	- 8		201	·m	4	hi		
<u></u>	OP		IN.	13	$\overline{\tau}$		rou	19	De	; 	241	ur	1 -	1,	- Se	_ 1	'	1_	11	-		3	<u> </u>		50		ا م			(/	20	
$\underline{\mathbf{w}}$	<u>e</u> 11	Ψ	4	P	2 1	ZŲ	rge	d	<u>us</u>	LD	٦.°)	ae	aı.	Cat	*a	_	1.40	494 1-4		7		1	1	347	747	1		<i>3/1</i>	`. <i>!!</i>	Lan	
<u>C6</u>	ll e	Cta	d	us	SI Y	9	a.	Te	101	_	dis	cn	an	9.	1)	02-	2.	u	Pal I	er	1	101	לי	۲'	X F U	IM	1	7	w	ill		
M	on	149	>/<	9	us	M	, 0	<u>C</u>	λF.) [MP.	-21	* C	-101	ν ·	cel	_ a	2	7 (Nq	ार	r	an	aly	126	r.	<u>رم</u>	rb	oy	G		\dashv
	1		1																												-+	_
<u>. (</u>	ali	Ьr	at	lor	5					1										_											\dashv	\dashv
I	O	1	C	ali	bn	2 4	d	'n	Sø	tu	at	ed	a	ic	@	6	t2	m	n	Hg	7.		_					\longrightarrow			_	
C	nd	uc	لنا	rite	1 -	_ c	ali	br	at-	eel_	u	>i'r	19	14	13	uş	lu	M	st	d.	S	olu	tì	Sn.								_
P	H -	c	ali	bri	He	d	US.	ing		at	cto	n	bu	++	ers		7-	-10	<u>). </u>													
7	rb	1:	·	m	4.	er	#	21			sta	_	16	2.1	3		r			2.6	24		6	-20	2 04	45	- (EX	2-1	1/3	0/2	<u>'</u>
10		3.1	ナ															J	•							_		' /				
D.		1	٠.	s (1:		\ .	<u>L</u> .	P	(ic)		(~	<u>~d</u>	(1	()	ı	Do	,	OR	P	þ	H	1	Tu.	6	NT	3	1	5	W/	(H)
*				10				2,	2.4	2	-		. 3			1		04	₩ .	83		_	91			80				13.	_	_
7							1	l	2.5		Į.	1	'			1		81	,	78		6.	- 1			.1 <u>'</u>				43.	1	- 1
3/2 9	_	l		-10	ſ	į.		!	1		1	1	1 1	į			,	1 .	•	76	1 1	6.			•					43	1	
3	-			-1	05	IC		مرا	þ.,	ص د		1	. 3	0	0		6.	60	7	16	+	<i>و</i> .	IJ		_3	.7.)			13	. 0	۵
·												-			ļ	, 1			\leftarrow													
	_	-		<u> </u>						1			_=	291	MI	le	٤_	1.				,	•				,	,			\rightarrow	
	an			-							nal	1//	1	ļ	-	ser		T	2	(nte				_ {	_67	←		4	<u>ab</u>	
2	11	17	Ш	00	<u> </u>			۷o	A	by	8	260	-	j	æ	1+	CI			(3)4(m	V	igl	5	Q	66	71			14	5
	_		11	01	<u> </u>	-				w	(Dy	pl.)				u											u			ļļ	u	
_		_	11	oa	c	<u> </u>				u	(EI	3)				u							u_				u				_ 4	_
			- 1	03	c			6	07,	1/	r -	1/.	1			ice	2			(1)IL	A	mp	er	0	200	40	١٥		•	5R	\mathcal{I}
	ļ		ì	101	ł			•			ι.		ul s		1	14	T	2		1 4	. .	1		1. 1			1	-1			AL.	sl
				10:									53.	1		1				1 -	J	1		· .7~ !	i			60:	1 1		ч	
			+	10.				VV	e /"	203	7	.ر	,		10	1 4	2.	74		1	<i>,</i> ~		71	, O F	-	Ju						
																			1	<u> </u>												
					 		 									-																
	-	-		 	 	-	-	ļ	 			-			1		-		 	 		-	-									\dashv
				 		 						-		-	-		-	-	-	-	 	-									-	\dashv
		-		-	ļ	-			ļ		-	ļ	<u></u>	ļ	<u> </u>	-	ļ	-		1	-	-	-					-				\dashv
:	ļ	<u> </u>		-		<u> </u>		-	ļ		<u> </u>	-	-	ļ	<u> </u>	—			-		ļ											
				ļ			ļ				ļ	ļ						1			<u> </u>	ļ					<u></u>					
_	בָּ	尹	al	$ \mathcal{I} $	TU	Ų.		4:	3.6	5	升			-	tal	a\	a	al	or	2	Þυ	1	ed	_			<u></u>		<u> </u>			
										Ĺ				_ '			J				1											
				1		1			†												<u> </u>											
-				<u> </u>		 	-		-		 	-		1			-			-					Cor	ntinu	ed fr	om p	age	<u>l</u>	1	
	.1	<u></u>	<u></u>		1		<u> </u>	1		<u>. </u>			1				<u> </u>		1	<u> </u>	<u> </u>			1								

Craig Ill Fermo

11/17/21

Read and Understood By

Signed

11-17-21

Date

Date: ///7/2/									I	Page of	_
Sample Location: 400 -C-143)			A	nalytica	al Requ	irement				
Pertinent Notes (if any)					57						
	ers	ix*			eta	2	}				
	# of Containers	Sample Matrix*	8260	607	1	17					
	of Co	ımple	00	ق	1/2/	2					
Sample Number	#	S			- 13					Charge Number	
2111171100C R	3	A	~			<u>'</u>				XGMD	
[101C (Dupl.)	3	A								Ų	
1102C(FB)	3	A		-							
1103C	L	A		~						4	
1104C	2	A		_	V					И	
1105C	1	A								и	
Sample Location:	·			A	nalytic	al Requ	irement	t			
Pertinent Notes (if any)											
	T.S	 *x				İ					
		Matri									
	# of Containers	Sample Matrix*									
Sample Number	#	Saı								Charge Number	
				2							
								·			
	/ Tim		11) A	ccepte	by:	<u> </u>	11	Date / Time:	
tray al Temo 11/17/21	113	ohr	S		ou	\bigcup	\m	-d-	11-	17-21/111	<u> </u>
					1						
					J						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32#121 C *ROJECT 400.EU.131 WIFENU.0053 Continued from page ____ Almontes & tony Torres PRESENT WEATHER IS WARM STANK WILL BE SALPLE USING ADEDICATED BURDE PUMP ROOM ADOUGATED TY gas TUBE: WATER PARAMETERS WILL QUD MP. 20 FIGURERLY CARROT G. 1 PTU + 141 MUBRITION 1 WITTER DO SENSOR: SATAR OG43 mm/NG : 3PT 47,10 GLACORS = W/ 1413 USEN 5TD STD: 53.0 RAG: 328 CoT# - 2004 \$5 Exp. 1/30.21 TURB MTR : 88 PAROMOTORS PH ORP COND 0,7 Qui 1110109300 20.50 6.79 .370 99 6.78 10935c 20.48 1,59 288~ 369 109400 20.51 1.362 6.40 0-72 89 Sauce S ANALYSIS Shuple # PRESCRU CO- TAINUT VOA 8260 2111010950 3.4pme Vinus 100 4/04 -952c (FB) Continued from page Read and Understood By

Signed

11.1.2 (

for Wunch

11-2-21

Date: [(.1.Z]								*		Page\	of
Sample Location: 400.EV-13(A	Analytic	al Req	uireme	nt			
Pertinent Notes (if any)											
) Le	* .×	704								
	# of Containers	Sample Matrix*	ß								
	f Cod	mple	8000								
Sample Number	#	Sar								Char	ge Number
2111010950c	3	Ą	×								
2111010950c 	3	Δ	×								
Sample Location:		<u> </u>	·	I	Analytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	ø	*.									
	tainer	 Aatrix									
	# of Containers	Sample Matrix*									
Sample Number	 # of	San								Char	ge Number
					_						
Relinquished by: Date	e / Time	e:) [A	cceptê	d by:				Time:
III) 11.1.21		1240			yu !	<u> </u>	Ju	_h	11-	-2-21	/0900
											/
							<i>J</i>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

1)- 2- 2021 Date

Junch 11-3-21

Date: 11 - 2 - 2031											Page 1 of 1	
Sample Location: 400- 6	9A-132		ı		I	Analytic	cal Requ	uiremen	ıt	1		
Pertinent Notes (if a	any)						;					
		iners	Sample Matrix*	ر, ا								
		# of Containers	ple M	ህዕዲ								
Sample Number	•	Jo#	Sam								Charge Number	r
21110209490		3	4	Q								
0950 B	FB	3	A	2								
		-				-						
Sample Location: Pertinent Notes (if a	any)				A	Analytic	al Requ	uiremen	ıt			
												
		ainers	fatrix,									
		# of Containers	Sample Matrix*									
Sample Number		(O #	San								Charge Number	<u> </u>
		-										
Relinquished by:	Date	/ Time	e:			A	dcepte.	d by:			Date / Time:	
M	11. 3.3031		1010		1	on	\mathcal{N}	um	ch	11-3	3-21 /0931	0
					1							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

ROJE	CT	4	עע	·-1	<u>U·</u>	15	0		WJI	= 61	U).	00	25							Con	tinue	a tro	m pa	ge _	<u>ب</u>	<u> </u>					
11 1	10	THE	5	췯	7	0~	- پر	TPR	æ	-	Per	sen	7	. 2	ر⊈ر	977/	el		S	NA	R	١ ٤	S۷	ر بدر	v7.	7	<i>+\(</i> 1	<u>5</u>	no	<u> </u>	_
ارد	ß	XE .	5QL	PL	£ 1.	ی اد	100	16	4	000	CAT	80	E	KΔI	Oct	ک ۱	مد	~6	. ≤	A	PC	£2		ے , ر	د ا	يع			رڪ	_ 11	į
en	A	De	Dic	ATE	7)	1,	180		ne	36.	W	ATE	7	P24	ea	v.	- TO	≥5	u	ء 2 د	_\	(3		ne	-~ ₁	-,-	~?	جر(2	رمى	_
Q	3	MP	20	. (10	مرد	٤١٠		PA	æ		6.	l	1																	ĺ
	an.	7-4	ص					†		س	/																				
+					╁┈	+	+-	+																							
-	- 0					-	+-	-	+	-																-0-					Г
121	32				-	+	+-	+-	-			 							Į.	1		ØΤ	<u>کې =</u>	. 1	15.	247	- (-
φ		0	17.4	110	6	4	3	-/14	 			<u> </u>			1				(OL	υ		· ·	1.	19	ع					_
H	`	- 3	2	(4,	12,1	(G)	عر0	cest	\$	-		-		-								ļ			<u> </u>						\vdash
925	> ·	W	/ <u> </u>	113	15/	<u></u>	5	IO		ļ	ļ	-			<u> </u>						ļ					ļ					_
vez	w	R	8	}		5τ	D =	53	3.0			<u>م</u>	- <	53.0	<u> </u>	10	14	=	20	24	45	.	€	74	7= 1	1.36	2.0	<u> </u>			
																													-		L
																															L
PARA	NE -	re	دے			7	enl)		CC	<u>س (</u>				0		8	11		ت	R	P_	_	u	Q E	_			5	<u>ん</u>	_
1110				1		21	7-	\int	4	3.	1	1	•	3	5) ب	55		6	1			0.6	3,	UTU		14	66	9 c	٦,
1 1		30		1			, הׁ (.				1.70	1	3, ((b . (۵	1		3		T	ارى	1	19	ſς.	Sa	F
		135					.70		—	3,		77		3.0		7	0,6			2						.70		1	9 ک		I
		.00			1	+	7		+-		1.	//		· ·			,,				1			<u> </u>	٠ حـرو	, -		-			F
				 				+	-		 	 	ļ	<u> </u>	-				 			-									-
					-	-	-		-	+		SA	10	,	-	-					-		-	-		-					
		1			+	_			-	-	1	1	í	1	}					<u> </u>	,	-		ــــــــــــــــــــــــــــــــــــــ	11				AC		H
and							4		7	├ —	FE	بح.		_	 		Pen					-		27	1	-					-
1/10							8,			\downarrow	-	CE	4	1	<u> </u>		3	40	mc	Vv	* ~	·	2	2	76	-		14	15		-
	-1	44	<u>2c</u>		V	QA	8	100	X EP	\ \)_	ļ		1 、		-	-	ļ	-	١, ١	-	ļ			/ \	-	-	-				-
							1			-					ļ	_					ļ			ļ	-		ļ	-			
																								ļ		ļ			ļ		L
																															L
						1	-																								Ī
-		1				-		+		 		+	 	-					+			\vdash				—		 			T
	-			-	+	+	+	+	+-	+	-	 			-	+	 			+		-		-			<u> </u>	<u> </u>	<u> </u>	-	t
	-	-				-	-	+		+	-	-	-		-			 	+-	-	-	-	-	-	+		 	-			+
		-		-	-	-		-	+	-		+	-	-	-	-	-	-	-	-					-	-	-			-	+
		-				+	-	+	-	-		-	-	-		ļ	ļ	_		-	-	 		-	+	-	-	-	-		+
		<u> </u>			-	-	_			-	-	-	-	-		-	-			<u> </u>	-	-	<u> </u>	-		-	-		-	-	1
					_						1_			ļ		ļ					<u> </u>			_	1	<u> </u>	-		_		\downarrow
																												<u> </u>			L
		1	1		1	1		- 1		"					1			1	ļ	1		1	1	0	-4:-·	ıed fr	.m r			¥	

Date: 11.1.2 (1				Page t of\
Sample Location: 400. JV. 150				A	nalytic					
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	200 00 N DOC							Charge Number
211101 1442 C	3	A	×							
1442c (FB)	3	Ą	×							
					•					
Sample Location:				A	nalytic					
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*		:						
Sample Number	#	S								Charge Number
,										
					_					
Relinquished by: Date			In (Accepte	\	_d	- -	Date / Timer2-2 / 0900		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

	7				•	R	90	**	رج		Z/vc	0 =	. «	۷-,	_ ,	١. ١.	4		٠.,		. \	. 1	,		. Pa			-K.	٠,	ale.)	\	
W.1													i !						1 1			1	١ ١	1			ì	- 1		1	- 1	
 :•}																														-7.		
لامار. <u>* ال</u> ا	1	لوحا	<u>, u</u>	.5.	2		20	<u> </u>	25		<u> </u>	,		ita	<i>"</i>	<u> </u>	,			4	^^.	12.	· ~ .	C	12	2	<u>ښ</u>	7		ν ₅		
DAU.	-10	્લ	^	us		D ,				16.	40	- 4	10	عارد		MY		~~				410					٠,	•				
\pm	+																															
00	_ ı							λ.		` ~		. 1	L -		\	15.							دري	بد :		64	w-1	79	7	6)		
									1			_				'	١ ٢												• /			-
5 43		1		ì	1	_	1	l i				1	1	l	1		1															
-	- 1						_			!						l	1	į		,	, ·	_ ك	۵\	רום		c	-0-	11)	21			
ていり:		نغر	m	محدو		٦,	0		ح	30.	7.	(O)	-	10	10E		¥ . Le	U			,	- 1	,,,	21		_	41	• •	<u> </u>			
-	+			-	_						_					Δ.			-				بب	2 م				7	n.•	(c		
an	7		_		T	ľ i	7-51			<u> </u>		-	ろり		-	9		_		110				. 41 . 41	3		-	<u>, </u>		2.0		
21110				1			22			53			N ',	Щ			25		") /E			_	.34								
			38		 		2	1		5 . =			,				27			4)				. 3						250		
-		د ا	40	A			2			2.	<u>ડ ન્</u>		-			1.	2 4]					•	. 5	၁				3 0	27.7	3	
	+										_			. <																		
	\dashv	7				-					೨	72	781																		AB.	
SAM	$\neg \neg$			_	-			5:5	_		ļ. <u></u>	-	-		وعوه		,			<u>07</u>				-	_		79				プト	
51110:						100	8	1 8	36	6					Zq) He	÷1		23	140	1,	U	6]			~	7	2			3	
			3 7			no	n	104	· io	F	12)				-			-		 						ļ ,				<u> </u>	SR	
			14				1	C;)	,	4	l				TO		 		•	71	1,	VPr	_			,	25 0				AL	
			15		1	1		,		}			-		13				•	77	1,	-		-		-					3	د.
			7 ما					بمد	1	•					٠,					<i>y</i>	1)							,			1	
	- 1		7 7			1		-che	1	1	L _		-		-				`	1)	,						10)			-9	
			87					16	į	. •		1			,		-)				 		<u> </u>	1	35e	1		5R	
			13		T	Pci		7	1	1	AF		ļ	-	 	-	\vdash			7			—	 	-	-		0 1			<i>D</i> (4	ر ا
			50		1	Ι.	1	cs	,	00	W		-		1 -	1	المح			<i>y</i> 3	ł	Γ.		1				•	-	-	.	
)	T	-		1	n		1		-		-		1.	02	1	1	371:	1	1	, ,	 	<u> </u>	-		1				
			٦:		-		}	003		1			-		T	7	284		-) 			1 1	-			-	,			,	<u>) </u>
			3	I		Cra			•	i	23			4	14) 10)	400	40.			Dız								,	-		,	<u> </u>
	-	/ 35	4) .	15		Su	<i>اب ن</i> ح	Ha_	7	20	20			7	الما	*rt	the	-	-	D 2	80 r	77 K	*\ <u>\</u>			-		 `				,
				-	-		-			-		-			_	-			+		-	-				+	-	-		 		
		**		-		1	-			ļ			+	-			-	-	 -	-		-	\vdash	-		+-		-				
				+			-									-	-	-	-	-	-	-	-			-	-					
_	\dashv		-		-	-	-				-	-		-		-	-	-	-		-		 	-	-		-	 	\vdash	-		
			<u> </u>								-	+	-	-	-					-	+-		+	-	Co	ntinu	ed fr	om p	age	1	L	
. 1	- 1			1	1				1		1						1				1		[- I	ν ρ	uge			

Signed

Date

Date: 11. 2. 2021]	Page of
Sample Location: Ben-3-182		Α	nalytic							
Pertinent Notes (if any)										
	Şo.	*>				স		Dionens Furing		
	# of Containers	Sample Matrix*	3		00	Resticious	Herb: cidus	ڏي		
	Cont	ple N	V04	رما	82700	۶۲.	b; c,	2003		.1.6
Sample Number	# of	Sam			Vo	Š	The	₹ ()		Charge Number
	3	A	9	1 515						
21 1102 1342 B	3	-	7							
- 1343 B FB										
134H B				4	١.					
1345 B	2		-	. –	7					
1346 B	1					٩				
1347 B	1						Ø		***************************************	
134)8 0	1							9		
Sample Location:				A	nalytic					
Pertinent Notes (if any)							<u> </u>			
	50	*.				•				
	ainer	[atrix	n	S):	n	20	ہے	3		
	# of Containers	Sample Matrix*	9	706	13	2)	7.2.	Ċ		
Sample Number	Jo#	Sam	à	Phynol; CS	meta 15	No2 1003	Cyenide	5wl P: du		Charge Number
-		A	9							Charge Number
211102 1349 1	'	1	_ `							
1350 B	<u> </u>			Ι						
1351 3	2				Þ					
1325 B	١,					9	1.			
1353 B						.=	A			
1354 B	1							W		
							d by:	1	1.	Date / Time:
11.5.3031		15 30		1	on 1	JV	un		1	3-21 /0930
				j						
				0						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

11)4 21 Date Signed umch

11-8-21

	Date: 11 4 21]	Page _	of _						
	Sample Location: BIM. 8.418		F	Analytic	al Req										
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	BALGULL	(LNONA										
-	Sample Number	 	S]		 			١	arge Num	ber		
\setminus	2111040730B (TB)	3	A	X							\/G	MD			
\bigcup	-0131B (1B)	1			X							<i>r</i>			
\setminus	101013	3		X											
\downarrow	- 101113 (FB)	3		$\langle \rangle$											
	- 1012B	1			V										
1	(613B (FB)	(1		X										
Ī		,									ت	/			
ľ	Sample Location:	·				Analytic	al Req								
t	Pertinent Notes (if any)				41										
		# of Containers	Sample Matrix*												
	Sample Number	<u> </u>							<u> </u>		Ch	arge Nun	ıber		
-															
-															
-															
-															
-															
-										`					
		ļ <u>.</u>				\ .									
	Relinquished by: Date / Time:				Adcepted by:							Date / Time: 0915			
			₩			 									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

11/3/21

Date: 11/3/21										Page of
Sample Location: BM · 17 · 443				A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)						<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>		7		
	rs	*x		•	2/2/	A	703	100		
	# of Containers	Sample Matrix*	0	607/ Bro	-3N	8	j	Perchan		
	f Col	mple	82.60	100	ン	13	1	g j		
Sample Number	#	Sa			1					Charge Number
211103095013	3	A	X							XGMD
0951B (FB)	3		\times							
095213	1			X						
095313	2				\star					
095413	7					X				
095513	1						X			
015613	1	7						X		
Sample Location:				A	nalytic	al Req	uireme	nt		,
Pertinent Notes (if any)										
	ers	ix*	5							
	ntain	Matr	ラ							
	# of Containers	Sample Matrix*	Noz Nos							
Sample Number	#									Charge Number
21110309573	\	6	X							Xano
	_									
	1.5									
	/ Time			1	1	scepte	d by:		11 .1	Date / Time:
11/3/21	(w)	1/0			Ou 1	/ /	Jun-	·m	115	1-4 / 0/10
							/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Ori Signed

11-11-21

Da	te: 11/10/21											Page	of(
- 1	nple Location: 31	4.22.576				A	nalytic	cal Req	uireme	nt			
	Pertinent Not Sample N	es (if any)	# of Containers	Sample Matrix*	626016	LL NONA						Charge	e Number
21	11/0/2503	(TB)	3	A	X							YGND	
1	1251B	(13)	l			X							
\[-	144013		3		V	. •							
_	144113	(FB)	3		X		,						
_	144213		(X							
1	- 1443 B	(FB)	1			7						1	
San	nple Location:					A	nalytic	al Req	uiremei	nt			
	Pertinent Not	es (if any)									E		
	0.1.		# of Containers	Sample Matrix*									
	Sample N	umber	++									Charge	Number
		17g			-								·
												·	
<u></u>													
									,				
	Relinquished by:	Date	/ Time	· ·	T	<u> </u>) ^	Acepte	A have			Date / Ti	me
	W	11/10/21				1	gu (, deepte		uh	-		0930
						V			,	-			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Man a Area (con e

Read and Understood By 11-2-21 Jon W umch 11-3-21

Continued from page

Date: (1 - 2 - 2]	Page	of
Sample Location: 6tm - 24 - 96	9			A	nalytic	al Req	uiremer	nt			
Pertinent Notes (if any)			8	6	(
	2	*×	SNOO	00	(
	 of Containers	Sample Matrix*	ō	7	7254						
	f Com	aple l			4					X	6mD
Sample Number	# 0	San									ge Number
2/1102 1300c (TB)			か								
1301c (TB)					X						
14310			K								
1437 c (FO)			×								
/433C				×							
14340					X						
1435c (FB)					k						
Sample Location:				Α	nalytic	al Req	uiremei	nt			
Pertinent Notes (if any)											
	8	*									
	ainer	fatrix									
	 # of Containers	Sample Matrix*									
Sample Number	#	Sarr								Char	ge Number
	-										<u> </u>
	-										
										<u></u>	
							-				
Relinquished by: Da	te / Time	L e:				cepte	d by:			Date /	Timę:
T- R 11-2.		153	20	Y	on		lun	d	11-	3-21	10930
20		_			y				, ,	· · · · · · · · · · · · · · · · · · ·	7
				10						,	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

37

Continued from page

M.	٩٢٤	5	lug.	\ <u></u> 05	ð	D.	ڼ۸	Hali	1055	en	9	(ez	en.	.\	, و لر	H	~ (· \	z /	oce	2.0	-1	<i>3</i> '	nor	M	_	Thi.	s . !	nel	l, w	ill	
ba	1	bur				Squ	190	l	09	<u> </u>	- 6	<u></u> _9	دلهع	دما	۶9	Ple	dele	1	bor	љ.	S				ill	h	-	gol	وركم	درا	usin	4
9		w			2	1 1	sch		<u> </u>	No≤	ع ـ	<u> </u>	ام/	۷	90	edid	1	bei	φw	مأه	∕S	m,	11	ba	W	on	for	cd_	72	نمر	۵.	\dashv
1 1	KŦ					امد			V. Ke	Nel	. که	-	9c/0	0>	٢.	•											-					\dashv
No	. 9	KY	٥٢	O	0 1	ااند	- pr	- 4	والدود					~~~	,																	_
C.	ازل	Ţ.		5											-						L											
Pl		Cal		رزی	~	Och	70	~	8.	22	درج	(1,7	١١,)																	
1 _ 1	w.	ıÇi	1	4.	上	۾ ُ		,	_	1	ע		w_	57	D	25		٥٨	•													_
To	لمنط	ik	1 1	m	۲.	#	J0	_) —		ar						4	80	٠,٠	5	. 5ª	1 1	170			۶4 ۰	70	oqu	15	Ex	1.9	24
D		1		(1.		\			_		- >			T	/ U4			Λ	11		-		1		,			_		, ()		\dashv
1)	رج/۱۷	W/6	. 15 101	1+1	Me)			اعدا	ир (2. (·()		C		15	(m)		1	H 78				Į.) (ג דר	KU	J			7W 310			\dashv
2)	<u> </u>		- 14	1	1				1	2.					17			7.	69				1	36					S 10	-10		
3)			140							١.				101				1	પા	Į.			1.4							-		
														•																		
						-							5	m	us					_	1		-			1						
	imp			_				HV	112	s				12	2	ورب					Na	1	1			/ 8	Ţ				196	_
	1/0.		50 56				106	1 6	70	1240 F13	1			HA.	87	Te	<u> </u>		-(3)	10 ~	<u> </u>	4			77	95				Alk	
			<u>9 e</u> 57				(ali	7/	Bro	1	i				7	تع			(//	11	A.20	2			10.	- 350	1			50	
			150					,		2-13											٠.					, ,					<u>-</u>	
							,															_										
Li	tio	11	M	7.	3	0.0	25																									
																									-				\square			
T)W	-	1	ر.	5 0/											-	 	<u> </u>					<u> </u>									
					20,																											
			-			_															-			-								_
					_														-												-	
									-	-																			\vdash			
					-																											
																									Cor	ntinu	ed fro	om p	age			

MSW

11-3-21

Or Wound

11-4-21

Date: 1\3/21									F	Page of
Sample Location: BM. L. 404				, A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	৩ শহন্ত	607/1300						Charge Number
-211103145513	3	7	V							YGND
1456 B (FB)	3	($\sqrt{}$							1
1457 B	1			V						
1458 B (FB)	1	1		1						1
11003 (64)	1-									
	-									
Sample Location:					nalvtic	eal Peg	uireme	nt .		
Pertinent Notes (if any)	T	I -			marytic	ar Roq				
	# of Containers	Sample Matrix*								
Sample Number	#									Charge Number
	+			_						
	 									
Dalimatish 11	/ TE:				1		11			Data / Tr
Relinquished by: Date 11/3/21	e / Time	<u>535</u>	/	C	n	Accepte	d by:	h	111	Date / Time: / 0920

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT RL m 32 - 543 ENV-0020

Continued from page _____ •

\mathcal{Z}	٧ /	رهاد	no.	rse.	1	Q.	de	۴.	B	766	ow'	5 G	٠ ٠ ٠	200	۷, ۱	ماء،	<i>}</i>	,,	5 6	١٠٠	٠ ٥	nd	C	-	7	٨.	s	ζon	1 W		be	
Qu-	~ ~	۱,	~	\ <u> </u>	PM	کعا	u	·S'-	<i>ا</i> ح	مہ	とア	47	e •	54 5	12.	.	٩٠,	مو	٩٠	v 55	54.00	مل	۲:1	, <i>b</i> e	<u>.</u>	4	4	2	۶۱ د	25	_	
	•		1	1		1	1		-	1		1	5		1			_					1	si.,					- 1		1	
																								15								
•				1	un	1	- 1	- 1		1 1		l .	1	1	ı	1	•													\rightarrow	•	
		,																														
<u>9</u> م	<u>ء : [ب</u>	نحن		Par	mi	ter.	<u>s</u>																									
64		٠ ج	. 2	2			8	.⊋	5_																					\rightarrow		_
<u> 5e</u> w	₽:	- 2	1.	5			2	.).(0				<u> </u>																			
Cor	<i>O</i> :	⁼ L	02	1				೦೨	4																					_		
Tv.	\mathcal{B}_{i}	~ 0	۶. ع	b				Ο.	41																~					_	_	_
				-								-																				_
Ic	ندن	6)	P.	O.K	e.br	52							7-8	l		1	5							re t	15	to	<u> </u>			_		. •
Tir.	vc.	- :	\$11,	101	4	12	B					377	101	15	52	B								64	10	, 00	, =	17		_		_
49		z '	8.	<u> 37</u>							1		4 6	1 -							-					. 66		_				_
Fem	R	:	23	a								ર ર	1								ļ					STD	ינ	4.	62		_	
	l				s) (: 1						J 0,									-					20	11	4. 9	5			
sus	B	3	D. k	<u>م</u>	14~	<u>`</u>	•		_ ~			0.6	27	(N	twist											.67	7	916	77			• .
P-14:	Pec	5 -) .e	3 - ,	0.	23	्रथ	٦. ३	دّ)	l	1	6 .							ļ						Sup.	4	11,	15)	-		-
54(०उ	- 5	ļ	-	-							<u> </u>	1- 6	79	2						-											·
				-								-	-																		\dashv	
		<u>u</u>	ļ	<u> </u>	-					_	A	Wb	LE	1							ļ											
	~8 X			-	-	1		ندر	_			-		ł	1	cry					e e j	T					70.			_	70	
	01/4	į .				Vo.	- 1	82	<u>lbo</u>				ļ		TH] H	٠,			<i>3</i>)') o c	1 U	; 6)			2	ንብ	5			Q.L	5
	- 1	1	1		ļ .	no	1.6	na	Ser.	3)	_	 				·											-)					
	ļ	1	3	1	ļ	১৫	MO (1,52	De l	(00					T(e.			•	$\langle \mathcal{D}_i$	\ <u></u>	2m	72	• •		1	o 3	6.5)	_	20	
	1		2 3			,, 170	<i>n</i> :	, L				_	<u> </u>								,	,					,				3	
	<u>L</u> .	1	58.	T				Ι.		6)		1			',	ļ <u> </u>				(d)			-									
	1		13	1				82		O					1,					(5)	}							1) D			AL	5
			55		i	l	!	1713							•					-	125	l	491	3))			"	_
	1	(6			l	• •	5m			1		-		15					CO	Τ	1)	<u> </u>					3		\dashv	-	
			57		1	i	•	سراع			I				• •					0	7		٥.								"	
		15 3	3	-	1 1	υ σ <u>:</u>	YN.	3 %	73,	-3.	A			I	72	H 2'	201			(i)	520	w	40	C				1			"	
-			-	+	1					-						ļ					 									+		
-	ļ		-	-	-					-		-						7-	0	7 :	<	-	61	-								
			 	-	-						-			-	-		-		_					-	Co	ntinu	ad fr	m r	age			
<u> </u>						<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>]				<u></u>	<u></u>	<u> </u>	<u> </u>	<u></u>	COI		ou ire	ин р]

Read and Understood By

11.1-202) Date

Sianed

Signed

11-2-21

Date: 11-1-2021]	Page _ \ _ of \
Sample Location: Run. 32-543				A	nalytic	al Requ	uiremer	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	706	(09)	NOW 0 45	\$vos	Chions) MK			メらかむ Charge Number
2111011447B	3	\mathcal{A}	7	٠						
1448B FD	3	1	7							
1449 13	1			8						
-1527 D	1				Y					
1528J FB)				ソ					
15 2 9 B	η					£				
1555 B	O'	1					9			
Sample Location:				A	nalytic	al Requ	uiremer	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	705	Richlareke	100 /NO?					Charge Number
211101/55673	1	7	8							
7557B	-	1		9						
1558B)	1			\$					
					-					
Delin aviat - 11	/ Tr:				\	Λ.	1.1			D (/ 77)
Relinquished by: Date	/ Time	الم:)5		ru (ccepte	d by:	h	11-:	Date / Time: 2-2 / 0906
				10	· · · · · · · · · · · · · · · · · · ·					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

11-1-303)

Read and Understood By

Continued from page

Date: 11-1-202)		-							1	Page	of
Sample Location: BLM-33-571 Pertinent Notes (if any)				Α	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any)								-			·
	ers	rix*		7		,					
	ontain	e Mat	8	4							
	# of Containers	Sample Matrix*	700	LOW A						XG	
Sample Number	 -	<i>S</i> ₂	_	7						Charge	e Number
211101/5023	3	A	2 2								
1503B	3		7								
1504 B)			9							
/505 7)			2							
		·				. '					
										-	
Sample Location:				· A	nalytic	al Requ	ıiremer	nt			
Pertinent Notes (if any)											
	Į _K	*>									
	tainer	/atri		ı							
	# of Containers	Sample Matrix*									
Sample Number	ю #	San							}	Charge	 e Number
	-							,	1.		
											• .
			·	· · · · · · · · · · · · · · · · · · ·							
					<u> </u>						
Relinquished by: Date	/ Time	Ŀ <u></u>) A	cepte	dby:	_^		Date / T	ime;
11.1-303		ريرار	~	To	ru	III	tu	-d	11-	2-21	10900
				1	- V						<i>t</i>
				1	_		/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sianed

Continued from page Read and Understood By

$\overline{\mathcal{D}}$	20	17.	Noc	se.	a	80	صرة	LB	us	0W	3 Q	حو	500	4. 1	We	471	**	15	2	اوم	- 0	مرا	ر	001	Τ.	\ ::	\$ 7	-01	•••	w;\	7
pe	6	25	e D	ar	7	54	~67	nd	u-		5	_	<i>£</i> 7.	47	e '	عرج	ter	٨,	ه،	مجو	Qr	(35	ere	S	، لم	4	38	16	5. ,		
3 4	-6.	u_	pre	بود	æ	Sc	۲ ۵	4	25	2 (, 2;		Bu	ppr	•	SeY	- 🔊	\ -	3 φ:	٠, ﴿	300	1 5	tat	she	4	જ.	62.	••	م		
																											70				
<u>) 5</u>	د -	.0_	~ :	m	بر ،	ruc	ow	دمع	صر	m	<u> </u>	ρı	25	us	C	حرد	00	G	,2		ι	1ક્લ								 	-
														ļ									ļ								
34	ند	عند	ed	Pe	a	~)	ur:	\$																							
<u> Te</u> r	P	3 3	21.9	3		ļ		31	8																	ļ					
P4		• (8.	34	ļ	<u> </u>		8.	40						ļ	ļ															
م	0	*	<u>م</u>	35	!			9	98																						_
<u> 101</u>	0	=	φ <u>.</u> ·	419				0	.5	2																					
			<u> </u>																												
In	<i>:</i> 7:	47	Penr	N	etec	2				-		5	202	1	200	mu	ter	s						0	L	- 3	-0				
Ti	m	2	311	10)	5	97	•						211	10	15	39	B						-		6/1	اره	00	=))		
64		×	8.	43									۶. :	5)					ļ <u>-</u>							70	27	5	⊋ಆ		
Km	2	=	31.	3	<u> </u>								٦١.	8													510	= 4	<u>-1.la</u>	a	
201	0	5 (19	8 v	3)	<u> </u>							10	03													RDG	<u> </u>	4.5	5	
<u> TU</u>	В	=	φ. γ	8 1	-4ي	vis							٥.	27)													L87	= 0	गे१ठ	77	
949	re	=	7. 6	a .	10.	016	[3.	ک. د	c)			6.	95.	9	.٩	3									(e~b		4	כו	
3#6	-81	=).ව	-	10,	Ge		<u> </u>					4.	55.	9	٩٦												ļ			
		<u> </u>	-		<u> </u>			ļ																				ļ			
											<u>.s</u>	91	61	E	\$	ļ	ļ											ļ	<u> </u>		
<u> 54</u>	~6	16				V	10	ند	5			-{	re	w	ve.		ļ	C	af	منه	سد		ļ	1	<u>. T</u>				La	B	
<u> 31,</u>	0	15.	2 12	\$	-	100	\ \	4	3	0			1	حدا	14c	1	<	3)4	, ot	2); e;		ļ	2		35		ļ		1	
-		. 15	32	3		15		,,	Œ	8)				87					1,				ļ		31				.	3	
		. 15	3	3		pe	W1	2	<u>_</u>		:			Ta	-		(\mathcal{Z}	L 1	me	26 C			2	σ3	જ			S	2.2	
_	-	15	24	3),		3,	Œ	3				4					11					ļ	<u>'</u>)		<u> </u>		,	
<u> </u>			1	L	ļ																										
	<u> </u>	-				ļ	ļ	ļ																ļ							
		_		<u> </u>			<u> </u>	ļ		ļ											ļ										
	ļ	<u> </u>																													
																		I	0	, :	5	50	7								
				_	ļ																										
	_																														

Date: 11- 1- 20 21										Page of
Sample Location: BLm. 32- L32				A	nalytic	al Requ	uiremei	nt		
Pertinent Notes (if any)			-	7						
	ners	trix*								
	# of Containers	Sample Matrix*	Uag	Nown						
Sample Number) jo #	Samp		20						Charge Number
211101/52/13	3	Δ	2							Charge Number
15223	3	1	2							
15233)			2						
1524B)			r			_			
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	uiremei	nt	Γ.	
retiment Notes (if any)										
	iners	atrix*								
	# of/Containers	Sample Matrix*								
Sample Number	/jo #	Sam								Charge Number
					-					
	-									
Relinquished by: Date	/ Time	- e:		/) , A	¢cepf&	d by:			Date / Time:
11-1-3-2)		1629	_	1	m		lun	-h	- 11	-2-21 /0900
				11	····	/ V			1	/
				V)			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT BLM-36-350 WJI ENV-0020

Bot Tuffs & Craig Del Ferraro present. Weather is clear & warm. This zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Ren. in use. Probe #2213. Surface checks performed on probe prior to sampling. 30 Min. Equipment Blanks - Carpoy 65 Analysis Preservative Confaine 21110312554 YOA by 8260 ice/HCL (3)40ml vials 2596 ritial Parameters Moter ID PH/cond - 60 ime - 21110313254 ime - 21110314504 PH - 7.83 Temp - 21.9°C Cond - 1203us/cm 7.75 22.4.4 -44.27 -1191 uslem Turb - 0,44, NTU'S rb -0.50 NTU'S post - 7.03/10.04 (28.0°c) pHpre - 6.97/10.02 (29.21) PH post - 6.98/10.02 DTW - NA Buffers Lot DTW + N/A - probe sticks to casing Atmos-12.53psia 7 2108656 Atmos- 12.51psia IDW - 1/2 gal. 10 4103681 9/22 Samples Preservative Container Lab Analysis ice/HCI (3)40ml vials 21110313504 VOA by 8760 u (Dupl) 607/Bromacil u (Dupl) 13514 ice (i) IL Amker 02004019 13524 SRI -1420y Runs)12.5° 2) 12,64 4) 12.65 2.64 32.78 32.68 32.64 32.76 32.57 32.64 12 62 12.63 Continued from page

Cray Del Ferro 11/3/21

Read and Understood By

Date: 1 3 2 1	.,,			CHA		<u> </u>				age	of
Sample Location: BLM-36-35	50			A	nalytic	al Req	uiremei	nt			_
Pertinent Notes (if any)											
	g	* *									
	taine	Matri	29	7							
	# of Containers	Sample Matrix*	8260	607							
Sample Number	# 0	San								Charge	Number
211103 1255y (EB)	3	A	-							Xan	ND
1350y	3	A								u	
1351 y (Duple)	3	A								ų	
1352V	1	A		~				·		u	
1420y (Dupl.)	1	A		V						h	
Sample Location:	•			Α	nalytic	al Req	uiremei	nt			
Pertinent Notes (if any)								·			
	2	* *		•							
	1 # of Containers	Sample Matrix*									
	f Cor	mple									
Sample Number	#	Saı								Charge	Number
											-
	e / Tim) f	dcepte	1		1, .1	Date / T	me:
Crarg Olterno 11/3/21	15	25/	YS .	$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	ou 1	<u> </u>	Jum	-d	114	-21 /	0910
U				- $+$ $($)						

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

O ROJECT	BL	M -	36	,-6	10		NJ	I £	N	1-0	00	೩೦		_				No:	t ebc tinue	ook d fro	No. m pa	<u>بلا</u> _ ge	04	#/	<u> 28</u>	ίγ	}_	
ob Tu	ff s	Σ	Cro	ug 2	Del	Fer	rai	0	pre	Sex	/ .	4	Jea	the	r i.	5 (lou	ıdı	ε	(0	ol.	4	his	- 2	OM	2 0	<i>[וע</i>	/ ke
ampled	us	ing	<u>3</u> 5	st.	eam	c	eai	neo	٤	tr	ple	ri	nse	d,	st	ain	les	s	ste	æl	_Sc	2 M	ple	2 1	иро	5		en,
use.	Pro	be.	# 2	43	Su	£a	ce	ch	ec	E 5	pe	rf o	×M	ed	DV	7	ro	e j	ori	٥٢	to	Sé	m	pli	ng.			
		_									` 			ļ											U			
			<i>,</i>	<u> </u>	30	2/	Λį	Δ.	<i>Eq.</i>	uρ	<u>M</u> e	nt	3	lan	<u> </u>	_	Ca	ζþ	مبر	6	,2							
ampl					_	A	nal	ysi	5		P	es	er	vat	ive		_(or	Ha	ine			4	1			Las	
रा 1105	090	OY	-		VOA	Ь	4 8	26	b _			ice	1/	CL			(3)4	Om	V	ia	5	25	96			41	5
 	4			1		ļ			-		_	1:		0									1					
pitia				- 1	1	_		-				Ti,												1				
ime-				093	27								Γ		1 '	1	10	236	ρY			I	1	oN	-	6	D	_
H -	8.				-							H		- 8									irl		\ \			
	20				+-		1		-			ew						1				u		i 1			4.2	
				LSC					-		\preceq	ON	d -		03	36	u s	! cr	n			-u				1	5.	
				טדע'			ر٠.										NT					u			1	1		145
H pre-						٠.٦	4			<u> </u>	;	1 11	П	1			r		-	7.8	رc)	ų		<u>ر</u> ې	P -	- 4/1	90	121
H post	- 1	10	110).DE	3 .	,	L					L	II.			, .	10	.0	1	R	u f	Γ.	_	1	1		5	- X
Hugar	- N	A	pro	be s	Hic	23	To	CC	511	19							Ο -			<u> </u>	477	er			+	,	9	123
Hmos	-	4	1	7510	4							H	m	25 -	10	, 7	8 p	<u>sja</u>							65		1 1	
		_			 	 						11	ju	/ -		7 5	aľs					0	40	03	G B	/	7.1	122
								-			<	m	1,															
3 2 2	,					4		48	\ _	-		ve Ve	_	_	1	10		1	7 21\7	Li				đ	-		La	7
211102	_	20.		,	1/0	A :	1	1.0	1 -			ic	21	40	7	VE		_ -			viq	7.	_	59	ŀ		AL	
	10			-	6	7	R.	- 11	ci			u	10								rbe						SR	1
		3 ≤				7/ * u	(A	\ S	*									LI	16	V		1	UVI		116			
	10	7-	7		1	-	LIV	1.9	7			1	u											u				
					1																							
& Sav	~₽	ء م	L	ver	<i>a</i> \	jer	· \	C	or	at	ec	1	 															
	1	127					7																					
2uns	1) 3	33	ור		2)	33	3.6	0		3)	3	3, :	5 3															
	10	o.	28			1	.:					٠. ٥	1															
	10	0.	24	t		100	b. '	18			10	o.	17															
		33,				3	3.	52	<u> </u>		3.	٤, ١	1 7															
					-		_	ļ	-																<u></u>			
								<u> </u>	<u> </u>													Cor	ntinu	ed fr	om p	age		
Λ·		_												Rea	d ampo	Und	ersto	ood E	Ву									
traig	Do		١.					<u>† 1</u>	١	12	1				K	. 1	1		\.	w	(-3	. ")]
V - 7	مرير	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	ىب				-	· L	, Lo	Date	1	***********			D	W	V١	ر Sid) U ined	···	-0			-	+	U	Date	<u></u>

Date: 11 2 21										Page of
Sample Location: BLM-36-610	>	•		A	nalytic	cal Req	uireme	nt		
Pertinent Notes (if any)										1
Sample Number	# of Containers	Sample Matrix*	978	L09						Charge Number
2111020900y (EB)	3	A	~							XGMD
10004	3	A	~							ų
10014	1	A		V			,			lı .
1035y (MS)		A								u
, ,									-	
					_					
Sample Location:				Α	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	Š								Charge Number
			,							
					·					
Relinquished by: Date . Cray Del Ferro 11/2/21	/ Time	shr	S		m	gcepte	d by:	h	11-	Date / Time: 3-21 / 0930
				U						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

JECT.	Hs		A	Ţ	9		占				T	L			Ш.	L		رار	بر الم	=		<u> </u>	11	2 1	2,	100	, (4	5 211	60	
nplea	+ + s	٤.		aig L	_	1	le:	rra	1	Pr	e se L		000	ea c	True	,/	50	mo	1	Lui	60 5.	6	ien		n	us	٠.			
nplea , ba#	221	2) ()	1		216	4	ns	eci		Far Far	- M	,	20	1 2		bo	P	را ٥		to	S	am	pl	in	ĵ.			<u> </u>	
, 20 71	× × 1	3	Ju		-				ì	1	- 1		!			L.							_	1			_			
					1	30	N	Ur	٤ .	qui	Pn	nen	#	BL	an	H.	5-1	Ca	ch	04	6	5		1	_	_			-	-
mole					1		nal			7	<u> </u>	ese	· V	ativ	ve_	\perp		on	au'	Des	2			ot	•	-		ab		4
1103	1 1	001	1		V	oA						ic	e/f	4 CI			(3)	40	ml	vi	als	-	25	59	6	_	41	<u>'</u> \$		\dashv
1100								J			1		<u> </u>				_			-		+		+	-	\downarrow			+	-
aitia	Pa	Ca.	net	ec	5						_			ipa		\perp			_	+		-	M	_	_		_		-	\dashv
ime-	2	1110	3 (9	50	Y	_		_		-	- -					$\Pi \Pi$		10	32	7	-	1		1	i	-	60		\dashv
	- \$				_			\rightarrow		_	_	-	P	H	+	. 6	0.1	1_		+	-	+		u	rb		1	41	12	4
mp	<u> </u>	19	9 °C	-	,			_	_	_	-	+	الم	em	<u> </u>		20	.3	<u>U</u>		_	\perp	-	+				44		
nd	- 1		- 1	1 -	- 1	1	_	-		+	+	-	(one	<u> </u>	1,	07	0	us!	CY	N	-		+				200		
- L	<u> </u>	1.2	5,	TU	; s	,_				+	-	-		4	D -	1	1 3	/ الاد	77	~	(1	2 4	را ال	4		10T		111/3	30/	21
pre		1.14	1	0.1	1 (14	.7	c)		-	-	-	P	**If	16.	1	1.0 - 7	D	2 P	.U3	.0	7	14	+		-7			.	- 1
1 00V	_	it. Uc	メルハ	0.1	12			-+			-	+	Ī				N		ا ا	10	•	+	Buz	ifa	75		0	-	3	40
TW.	- NI	A -	PA	oble	\$	tic	KS	70	Ca	SIN	9	\dashv					19		10	<ì (-				108		5	ali	23
mos.	+13	2.4	5	251	<u> </u>					-		$-\dagger$					ij.			500			18		1	030	1	1	9/6	1
-	+-		-										\rightarrow	-4	,,,,			7	4	•										
	+										4	2	20/	0 <																
+ + 1	-						$\overline{\Lambda}$	٦.	عاد		1	50	Ser	7/0	Live	2) DI	.ta	ine	<u></u>			0			La	<u>b</u>	_
amp		0.2		4.7	£	1/0	A I	<u>a</u>	87	60	1		ce						-		V	_ ,		2	59	6_		AL	کہ	_
1116	- 1	ł.	1 1			60-	1/6	10	m	7				Ce				- 1	/	Á	m	- 1	- 1	20 (140	116		5	21	
	+	03	1				4/ 4-																		-					_
																									-		<u> </u>			
															_					-					 	-				
																							-			-				
						<u> </u>								-						-	<u> </u>		 		-	-	-			
								-		-										-	-		-		-	-	+-	+		
			1				-	-	-								-		-	-		_	-	-	+-	+	-	+		
Zun-	5) 1	16		8	-	3)	11	6.	27			-				-		-	-	-	-	-	-	+-	+-	+-	+		
		1	76	, 4	3	-	-	1-	76.	11							+-	-		-	-	+		-	+-	+-	+	-		
		1	76		11	+-	-	1	76	10		-	-	-		-	-	-	-	+	-	-	+-	+	+	-	+-	+		
_ _			16	, 3	5		-	41	16	.32	<u> </u>		-	-		_	-	-	-	+	-		+	+	+	+-	+	+		
	_		-	-	-	-	+-	-	-	-		-	-	-		-	+-	-	-	-	+-	+	Co	ntin	ued f	rom	page			
									Ц		<u> </u>		<u></u>		Dáo	 مماد	d Un	dores	hood	Bv.										

Craig Del Ferro

11/3/21

Or Signed

11-4-21

	Date: [1 3 2]							•		F	age	of	
	Sample Location: BLM - 36 – 800)			A	nalytic	al Requ	uiremer	nt				
	Pertinent Notes (if any)												
		# of Containers	Sample Matrix*	0,									:
		Cont	ple N	9260	607								
F	Sample Number	# of	Sam	ည	9						Charg	e Numbe	er
\int	2111030900y (EB)	3	A	~							XG	mo	
1	1030y	3	A	~	-	****					ч		
Ψ,	10314	1	A		/	٠					u		
	Sample Location:				A	nalytic	al Requ	uiremer	nt				
	Pertinent Notes (if any)												
		ers	rix*										
		ontain	e Mat										
		# of Containers	Sample Matrix*										
-	Sample Number	#	S								Charg	e Numb	er
-													
-											•		
-													
-													
-	Relinquished by: Date	/ Time	: :		$\exists f$, A	cc en te	d by:			Date / 7	Time:	
	Grang Del Fermo 11/3/21		15	rs		m	/ \	unc	L	11-4	1	109	10
	V											<i>'</i>	
					V								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT BLM-36-860 WJI ENV-0020

Bob Tufts & Craig Del Ferraro present. Weather is cloudy & cool. This zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Chen. in use. Probe # 2213. Surface checks performed on probe prior to sampling. 30 Min Equipment Blants - Carboy 65 Analysis Preservative Containe Container 2111021320Y VOA by 8260 ice/HCL (3) 40 ml vials 2596 Initial Parameters Time - 21110214424 me - 21110214104 - 8 04 7.89 - 22.9°c - 23.0°C - 988 us/cm - 8.86 NTV'S -985 us/cm rdg -45.7 - 3.13 NTU'S pre - 7.04/10.06 (24.1°) offpie - 7.01/10.05 (25.3 c) Exp - 11/30/21 DTW-NA Buffers W - N/A - probe sticks to easing. Almos - 12.49 psia IDW - 12 gal. Atmos - 1247psia 2108656 410368 Samples Sample VOA by 8260 Container ice/HCL 211102 14404 (3)40ml vials 607/Bromacil (1) IL Amber 02004016 -1441 V Ice SKI 142.37 42.34 38,54 38.54 138,51 38.50 42,30 142.23 Continued from page

Craig let Ferra

1115/31

Read and Understood By

11-3-21

PROJECT BLM-38-480 WJI ENV-0020

Bob Tufts & Craig Del Erraro present Weather is clear & warm. This zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Gen. in use. Probe # 2213. Surface checks performed on probe prior to sampling. Sample Anglysis Preservative Container Lot 21/104/1400Y VOA by 8260 LL ice/HCL (3)40ml vials 2596—1401Y Low Level NDMA ice (1)11 Amber 02004016 (1)14 Ameer 02004016 Meter ID Initial Parameters Time 21110415154 Time - 21110414324 DH/ (and --7.91 -19.7'c -892us/cm - 7.85 -1986 869 us/cm rag Turb + 0.44 NTU'S -0.41 NTU'S pHpre - 7.03/9.98(27.10) pre - 7.01/9.99 (26.5°c) post -7.02/9.97 Mrw - 402.26 ft. Buffers 51W - 402.12ft. Hmps - 12.51 psia 2108656 Atmos - 12 48 psia IDW - 1/2 gal. 9/22 4103681 Samples Preservative Continer Sample VOA Dy 8260 LL 21110414554 (3)40m vials ice/HCL (NIL Amer 02004019 Low Love NDMA -1456V ice 3)50,51 2) 50.56 Runs 50.61 39.94 39.86 40.05 40.03 39.88 39.80 50.5850.55 50.53 Continued from page Read and Understood By

Chang Def Ferro

///4/2)
Date

Signed

11-8-21

Date: 11 4 21									F	Page of
Sample Location: BLM - 38 - 480)			A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any)			7	4						
	ers	ix*	1	LL NOMA						
	# of Containers	Sample Matrix*	8.260	2						
	oJ to	ımple	28	7						
Sample Number	#	S		7						Charge Number
2111041400y (EB)	3	A								Xamd
- 1401y (EB)	1	A								Ĺ
1455y	3	Α	V				_			ч
14564	1	A		~						<u> </u>
Sample Location:				A	malytic	al Requ	airemer	ıt		
Pertinent Notes (if any)									-	
	Si	ix*								
	ntaine	Matr								
	# of Containers	Sample Matrix*								
Sample Number	#	Sa					·			Charge Number
		ļ								
	/ Tim					ccepte	by:	ſ	11 /	Date / Time:
Cray Ol temo 11/4/21	15	40hr	<u>S</u>		94	W	lun	de	11-8	-21/0915
				$+$ Λ			L			
				_ U						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

4 ROJ	ECT	- B	Ln	ሰ -	38	3-6	,2C)	t i) -	т с	: N)	/- /	^	26					No	teb	ook	No	. 1	6	4#	12	28(<u>\</u>	 -	
306			_	-								_	_	_			4.	, ; ,				ed fro	-	-	1 ;			Ī	, 	<u>, , , , , , , , , , , , , , , , , , , </u>	7.
am	ple	d I	u s	10	9	$c \in C$	120	m	C	20	nec	٤	17	rio	le	11	n ce	4.	Sta	un/	200	٠ Z.	tee	<i>il</i> :	sa r	a n	a 1	Hu b	25	Y A	e
en.	70	us	ė	Pv	ó be	#	221	3.	Su	rfa	ce	c h	ect	41	Per	for	me	40	n 1	oro	be	pr	101	h	S	CIW	ز/م	ing:	5.		
					+	30	N	Vin	8		ion	A 0 K	1 1	Bla	de	· C ~	1	act		G	5						-				
Say									Ana	y S	5 5	1	1	res		vat	ive	11 -	79	on	Ta	inei			Zó	7	T	1	La	8	
111		1	4		-	• '	Vof	1	y.	82	60	41	-	res	se /	HC	7		(3)	40	ml	vio	i/c		25				4LS		
+		101	64	+	+-	+1	<u>.bw</u>		ev	el_	ND	M/	#	-	ic	e		-	(J)	11	A	nke	(20	04	010	3		5 <i>P.</i> 7	<u> </u>	_
لم	iel	Pa	ra	w.	ter	<u> </u>							+-	-	Hin	0								AÀ	4		I1	_			
	e –	2	11	0	41		55Y								M		7	111	04	/ 3	12	Y				r^{-}		- 6	5 0		
#_		8		-		-	'	-	-		-	<u> </u>	-	P	И	_	۾ ا	13						7	l -	1			7		
ond		18				_	-	-		-		+-	+	1,	em	-	1	8.9	С	1				į.				_ 4	1		
arb		4	2	- (20	0.4	43	A 17	, ' S		1	-			ur									u				-20			
H p.	re -	- 7	JC		0.	דם	(1								H							25.	3 'c)	u		ا 4	DT TXT	-11	104 37	43 21	
12	at	-7	,la	1	10	30.			-		-		<u> </u>	+-1	PH	pos	<i>\f</i> -	7.0	4/	10	.00)				ļ					
tm	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	HC	١.	96	*+			-	-	-	 	-		Dr	1	1	ì	1	•	1 • -		Į	3uf	fer	5	1	+ 66		\mathcal{E}_{i}	φ
	US.		Iα	. ~	17	35/	a		-			-	-		AT I	MO	<u>-</u> کا	16	1.6	Q f	25/Q										
_																		17	g	qı,					D 4	<i>4)</i> 0	50	8		9)	2
-	1					-			<u></u>	ļ,_		<u> </u>	↓	5 q	mε	le	5														
	ple								Ana	lly	Sis	-	-	K	ese	rvo	中	Ve.	_		Con	tu	'na	ς,	-	4	土	;		al	5
111		13					Lou	i	by	8	160 NI	M	1	-	ICe	ice	НС	L		(3)4	HON L K	/ v	i a] s	^	25	596			17.5	<u> </u>
								U	-21	rea	NL	7111	PT.			LE					L) [Lr	m	rer	ಿ	004	10		_5,	PZ	
-					-																										
-														<u> </u>	-	-										-			_	\dashv	
					-																						\dashv		+	-	
ur	١5	_))]	11	.80	I.		2)	Ш		5																				
			_	3-	1.31				8		16								_	_						-:-			\dashv	\dashv	
			1	0 1	7.3	1			0		4									-	-							-	\dashv	\dashv	
				<u>.</u>		1			8	• -	6								+		-							-		+	
				_																				Cont	inue	d fro	m pa	ıge			
													_			Read	afid	Unde	ersto	od B	,										

raig Ill Ferma 11421 for Words 11-8-21
Signed Signed

								P	age	of	
)			A	nalytic	al Requ	iiremen	t				
	:		A								
ers	*xi	17	\mathcal{M}								
ontain	e Mat	9	Ŋ								
of C	ampl	82						ļ			
	<i>σ</i> ₁										oer
3	A								ΧC	mD	
			V						9	<u>u</u>	· -
3										<u>u</u>	
	A									4	
			_								
					:				-		
1	T		A	nalytic	cal Requ	uiremer	nt ————				
ners	trix*										!
\\	le Ma										
do #	Samp									. NT1	
1	02								Cha	irge Numi	oer
							-				
							_				
									<u>-</u>		
 e / Tim	e:				Actente	dbv:			Date	/ Time:	
		vs	1	ノー		1	-JL	11-0			15
10	, ~ 11	· · · ·	1	<u> </u>	- \	1	-	- 11	<u> </u>	1	
			, ,			1					
	# of Containers	# of Containers # of Containers Sample Matrix*	# of Containers # of Containers # of Containers # sample Matrix* Racolum	# of Containers # of Containers # of Containers # ample Matrix* Raco Ll	# of Containers # of Containers # analytic A A A A Sample Matrix* A H A Sample Matrix* A L NDWH Time:	# of Containers # amble Matrix* Analytical Requirements Analytical Requirements Accepted Accepted	# of Containers Analytical Requirement Analytical Requirement Actepted by:	# of Containers Analytical Requirement Analytical Requirement Actepted by:	Analytical Requirement Samble Watrix* Analytical Requirement Analytical Requirement Analytical Requirement Analytical Requirement Analytical Requirement	Samine Watrix* Analytical Requirement Analytical Requirement Cha Cha Analytical Requirement Cha Cha Cha Cha Cha Cha Cha Ch	Analytical Requirement Saniple Marity Analytical Requirement

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	+		4 (*.							1	T .	1	,	- 1	-			ì					П		1	Τ		
Ma	d	5	Aug	105	<i>b</i>	0	42	1/19	Voc	44		CPS.		. \	اوه	4			5 C	ex	đ	(00		14	ίŞ	yle	11	wi	()	r		
Dura	, et	١ ١	3 <	a W	ماه	٠,	Si M		d	edi	لم		p/	400	1	N1 **	Mp.	. <	- 404	وبار		١١١٠	لم	(0/2	de	9	usi	رد ا	h h	Ju	د
120	000		gisi	\. 6		١	۷. ک) e (1:	\ ,		1	~s	200							برد		USÈ	1 1	ا کے	QG.	\mathcal{O}	
1		ł	0130	V	, 8 ,	k.	1			ſ		1		4	1,0	100	r	^		W		_					030	3	•			
No	- 1	U	4/01	م	(D)	7	9	We	75.	-	100	143	v.		V()0	4	C'	L														
		1														ļ														-		
Cali	g	مأز	015	4																												
\mathcal{O}°		d			לטה	إكدا	6	ur ((°4.	3	anw.	1/1	١,,																		
Pt-	ſ	1.	1145	_	0	M		B	II		<i>(u</i>	7	10)	7																		
	7,		ή.)	7	110	, ,			N2				D	_	1.1	ion							ļ -								
780	. 1.	2	W. Z.			<u>ر ب</u>	X.C) (1 2	1	1 3		61					1	200	uu.	~	6		W	21	
Turk	<u>) () (</u>	14.	Ne	le.	•	F 1	0		_2	TV)	٦.	62	1)1	U	-	14)ၯ	. 2	٦٩	W	20		1	<u>. </u>	d N	44	9		ф.	CAL	3 (
	_																										1			$\vdash \vdash$		
	_														ļ																	
Para	m	معد		li,	w	6		Ta	wo	· C	\		0~)(v	2/2		0	0		49			08	P		7	arb	(No	(ر	01	W	4)
117									ر. ر ۲. ر				0.	[F *		لو.(و	}	_	7 5	5		87				0.4	1 1		· -		
2) -		_	140	- 1					P. O	_				70			6	1		7.5	i		ပွဲ ရ				υ.s					
1			140						o . 0			.		i	1			74			i		89									
3) ~	+		140	' ')			4	. 0	22			0:	10	1		b .	2 ~		7.5	Q) 0				٦. ٧	3				
			-										/	-	ļ						-						لــــا					
													59	mpl	25											-1					,	
Sau	lar	2#	1					Ana	V3) SE	عح	u				\mathbb{C}^{\prime}	rair	4	1			10+				c	b	
21/1				,			l	6		_				-	1)3	1					m (<		ر ا	27			ı	4	/ /s	
7		- 1	1113	1					١,	مير					-										_							
#	\downarrow		1213)										_					=						
	\dashv	• 1	٠ ,				,	1-	· •	G		-			5	-			1.1	١,		 			1,		<u> </u>					
	\dashv		1313	-			1	7/8	1 ,				-		<u>Lu</u>	-			(7)	177	4	mb	-	ļ	10	35	}/			- \$	3	
	_		143				ļ	stel		Duo)		_		=						-	1				7	<u> </u>		ļ		ت	
		14	12/3	>			7	stel	M	eks	5	<u> </u>		14	03	IL			(J) 13	ک	n/c	7								A	5
		14	1613	>					٤ (١	FB	\				=						تي ا	\	, ,			-	1				-	
	\top					<u> </u>									†																	
							 								 								-	-	 							
-	+		_					-					-									-	-									
	+						<u> </u>			ļ		_			-	ļ						_			-			\sqcup		$\vdash \vdash$		
27	9/V	٥-	2	ter							-																					
			-)																												
	\top																															
	\top											<u> </u>			 									-		-				\Box		
	\dashv						-			-			-			 									-					\vdash		
-	-									<u> </u>					-	1							-		<u> </u>		<u></u>	\vdash		\vdash		
-	-									-		ļ									_						<u></u>					
																									Cor	ntinu	ed fro	om pa	age			

Read and Understood By

PROJECT PL-7-480 WII ENV-0020

Bob Tuffs & Craig Del Ferraro present. Weather is cloudy & warm. This zone will be sampled using 5 triple rinsed, stainless steel sample tukes, hen in use. Probe ezus. Surface checks performed on probe prior to sampling, 30 Min. Equipment Blanks - Car boy G5 Sample Preservative VOA by 8260 L/ ice/HCL Low Level NOMA ice (3)40ml vials 21110812504 (1) IL Amber 02004019 - 125 LY Hal Parameters Mater ID pH/cond-60 ime-2111091015y Time + 21110813504 +8.26 +8.08 Std - 44.27 - 19.6°C Temp rdg-44.8 - 955 us cm urb - 0.95 NTU'S lot - 200445 Turb - 1.05 ptu's >4 pre - 7.06/10.02(21 p4/post - 7.04/10.02 1, c) ottore-7.09/10.13(16.4°c) Exp-11/30/21 offost-7.11/10.12 DTW - 481.235t. Drw -481.16ft Atmos - 1256 psia 2108656 Atmos-12.54 psia IDW - Ø 4103681 Samples Preservative Container Sample <u>ab</u> Angly sis ice/HCI (3)40ml vials 21110814454 2593 VOA Dy 8260 LL (NIL Amber 0200401G Low Level NDMA -1446y \$RT ce 16.53 6) 651 3) 16.51 16.54 1) 16.45 2)16.50 Runs 4.19 4.18 1414 14.15 4.16 14.18 14.12 14.14 14.17 16.52 1648 650 648 16.52 Continued from page

Ray W Zerra

11 9 21

Read and Understood By

Signed

11-10-21

Date: 11 8 21									P	age 1 of 2
Sample Location: PL-7-480				A	nalytica	al Requ	iremen			
Pertinent Notes (if any)			7	H						
	ers	ix*	7	Nom,		;				
	# of Containers	Sample Matrix*	260	4						
	ofC	ample	82	77	į				}	
Sample Number									<u></u>	Charge Number
21110812504 (EB)	3	A	-		-					XGMD
12514 (EB)		A		V	_					ц
1445y	3	A	V							ч
1446y	1	A		~	-					<u>u</u>
							<u> </u>			
									_	
Sample Location:				A	nalytic	al Requ	uiremen	t		
Pertinent Notes (if any)								·		
	ers	* XI								
	# of Containers	Sample Matrix*								
	oJtCo	mple								
Sample Number	#	Sa								Charge Number
			:							
				1						<u> </u>
Relinquished by: Date	/ Tim			1) 1 ^A	ccepte	d by:	1		Date / Time:
Gray Del Ferno 11/8/21	15	45	rs.	$-\downarrow \downarrow$	lu V	$V \setminus$	uu_0	h	11-9	-21 /0905
V				-						
				٦						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11921			-						F	age 2	_of_	2
Sample Location: PL-7-480				A	nalytic	al Requ	iremer	nt				
Pertinent Notes (if any)			A									
	ners	trix*	NomA			:						
	# of Containers	Sample Matrix*	N				:					
Sample Number) Jo #	Samp	77							Charge	Num	ber
21110814464		A	V							XGW		<u> </u>
					-							
Sample Location: Pertinent Notes (if any)		<u> </u>			Analytic	al Requ	uiremei	nt				
	ainers	fatrix,										
	# of Containers	Sample Matrix*							,			
Sample Number	#	Sar				T				Charge	Num	ber
	 -											
	ļ											
				/	 						<u> </u>	
	/ Time	e: •		1) [ccepte	d by:	<u> </u>	1.	Date / T		
traig let temo 11/9/21	1	100	rs.	+	onl	\mathcal{U}	u-	d	11-1	0-21	109	00
				+0								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11 8 21				_					P	age of
Sample Location: PL-7-560				A	nalytica	al Requ	iremen	ıt		
Pertinent Notes (if any)			77	1/4						
	# of Containers	Sample Matrix*	8260	AMON -				1		
	of Con	umple I	82	1					<u> </u>	
Sample Number	#	S		7						Charge Number
2111080740y (TB)	3	A	'							XGMD
0741y (TB)	1	A								и
0825y (EB)	3	A	/							ц
0826y (EB)		A		- 1						<u> </u>
09404	3	A						_		Ų
09414	1	A								<u>u</u>
					1 .:	1.5				
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	uremer	nt		
1 Offinent 1 votes (12 diff)			:				i			
	iners	atrix*								
	of Containers	Sample Matrix*								
Sample Number	# of	Sam		•						Charge Number
						-				
	/ Time	1		+		ccepte	d by:	1	11-9	Date / Time: -1) /0905
Gray Alterno 11/8/21		20 h	(5)	+/6	hu V	\ 	um 1		11-4	-31 /00/07
				1						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. DJ2#12/(c) PROJECT P(-12.570 WIT 0053 Continued from page _ AL MONTES O TONY TOWER PROSENT. THE WEATHER IS CHANG COOL. The WELL WILL BE SAMPLED USING A DEDICATED TEFON BLADER PROP. SAMPLES FULLETED USING A TEFLON dischange Tabe. Paran's collected using A QED MP. 20 FOWCE (1. Carbox 6.3 PackEn pressure 35 ps) Calibrations Do SErson call in 643 may 1 Hz Cald 14 1413/15/cm COULD SENERON pH SENSON 3pTEAL W/4710 BUFFERS 67# 2004451 Tank meren# 8 511 = 530 Rla = 527 Trip Blanks 3 Ample # Analysis Presen LAL 211103 0700c 8260 142141 (3) You wias OTOLE LLNDMA (1) Let Ambia SRI Param's Do TEmp Cares Tunb DIC 211/03 10000 5.95 4.73 71.48 0.77 1.010 1001c 1.01 6.02 6.76 0.25 6.00 1002C 1.018 0.34 SAMPLES PRESEN Analysis Sample # 407# 8240 2/1/03 /0030 1396 moveds 10E14J 11 (FB) 100VC 11 (Dup) 1005c CLNOAA 10000 03035016 11)/cranton 145 514 11(F3) 1007c Continued from page Read afit Understood By for W unch 11-4-21 11.3.21

Date: 11-3-71									I	Page of
Sample Location: PL-12-570		٠		A	nalytica	al Requ	uiremer	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	0 5 108	7784						X6m0
Sample Number	3									Charge Number
711103 07000 (TB)	1	A	X	X						
1003 c	3	1	X							
1004c (FB)	3		X							
1005c (Dup)	3		X							
10060	1			×						
1007c (FB)	1	7		X				-		
Sample Location:				A	nalytic	al Requ	uiremer	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*								
Sample Number	#	Š								Charge Number
D.I. i.i.l.										D /TD:
Relinquished by: Date //-3-2	e / Tim		•	To the second	n t	ccepte	d by:	L	11-4	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

T. Sand

11-3-21

Read and Understood By

Signed

1-4-21 Date

Continued from page

Date: //-3-7/										Page	of	
Sample Location: Pt-17-800				A	nalytic	al Req	uireme	nt				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8000	11 70 40							m) urge Numb	oer
2/1103 1430 C	3	A	X									
1431c (FB)	3		X									
- 1432c	1			X								
1933c (FB)	1			X								
1434c (FB)	1			X								
	<u> </u>									_		
Sample Location: Pertinent Notes (if any)	1	I		. A	nalytic	al Requ	uiremei	nt	T			
Sample Number	# of Containers	Sample Matrix*								Cha	urge Numb	
					· · · · ·						8	
					-							
					-							
											· · · · · · · · · · · · · · · · · · ·	
D. II	15:				\							
Relinquished by: Date //-3-2	e / Time				or \	ccepte	d by:	d	11-4		Time:	26
						·						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sianed

11-12-2051

Dru Signed umch

Read and Understood By

11-16-21

Continued from page

Date: 1)-15-2021											
Sample Location: 57-1-473				Analytical Requirement							
Pertinent Notes (if any)											
Sample Numl	ber	# of Containers	Sample Matrix*	80	(07						X 6 M D Charge Number
211115 H15 A		3	D	٦							
1416 0	(FB)	3	1	7							
۵ درابار		1			7				***		
1418 0)			4						
			:								
Sample Location: Pertinent Notes (if any)			Analytical Requirement								
Torment Potes (Many)	# of Containers	Sample/Matrix*								
Sample Number		#	Š				1				Charge Number
						,					
				_			•				
						<u>.</u>					
						\					
Relinquished by: Date / Time:			Accepted by:						Date / Time:		
11.15.202) 15.30					Vin Wurda II					11-1	6-21 /0910

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Claig Del Ferro

111121

Signed Signed

Read and Understood By

11-2-21

Date

Date:										Page of	1
Sample Location: ST-5-485	- }			A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)			7	A							
	iers	rix*	7	NomA							٠
	ontair	e Mat	8260	Ž							
Comple N at	# of Containers	Sample Matrix*	28	7			·				
2111011300y (EB)	3	A								Charge Numb	
13014 (EB)	1	A								XGMD)
14054	3	Δ	/	,						<u>u</u>	
14064	1	A								· · · ·	
(30)										<u> </u>	
						, , ,					
Sample Location:				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	ners	trix*									
	# of Containers	Sample Matrix*					-	Ē.			
Sample Number		Samp								Charge Numb	\
Sample Number										Charge Nume)C1
									k.		
							40.				
D. II				/	\						
	e / Time 1 <i>5</i> 7			+	/ 1	dcepte	1	.	11-2	Date / Time:	00
(raig Ill Jenno 11/1/21	10	<u>-0 /1/</u>	5.	1	tu 1		Jun-	ich	_11_2	-21 /01	-
				10			<i>!</i>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 11 1 2 1									I	Page	of
Sample Location: $5T - 5 - 655$,		, 11	A	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0928	LL NOMA						Cha	rge Number
2111010745y (TB)	3	A	~							Χ	amo
07464 FTB)	1	A		/						•	u
0905Y (EB)	3	A	~								4
0906y (EB)	1	A			•						4
1015 y	3	A	V								_ u
10164	1	A		<u> </u>							4
•											
Sample Location:				A	nalytic	al Req	uiremei	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*									
Sample Number	#	01								Cha	rge Number
									* * * * * * * * * * * * * * * * * * * *		
											· · · · · · · · · · · · · · · · · · ·
									-		
,											
					$\overline{\gamma}$						
Relinquished by: Date	/ Time	e: 1			刀	ccente	d by:	n	, 1		/ Time:
traig del temo 11/1/21	1120	hr	S ,	$-\int_{0}^{\infty}$	n ()	\vee	ll-	de	-:	2-21	10900
				٧							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 200- G-175 WII ENV-0000

Be	Ь	Tu	st.	\$ 2	Ci	aig	D	e(Fer	70	0	ρſ	se.	nt.	l	Ve	. th	er	is	cl	ear	3	ζος	.l.	1	us	Ze	ne	w	ill	be
Sq	M	ec	U	Su	19	5.	ci	ple	-	in.	red	,	c †¢	Ч'n	les.	S	t ee	1	5a i	np	le	fu.	25	• ,	Mo	ke	#	4	<i>5</i> 5	5,	
)	t.	ace	C	ne	/c2	P	217	Ori	nei	Lo	1	ora	60	P	ri	or	/ 0	50	my	o li r	19.								-	-	
	-		-	\vdash		4	^	11	•	5				/	R1	1	•		0	/		22									
~		1					<u> </u>	/ <u>/</u> /	'n.	<u> </u>	is is	2 M	en D	~ <u> </u>	1/4	nt	5	- (1	. /			,	7	
	l .	ole	l	\<\			100	7	1.	YS	260		U	<u>ej.</u>	<u>en</u>	at !	ire	-	125	OA	CUI	er	1.			+			La	D	
ΧŢ	12	ОÞ	૦પ્	25	Y		VO	H	PY	00	-60	-		ce	IH	CL	-		[3]	40	m(ria	12		26	21			41	٦_	
T]	ا مام	0 1	2.		ete	· ·	_						1;	na	1	-							A	1 1		-4			-+	
	_	**			1	10											21	12		12	301	,				er Co			,,		
<u>P</u>	4	-	8	5	8	10	J	1					ŧ	ט י	ne		8.			13	30	/		#		7 b			2	-	
6	~ O	_	1	9.8	3'C								-				ි. බ		1					d	1	S		!	- 1	3.2	
1		_		07	15	us	Can	4					(1	- 10	1	1				-				7 9	i		.6	- -
Tu	rb		- 1	. 5	3,	υT	פיט	•									1.								۸	- 1		- 1			45
						ο.			47	;·c)				1	1	7	J		ł	1		d	\						31/2	
						٥.		_							12		7	1	1 .	1			•	_	^	Ĭ			~ (111	4
D	tu)	- 1	73	3 . 1.	3 F	ł.										- 1						\mathcal{B}_{u}	FÆ,	(5	/	+	-		مح	TXP
11	Ma	5-	4	2.5	55,	zSì					***		į.	A	ľ		- 1	1	Į.	1	1	1 -		7	_	210					23
																	_				, ,			10		+10	1			1	/22
																			J												
										-			5a,	<u> </u>	ole	5															
		ام.									sis	_		Pc	o Se	\sim	ati	ve		(DY U	ta	ine	r		\mathcal{L}	ot	-		L	ib
2	18	10		03			۷٥	A	p٩	82	60						CL				3)4	On	L	ria	5	2	62			AL	
		_		o 3) به	Dup	1)				U						Ì		h								
-	_		•	03			-6	07	Be	O N	ac	i∐		•	ic	e				(i	11	_ 4	m	er	0	200	401	G		SE	7
		-		115	y		To	ta	(/	lex	al	5		ice	11	(V)	03			(3)	13	5m	l p	oly	5	200 200	09-	10	_	Al	_\$
							-				-	-					-						(0							
_					_							_	-													1					
\dashv		-				\dashv	_				_	-	-											_		_					
		\dashv	-				_					_											_			_	_	_	_		
								~				-						. 7.		_	_		-	_			-	\perp		_	
K	ın	<u>-</u>	7	, ,,,	5]	<u> </u>		Q)	12	• •	3	-	3)					<i>t</i>	ત્રે.	64	>						+	_	\downarrow	\downarrow	_ _
\dashv	_	\dashv		13.					27	,2	8		6	23	.2	6			3.					-		-	_		_	\dashv	
	-	+		13			_		23	id	Ø				. a`			7	3.	1	•						\dashv	_	-		
\dashv		+		12	68		\dashv	-	ļó	.6	O	+	_	13	.6	వ		_	2.	61		\dashv	_		\dashv	-	-		\perp		
\dashv	-	-	-					-					-											_				L			
										L															Conf	inue	fror	n pag	je 		

Pary Ill Terro

12/6/21

Read and Understood By

2-7-21

Date

Date: 12/6/21	-	-	-						Page of
Sample Location: 200 - G-175	5			A	nalytic	al Requi	irement		
Pertinent Notes (if any)					_ 4				
	2	*			tal				·
	taine	Matri	60	7	Me				
	# of Containers	Sample Matrix*	8260	607	10				
Sample Number	#	San			101				Charge Number
2112060925y (EB)	3	A	~						XGMD
10304	3	A	~	-					4
10314 (Dun!)	3	A	1						4
lo32y	1	A		~	-				u
11104	2	A				-			ч
Sample Location:				A	nalytic	al Requi	irement		
Pertinent Notes (if any)									·
	SI SI	* x							
	ıtaine	Matri							
	# of Containers	Sample Matrix*							
Sample Number	#	Saı							Charge Number
	/ Time) A	ccepted	by:	1 -	Date / Time:
Gray Del Ferme 12/6/21	141	ohr.	5,	10	n V	1/2	unch	12	-7-21 /0930
V)	··· ··· ···		·

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#128(y)
Continued from page

Bob Tufts & Craig Del Terraro p be sampled using 5 triple rinse Surface checks performed on P	d stapped thed souple	cool This zone will tubes. Probe #4955.
30 Min. Equi	ement Blanks - Carpoy G3 reservative Container	Lot Lab
	ice/HCL (3)40ml vials	2621 445
Time - 21120211004 PH - 7.51 Temp - 228°C	Time - 21120213514 PH - 7.63 Temp - 23.0°C	Meter ID ph cond - 11 Turb - 2 u Std - 28.23
Cond - 153 us con Turb - 2.05 NTU'S of pre, - 7.04 (10.09 (19.0c)	Cond - (5/445/cm) Turb - 1.74 NTU'S PHONE - 7.00/10.05/24.2	u (dj-28.60
off post - 7.03/10.11 DTW - 173.01 Ft. Hunes - 12.54psia	pHpx - 7.02/10.05	Buffers Lot Exp. 7 2108656 2/23
Sample Anglysis	Samples Preservotive Contain	
2112021320Y VOA by 8260 	ice HCL (3)40ml ice (1)11 Am ice (HNO3 (2)125m	ner 02004019 SRI
2uns 1) 17.62 2) 17.60	3) 17.62 42.74	
42.85 42.80 42.79 17.65 17.57	42.76	
	Read and Understood By	Continued from page

Craig let Fermo

12/2/21

Dri Winned um de

12-6-21

Date

Date: 12/2/21									F	Page of
Sample Location: 200-G-220)			A	nalytica	al Requ	irement			
Pertinent Notes (if any)		ıtrix*	0	7	Metals					
Sample Number	# of Containers	Sample Matrix*	8260	607	Tota 1					Charge Number
21120210254 (EB)	3	A	~							XGMD
1320y	3	A	~							4
1321 y	1	A		~						и
1350y	a	A			~					<u> </u>
Sample Location: Pertinent Notes (if any)	T	1		A	nalytic	al Requ	uiremen	t 7		
retilient rotes (if any)										
	iners	atrix*								
	# of Containers	Sample Matrix*					:			. '
Sample Number	Jo#	Sam								Charge Number
								_		
Polin michael I	/ T:			17	\ i a.	\	d 1			Date / Time:
Cray Del Ferro 12/2/21	e / Tim 14		rs.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n J	ccepte	d by: Uu_1	L	12-6	Date / Time: -21 /0900
				1		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>P44*/28</u> Gontinued from page

30 min Egypent blacks. Co. by - 6.8 24120207320g Upa 8260 Tix 3 40 mil vials 2621 ALS	
Souther Charles see Spring on probe prior to Sampling. 30 min Enjament blacks - Contained Let Loss 10 min Enjament blacks - Contained Let Loss 2112020730g Usa 5240 ICE 3 40 mill viale 2624 ALS	
30 min Egypent blacks. Co. by - 6.8 24120207320g Upa 8260 Tix 3 40 mil vials 2621 ALS	
Angle Angles Presenting Contained Let Lod 21120207320 Van 8260 IC 3 40mil vinte 2621 ALS 	
Angle Angles Presenting Contained Let Lod 21120207320 Van 8260 IC 3 40mil vinte 2621 ALS 	
2412020730g Van 8260 712 3 40mil viale 2621 ALS - 1731y Total Mitale IIX 420 2 125 migrely 21-04-10 ALS Touthal Parameters Final Metal TO TO Time-2112020925 PK/2000-11 PV-8.10 TEMP-21.2°C TEMP-209'C "STD-28.23	
Total Metals ISE-1920 2 125 mighty 21-09-10 BLS Touthol Parameters Final Time-21120209254 PN/2000-11 PN-8.10 PN-8.14 TURB-2 TEMP-21.2°C TEMP-209'C "STD-28.23	
Touting Parameters Time-211202-0809 y Time-211202-0925 y PN-8.10 PN-8.14 TEMP-21.2°C TEMP-209'C "STD-28.23	
Touting Parameters Time-211202-0809 y Time-211202-0925 y PN-8.10 PN-8.14 TEMP-21.2°C TEMP-209'C "STD-28.23	
Time-2112020809y Time-2112020925Y PH/SOND-11 PH-8.14 TEMP-21.2°C TEMP-209'C "STD-28.23	
7/- 8.10 Pr- 8.14 TURB- 2 TEMP-21.2°C TEMP- 209'C "STD-28.23	
TEMP-21.2°C TEMP-209'C "570-28.23	
- VIV IS I GO DA MANICIME L. PIPP SEE TO TOTO VIV '	
	+
	+
	+
24 Post-7.140.05 PNPST-7.07/10.11	-
27W-17288 DTW-173.01ft. Bother LOX EAP	
17mos-12.56 psin ATMOS-12.56 PSIG 7 2108656 2-23	
TOW- 1/2 gal. 10 4103681 9-22	
Samoles	
	+
	-
2112020847 VOA 8260 ICE- HCL 3 40m; / viple 262/ ALS	
08489 607/Breast / Ear 1 //tamb- 02004016 SRI	
0920 Total Me take ECK-HING 2 125 pely 21-09-10 ALS	_
- 08214 Anima / 1/2 ILE 2 12500 ly N/A ALS	
- 09224 705 sm25mc 200 1/25004 ALS	
- 09234 Pachen & 6850 Fee 1 125poles ALC	
- 09244 NO NO 353.2 EOR. 42504 1 25PM/poly ALS	
7 10 7 10 2 10 3 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	-
	+
	+
	\perp
Runs 170.05 270.05 370,04	
122.66 122.43 122.50	\perp
120.67 120.50 120.55	
69.98 70.0) 69.99	1
Continued from page	
Read and Understood By	

	Date: 12 2 2 1									I	Page of
	Sample Location: 200- G-340 Pertinent Notes (if any)	+			A	nalytic	al Requ	iremen	t		
		# of Containers	Sample Matrix*	8260	607	Total Metals	Anjons/Alk	<i>20</i> 2			
	Sample Number] <u> </u>									Charge Number
1	21120207304 (EB)	3	A	~							XGMD
	0731y (EB)	2	A			~					u
	08474	3	A	~							u
	08484		A		<u> </u>		4.	-			ч
	=0920y	2	A				#000				ч
	=0921 y	2	A					مسد			ų
	0 १२३५	l	A								u
	Sample Location:				Α	nalytic	al Requ	iremen	t		
_	Sample Number	# of Containers	Sample Matrix*	Perchlorate	NO2/NO3						Charge Number
\forall	21120209234	1	A		,						Xamd
	09244	1	A		✓						U
.											
-	Relinquished by: Date Pray Within 12 21	/ Time	eo hr	5		/ \ \ \	ccepted	by:	d	2-	Date / Time: 0 - 2

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Chaig Del Leuro

ıalılaı

Dru Signed um de

12-2-21

Date: 12/1/21				-					P	age of
Sample Location: 200 - G - 421)			A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)					7					
	ø	*,			to the					
	# of Containers	Sample Matrix*	8260	1	19/ Mets					
	Cont	ple N	2	607	16					
Sample Number	# of	Sam	00		19				-	Charge Number
- (2)	3	A	~							XGMD
	3	Α								ч
14204	1	A								-
14214										U
14454	2	A								LI
	-									
Sample Location:		1		A	nalytic	al Req	uiremen	ıt		
Pertinent Notes (if any)										į
	STS	*X								
	ntain	Matr								ļ
	# of Containers	Sample Matrix*								
Sample Number	# 6	Sai								Charge Number
							:			·
										 -
			EÍ .	1	L	L	 			
							<u>'</u>			
Relinguished by: Date	e / Tim	e:) V	Accepte	a\by:			Date / Time:
	e / Tim		CS.		\bigcup \	Accepte		m d	- 2-	Date / Time: -2 -2(0830
Relinquished by: Date Charg Del Leuro 12 1 21		e: 10 h	rs.		ou t	Accepte		u d	- 2-	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 200-6-495 WJI ENV-0020

	JUL	. • ,					•														-										
Bo	٦.	Tud	ts	- 2	Ca	ત્રંવ	Del	Fe	<i>sr</i> 4	ro	P	وي الم ا	<u>.</u>	W	ea	the	ſ	٤	cle	ar	٤	Cod	.l.:	The	S	zon	e	$\omega_{L,L}$	11	00_	
Sa	mp.	led	u	SIV	9) }	Tec	im	C	ean	ed	<u>י</u> צ	17	IP!	۱ ا	'ΙΛ	sec	1,	5+4	un	es:	<u> </u>	Te	el	sa n	, pu	e	TUR	es.		-
Pa	be	#1	193	55.	S	uct	ace	_c	rec	جع	_P	eC;	tor	Me	d	on	F	Vδ	be	pr	io		0	5an	P	ing	j.		-	-	+
															_		`			'										4	
							3	0	μ_{i}	ع	s w	Dm	ent	1	'lan	ts	- (ar	bal	26	73									\bot	
<		اء	e.					A	امر	v si	5		Pr	25	· /\	Shi	19		7	SIL.		•				<u>t</u>	.		10	a b	
				30	,			1	<u> </u>	8	2/0	`		ica	Ti	101	==		\x	\ <u>и</u>		1.,		_					A	Zs	
×ι	d. '		OI	50	7		V	ΖД.	_pı	1 0	٠			(LE	1				رح	1 1	∪ µn	. V	1a ·	•	OX.V	/ O X	J				
-	•1	. (า ร	-		1_1							-	•	al										۸۸	La	<u> </u>	Σ¢		+	
						ete	i						- 1	_											_				7	•	
Ţ	lw	e-	-	211	20	110	210	7												101	¥_							ond	- 1	<u> </u>	
P †	1_		_	8.	55	5							1	Ή		- 8	3.3	刀							_	u	rb			Q_	
Te.	nP		_	20	ב	د							1	– e w	O.	_ ;	20	.4	٠, د							i		510	(- (28	23
						6 M	<1	*AAA*						,		_	24	4.	4A <	lom						u	- 1		1		10
	-L			4	4 1	3 N	T	, 2					7		ماء		3	46	7	ΤU	5						ì	.		1	445
Щ	V_0	_		L	7	אט	14	7.	<u> </u>	.2				U.	70		3			70	1		0 %					1			4 1
PH	7	re	_	٦.	10/) LC	.13	C	8.1	<u>~)</u>	-			PΛ	Pr	e -	1	108	1	0.13	2	8	י ס	1)		4	-	CX,	P 7	143	वाय
光	p	pst	=	٦.	12	10	.0	٩								1	î			10.					~ ~			,	,	+	
D	U)	_	1	J 9	.6	85	<u> </u>						D	tu) -	- 1	7	2_	169	+.			\mathcal{Z}_{u}	171	15		40			X
						54								A	L Ma	5	_ 1	2.	56	P	Sia				7		210	BG	56		E xp 2/2/3
							1							7	DIA	,	_ 1	/_	1		,								81		122
											-			. حب					7.	•							-,,				
		<u> </u>																													
		1	 	+						7			Sa	${}$	1e. S	1.				^	-								7		
\supset	am	blo	╅	-	-			1	Ma	اعوا	15						ve	<u> </u>		<u></u>	n	ain	عنا		-	آم	-		4	ab	
21	16	10	110	3 30	7		VO	A	Ьq	82	60			ice	2 <i>[</i>	H	CL			3)4	Юn	LV	ial	5					A	4	5
			10	31	ý		(00	1/B	con	MCI	1			ic	e				1)1	L	Am	be	c	20	04	01	G.	2	P#	-
				10			-	oto	Ϊ.	Me	أام	5				NO								S					1.0	LS	- 1
			T-		1		•	V	-			<u> </u>		-	,		3			-,-		1	1								
		-							1									 												+	
	 	 		-					-				-				<u> </u>	-	+-					-						-	
	-			-															-	-									-+	\dashv	
	<u> </u>	 	-	-												-		ļ	ļ	-										\perp	-
			1																				1								
7		-	+;		20	117	cQ			2/	, ,	<u> </u>	,,			2)	1 -		ـ سر												\dashv
\underline{K}	ur	15	+ 1		39					2)	·					9)	13	• •	1			-			-				-	-	
			-		†	ی.					21	1.	69				1 -	7.	1				-	-						\dashv	
				2	1	1.6	8				21	7.	70				+	7.				<u> </u>	<u> </u>							\perp	
				2			0				13	7.	61		L		13	37.	5												
				1	3	1.5	59				_						1								Cor	tinue	ed fro	om pa	ige		
	1	J	٠	٠									1				1		1	Ц	I		4	4							

Read and Understood By,

Date: 12/1/21]	Page of
Sample Location: 200-6-493	5			A	nalytic	al Require	ment		
Pertinent Notes (if any)					sis				
	S	*			Total Meta				
	# of Containers	Sample Matrix*	8260	7	3				
	Cont	ple N	28	607	491				
Sample Number	Jo#	Sam			70				Charge Number
21120109364 (EB)	3	A	~						Xamo
10304	3	A	-						4
10314	1	A		·-					_
11004	2	A			,				
- 1100									La .
Sample Location:					nalvitic	al Require	ment		
Pertinent Notes (if any)						ar require			
	iners	atrix,							
	# of Containers	Sample Matrix*							
Sample Number) Jo #	Samı							Charge Number
Sample Parities									Charge Number
					1				
Relinquished by: Date	/ Time			1	114	cepted by	7.		Date / Time:
Chang Del Ferro 12/1/21	2	ohr	-		on (1 / 1 .	u-d	12 -	2-21 /0930
ing ing part	• • •	<u> </u>	J.			V		1-	
)				
									·

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 700 · B · STO WIT ENU · WS3

Continued from page

Mari	کرر	A	swe	·\$:	* 7	les	عم	7	201	ow	5 5	10 4	en t	. \	Je.	d-L	- (15	Ų	ne	بع.	14	w	۱.	٦	his	.۷	العرا	h	ill	
De 1	טטרי	iec'	1 4	59	md	rg	ی	si.	4	c t	ded	أريمأ	e)	19	99	dec	DV.	me	. <) عمره	عاه	, t	vill		.	llos	ملو	۵.	V510	1	i.
NIN	17	2	On	di	40 m	202		NG Z	2	12	ماما	- (1,0	1.	0							ł	novi	١ .	١ ١		١٨٩			\	
Wb.J	0	4	w	Cell	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) of	25	92	11/10	zer		Ca	100	1	٠,											ر	-(
										<u>'</u>					`																
Cali	Drú)	101				1																									
<i>D</i> 0.			.	Sal	ررما	\int_{Ω}	B\\r	8	(,)	2	ww	$\langle \cdot \rangle$	١٩.																		
b#·	- I	1	USir		9K	ko.	5	3.5			Ч;	١,١	3																		
Cord	X -	1		C.		, 5) ~(ł				W			<n< td=""><td>1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n<>	1.																
Tuh	18	L	N	leha		7		1	1	1	40		ł .	1	1	120	<u>(_ ·</u>	45	. (0	<i>V</i> -	τ.,	1	<i>o</i> f.	JW	449	Į	E	<u>ر</u>	12/	(/2	,
			,	1					J .			,	-				S 1			, ,	,0		J .	400			x	4	1-7		1
					Ÿ																										
Paran	/و۸	1 < <	()	in				τ.	mp	٠ ر /		(,	۸۵/(MS/KM	\setminus	4	0		Pf	1		90	P		7	6	124	Λ	17	W	TI)
1)]			1	1				γ	1 3	4				78			ر ر		_	10		<u>بر</u>				ر. 3	*// `		465	1	· 1
<i>y</i>) –			1412	ļ				2	ľ	10				74		1	49]	٦.۶			241				34				,-	
3)-	_		1410					2	[14				75		1	11	!	٦,٢) 4 S	1			44				٦	
<u> </u>			1	<u> </u>					١.)	,,,		J.,			1,1	- 0		۷,۱۰	•								
												<	0004	ple	<u> </u>					•											
Sam	Le	#					A.	W	ځرم					(७५					(,	7"	Š	/			1	4			1	do	
2112	•	- 1	() A					16						PC				(3	3) 4	0 00	יני ו	ماح				27/				Als	
		145	- 1			<u> </u>		7 '	FB	J.				, –	:				-)	-		-(,)			~\	- -				:	
		40				(,6	71	3,	-	1					2			(1) (Λ/	mp	۱,			۸۸ (2040	ارد_			<u>58</u>	_
		428	T					M			<u> </u>			ИH					1) [•					10/5				A	_
		۲۶۰						= 1	V.	67				(130	= 1	·		_ \		رى د	* (W Y				ر د	-1				1
	1								. •	QJ					-																\dashv
		1														İ															\dashv
7	1		1/2	W-	4	<i>*</i>	90	ر ر	164	.8	٨																				
	A.D.	*	V \	.W		<u> </u>	W																								
				<u> </u>																											\dashv
7	dv	- د		-					4	-																			1		\dashv
			<u> </u>																							-		•••			\dashv
	\top	+		1																											\dashv
		1																													
	-	\dagger		<u> </u>																											\dashv
		_		 																										\dashv	\dashv
	1		1	-																				Con	tinu	ed fro	m pa	age	1	1	
					11		L			L.,						Poss	i And	Unde	o roto								pt	-5-			

12/9/21

Date: \2/9/21										Page of
Sample Location: 700 · B · 510				I	Analytic	al Req	uireme	nt	"	
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	607 Bro	T. Muhals					Charge Number
21/2091420A	3	A								XGMO
1421A (FB)	3	1	X							1
1422 A	ţ			X						·
1423A	2				X					
1424A (Dup)	Z	1			X					Ţ
Sample Location:	· · · · ·			A	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	,							Charge Number
Delia mid al lun	/ m:			\int						
Relinquished by: Date 12/9/2	/Time		80		r V	ccepte	d by: Uum	L	12-11	Date / Time: 0-21 0900
				U		/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12/6/21

lunch 12-7-21 Qh

Read and Understood By

- WOIT

Continued from page

Date: 11/6/21]	Page of
Sample Location: 3[M.7.509				Α	nalytic	al Requ	uiremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8266 LC	LL NOMA	-					Charge Number
2112060800A (TB)	3	A	X							KOMD
- 0801 A (18)	1	1		X						
- 0955 A	3		X							
- 0956A (FB)	3		X				•			
- 0957 A	1			X						
- 0958A (FB)	1 .	1		X						L
Sample Location:	1				nalytic	al Req	uireme	nt	r	
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	1			<u> </u>						Charge Number
					1 1					
										-
				_						
								-		
Relinquished by: Date \[\lambda \lam	e / Tim)		Jul.	ccepte	ed by:	d	12-	Date / Time: 7-21 /0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

P	ما	1	+1	1	5	- (-	1	1	F		I				μ	, ,	1	7	L ·	T]	1.	1	دا	1	Τ	Г			
11	۱۱ص		1	1			100	17	Je 	111	VI	aro	P	10	en	-	L I	e <u>an</u>	her		5	Cle	ar	5	01,	٤	Þſ	ees	Y,		hi	5
		1		1	dia	۲	79	Has	i n	\$ (1)	9 .	<i>ع</i> د	X CO	1 6	اع	4	ΒI	Pa Pa	aex		74,	mp	1.11	3 a	m	ol e	٠,	v_{II}	1 1	e	in	
<u>~</u>	ل ا			1	3117	901		LET	101]		q I	<u>scn</u>	arg	e	h	P 5	e. Ci	19	1 9 m	NET	ers	1 0	1	12	2	mo	1 /1	101	ed	us	m	9,,
<u>u</u>	1	Lar	a	ar	1.1	FF	1	-DIX]	Me	Ter	72	Ņ	D (שע	0.	+10	w.	cell	a	<u>va</u>	la	ple	-	<u> </u>	20	ar	d	OK	SP	W	Ш
יב	5 T	De	+ V	no	11	or	Pd.	•	av	Pol	"	5 2		^ _	u	se	-	-					-	-	-							
A	1		1			 .			1	12	6			1	1	1	-	<u></u>				0.	.1							-		
7	et	er	1	צ	1,	_	 -			₽	4	er					<u> </u>	70				14	1/6	re i	fal	-	٦.,	16/	10.	19 (12	,19
+	H	Lo	Ŋθ	+=	2	X		1					2	10	86	56			23		-		L.									
4	ir	P.	c.L			4		` <		-	(C	-	41	03	S	Βl		91	22		<u> </u>	PH	191	est o	al	_	7.	15	110	b./	7	
		•	PT1	9 -		14	NT	0 -	<		<u> </u>										-		•	<u> </u>								
u		1	alg	1	ام	2.6	N.	TU.			-	-				-								ļ			-					
u						04											ļ										•					
u		(79	\ <u>-</u>	12	31	12		<u> </u>								-														\dashv	
•				ļ.,	11.	-		1		1						,	ļ, -															-70
Y.	ra.	ne	er	5 (n	me	}	I	em)	c)		ဋ			u	sla	<u>~)</u>		PH			Ju	rb(N7	US	_	- 1	DT	W	(f	(1)
$\frac{1}{2}$	2	112	21			0	ı		19	1	i				13				8	.4.	3			i l	32					. 15		_
2) 3					1 -	23 A	I			.4					121				i i	- 1	5			D. 1	15					15		
3)				(93	161	_	-	10	<u> </u>	· ·			C	12	3				3.4	51	,		Ο.	าอ			2	34	1.14	5_	
				-	<u>.</u>									_				-										5		\rightarrow		
	-	,							1				- \$)ar	γpl	15	7	-			1	1					,	,			_	_
<u> </u>	am	مام	2 (_	-			,	<u>Am</u>			-		a	50	Y	+i	ve		_(1 On	lau	<u>ne</u>	<u> </u>		4	.07			4	96	
2	12	I.		1	l	1	V	OA	by	18	26	2			Ce	//	1CL	<u> </u>		(3)4	Om	<i>l</i> v	ial	5	2	62	L		ĀL	<u>S</u>	
					IA	İ			u	(1	Hp	<i>l.)</i>				tt							u				u		-			
		-			2A				u	_(EB)				u				•			u				u				_	
				1	зА	1 1	6	07/	B	OV	na	Ci	/			ce				(1)) 14	- A	ms	er	0	260	40	10	ì	\$	RZ.	
		_	•		48				u	(D	upi	()				u							u					a			4	
			0	93	5A		_1	oto	a	M.e	ta	2		_	ce	l H	NO	2		(2)	12	5,	1	با ه	's	21	-0	9 -	-10		AL	S
														_																		
_																																
\dashv					-																											
		-		Λ																					•							
	Ar y		#	V																												
		1.																														
1	ni	ha	L	\mathbb{D} .	Tu	<u> </u>	- 2	33	, 9	14	7				Tot	tal	٩	all	on	S	Рu	C.	ec		1	.5	5					
											, -						J				1	J									\top	
_	\perp																														1	
																									Cont	inue	d fro	m pa	ge	1_		
										-																						

Craig Del Fermo 12/15/21

Read and Understood By

Date: 12 15 21							-		Page of
Sample Location: BLM - 27 - 3 Pertinent Notes (if any)	271	9		A	nalytic	al Require	ment		
Pertinent Notes (if any)					5/1				
	ners	*xiri	٥		leta				
	# of Containers	Sample Matrix*	8260	607	19/1				
Sample Number		Samp	00	9	70te				Charac Nambar
211215 0930A	3	A	~						Charge Number
0931A (Duol.)	3	A	/						•
0432A (FB)	3	A	~						и
0933A		A							u
0934A (Dypl)		A							ч
0935A	2	A			~	_			u
Sample Location:		<u> </u>		A	nalytic	al Requirer	ment		
Pertinent Notes (if any)									
	ners	trrix*							
	# of Containers	Sample Matrix*							
Sample Number) J o #	Samp							Charac Name
									Charge Number
									·
Q 1000 1	/ Time				1	ecepted by:	meh	10	Date / Time: 10900
Cray Oll Terms 12/15	121	1110	hrs.	-	ru!	$\frac{\sqrt{\sqrt{\mu}}}{2}$	mm	12-	16-21 /0900
				1					
				l					

WSTF 381C (05/2016)

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: ___

Charge Del Fermo

12/13/21

Read and Understood By You W umch (2-14-2)

Continued from page

	Date: 12/13/21										Page	of	1
	Sample Location: BLM-42-5	69			A	Analytic	cal Req	uireme	nt				
	Pertinent Notes (if any)				H								
		SIS	* X	7	NDMA								
		# of Containers	Sample Matrix*	8260	\mathcal{N}								
		oJ Col	mple	28	7								
Ī	Sample Number	#	Sa		7						Char	ge Numb	er
\downarrow	2112130800A (TB)	3	A	~							XG	MD	
7	0801A (TB)	1	A		~						Ĺį		
	1010A	3	A	~							и		
	1011A (FB)	3	A	~							u		
7	1012A	1	A		1	•					u		
4	1013A (FB)	1	A		~						1,		
L													
	Sample Location:				A	nalytic	al Req	uireme	nt				
	Pertinent Notes (if any)												
		22	*×										
	,	ıtaine	Matri										
		# of Containers	Sample Matrix*										
	Sample Number	#	Saı								Char	ge Numbe	er
-													
Ĺ													
F	Relinquished by: Date	/ Time	:		1	- 11	ccepte	d by:	1		Date / 7		
-	Cray Il Fermo 12/13/21		15 h	rs.	\[\(\begin{aligned} \(\begin{aligned} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ri V	\bigvee	un	·d_	12-1	4-21	10900	<i>y</i>
-	V				$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Ray Del Terra

Read and Understood By Pare Manuch 12-14-27

Date: 12/13/21									-	Page	of_	1
	09			A	nalyti	cal Rec	luireme	nt				
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260 21	1 L NOMA								
Sample Number				7							ge Numb	
2112131415A	3	A								X	mo)
1416A (FB)	3	A								4	<u> </u>	
14114	1	A								U	·	
1418A (MS)		A		V							4	
1419A (MSD)	1	A		V						i	и	
14204 (FB)		A								-		
Sample Location:				A	nalytic	al Req	uireme	nt				
Pertinent Notes (if any)												
G and M at	# of Containers	Sample Matrix*										
Sample Number	#	9 1		<u> </u>						Char	ge Numb	er
					-							
								_				
					-	<u></u>						
						_						
					\							
0:011	/ Time			1) 11	ccepte	d by:			Date /	Time:	
tray Ill Jenso 12/13/2	1	500	hrs.	10	r U	\bigcup	llum	d_	12-	14-21	1090	20
				+		}						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

-Kt	JJ⊏	CI	12~		<u> </u>	11		-	<u> </u>	· y	<u> </u>																					_
0	~	42	vor	ક્ષ		R	rdo	٠٠٢	3	NFO	em e	, p	ادرو	er,	١. ١	بباعه	ν,		15	P	7/	c	اسد	y	ره	W	مم	<u>አ</u>	ノ	بركم		\dashv
~h	٠. ح	لما	w	W.	11	101	. a.) 7 7c -	لما	22	۸ ۹	A	وس	اد	15:	7 <	م	de	1: c	ah.	ل	p1 a	عله	45	pu	mp	. 5	إسم	shes	W	11.	_
100	. с	110	L J	·J	u.	5.00	. م	O,	w	-14	ورك		<i>٦</i> :	مدا	<u>د ح</u>	بر	10	٠٠,	N	40	٦ ۾	لمما	نهكوم	6	710/	my	274	W	11.	pi		_
7 00	ر ا	ء حر	LL	u	3:0	2	, Q	G	,e7	, c	NP	· 🌫	٠.٥	70	JC.	://	6ر	W	Ų,	tre	٩	res	42X	۴,	که	dr.	Co	GI	in	4	æ.	
																														- 		
عما	d:	·es	100	s :																												
\mathcal{D}^{ϵ}	5	٠٤٠	80	* =	Œ.		2-7-	~m	Just	0	٠٠٠	8	ليا	43	7	1	172															\dashv
64	Si	へさ	٠,	u	3:1	5	\	3 8	۲.	(4	,כ,	(0)	3	بردد	.6	m	71	مدار													-	_
					45:												0.					-									\dashv	
الب	ہنط	1.7	u	when	6 m			70	=			25	96.			ļ. -		-07	:	<i>₹∞</i>	۲۱۲	5	9	PE	13	113	1			-	•	\dashv
			_		<u> </u>	ļ					ļ							-				-				-						
S'u	inv	ar	\$6	m	D	754	**b	-	2	201	-	_	Do			1	4	_	_	0 B		-		TV				_3	776	ı C	3	
ZΠ	21	50	330	2	-	1	1	1	12	50			8 .3		-	1	०ऽ			29		-	<u> </u>	दा	ł	١.		<u> </u>				
		-0	83	<u> </u>	-	⊋1.	18	-	1	32	1	-	£ . 2	3		T	0	ĺ		3	i	-		Ī	86	1		-	+	-		
		0	834	د	-	١.	5		12	5-0	-		8.:	13		<u> ~</u>	.04	1_		3,	11	-		8	הר	-	-		 			
		_	-		-		-	-	-		\vdash	-		-	-		-	-					_	-					-			
	_	13 -	-	-	-	-	-		-	_=	10	~ b			-							-		-	<u> </u>				-			
Shi	181	E		-	<u> </u>	1	i	نحهلا		-	-		1-6		en		 	-		4	1	1	-	-		T		+	•		DO.	
3/1	21	\$0	838	C	+-	Vo	a \	8.	عد	9	igg	ļ	 	I	411	1	-		324	40 r	11	١٩١	-		-	<u>ا</u> ل	3/	-	-		77.	•
	 	5	839	C	+	NO.	~~	100	N	GB.	<u> </u>	-	-	╁-	<u>`</u>	-	-		-	-	+	+		-	-			\vdash	-	-	5 R	_
		09	₹~) z	c	-	erQ'	1	er;)	p ,	عاو	7			I		-			1	<u>L</u> 0		_		-		103		İ		1		
_		209	हेन्।	¢	+ '	To	+•1	K	Let	4/2	•		1	ce/	141	762	-		മ	152	wl	131	b			3 1·	<u>67</u> -	10		+	AL	
	-	-	-	-	-	-	-		+		-	-	-			+		-			-	-	-	-		+				-		
	-	-		+	-	+-	+	-		٨.					-		\vdash	-		-		+-				+	-			1		
		1	F\$	+-		+	+.		1		300	_	16	-1		-			12:c			-		جزا	_			1		L	B	-
	44			+	+-		T	3	7	+-	+	7	res	2) H	- 1	+	1	Ţ	47.C		- F	•	-			1/3	4	Δ_			AK	5
21	121	1	5 30 5 3 1	1		1000 1000 1000	141	pw.	4 (QC)	-	+			حو ا	'' _		ļ -		W.	1	1						3			1	SR.	
						الموا			, ,		3	-	حوا	T			(၁)	- 1	- 1	i	1				•		C				ALS	
-	-	110	32	1	-	16.01	~	m	year.	<u>3</u>		1	-rej	110	43	\top		123	1		כ											
	+			-	-		-				T	†	\top									1										
			-	+			+	1																								
	1						-	+-									1	2	J =	2.	B C \											
		+	1	+			1										T				3											
									1												I											
									1	\top																				<u> </u>		
																									С	ontin	ued 1	rom	page			
							_		 																							

Read and Understood By

12-15-5021

on Wunch

12-16-21

Date

Date: 12-15-2021										I	Page /	of
Sample Location: 3W - 7-	211				F	Analytic	al Requ	iremen	ıt			
Pertinent Notes (if an	у)											
Sample Number		# of Containers	Sample Matrix*	کې	روم	metals					X6 m.	Number
21121508380		3	2	S								
08390	FB	3		S								
10300	BC	3		9								
- 0840 C		1			4							
1031C	BC	١			Y							
28416		3				4						
10320	BC	5	,			9						
Sample Location:					1	Analytic	al Req	uiremer	nt			
Pertinent Notes (if an	y)											
		of Containers	Sample Matrix*									
Sample Number		*	Š	<u> </u>							Charge	Number
											<u></u>	
Relinquished by:	Date	 : / Tim	e:_		./		ccepte	d by:	^		Date / Ti	me:
	/2-15-20:		1/6	20	1	pri	W	1	-d	12		10900
			 .)		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

12/9/21

Ou Signed words

12-10-21

Date: 11/9/21									.]	Page of
Sample Location: 50.3.509				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260 11	LL NAMA						
Sample Number	fo #	San								Charge Number
21/2090730A (TB)	3	А	X							Xamo
(B) AKTO	1	١		X			_			
1005A	3		X							
100CA (FB)	3		X							
A 7001	\			X						
1008A (FB)	Ì	1		1						
	,									
Sample Location:	· ···	•		F	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	Saı		ļ						Charge Number
					-					
				/	Λ					
Relinquished by: Date	e / Tim	e:		16) \	Accepte	d by:	A	1.0	Date / Time:
12/9/2	10	1125	- ·	1	Du (\mathcal{N}	\m	_d	12	10-21/0900
	-			\)			
					/					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

unde 12-13-21

Date: 12/10/11										Page of
Sample Location: P1.2.504	_			. A	Analyti	cal Rec	luireme	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	8260	607	-					Charge Number
21/2100950A	3	A	V							XGMO
- 0951A (FB	3	(7	7							1
	1		_	(/						1.
0952 A 0953A (Pup)		J		X						1
·										
										·
Sample Location:				A	nalytic	al Req	uiremei	nt		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	S							<u> </u>	Charge Number
			:		·					· · · · · · · · · · · · · · · · · · ·
Relinquished by: Date	/ Time)		ri V	ccepte	d by:	. dr	12-1	Date / Time: 3-2

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 12 15 21										Page	of
Sample Location: PL-4-464				A	nalytic	al Req	uiremen	t			
Pertinent Notes (if any)											
	ıs	**		NOWH	•						
	# of Containers	Sample Matrix*	8260	V0.							
	f Con	nple]	28	7							•
Sample Number	#	San		7						Charge	Number
2112151410A	3	A	V							XGN	nD
1411A (FB)	3	A	V							u	
1412A	}	A		1						ч	
1413A (FB)	Ì	A								u	
										и	
											,
					,						
Sample Location:		1		A	nalytic	al Req	uiremen	t			
Pertinent Notes (if any)											
	ည	*									•
	taine	Matri									
	# of Containers	Sample Matrix*									
Sample Number	0#	Sar								Charge	Number
											-
Relinquished by: Date	/ Time	e:) 1	ccepte	d by:	<u></u>		Date / Tin	
Craig Del Temo 12/15/2	11;	500	hrs.	\iint	<u>in)</u>	VIV	lu- 0	<u>L</u>	12-1	6-21/	0900
Ø .											
				J		, –					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT PL-8-455 WII ENV-0000 Continued from page Bob Tuffs & Craig Del Ferraro present. Weather is cloude & warm. This well will be sampled using 5 triple rinsed, stainless steel sample tupes. Gen. in user Probe # 4955. Surface checks performed on probe prior to sampling. 30 Min. Equipment Blanks - Carboy G3
Analysis Preservative Contentor VOA by 8260 11 ice/4CL (3)40ml vials 2621 21126813354 Low Level NOMA lice (1) 11 Amber 02004019 1336y Initial Parameters Meter ID Time - 21120814104 Time - 21120908364 PH/cond-11 +8.27 -8.13 Turb Temp + 22,5°C Temp - 20,9 C 5td - 28.2 Cond + 1069 us/cm Cond - 1081 uslum _ 30.2 Turb + 2.10 NTU'S 107-2004415 -1.77 NT 0'S pre - 7.05/10.08(23.3°c) post - 7.06/10.07 Exp-12/31/21 pt pre - 7.17/10/13(1229) off post-7.19/10.13 15tw +438,76ft. Buffers DTW -438.67Ft Amos - 12.64psia Atmos- 12.59 psia 2108956 IDW - 1/4 gal. 4103981 Samples Analysis Container Sample Preservative 21120814404 Low Level NDMA (3)40ml vials 2621 ice HCL - 14414 CDIL Amber 0200401G SRI ice 1,4 Dioxane by 8270D (1)250ml amber 032320-1BMC L 21120908354 Runs 23,89 23 83 2) 23.88 23,75 23.13 23.16 23.15 23.17 23.14 23.14 23.18 23.89 23.90 23.81

Charg Del Ferrier

Read and Understood By Yori W umch 12-9-21

Continued from page

Date: 12 8 21										Page	of	2_
Sample Location: PL-8-455				A	nalytic	cal Req	uiremer	ıt				
Pertinent Notes (if any)			7	4								
	ers	*xi	7	NOMA								
	# of Containers	Sample Matrix*	8260	207								
	ofCc	ample	82	7								
Sample Number	+	Š		7					1	T	rge Numbe	r
21120813354 (EB)	3	A								XG	MD	
13364 (EB)		A	_	~						ι	1	
14404	3	A		-							u	
1441y		A								ļ	.	
									_			
Sample Location:				A	nalytic	al Requ	uiremen	ıt		-		
Pertinent Notes (if any)												
	STS	**										
	ntaine	Matr										
	# of Containers	Sample Matrix*										
Sample Number	#	Sa								Cha	rge Number	r
											8.00	
				/	\							
(4) . 20 4 /	/ Time				P	ccepter		Л	1	Date /	1	
tray lel Jeuro 12/8/21	15	30 h	<u>rcs.</u>	1	Ju 1	W	\lu	-d	12.	9-21	/091	Û
0	_		_ _	$\perp \perp$)				,		/	
) 		,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 12 9 2										Page 3	of_2
Sample Location: PL-8-455				Analytical Requirement							
Pertinent Notes (if any)					-						
	LS *	* *	200								
	# of Containers	Sample Matrix*	lioxane								
	f Cor	mple	D.								i
Sample Number	#	Sa	()							Charge	e Number
21120908354	1	A								XG	MD
Sample Location:			Analytical Requirement								
Pertinent Notes (if any)										-	
	13	*×									
	itaine	Matri									
	# of Containers	Sample Matrix*									
Sample Number	0#	Saı								Charge	Number
							-				
	-										
Relinquished by: Date / Time:				Accepted by: Date / Tin						me:	
Tray Witum 12/9/21	11	∞ h	cs.	1	Iru 1	\mathcal{N}_{-}	Ju	<u>~d</u>	- 12-	-9-21	10940
V										/	
				V							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

1 1 1 1 2 200 W 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Continued from page
Bob Tufts & Craig Del Ferraro present We	
no completing of steel of the	ather 15 clear & cool. This zone wi
be sampled using 5 steam cleaned & triple	rinsed, stamless steel, sample the
hen in use. Probe # 4955. Surface checks port	ormed on probe prior to sampling
30 Min Equipment Blank	5-Cachay GB
Sample Analysis Preserva	
2/12080905y VOA by 8760 L4 ice/H	
0906Y Low Level NDMA ite	(1) 11 Amber 02004016 SRI
1.1.00	
Initial Parameters Final	Meter, ID
Time-2/120809454 Time-2	112081110x 2H/Cord-11
PH - 8.37 PH - 8	3.31 Turb -2
Temp + 20.4 () Temp - 2	
Turo - 2.25NTU'S Cond - 9	183 us/cm u rdg - 30 2
	1.63 NTU 4 107 - 200 445
	7.11/10.06 (18.0°) 4 Exp-12/31/21
Pt post - 7.17/10.10 PH post -	-7.ia/10.06
DIW - 438.50 Ft. DIW -	438.67ft. Buffers Lot Ex
Htmps-1265 osia Atmos-	
Tow-	12.63 psia 7 210 BG 56 2/2 12 gal. 10 410 3 GB 1 9/2;
	1/2 gal. 10 4103GB1 9/2;
	
Samples 1	
Sample Analysis regression	
21120810084 VOA by 8260 LL :10/41	L 3740ml vials 2621 ALT
1009 y Low level NDMA ice	(VIII Amber 02004019 SRI
1035y u (Dup)	
	(1) 250 ml amber 032320-18me ALS
	(1) 250 ml amber 032320-18me ALS
	+++++++++++++++++++++++++++++++++++++++
	
Runs 1) 89.42 2) 89.38 3) 89.34	4) 89,36
88.16 88.17	88.15
	88.16
88.14 88.17 88.15 89.42 89.38 89.31	89.32
	Continued from page
Read a	and Understood By

Craig Del Zemo

12/8/21

Jon Wigned wurch

12-9-21

Date

Date: 12 8 21										Page of	L
Sample Location: PL-8-605				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)				A	۵					_	
	ers	ix*	77	L NOMA	Dioxane						
	# of Containers	Sample Matrix*	8260 1	Ŋ	, o						
	ofCo	ample	28	77	Ò						
Sample Number										Charge Number	
21120809054 (EB)	3	A	<u> </u>					-		XGMD	
0906y (EB)	1_	A		<u> </u>						u	
10084	3	A		-						<u>u</u>	
10094	l	A		~						u	
1035y (Dupl.)		A		V	_					и	
10 36y		A			_	- 				1.	
Sample Location:		·		A	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)										1	
			İ		1			1	1		
	ırs	*×									
	ıtainers	Matrix*									
	fContainers	nple Matrix*									
Sample Number	# of Containers	Sample Matrix*								Charge Number	
Sample Number	# of Containers	Sample Matrix*								Charge Number	
Sample Number	# of Containers	Sample Matrix*								Charge Number	
Sample Number	# of Containers	Sample Matrix*					,			Charge Number	
Sample Number	# of Containers	Sample Matrix*					,			Charge Number	
Sample Number	# of Containers	Sample Matrix*					,			Charge Number	
Sample Number	# of Containers	Sample Matrix*					,			Charge Number	
Sample Number	# of Containers	Sample Matrix*					,			Charge Number	
Relinquished by: Date	/ Time				[Ac	cepte	ı by:			Date / Time:	
	/ Time		·S.		Jan A	cepte	by:	-ch	12-		
Relinquished by: Date	/ Time		·S.		' \	cepte	1	-ch	12-	Date / Time:	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page __

		_	
MARCUS AUATOS & Toney	TRICE PARSENT	THE WESTER IS	CLEAR & WARM.
This well will be pung	EN & JAMPLEN	WITTE SAMPE	Can SysTEM. PURSE
PRESSURE SCTE 227 021	+ SAMPLE PASSEL	AU SET. @ 205 psv. 1	5 mins RECOVERY TIME
BETWEEN PURSES. MIN OF	Ysallows on Pan	An STABILIZATION PA	400 To SAMPING THE
First Brons will bedise	AndES OF SAMPLE	punst. Bubblen set e	3 ps, & STable @ 7 ps,
Pagen 1 par			
PH 7.97 7.87			
70mp 20.4'c 70.4'c			
CON 1268 126845/C	n		
76nb 0.83 0.81			
INITIAL	Final		TEN IN'S
211201 142513	2112011436B	P H	10000 # 61
	7.85		Turb # 8
TEMP 19.7'C	19.7		11 std = 54.1 sta's
	1258		" (dy =) 3.1
Tunb 0.77	0.78		1 674= 200445
pHPAE 7.00/10.00(225) 7	200/1000(21.8)		11Exp= 12/31/21
ptpost 7.01/10.20 7	01/10.00		
	rip Blanks		
JAMPLET ANALYSIS	Presens	67# CONT	446
2112010700B 826011	1 = 1 Hd	2671 13) Youlu	14Cs ALS
OPOIB UNOMA	14	103501 (1) LTAMB	5 Rt
	Samples		
Sample# Analysis	Preserv	CONT # CONT	
211201 14301 826011	1 at 1 HV	7671 13)Youlu	nais Als
1431B 1'(FB)	//	11 11	
1432B CLNDMA	146	103501 11)11TAM	bin Ski
1433B "(AB)	/1	1, 10	
1434B 5UDA-SI		N/4 11)250m	19mben Als
- 1435B 11 (Du	b) 1 ⁹	N/A 11	
			Continued from page
		Read and Understood By	

T. Sinned

12-1-21

Read and Understood By

Signed

12-2-21

Date: / 7-1-7 1]	Page	of
Sample Location: Pl-11-470				· A	Analytic	al Req	uireme	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	826011	llnona						X6.7	≀∆ e Number
711201070B(FB)	3		×								
-021B (TB)	t			入							
143013	3		×								
1431B (F3)	l		と								
14328	١			x			,				
1433B (FB)	1			X							
											;
Sample Location:	·			A	Analytic	al Req	uiremei	nt			
Pertinent Notes (if any)			5,						÷		
Sample Number	# of Containers	Sample Matrix*	Sims/Sua4							Charg	e Number
14343	1	A	x								
1435B (Dup)	ı	A	X								* .
					<i>(</i>						
Relinquished by: Date	7 / Time		3		m 1	ccepte	d by:	-d	2-	Date / T	ime: 0 3 30
				1 '	J		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _ MARCOS AUNOS + TON TONEZ PRESENT. THE WENTER IS CHEME & WARM ZONE WILL DE PUNGEL & SAMPLED USING A FLATE SAMPLING TYSTEM. PARSE PRESSURE SET @ 227 ps, & Pite Sample pressure SET @ Zosps, 15 min RECOUSERY TIME BeTWEEN punges. A mor of ygallows on Pangas stabilization prior to sampling The first Browns of sample punge will be discarded. Bubble ser & Spsi of stubble @ PpsI. Param's PRE 7. 59 7.56 2166 TEmp 21.2'c 1244 1251 As/cm Tuns 4.30 2.18 INTIAL FINAL 211201 144913 71120114598 PH/cor0# 7.57 7.51 8 TEMP 19.22 54.14143 1255 GOVA 1750 As/cm 53.1 2763 1.744766 0.91 2143 200445 LOT# pHPME 7.01/10.00(21) 7.00/10.00(21.9) 12-31-21 7.00/10.00 PHP007 200/10.01 54 mores Samplest PRESENS ANALSIS LOT# GONT 211201 145013 826011 14E 1 Hall 13)46Monts 7671 14513 11 (F3) Classina 142513 1 4 (1) 14 Amborn 103501 5KI " (F3) 14238 11 11 145413 500A-51m 11 250 ml maken Als

12-1-51

Read and Understood By

Continued from page

Date: 12-1-21		٠					-			Page	of
Sample Location: Pl-11-570				ŀ	Analytic	cal Requ	uiremei	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Brievil	llnong	SUOA Sim					X6m Charge N	
211201 1450B	3	4	X								
- 1451B (FB)	3		\times								
14523	l			と							
1453B (FB)	l			k							
1452B (FB) - 1454B	1	1			X						
											. <u> </u>
Sample Location:				. A	nalytic	al Requ	iiremer	ıt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	-								
Sample Number	#	Sa								Charge N	umber
Relinquished by: Date 7- /2-1-71	/ Time	30 30			/ \ \ '	ccepted	1 by:	d	12-2	Date / Time	: } 30

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

\$3.7 NTV

103501

262

103501

- 200445

. 12/3/12/

Continued from page

gressore

clear + cool

PH/Cond.

BOG

Tall

Contina

(3)40 M vials

(1) IL AMBER

screvery time

Weather

der stabelization prior to sampling discarded Bubbler set @ 3ps. 2

Sampling

Trip Blanks

21/202151413

1264 us/cm

0.59 474

7.01/10.63

7.02/10.01 (21.50)

relieve

ACIJE

97

20.3.€

Tressive

\$e1

19

<21

A(5

1 psi. Caron 6-1

porged & sample

- 7.94

Temp + 20.3'(

Cold - 1258 ws/cm

Tub 0.70 NO

Sample #

Time PH

Turb

PHORE

PH post

5 and H

21/202/508/3

- 150GB

1507B

15083

150913

151013

211202 0730 13

0731B

Parameters

21120215048

Ja. 5.

1260 ws/m

0.62 NTV

7.03 10.04

7.01/10/00(21.5)

Andrsis

NOA by 8760LL

Low Level NOMA

(FB)

(Ovo)

(47)

1.4- Djuxana 8270D

Halvorsen

or paramaler

Prior to Samplin

1.87

20.1

0.65

1272 us son

Analysis

NOA by 8260 LL

an level NDMA

Se yen

aler 5 don't zation

12/2/21

(1) 250 m/ Amber NA Continued from page Read and Understood By

(3)40 m vies

(1) IL Ambr

Date: 11/1/11								P	age of
Sample Location: Pl. 11. 716			Α	nalytica	ıl Requ	irement			
Pertinent Notes (if any) Sample Number	# of Containers Sample Matrix*	8260 LC	LC NOWA	1.4-Dioxans 8270					Charge Number
21/12020730B (TB)	3 A	X							XCMD
0731B (TB)	1 1		X		_				\
15053	3	X							
150GB (FB)	3	1 1							
1507B			X		_				
1508B (Dug)	1		X						
1509B (FB)	111	1	X						1
Sample Location:			I. I	nalytic	al Requ	uirement			
Pertinent Notes (if any)	# of Containers	1,4 - Dioxena Esto							
Sample Number	# oj	\$							Charge Number
IN102/510B	Δ /	X							Xamb
			ع, لــــــــــــــــــــــــــــــــــــ						
	Pate / Time:			n V	l	d by:	L_	12-6	Date / Time:
			10						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

12/2/2

Signed Lumb

12-6-21

Date: \2/1/1\							, " "			Page _ l _ of _ l
Sample Location: \$\\\\ \blace \text{810}				A	Analytic	al Requ	uiremen	ıt		
Pertinent Notes (if any)			æ	7						
	# of Containers	Sample Matrix*	26011	LL NOMA						
Sample Number		Sa								Charge Number
111202 14413	3	A	X							X6.MD
1442B (FB)	3		X							
1443B	١			X	,					
1444B (FB)	١	1		X						1
Sample Location:	- 4			A	nalytic	al Requ	uiremen	t		
Pertinent Notes (if any)					***					
	# of Containers	Sample Matrix*								
Sample Number	#	Sa	<u> </u>							Charge Number
·										
					$\overline{}$					
Relinquished by: Dat \(\lambda / \lambda / \lambda / \lambda / \lambda \)	te / Time	_			ri V	ccepted	i by:	L	12-	Date / Time: 09 00
				V		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT P1 . 11 . 980

Continued from page _

ROJECT	61.11	<u>. </u>	100	د																								
Marchis	Auglos	9	B	an	17	9/10	ری	7	pre	220	+.	W	en	w		s	<u>c/e</u>	us	š	COO	١. ١	7/4	is	\mathcal{F}^{c}	N	w	11;	pr
mer	t sam	, le	9 1	usi	مد	a	7		`	545)	en	١	Puc	<mark>ረ</mark> ջ	K	2 455	บ เล		rt.	Q		2	4	3	9		ans	
255014	set ($\dot{\omega}$	20	Z	(80		12	N	, , ,	70	(0)	4	7.	m.	. \	14.	Ned	^	φı	ړوځ		A	wi.		7	1	99/	
Car	meler	5	abi	.); 2	9	טע.		.στ	- }	0	Sav	voj;	4	1	he	t:	رح	+ :	350	<u>,</u>		4	San	up le	_ p	١٢٤٥	V	Nic
o ois	ewded	B	ubl	S. Viz		خع			3 A	ر 51	ð	5+1	bli		<u>ي</u>	1	ρSὶ.	C	ro	~ C	1.1			,	\ 			
								,	1											,						ļ		-
araws	Prior	1	0	50	W	lin										Λe	لعد	- 3	D						Ĺ			-
<i>H</i> -	8.02				، ن		7								6/7	16	N		W							<u> </u>		
emp -	70 8.			\mathcal{I}_{0}	۷. د	<u> </u>									70	ς'n	#	-	8									_
ord -	1095 NO			1	100	ע	s/cv	^									arz		5	1.1	7	ن				ļ		
ond -	U.51 N						3/4										sa	-			M.					<u> </u>		
																- 1	70	-	2	py	5							
													ļ			6	XP	٠.	12	13	15	\			<u></u>	-		-
					. !											<u> </u>	<u> </u>		_						ļ		-	
Initial	Paramo	Lec	ے۔				E	اها			-			-							ļ		-		-			
Time -	21120	214	54	13		21	120	721	500	B				-		<u> </u>				-				<u> </u>		-		
4 .	8.6	نو				18	3,0	8				_	-						-					-		-	-	
Tomp -	20.	7.	(<u> </u>	<u> </u>	<u> </u>	ما	6					ļ	<u> </u>	-	ļ	-	-	-					<u> </u>	_	-		
Cond Tub			ا/کن	im	<u></u>	17	10	BN	5/2	u				ļ		-	ļ			-	-	-		<u> </u>	-			
10h	- 0.	प्ष	N	70		1	1.0									-		_	-	-	<u> </u>	-	-		-	╁	ļ	
Has	7.0	0	10.	٥٧	1,15/)	٥. ١					١.٧	;)		_	<u> </u>		+	ļ	-	-		-	-	 	-		
1200	\$0.5	./	0.0	14	<u> </u>	1_	6.9	1/	16.	०५				-			-	ļ	-	-			-	-	-			\vdash
										_	-			-			-	-		ļ	1			ļ	-	-	-	
							-	<u> </u>	-		wb			<u> </u>			-		-		<u> </u>	-	1		+	┼		
- Ann	#					1915		₩	-	-	Pre	ser	12	-	1	ļ		1	Jar	A	-	-	107		-		\\ <u>^</u>	O,
711,TO5	1915 5 15		//6	OA!		850	401	1	ļ	-	H	1/1	[u	ļ		-((3)		1	5	-		162	-	-	+-	H	5
	45613			+	=	(7		-		-		'	-	\perp	-	-	+.	>	٠.		-	—	2	<u> </u>				
	4573		10	w	}		nn	M	-	-	-	<u>ي 1</u>	ا	-	-	1	1) [١.	Mp	*/	-	-1	135	10	-	+	-5	ZI
	145813				Ξ	15	(3)	-	-	-		3	-	-	-	╅	—	-	-	-		-	-	-	\vdash	-		2
					_	-	 	ļ				-		-	-		-		-	-		-		-	+-	+	+-	
				ļ [!]	-			_	-	ļ	-		-	+	1	-	-		-	+-	-	-	-		+-		-	-
				<u> </u>		+	+-	_	-		-	-		-	-		+	-	+	-	-		-		+	-	-	+
				-		-	-	-	-		-		-	-	-	+	-	+	-	+-			-		+	-	-	
			_	_	-	+-	+	-	-	-	-	-	-	+	-	-	-	-	-	-	-		-	+-	+	+	+	+-
				-	<u> </u>	+	+	-			-	-	-			-	-	-	+-	-	+-			-	-	-	+-	
				_	-	+	+-	+	+-	-	-	\vdash	+		 	-				+	+	C-	ntin	lod f	rom	page	<u> </u>	
1 1			1		1	1		-		1	1	1	1	1	1	1			1	1	1	C0	munt	eu f	OHI	paye		

Ms W8

12/2/21

for Wunch

12-6-21

Date: \1/1/2\										Page	_ of	
Sample Location: P1.11.986				P	Analytic	al Req	uireme	nt				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 LL	LL NDMA			,			Charg	ge Numbe	er
21120214553	3	A	X							XGMI		
1456B (FB)	3	1	X							1		
1457B	1			X								
145BB (FB)	1	1		X						1		
								-				
	,											
Sample Location:				F	nalytic	al Req	uireme	nt	•			
Pertinent Notes (if any)					211 241							
	# of Containers	Sample Matrix*						3				
Sample Number	#	S			j				<u> </u>	Charg	e Number	<u>r</u>
	•											
Relinquished by:	Date / Time					A-4	4 h			Det / 7	·	,
	/2/2\ @ <				n V	coepte	a by:	d	12-1	Date / 1	1900 0900	<u> </u>
				V								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D 32 # 123 (A) 33

		_													1		4										+		_	- 6	$\overline{}$	\neg
2	<u>_</u>	7	2.	X	8	0	ra	19	D	. 1	Fol		7/0	9	se	SON	1.		Je	2H	אמ	-	is	cl	ea	<u> </u>	ج ر	ol	d.	TV	1 1 5	-
٦	013	1	u.	1	1		-	7				_		1				ΙĬ								<			100		sill ito	,
N	el	1 9	<u>v 1</u>	11	60	P	Ur	94	4 /	۸S	17	9	۹,	a e	a i	Ca	ec	1-	> \ P	n	ve i		1	m	2		741	np	167	_ C	27 (7 . 1	
20	. (·ct	ed	us	άÀ	9	<u> </u>	2+	O	Δ	di	sc	a	-G 4		$\wedge \circ$	5.6	•	la	ra	M	210	/ S	١ ،	υİ	Щ.	120	m	oni	10	A
٠.	- 1 -		_		۱	لسلما	- I	7 +	41 K	_Dah	۱d.	1.00	101	-ev	l	N	0	W E	- U	71	ow		الع	al	sai	a	ble	<u>.</u> –	<u>- I</u>	20	an	1
√ •	110	7	1	21	I	YM	4	•		1		7	1		0 4																	
<u>) </u>	2	w	Ш	No	T	36	W	mi	LOA-	ea.	, 4	_av	CDO	9	S +		N.	ч	36				-							-+		_
																					_									_		-
٨	le	-00	1	D				1			Bu	11	ייי		L	+		ع	XD		P	H	pn	zcal	_	٦,	16	10	.zc	<u> </u>	1.7	·c)
		1			-, 4	า								L۱c		_	,		χ <u>ρ</u> 23	,								1/1				1
P			NO		-(3	٧.				-		_		- 1		- 1					P	4	P	4	=	-4	1.3	11	U, e	~		\dashv
	w	<u> </u>			-2							0	4	-10	3 (}	81		9	22		'						<u> </u>				\rightarrow	
ū			Sto	d -	- 11	.4	٨,١	τίş										'														
	-	-	ì			2 0			S																							
L			raj	-		۲.۰	IN	ידע	-																		_				+	\dashv
Ļ			lot	-	20	Þ¢	45																				<u> </u>				\dashv	\dashv
<u>.</u>			- X6	-	12	3	la	.														_					L]
٠			7			13	1-2	1	_																							
_	ļ			1	1.	1				\dashv	1					. /		1			n.				1		2	-	~~		7	abla
ر,	ra	me	er	s (ʻ	hì	ne)			ter	np	'`) د	c)		<u>C</u>	on	dU	MS	19	<u>m)</u>		PI	1_	\Box	ily	PI	υTU	1)	-	D		(A	<i>•</i> /
7	21	12	110	20	94	01		ı	1	71	П			١	2	4	q				8.	06	•	(12	1		4	71.	63	3
່⊀			1		a L	12.			1	7				7			'				8.	1				59	۲.		'		- 1	- 1
$\stackrel{\sim}{\vee}$	-			1 0	94	131	t				9.				2										_		1	-	1	1 1	- 1	1
<u>(2</u>	_			† O	91	t 6,	4			٦,	1	ļ			12	.4	8				8	.00)		0.	54	<u> </u>	<u> </u>	4	71	. 6	3
•																																
																	~ ~															
				ļ) K	'4n	भि	es	_			1	1				1		1		7	1	
<u>S</u>	an	ple	2		6 A				M	al	ys,	5		Tr	<u> 8</u>	nvo	小	R		(o	nt	in	er		يا	ot	<u> </u>			a b	
\bar{z}	113	11	I_{c}	94	~ A				Voi	4 6	u s	326	0		ic	. /	Н	cĹ		(3) (10	<u>_</u>	Via	5	1	26	al		AL	5	
_		- 1 \										1 .	1		·									•	•							
_				1	I A]		\vdash	<u> </u>		-	(B)	l _			u							, u	,		-	-	+			4	
_	<u> </u>	-	0	95	26	\			60	1 //	Bro	ma	cil			1	ce				<i>i) l</i>	LI	1m	ker		os.	00	401	9	<u> </u>	R7	\Box
			1	•	3 A	i .			Tot		1	1 -		i	1	10	l H	Vn			2)1	25	ml	DA	's	21		9-	1		11:	5
				1	1	1			An	•	1	1 11					1	-	5					τ-	1		1	1				
	-	F	-	1.	4 A	1_								ļ		-	Ce			-			1		1		 N	A	-		4	
		<u> </u>	<u> </u>	99	<u> 551</u>	4		I	DS	b	۶ ۾	M Z	54	OC			u			_(Ш	15	ml	Po	14	—	 	4			u	
		<u> </u>	ļ (99	361	4			erc								u						u	_	U			4			u	
			1													•		(<u> </u>	1	11	150	ml		1			_		^		
=		 	+ 5	745	376			P	02	ואץ	3	py	32	7,4		IC	/ H	22	04		1 / 9	ارد	mi	P	ly	نة إ	41-	০ণ	- J	U	И	
				<u> </u>	ļ				ļ!		<u> </u>	<u> </u>					ļ		ļ		ļ		ļ.		Ľ	 	 	+-	ļ			
			'																								<u></u>					
	1																															
_	-	 		_	-	<u> </u>					1				- 1	<u> </u>							 				-		-	-		
T	hi	ia	<u> </u>	pt	W	_	4-	ιι.	44	44	+.		ļ	1	<u>ota</u>	1	gal	عما	ک	ρı	ra	ed	=	 	.5		-	-	ļ	\vdash	 	
																'				1								<u> </u>				
		T		<u> </u>														<u> </u>			1							1				
	+	 	+	-	-		-	-	\vdash	\vdash	\vdash	+-			-			-	-	-	-	 	-		 	+	+-	+			1	
	ļ			_	ļ	-	ļ	<u> </u>		<u> </u>	<u> </u>		-					_	ļ			<u> </u>	ļ		ļ	<u></u>			<u></u>			
																									Co	ntinu	ed fr	rom p	age			
													4		4	4											$\overline{-}$					

Craig Del Fermo 12/16/21

Read and Understood By

lunch

2-16-26

Date: 12 16 21									<u> </u>	Page	of
Sample Location: $ST-1-54$				A	nalytic	al Requ	ireme	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	2928	607	Total Metals	Anions/#1K	SQL	Perchlorate		Charge N	umber
2112160950A	3	A	\							XGM	$\overline{\mathcal{D}}$
0951A (FB)	3	A		-						u	
- 0950A	1	A		~						ч	
0953 A	2	A								u	
- 0954A	2	A								· ·	
- 0955A		A					~	-		u	
0956A		A			-			V		v	W. W. A.
Sample Location:	т			A	nalytic	al Requ	iremen	ıt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	NO. /NO.							Charge N	umher
2112160957A	l	A								Xami	
										- A. W. W.	
								·			
									-		
Relinquished by: Date Chay Del Jano 12/16/2	/ Time		hrs.) A. Ori	cepted	$/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	und	_ \2	Date / Time	1010
)		/				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 51-1-630 ENV- 0053

	1	_	7	1	Τ.		T		1	1			Т		-		1		1		7"	_	_				_					
<u>0</u>	~~	40	\v e	~5	en	·	Te	200	7	46	سوء	P	re	ځو	٧.	W	وم	Lu.		3	C/	er r	ar	d	دی	d.	-	1	5	سو	11.	
																														p		
																														d		
~		_			. ~			(26	0	3	P. ⊃	_	C.	9.	•))	_		1.1	1.			7			C_{α}	42		ر. د	1	•	14 6
	,,,,	, ,		1	23	2								- 10	3476	2 '1	٦	. 10				,,,,,	Ψ,	34 (•		.,,	2	- 3			7.64
_		-		 	_										-				 													
	ŀ			02	f													-		-												
									× fc												-											
44	5.	en.	pm	=	u	2:	2	۵	•	8 64	<u>r. (</u>	4,	7, 1.	ر د	134	Pa,	77	w	No.	4.										\vdash		
<u> </u>	حك	د۲۷	<i>,</i> ہے۔	3 =	u.	2;,	5 °		HI	3	45/	<u> </u>		371	١.	5.1	4	01	_		ļ .											
10	thic	1:4	W	m	W .	8		5	10.	: 5	4.)		8.	S	= {	- 41	4		L	, T) oc	54 L	5		ڪ	z G	13	12	1	
																												·				
Par	-0' 4e	arka.	-5 (7:5	<u>~</u>		Z 14	>		Co	0		1	S			6 +		Ĺ	-	2	>_		T	97ر	S		е	TW	(C	
			l) C)	9.4	5		70			ν.	9			.8	A			49	! !		1	.8	1			-			
_			1	Q C	1		۹.				56			بى م	-		د.۵			į.	35)	1 1		I	.3							
				1 6			ኅ,ኣ		,		59			₹.₽			ر. المار				350			1	.4							
			12	1 2							•			٥.			Co.	7.			33	,			• 7	1						
																					-									-		-
																-																-
		₽	ļ								2	711	191		,																	
<u> </u>	\$					$\mathcal{P}_{\mathcal{J}}$	•		1 3		_		64	ર જા	٠س						ur		_	_		5 1				1	B	
3112	1 IL	၂ထ	٥ <i>د</i>		V	on I	8		رها	- 1			_7		HC			(3	Dų,	رسه د	v:	(۵			20	ړو					١<	5
	_) 00	ے ز		(- A/W	t 	1,		B)			11						1,						()					٠,	
	_	00	Q c		B	w.) 	. 1 1	ا رحا	ره،				-ce				1	D1	LD	du	c			10	35	01				5 R.	
									•																							
																															-	
																				<u>-</u>												\neg
		- 1													-															\neg		
		-				•																								\dashv		\dashv
																														$\overline{}$		
																											-					\dashv
_																							\dashv									\dashv
-																								-								
_		-	-																													
													,																			
															_]										Con	tinue	d fro	m pa	ge			
																	Read	and	Und	ersto	od B	v		-								

Sinned

Date: 12-16-2021											Page	ofl
Sample Location: 57-1- (,30	-			A	nalytic	cal Requ	uireme	nt			
Pertinent Notes (if an	ıy)											
			*									
		# of Containers	Sample Matrix*	ر								
		onta	le M	U 00	(09)		:					
		ofC	amp	2	೨						XOV	
Sample Number			S				l			<u> </u>	Charge	e Number
311216 10000		3	7	2								
10010		3	1	9								
10020	FB)			2							
					,							
Sample Location:					Α	nalytic	al Requ	uireme	nt			
Pertinent Notes (if an	X											
		subu	ttrix*									
		ontai	e Mé									
		# of Containgrs	Sample Matrix*									
Sample Number		#	Š								Charge	Number
								/				
										/		
												·
												
Relinquished by:	Date	/ Time	:			A	ccepte		<u></u>		Date / Ti	me:
elle	12-16-2021	,	'o } ≥			onl	\mathcal{L}	\uu	- du	12	-16-21	1045
						<u>~ </u>	<i>-</i>	1		(-		/ 10 + 2
	 	,						-}		-		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT 5T- 3-486 €NU-0053

	1.0	\\~			-	200		25	~ ·	, (Ca			We	11.		٠. د	<u> </u>			~\		٠٠/،	_	h : <		~ \\			ba	
														<i>P</i> ,																1	\exists
																						~ 3	~	• • •	S.C.		011	LCT	40		
ジャ	5	>_	کمہ	<u>ي</u>	7 4	علا بلو	, C	Q)	3C.	M. P.C	يد_	i, Je	3 ~e	• (-0,4	pai	<i>y</i>	1	0	a ve									-		\dashv
																			•												
												<u> </u>										-									
197	mf	<u> </u>																										_		-	
m	þ	a۱	120	90	<i>35</i> e	c			ļ	:	3)/2	200	59	123	د						3	113	9	٥٩	30	۱					_
ļ 	Ŧ	つ.	83						ļ		つ.	31										<u>)</u> .	24								_
P	ć.	15	٤. (ه	ص ر							19	.3										10	ا.ل								
an	-	<i>/</i> a	14	45	CN						11	४४										11	٤)								
I				ナイ							L	.3.	•									5,	71								
			1	2		711	. ,	c				91-		0							1		_	٩	QZ						
	}	ì		.3:			, 4					72	1											9							
102			•	. 3-	*						-	\ 										<u>.</u>	1 2	1							
<u> </u>												<u> </u>		·																	
								<u> </u>	 																						
			-				-						_	ļ		ļ				ļ											
	435	ļ								24	W	<u>کا (</u>				-	-														
400	e					50	2/	s; 5		-		-	10	<u>ce 2</u>	270	<u> </u>			1	<i>-7-</i>			_			•				-00	_
12	جم و	مرد	0 C	ļ	`	ه د	1	p.	1	1			<u> </u>	I	در) ۲	ل	ļ <u>-</u>		3)	40	7)	انم)		2	_ه م	1			المده	
 	- 0	94	16	ļ		11	1	~~	1	(F	B	}			,											١,				*•	
<u> </u>	0	94	A c							ما	7	ļ	ļ	T	ee.		<u>.</u>		\mathcal{D}^{1}	LA	din	۲_			10	25	01			3 C	۲_
														1	1							 			ļ						
			 	 							<u> </u>	 							-	-			-						ļ		
			 	-			-				 	ļ		-	-	-				 	-							-			
					ļ	-	_	·	 				 				-	 	-	-	-	ļ		-		-					
				I	<u>ه د</u>	: ر	3.	5 <	12/	-	-				ļ		<u>m</u> .	وكحد	<u>c</u>	20	- -			-	-						
<u> </u>	-			-		-	-					-	-				-	PI	110	006	> =	61		<u> </u>		-	-				
-			ļ				1	-	ļ	-	-	-	ļ			-	<u> </u>	ļ <u>-</u>	ד	108	B =	8		ļ	<u> </u>	ļ	<u> </u>				
	ļ		_	_									_	ļ		ļ				51	9 =	54	1.1	1	-			ļ			
						ļ		-												SS	5	51	٧. ٨	,	<u></u>		ļ		ļ		
																					1 '	t		415	•						
																					- م	1	I	1							
						†					1										1			-							
1																								Co	ntinu	ed fr	om p	age	.1		

Read and Understood By

Date: /2.9-2=2)							-			Page	of
Sample Location: 57-3-486				A	nalytic	al Requ	uireme	nt			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	700	روم						X S N Charg	<u>S</u> e Number
21120909406	3	4	9		:						
OGHIC FB	3]	9-								
09420	١	\		6	n.,	·					
											·
N.											
Sample Location:				A	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*		:							
Sample Number	#	N N								Charg	e Number
								:			
Relinquished by: Date	/ Time	: :) A	cepte	d by:			Date / T	ime:
12.9.2021		104	5	10	rul	\mathcal{N}		md	_\2	-10-21	10900
				$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		<u> </u>			1		<i>-</i>

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

							-							,			itiiiue		bs				_				
Dan Haluses	1 (1	Т		1 1	1 '	T I		1 i	1 1	1 1	مرا	1 1	ંડ	1 - 1	16	J		ous	J		1 1	1		مرزيه	Ay.	1
This well	4.54	1 60	L P	محر	الم	0x	LA.	SA	-QV	المما	u	27.4	15	0	9	بدحا	رماد	. Leel	A	احلا	الملا	40	pur	de.	• '		1
samples wi	11/24	<u>C</u>	،الدر)	, had	<u>u</u>	<u>ت</u>	-	A Y	العدا	ل ب	Tye	Do.		4:16	42	my.	Ł r	10.	æ.	م	+Y	ا	\$1	in	ب ب	se.	
					'		'		<u> </u>				<u> </u>	1!	'			<u> </u>		L	<u> </u>	7		.]	1		
				'	'	<u> </u>	'						[]														
27 miles				T!														1				,					
2112001300	128<			'	37.	المحا	S.	33 0	193	ρc				تدرد	10	3	96	₹3 ⊋	•		~	Deke.	[-	40			
1695						93			,				1 1	69							1 [[]	1	ano	3/	/[]	
ELMP = 19.11	- 0					19,1	1		-	1			1 1	1 1	کیا.	[1		ر دی		*	
on0 = 941	e K N		1			94	1 .		, —	1						1 1								1 - 1		54.	
TUEB -1.58			+	+		.84	l f		, —				t I	1 1	, Ча					, — †			1				
200			#	#		-	#	##	\vdash		$\overline{\Box}$				1	—			\Box	,—+			1	205	1 1	1	
#1057 COM				<u></u>			+		ightharpoonup							=		 	\Box				1 1	4.5	1	1 - 1	1
00=1761		+	+	+					+	1		\sqcap	,—+		/ ·	, O						\vdash		EXP	13/14	313	1
	++		+	+	1 1	25	!					$\overline{}$	+	1 1	10					1	$\overline{}$	\vdash		-	$\hspace{1cm} \hspace{1cm} $	$\;\;\longmapsto\;\;$	+
266 = 338	+++	+	'	+	+	33	\Box	+		$\overline{}$	\vdash	\vdash		\vdash	33	38		\vdash	+	1		1	<u> </u>	+-		$\;\;\longmapsto\;\;$	\vdash
	-	+	'	+	+		-	+	-	$\overline{}$		$\overline{}$		$\overline{}$		 	 '	\vdash	+		$\overline{}$	\vdash	<u> </u>	+-		\vdash	+
	+++	-	'	+	-	-	-	+-		\vdash	\vdash			\vdash	\vdash	+		\vdash	\vdash	$\overline{}$		\vdash	 		1	\coprod	+
	+		1	+	-	50	10	BIES]		\vdash				+	 	<u> </u>	1	-	\longrightarrow	\vdash	+	 	1	4	4—	+
50,4014	-++		ندياد		4-	<u> </u>	<u></u>	 	1 1	Ser	1 1	 		1	tm	T	1	1	++		~		 	 		AB.	T
21120040	+	VOQ	· les		260			+		تحر)	1174	4		(C)	40 :	1 1	v: \	1		,	\$ ما		<u> </u>		<u></u>	24	
and?	, N	30ma	100	, ,	- 0	(8)		+		4			<i></i>			17	<u></u>	1	1	Щ.	13	1	<u></u> '	<u> </u>	1	,,	1_
2043	<u> </u>	760 w	~a c:\	1 6	4 1	1 4		+	4	reu	\sqcup	1		(I)	1	100	be.	<u>k</u>	1	<u>, </u>	103	50) '	<u> </u>	1	28	1
- 641 6413 c		voc 1	187	200	100	gue)	4		عر)	HL)			3	410	<u> m </u>	<u>ان:</u>	12		·],	au	121	ļ }			13	<u>بر</u>
			'		<u> </u>	<u> </u>		1								<u></u>	<u></u> '							<u> </u>			L
			'			<u></u> '										ll							['				Ĺ
			_			'																_					
-			'																								
Noves	: 91	0-7.	10	رو2	1:17																						
		ı	د: له			11	[<u>.</u> _								J	الِّـــُــُ	-	0-	-w=	- 4	الم	ا عر	2 d	4			$\bar{\Gamma}$
	\top					-														\Box							
			1													1							1				
	1								1		1	1		1	1	1			1		, — †	\Box	1			\Box	
	+		+						+	, — †		1		1	, —	1	1		1	-			1	 	\Box	\sqcap	
	+		+	+				\Box	+			+	+	+		1-+	$\overline{}$	$\overline{}$	1			1		\vdash			Г
	+++	_	+++	+	$\overline{}$	$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	$\mid \rightarrow \mid$	\Box	+		+	+	\rightarrow		-			\vdash	+	\rightarrow		$\overline{}$		+	$\overline{}$	$\overline{}$	
	++	_	-	+	$\vdash \!$	\Box	+		+	-	\rightarrow	+	\dashv					\vdash	-	_		$\overline{}$		+	$\vdash\!$	\vdash	\vdash
	+	-	+	+	\vdash	\vdash	+	+	\rightarrow									+	-+						Ш	Ш	
		- 1		1	1 1	£ 1	1 3	4 I	1	. 1	. 1	ι I	1	. 1	. 1	()	1 3	1 L	. 11	Con+	tinue	ed fro	m p^	age			

Read and Understood By

12-13-2021

12-14-21

Date: 12-13-2021										Page _ 1 _ of _)
Sample Location: 57.3-586				A	Analyti	cal Rec	luireme	ent		
Pertinent Notes (if any)										1
Sample Number	# of Containers	Sample Matrix*	کھک	(6)						X6 MO Charge Number
2112130940 c	3	A	9							
094) (3	1	9							
-0942 c FB	3		2							
ogus c)			5						
							ļ			
						_				
Sample Location: Pertinent Notes (if any)				A	nalytic	al Req	uireme	nt		
Terment Trotes (R. diny)	# of Containers	Sample Matrix*								
Sample Number	#	Š								Charge Number
						-				
Relinquished by: Date	/ Time	:		\prod) \A	ccepte	d by:			Date / Time:
12-13-2021		1130		10	u V		144	ch	12-1	4-21 /0900
				 	-				!	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12-15-2021

Date: /2-/5-2-2)									P	Page of _
Sample Location: 57.3-666				Α	nalytic	al Requ	iiremen	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	000	Log						X 6 M O Charge Number
21121514106	3	Ÿ	8							
1411C FB	3		9	AX			·			
1412 c))		X						
Sample Location:				A	nalytic	al Req	uiremei	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*								
Sample Number	#	Sa				F				Charge Number
		ļ								
								_		
		:								
									_	
								_		
Relinquished by: Date /2-/5-200	e / Tim	e: 15	30) \ (ccepte	ed by:	ch	12-1	Date / Time:
) —		_			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12-14-2021

Date: 12-14-2021			-						P	age	of
Sample Location: 57. 3-735 Pertinent Notes (if any)				A	nalytic	al Requ	iremen	t			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	507	رهم						X6m2 Charge N	
2)1214/251	3	A	\nearrow								
1252 e FB	3		9							···-	
)253 c)			X							
1254 c	\			4							
											· · · · · · · · · · · · · · · · · · ·
								_			
				,							
Sample Location:				<i>A</i>	Analytic	al Requ	uiremer	nt			
Pertinent Notes (if any)											
G. J. N. J.	# of Containers	Sample Matrix*								Charge 1	Number
Sample Number										Charge	(dillovi
									<u> </u>		
					<u></u>						
	ate / Tim			$\overline{+}$	Du.	Accepte	dby:	. 0	12-	Date / Tir	10900
12.14.2	² 크)	153	<u> </u>		<u>vu</u> V	-V\	-\u	ud	12	リゾント	/ /
		_			}						

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

ROJECT 57-4-481 ENV-0053

Torret present. Weather is Authy Cloudy and Cold - this well perged and sampled 183my a chedicated bladder pump Samples 15.11 be o heched weing a new treelon discharge hose water quality parameters will spritored using a GED. mg 20 Elonce" and water analyzer Carby TOW= 1- 5 cal Do sensor= = + Somewheed of 10 1043 mm/45 >4 Sensor- US: no a 3 pt (4,7,10) 3 car multid something = 4 sing a 1413 noten \$540. Solution L-T = 200445 Ep = 12 21 50=44.7 806=44.3 Trbidity meter = Dtw (FE) ORP 0 Temp 4.13 20.45 982 21/2080950 C 0.45 378 6.75 6.12 20.42 -09525 980 6.73 20.43 984 - 0954 C SAMPLES Preserve 3340 m) U: al I ce HC 10 8200 H 21/2080959 C (FB) 1000 C 5QZ 103501 O) LL amber NowdrI Tae 1001 C · (FD) -1002 C Trip Blanks LAB 1-05 Container SAMOK ALS 2631 3)40 ml U'al was by 8260 LL 36 T 103501 (1) IL Domber wond in 07016 Continued from page

17-8-5051

Read and Understood By

Ou Signed

12-9-21

Date: 12 - 8 - 2021										Page	_of_ <u>)</u>
Sample Location: 5T- 4-48/				A	nalytic	cal Req	uireme	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*	700	NOW & CL		:				XGN	~V
Sample Number	#	Saı		フ					_		Number
21120807000 TB	3	A	9			!					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
09596	3		7								
1000C FB	3		7								
- 0701C TB	1			8							
1001	1			4							
1003C FB	J			æ							
Sample Location:		-		A	nalytic	al Requ	iremei	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charge	Number
Relinquished by: Date 12.8-202	e / Time	:: 040		Vo) <u> A</u>	deepte	Ι.	-d	12	Date / Ti	me: 0910
				10			/			. ,.	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

aned

/フ-&-5の3/

Signe

Junch 12-9-21

Date

Date: 12-8-2031]	Page of	
Sample Location: 5T- 4- 64	· ·				Α	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any)											
		g	*.		7						
		# of Containers	Sample Matrix*		NOWA LL						
		Cont	ple N	200	3						
Sample Number		Jo#	Sam		Ž						Y6MD Charge Number
		3	\mathcal{C}	>						, '	
21120815060	FB	3	1	9							
15076	10			'							
)508C		1			9						
15096	FB	1	,		,						
Sample Location:					A	nalytic	al Requ	airemer	nt		
Pertinent Notes (if any)											
		ırs	 * ×								
		ıtaine	Matri								
		# of Containers	Sample Matrix*								
Sample Number		#	San								Charge Number
Relinquished by:	Date	/ Time	<u>L</u> e:		^ 	I A	lccepte	d bv:			Date / Time:
	۲-&- Jo5	_	154		16	Ju (Tu.	-d	11)-	9-21 /0910
	· 3. 204		<u>[]</u>		1)	iu c	<i>,</i>			14	1 21 / 0 1/0
					+()			-			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Da.	,	أبعا	o	r 54	2 - 4	. Te	•	To	6.	2	Q.	250	4	W	20	1	, L		c\	00.	, (7	7			2.0	4	-1		7.		
m.v	. *	ېو	2	محو	red	۵.	J.	Sm	mp)	47	عر	S- ^		4	ELI	477	5		ke ~		5 0001	و معاد				C-	7	٦		_,	M	<u> </u>
ميد	٠.۷	مكور	٨	7	4C b		d:.	*	~~e	~	Se	~ P	ver.	•	ارحو	55		S	4.	7	22	28	D 5.		5000	D).	V-	2.5		- 20-	5	_
20-		85	. 6	347	bles	5	4	4	34	25.	۵	w	27	ab		ရ	71	3:	. 0	7:1		~	20	4	60'	lan	4	. 62.33	Sur.	A:	60	1
De:9	ç	40	5,	a Q	12 00	05	y.	1:4	P.	Car	مكد	5	51.1	<	ye)	ale.		6	20	<i>w</i>	Cur	_	Ce	Con	un	l-	بلو	leu a.		ار ا	-	<u> </u>
() ()	يحد	(5	<u> </u>	2	160	.					Ĺ.,													7					1-1	200	-
							_	-	<u></u>			<u> </u>																				
Para			2	ρ •:»	er 7	ء ک	Cue	: ne													m	٠.		LP								
49	-	<u>つ</u>	ل.	3	<u> </u>			<u> </u>	56														1	1	6	5						
اتو بدو	•	- 14). <	š °	د ا			15	. /														i	1	3 —	١.						ļ
200	> =	= 10	99)		ļ		o	าร														′,5	.0	34	4.7)					
المالة	-	-0	. 8	6		ļ		0	7	<u> </u>													۱, ۵	CG	5 L	14).	-/					
				ļ.,		ļ																	` \	57	د د	<i>∞</i>	14	_				
	\perp				_	ļ																		l	1	<i>ع</i>].						
4	4	7	مر	E N	uke	22		ļ						·	a \	6	N	وكمسوة	-3					-		•	• ,					
7: m	و	#	2١	/3	ا ماه	40	570	<u>.</u>					- 1				44															
5#	_	=	3 .	٦٩									1	જે.								-										
COM	> ·	=	10	83	45)	kn) 6)°	5												-				
Te m		<u> </u>	4-) .	5	°									١٤) .9																	
J.														q	2,0	2																
>400	با). \	3 -	10.0	5 (בו:	٥٥						つ.	10-	١٥.	80															
78º		1		ł.			<u></u>							つ、	10 -	10	٥٦							-								
	1					ļ																										
-	13												3	An	191	e	5															
MAR	6	_					0	last	اکیا	5					Ç	کو	564	u			C	er o	14. ì	~~			L	•)			La	~
1150	11صا	43	70	\$	1		20		83	60	LL			_		t	حداا	ا کر)			(3)		•	- 1	1	•					- 1	45
	- 14	73	<u> T</u>	-	-		12			11	S	Co					٠,						1								4	
	-) .	4/3	71	\$	-	1	SO.	ng		L						•	لتاكسو				D	16	0N	,60	_						502	<u>.</u>
===	-//	/3	3 7	\$			1,		"		F 13	7					1)					_	,								4	
	- 14	43	7	3	-	5	70E	-	5) r	~							•				W.	5 <i>ر</i> ه	1	20	82 1						SZ.	5
	_,	43	5	3	-		N		10	4	24	>					62					D									4	
-	+	_																														
-	+	\dashv			-																											
_	-	_			-	-			_				_							\perp											<i>r</i>	
-	-	-		-										_																		
+	+	+								_		_			_																	
				<u> </u>																					Cont	inue	d fro	n pa	ge			
																1	Read	and	Unde	rsto	od By	,										_

Bel.

12-6-2021 Date Signed Lun.

12-7-21

Date: 12-6-2021										Page	of
Sample Location: 5T-6-528 Pertinent Notes (if any)				A	nalytic	al Req	uiremen	ıt			
Pertinent Notes (if any)										1	
	Si	* .×		4	ź						
	# of Containers	Sample Matrix*	જ	Woma CL	SU09.51M	:					
	f Cor	nple	ر ا ا	000	٥٩.					YGM	
Sample Number	0 #	Sar		7	Sυ					Charge 1	Number
2112061430 B	3	7	Ø								
1431 B FB	3	1	×					-			
1432B	J			Q							
14333 FB	J			Q				-			
1434 B	1				X						
1435B Dup		1			Þ						
					•						•
Sample Location:				A	nalytic	al Req	uiremen	t			· .
Pertinent Notes (if any)					-					1	
	, ω	*.									
	tainer	Aatri		·							
•	# of Containers	Sample Matrix*									
Sample Number	;o #	Sań								Charge N	Number
								`	_		
									_		
Relinquished by: Date	/ Time	 :			ΙA	ccepte	d by:	1		Date / Tim	e:
12-6.202)		535	-	04	u V	JV	med	<u></u>	12-	7-21/	0930
										<u>1</u> -	
				J							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page ___

47

PROJECT ST-6-568 FLUTE

Chen, Cold and windy This Zom Ton Torret. Weeker is Sampled using a FLATE System Samples will be collected using chalicated tration discourse mass. Pures pressure set @ 208 ps. South pressure set at Doin Builder set at 3ps, and stable at 7 psi minimum of 4 persons will be perged prior to sapling, or until Parameter are stable 5.20 minutes recovery but week pursus Carba & in uses Paramers prior to Sand by mules to P4 = 756 PH COND = 60 Tune = 141.8 TY10 = 7 149 "500 = 44.7 2000 - 1063 106) TUO : 0- 3 1000 = 44.4 0.90 1 LOT - 200445 · Gre =12/2/ In: No Peranuers E: m) Reambers = 21120614107 21120415103 8.73 8.69 = 1279(12.8 2000 = 1040 43/cm 1041 TURB 50.73 d.77 PWPne "7.09-16.04(1).7°C) 7.10-10.09 145. 01-31. (= 7509 W 7.09-10.09 SAMPKS Preserve 50 mpie anchais NB V 8260 LC 211204/4483 (FB) 14493 (1) K Amber SET 1450 3 JOMA LL ~~ 1451 3 (gua) (23) 14523 5092-51M 14533 (1) 250 m/ Ampir MYS (One) 1454 3 Blind Contro Preserve Container SUMBLE 24 21/204/455B ANDUA 21 mm 133A (1) IC Ambor حرحر Continued from page

Read and Understood By

12-6.2021

for Usianed which

12-7-21

.

Date

Date: / 2-6-202)										Page _ \ of \
Sample Location: 57-6-568				A	nalyti	cal Req	uireme	nt		
Pertinent Notes (if any)]
Sample Number	# of Containers	Sample Matrix*	707)	77 5407						X6mo Charge Number
2112061448B	3	D	&							
1449 B FB	3	1	>		-					
1450 B	}			1						
14513	1			2						
1452B FB	١			\nearrow						
1455 B BC)			%						
				*						
Sample Location:				Α	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	5 vox - 51 m				÷			
	1	Ÿ	\propto							Charge Number
2112061453 B	1		7							
17/3 7/ 15		- 1				_				
						_				
Relinquished by: Date	/ Time	153	35		Aul	center		d	12-	Date / Time: 7 - 21 / 0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Tony Torrez present Weather is party cloudy and Colch proged and sampled using a FLETTE System. Samples w. 11 De Collected using a chedicated Techon discharge hose, lunge pressure set at 228 ps., Sough presence at 200 psis Bubbles set at 3psi and shake at 7 psis, minimum at 4 gallons Prior to sampling or until parameters are stable. 15-20 minute recomber purges. Combay Gil in use miles XD PH = 8.53 8.50 PH COND = 60 Fem? = 15.8°C TURB = 7 Con0 = 1013 "50 = 44.7 TU1B= 0.33 "ROG = 44.3 "LET = 200 445 "Gap = 12/21 Intel Paramuers Fire Parameters Time = 21120714003 2112071440B = 8.67 Temp = 16.41 °C = 1006 ustern 1010 = 1.12 1/45 998 = 7.00-10.09 (22.36) 7.02-10.23 Pulos = 7.01-10.08 7.03-10.02 5ameles SANDIE Drahas: 5 Preserve 21120714303 NOW BY 8310 17 I Gel Hel (3) 40 ml Via 20a 14313 (1 (FB) 41 14323 4 mau ZQ_ CDIL Domber 10350 SRE 1433 3 1. (FB) 1, 1434 3 5000 - 51M CID 250 MI DUBIT · (FB) 14)35 B Continued from page

W

12-7.2021

Read and Understood By

Signed

12-8-21

Date

Date: 12-7-2021										Page(of)
Sample Location: 57-6-678				A	Analyti	cal Red	quireme	ent		
Pertinent Notes (if any)										-
Sample Number	# of Containers	Sample Matrix*	*00	TOWA K	Sues Sim	ſ				YSMS Charge Number
21120714303	3	A	8							
TH31B FB	3	,	9							
141328	ı			2						
1433 B FB)			Q						
14341 8	J				Y					
1435B FB	1	(4					
Sample Location:				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	#of Containers	Sample Matrix*								
Sample Number	#	S								Charge Number
				_						
	-						1.5			
										i i
Relinquished by: Date /	Time				jA	qcepte	d by:			Date / Time:
12-7-2021		750	S	To an experiment	ru [·	-d	[2-8	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

2	20	المدا	Vuo	se		- 30	عوير	٦,	ec	در	Pr	فعو	4.	W	دمها	wr	is	P	المه	, (104	dy	Q.f	الم	اه	J.	71	نع	-	<u>Lor</u>	ربو	
					ء ھ																											
d	ed:	ces.	ديم		Tes	lon	ey.	15 C	1	برو	7	محو	D	~ ~	و	<i>ور</i> د	534	re	S	et o	7	33	8 6	oi.	<u>.</u> S	and	u	ور:	eur.	ر و م	4	
					nlde																											
٥٠	7.0	J.	P+:	76	40	50	-6	انمذ	٠,٥	r u	nt:	1	20	500	41.2	21	٠	چہو	lek		5-	⊋ o	W.	mi	٠	-ود	ساه	<u>ω</u> /	acti	vee	^	
•	1	1	ſ	1	4		1		1									,			,				*			,				
	L	<u> </u>													ļ																	
<u>Pa</u> ,	Bur	ملع	2 67	20:00	. 40	54	6); o	.			·				ļ					اس	4.5	1	۵							,		
44	70	જ	a	<u>\$</u>			8.1	ר												Pi	اد	ر د د	ج د	6	5							
Fev	e :	- 11	4.3	، کر			14	-5													7	١٠٠	3 -	7								
<u>ro:</u>	<i>b</i> .	9	03				8	50	.													Sπ	ء ح	414	۲.۲							
Tv	0	• (≯. 3	4	ļ			۸,۹	5													80	<u></u>	4	1.3							
	ļ	ļ		ļ	ļ.										ļ							L.	T =	ე <	0	45						
				ļ																		G,	بې : چې	12	12							
<u>£</u>	الم: م	16	R	Wa	45							<u>c:</u> -	s)	<i>ਫ਼</i> ਾ	one	eke r	3															
<u> Ti</u>	me	-	≯ 11	20	14	113						31,	づら	ו ה	45	L	飞 ·															
67	1	1		55	1	ļ						જ	.41	1_																		
The	.6	5	<i>ነ</i> し.	50	<							J	ه. د	2					ļ									_				
اهـَ	D	3-1	911	e u	احاد	w						•	12	ಲ	ļ																	,
TU	0	*	0 4	a	44	43							5 .5	1																		,
PW	لا	•	۶.د	2-	10.0	4(22.	r _{lo} C				っ	.03	-10	03				<u> </u>													
<i>>~</i> {	0 57	= '	0.0	<u>3-1</u>	0.0	4						7	وو.	- 1	9.0	ð.																
	ļ	-	-			<u> </u>									.																	
	-	9										Dre			_																	
<u>Sp,</u>	916		-	_	ļ. <u>-</u>	0	اعدا	ندې					ع_	re?	2571	ب			20	hai	mr		_		<u>L</u> 3	, 1					3	
<u> 31 1</u>	70_	T	1	B		500			l .	0 r				l	e/H			C	524		10	<u>ia)</u>			24	3 1				D	5	
_		14	14)0	3	ļ	41			" (FB				- '	•					1,						١,				1	'	
		14	50	3	-		n I	V	-					Ŀ	ce				D 10	- 3	nbi	~) (? <i>[</i>	(67			5 (ट्य	
		14	51	D	-	()		//	Œ	B)			,	-					,						' >				e	•	
			-	-																												
	-	-	-	-	-																											
	-	-	-		1	-		<u>.</u>						·	-																	
		_	-	-	-																										-	
<u> </u>	ļ	-	-	-	-																											
	<u></u>		+	-	-	-													-												_	
			1.		-																											
		<u></u>		<u></u>		<u></u>							r 		<u> </u>										Cor	tinue	ed fro	m pa	age	.		
																	Read	land	l Und	ersto	od B	Bv										

15-7-505

hanni?

Jon Wound

12-8-21

Date

Date: 12-7-2021											Page 1	of						
Sample Location: 556	ample Location: 556-824								Analytical Requirement									
Pertinent Notes (1										
Sample Num	ber	# of Containers	Sample Matrix*	807	TOWO IT						X6 Charg	MD e Number						
211207144873		Μ	\mathcal{A}	7														
14493	FB	3		7														
1450 B)			4	_												
14513	FB	1	1		×													
					_													
Sample Location:					A	nalyti												
Pertinent Notes (i	Pertinent Notes (if any)																	
Sample Numb		# of Containers	Sample Matrix*															
Sample Humb							<u> </u>				Charge	Number						
		_																
											- :							
						_												
		-																
								<u> </u>										
			-															
Relinquished by:	Date /	Time	<u> </u>		7		.qcept&	d by:			Date / Ti	me:						
Sel	13-7-3-31	_	1540	>	4	ri		1	-ch	12-9	3-21	10910						
						J 												

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

unch 12-8-21 Oh

Read and Understood By

Continued from page

Date: /2-7-2021				<u>.</u>						Page of	
Sample Location: 57-6-970				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)										•	
Samula Nyushan	# of Containers	Sample Matrix*	700	TOWOR				:		x GMD	
Sample Number	3	_	∞		-					Charge Number	
211207/5023	3	7	P P		_					-	
1503B F0	,	+(-		4							
1504B)			٠ ځ					-		
1505B FB	`			<i>J</i>	_						
,											
Sample Location:	I	1		A	nalytic	al Requ	uireme	nt		· · · · · · · · · · · · · · · · · · ·	
Pertinent Notes (if any)											
	of Containers	Sample Matrix*									
Sample Number	#	Sa			· · · · · ·					Charge Number	
					·			-			
D.11	/ Tr:				7 1.		11			D (/T'	
Relinquished by: Date	/ Time		S		on t	Adcepte	\	-d	12-	Date / Time:	
				Ü			- } -				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Exp. 12/31/21

Tord (eve)

0.37

28

DTW(4)

422.85

SRI

Lot- 200445

SEP

358

1621

02004016

Continued from page

Continued from page

Water quality parameters will be monitored ber analyzer. Carboy G. I

PH

6.84

683

6.87

Final DTW - 422.85

IOW- 3.5 gel

< 15

209 - 55.2 NTU

00

6 14

(ه ال

6.23

(and (my/u)

200

012

010

freserve

HUITE

Tie

Samples

Read and Understood By

PROJECT WW. 1.452 WZI ENV. WS3

NB.20

Parameters (time)

1417 A

1419 A

11 211204 1415 A

Sample #

21/206/425 A

- 1426A

MZJA

1428 A

Initial OTW- 422.35

Robert Burrows

W cell

air @ Coll mm / Ha Oakton Buffers (4,7,10)

Temp(1.c)

Analysis

104 by 8260 LL

AMOU love

(FB)

Conductivity Cal using 1413 usem 500 solution Turbidity Merc #8 50 50 54.1 NTU 12000.

12/6/21

Date: 12/6/21										Page/_ of _/
Sample Location: WW.1.452	-			A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)			92	۲						
	iners	atrix*	8260Tr	LL WOMA						
	# of Containers	Sample Matrix*		MA						·
Sample Number	Jo#	Sam								Charge Number
2112061425 A	3	Д	X							YGMD
- 142GA (FB)	3	1	X							1
1427 A	1			X						
- 1428A (FB)	Ī	1		X						L
										<u>.</u>
Sample Location:				A	nalytic	al Req	uiremer	nt	T	
Pertinent Notes (if any)										
	ners	trrix*								
	# of Containers	Sample Matrix*								·
Sample Number) Jo #	Samp								Charge Number
				,						·
									_	
						1				
Relinquished by: Date 12/6/21	/ Time			1	/ [ccepte	d by:	-	12-7	Date / Time:
2/4/21	13			-++	yn 1	<u>√ </u>	Jun	-m	1/~ (-21 09 50

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT WW-2-489 WJI ENV-0053

Bob Tuffs & Craig Del Ferraro present. Weather is cloudy, cool, & breezy, this well will be purged using a dedicated bladder pump. Samples will be collected using a teflon discharge hose. Parameters will be collected using a standard PH Cond. meter. No QED flow cell available—no DO or ORP will be monitored. Carboy G3 in use. Initial packer pressure was \$\phi\$. Crew in Plated packer (prior to purging) to 32 psi PH/pre cal - 7.13/10.09 (15.5'c) Meter ID PH/ cond - 12 pH/post cal - 7.15/10.09 - 21 Turb std - 11.4 NTU'S rdg - 13.0 NTU'S Exp - 12/31/21 Turb (NTVE) Dtw/ft. cond (uslam PH Parameters (time) 200 ime co 2034 2.50 8 68 967 17.1 211214 0935A 20.36 2,24 8.64 970 17.4 20.31 8.62 174 (transduar Samples Container Analysis Preservative Sample SPI (1) IL Amker 0200401G ice Low Level NDMA (TB) 2112140750A 3)40ml vials VOA by 8760 LL 2621 ice/HCL 0945A 0946A (1) IL Amber 0200401G SRI Low Level NOMA 0947A u (FB) -094BA Initial DTW- 20,26ft. (transducer reading). Iotal gallons purged-2 * Final packer pressure - 32 psi * Continued from page

Read and Understood By

Craig let Ferris

12/14/21

for Wund

12-15-21

Date: 12 14/21										Page _		of	
Sample Location: WW-2-489				A	nalytic	cal Req	uireme	nt					
Pertinent Notes (if any)			7	1									
	iers	rix*	7	NDMA	•								
	ontair	e Mat	8260	100									
Compale November	# of Containers	Sample Matrix*	ဆိ	77									
Sample Number											arge N		er
2112140750A (TB)	1	A		√			:	-		X	Gm	D	
0945A	3	A									u		
0946A (FB)	3	A									u		
		A		V	-			•			ц		
		A			-						u		
					· -								
Sample Location: Pertinent Notes (if any)		I		A	nalytic	al Req	uiremer	nt	<u> </u>				
1 Comment (Votes (If unly)													
	ners	ıtrix*											
	Contai	Sample Matrix*											
Sample Number	# of Containers	Samp								Cl	N	T 1	
Sample Number					Y					Cn	arge N	umbe	er
													_
													
Relinquished by: Date	/ Time	: ::			A	dcepte	d by:			Date	/ Time	e;	
Craig Oll Ferme 12/14/2	1	100 k	rs.	7	On		7	_,	- 12	16-		09	00
					\		1		1			- U-	
					,								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32#123(A)
Continued from page

		Continued from pag	
Bob Tufts & Craig Del Forwell will be purged using a teflor a standard pH/Cond. met be monitored. Carboy a Packer pressure reading Prior to Sampling Zone to hold steady at the Meter ID	using a declicated bloom discharge hose. Po ter. No DED Flow cel G3 in use. Initial po ng was initially @ po ne 489, crew in Hotel nis time.	her is cloudy, coo adder pump. Sar arameters will be available - DO acker pressure h when crew arrived a packer to 32 p.	nples will be monitored using and ORP will not olding @ 32 psi. olding and it continues
PH (Cord - 12	PH	precal - 7.03/10	0 08 (20 8.4)
Turb - 21			
Turb - 21 " std - 114 vrv"	611	postcal - 7.05/10	
1 12	 	105T Cal - 1.45/16	0.07
u rdg - 13.0 NTV'S			
107-200445			
u Exp - 12 31 21			
Parameters (time) te	emp('c) cond tous	(cm) PH Tur	(NTV'S) DTW(FT.)
1) 2/12/4/1355A	19.8 970	1 T 4 T 1 T	20 0000
			32 26.33
			16 20.31
5) 1401A a	20.1 964	8.37 2	85 / 20.27
	Samp Samp	es	
Sample	Analysis Presen	vative Containe	r Lot Lab
	OA by 8260 LL ice	HCL (3)40mly	ials 2621 ALS
1406A	u (FB)		ADZI AUS
1401A Lou	1 1 1 1 1 1 1 1 1	ce (1) IL Am	
		ce (i) IL Am	ber 02004016 SEL
1408A	u (FB)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a u
Initial DIW-204	+15+. Gransducer readin	a) Total gallons	purapd-2
	1131. CHAISTHE PEACITY	g) Total gallons	purged - 2
			1
+++++	Final packer press	We - 32 psi	
			Continued from page
	Reac	and Understood By	

Pay Del Ferra 12/14/01

Date: 12/14/21									P	age of
Sample Location: WW - 2 - 664	t			A	nalytic	al Requ	irement	t		
Pertinent Notes (if any)			7	JH.		i				
	iners	Sample Matrix*	70	LL NomA						
	# of Containers	ıple M	8260 1	7		!				
Sample Number	# of	San	3	7						Charge Number
2112141405A	3_	A	~							XGMD
1406A (FB)	3	A	/							u
1407A		A								4
1408A (FB)	_	A	_							
		_					_			
Sample Location:	<u> </u>	<u></u>		Δ	nalytic	al Requ	ıiremen	t		
Pertinent Notes (if any)										
	ers	xir *								
	# of Containers	Sample Matrix*								
Sample Number	# of C	Samp								Charge Number
Sample Number										Charge 1 to have
									,	
		<u> </u>								
									_	
Relinquished by: Date	e / Tim	e:) 12	Accepte	d by:			Date / Time:
Crary 1001 Fermo 12/14/3			hrs.	10	ru	$\lambda /$	1	-ch	12	-15-21/0900
						<u> </u>			,	
							<i>'</i>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

										,						, 1	. 4	· - 1			r .					- 1						\neg
1	+	ĿĿ	-	ξ (150		Dal	Fe	rre	7	G	res	en.	+	W	ear	ho	~ }	5	0	ud	u	(00	(. ≱	: B	re	ez	4.	7h	is	2 0	ne
QP.		12	_	1	1	, 1	,		1	1	. t,	7_	~ ` ^	•	1	_1		\overline{L}		Ĭ	1	Jt		1.	1.	La		1		•		٦.
44	k	2	Sa	MP	100	Lu	511	19	Y.	r	וקו	e i		se.	d	ST	aun	ies	•	ऽाउ	7	150	mp	le	7.1	RE	٥.	nei	1.	'n	us	
4)		#	221	5 '.	S	uc	ac	2 (ch.	ect	Ė	per	For	M	2d (24	Pro	be	Pγ	clo	<u> </u>	to	San	np	lin	9.				in		
												l							I					/		/		.	İ			
+	+					~	•	1.4						5	2/		_	0		/	/	10	1									
\perp						<u> </u>	\mathbf{O}_{-}	M	in_	29	ш	om	<u>ent</u>	_) [a	n/C	5-	_4	Z	<u> </u>	N	9	-			-,	,			,	,	
Sar		ما						1	4	alv	sit		F	re	er	Vat	ive	2		1	DAT	ai	rer	Ì		L	<u>+</u>			La	6	
				2 -			.,													7.5	کری	Π	via	1-			ન ચા		. [AL	?	
117	12	0	- 1		oy	i .	·V	OH	DU	∮ .	<u> </u>)	<u> </u>		ce	. 77	CL															1
+	+		- 1	33	ЧÝ		مـا	w	Le	rel	N	DW	A			166				(1)	[L]	A	rke		08	00,	101	4		SR.	L	
			1		ı								-																			
_	1		, (<u> </u>		-								7.		n									٨٨	ـ ـا		4-4				
<u>م.</u>	t	a	\Box	ar	aw	et	er:	<u> </u>	-	-				$\frac{1}{1}$								ļ		-				Į.				-
i	~	, _	2	113	0-	114	107	l V					-	Ti	me		21	121	57	14	32	Y		‡	H	/ C	ON	٦ -	- 1	L		,
														1 -	1		٦.							لم	7	ا۔`ا			-2			-
1	\dashv	-		<u>0, ر</u>	.8			 	<u> </u>	 	 			-	-					_					1 4	LI	5_ SI	1				
en	4	_	- 6	22	, 8	C_						ļ		Te	mp	_	2	2.	5_'			-					2	a	<u>− á</u>	18.2	<u> </u>	
	1		_ 1	19	2	us	1							0	1		- []	ا ۱٦	اء	-					u_			a	- 2	19 4	5	
31	4			2	9/	V. 3	1011	2				1															1	¥		29, 8 200 4	111	_
4	C b			ے.	10	PN	TU	_		├,	<u> </u>		-				3								•							
H	20	e	_ `	7.0	4/	10	04		23.	9 c)			D	P	re-	-7	Z 0.	$L_{\mathbf{B}}$	0.0	8/	24.	4 °c	1	ų_		ے	4	-1	2/3	1/2	1
111		45		, ,	1	100	7-	,			7					1		, D2		70	75] •										
\mathbb{H}	ρΨ	<u>31</u>		1.0	a l	10	r1		 	1	 	 		2	J.P.	221	-7 -4		- []	61	03	 	72	11			1	1			5	
VI.	U		_	4	0,	02	11			-		<u> </u>	ļ										P	aff	ers	-	느느	01	$\vdash \vdash$	 	$\epsilon_{ m j}$	4
H	no	2	_	1:	0.4	9 5	51	a						A	tw	25	- [2.	51	PSi	a					2	108	45	6		2/	23
						17								+	K/.	1	_ \	/_		1		•			0	ப	103	68	k, 1		Ą,	24
+	+									+				ب ا	ou	_		12	gq	1.	+	 			0	1	100	W.C			-4/	~~
_	_								<u> </u>	ļ					1	<u> </u>				ļ		ļ										-
														5	·	0/4	25												'			
_	-								1	١.		• .	1								1	اا				\Box	ot	_	-	1	1	
<u> کو ک</u>				-			-	-	⊹ Д	na	<u>ys</u>	12	-	F	es	er 7	بن	V·C		/ -	٤٠٥	25)\a	-1				1		4	<i>20</i>	
11	ב	0	114	130	Y		V	10	be	1 8	260	L	L			ice	/ H	a		(3)4)m	VÌ	213	.	26	21			AI	_S	
				i	1		ř		•	1 1		DM					e			(i)	111		Am	05	03	200	401	6		5/	Z	仁
Ŧ				131	1	1		W		***	10	100			 		•					T	1800	~~			101					
+					 	-	_	-		+	-	-	-	-	-					 -		+-	-				\vdash	-	\vdash	\vdash	ļ ^j	
																											<u> </u>	ļ	<u> </u>			
																										ŧ			ŀ			
+	1							1		1	1	1		<u> </u>	1				<u> </u>			1										
	\dashv					 	-			-	-	4	 	ļ	 	ļ		<u> </u>		-	-	-	-			-		 				
	1																										_					
																										ļ						
-	-	·		₹.		-	 	-		1	_				-	-		 		+	+	+	+			-	-	-	†			
ζu	5	2) 4	tO.	99	_		2)	40			ļ	-			-	_	ļ	ļ	-	-					-	-	-		<u> </u>	
				1 3	2	84	4		'	38	8.8	ما																			L	
						gL			1	2	3.8	77				1																
+	-		-		10.	uc ∫ D _	1	 	+		i	1 -	-	-		-	-	-	-	-	+	-				-	+	-	+	+		
	_				39	2	-	ļ		H(3.3	В		<u> </u>		-	-	ļ	ļ	ļ		ļ	-	ļ		-	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	
					40	.53																										
	1				,		†	1							\top										Coi	ntinu	ed fr	om p	age			
	1		1	1	1	1	1	(1	1	1	1	1	1	1			1	1	1	1		1	1	- 0.			-	J -			

Read and Understood By

Craig let Fermo

12/7/21

Dru Wumdh

12-8-21

Date

Date: 12/7/21		-							H	age	of
Sample Location: WW - 3 - 46	9			A	nalytic	al Requ	iremen	t			
Pertinent Notes (if any)				2							
	ırs	* *	7	NDMH							
	# of Containers	Sample Matrix*	٥	S							
	oJ Col	mple	8260	7							
Sample Number	#	Sa		7							ge Number
21120713304 (EB)	3	A	~							XG	m D
13314 (EB)		A		~							k
1430y	3	A	~								4
1431ý		A		<u> </u>	-						
Sample Location:				A	Analytic	al Requ	uiremer	ıt			
Pertinent Notes (if any)											
	ers	* XI.			:						
	ntain	Matr									
	# of Containers	Sample Matrix*									
Sample Number	#	Š								Cha	ge Number
		-			_					_	
								_			
	ļ		<u> </u>								
	<u> </u>				<u></u>						CD:
	e / Tim	1		-		Accepté		-d	11.	Date /	10910
tray Witerno 12/7/21	115	ioh	rs.	+	Ore 1	√	1 Vin	<u>~u</u>	1/2	0-21	109110
				+b							

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Notebook No. D64#128(y)

	0200-NN3 TCM	Continued from page
Bob Tufts & Craig]		
will be sampled usin	19 2 steam cleaned & triple rin	oudy preezy, & cook This z
tubes Gen in use Pr	To be # 22/3. Susface checks perfor	red, stainless steel sample
	- Suitace checks perto	med on proke prior to same
	rip Blanks - Water Purification	System
	may sis	
2112070800 y VOF	1 by 6260 11 100 140 13/40	aner Lot Lab
DBOLY Low		l vials 2621 ALS
	revel NDMA ice (1) // A	meer 02004019 JRI
	0 41 6 1 1 9 1	
Sample	O Min. Equipment Blanks - Carl	204 G3
	TIME IVS 15 Proke to antivo	
	by 8260 LL ice / HC/ (3)40	
09114 Low		m vials 2621 ALS
	I I I I I I I I I I I I I I I I I I I	Amber 0200401G SRI
Initial Parameters		
Time-21/207/0304	Final	Meter ID
PH - 8.29		7 74 cond - 11 .
9.2	PH -8.34	Turb - 2
	Temp - 21.3°C	u l
	Cond - 1105 us/cm	
Turb - 2.57NTUS		4 rdg - 29.8
PH pre - 7.10/9.98 (17 C		4 ot -200445
PH post -7.11/10.03	1.12/10.03(1	7.8c) u Exp-12/31/21
DTW - 409 88 Ft.	p lipost + 7.09 /10.04	
Atmos - 12.54 psia	DTW -410 02 Ft.	Buffers Lot Exp
10 J 1 P 51 a	Atmos-12.56 psia	4 01.00 1
	IDW - 1/2 gal .	3 3 3
		10 4103681 9/22
	5amples	
Sample	Analysis Preservativa	
2112071100Y VOI		onteniner Lat Lab
11017	1 DU OCGO LL ICE/HCL (3)	tomovials 262 AUS
1100	- 1 4 (101, 4x)	u
1 Of A Low	Level NDMA ice (D)	LAmber 02004019 SPT
		L Himber 020 040 19 SRI
Runs 1) 84.40 2		
82.16	82.08 A Jamples were	very gerated.
82.3		- (
84.38	82.05	
	84.02	Continued from page
•	Read and Understood D	. 3-

Craig Del Ferrie

12/7/21

Read and Understood By

12-8-21

Date: 12/7/21									I	Page	of	1_
Sample Location: WW-3-569				Α	nalytic	al Requ	iremer	ıt				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0928	LL NOMY						Char	ge Numb	er
2112070800V (TB)	3	A	~								MD	
08014 (TB)	ſ	A		~					-			
0910 Y (EB)	3	À									4	
0911 y (EB)	1	A		~						u		
11004	3	A	~	-							.	
11014 (MS)	3	A			-					2.	L	
11024		A		~								
Sample Location: Pertinent Notes (if any)	<u> </u>	1		A	nalytic	al Requ	uiremei	nt				
	of Containers	Sample Matrix*										
Sample Number	#	Š		-		<u></u>				Char	ge Numb	er
Relinquished by: Date	/ Time	e:		$\exists f$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ccepte	d by:			Date /	Time:	
Cray Del Terro 12/7/21			rs.	V	m)		hu	-l	12-8		1091	0
		-										

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

1/20/21

Read and Understood By

1-21-21

so provide a compade using a dedicated bladder pump Sample and selection discharge tube Water quality para water analyser. Carbon G. DTW. 3/6.90. B. Ecers (4,7,70 1413 uslan 570 so 101- 91017 Exp: 570 - 5 OU NO 1806 - te. 70 m Conductivity (MEN) Tub (NO) Drult Temp(-c) 84 00 (~%) 7.70 6.94 3/6,92 - 150 184 293 13 101201000 0.81 697 . ८३ 289 1002 (0.14 281 695 -118 17.90 1004 (Trip Blanks B iample # Analysis Preserva (3)40 ml viols Ha I I ex 11 0258 49 AOU 12732 2101200800 (1) IL Amber AND level wa 136 08016 10280 Tee Samples H slampe ab Analysis Ha Izo 3140 ml vials 25 137 40A by 8200 LL 21012010100 (FB) 10110 11/4 Amber IL 607/Bromaril 105501 252 10/50 Low level NOMA 10130 (FB) 1014 SUDA by BRTO 2) 11 Amber 1019201DK 1015 1016 Pesticides 80815 4 - Dioxana 8270D 1017 Sto al Amber Dioxins/Fusans 8290 1018 1) IL Ausber 102801 ンタコ 10196 1017201DK picides 8151 A 10201 ASBUB ED9 080320 1BW 10516 herolics 9006 Hossy I ex 111250 2/125 ml poly 1022 4103/Ice Continued from page

		'n	<i>,</i> ,	• •				1.	.7	3.7		; ;	••		£ -,			Jane		Ce	4					./	Į į	[2	W.	A			
Saa	lar	ڡ	#	<u> </u>	,	4		1	امما	145	3:	•				0	125	3V3			_	•	Ca	بهجن	س	212	<u>.</u>	lot.	.,,	מע	647	(8)	
-101	1	010	7.80			4	<u> </u>		ios.			۷.				I	e /	Zer	100	5	• : .			25		J.		191	129	0	6.	7.4	
\pm	_	la	241	,	<u> </u>	,:		77	S .•	sla	ZS	مره	ر		2.1	1	-	<u>tu</u>				1		_~			1	1			» ¬ 0	7	
	_	lo	25	Ĺ			<u> </u>	Rec	لمك	امرما	٠	6	350				<u>ب</u> و	14	H	\$					+		*	,	-				
	_	10	26	ر ،	1			No	2 N	03	7	ऽऽ	5.7				Hz:	Na	I				(1)	250	المرا	N	4				,	7.	L
	_	10	רגי	((Ci)							3%	AL A	Jah	4/	Zero	HS				÷ :	٠,			•				ļ,
		le	18	C			<u> </u>	Cu	anis	٩	90'	154	3			1	100		ں	1		(1)	2	t N	4 .	2/4	,			•	•	Į.
															4;	•							:							.,			
		٠	*		<u> </u>		•	9	ŀ	•						,					•.								. •				
				7									_																				Ī
,	• •	ì	5.4	; ;		•		<u> </u>				•	اللها	* 4.03			1,2				***					,		· e		,	2,03	1.70	,
		٠						1.		<u> </u>														٠, .	٠					, ,	.5		
<u>.</u>					,		1			, .	:													,									L
II	V	J	_	7	ج	1		•							, <u>.</u>					1									. :	Y. 1			F
					7																												I
																•	·e		٠, ١														Γ
:	e;									, ,		,,,						1.202	· ~ }												7	a	
				•		•			. 2				۶				* *					٠.	. ,			<i>;: :</i>				100	9 0	oc.	6
• •					7 🕏	<u>.</u>			ĺ	V.		;		•									,	• 2.		. 30				1	y :		L
													,																				
																	**		١,														
1	٠.									1 .4							201							٠,٠								20	
					٠ س						٠ 🍾		. •				, .													,			
																								ŀ						• 1			
<u>.</u> .,•	٠.			•.								•																		٠.	•	e estado.	·
											·																			1 %		B. 18 8 19 1	
																														. 1.			
			,						# E 48														1000				-			•			L
Ŀ																								} ≠ ,						, e		•	L
							<u> </u>				1	a											. , .									1 is.	L
٠				•						. 2.43	•	• -										٠,	,										
<u>. </u> .,		•	, e		<u>. </u>																			** %			1			- •			L
				•																			;		4		;				•	4 - 15 Wage	
		• • 1	•	7 4	Ŷ					. ,,						P 4						*;				1,3					1/2 ! 9/	و روسودي	
,			•].	4,						,								. (υį.	a waldow	
									•																	Со	ntinu	ed fr	om p	age			
										•							<u> </u>	Read	land	Unc	lerst	ood i	Ву	1	•				***************************************				
						1							,						()	•	1	(١					1	^	,		
	,	<u>/\</u>	W	· <u>}</u>	_	(L)		<u> </u>		_			15	0					TO	ru.		\bigcup			س	M		 _ • ! !		-2	<u>-2</u>	1	
				Sig	gned									Date)				Λ		•	Ši	gned								Dat	9	

Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Page _	/_of
Sample Location: 100 - F - 358			Analytical Req	uirement		
Pertinent Notes (if any)		00	6			
	ers *xi	8260-r	r -			
	# of Containers Sample Matrix*	5	763P			
	of Co		3			
Sample Number	 	,	1		C	harge Number
21012008000 (73)	3 A	\times			X	Mo
U8016 (TB)			X			
10100	3	X				
1011C (FB)	3	X				
luize		ΙX				
10130	1		X			
1014c (FB)	1		\times			, <u> </u>
Sample Location:			Analytical Req	uirement		
Pertinent Notes (if any)		i B	TO	F 8	3	
	LS *	Posticida 8270	- X OX.	PCB	3	
	ntaine —— Matri	o cid) i o y	0		
	# of Containers Sample Matrix*		1-4 Dioxare			
Sample Number	Sau # C		' '		C	harge Number
21012010151	2 A	X			X	GMD
10160		X				
10170			X			
10180			X			
10190				X		*
10200	1			ĺχ		
10210	1 1		,		X	\
	e / Time:		Accepte	by:		e / Time:
My Wy \/20/-	1 6 1/3	0 \	on W	Jund	1-21-2	1/0930
			V	•		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: \/20/7]	Page 👱	_of
				A	Analyti	cal Req	uireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	T. What	Anios K	<05,	Rachhorate	NO2 NO3	Sulfide	Cyanite	Charg	e Number
2101201022c	2	А	Ý								
	2	1		X						1	<u> </u>
	\				X						
						×					
	1				,		×				
10276	1							Ά,			
(028 L	\	-							X	T	
Sample Location:				I	Analyti	cal Req	uireme	nt			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*								Charg	e Number
											neu -
	-										
					\						
Relinquished by: Da	te / Time	e:		1.) [Accepté	1.		_		7
10/2 / 1/20/-	21 6	5//2	<u>.</u> U		un I		\kn	-dr	1-2	11-21	10930
				0							
	Sample Location: ()O F - 358 Pertinent Notes (if any) Sample Number 2(0120 022 C	Sample Location: [OO F - 358] Pertinent Notes (if any) Sample Number 2101201022C 22 023 C 1024 C 1028 C Sample Location: Pertinent Notes (if any) Sample Number Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time Relinquished by: Date / Time	Sample Location: UO F - 358 Pertinent Notes (if any) Sample Number Sample Number Sample Number Sample Number Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Relinquished by: Date / Time:	Sample Location:	Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Sample Number Relinquisher by: Date / Time:	Sample Location: (OO F - 358 Pertinent Notes (if any) Sample Number \$\frac{1}{2}	Sample Location: [OD F - 358] Pertinent Notes (if any) Sample Number Sample Number Sample Number Sample Number Sample Location: Pertinent Notes (if any) Sample Number Sample Location: Sample Location: Sample Location: Analytical Req Pertinent Notes (if any) Sample Number Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req Pertinent Notes (if any) Analytical Req	Sample Location: (O) F - 358 Pertinent Notes (if any) Sample Number Sample Number Sample Number Sample Location: Sample Number Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number	Sample Location: (O) F 358 Pertinent Notes (if any) Sample Number	Sample Location:	Sample Location: [V) F - 358 Pertinent Notes (if any) Sample Number Sample Num

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed umch

Read and Understood By

1-20-21

74 Notebook No. _ PROJECT 100. 4.123 rolics 9066 21011914230 (1)250 ml Amber CB0 3201 RMC 14240 14520 TOS SM25400 1426 1427 14260 Noz. NO3 353. 14290 50/2ide 9030 SOUM POLY 14300 Cyanida 901213 (1)\ZXM ナシグト ٠. 9 : Continued from page Read and Understood By

Ann-r

1 /1 - 1 .

0. 11

1 00 01

Date: 1/19/21									I	Page
Sample Location: 100 - (4 · 123				A	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 LL	607	LL NOMA					Charge Number
	3	A	X							Xamo
2101190800C (TB)	7	,			X					1
0801C (TB)	7		1/							
1411C (FB)	3		X	<u> </u>						
	7			1						
1412 (53)	'			X	10	•			•	
1413c (FB)	 \			X	X					
14140		-			<u>X</u>	1 D	•	-1		
Sample Location: Pertinent Notes (if any)		1			Analytic					
Sample Number	# of Containers	Sample Matrix*	LC NOMA	SUDA 8270	Posticidos	1,4-0iexan	Dioxin/Fran	Harbicidas		Charge Number
2101191415C (FB)	1	Α	X							XGNO
14160	2	(X						
14170	1				×					
14180	1					X				
- 1419 (FB)	 					X				
1420 C							X			
1421(1	1					,	X		
	e / Tim	e:			1	Accepte	d by:			Date / Time:
My C 1/19/21	<u>a 1</u>	555			oul		llu-	ch_	1-2	0-21 /0919
				J						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1/19/21		_]	Page _ 2_ of _ 2
Sample Location: 100 - G - 223				P	nalytic	al Requ				
Pertinent Notes (if any)	# of Containers	Sample Matrix*	RCB	Pharolics	T, Mehals	40005/A/V	105	Perchodia	NO2, NO3	
Sample Number	#	•	5 /	<u> </u>				<u> </u>		Charge Number
21011914220	1	A	X						<u> </u>	Xand _
14230	1	Ì		X						
14246	2				X					
14250	2					X				
14260	١						X			
14276	١							X		
14280	1	1							X	
Sample Location:					Analytic	cal Req	uireme	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Sulfide	Charida						Charge Number
21011914290	1	Α	X							Xano
1430 C	1	7		X						1
	-									
			H	1	∕ T`.					
Relinquished by: Date	/ Tim	e:			7	Accepte	dby:			Date / Time:
Relinquished by: Date			5		On 1	Accepte	Aby:	mel	- 1-	Date / Time: 20-21 / 0915
			5		On \	Accepte	alby:	wel	1-1	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT DOS P. 10 Day Influence passed blockers is an investigation of the additional property of the control of the additional property of the control of the additional property of the control of the c	8 281 282 2011 0053	Notebook No. N3X
Sample Sample State Ware quarter Sample Sampl	ROJECT 300 F 115 WOT ENV. 0053	· Continued from page
Sample Sample State Ware quarter Sample Sampl	Aprilie Diolog & Dan Holyorsen present : Weather	is saining & cold . This and less
March discharges the Water grant parameter with an montrest work of the March of th	andled started of dedicated bladder	pring Sander will be rately or its
Octo Mario Color	121 dialore the Water guality	
20-Cal is saturated in a Coly multing 20-Cal is saturated in a Coly multing 21-Cal is saturated in a Coly multing 22-Cal is saturated in a Coly multing 23-Cal is saturated in a Coly multing 24-Cal is saturated in a Coly multing 25-Cal is saturated in a Coly multing 25-Cal is saturated in a Coly multing 25-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 26-Cal is saturated in a Coly multing 27-Cal is saturate		64 G-5
All Cal is almosted in a CAM monthly 12 - Cal is almosted in a CAM monthly 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 12 - Cal is almosted in Buffels (47.10) 13 - Cal is almosted in Buffels (47.10) 14 - Cal is almosted in Buffels (47.10) 15 - Cal is almosted in Buffels (47.10) 16 - Cal is almosted in Buffels (47.10) 16 - Cal is almosted in Buffels (47.10) 17 - Cal is almosted in Buffels (47.10) 18 - Cal is almosted in Buffels (47.10) 19 - Cal is almosted in Buffels (47.10) 19 - Cal is almosted in Buffels (47.10) 10 - Cal is almosted in Buffels (47.10) 1		
20 Cal in structed and Gled monthly R. Cal using Exchir Buffels (4716) R. Cal using Exchir Buffels (4716) South in the control (43 ins) con southern (50 control of 41017 Exp. (121 control of 41017 Exp. (121 control of 410 contro		100000000000000000000000000000000000000
R. Col using Tische Biffels (4710) Lobalitic Col wing (43 US) and STD Solvition (160 U) 41077 erg - (121) The mobile Melec (477 500 5 Low University (160 D) 41 OR8 6455 - (121) Remarkers (1600 1 Tought (1) Conduction (160 D) 41 OR8 6455 - (121) District of the Tought (1) Conduction (160 D) 41 OR8 6455 - (121) District of the Tought (1) Conduction (160 D) 41 OR8 6455 - (121) District of the Time (1) Conduction (160 D) 41 OR8 6455 - (121) District of the Time (1) Conduction (160 D) 41 OR8 645 - (121) District of the Time (1) Conduction (1) Conductio	Clintal air a (see multer	10.1
Continued from 1413 usless 570 solution 500 mg 121 121 120 mg 121		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
The body (19 feet 17 500 5 06 100 100 100 100 100 100 100 100 100		1- 11- 12- 12- 12- 12- 12- 12- 12- 12- 1
1		(= GATU) A. 91017 - Exp. 121
1 210 210 21	10-810-1-1 1010 3.00 3.00 3.00 S.00 S.00 S.00 S.00 S.0	
1) 230121 0945		(mx) pH. OSB Leaping Benjul
210	ACRONICAS TOTAL	
3) - 0947 (780 . 700 . 731 7 24 15 Sample 5 . Condition . Lot	13 216 11 0 44 2	
Sample 5 Sample	21 216	
Sample ## Annix's Reserve Continued from page Sample ## Annix's Reserve Continued from page Sample ## Annix's Reserve Continued from page Sample ## Annix's Reserve Continued from page Read and understood By	3)	
Sample ## Analytis Reserve Continued 10732 25 21012 09500 Note by 8260 N HOTTE (3) 40 M give 15732 25 21012 09500 Note by 8260 N Tea (1) 11 Anaber 08501 1582 09500 09500 09500 (1) 250 M fuller 057020 four 09500 09500 10000 (1) 250 M fuller 057020 four 09500 10000 Harbicides 8050 M (1) 250 M fuller 060320 four 10000 Harbicides 8050 M Hotto 10000 m 10000 Harbicides 8050 M Hotto 10000 m 10000 Harbicides 8050 M Hotto 10000 m 10000 Note of the fuller 10000 m 10000 Note of the		
21012 09500		
09576 (607 Brownic) I Tea (1) 11 Andrew 10850 1 55 50 50 50 50 50 50 50 50 50 50 50 50		
09572 (607 Browni) Isa (1) 11 Amber (0850) 5525 5525 5010 2842 NOMA 5225 5010 50	2/0/11/0/13/0	
09556		
0155		
0955 (500A by 82700		
0958 (SUDA By BI 100 (1) 250ml Anner 057820 15mc (1) 250ml Anner 057820 15mc (1) 250ml Anner 057820 15mc (1) 250ml Anner 057820 15mc (1) 250ml Anner 057820 15mc (1) 250ml Anner 057820 15mc (1) 11 Anner 10850 1 SET 1000 (1) 11 Anner 10850 1 SET 1000 (1) 11 Anner 10850 1 SET 1000 (1) 11 Anner 10850 1 SET 1000 (1) 11 Anner 10850 15mc (1) 11 A		
69576 -1, Dioxana 2070D (1) 250m Amber 05/020/04 (MS) (MS) (1) 11 Amber 108501 SET (1000 C Herbicides 8/51 A (1001 C RCB 8081 A (1003/1 Ca (1)) 250m Amber 080020/04 (1003 C Rmois 8/66 Hesself a (1)) 250m Amber 080020/04 (1003 C Rmois 8/66 Hesself a (1)) 125 m poly (1)/29 (1005 C Rmois AK Tal 200HS (1)) (1005 C Rmois AK Tal 200HS (1) (1		
0958c : (M3) 0958c : (M3) 0959c Dioxing Furans 8190 : (1) Amber 10850 SET 1000 c Herbicides 8151 A : 101920 Date 1002 c Phanolics 9156 Hessin/I e (1) 250 ml poly 191129 : 1003 c 1019 Me1915 HM03/I e (2) 125 ml poly 191129 : 1007 c TOS 5M25100 Tee 1845 : 1007 c 1003 Hessin/I e (1) 250 ml poly Continued from page		(1) 2-2 1 1 1 1 05/22 1 BMC 1 1
0958c		
1000 c Herbicides 8151 A 1019201014 Als 1002 c CB 8081 A Hessay Tee (1) 250 at Annua 0800201814 1002 c Chanolics 9066 Hessay Tee (2) 125 ml poly 191129 1005 c Tos 5M2510 c Tee 1345 1005 c Read and Understood By Read and Understood By Read and Understood By Date		
1001 c PCB 8081 A H250x/I w (1) 250 m And 080 320 RM 1002 c Phinolics 906 b H250x/I w (2) 125 ml poly 1912 9 1003 c Total May 15 H203/I w (2) 125 ml poly 1912 9 1007 c TOS SM2540c Two 1007 c Perchonal (2850 Two 1345) Continued from page Read and Understood By 1007 c NO 2 NO 3 353, 2 H250x Two 1) 250 m poly Continued from page 126-21 1250 m poly Continued from page 126-21 12		N/C
1002 c Phanol; 3 PUEG HESDA/I c (1) 250 m Ander 080820 BMC 1003 c Intel Metals HM03/I cc (2) 125 ml poly 191/20 1005 c TOS SM2540c Tee 200HS 1005 c Perchlorate (850 Tee 1/3 HS 1007 c N02, N03 353,2 H2SDA/I ce (1) 250 ml poly Continued from page Read and Understood By		
1005C 1049 Me 1915 MW3/ ICC 200HS 1005C TOS SM2540c Tee 1/3HS 1005C		(1) 0-4 \ 4 \ 08032018W
1005C 1049 Me 1915 MW3/ ICC 200HS 1005C TOS SM2540c Tee 1/3HS 1005C		CONTRACTOR OF THE PROPERTY OF
[005C TOS SM2540c Tee /3HS] [005C Renhoral (850 Tee /3HS) [007C NO2, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page Read and Understood By [107C NO2, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO2, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO2, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO2, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3 353,2 H2Sou Tee 1) 250 an poly Continued from page [107C NO3, NO3, NO3, NO3, NO3, NO3, NO3, NO3,		2 12/1C3/N1 P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1005 C		
(ob G C Rechlorate 6850 1007 C NO 2 NO 353 2 H2 Soul I ce (1) 250 m poly Continued from page Read and Understood By No 2 No 2 No 2 No 2 No 2 No 2 No 2 No		<u> </u>
Read afid Understood By 121/2 Date D		345
Read and Understood By 121/21 Du wards -14-21 Signed Date		7 (1) 630 W (BOL)
Read afid Understood By 121/21 Date 1-29-21 Signed Date D		
Date Signed	Read	
Date Signed	110.101	You \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SIADOD DOG 11	Signed Date	Signed Date

T		•	an i										<u> </u>	au	ble	s (4														
المة	•	H				An	Hai	5	:				fre	عمد	بوب			(ار م	۵.۰		14			t			1	७०		
101. awt	Lu	301	J		5	716	ناء مناء	90	BO			Jac	k Ac It/	lphs ones	#3/	Ic	e.	(1)	25	0 "	1	oh					,		Als		
		005			C	Ya	ride	10	וצוי	<u> </u>		N	uOV	כן	ce			(1)	12	× ~	00	v							٠,-		
						1		-				<u> </u>									` `										
LO1	い -		ე.	25	- C			11111																							
					\	}																								-	
2 and 1																															
7.																															3
																												10 V4			
										-																					
4.3	6 (Z)	2 22																													
	100		94						•		-																				
																											4.5	14 H.			
1																												7			İ
																															T
																				ļ											
									:						1															X.X.	5
																	<u> </u>														
 														 	1		-				-										T
						<u> </u>	,								1						l										T
<u> </u>														ļ	1					-											T
												ļ										+									t
										:								<u> </u>				•				-					\vdash
									-												<u> </u>	-									\vdash
								-						-				-				-									-
1									-			 	<u> </u>			 		-			-	-									+
 																		 			-										-
1															 	-				-										<u>: </u>	H
								-					 		 						-	-									\vdash
-		-													-	-				-	-				-						\vdash
	-					<u> </u>						-	-			-											·				+
	-												-	-	 	-					-										\vdash
	-		-			-							<u> </u>									-									+
-	-					-									-							-		Carr	tin	ed fro	L			—	L
	<u> </u>	<u>I-</u>		L	<u></u>	<u>L </u>	<u></u>	<u></u>	<u> </u>	,.	L	<u> </u>		<u> </u>	1			<u></u>			<u> </u>	<u></u>		COI			, iii þi				
					N											Read	and	iWnd	ersto	ood E	γ										,

Date: 1/21/21										Page of _2
Sample Location: 300 - F - 175				A	nalytic	al Req	uiremei	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	فيون ند	(607)	LC NOMA	SUDA ENTO	Pasticide			Charge Number
21012109506	3	A	V							XGMD
09216 (EB)	3	1	X), que
01256				X					_	
0953 C	1				X		_			
0954 C (FB)	1				X					
0955C	2					X				
~ 0956C	1	1			e ²		X			1
Sample Location:				A	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	1-4- Dioxure	Dioxin/Furga	Herbicida	PCB	harolics	T. Mula's		Charge Number
2101210957 C	\	A	X							Xamo
0958c (MS)	1	1	X							1
0959 (1			X						
10000	1				X					
10010	Ì					×	_			
100SC	j						Х			
1003C	2	1		<u> </u>			,	X		L
Relinquished by: Date	/ Tim	e:	II) [Accepte	d by:	<i>t</i>		Date / Time:
W8 60 1/21/21	6 J	115		(jor 1	$\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle$	u	ch ——	1-1	25.21/0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: \/Z\/Z\										Page	Z_of_Z_
Sample Location: 300 F 175			-	I	Analytic	cal Req	uireme	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Avions AIV-	105	Perchloset &	NO2 NO3	Julida	Charide		Cha	urge Number
240121046	2	A	X							Xan	
1005 C	 	1		×						1	
1006	1				X						
10070	1					X					
1008C	1						X				
1009 C	1	L						X		1	
Sample Location:				<u>, </u>	Analytic	cal Req	uireme	nt		!	
Pertinent Notes (if any)			:								
	# of Containers	Sample Matrix*									
Sample Number	#	Sa	ļ	<u> </u>						Cha	arge Number
			ļ	-							
	ļ				<u></u>						
	e / Tim		<u> </u>) \	Accepte	1	1	1		/ Time:
1/21/21	ଚ	1115	,	1	m I	ΔL	\u	meh	- -	29-21	10930
				ľ							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1/7/21										Page _		of <u> </u>
Sample Location: 400 · A · 151				A	Analytic	al Req	uiremer	nt				
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260	607	T. Melals	NO2, NO3						
Sample Number	#	Sa	<u> </u>							С	harge	Number
2010715100	3	A	X							Va	M	
1511C (FB)	3	Ì	X									
15120)			X								
1513((Due)				X								
1514(2		-		X			-				
1515C (Do)	2				X	***						-
15160	ļ					X				1		
Sample Location:				F	Analytic	al Req	uiremer	nt				
Pertinent Notes (if any)												
Sample Number	# of Containers	Sample Matrix*								C	 harge	Number
												•
	· / Time	e:) ¡A	cepte	d by:			Dat	e / Tir	ne:
My G) 1/1/2	<u>10</u>	1600			Dru L	\mathcal{N}	lu-	<u>d</u>	-	1-21	/	1000
			-	10	-	/						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

JECT_	4	Do	.F	11.	13	1							·						tebo ntinue						, .):	٠.				
							La	10		62	1	ne	SE	VT.		14	E	1	موستحار	274	, E	. J	3	00	K	رج	5 7	9		
/	-+12	ا ــا د ا		ل	11			11 8	っき	ط	جرر د	< d=	1	5A	1	01	Ed	1	1510	15	4]	18	160	لم	.4	lA.	44	54	Щ	
	سل			1-			///	=-17	2	l H	-يا-		A	7/	#/	40.	1	d	150	12	cst	= /	باب	₃€ .	P	122	***	70	ड्य	
ME	TE	و	ا بل	1	7 1	-	1	1	0	~d		ŊĒ	75	4 6	-	14	nt	2 /	uē.	E	1.								7	
				-	+	_	-	\dashv	_	+			. (-		-		-	+		2	=		, -	口	١ ,			\exists	
	, ,		-41	7/	3	-	2		+	+	_	0/3		101	,	7						oh	10	.~	d :	225	i		72	
1 1	(0)	7	()	/	1	7	٦		1		7.	5									-0		4	15	#	Z	2			
Emp		19	./	d							1	8.9												_		100	7.4	200 377 4	21	
one	7	15	31	h	5/		2				1		0	. 1	1	- 1	1_	\perp						I ~	,		-6	12 550		
Tun	b	1.	00	0	~7	4	<u> </u>		1		/	1, [24	~17	4	j			_	-	-		11	1	1	1	1 1	9/		
hpri	<	7					>(13	<u>8</u> ;)		-	0	• 1	10.	1	- 1	15	.5.	<u>;</u>)	-	-			E	9	=	1/	31/	Z)	
ohpo	57	7.	08	1/4	0.1	10					2.	ا د	<u> </u>	0.	10	-	+	+	\dashv	-										
1570	W		-	_	-			-		-				\dashv	-	+	_				-									
		- -							<	420	-	Œ	-		+-	+														
SAMP	15	#			A.	~ 6	ola.	513	_	1	/	L i	son	U		4	57	#		_ <	20-	Ø	-			-	CA	5 _		
2/0/2	21	100	o i	3			26						1 bks			2	53	8	_	13	3/2	n	w	als	-	<u> </u>		<u>(5</u> _		%
	1	10		1		_	" (FB)			//	_		-	_	1/	-	-	-	-	1			-	+	81			
	-	10	02	13			" [Δu	۱م			,		\perp		-	1	-			1	-	+-	-	-	+	7'			
			-					-	ļ		-		-		+	+	-	\dashv	_		-		+			+-				
	-		+						-						+			_				-								
	+-						-				 			-														<u> </u>	_	
 	<u> </u>																					_	_	-	_	_	-	-	+-	1
																		_		-		-	-	-	+		+	+	+-	1
										-	-				-	+	-			-	+	-	+	+	+	+		+		1
				-			-			-	-				_	-	\dashv	\dashv		_	-			-	+	1	-	1	+	1
						-		-	+-	-						+	1	-			-	+		+		+				
	-						-		+	 							_			\top										
	1.					-	-	+	+		\dagger																	1		4
	+																						_	_		\perp		+	+-	4
															_					_	-	-	-	-	+	+	+	-	+	\dashv
					_	1						-			-					-	-	\perp	+	-	+	-	-	+	+	1
		1			-	-	+	-		-	-	-								+	-		onti	nued	fron	n pag	<u> </u> je			1
																	N	orož-	od P										- 1	
														i	≺ead	and	und	erstC	ood By	\wedge			,							

1-21-21 Date

-14-11 Date

Date: 1-21.21					,				P	Page of/
Sample Location: 400-F-U - 1	3/			Ana	alytica	ıl Requ	iremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	0609							XCm Charge Number
2101211000R	3	A	入							
10013 (FB)	3		X							
- 1002B (Dup)	3	1	×							
Sample Location:	•			An	alytica	al Requ	iremen	t		
Pertinent Notes (if any)					ě					
Sample Number	# of Containers	Sample Matrix*								Charge Number
·										
		,	<u> </u>							
								_		
Relinquished by: Date	/ Tim	e:			I A	ccepte	d by:			Date / Time:
7. 57 1-21-2			>	Ver Ver			1	-d	1-2	15-21/0930
									<u> </u>	,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Saned

1-25-21

or Signed um on

1-26-21

Date

Date: /-75-71									P	age / of /
Sample Location: You HU-147)			A	nalytic	al Requ	irement			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8760							XGMD
Sample Number		<u> </u>								Charge Number
210/25 0930R 0931B(FB)	3	A	$\frac{x}{\chi}$							
210125 0700B (TB)	3	A	×					-		
Sample Location:		<u> </u>		Α	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
		-								
	Date / Tim	e: ///x	.	1	Ori	Cdepte		-d	- -/	Date / Time:
					}		<u> </u>	_		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

This well u	vill be pur	red dry pric	t. Weather is or to sampling reflon bailer.	cloudy, cool, & c. After well rec. Carboy 95 in	vindy. overs, use.
Start purge Stop purge Total gallon	- 148.40 ft.) - 145.02 ft e - 0725 h - 0733 h 5 purged - - 145.36f	t. rs.	Neter ID pti/cond-12 Turb-7 " std-5.06 u rdg-5.19 u lot-9101 u Exp-11292		8/21 8/21
PH - 8. Cond - 18 Turb - 13 >H pre - 7.2 H post - 7.2	01 1913058 00 3 ° C 65 uslom .2 NTU's 3/10.27 (9.5 1/10.27 5.30 ft.	PH Temp Cond Turb 'c) phipse phipse DTu	2101191316B	.9 '¢)	
Sample 210119 13105 — 13116 — 13131 — 13141 — 1315	3 Vop 3 Tota 8 Chlo	Analysis Property (FB)	- P servative Cor ce HCL (3)4 ice HNO3 (a) 17	25ml poly wlA	2 q.), Al. S u
			Read and Understood By	Continued from page	

Date: 1/19/21										Page	of	
Sample Location: 600 - 6 - 138				A	nalytic	al Req	uiremei	nt				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	Total Metals	Chloride	NO, /NO.	7			Cha	rge Numb	er
21011913108	3	Α	~							X	nD	
1311B (FB)	3	A	~							-	u	
3 2B	a	A		V	_						и	
1313B (FB)	2	A		V							4	
1314B	1	A			/						4	
1315B	1	A				/					u	
]											
Sample Location:		1		A	nalytic	al Requ	uiremer	nt 	1			
Pertinent Notes (if any)	# of Containers	Sample Matrix*										
Sample Number	#	S								Cha	rge Numb	er
						,						
Relinquished by: Date	/ Time				\ 1	ccepte	d by:			Date /	Time:	
Craig Rel Fermo 1/19/21	134	tohi	rs.	Jon	. U		lu-c	L_	1-20	-21	/091	5
				Ш_			_					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

W Signed

1/7/21

Signed

1-11-21 Date

Date: 1/7/21										Page of	
Sample Location: Bi M. 6 - 488	Analytical Requirement										
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	(ARO	667	CCRONA	SWA 82700			Charge Number	
	3	A	5 /							XGMD XGMD	
2101071600C (FB)	3	1	X							XGNA	
	<u> </u>		X	X							
1002C	<u> </u>			_							
1003C	1				X	×			:		
1002C (EB)	1					×					
10060	2	1					X				
Sample Location:			l Analytic								
Pertinent Notes (if any)			i	<u> </u>	T	1					
Sample Number	# of Containers	Sample Matrix*	T. Metals	Aniors AIX	10s	DRO	Perchlasate	NO2 NO3		Charge Number	
71010710076	2	A	×							XGMD	
— 100e c	2	,		×						1	
1009 (1				Х						
1010 c	Ì					Х					
10110	Ţ						Х				
iol2c	Ţ	L						X			
								<u> </u>			
1 4 4	/ Time	e:		Accepted by:					Date / Time:		
W) as 1/7/21	<u>@</u>	1/10			Yu V	$\left(\begin{array}{c} V \end{array} \right)$	lu_	<u>!</u>	1-11-	A \1000	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 57 #119 (6) OJECT B/m-10.517 Exv.0053 Continued from page Tongtoriez present. 4.5 Zone will be purged & SAMPLED WITH A dedicaTed TEF for bradden SAMPLES will bE collected from TEFlor deschare Tube. FINAL 2107144813 METER ID'S INITIAL 210107 142513 15#20 11 570 = 5.49 " bT# = 91017 1098 109348/10 7.05/10.10(16.1) 7.04/9.99/(6.8.0) 11 Exp = 1-29.21 7.05/10.05 7-09/10.65 SAMPLES Pazsin 67# ANAly 515 SAMPLE # (3) Hoalwals 8240 1 E Ath 210107 14303 11 (FB) 14313 11) /ct Anbon 08501 18323 27 11 1 (m.s) 71 14343 11 14353 11 11 15/HNUZ 10=/HNOZ 20-07-01 12) 2×m/ptg TOTAL mETALS 415 1430 B 108501 11)10 Ambon 14368 SAI UNDMA (FB) Continued from page Read and Understood By

Date: 13/10-517 1-7-2	,								Pa	ige <u>1</u>	_ of _	
Sample Location: B/m-10-517				Analytical Requirement								
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8760	607	11708A	total metals				X67 Charge	ท 🔕 e Numl	 per
210107 14308			\aleph									
14313 (FB)			X									
14323				X								-
1433B (F3)				X								<u></u>
1434B (ms)				<u> </u>								 -,
143573					X							
14368 1436B					X	為				•		
Sample Location:				Analytical Requirement								
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	10+00 50+02							Cl	- N	
	,,,-									Charge	Numt	er
1437 B			X							-		
						i						-
		·										
					`							
Relinquished by: Date	/ Time	:: (60	0		n 1	Actepte	dby:	d	1-11	Date / Ti	me: 000)

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

umch

Date: 1- 25 - 2021]	Page of
Sample Location: Ptm. 15. 305				A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)										
Samula Nambor	# of Containers	Sample Matrix*	87	1007	mate 15	Anions Mik	705	Perch bronk		X S M O Charge Number
Sample Number	3									
2101250936	_	7	9							
0937c FB	3		مر							
04386	-			4						
0939c	a			·	4					
09402	a					9				
09416	١			_			۶			
09426	,	1						8		
Sample Location:	<u> </u>	<u></u>		A	nalytic	al Req	uireme	<u> </u>		
Pertinent Notes (if any)										1
Sample Number	# of Containers	Sample Matrix*	102/NO3	000	ુ	>/34				Charge Number
21012509436	1	A	3						,	
0944c BC	3	1		4						
945c BC	1				9					
0946 BC	2	11				*				
37100 30	-					<u>~~</u>				
			-							
Relinquished by: Date	/ Tim	le:	J) 1	Accepte	d by:			Date / Time:
1.25.303	L	1115	•		Un 1	\mathcal{N}	1	-di	-	26-21 /0945
				70						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _

	T0.	Vy.	78	1	7	ð	D.	av	H.	alc	61:	Fu	'ρ/	ıEs	EN	т.	7	Ze	w	رع	73	دم	/3	ے ا	LE 1	n	ð-	උ (d.	7	4,	<u>, </u>
_4	ے د	U	w	1/	51	P	41	15	1	-	54.	mp	15	<u>, </u>	زر	74	4	dE	d.	4	100		0/4	dd	EA	0	n	p.	5,4		ZΕ	<u>- </u>
_4	<i>ن ا</i> ر	حے	7c.	٨	Fr	<u>~</u>	2 _		IE	~1 ₀	× 4	Lis	64	419	F.	14	6ē.		Car	25	مير	<u>G-</u>	1			_						
					ļ								,								_											
					ļ																											
				L	4,7	14						4	12	41									M	E7	EN	7	Δ,	<				
	7	10	10	2	09	55	-5	>								114	rB								10		_	-11				
	0 14				7.3								7. 3	4											74		l	2	2			
1	E	np			17.	7'	c						14	8	Ų											570	1	5.	49			
4	04	ري		1	76	3							12	7:	3										/1 y	2 8		5.	33	>		
	Tu.	16		(7	19							10	. 0	,4										4	7.	20	9	0	つ		
	ρb	p	45	7	20	110	2.0	L (12.	(/r)			1.0	5	//c	0.0	3 (13	12)						u	Ex	ص	1-	29	-21		
					الاص								ے .(5	//). C	, 5							_								
_		Tu			19																										-	
_																							,		٠.							
_											50	m	ıε	s																		
	An	pl	EA	-			122	4:	5/5				P	Es	Eru					ک	厂 #	_		Ç	W					4	6	
3	10	10			215		8	ئ	0				10		H				_{_{_{1}}}	25	38	}	(3)4	6m	رين	<u>1/5</u>			Al	<u>'</u> S	
\dashv			_/	00	13		8¢	161	DC/	6/3				//	,]]					11				-	11		
_			/	00	21	?	Ce	0	2					14						58	50]		1),	'U	<u>9</u>	bEN	•		_51	NJ.	
1			_/	∞	313	_	76	TAL	m	ETA	1/5		_ {	'LE	-/#	Ng				2D	-0	7.0	1	2)1	25	nlp	oly				115	
			_/	∞	13		Aν	101	rs/	A (/ C			10	ε						/ì			2)/	25	al	poly			/	'1	_
_1		_			513		1 1	10						/1							I I			(1)	7	<u> </u>				\dashv	<u>'i</u>	
_		_	/	20	<i>آو</i>	•	þ	En	ch	Lon	A 7	ق		7						!	1			(1)	(1						"	
_		_	/	<u></u>	713	>		ر ده/						14	14	25	7			^	1/09	-		(1)	25	0,	مرا ،	dy			4	
								-									_											"		_		
																																_
																	-													\dashv		_
																														\dashv	_	
																-																-
																														_	_	
_										,			-																	-		_
\dashv			-																													\dashv
-								-																						_	_	_
																														\dashv		_
\dashv									_														-									_
													.												Con	tinue	d fro	m pa	ige			
																	Read	a∕rîd	Unde	ersto	od B	٧										

Dat	e: 1-7-71											Page
San	nple Location: $B/m-17$,55	<u>გ</u>			A	nalytic	cal Req	uireme	nt		
	Pertinent Notes (if any) Sample Number		# of Containers	Sample Matrix*	00000	300	1-01-オーをししてい	A7-07-) AUK	To s	PICKC H-OKATES		X6M\) Charge Number
2	10107 1000B		3	A	X							
	- 10013 (F)	3)	N		X							
-	1007B		1			X						
4	100313		1				タ					
	100/13		2					X				
<u> </u>	100TB	_	1						X			
<u>\</u>	100673		1							カ		
San	ple Location:					A	nalytic	al Req	uireme	nt		
	Pertinent Notes (if any) Sample Number		# of Containers	Sample Matrix*	202 205							Charge Number
Ţ	/xx7R	,			∞							
	Relinquished by:	Date	/ Time	:) (^	cepte	d by:	0		Date / Time:
	1-	7.2		<i> </i> 50		16	in \	<u> </u>)uu	d	1-1	1-21 /1000

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

1-25-2021 Date

Signed

1-16-21

Date: 1-25-2021									I	Page of
Sample Location: 3Lm 18-430				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	107	109	S/ Hrw	ALM SOUS MIX	705			X & MD Charge Number
21012514516	3	1	Ø			i				
14520	3		9							
1453c	3		2	·						
1454 C	1			7						
1455 c	2				6					
1456c	2					9				
1457c)	_					X			
Sample Location:				A	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Perchorate	Noslings	-					Charge Number
21012514586	1	A	8							
14159 6	})		Q						
									-	
Relinquished by: Date 1-25-205	e / Tim	e: 160	0	1) (AceptA	d by:	d	1-5	Date / Time:
				#			<i>J</i>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sianed

Date

Signed

Date: 1-12-2021					· -]	Page _/ of _	
Sample Location: J∈ Q-1-183				A	nalytic	al Requ	iremen	it			
Pertinent Notes (if any)					4						
	S	*×		7	8,0						
1	# of Containers	Sample Matrix*	000	4		:					
	Con	ıple l	う	NOWN	0					XGMD	
Sample Number	ю#	San		2	>					Charge Num	ber
47201511015	3	A	8							-	
10564	3	,	9								
1057 A)			×							
10584)			7			-				
1059 A	\				Q						
100 14	,							**			
Sample Location:	1			Δ	nalytic	al Regi	uireme	nt.			
Pertinent Notes (if any)						<u> </u>					
		*									
	iners	atrix									
	of Containers	Sample Matrix*									
Sample Number	#of	Sam								Charge Num	ber
Sumple 1 (united)										8	-
											
					· <u></u>						
				_					_		
Relinquished by: Date	/ Tim	le:	<u> </u>		A	ccepte	d\by:	^		Date / Time:	
1-13-303		600	,	1	Ou 1	\mathcal{N}	Tu	mch	- 1-1	3-21 /09	10
	<u></u>	<u> </u>				, u _)				
				1							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 # 120(A) Continued from page

€ N1-0020

OJECT <u>SER-1-563</u> Robert Burnows present Weather is Chear and cold this kone a FLUTE System C1111 be and sampled using 20 minutes prior to sampling, Samples will be Télon dischare hoser Purge pressure sur es 248 psi pressure set @ 227 psi. Perbolin set @ 3051 and stable @ 41psi. First to discarded, Carbon G 5 in uses itial Parameters Cinal Parameters 11= Canal49 = 2101121031 # 21011214454 TU13 = 20 - 8.66 8.28 370 =5.49 = 18.80 27.7 = 2009 =1137 45 CM T= = 6101) = 3.15 whu's E4P =1 21 =7.02-10.02(15.3°C) 7.01.10.03 7 weer 7.01-10.02 Post = 7.01-10.00 SAMPLES Preserve .mo 16 TG 1 He) 2573 **ULS** (3) 40 m) Via) R 8260 LL 2101121335A (FB) 1336 A 108501 262 (1) 12 Amber 4 CE EI (Dup) 13382 (297) 1339 A NUS (1) 250 ml mbus 1440 A Suga - Sim #ON = 8 991 Continued from page

1-12-3031

Read and Understood By

Date: 1-12-2031									Pa	age _ \ of _
Sample Location: JEQ-1-563				A	nalytica	al Requi	irement			
Pertinent Notes (if any)					518					
	iers	rix*		7	2,					
	# of Containers	Sample Matrix*	507	2002	SVOR					
	of C	ampl	フ	0	50					X6 MD
Sample Number		S		-						Charge Number
21011213354	3	7	& P							
13364	3	-	<i>,</i> ,							
- 1337A	1			X						·
13380		-		*						
13394	1		<u> </u>	4						
40411	1		<u></u>		\nearrow					
		_								
Sample Location:				. A	Analytic	al Requ	iremen	t		
Pertinent Notes (if any)			i			!				
	ers	ix.								
	# of Containers	Sample Matrix*								
	Je Col	mple								
Sample Number	#	Sa								Charge Number
	ļ									
				/	\int_{-}^{-}					
Relinquished by: Dat	e / Tin	ne:		$- \downarrow \downarrow$	ノヿ	Accepte	d by:	1)	١,,	Date / Time:
1-13:303	7_	مال	<i>∞</i>	- \	oul	ΔL	Jun	-ch	-	13-21 /0910
)					
									<u> </u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: _____

PROJECT SEQ-1-683

EN1-0050

Cherrand Cold. This Zane a Robert Barrows Present, Weather is and sported using a Flutte system. This zone will be prior to sampling. est afreast 41 times every 20 minutes considered using a dudicated Teston discharge have. Purge @ 248 ps, Sample pressure set @ 227 ps, Bubbler set @ 3 psi, \$ 41 ps., tirst 350 m will be discardul. Carry G S in use, Parameters Eristial Parameters PX COND = 11 2101214154 me = 2101121039 1 TU CB = 20 = 8.56 8.51 Fe me = 15.5°C 5-0 = 149 ess = 5.55 no =1108us)cm 1110 791017 TURB = 1.17 NH XS 1.13 Enp +1/21 14Pre = 7.01.10.02(11.3°C) 7.02.10.03 * Posi = 7.02 - 10.02 7.01-10.0 Bucker SAMPIES Preserve 401 SUMPLE Araly 5: 5 VOC 18 8260 LL = ce | Hc 210112 1400A " (FB) 14014 108501 2 (FI (DIL suber Ice 12102 A DOIN A " (EB) h 14634 145 redus In 025(1) - 1464 -Suga. SIM TOW= 8 551 Continued from page

Read/and Understood By

1-15-5051

Junch 1-13-21

Date: 1-12-2021									P	age(_	of
Sample Location: $S \in Q - 1 - U \in S$				A	nalytica	al Requi	irement	t			
Pertinent Notes (if any)											
	ers	rix*		17 DWON	N-N						
·	# of Containers	Sample Matrix*	V 0 V	2					:		
	of C	ampl	2	07	SUCA					76m	Number
Sample Number	 				V /					Charge	Number
21011214004	3	A	7		_						
14014	3	1	4								
12102A	ſ			7							
14034	1			2							
14061		1			X						
		:			_						
Sample Location:				A	nalytic	al Requ	iremer	ıt			
Pertinent Notes (if any)											
	90	*.									
	ainer									i	
	# of Containers	Sample Matrix*									
Sample Number	- # of	Safr								Charge	e Number
		-	-	<u> </u>							
		ļ .									
				 -							
Relinquished by: Dat	e / Tin	ne:		' 		Accepte	d by:			Date / T	ime:
1.12-20	-	وما	<u>, </u>	1	Du	\mathcal{N}	Min	-ch	- 14	3-21	10910
1 (44)	<u> </u>		-	$-+\rangle$	/ * **	V.V.					7
				1)						
									<u></u>		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

																		١,												12		A)	<u>) </u>			
ECT		<u>></u> د	<u>-</u> R-	2	-5	O'	1			E	<u> </u>	<u> </u>	0	03	O		۲.	Γ/	71.	و				,								1	•		jag T	
140		Τ	1				J.	1	- - -		I			O	ک د		1	1	1.0	オ	-4.5	; <	ر	he		30	2	c	s\d		77	3	, र	بوع	<u> </u>	₫
'/ A	30	70	se i			Ke	-	*	<u>- </u>	27				1	_	Ç		-		S., «	1		77.	1: 5	-	20.	3 4	W);/\	B		ىھ	·d·	ارد		لد
V A	3	- 6	74	24	للا	2	→	-	<u> </u>	W 1	ecs		\ <u>.</u>	. <i>C</i> E)		1		4	~~.	712		<		ماه		w.	11.	6		.0	Ne	4	الم		. /
45	L	4	ナ;	re.	5	وم	بهو	4		0); e*	745	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			10	D.	. ~		2,2	K 5.			دما	- 6	_	ع د	50	51		SA		e .	
25t	4	مله	۸.	لمم	ul	-	7	۶V	91	. 0	XI- 5	<u>در /</u>	\	2.		2	50	-	**	13	2.	1,3	23,	7		7	d.			2				r 11	L	
Serve	4	S	4	@	ب2	*1	P	51	. ?	انما	pp	her	•	4	•	36	5)	•	22	 `	310	Die	(9)	╁┸	42	•	▼.	<u>. 2</u>		33.	_ N	-	1	<u> </u>		
ه د	بالم	I.		~k	Son .	(5 5		2	N	Se.			_	-	-	+	-			+	-	┼-	+	+	+	+			-	-	+	\dashv			100 A 6
					_		_		_	-	\perp	4				-	_	-			-	+-	+-	+-	+	+	\dashv			<u> </u>	-	+				
اعولا	1	Pa	<u>ra</u>	البدو	بكتوا	S				_	_	_		t	20		Pa.	œ	m	7	52	-	-	+	+		_		- 2	_	-	+				
5	ı			1	1	- 1								2	101	1/2	10	5	2	4	4-	-	-	+-	-	-	9		1	40	1	- 1	- 1			
1	- 1	١. ٥		1											9.	.0	3				_	1_				\perp	\rightarrow		1	B	1	- 1	- 1			93 mg
-	. ,	7	<u>~</u>	ور											1	3 .	9					-	1_	\perp	_	_	_		1	2-0	1	:	5.4	19		
1	- 1			1	1	+	1							Γ) (25	0									_	_		C	ممد	, 3	• \$	5	<u>.</u>		5
> 3	1		1		Į.	+			\top	+-	+					. 1														251	. 2	4	10	ر،		
>	- 1	7,)+·u	7	/.	_		+	+	\dashv			 			- 10	_	73									L_		e _{sp} p	=	٠,	12)		11
					اه.	\mathbf{Q}	. ما	2 (رب	+	\dashv	~-		+			- 1		١.		+	1	+			R	œ	-		1.				1.0	حيو	
31		<u>). ૯</u>)-	10.	91	+			+-	+	\dashv		_	+	1	.O	1-1	_0		X	+	+-	\top		_				1							
_		<u> </u>	<u> </u>	+	-	-			-	+						+	+		-	+	+	-	+-	+	_				+		+					
\perp			<u> </u>		<u> </u> -	1			-	\perp	_			+	-	-	-		-	+-	+	\dashv	+	+	-	\dashv	10		+-	+	+					
													_	-	4-	-	_		-	-		-	-	-	-	-+		-	+		+	-			+-	
													_	\perp					-	1	-	-	_	+				├-	+-	+	+	-				
												5	An	RI	45				\perp	_		_		_		_		-	-	-	-			-	-	
10 K			1						. 5	: 4						Pr	ولاع	M	هـ				مم	7	ne.	_		-	_	<u> </u>			-	-	1	1
			\top	-				_	83	- 1		,					تمو)					B	١٤,	, ,	۱ ۷	1		\perp		25-	7	3	<u> </u>	ļ. <u>.</u>	17	45
İ		10	-		+	VQ /	<u> </u>	,	-0=		<u></u>	FC					•							. 1				<u> </u>		4	7				•	١
- 1		7	i	+	-			+-	+		(,		\top	\top	Te					17			mp	~~			1	08	3 5	01]		5(22
- t		یعر	- 1	_	-	1	0"	10				-	+-		\dashv	+	1,	<u></u>		-	\top	-	1	- 1	40.34	-					1				1	•
극.	0	13	4		- -		•	-	-	-	Œ	3	+	+	-	+			+	+	\dashv		$^{\prime}$							05	18	2	3		L	کار
_/	0	1-1-	4	+			0.	4	\$1	m		-	-	-		+	"			+	-	(UZ	ر دوج	7	7~F	2.0	+-	\dashv	1-			T	+		"
_	10	4,0	A	_	_	ſ			-		B	40)	+	-		",			-			-+	-	-			+			+		+	+-	+	
								_	1			<u> </u>	1	_		_			\perp	-		_	-				-	+	+		\dashv		+-	-	-	+
												<u> </u>						_		_	_						-	+		-			+-	+		+
											_							_		\perp	\perp		_				-	-	+	-			+	+	+	+
																													+		_		+-		+	+
		+	+	\top									T															_					4	+		+
	-	+-	+	+			\dagger						+		+																		1	-	_	
	-	+	+	+	\dashv		-	+	\dashv			+	\dagger	_			,	1					- ဂ	W	ء <	5 c	36)					_			_
	-	+	+	\dashv	_		+-	-	\dashv		-	-	+	\dashv	+	-	-	\vdash	+		1	- f				`	1									
	-	+	-	-	_		+	+			-	+-	+	-+	\dashv		-	-	+	\dashv							T	1					T			
	_	-					-	-			-	-	+	\dashv	-		-	+-	+	\dashv							+	+	Conf	inue	d fro	om	page	 e		
							\perp		_		<u></u>														<u> </u>	<u> </u>							<u> </u>			
																			R	ead	an pd	Und	ersto	od i	Ву				,							
			60																	1	L .				/ >	\ 1.	14-	_ / .	l).	-10	Date	U
		P			-	***				-	-	-) -	14)	- <u>)</u>		か				YW	U [€]	U	\\ <u>\</u>	aned	1	س بر	-0	v			-	_,	•	L Date	<u></u> _
				Sia	ned										Date						Λ			٠.	gu	i										

Date: 1-14-2021									P	age of 1
Sample Location: 765-3-504)				A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)										
	و	**			٤					
+	# of Containers	Sample Matrix*	ıc	UO MA CL	SIM					
	Cont	ple N	507	2	Svoa.	ļ				
Sample Number	# of	Sam		20	3					Charge Number
	3	7	8							
21011-110104		A								·
07 41101	3		2	` ` `						
10124)			9						
1013A FB	,			9						
1014	1				9					
1049 A DVD	1				۶				:	
Sample Location:				<u> </u>	nalytic	al Reg	uiremer	nt		
Pertinent Notes (if any)	1				inary tic	ar reeq				
	ners	trix*								
	Containers	e Ma								
	ϕ jo #	Sample Matrix*								
Sample Number	#	Š			<u> </u>		<u> </u>			Charge Number
								!		
					<u>\</u> .					
Relinquished by: Da	ate / Tim	e:		$\dashv t$	/ 1	Acepte	1		1 1	Date / Time:
1-14-503	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	600		$+\!$	M	$\cup \bigvee$	- W	w ch	- 1-1	9-21/0900
				$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$						
				_ \) 					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

1-1-1-5051

Date: 1-14-2021	···	·								F	Page	_of_\
Sample Location: SER- 2-	584				A	nalytic	al Requ	uiremen	ıt	,		
Pertinent Notes (if a	ny)											
		# of Containers	Sample Matrix*	000	2000 46	SUDA_ SIM					XGM	
Sample Number		3	J			0,	-:-				Charg	e Number
210114 10250				X								
10260		3		メ			•					
10274		1			70			-	_			
198501		1			2							
4 P G 61)				メ			,			
												-
Sample Location:	-				A	Analytic	al Req	uiremer	nt			
Pertinent Notes (if a	ny)											
		of Containers	Sample Matrix*									
G 1 27 1) Jø #	Samp								Ol	- N1
Sample Number	<u>=</u>	-									Cnarg	e Number
												<u></u>
											<u></u> .	
	<u>.</u>											
***						_		-				
	I					<u> </u>					- /-	
Relinquished by:	Date	/ Tim	e: 600		1	We (Ccepte	- 1	~d	. 1-1	Date / T	10900
	1 1 1 200(1		. <u> </u>		1	\ <u></u>	<i>,</i>			!	1	/
					1)						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

DIECT DEG-2-184 FLUTE ENVOOSO

Continued from page _

This course of Robert Burrows present weather is Church and cold. This interpretation of the person and sampled which a filter standing samples will be really as a new Tellon discharge have flore pressure set a 26 T 051 which will be discarded carbon G5 in use. This production of the discarded carbon G5 in use. This production of the discarded carbon G5 in use. This production of the discarded carbon G5 in use. The production of the discarded carbon G5 in u	•
7 21 0 1 14 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1 Sample Pressure so 244 ps The blue street & 3 ps. and 5th blue & 7 ps	
A Sample Pressure sot @ 244 ps, i industrate @ 3 ps, and stable @ 7 ps, cs 350 ml w; la discarded Carbo G5 in 460. 2:1:a) Promoters C: ~1 Parameters 2:1:a) Promoters 2:11-4-4-4-4-4 2:1014-4-4-4-4 2:102-4-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4-4 2:103-4-4 2:103-4-4 2:103-4-4 2:103-4-4 2:103-4-4 2:103-4-4 2:103-4 2:	
Cot 350 ml W: 11 be discarded Carbo G5 in 460. 2itia Parameters F: ~ 1 Parameters muter 50 mu = 210144 oction 20144424 P4 (Con0 = 11) 1 = 8.21 810 TUB = 20 mp = 17.29C 17.3 1570 = 5.49 no = 1052 us/Cm 1047 RD6 \$5.55	
7:4:a Parameters F: ne Parameters muter ID mu = 210114 octives 20144424 P4 (ConD = 11 1 = 8.21 8 10 10.3 me = 17.2°C 17.3 no = 1052 us/cm 1047 RDE 5.55	
- 210114 oches 1 - 8.21	
= 210174 0040 20144424 PH (COND = 11 1	
1 -8.21 810 TUB = 20 10 = 17 2°C 17.3 "570 = 5.49 10 = 1052 us/cm 1047 RDE 5.55	
me = 17 2°C 17.3 1'570 = 5.49 no = 1052 us/cm 1047 1'856 \$.56	
no = 1052 ms/cm 1047 RD6 \$.55	2. 17° 17
CO = 0.88 NFW 5 P.8.9 LDT 7/01)	
2ne - 7.01.10.03 (16.0°C) 7.02.10.02	-4
Past = 7.01-10.02 7.00-1001 Backer 457 Ex	2
Samples -	
mare areasis Presseve Container Let Lar	<u>. </u>
10114113484 VOC & 8240 LL ZOLHU (D404) VIC 2573 NI	_ح_
12 49 A (1) (7 CFB) (1) A PHEN	
1250 A NOMA LL Eac (DIL Amber 1880) 58	I.
1400 h 1, 1, 100 h	
1501 6 17 (FB)	·
14354 Suga 517 " (D270 m) mor 051820 M	<u>.</u>
	<u> </u>
NOTE: Zone 6841 does not hold pressure to Sample Property.	
= 1000 1000 1000 1000 1000 1000 1000 10	
=0W=8cal	
Continued from page	
Read and Understood By	

Signed

1-14-2021

Da Wunds

1-19-21

Date:) - 14-2021									F	age\	of\
Sample Location: 162-2-684				A	nalytic	al Requ	iiremen	t			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	300	170mg C	500A-51M					X C Charg	e Number
21011412484	3		*								
1249 A	3		4								
1250 A	1			9							
4 0041	1			2							
1401 A	,			X							
1435 A)				2						
Sample Location:				- A	Analytic	al Requ	uiremei	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charg	ge Number
Relinquished by: Dat	te / Tim	e:) \ A	Accepte	d dy:	Λ		Date / 7	
1-14-303	<u>, </u>	600			ml	ΔL	/w	meh	- 1-1	9-21	10900
							\perp				
						_	,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

JEC	; T_	3	$oldsymbol{eta}$. '	1.4	124	• : •	<u>\</u>	127	_ €	ENU) • 0	0 \$	3 _					,	,	Not Cont	ebo tinue	ook d fro	No. m pa	ge _	<u>32</u>	<u>`` </u>	8/6	.)			
di	ک ^ب				4	A	· /	lon								· ;	5	. 1	- 1			ľ		1 -	. 1		سوا	Ų	بإن	1.	erat en
500	} (7	<u>Say</u> N	~6/	20	7	21 V	3 9	7	024	1CO	Leg	<u>)</u> *	0/0	60.a	<i>(</i> € €	pur	Mb.	· 43	PAN	P	15	w	#1	124	ې، ت	الع	ويوا		48	ζ.
دير	<u>ن</u>	120	4/0	~	07	2C.V	١٩	<u> </u>															41	be		ندما	toc	لانا	VS	MS.	
06	-0	_ \	16.	10	#	w	د	77	4	Nal	25	Q,	ve)	130	۲.	(رمدا	∞ √	. ر	. 5	<u> </u>	منه	ļ .	•	*,2			1		긔	0
_								<u> </u>						ļ													_				
_	1													<u> </u>									ω	<u> </u>	411	.51	<u> </u>	, ,		:: <u>://</u>	
PL	2/	ion	5		_													. ,)		* 49	•			. 6:-		1 1				1	CN
. (لعـ	ن	۸ 5	satu	wfe	۽ لي	शंद	6	Ç٧	Н			4							ŧ. '		.,,					,		۵		_3
2	لم	\		~ 1	<u></u>	he	< 6	<u> </u>	Le.	5	(4	7	\mathcal{M})		1 0.3	et e ^{ta}		,	25.00				1.0	*	4				وي . •	١,٠
UE.	tio	1;	٠. (الح	บฮ	inc	1/	113	L	25/	·w	7	w.	51	f: K	io	.,							•				•		. ,	
	:L	,	Le	اور	. ,	17))								1 1	1	_	12	Ŋτ	ی	1	1-	910	17		6	۸ -	1/	21		
				,													•	,			,						•				,
1	7															-		•	• .		٠.	•						٠			
\	\ .) م	1:	44.0			1		(·c)		(arlı:	الماء	٠;٦	(M	٤, ٨)	M	· (IA.	()		011		ST	NO.		1.1	(NR	M	la X 4
							,	10.9	, <u> </u>			Ĭ		i			7.00	,					, ,		1 1	, ,		8	ر ر		1
.10	~						1 1	1 - 1						1 -					_	ł	ł				1						,0
-					•			Г		žv,	1					-							1		10						
+	•	. 15.7	131		•	-	1	0.	J			*	, <u>U</u>	26						C-1	٠	1.1.	11		14		MU	'هي ،	U 3.4	٠,٠٠٠ ا	76
+							•					-			1	ب							 								•
1		#	÷ .				\vdash							7	1 •	1	,	-		^	١.			 		1					ر د
•	- 1] 1	1 . 1	1 ' [•				1.0	I -			/ 2	110	nta	٠	1							70,000	
- 1	- [NO	AB						۲	N.	7 c	e_	,		(3	770	W	101	417		1	• IJ	7_		,	172	
$\neg \tau$				-		1	,						:			-	*	↑, •.	1.	1 1					10	0			١.,	•	
														7			ļ		11	1 1	1	Ī	er		10) (. • .	٤
•				-		٠٤٠	لنأو				MA	•	- 31	 	-				-	-	-		-		-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-			
_	14	<u>149</u>	C					=	(F	B)	ļ		<u> </u>	<u> </u>	1						(T		}	ļ		-			*	,	****
-						1 1	1					· 7	1	1	 	†		1	,	 	 										
+			,•,£}					-	ļ						./		1		,	. ,,	. `.,										
		11	.•,(.)										13	منالا	./	رم	tro	5		. ,,	. `										
ngl	ያ	#	• ()				An	1/15	5				13	A	./	1	tro	5		C	ent.	<u>u</u>				lot				امه	-
•		5≥ #	ı			1.0		ahs Lev		V01	MΑ		13	fres	d	•	tro	5		- C	ent.	uin Mb.			1	10+ EH1				ab Sb	7
•			ı			al-o				\01	чA		R	fres	d	•	tro	5		C	ent.	in Mb.			1	, .					7
•			ı			: Lo				701	MA.		13	fres	d	•	tro	[5		C	ent.	, , , , , , , , , , , , , , , , , , ,			1	, .					7
•	12			ca\		:				701	MA.			fres	d	•	tro	5	l	C	ent.	win.			1	, .					3
74	12									\D1	MA.			fres	d	•	tro			טע	ent.	in mb	* (&/		1	, .					3
74	12					Lo				701	MA.			fres	d	•	tro			טע	ent.		* (&/		1	, .					
74	12	. J	<u>.</u>		4.					701	MA.	K		fres	d	•	1100			טע	A	m 94	* (&/		1	, .					
74	12	. J	<u>.</u>							J-0.1	MA.	100		fres	d	•	100			טע	A	, , , , , , , , , , , , , , , , , , ,	* (&/		1	, .					
74	12	. J	<u>.</u>							J01	MA.			fres	d	•	100			טע	A	mb.	* (&/	Col	1	EHI	4//				
74	12	. J	<u>.</u>							J01	MA.			fres	d			# N	3	· C	A	who were	* (&/	Con	216	EHI	4//				
74	12	. J	<u>.</u>							J01	MA.			fres	d		tro	# N	3	· C	A	m b	* (&/	Col	216	EHI	4//				
74	12	. J	<u>.</u>							J01	<u>wa</u>	(/2		fres	d		d and	# N	lersto	· C	A	11	* (&/	Con	216	EHI	4//		7-2		
		Sed Sed Sed Sed Sed Sed Sed Sed	Sed & Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fellow Fel	sed & sau fello GED MO. Lorations Calina Calina Lorition Lorations Lalisia Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Loration Lorat	sed & Sample Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal in Setu Cal	sed & sampled number for di OCD MO. 20 Fl Norations Cal in satural Octivity Meler: Male of time 101141435 c 1439 c 1439 c 1440 c 1440 c 1440 c	sed & sampled or new texton disch OCD MP. 20 Flow Norations Cal in sorvented a uctivity Cal using sidity Melex \$77 males (time) 101141435 c 1439 c 1439 c 1449 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 1448 c 14	sed & sampled vsing wind teacher of the top of the top of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teacher of the teac	sed & Sampled Janese John Herror How Call of John Horald Sir Q Cal in saturated sir Q Cal win Fisher Bus John Hisher Bus John Hisher Bus John Hisher Bus John His John Hisher Jon John Hisher Jon Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Company Just Horald Co	sed & sampled using a complete with fection discharge to how call a marked air a cylina to the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffer of the Buffe	sed & sampled using a declaration of the form of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of the parties of th	ged & Sampled Using a debted name texton discharge tube: I water. GED MP. 20 Flow Call & water. Cal in saturated air @ C44 ma vericity. Cal using 1413 essembled of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the colo	ged & sampled vina a dedicated was retter discharge tube. Was a water as water as the property of the samples our a cult a water as which the samples our a consist of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the	ged & Sampled Using a dedicated was testion discharge toba: Water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water and water	ged & Sampled Using a dedicated bla New texton discharge two water analyse Col Me. 20 flow Call & maler analyse Cal in saturated air @ CHH mm 1Ha. Cal using Fisher B-FLers (4,7,10) veticity Cal using 1413 restorm 500 pidity Meter \$77 510 5.06 Arro malers time 1 Temp(C) Conduction 1011411435 C 20.85 1.068 1439 C 20.93 20 1.056 1439 C 20.93 20 1.056 14410 C 1007 Bromacil 5 1449 C 1000 Level NOMA	god & sampled vine a dedicated bladds num fertion discharge tope: Water quel OCD MP. 20 Flow calls water analyzer. Cal in saturated air @ C44 mm 179. Cal wine Fisher B. Ters (4,7,10) uction to Cal wine 1413 ws/cm 5-0 salid with Meter \$7 500 5.00 mm B males (time) Temp(ic) Carductivity 1011414357 20.85 .068 101414357 20.85 .068 1439 2 20.93 20 .056 MAR # Aralysis & Freshive 14410 (007/Bromaci) Texa 14410 C Low Level NAMA	ged & sampled using a dedicated bladdar and testion discharge toda: Water quelity of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of testion of the testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of	ged & Sampled Using a dedicated bladder During Festion discharge tube. Water quelity of OCD MP. 20 Flow Call a mader analyzer. Car horations. Cal in saturated air Q CM mm 1Ha. Cal using Fisher B-12ers (4,7,10) withing Cal using 1413 ession 5-20 satisfion bidity Meter 17 510-5.06 Arro 206-6 ancles (time) Temp('c) Conductivity (MY, m 101141435c 20.85 1.068 1037 1038 2 1.056 11437 C 20.73 2 1.056 Mae ## Analysis France 1448 C 1007 Bromacil Tea- 1448 C 100 Level NAMA	ged & sampled using a destrated bladder pump was tartion discharge tube. Water quality pame OCD MP. 20 Flow call a maler analyzer. Carbon Morations. Cal in saturated air @ cum man 14g. Cal using Fisher Buffers (4,7,10) uction to Cal using 1413 essens to satisfied. Interview Cal using 1413 essens to satisfied. Interview Cal using 1413 essens to satisfied. Interview Cal using 1413 essens to satisfied. Interview Cal using 1413 essens (4,7,10) only 1413 essens to satisfied. Interview Carbon South 140 (12) Interview Carbon South 150 (12) Interview Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon	ged & sampled using a dedicated bladder pump. See Me Do Flow call a mater analyzer Carbon Co Cal in saturated air @ Cut mus 14g. Cal in saturated air @ Cut mus 14g. Cal using Fisher Buffers (4,71,00) websity Meter & T. STO. S. Or Mr. Par. (,12 mg. meters (time) Temp('c) Conductivity (Min) (Min) 1014141235 C 20.83 " Lose 32 4. 1439 C 20.83 " Lose 4. 1439 C 20.83 " Lose 4. 1441 Aralysis Presence (3) 1441 C (607) Browned Temp (1) 1441 C (607) Browned Temp (1) 1441 C (607) Browned Temp (1)	god & sampled using a dedicated bladder pump. Same with the form discharge tope. Water quality parameter. OCD MO. O flow call a maler analyzer. Carbox Co. S. Cal in saturated air & CHI mm 179. Cal in saturated air & CHI mm 179. Cal is in Fisher B-Ters (4,7,10) webivity Cal using 1413 essen to satisfied. Meler & T. SIO S. OG AND ROS (6,12 mm) moles (time Temp('c) Carbotrivia (M/m) M/m) moles (time Temp('c) Carbotrivia (M/m) M/m) 101414125 c	god & Sampled wind a dedicated bladder pump Sample with feather discharge two whater quality parameters. OED MO TO Flow call a maler analyster. Carbon Co. S. Cal wint tisher Buffers (4,7,70) webivity Cal wing 1413 esseem 270 solution (MSm) 00 [MS). inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri 200 (200 1) inity Meter \$7 \$10 \$ 06 Arri	god & Sampled wine a dedicated bladder pump samples with fether discharge tube Water quality parameters with technical pump samples with technical pump samples with technical analystic Carbon Co. 5. Cal in saturated air & Cott mm 1Ha Cal using Hills essem to satisfied (12 mm 1H3) Which Meter \$7 \$10 \$ 00 Arri 200 (12 mm 1H4) INTERNATIONS (12 mm 1H3) INTERNATION SOL ARTI 200 (12 mm 1H4) INTERNATION SOL ARTI 200 (12 mm 1H4) INTERNATION SOL ARTI 200 (12 mm 1H4) INTERNATION SOL ARTI 200 (12 mm 1H4) INTERNATION SOL ARTI 200 (12 mm 1H4) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MX) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCTION (MXm) 00 (MXm) INTERNATION SOL CONDUCT	ged & Sampled Jana a dedicated bladder pump Jamples will level and the pump Jamples will level had been greated and call a maler analyzer larger larger will. Cal in saturated and Buffers (4,7,10) verivity Cal winn 1413 essem to saturate for 910 mules Itime Temp(c) Conductivity (M/m) 00 (M/m). Iff 10 1141/1435 200 200 200 200 200 200 200 200 200 20	ged & sampled which a dedicated bladder pump samples will be con the of the call a mater quality parameters will be con the of the call a mater quality parameters will be continued air of call a mater quality parameters will be continued air of call a mater analysis (0,7,10) La vising fisher B. Fles (0,7,10) Latin to the call asing 1413 essent to satisficate (12 was lot - 91017) maters from the Temp('c) (addictivity (M'Xm) 00 (MX) 141 1011411435 (20.93) 1026 (30.97) 1039 (20.93) 1030 (40.77) 1040 (30.97) 1040 (30.97) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1050 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1041 (40.77) 1	ged & sampled sing a dedicated bladder pump samples will be an low tends of the property will be an low tends of the property will be an low tends of the property will be an low tends of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the	ged & sampled wing a dedicated bladder pump Jamples will be upon white the will be upon the total of the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters are parameters will be upon the parameters and parameters will be upon the parameters are parameters will be upon the parameters and parameters will be upon the parameters are parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be upon the parameters will be	ged & sampled wing a dedicated bladder pump samples will be manifed on the top of the work of the manifed of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of the top of t	and a sampled using a debicated bladder pump Jamples will be admired with testion discharge type Water quality parameters will be admired on the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of the testion of testion of the testion of testion of the testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of testion of	and a sampled vising a debtealed bladder pump Jamples will be admitsed us will be admitsed us DED MO DO Flow call a mater analyster. Carbon Co. 5 DED MO DO Flow call a mater analyster. Carbon Co. 5 Destroy of the sampled air of Cay may 1 to a samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of the samples of	ged & sample vsing a dedicated bladder pump samples will be address with second samples will be address with second samples with permanents with be address with second samples of the permanents with second samples of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the second size of the s

Date: 1/14/21]	Page	_ of <u>\</u>
Sample Location: 50.1.424				A	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 LC	667	IL LOMA					Charge	e Number
21011414450	3	A	V							XGM	:
1446C (FB)	3	1	X					,		1	
14470	i			X							
14486	1				Χ						
1449C (FB)	١				X						
1525C (BC)	١				χ					上	
			,								
Sample Location:				A	nalytic	al Requ	uiremei	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*									
Sample Number	#	S								Charge	Number
Relinquished by: Date	/ Time	L e:			A	ccepte	d by:			Date / Ti	me:
M W 1/14/21	_	540		<u>I</u>	or		lun	ch	1-10	1-21/	0900
~				$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$							
				V		.*					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: \\/20/21										Page of
Sample Location: JP. 2. 447				A	nalytic	cal Req	uireme	nt		
Pertinent Notes (if any)			, .	-						
	ers	ix*	صو بمص	4 عود لار						
	# of Containers	Sample Matrix*	بي	2						
	of Cor	mple	رراد	8						
Sample Number)#	Sa	١	À		1				Charge Number
20012015250	3	A	X							XGMO
- 12565 (W2)	3		X							
1527 ((FB)	1		X							
15286	(X						
- 1529C (FB)		1		1						1
Sample Location:				A	nalytic	al Req	uireme	nt	<u> </u>	
Pertinent Notes (if any)							<u> </u>			
	S	*>								·
	taine	Matri						٠		
	of Containers	Sample Matrix*								
Sample Number	# O#	San								Charge Number
							0.00			-
					•					
Relinquished by: Date	/ Time	:) (A	ccepte	by:	R		Date / Time:
1/20/21	<u></u>	160			m V	\bigvee	Jun	-ch	1-2	1-21/0930
7										, ,
				٧			•			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 70.3.509			, ,							Page	
	Sample Location: //13/21				A	nalytic	al Requ	uiremer	ıt			
	Pertinent Notes (if any)			8.		7	1					
		ers	*xi	8240 LC	667	LL NOMA	[Metals					
		# of Containers	Sample Matrix*	رر	7	MO	e ty					
		of Co	ample	1		A	\sim					
	Sample Number		võ								,	arge Number
	210/13/4/50	3	A	X							XCI	^ /)
	14160 (FB)	3		X	,							
	1417.6	1 -			X							
	- 1418c (MS)				X							
	14190					X						
	- 1420c (FB)	1				X						
	14210	Z					×					`
	Sample Location:					Analytic	al Requ	uiremer	nt			
	Pertinent Notes (if any)			As	\	Q	>					
		ers	ix*	Anions	703	Perchlora	NOZ NO			*		
		ntain	Matr		<u> </u>	lo la	2					
		of Containers	Sample Matrix*	A.		8	ν. 					
	Sample Number	#	Sa								Ch	arge Number
	2101131422(7	A	X							XG	MD
	1423(1			X							
	14540	1		-		7						
	14520	1	L				メ	_			لا	
						_						
						_						
						\						
-	Relinquished by: Date					/	ccepte		1	1 1	•	/ Time:
-	M/625 1/13/2	1 @	<u>/(bC</u>	α	1/2	uV		ll-	d	1-16	1-21	10900
-				-	$+\emptyset$,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ned

	Date: 1/14/21										Page	
	Sample Location: JP. 3 - 689				A	nalytic	cal Req	uireme	nt			
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	816011	667	CL NOMA	T. Mukis				Cha	arge Number
	21011410100	3		×							XG	
	ionic (FB)	3	-	X							1	
	10120	1			X							
\dashv	- lusc					X						
	> 10/4 (F/3)					×						
	> 1015c	.5					V					
\forall	- WEC (Dup)	2					X					
	Sample Location:				A	Analytic	cal Req	uireme	nt			
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Anions AIK	705	Perchlorate	MUZNO3	8260 LC	LL NOWA		Cha	arge Number
	2161141017 C	2		X								MD
	<u> 1980</u>	1			X							
	10190	l				X						
	10200	(X	i				
4	~ 0700c (TB)	3						Х				
\forall	- 0761C (TB)	1							X			L
				,	_							
	Relinquished by: Date //۱۷/7	/ Time)	(e	ru V	Accepte	d by:	de	1-1	Date 9-21	/ Time: 0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Maci	وبر		Vo.		K	\overline{A}	\	W.	1		- 	1		Ne,	the	<u></u>	3 (دوا	- 1	CC	۱۵		his 1	سو	1	الند	6			
bard.	6	<u></u>	SAW.	be	<u>) </u>	نځن	<u> </u>	l.	de	ا م	لدر)(da	99.	-	6m	ND.	<	Q.N	ple	3	Tiu	onitore	رم	Hec	Jed	७५	ing	۵	
مكون	te	ملإ	.	dis	ديد	4	14	De.	١.١	h^{q}	ec.	çu	7:7	4	60	aw	مأو	13	wi	<u> </u>	DR	W	onitore	9	15	مر	q)	,	
OFO		116.	20	2	las	نا	1	٤.	me	le 1	4	nal	12	4.	C	ryo	4	G.	1_					<u> </u>	-	<u>)</u>				
1	1.54		1	•				-	<u> </u>	-					-		1						7W -		1	ļ	-		-	
Calib	À								<u> </u>				, 45 25	-								U	(W -	77	22.	NO.				
	7.27	ILĀV.		Ĺ.	Ì.	١.		ြ	(2)	1	24.200	14						-												
No : 6		V = () SV			Į,	7	1.7	Cu	5_	(प	,Τ`	40)																
	1	lu e		Z.	C.	Λ	US'	ne	14	13	NS	kw	•	571	5	اراه	no.													
	136		Ų,	معا	#	h						6 1				4 -			2	U_	_\	· fo.	91017		Gu	-1	/29	12		
		+	1			ļ:						1		1											<u> </u>	<u> </u>				
jakw	484	A PROPERTY.		1		1	en	6(.	ני		(c	md	<u> </u>			$\tilde{\omega}$			H			129		1	46(1	1	OT		_
1210					-]	31	1		1	.]]	<u>. </u>			. 3			.21			0		T	02		- (781	ک٥.	
)) 3)		42					1.	29 30	ı		1	. 104 .018	4					1	.2U			12		1	39			•	-	
		1.3	1				11.	30		-		.011	2), (·	3		1.20	_ ر		1		J	111					
																							-				-			
										<)G wa	ple	<								,									
Sampl	•	+				A	naly:	ùs_						AÇVÆ				۵	tai	W				101				-	di	
21011	15	05	٤		10	d A	48	100	U		,	4	$\bigcup U$	Ic	L		(3				کاه		1	57	32			J	l ls	
	7	٥٤	:				;		gu ()									,,					=	-				•	
		70			1		:		B))															-				5	
		508 504			Lo	w	كعبر	<u>el 1</u>	70	AN			I	بع	-		())]/	_ Д	Mba	/			108	501			•	287	<u>-</u>
		3 07		-			्	11	8.)		-							;	•					-				•	
				-								-																		
1															-															
WOI	-	2	<u>Co</u> a												-															
,			3.												,															
										_																				
				-																	,								I	
				-																										
						<u> </u>																						\rightarrow		
							:														-			41						
		L		<u> </u>																			Con	tinu	ed fro	m pa	ige			

Date

Signed

Date: 17. 1.486										I	Page / of	f
Sample Location: \ /\\ /2\					Α	nalytic	al Requ	iremer	ıt			
Pertinent Notes (if any) Sample Number		# of Containers	Sample Matrix*	breo in	LUMMA						Charge Nu	ımber
21011115050		3	Д	ý							XGMD	
150CC 100		3	<u>~</u>	$\frac{1}{\lambda}$							XU/O	
1507 (FB	* t	3	\top	X								
15086		1		 	X							
1509C (FB))	1	1		Y						L	
Sample Location:					Α	nalytic	al Requ	uiremer	ıt			
Pertinent Notes (if any)												
		# of Containers	Sample Matrix*				·	,	erse .			
Sample Number		#						<u></u>			Charge Nu	ımber
			a. 08 t		_	,						
						-						
											as in	
					_							37)2
						\						
Relinquished by:	Date / T) (A	ccepte	d by:	1	1	Date / Time	
W hy	1/11/21 @	16	00		+	Vul		lu-	d-	-	12-21 /0	900
					+()			,			· · · · · · · · · · · · · · · · · · ·	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

DEC	. 11	<u> </u>	φ.	- <u>J</u>	U		w.	7 7	ZN	V –	UU	or (JUITU	nueu	111011	n pag	<u> </u>				*	- 15 - 22		
ЬП	uf	-s	٤	Ca	u'q	D	1	eri	ar	-0	PV	ZS	ent	L	W	la	the	y	is	C	lea	r	ے	200	1.	Th	is			
11 6	2	sa	mp	le d	ū	Si	74	5	1	cij	le		11	Se.	d_{i}	S	tai	'nl	25	<u>- </u>	s #	e.e		Sai	n	ole	fe	ıbe	s	
n. i	7	15.	4	Pro	þe	#	22	13	•	Sų	cF.	ace	2 ¢	he	ct	2:	Per	Fo	m	ed	_0,	1	200	ه حا د	-	Pr	ior	_#3	۱.	
.mp	lia	g.						-	\dashv				-				-			\dashv			-		+				+	
	-	+					9	١,	-		-	, 1		.]	7	,			•	-	5				+			+		
	+	-			10	12	A		7			W	$\frac{a}{D}$	20		<u>u</u> [Fi	Car	10	2	7	γs	e	M	7	4			\mathbf{J}	
am			١,				_	na	_	- 1	- 1	1	CCA	2	CVG	11	ve					ne			_	07 73	-a	-	<u>به</u> کړک	
21011			15					by					-	10	e /				(i)	7U,				0					RI.	-
	-		le	7		<u>_0</u>	ا ن	_ev	4	NU	<i>[</i>]]]				160	2				-	-1-1	<i>7</i> 11, 2	21		100					
					-	30		Mi	2	6		in	me	1	R	AN	Ks	_	Ca	rb	nu	R	3				·			
0.					*	۷	4	na			7	+	Po	050	, '\	a	ive	,				ayn			Z	-07	4	1	ab]
2101	13	14	-OD	<u> </u>	\	10		Ьч			٦ ١	L		ice	11	4 _C	L	-	(3	₹				- ,	2	57	3_2		41.5	
Α			ol.		1 1	Ow	•	_ev		- 1	- 1				ice	2			(i) [4	_ /	m	e		01	28	50 <i>1</i> F	<u> </u>	SE	圷
				•																		_		,						
riti	للم	Par	am	ete	5							_	αí										M	efe		7	<u>D</u>			
im	e +	1		31	440	ρy							: 1	2-			131	15	35	Y		\$	2#		201	d		6		
H	+	8	.17									PH	-			0							4	urt	1	-	i	21	_	
mp	+	2	2.4	5 ' C					-								5. c	, ,					٩		sh		! !	5.5		4
and				usl								4			4		us	cn	.'5				u		*		- 5 - 91	1	7 6 2	
wb	+	- 1	- 1	2 27	1	1	1.	٦.		`		11	rs		7	17	0 n	211	J /	1-7	<i>u</i>	\	u		•	1	- 1	. 17	- 1	1
1 pr			1.	11	1		(1	1.	1 4	-)							9/				7)	u		<u></u>	1		<u>- 4</u>		1
Tu				B . =								4	11 K				8.					B.,	C.C.	scc		10	7		Exo	
tm	λ.								-			Ā	1200	م د .			59					- M.	7			ZG	21	8	Ξχρ 3/2,1	
7.7.1			X • •	1	3,4							1	Du	()	_	1/2	1						10	1 1	1		05		121	
																	J									<u> </u>		_		_
									_		4	5a	m£	le	<u>S</u>										7	-		_	/	- -
Jan	75	e						Am	al	151	2		Pc	ese	251	ra·	hv	2	(_	nes		, 4	0	#	-	<u> </u>	<u>b</u>	_ .
2101			1.6		'	YO	T .	al 1 i		6C	1	L		ce	1.7	<i>ICI</i>	4-		(1)4	Om	1	<u> 19</u>	!	ļ	1	2		14.5	
+		151	14	-	1	For	<i>ا</i> ر	ĕν	e	N	m	A			Ke				U,) [(- 1	bu	bei	r 8	plo) 8≤	OIF		5 P.J	7
-	-	-	-	-	-							-							-	-	-				-	-	+	+	+	
	_	7					7	110			<u> </u>	-	,\ ,	10	0					-		-			-	+				1
2 un	5			.02	1		요)	49	1	Ь Л		1	3) 1	79	1			-	+	+		-			-	+				1
+	+			73			+	54		9	1			D U	7	1			+	-		-				+				
+++				.01				49	.6	1				16 419	9	0	+				+		Co	ntinu	ed fr	rom (oage		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
i			<u> </u>	· ¥]				1 .	<u> </u>			1		(N Und	I 4			1									, 100 m 19

Read and Understood By

Date: 1 13 21			,						Page _	of	
Sample Location: PL-6-545			A	nalytic	al Req	uireme	1t				
Pertinent Notes (if any)			6	_							
8.5	*	77	LL NOMA	,							
# Samula Number	Sample Matrix*	0	20		į						
CCon	nple 1	8260	7								
Sample Number #	San	∞	7						Ch	arge Num	ber
2101131245y (TB) 3	A	/								nmD	
1246y (TB) 1	A		/							u	
1400y (EB) 3	A	\checkmark								10	
14014 (EB) 1	A	,	~								
1510V 3	A	V		_							
1511V 1	A			-						γ	
(911)										U	
Sample Location:			A	nalytic	al Req	uiremer	nt	l			
Pertinent Notes (if any)				<u> </u>			,		1		
_ ω	*.										
ainer	Aatri										
# Of Containers	Sample Matrix*								-		
Sample Number #	San								Cha	rge Num	ber
				<u>,</u>							
Relinquished by: Date / Tim) A	ccepte		^			Time:	
Trang Del Fermo 1/13/21 151		102 5.	\iint	m V		Jun-	-ch	1-11	1-21	100	100
160	oo hi	rs.	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		<u>-</u>				•	/	
			U		,						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

45

POJECT PL-6-725 WIT ENV-0020

B	Ь	Tu	£+	5 8	E (sai	9	De l	Fe +-	vro : 1	ıvo	p	res	en	t. -1	4)	eat	her	_is	s c	lea	r	E 0	olo	, ,	th	is C	20	ne	W	ìll	
																				be.										use		
								30) /	٨i	n.	Ες	uì p	m 4	nt	13	بوا	ate	ς -	\mathcal{C}	art	ان د	G	3								
		علم						A	nal	γS	5		Pre	se	cy	h	ve		2	on	faj	ne	<u>r</u>		4	0	<i>f</i>			ap V R		
				440	•		V	٥A	by	87	60	LL		ia	2/1	HCI			(3)	40	m.	Vİ	als		25	573	3-5		/	1/5	5	
			1;	34	7		L	Þ₩	Lev	e	NU	MA			Ice				LI) I.L.	_#;	m.D.	2.5		010	985	ot	F	7	>K	L	
I	Fin	ìal	F	ara	m	et:	rs	<u> </u>					7	٦ċ	لم										Me	te	_	TI)			
T	me	, –	a	01	19								Ti	W)4	2-	2	4	1	2 1	44	74				ρ	H	co	nd	-	61		
PI	1	-	8	01													.9		_				-		7	ur	b		_	21		
ex	MP	-	26	2,5	5 . 6	1	-										ຊ.									u				55		,
	nd	1	16	3) u	5/0	m S													m ,'5						u		rd	<u>9 – </u>	54 9]	7. O	\exists
D†	rp	- ~-	7	.19	Ĩ	10	13	(1	4.	- · ĉ			l I		5	1			1	9 (3	٠.)			u				- 1/2		
5	PC	st.	۲ -	17	7	0	10) }	1.0)									0			<u> </u>			ш						
	4			68		1		1						1	v	- 1	16	8.:	5 2	F	•			β	y£	ers		Lo	+	ľ	\mathcal{E}_{Y}	2
AH	m)C	٠ .	_1	a.	62	PE	ia						F	比	MOS		12,	61	၉ၭ	ìa						1	1		59 <i>1</i>		8/2	<i>'</i>
						<u>'</u>							I	D	ω_{-}		1/2	ga	١.						/c	>	400	PID	<u>a5</u>		6/2	
															-																	- : 1
		•												5.	n <i>o</i>	100												-	,			
_	·)a.,	^ ^	0						A	na	lus	is	=	<u>29.</u> 1	np S	200	100	Liv	ro		$C_{\mathbf{x}}$	٨,	z.'n	ارد ص		1	~	-		1	ah	
21	01	する	14	44	57		\	'nΑ	<u> </u>	u	lys 82	60	1_1		i	ce	/H	CL		(3)4	Ow	Ιv	igl	2	25	73	- 2	,	A	ab LS	5
			- 1	+4	64		Ľ	ow	L	J Ve	N	D	m)£	}			ce			Č	ijİ	Ľŕ	سر	be	r	DIC	85	50.1	E	S	27	-
					1																											
<u></u>	- (•	1				1	,	1.		1			1	1					1				- \		L			1			
7				_	17		1	1	:	1 L		į.	l l		1	1			1								Į.	1	971	ıre	ړی	
		est	Þa	g	1	uci		01	۲	O I VE	U17		C1 &		erv	->	en.	SIT	IVQ.	+)	-X1	ien	ne	1.	c _w	PS	•				
\overline{R}	un	s	<i>y</i>	12	8.	63			à) 1:	a 8	.5	a																			
			1	13:	5,`	12				,	35	i	i																			
				1		68	1			1	35	1 .																				
				12	B.:	58				1	28	3.4	9																			
							-																		Cor	ntipu	ad fr	om pa	ane			\dashv
	<u> </u>	L			<u> </u>	<u>L.</u>	<u> </u>			L		<u> </u>	L				1	1							Cor	iuiiu	eu III	om þ	age			

Chaig Ill Temo

1/12/21

Read and Understood By

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

June 1

1-13-21

]	Page of
			A	nalytic	al Req	uireme	nt		
		7							
iers	rix*		E E						
ontair	e Mat	9	NB						
# of C	Sampl	28	7						CI VI I
									Charge Number
<u>)</u>									
2									ч
7 -			1/						4
			<u> </u>						ų
			A	nalytic	al Req	uiremei	nt		
iers	rix*								
ontair	e Mat								
# of C	Sampl								
			<u>-</u>						Charge Number
	·								
			(7					
/ mm !		1		1 14	cepte	d by			Date / Time:
/ Time		1	14	/ I	\\	\\	0	j 1-	
		hrs,	14	on))llm	-di	1-13	
	# of Containers # of Containers	→ C → C # of Containers → → → → Sample Matrix*	→	→	Analytic	77 Opwy Wanders Analytical Requires Analytical Requirements	Analytical Requirements Analytical Requirements	Analytical Requirement Analytical Requirement	Analytical Requirement Analytical Requirement Analytical Requirement

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1112	EKNAL SAI			Page of
Sample Location: PL-6-915		F	Analytical Requirement	
Pertinent Notes (if any) Sample Number	# of Containers Sample Matrix*	8260 44	LL NOMA Total Metals	Charge Number
2101111230y (TB)	3 A	/		XGMD
1231V (T3)	I A			u
1310V (EB)	3 A			у
1311V (EB)	1 A			Ų
1410y (EB)	a A			· · · · · · · · · · · · · · · · · · ·
1520y	3 A			ч
1521Y	1 A	V		
Sample Location:			Analytical Requirement	
Pertinent Notes (if any) Sample Number	# of Containers Sample Matrix*	LL NOMA		Charge Number
21011115227	1 A			XGMD
2101111522Y 	2 A	√		ч
Dalin aviah ad hvu	Date / Time:		Nacantad by:	Date / Time:
Relinquished by: Cray When 11/2	Date / 11me:		Accepted by:	1.

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT PL-10-484 WIT ENV-0020

Bob Tufts & Craig Del Ferrano present. Weather is clear & cool. This zone will be sampled using 2 triple rinsed, stainless steel sample tubes. her in use, Probe # 4955 Susface checks performed on probe prior to sampling. 30 Min. Epuspment Blanks - Carboy 65 Analysis Preservative Container 0108501F (1) 250 mlawher 092319-1BMC Initial Parameters Meter ID pH/cond-61 Time-21010514454 ime - 21010515564 Turb -21 - 8.29 PH + 8.17 - 21.9°C - 1093us/cm Temp - 22.1'C Std - 555 rdg -56.2 Cond - 1085 us/cm Turb - 1.00 NTU'S Turb - 0.88 NTU'S >4 pre - 7.08/10.10 (20.9.2) pHpre-7.07/10.11(a1.1'c) H post - 7.05/10.11 PHP057-7.08/10.10 DTW - 463.08 Ft. Buffer Lot bru -463.16 ft. Atmos - 12.19 psia 4002691 Atmos - 12,22 psia 6/21 4001005 IDW + /2 9 9/5. Analysis Preservative Container Sample ab VOA by 8260 LL ice/HCL Low Level NOMA ice AL5 (3) 40m/ vig/\$ 2573-2 21010515204 (1) L Amber 0108501F SRI 15214 (1) 250ml amber 092319-18MC 1,4 Dioxane by 82700 u AL 5 - 1555y Runs 1) 84.45 3 24.42 2) 24.44 21.93 21,90 21.93 21.92 .94 21.89 24.42 24.48 24.37 Continued from page

Graig Del Fermo

1 | 5 | 21

Read and Understood By

Signed

1-6-21

Date: 1 5 21						,]	Page of
Sample Location: PL-10-48	4			A	nalytic	al Requi				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 42	LL NOMB	Dioxone					Charge Number
2101051410V (EB)	3	A		,	:-					XGMD
14114 (EB)	3	A A A A	\	\rightarrow \right	~					4 4 4 4
Sample Location:	Sample Location:									<u> </u>
Pertinent Notes (if any)	# of Containers	Sample Matrix*								
Sample Number	#	Š								Charge Number
Relinquished by: Date Raig Del Terro 1/5/21	/ Time	:: 15 h	rs,) A	dcepted	yby:	d	1-4	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

0 ROJECT PL-10-592 WII ENV-0020 Notebook No. D64 #127 (Y) Continued from page																															
لمد	> 1	Ti	F	S	3	C_{ℓ}	aic	1	el	Fe	vra	21/0	F	re	Ser	1	W			is							hi Sa				will bes
en		ח	us	e.	Pr	ope	2 #£	49	55	. <	ur:	Fac	e (ch.	ech	s	Pe	rFo	ra	red	OV	ì	Pro	Бe	7	rí	26	H	Say	np	ling.
5.	140	ام	e_				1	r		Blaly							rti)		ati	on	S	_	_		-	<u></u>	4			/_a	6
J c	> -	δ:	l	1	207	1		ı		by ev		ļ	Ц				HO			(3) (1)		•		1	- 1		3_: 50			AL Se	\$ ≠
-		1							n.	1 1			ip		n .	1				C_{a}				<u>î</u> 5			1				
<u>)a</u>			_					_	_	a ly		_			1.		٧à		2	_ ^ E	201	1	un	er	_	4	<u>ار</u>	-			<u>b</u>
4)	0.	1	1	You			1		yel	l	_)		ice		\C	_		<u>(3</u>)40	- 43	. 11	- 1		- 1	73			AL	
	_				314				عر	vei	N	OMJ	† 		_	ice	-				1	- <i>r</i>	IM:	zer	0	10	85 0	11		SR	
نطر			1	ac	am	ete	ens						7	įΩ	al	-					_	_		M.	et	er	1	D	-		
Ur	٩e	_		1 .	10:	5 /.	25.	5 y					7	IN	e-	l		"	5	323	5 y	-	-	F	2+1	/ q	one]	6	<u> </u>	
141	_	_		7.9									1	Н.			3.			-				7	u	r	2		2		_
emi on	Λ			1	.a		10							em	1	_	23	i 1	- 1	lan			-		4	2	†a			5. 5	
ur	1				67	i	1	1					7	ur	1		1 - 1		- 1	TUS	. I						9			6. 2 101	
Ha	- 1	2			/10		1		.3	2)						2	[1	1 - 1	10(•	.6	e)		\dashv	للح	~0			3/	
		•	_	1	9/		' '	- 1						ll i	1	-		- 1	10.				1	_u			7		1	<u> </u>	
JK	U				2.						3		-	DI	ta e	1		, ,	.08	-			3	u H	Evi			0	-	ع	- XA
xtn	Λo:	5		1	20		1									25-	16	ໂ . ຊ	م ۱	sia			-	7	1	_	XXX			8	4
+		-		-		•								たし		1 -	- 1/2	- 5	a .			-		/¢			2/7		-	61	2
														5		ρ	a 5														
Sau	ωs	ي و)						A	ra	15	5		\overrightarrow{P}_{i}	res)) (ai	- Ve.			7 - 10 10	lai	ner	_		1	+			9	
	- 16	٠,		ao.	/		_V(ρA	_	85			_		ICO		HC			(3)	40			als		25	73-	ત્ર		AL	
+	_		13	211	<u> </u>		Lo	w	Le	vel	NÌ	M	4			ice				(i)	14	A		- 1	- 1	108	3 <i>5</i> 0	15		SE	4
+			13	2 3.	7		Ι,	11	oio:	Xan	2 b	y E	<u> 2</u> 7	OD		u				(ı).	25c		- 1		- 1	ţ	319	- 1	1C	Al	5
			<u> </u>						_																						
41	\$	-	/	1 '	4				2)		,34								_					-					4		
+	-			1	. 8	1 1		×-10.		1 1	3.8								-		-										+
+	+				.8				-	6	3.8 .4											-	-		Cont	inue	d froi	m na	ge		
					كاتها		لــــا	1			ריו	سه					Read	செர	Undo	erstoo	d Pv										
a	•		n.	1 -	1		_				1		l				i veau		·	 -	u ву /	\setminus			1					_	
\int	w	<u> </u>		١:	ter	m)			_		5	a			_		Yor	u_	Ų		\	lu	<u></u>	h	_			-lo	-2	

Date

Signed

Signed

Datè

WSTF INTE	RNAI	L SAI	MPLE	СНА	IN OF (CUSTODY	Y REC	cord &
Date: 1521								Page of
Sample Location: PL-10-592				Α	nalytical I	Requirement		
Pertinent Notes (if any)				Ø	9			
	ers	rix*	7	NDM,	Dioxane			
	ontain	e Mat	9	3	(0)			
	# of Containers	Sample Matrix*	820	77	9			
Sample Number		<u> </u>						Charge Number
210105 0920y (TB)	3	A	~					XGMD
09214 (TB)	3	A						Ч
1030y (EB) 1031y (EB)	1	A						4
1320y	3	A	~					· ·
	1	A		/				
\\ \bar{322}\		A	:					4
Sample Location:	<u> </u>	,		A	nalytical I	Requirement		
Pertinent Notes (if any)								
	ers	*XI						
	of Containers	Matr						
	of Cc	Sample Matrix*						
Sample Number	#	S						Charge Number
		100						
					:			
				, ,				
	-							
	-							
Relinquished by: Date	/ Tim	e:	11		Acce	epted by:		Date / Time:
Charg le Temo 1/5/21	16	Sh	rs	1	on U	/ /w_	-d	1-6-21 / 0830
V								·

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ob Tufts & Craig Del Ferraro Pires	sent Weather is clear & cold. This zone will be
ampled using 5 steam cleaned	triple rinsed, stainless steel sample fulles
en. in use. Probe # 1539. Surface	checks performed on probe prior to sampling.
30 Min. Equi	oment Blanks - Carpoy 6.5
Jample Analysis	Preservative Container Lot Lab
110106 09554 VOA by 8260 LL	ice/HCL (3)40ml vials 2573-2 ALS
0956y Low Level NDMA	ice (1) IL Ameer 0108501F 5RI
nitial Parameters	Final Meter ID
ime - 210106 1050 y	Time-21010614444 PHICOND-61
4 - 8.33	PH - 8,20 Turb -21
mp - 21.1'E	Temp - 20,9'C " Std -55,5
and - 1446 us/cm	Cond - 1437 us con 4 rdg - 56,9
urb - 38.2 NTU'S	Turb - 12.7 NTUS 104-91017
HPre-7,17/10/19(12/3/c)	PHORE- 7.09/10.14 (18.4°) . Exp-1/29/21
1005-7.17/10.21	PH P05+-7.06/10.15
TW - 467,90 At.	DTW-468.06ft. Buffers Lot Exp
Hmos-12.73 psia	Atmos 12710510 7 400 691 0/21
	10 W-1/2 gal. 10 400/D05 6/21
	Semples
ample Analysis	Preservative Conference Lot Lab
10106 1325Y VOA by 8260 LL	ice (HCL 3)40 ml vial 5 2573-2 ALS
13264 607 Bromacil	ice (1) IL Amber 0108501F SRI
- 1405y Low Level NDMA	
-1406Y Total Metals	ice/HNO3 (2)125ml polys 20-07-07 ALS
1440Y Anions/A/K	ice (2)250 ml poly = 012020-2AAO 4
- 1441Y TDS by SM2540C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14424 Perchlorate by 6850	
-1443y NO2/NO3 by 353.	2 ice/H2504 u 20-08-11 u
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-00 11 4
uns 1) 334,64 2) 334,51	3) 334.31 4) 334.15
339 51 339 58	339.43 339.44
339.45 339.51	339,37 339,40
3 34 , 49 334 , 48	334. 25 334 Continued from page

Read and Understood By

Date: 1621										Page of
Sample Location: PL-6-1195 Pertinent Notes (if any)				A	nalytic	al Requ	iremen	t		
	# of Containers	Sample Matrix*	77 0928	607	L NOMA	otal Metals	Injons/Alk.	-		
Sample Number					7					Charge Number
2101060955y (EB)	3	A	W							XGMD
0956y (EB)		A			~					и
1325y	3	A	<u>~</u>							ч
1326y		A		V						и
14054		A								ч
14064	2	A				<u> </u>	'			u
1440 V	a	A						•		u
Sample Location:				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	TDS	Perch lorate	NO2/NO3	-				Charge Number
210106 14414	1_	A	~							XGMD
144ay		A								u
14434	1	A				-				μ
								·		
					\					
Relinquished by: Date	/ Time	e: •) A	ccepted	by:	1		Date / Time:
Cray Ol Ferrio 1/6/21	153	30 hr	3.	+	Out	$\sqrt{}$	un	<u>h</u>	1-7	-21 /0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tufts & Craig Del Fervaro present. Weather is clear & cold. this zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Gen. in use. Probe # 1539. Surface checks performed on probe prior to Sampling, Trip Blanks-Water Purification System
Analysis Preservative Container Container Sample VOA by 8260 LL ice / HCL Low Level NDMA ice 2101070830y (3)40m/ vials 2573-2 ALS (1) 11 Amber SRIZ - 0831y 0108501F 30 Min Equipment Blanks-Carpoy Preservative Samole Analysis Container 210107 09354 ice / HCL (3) 40ml vials VOA by 8260 1L 607/ Bromacil (1) 11 Amber 0108501F ice 0936y - 1040y Low Level NDMA Final Initial Paramoters Meter ID ime-21010715174 pH/cond-Time - 21010713004 61 - 8.13 796 Temp - 23.2'c Temp - 23.0°C 55.5 -1853 uslam - 1876 uslam 56.2 Turb - 12.7, NTU'S Turb - 4.15 NTU'S 91017 pt pre - 7.05/10.11 (19.4:4) pH pre -7.03/10.07 (20,50) Exp-1/29/21 pat - 7.06/10.13 ptpost-7.06/10.08 Drw - 468.06 Ft. Drw - 468.23Ft Buffers Atmos - 12.56psia Atmos - 12.54 psia 4002691 8/21 IDW-1/2 7al. 400/205 Samples Sample Preservative Confainer Analysis 21010714354 (3)40ml vials 2573-2 VOA by 8260 LL ice / HCL -1436Y () IL Amber 0108501F 607 Bromaci SR± ice - 1515Y Low Level NDMA ice/HNO3 Total Metals (2) 125 1 poly's 20-07-07 -1516Y AL5 Runs 1) 394.96 399.26 399.21 394.91 3) 394.65 2) 394.69 399.24 399,18 399.12 399.26 Continued from page 394R56and Understood By

	Date: 1 7 2 1								Pag	e of
	Sample Location: PL-6-1335	5	*		A	nalytica	ıl Requiren	ent		
	Pertinent Notes (if any)					R				
		ers	rix*	77		Non				
		# of Containers	Sample Matrix*	8260	607	20				
		t of C	Sampl	82	9	77			-	G1 - N - 1
	Sample Number	<u> </u>						+		Charge Number
	2101070830y (TB)	3	A							XGMD
			A		-					ч
	0935y (EB)	3	A							Ч
	= 0936y (EB)		A		V					
	1040y (EB)		A			V				<u> </u>
	1435y	3	A							<u> </u>
	= 1436y	1	A		V					и
	Sample Location:	· · · · · ·			A	nalytica	al Requiren	nent	г	
	Pertinent Notes (if any)			4	S					
		ers	rix*	NomA	Metal					
		# of Containers	Sample Matrix*	N	2					
		of C	ample	7	T6+91					
	Sample Number	#	 	7	1	<u> </u>				Charge Number
	2101071515y	1.	A							XGMD
	15164	<u>a</u>	A		V					u
		ļ				<u> </u>				
		ļ								
		ļ								
:	9. ml	/ Time				/ 11	ccepted by:	0)- -,	Date / Time: 21 / 1000
	(Nay M. Jenno 117121	15	45 h	rs	$- \rangle_{l}$	<u>mU</u>	J Jun	-00	1-11-	<u> </u>
					$+ \theta$					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _ Dans Halverson & Tong Torge present The WEATHER IS CLEARLY TAIS ZONE WILL DE PURSEND SAMPLED USING A FLUTE SYSTEM The WEATZEN IS CLEAN FOLL TRIS ROLF was punged 8-6 times with 30 mins between punger. PRESSURE WAS SET AT 228 ps, of Sample pressure was 207 . Flow meren CLAS SET @ 8ps, or Bubblen SETT 3 3pst, FIRST 350ME OF PHASE WATER WAS discarded prior to sampling, Carboy # 61 Fina (neven tos INTIAL 7/01060 1030 A 21006/0404 gtt hand PH 8.31 Tuab# TEMP Ke. YC 5.49 60×D 1146 1137 5.57 1.39 1.29 91017 phpne 709/10.04(14.5) 7.14/10.19(14.8:0)
0h0051 7.10/10.07 7.10/10.20 1/Exp 1-29-21 phpo5 7.10/10.07 5AMPLES Preseno Sample# Analysis CONT (3) Youlands 210104 1035A 826011 1 w= 1 Hd SPE ALS 11CA3 1036A 10784 (CNOMA) 100 5Px 01085018 (1) 1ttamben 11

1.6.21

Read and Understood By

Continued from page

Date: 1-6-71							-			Page/_ of/
Sample Location: 57-7. 453				A	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	2000	(175)54						X6mA Charge Number
71010C 1035A	3	4	X							-
1036A	3		+							
710106 1035A 	1			と						
1038A	1	1		X						
Sample Location:				A	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any)				*				:		
	# of Containers	Sample Matrix*								
Sample Number	#	01								Charge Number
,	_									
								- :		
						-				
	/ Time				A	ccepte	by:			Date / Time:
T. 3/ 1-6-2	1//	600	>	40	al.	Λ/_	Jun	_d	. [-	7-21 /0900
	,	· · · · · · · · · · · · · · · · · · ·		7			-			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>D37 #120 (A)</u> OJECT ST. 7.544 ENU. NA Continued from page ___ Day Halvansen & Tony Tarret pursent. The weather is clear & Gold. This
Zowe will be pursted & Sampled using a flute system. This zone was
ringed Aminiana of 4 times with 50 minutes BETWEEN purses Samples
Collected from a dedicated terlor discharge Tube. Purse Presence 223 JAMPIE PAESSURE @ 207, 738 First 350 ml of pung = was dischargel prior To Sampling GAZDOE # 61 PINAL METER ID'S PH/ GOND = 00 11 210106/0454 210106 1100A 1 57 d= 5.99 TEMP TEMP 13.7 1/23 1119 TEMP 0.47 0.67 PH PUS 7.15/ 10.17(143) 7.18/10/9 (14.3) 7.17/10/20 11/07 = 5.54 11 Exp = 1-29-71 Samples 2601061050AB2Coll 2573-2 1396 mlunds Preseno Als us ltel 0108501F (1)10 amber 10524 LLNOMA 145 5kz 1053

T. Signed

7 ... /-(a,71

Read and Understood By

1-7-21

Continued from page

Date: /-6-71								_	F	age	of
Sample Location: 57-7. 544 Pertinent Notes (if any)				A	nalytic	al Requ	iiremen	ıt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	82001	11884						7, 9	(M) MAN (M) ge Number
210106 10507	3	A	X								
1051A	3	1	κ								
21010C 1050A 	1			X							
/053	1	<u> </u>		人				_			
										-	
Sample Location: Pertinent Notes (if any)		Γ			Analytic	al Requ	uiremer	nt			
	# of Containers	Sample Matrix*									
Sample Number	#	Ss								Char	ge Number
Relinquished by: Date	e / Time	e.		1	1	ccepte	d by:		ľ	Date /	Time:
7-6-2			٥		on !			di	1-7		10900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Read and Understood By 7-7-21 Jan Wunds 1-7-21

Continued from page

Date: 1-6-71									Page	<u>l</u> of <u>l</u>	
Sample Location: ST. 7-779				I	Analytic	al Requ	irement				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	876010	117054						XGMD Charge Number	•
	3	A	X	.:							
- 1316 A	3)	X								
210106 13,5 A — 1316 A — 1317 A	1			X			:				
1318 A	1	1		X							
Sample Location: Pertinent Notes (if any)	I	I		1	Analytic	al Requ	irement				
	# of Containers	Sample Matrix*									
Sample Number	#	S								Charge Number	
					\cap						
Relinquished by: Date 1.6.	/ Time		٥		Ou	Accepted	/ \	-dr	-7-8	ate / Time:	<i>-</i>
					7						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sample Location: 57-7-9 Analytical Requirement Pertinent Notes (if any) Sample Number Sample Number Sample Location: Refinquished by: Date / Time: Analytical Requirement Analytical Requirement Analytical Requirement Charge Number Charge Number Analytical Requirement Analytical Requirement Analytical Requirement Charge Number Charge Number Charge Number	Date: /-6-01									I	Page	of
Sample Number Sample Number Sample Number Sample Location: Pertinent Notes (if any) Sample Number Sample Number Sample Number Sample Number Sample Number Relinquished by: Date / Time: Date / Time: Afcepfed by: Date / Time: Da)			A	nalytic	al Requ	iiremen	ıt			
Sample Location: Pertinent Notes (if any) Sample Number Sample Number Relinquished by: Date / Time: Analytical Requirement Charge Number Alecepted by: Date / Time:	Pertinent Notes (if any)		Sample Matrix*	II .	XX							
Sample Location: Pertinent Notes (if any) Sample Number Sample Number Relinquished by: Date / Time: Analytical Requirement Charge Number Alecepted by: Date / Time:	210106 1330A			x								
Sample Location: Pertinent Notes (if any) Sample Number Sample Number Relinquished by: Date / Time: Analytical Requirement Charge Number Alecepted by: Date / Time:	1331A			X								
Sample Location: Pertinent Notes (if any) Sample Number Sample Number Relinquished by: Date / Time: Analytical Requirement Charge Number Charge Number	13324											
Pertinent Notes (if any) Sample Number Sample Number Charge Numbe Relinquished by: Date / Time: Date / Time:	1333A				X							
Pertinent Notes (if any) Sample Number Sample Number Charge Numbe Relinquished by: Date / Time: Date / Time:												
Pertinent Notes (if any) Sample Number Sample Number Charge Numbe Relinquished by: Date / Time: Date / Time: Date / Time:												
Pertinent Notes (if any) Sample Number Sample Number Charge Numbe Relinquished by: Date / Time: Date / Time: Date / Time:												·
Sample Number Sample Number Charge Number			1		T A	Analytic	al Requ	uiremer	nt			
Relinquished by: Date / Time: Accepted by: Date / Time:		of Containers	ample Matrix*									
	Sample Number	#	Š		<u> </u>						Charge	Number
					/	\	1 ~					
				2			Accepte	d by:	-di	- "		ne: 10900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

T. Signal

1-20.21

fru Wunch

Read and Understood By

1-20-21

Continued from page

Date

Date: 1-70-71					-				P	age	of\	_
Sample Location: Ww. 5-459				A	nalytic	al Requ	iiremen	t				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	876011	1 YON 4						X6,	M te Number	
710170 0901A - 0902A - 0903A - 0904	3	4	X			_						
- 0902A	3		々									
0903A	1			X								
0904	1	1		X_								-
Sample Location:					Analytic	al Requ	uiremer	ıt				
Pertinent Notes (if any)												
	# of Containers	Sample Matrix*										
Sample Number	#	01						1.4		Charg	ge Number	
									,			
											· ; · · · · · · · · · · · · · · · · · ·	
Relinquished by: Date /+20-	e / Tim	e: / //oῦ	S		Or (Accepte	d by:	ch	1-2	Date / '	Time: D93	0

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: /-20-71										Page / of
Sample Location: WW-5-579				A	Analytic	al Requ	irement	t		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	Bresoli	11×084						XGn O Charge Number
2012009214	3	A	\boldsymbol{x}							
- 0972A	3		∞							
Sample Number 230 200921A 0977A 0974A 1007A 1003A	1			X						
0924A	1			X						
- 100ZA	1			∞						
- 1003A	1_	上		X						
Sample Location:				Α	nalytic	al Requ	uirement	t		
Pertinent Notes (if any)	# of Containers	Sample Matrix*								
Sample Number	#	S					1		**	Charge Number
									_	
Relinquished by: Date	/ Time				·	1/	À1			D-4- / T:
To J-20-2		110	۵	10	ru C	¢ceptéc	un-	di	1-2	Date / Time: 1-21 / 0930
				V						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Tonad

1-20-21

Read and Understood By

Signed

-20-21

Continued from page

Date

Date: 1-20-21									P	age/_ of/_
Sample Location: Ww. 580 9	·			A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	87601	LIXOSA						X 6m0 Charge Number
Sample Number	3	A	X				-			Charge Number
71017009314	3	1								
0932A	1		\times	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
- 0932A - 0938A - 0934A	1			X						
01314	1			~						
	-									
Sample Location: Pertinent Notes (if any)	-	T			Analytic	al Requ	iremen	t		·
	# of Containers	Sample Matrix*								Class Naviles
Sample Number	++									Charge Number
				_						
		ļ								
			<u> </u>		\	ļ				
Relinquished by: Da	te / Tim)		In (Accepte	dby:	-di	1-2	Date / Time:
				U						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: /-70-21								F	Page of
Sample Location: WW.5-905	•			Α	nalytic	al Requ	irement		
Pertinent Notes (if any)			8	(:	
	ainers	Sample Matrix*	802651	205					
	 # of Containers	mple N	(14 A					XGMN
Sample Number	#	Sa							Charge Number
2101200951A 	3	A	X						
- 0957A	3	\perp	∞						10000
- 0953A	1	\perp		X					
0954A	1			X				ļ	
0955A	\	_		X					
									-
Sample Location:				A	nalytic	al Requ	irement		
Pertinent Notes (if any)									
	ers	ix*							
	 # of Containers	Sample Matrix*							
	of Cc	ample							
Sample Number	#	Š							Charge Number
									······
·									
		:							
	_								
					\			·	
	te / Time			+		Accepted	1 /	1/	Date / Time:
T-20 1-20	<u> 11 / 1</u>	100		-	On!	$\mathcal{U}\mathcal{V}$	Jund	10	21-21 /0930
			\perp	$+\!\!\!/$,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Appendix C Chemical Analytical Program (Internal QA reports)

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

November 2021

NM 8800019434

Report Submitted: April 13, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in November 2021.
- The quantity and type of quality control samples collected or prepared in November 2021.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the November 2021 QAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in November 2021. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for November 2021

Well ID	Event Date
400-EV-131	11/1/2021
400-JV-150	11/1/2021
BLM-32-543	11/1/2021
BLM-32-571	11/1/2021
BLM-32-632	11/1/2021
ST-5-485	11/1/2021
ST-5-655	11/1/2021

Well ID	Event Date
BLM-36-610	11/2/2021
BLM-36-860	11/2/2021
ST-4-589	11/2/2021
BLM-17-493	11/3/2021
BLM-26-404	11/3/2021
BLM-36-350	11/3/2021
BLM-36-800	11/3/2021

Well ID	Event Date
PL-12-570	11/3/2021
PL-12-800	11/3/2021
BLM-38-480	11/4/2021
BLM-38-620	11/4/2021
BLM-8-418	11/4/2021
BW-5-295	11/4/2021
MPE-1	11/4/2021
MPE-10	11/4/2021

Well ID	Event Date
MPE-11	11/4/2021
MPE-8	11/4/2021
PL-7-480	11/8/2021
PL-7-560	11/8/2021
BLM-2-630	11/9/2021
200-I-185	11/10/2021
BLM-22-570	11/10/2021
100-D-176	11/11/2021

Well ID	Event Date
200-I-795	11/12/2021
200-I-490	11/15/2021
200-I-675	11/15/2021
NASA 6	11/15/2021
ST-1-473	11/15/2021
200-I-300	11/16/2021
200-I-375	11/16/2021
400-C-143	11/17/2021

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0
Nitrosamines by EPA Method 607	29	1	1	0	1	4	1
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	1	0	0	0	0	0	0
PCBs by SW-846 Method 8082	1	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	1	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	34	24	10	3	1	6	0
Low Level Volatile Organics by SW-846 Method 8260C	11	5	6	4	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	3	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	1	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	1	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0
Anions by Various EPA Methods	6	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	13	1	2	0	1	1	0
Nitrosamines by Low-Level Method	18	12	6	6	1	2	0
Total Dissolved Solids by Standard Method 2540C	6	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 12/1/2020	QC Qty. since 12/1/2020	QC % since 12/1/2020	Sample Quantity November 2021	QC Quantity November 2021	QC % November 2021
VOA Duplicates	10	521	56	11	45	6	13
VOA Matrix Spikes	2	521	11	2	45	1	2
607 Duplicates	10	328	32	10	29	4	14
607 Matrix Spikes	2	328	9	3	29	1	3
607 Equipment Blanks	2	328	10	3	29	1	3
607 Field Blanks	2	328	9	3	29	1	3
NDMA_LL Duplicates	10	312	37	12	18	2	11
NDMA_LL Matrix Spikes	2	312	8	3	18	0	0
Metals Duplicates	10	210	22	10	13	1	8
Metals Matrix Spikes	2	210	4	2	13	0	0

Quality Control Requirement	Requirement %	Samp. Qty. since 12/1/2020	QC Qty. since 12/1/2020	QC % since 12/1/2020	Sample Quantity November 2021	QC Quantity November 2021	QC % November 2021
Metals Equipment Blanks	5	210	13	6	13	2	15
Metals Field Blanks	5	210	12	6	13	1	8

Quality Control Requirement	Requirement %	Sample Events since 12/1/2020	QC Qty. since 12/1/2020	QC % since 12/1/2020	Sample Events November 2021	QC Quantity November 2021	QC % November 2021
VOA Equipment Blanks and Field Blanks	Should approach 100%	521	521	100%	45	45	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	308	308	100%	18	18	100%

Quality Control Requirement	Requirement %	Shipments since 12/1/2020	TB Qty. since 12/1/2020	TB % since 12/1/2020	Shipments in November 2021	TB Quantity November 2021	QC % November 2021
VOA Trip Blank (per shipment)	Should approach 100%	98	98	100%	7	7	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	93	93	100%	6	6	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"ТВ"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	99	0	0	0	0	4	0	0
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	21	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	7	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	6	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	2613	1	0	1	0	0	0	0
Low Level Volatile Organics by SW-846 Method 8260C	719	0	1	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	362	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	25	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	1	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0	0
Anions by Various EPA Methods	24	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	378	0	2	0	0	0	0	0
Nitrosamines by Low-Level Method	40	2	7	1	0	0	0	0
Total Dissolved Solids by Standard Method 2540C	6	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11*11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	99	0	0	0	0	0	0	4	0	1
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0	0	1
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	21	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	7	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	6	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	2613	0	1	0	0	0	0	0	0	40
Low Level Volatile Organics by SW-846 Method 8260C	719	0	0	0	0	0	0	0	0	5
Semi-Volatile Organics by SW-846 Method 8270D	362	0	12	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	25	0	0	0	0	1	0	0	0	1
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	1	0	0	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	24	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	378	0	0	0	0	0	0	0	0	66
Nitrosamines by Low-Level Method	40	3	0	0	0	0	0	0	0	4
Total Dissolved Solids by Standard Method 2540C	6	0	0	0	0	0	0	0	0	0

Table 7 – Quality Assurance Narratives

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-22-570		For Low Level SW-846 Method 8260C, 2-propanol (4.2 ug/L) was detected in the method
DLWI-22-370	11/10/2021	blank for analytical batch 746755 below the reporting limit. No groundwater data are affected
		by this method blank contamination.
DI M 20 400	11/4/2021	
BLM-38-480	11/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (7.5 ug/L) was detected in the method
		blank for analytical batch 746070 below the reporting limit. No groundwater data are affected
		by this method blank contamination.
PL-7-480	11/8/2021	For Low Level SW-846 Method 8260C, 2-propanol (8.5 ug/L) was detected in the
		equipment blank (2111081250Y) below the reporting limit. Affected data are
		appropriately qualified.
ST-4-589	11/2/2021	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2111021007C were
		within laboratory control limits.
PL-7-480	11/8/2021	For Low Level SW-846 Method 8260C, silane, fluorotrimethyl- (7.2 ug/L), silane,
		methoxytrimethyl- (6.4 ug/L), and silanol, trimethyl- (5.4 ug/L) were tentatively identified
		by a GC/MS library search in sample 2111081445Y.
BLM-38-620	11/4/2021	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (5.1 ug/L) was
		tentatively identified by a GC/MS library search in sample 2111041310Y.
B655-EFF-2	11/2/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by
		a GC/MS library search in the method blank for analytical batch 745476. No groundwater data
		are affected by this method blank contamination.
ST-4-589	11/2/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by
51 1 50)	11/2/2021	a GC/MS library search in the method blank for analytical batch 745476. No groundwater data
		are affected by this method blank contamination.
ST-5-485	11/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by
31-3-463	11/1/2021	a GC/MS library search in the method blank for analytical batch 745476. No groundwater data
		are affected by this method blank contamination.
OT 5 (55	11/1/2021	
ST-5-655	11/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (6.1 ug/L) was tentatively identified by
		a GC/MS library search in the method blank for analytical batch 745476. No groundwater data
D (2 0 DDD 4	44/2/2024	are affected by this method blank contamination.
B650-EFF-1	11/2/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	11/2/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-22-570	11/10/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-38-480	11/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-38-620	11/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-8-418	11/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
PLIVI-0-410	11/7/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
DI 7 400	11/0/2021	The data quality was not significantly affected and no further corrective action was taken.
PL-7-480	11/8/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-7-560	11/8/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-4-589	11/2/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-5-485	11/1/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-5-655	11/1/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	11/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
B655-EFF-2	11/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
BLM-22-570	11/10/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
DI M 20 400	11/4/2021	corrective action was appropriate.
BLM-38-480	11/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
DI M 29 (20	11/4/2021	corrective action was appropriate.
BLM-38-620	11/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
BLM-8-418	11/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
DLW-0-410	11/4/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-7-480	11/8/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
111 / 700	11/0/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-7-560	11/8/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
11 /-300	11/0/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
	<u> </u>	and the samples. The effort associated with elevated

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-4-589	11/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-5-485	11/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
ST-5-655	11/1/2021	corrective action was appropriate. For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
31-3-033	11/1/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
B650-EFF-1	11/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
B655-EFF-2	11/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
DI 14 22 570	11/10/2021	affected and no further corrective action was taken.
BLM-22-570	11/10/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-38-480	11/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-38-620	11/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
DIM 0 410	11/4/2021	affected and no further corrective action was taken.
BLM-8-418	11/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
ST-4-589	11/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
ST-5-485	11/1/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
ST-5-655	11/1/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	11/2/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2	11/2/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-22-570	11/10/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-22-570	11/10/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-38-480	11/4/2021	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-38-620	11/4/2021	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-8-418	11/4/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-8-418		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-7-560	11/8/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-7-560		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-4-589		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-5-485		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-5-655		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-5-655		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
100-D-176		For SW-846 Method 8260C in blind control sample (2111111021A), all recoveries were within
		standard limits. Additionally, vinyl chloride (0.21 ug/L) was detected below the reporting limit however none was added.
200-I-795	11/12/2021	For SW-846 Method 8260C, 1,1,2-trichloro-1,2,2-trifluoroethane (0.63 ug/L), trichloroethene (TCE) (0.42 ug/L) and 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) (0.2 ug/L) were detected in the equipment blank (2111120815Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
BLM-3-182	11/2/2021	For SW-846 Method 8260C, 2-propanol (10 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (7.3 ug/L) and one unknown compound (5.3 ug/L) were tentatively identified by a GC/MS library search in the field blank (2111021343B). No groundwater data are affected by this field blank contamination.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, 2-propanol (3.6 ug/L) and chloromethane (0.31 ug/L) were detected in the method blank for analytical batch 745908 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-24-565	11/2/2021	For SW-846 Method 8260C, 2-propanol (4.2 ug/L) was detected in the field blank (2111021432C) below the reporting limit. Affected data are appropriately qualified.
200-I-490	11/15/2021	For SW-846 Method 8260C, 2-propanol (4.7 ug/L) was detected in the equipment blank (2111151300Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
PL-12-570	11/3/2021	For SW-846 Method 8260C, 2-propanol (7.9 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (7.2 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2111030700C). No groundwater data are affected by this trip blank contamination.
200-I-375	11/16/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the equipment blank (2111160830Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
BLM-24-565	11/2/2021	For SW-846 Method 8260C, chloromethane (1.6 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- was tentatively identified by a GC/MS library search in the trip blank (2111021300C). Affected data are appropriately qualified.
BLM-3-182	11/2/2021	For SW-846 Method 8260C, due to a sample labeling error in the field, sample 2111021342B and field blank 2111021343B were switched on the chain of custody and in the laboratory report. Using historic concentration comparison, sample numbers in the database were corrected to match the field logbook.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
B650-INF-1	11/2/2021	For SW-846 Method 8260C, field duplicate samples 2111021425 and 2111021426 the relative
		percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 2.7%. Upper acceptance limit
		for relative percent difference is 25%.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, field duplicate samples 2111021425 and 2111021426 the relative
		percent difference for trichloroethene (TCE) was 0.0%. Upper acceptance limit for relative
		percent difference is 25%.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, field duplicate samples 2111021425 and 2111021426 the relative
		percent difference for trichlorofluoromethane (CFC 11) was 5.4%. Upper acceptance limit for
		relative percent difference is 25%.
PL-12-570	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031003C and 2111031005C the
		relative percent difference for trichlorofluoromethane (CFC 11) was 3.8%. Upper acceptance
		limit for relative percent difference is 25%.
PL-12-570	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031003C and 2111031005C the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 11.4%. Upper
		acceptance limit for relative percent difference is 25%.
PL-12-570	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031003C and 2111031005C the
		relative percent difference for trichloroethene (TCE) was 5.5%. Upper acceptance limit for
		relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 1.5%. Upper
		acceptance limit for relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for tetrachloroethene (PCE) was 9.8%. Upper acceptance limit for
		relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for dichlorofluoromethane (CFC 21) was 1.3%. Upper acceptance
		limit for relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for trichlorofluoromethane (CFC 11) was 2.8%. Upper acceptance
		limit for relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for trichloroethene (TCE) was 1.5%. Upper acceptance limit for
		relative percent difference is 25%.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, field duplicate samples 2111031350Y and 2111031351Y the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 4.8%. Upper
		acceptance limit for relative percent difference is 25%.
BW-5-295	11/4/2021	For SW-846 Method 8260C, field duplicate samples 2111041410B and 2111041411B the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 9.2%. Upper
		acceptance limit for relative percent difference is 25%.
BW-5-295	11/4/2021	For SW-846 Method 8260C, field duplicate samples 2111041410B and 2111041411B the
		relative percent difference for trichlorofluoromethane (CFC 11) was 2.4%. Upper acceptance
		limit for relative percent difference is 25%.
200-I-300	11/16/2021	For SW-846 Method 8260C, field duplicate samples 2111161400Y and 2111161401Y the
		relative percent difference for tetrahydrofuran (THF) was 12.9%. Upper acceptance limit for
		relative percent difference is 25%.
200-I-300	11/16/2021	For SW-846 Method 8260C, field duplicate samples 2111161400Y and 2111161401Y the
		relative percent difference for trichloroethene (TCE) was 3.5%. Upper acceptance limit for
		relative percent difference is 25%.
200-I-300	11/16/2021	For SW-846 Method 8260C, field duplicate samples 2111161400Y and 2111161401Y the
		relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 3.9%. Upper
		acceptance limit for relative percent difference is 25%.
200-I-300	11/16/2021	For SW-846 Method 8260C, field duplicate samples 2111161400Y and 2111161401Y the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 10.5%. Upper
		acceptance limit for relative percent difference is 25%.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
200-I-300	11/16/2021	For SW-846 Method 8260C, field duplicate samples 2111161400Y and 2111161401Y the
		relative percent difference for dichlorofluoromethane (CFC 21) was 13.1%. Upper acceptance
		limit for relative percent difference is 25%.
400-C-143	11/17/2021	For SW-846 Method 8260C, field duplicate samples 2111171100C and 2111171101C the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 4.7%. Upper
		acceptance limit for relative percent difference is 25%.
400-C-143	11/17/2021	For SW-846 Method 8260C, field duplicate samples 2111171100C and 2111171101C the
100 6 115	11/1//2021	relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper acceptance
		limit for relative percent difference is 25%.
200-I-795	11/12/2021	For SW-846 Method 8260C, one unknown compound (26 ug/L) was tentatively identified
200-1-793	11/12/2021	by a GC/MS library search in sample 2111120935Y.
MDE 10	11/4/2021	
MPE-10	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.1 ug/L) was tentatively identified
MEDELO	11/4/2021	by a GC/MS library search in sample 2111040941.
MPE-8	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.2 ug/L) was tentatively identified
		by a GC/MS library search in sample 2111040931.
BW-5-295	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.5 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2111041412B). Affected data are
		appropriately qualified.
MPE-11	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.5 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2111040902). Affected data are
		appropriately qualified.
BW-5-295	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified
		by a GC/MS library search in duplicate sample 2111041411B.
MPE-1	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified
		by a GC/MS library search in the method blank for analytical batch 746043. Affected
		data are appropriately qualified.
MPE-10	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified
WIL E	11/ 1/2021	by a GC/MS library search in the method blank for analytical batch 746043. Affected
		data are appropriately qualified.
MPE-11	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified
WII E-11	11/4/2021	by a GC/MS library search in sample 2111040901.
MPE-8	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.6 ug/L) was tentatively identified
NIF E-0	11/4/2021	by a GC/MS library search in the method blank for analytical batch 746043. Affected
MDE 0	11/4/2021	data are appropriately qualified.
MPE-8	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.7 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2111040932). Affected data are
	11///2021	appropriately qualified.
MPE-1	11/4/2021	For SW-846 Method 8260C, one unknown compound (6.9 ug/L) was tentatively identified
		by a GC/MS library search in sample 2111040916.
MPE-1	11/4/2021	For SW-846 Method 8260C, one unknown compound (7 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2111040917). Affected data are
		appropriately qualified.
200-I-300	11/16/2021	For SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively identified
		by a GC/MS library search in duplicate sample 2111161401Y.
BW-5-295	11/4/2021	For SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively identified
		by a GC/MS library search in the method blank for analytical batch 746019. Affected
		data are appropriately qualified.
MPE-1	11/4/2021	For SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively identified by a
		GC/MS library search in the method blank for analytical batch 746019. No groundwater data
		are affected by this method blank contamination.
MPE-10	11/4/2021	For SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively identified by a
10	11, 1, 2021	GC/MS library search in the method blank for analytical batch 746019. No groundwater data
		are affected by this method blank contamination.
MPE-11	11/4/2021	For SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively identified
1411 17-11	11/4/2021	by a GC/MS library search in the method blank for analytical batch 746019. Affected
		data are appropriately qualified.

identified by a dwater data earch in search in own in sample
earch in search in
search in
search in
search in
own
own
own
in sample
identified by
are affected by
ire arrected by
y a GC/MS
lata are
iata are
y a GC/MS
lata are
y a GC/MS
lata are
y a GC/MS
lata are
y a GC/MS
lata are
e equipment
d by this
e field blank
nis field blank
iis field blank
e analytes in
the analyte(s)
he data quality
e analytes in
the analyte(s)
he data quality
e analytes in
the analyte(s)
he data quality
1
e analytes in
the analyte(s)
he data quality
e analytes in
the analyte(s)
he data quality

Well ID	Event Date	SW-846 Method 8260C QA Narratives
200-I-675	11/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-I-795	11/12/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
400-C-143	11/17/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
400 EV 121	11/1/2021	was not significantly affected and no further corrective action was taken.
400-EV-131	11/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
400 CV 125	11/2/2021	was not significantly affected and no further corrective action was taken.
400-GV-125	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
400-JV-150	11/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
400-J V-130	11/1/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
B030 II (I I	11/2/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B655-INF-2	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-17-493	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-24-565	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-2-630	11/9/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
D711666101	11/2/2021	was not significantly affected and no further corrective action was taken.
BLM-26-404	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
DIM 2 102	11/2/2021	was not significantly affected and no further corrective action was taken.
BLM-3-182	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-32-543	11/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
DL1V1-32-343	11/1/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
		mas not significantly affected and no further corrective action was taxen.

	Event Date	SW-846 Method 8260C QA Narratives
BLM-32-571	11/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-32-632	11/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-36-610	11/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-36-800	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BW-5-295	11/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
1 (DE 1	11/4/2021	was not significantly affected and no further corrective action was taken.
MPE-1	11/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
1 (DE 10	11/4/2021	was not significantly affected and no further corrective action was taken.
MPE-10	11/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
MPE-11	11/4/2021	was not significantly affected and no further corrective action was taken.
MPE-11	11/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
MPE-8	11/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
WII LE-0	11/4/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
NASA 6	11/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
11/15/10	11/13/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
PL-12-570	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
12 12 370	11/3/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
PL-12-800	11/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
ST-1-473	11/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
,,	_ 1. 10. 2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality

Well ID	Event Date	SW-846 Method 8260C QA Narratives
100-D-176	11/11/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-185	11/10/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-300	11/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-375	11/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-490	11/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-675	11/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-I-795	11/12/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-C-143	11/17/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-EV-131	11/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-GV-125	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-JV-150	11/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
B650-INF-1	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
B655-INF-2	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-17-493	11/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-24-565	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Detections below the reporting limit are appropriately qualified.
BLM-26-404	11/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-3-182	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-32-543	11/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-32-571	11/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-32-632	11/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-36-610	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-36-800		For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-36-860	11/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
NASA 6	11/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-12-570	11/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-12-800	11/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-1-473	11/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-EV-131	11/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-GV-125	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-JV-150	11/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-17-493		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-24-565	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-26-404		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-32-543	11/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-32-571	11/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-32-632	11/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-36-610	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-36-800		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-36-860	11/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-12-570	11/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-12-800	11/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-I-185	11/10/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-I-675	11/15/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-350	11/3/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-610		For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-800	11/3/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-36-860	11/2/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
100-D-176	11/11/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-C-143	11/17/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-GV-125	11/2/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-JV-150	11/1/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	11/2/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2	11/2/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-17-493	11/3/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-2-630	11/9/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-26-404	11/3/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-543	11/1/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-571	11/1/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-632	11/1/2021	For SW-846 Method 8260C, there were no detections in the field blank.
MPE-10	11/4/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PL-12-570	11/3/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PL-12-800	11/3/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-1-473	11/15/2021	For SW-846 Method 8260C, there were no detections in the field blank.
200-I-675	11/15/2021	For SW-846 Method 8260C, there were no detections in the trip blank.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
100-D-176	11/11/2021	For Modified EPA Method 607 in blind control sample (2111111022A), all recoveries were within standard limits.
BLM-36-350	11/3/2021	For Modified EPA Method 607, field duplicate samples 2111031352Y and 2111031420Y the relative percent difference for bromacil was 3.4%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350		For Modified EPA Method 607, field duplicate samples 2111031352Y and 2111031420Y the relative percent difference for N-nitrosodimethylamine was 10.2%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-350	11/3/2021	For Modified EPA Method 607, field duplicate samples 2111031352Y and 2111031420Y the relative percent difference for N-nitrodimethylamine was 10.5%. Upper acceptance limit for relative percent difference is 25%.
BW-5-295	11/4/2021	For Modified EPA Method 607, field duplicate samples 2111041413B and 2111041414B the relative percent difference for bromacil was 28.6%. This value is outside the upper acceptance limit for relative percent difference of 25%.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
BW-5-295	11/4/2021	For Modified EPA Method 607, field duplicate samples 2111041413B and 2111041414B the relative percent difference for N-nitrosodimethylamine was 9.7%. Upper acceptance limit for relative percent difference is 25%.
BW-5-295	11/4/2021	For Modified EPA Method 607, field duplicate samples 2111041413B and 2111041414B the relative percent difference for N-nitrodimethylamine was 5.1%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151107C and 2111151108C the relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151107C and 2111151108C the relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151107C and 2111151108C the relative percent difference for N-nitrodimethylamine was 9.5%. Upper acceptance limit for relative percent difference is 25%.
ST-1-473	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151417A and 2111151418A the relative percent difference for bromacil was 48.0%. This value is outside the upper acceptance limit for relative percent difference of 25%.
ST-1-473	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151417A and 2111151418A the relative percent difference for N-nitrosodimethylamine was 16.4%. Upper acceptance limit for relative percent difference is 25%.
ST-1-473	11/15/2021	For Modified EPA Method 607, field duplicate samples 2111151417A and 2111151418A the relative percent difference for N-nitrodimethylamine was 16.7%. Upper acceptance limit for relative percent difference is 25%.
BLM-36-610	11/2/2021	For Modified EPA Method 607, matrix spike recoveries for sample 2111021035Y were within laboratory control limits.
NASA 6	11/15/2021	For Modified EPA Method 607, NDMA and DMN were detected in samples 2111151107C and 2111151108C at levels exceeding the calibration curve. Both samples were diluted 20-fold and reanalyzed. Bromacil results are reported from the initial analysis since there might be carryover from a previous sample into the 20-fold dilution analysis of 2111151107C. Affected groundwater data are appropriately qualified.
200-I-375	11/16/2021	For Modified EPA Method 607, there were no detections in the equipment blank.
BLM-26-404	11/3/2021	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-2-630	11/9/2021	For Low Level Nitrosamine Method in blind control sample (2111101145C), the percent recovery for N-nitrosodimethylamine (131.2%) was outside of the standard limits (70-130%). Additionally, N-nitrodimethylamine (1.63 ng/L) was detected but none was added. No groundwater data are affected by this QC issue.
PL-12-800	11/3/2021	For Low Level Nitrosamine Method, field duplicate samples 2111031432C and 2111031434C the relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-2-630	11/9/2021	For Low Level Nitrosamine Method, for blind control 2111101145C the recovery of the internal standard NDMA-d6 (7.2%) was outside laboratory control limits (10-100%). No corrective action was needed, since the instrument demonstrated sufficient signal to noise intensity to detect native NDMA in the sample.
PL-7-480	11/8/2021	For Low Level Nitrosamine Method, for sample 2111081446Y the recovery of the internal standard NDMA-d6 (8.2%) was outside laboratory control limits (10-100%). No corrective action was needed, since the instrument demonstrated sufficient signal to noise intensity to detect native NDMA in the sample. Potentially affected data are appropriately qualified.
BLM-22-570	11/10/2021	For Low Level Nitrosamine Method, for sample 2111101442B and field blank 2111101443B the recoveries of the internal standard NDMA-d6 (9.4%) and (7.0%) were outside laboratory control limits (10-100%). No corrective action was needed, since the instrument demonstrated sufficient signal to noise intensity to detect native NDMA in the sample.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
PL-7-560		For Low Level Nitrosamine Method, for trip blank 2111080741Y, equipment blank 2111080826Y, and sample 2111080941Y the recoveries of the internal standard NDMA-d6 (8.7%), (9.0%), and (9.3%) were outside laboratory control limits (10-100%). No corrective action was needed, since the instrument demonstrated sufficient signal to noise intensity to detect native NDMA in the sample.
BLM-38-480	11/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.4 ng/L) was detected in the equipment blank (2111041401Y) below the reporting limit. Affected data are appropriately qualified.
BLM-32-571	11/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.42 ng/L) was detected in the field blank (2111011505B) below the reporting limit. Affected data are appropriately qualified.
BLM-32-632	11/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.42 ng/L) was detected in the field blank (2111011524B) below the reporting limit. Affected data are appropriately qualified.
PL-7-560	11/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.5 ng/L) was detected in the trip blank (2111080741Y). Affected data are appropriately qualified.
ST-5-485	11/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.58 ng/L) was detected in the equipment blank (2111011301Y). Affected data are appropriately qualified.
BLM-38-620	11/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.76 ng/L) and N-nitrodimethylamine (0.2 ng/L) were detected in the equipment blank (2111041016Y) below the reporting limit for N-nitrodimethylamine only. Affected data are appropriately qualified.
ST-5-655	11/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.95 ng/L) was detected in the equipment blank (2111010906Y). Affected data are appropriately qualified.
PL-7-560	11/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.54 ng/L) and N-nitrodimethylamine (0.23 ng/L) were detected in the equipment blank (2111080826Y) below the reporting limit for N-nitrodimethylamine only. Affected data are appropriately
		analitiea.
BLM-2-630	11/9/2021	qualified. For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range.
BLM-2-630 B650-EFF-1		•
	11/2/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range.
B650-EFF-1	11/2/2021 11/2/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2	11/2/2021 11/2/2021 11/10/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570	11/2/2021 11/2/2021 11/10/2021 11/10/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-24-565	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/1/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630 BLM-32-543	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/1/2021 11/4/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630 BLM-32-543 BLM-8-418	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/1/2021 11/4/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630 BLM-32-543 BLM-8-418 BLM-8-418	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/1/2021 11/4/2021 11/4/2021 11/3/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630 BLM-32-543 BLM-8-418 BLM-8-418 PL-12-570	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/1/2021 11/4/2021 11/4/2021 11/3/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-24-565 BLM-2-630 BLM-32-543 BLM-8-418 BLM-8-418 PL-12-570 PL-12-570	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/4/2021 11/4/2021 11/3/2021 11/3/2021 11/3/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1 B655-EFF-2 BLM-22-570 BLM-22-570 BLM-24-565 BLM-2-630 BLM-32-543 BLM-8-418 BLM-8-418 PL-12-570 PL-12-570 PL-12-800	11/2/2021 11/2/2021 11/10/2021 11/10/2021 11/2/2021 11/2/2021 11/9/2021 11/4/2021 11/4/2021 11/3/2021 11/3/2021 11/3/2021 11/3/2021 11/8/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2111091424C and 2111091425C were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the field blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the trip blank. For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
100-D-176	11/11/2021	For SW-846 Method 8270D, 1H-benzotriazole, 4-methyl- (19 ug/L), dichloromethane
		(methylene chloride) (6.8 ug/L), and two unknown compounds were tentatively identified
		by a GC/MS library search in sample 2111111009A.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
BLM-32-543	11/1/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (2,100 ug/L) was tentatively identified by a GC/MS library search in sample 2111011529B.
100-D-176	11/11/2021	For SW-846 Method 8270D, benzidine has been reported as zero percent recovery in the LCS due to a limitation in LIMs. Benzidine was detected at 9% recovery, outside laboratory limits. The LCS is not acceptable and should be flagged on the summary form. The LCSD was within limits. Affected groundwater data are appropriately qualified.
100-D-176	11/11/2021	For SW-846 Method 8270D, cyclohexasiloxane, dodecamethyl- (4.7 ug/L) and two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 391485. Affected data are appropriately qualified.
BLM-3-182	11/2/2021	For SW-846 Method 8270D, one unknown compound (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 390957. Affected data are appropriately qualified.
BLM-3-182	11/2/2021	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates. A reanalysis was not performed because insufficient sample was available. No further corrective action was possible. Surrogate data are appropriately qualified.
BLM-3-182	11/2/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples could not be performed because insufficient sample remained for testing. Potentially affected groundwater data are appropriately qualified.
BLM-32-543	11/1/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample Duplicate (LCSD) was exceeded for indeno(1,2,3-cd)pyrene. There were no detections of the analyte in the associated field samples. The LCS/Batch MS/MSD were within limits for all analytes. Affected data are appropriately qualified.
BLM-3-182	11/2/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-D-176	11/11/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/2/2021	For SW-846 Method 8270D, one unknown compound- (4.9 ug/L) was tentatively identified by a GC/MS library search in sample 2111021345B.

Well ID	Event Date	Total Metals QA Narratives
100-D-176	11/11/2021	For Total Metals, blind control sample (2111111023A) was prepared at a concentration below the reporting limits for calcium and boron. The results for these metals are not qualified based on this control.
200-I-300	11/16/2021	For Total Metals, calcium (0.3 mg/L), magnesium (0.09 mg/L), strontium (0.04 mg/L), and zinc (0.004 mg/L) were detected in the equipment blank (2111161301Y) below the reporting limit. Affected data are appropriately qualified.
200-I-675	11/15/2021	For Total Metals, calcium (0.5 mg/L), magnesium (0.1 mg/L), strontium (0.02 mg/L) and zinc (0.01 mg/L) were detected in the equipment blank (2111150846Y) below the reporting limit. Affected data are appropriately qualified.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for calcium was 0.2%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for sodium was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for magnesium was 0.1%. Upper acceptance limit for relative percent difference is 25%.

Well ID	Event Date	Total Metals QA Narratives
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for barium was 4.4%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for strontium was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for iron was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for chromium was 1.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 6	11/15/2021	For Total Metals, field duplicate samples 2111151109C and 2111151110C the relative percent difference for manganese was 3.1%. Upper acceptance limit for relative percent difference is 25%.
BW-5-295	11/4/2021	For Total Metals, there were no detections in the field blank.

Well ID	Event Date	Miscellaneous QA Narratives
100-D-176	11/11/2021	For EPA Method 300.0, fluoride (0.06 mg/L) was detected in the method blank for analytical batch 746589. No groundwater data are affected by this method blank contamination.
200-I-185	11/10/2021	For EPA Method 300.0, fluoride (0.06 mg/L) was detected in the method blank for analytical batch 746589. No groundwater data are affected by this method blank contamination.
100-D-176	11/11/2021	For SW-846 Method 8015D, gasoline range organics (10.2 ug/L) was detected in the method blank for analytical batch 790509 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-3-182	11/2/2021	For SW-846 Method 8151A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/2/2021	For SW-846 Method 8151A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-3-182	11/2/2021	For SW-846 Method 8290A, several compounds were detected above the reporting limit in the method blank. Affected data are appropriately qualified.

Table 8 – WSTF Blank Sample Detections

Table 6 - WSTF Diank Sample Detections										
Well ID	Event Date	Comment	Analysis	Sample Type	e CAS No. Analyte		Result	Units	QA flag	
BLM-3-182	11/2/2021	Carboy G2	8260	VOA-FB	67-63-0	2-Propanol	10	ug/L	J FB	
PL-7-480	11/8/2021	Carboy G5	8260_LL	VOA-EB	67-63-0	2-Propanol	8.5	ug/L	J EB	
PL-12-570	11/3/2021	Carboy G3	8260	VOA-TB	67-63-0	2-Propanol	7.9	ug/L	J TB	
BLM-3-182	11/2/2021	Carboy G2	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	7.3	ug/L	TIC FB	
PL-12-570	11/3/2021	Carboy G3	8260	VOA-TB	1825-61-2	Silane, methoxytrimethyl-	7.2	ug/L	TIC TB	
MPE-1	11/4/2021	Carboy PF1	8260	VOA-FB	TIC	Unknown	7	ug/L	TIC RB FB	
MPE-8	11/4/2021	Carboy PF1	8260	VOA-FB	TIC	Unknown	6.7	ug/L	TIC RB FB	
MPE-11	11/4/2021	Carboy PF1	8260	VOA-FB	TIC	Unknown	6.5	ug/L	TIC RB FB	
BW-5-295	11/4/2021	Carboy G2	8260	VOA-FB	TIC	Unknown	6.5	ug/L	TIC RB FB	
BLM-24-565	11/2/2021	Carboy G3	8260	VOA-TB	1825-61-2	Silane, methoxytrimethyl-	5.8	ug/L	TIC TB	
BLM-3-182	11/2/2021	Carboy G2	8260	VOA-FB	TIC	Unknown	5.3	ug/L	TIC FB	
400-EV-131	11/1/2021	Carboy G1	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	5.1	ug/L	TIC FB	
200-I-490	11/15/2021	Carboy G5	8260	VOA-EB	67-63-0	2-Propanol	4.7	ug/L	J EB	

Well ID	Event Date	Comment	Analysis	Sample Type	pe CAS No. Analyte		Result	Units	QA flag
BLM-24-565	11/2/2021	Carboy G3	8260	VOA-FB	67-63-0	2-Propanol	4.2	ug/L	J FB
PL-7-560	11/8/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	2.54	ng/L	* TB EB
NASA 6	11/15/2021	Carboy G1	8260	VOA-FB	109-99-9	Tetrahydrofuran (THF)	2.3	ug/L	J FB
200-I-300	11/16/2021	Carboy G5	8260	VOA-EB	109-99-9	Tetrahydrofuran (THF)	1.8	ug/L	J EB
BLM-24-565	11/2/2021	Carboy G3	8260	VOA-TB	74-87-3	Chloromethane	1.6	ug/L	J TB A
ST-5-655	11/1/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.95	ng/L	EB
BLM-38-620	11/4/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.76	ng/L	EB
200-I-795	11/12/2021	Carboy G5	8260	VOA-EB	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	0.63	ug/L	J EB
ST-5-485	11/1/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.58	ng/L	EB
200-I-675	11/15/2021	Carboy G5	METALS	METALS-EB	7440-70-2	Calcium, Total	0.5	mg/L	J EB
PL-7-560	11/8/2021	Carboy G5	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.5	ng/L	* TB EB
200-I-795	11/12/2021	Carboy G5	8260	VOA-EB	79-01-6	Trichloroethene (TCE)	0.42	ug/L	J EB
BLM-32-571	11/1/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.42	ng/L	J FB
BLM-32-632	11/1/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.42	ng/L	J FB
BLM-38-480	11/4/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.4	ng/L	J EB
200-I-300	11/16/2021	Carboy G5	METALS	METALS-EB	7440-70-2	Calcium, Total	0.3	mg/L	J EB
200-I-375	11/16/2021	Carboy G5	8260	VOA-EB	74-87-3	Chloromethane	0.29	ug/L	J EB A
PL-7-560	11/8/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.23	ng/L	J EB
BLM-38-620	11/4/2021	Carboy G5	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.2	ng/L	J EB
200-I-795	11/12/2021	Carboy G5	8260	VOA-EB	354-23-4	1,2-Dichloro-1,1,2- trifluoroethane (CFC 123a)	0.2	ug/L	J EB
200-I-675	11/15/2021	Carboy G5	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.1	mg/L	J EB
200-I-300	11/16/2021	Carboy G5	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.09	mg/L	J EB
200-I-300	11/16/2021	Carboy G5	METALS	METALS-EB	7440-24-6	Strontium, Total	0.04	mg/L	J EB
200-I-675	11/15/2021	Carboy G5	METALS	METALS-EB	7440-24-6	Strontium, Total	0.02	mg/L	J EB
200-I-675	11/15/2021	Carboy G5	METALS	METALS-EB	7440-66-6	Zinc, Total	0.01	mg/L	J EB
200-I-300	11/16/2021	Carboy G5	METALS	METALS-EB	7440-66-6	Zinc, Total	0.004	mg/L	J EB

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

December 2021

NM 8800019434

Report Submitted: April 15, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in December 2021.
- The quantity and type of quality control samples collected or prepared in December 2021.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the December 2021 QAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in December 2021. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for December 2021

Well ID	Event Date
200-G-420	12/1/2021
200-G-495	12/1/2021
PL-11-470	12/1/2021
PL-11-530	12/1/2021
200-G-220	12/2/2021
200-G-340	12/2/2021
PL-11-710	12/2/2021

Well ID	Event Date
PL-11-820	12/2/2021
PL-11-980	12/2/2021
200-G-175	12/6/2021
B650-EFF-1	12/6/2021
B650-INF-1	12/6/2021
B655-EFF-2	12/6/2021
B655-INF-2	12/6/2021

Well ID	Event Date
BLM-7-509	12/6/2021
ST-6-528	12/6/2021
ST-6-568	12/6/2021
WW-1-452	12/6/2021
ST-6-678	12/7/2021
ST-6-824	12/7/2021
ST-6-970	12/7/2021

Well ID	Event Date
WW-3-469	12/7/2021
WW-3-569	12/7/2021
PL-8-455	12/8/2021
PL-8-605	12/8/2021
ST-4-481	12/8/2021
ST-4-690	12/8/2021
700-B-510	12/9/2021
JP-3-509	12/9/2021

Well ID	Event Date
ST-3-486	12/9/2021
PL-2-504	12/10/2021
BLM-42-569	12/13/2021
BLM-42-709	12/13/2021
ST-3-586	12/13/2021
ST-3-735	12/14/2021
WW-2-489	12/14/2021
WW-2-664	12/14/2021

Well ID	Event Date
BLM-27-270	12/15/2021
BW-7-211	12/15/2021
PL-4-464	12/15/2021
ST-3-666	12/15/2021
ST-1-541	12/16/2021
ST-1-630	12/16/2021

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	2	0	0	0	0	0	0
Nitrosamines by EPA Method 607	19	0	0	0	1	3	0
Perchlorate by SW-846 Method 6850	2	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	18	13	5	0	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	25	21	4	7	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	8	1	0	0	0	3	0
Anions by Various EPA Methods	2	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	9	0	1	0	1	1	0
Nitrosamines by Low-Level Method	26	22	4	8	1	3	1
Total Dissolved Solids by Standard Method 2540C	2	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 1/1/2021	QC Qty. since 1/1/2021	QC % since 1/1/2021	Sample Quantity December 2021	QC Quantity December 2021	QC % December 2021
VOA Duplicates	10	523	55	11	43	4	9
VOA Matrix Spikes	2	523	11	2	43	1	2
607 Duplicates	10	327	33	10	19	3	16
607 Matrix Spikes	2	327	9	3	19	0	0
607 Equipment Blanks	2	327	10	3	19	0	0
607 Field Blanks	2	327	9	3	19	0	0
NDMA_LL Duplicates	10	312	37	12	26	3	12
NDMA_LL Matrix Spikes	2	312	8	3	26	1	4
Metals Duplicates	10	208	21	10	9	1	11
Metals Matrix Spikes	2	208	4	2	9	0	0
Metals Equipment Blanks	5	208	12	6	9	1	11
Metals Field Blanks	5	208	11	5	9	0	0

Quality Control Requirement	Requirement %	Sample Events since 1/1/2021	QC Qty. since 1/1/2021	QC % since 1/1/2021	Sample Events December 2021	QC Quantity December 2021	QC % December 2021
VOA Equipment Blanks and Field Blanks	Should approach 100%	523	523	100%	43	43	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	308	308	100%	26	26	100%

Quality Control Requirement	Requirement %	Shipments since 1/1/2021	TB Qty. since 1/1/2021	TB % since 1/1/2021	Shipments in December 2021	TB Quantity December 2021	QC % December 2021
VOA Trip Blank (per shipment)	Should approach 100%	97	97	100%	7	7	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	93	93	100%	8	8	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	2	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	66	0	0	0	0	4	0	0
Perchlorate by SW-846 Method 6850	2	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1432	0	0	0	4	4	0	0
Low Level Volatile Organics by SW-846 Method 8260C	1627	1	0	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	0	0	0	0	0	2	0	0
Anions by Various EPA Methods	8	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	270	0	2	0	0	0	0	0
Nitrosamines by Low-Level Method	58	5	1	0	0	2	0	0
Total Dissolved Solids by Standard Method 2540C	2	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11 % 11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	2	0	0	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	66	1	0	0	0	9	0	0	0	2
Perchlorate by SW-846 Method 6850	2	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1432	0	0	0	0	0	0	0	0	17
Low Level Volatile Organics by SW-846 Method 8260C	1627	0	0	0	0	3	0	0	0	11
Semi-Volatile Organics by SW-846 Method 8270D	0	0	0	0	0	0	0	0	0	1
Anions by Various EPA Methods	8	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	270	0	0	0	0	0	0	0	0	45
Nitrosamines by Low-Level Method	58	1	0	0	0	0	0	0	0	2
Total Dissolved Solids by Standard Method 2540C	2	0	0	0	0	0	0	0	0	0

Table 7 – Quality Assurance Narratives

		ance Narratives
Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-11-710		For Low Level SW-846 Method 8260C, 2-propanol (4.3 ug/L) was detected in the method blank for analytical batch 748553 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-11-820	12/2/2021	For Low Level SW-846 Method 8260C, 2-propanol (4.3 ug/L) was detected in the method blank for analytical batch 748553 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-11-980		For Low Level SW-846 Method 8260C, 2-propanol (4.3 ug/L) was detected in the method blank for analytical batch 748553 below the reporting limit. No groundwater data are affected by this method blank contamination.
B650-EFF-1		For Low Level SW-846 Method 8260C, chloromethane (0.3 ug/L) was detected in the field blank (2112061259) below the reporting limit. Affected data are appropriately qualified.
B650-EFF-1	12/6/2021	For Low Level SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the method blank for analytical batch 748881 below the reporting limit. Affected data are appropriately qualified.
B655-EFF-2	12/6/2021	For Low Level SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the method blank for analytical batch 748881 below the reporting limit. Affected data are appropriately qualified.
BLM-7-509	12/6/2021	For Low Level SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the method blank for analytical batch 748881 below the reporting limit. Affected data are appropriately qualified.
WW-1-452	12/6/2021	For Low Level SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the method blank for analytical batch 748881 below the reporting limit. No groundwater data are affected by this method blank contamination.
WW-3-569	12/7/2021	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2112071101Y were within laboratory control limits.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (11 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 748546. Affected data are appropriately qualified.
PL-11-530		For Low Level SW-846 Method 8260C, sulfur dioxide (11 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 748546. Affected data are appropriately qualified.
PL-11-470		For Low Level SW-846 Method 8260C, sulfur dioxide (16 ug/L) was tentatively identified by a GC/MS library search in sample 2112011430B.
PL-11-530	12/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (16 ug/L) was tentatively identified by a GC/MS library search in sample 2112011450B.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-11-710	12/2/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (5.5 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2112020730B). No groundwater data are affected by
DI 11 000	10/0/0001	this trip blank contamination.
PL-11-820	12/2/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (5.5 ug/L) was tentatively identified by a GC/MS library search in the field blank (2112021442B). No groundwater data are affected by this field blank contamination.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (5.6 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2112011431B). Affected data are appropriately qualified.
PL-11-980	12/2/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (7.6 ug/L) was tentatively identified by a GC/MS library search in the field blank (2112021456B). No groundwater data are affected by this field blank contamination.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (9.8 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2112010700B). Affected data are
B650-EFF-1	12/6/2021	appropriately qualified. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
B030-E11-1	12/0/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	12/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
DIM 42 560	12/12/2021	The data quality was not significantly affected and no further corrective action was taken.
BLM-42-569	12/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-42-709	12/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-7-509	12/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
	12/0/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-11-530	12/1/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-528	12/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-568	12/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-678	12/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-6-824	12/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-6-970	12/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
******* 1 450	10/6/2021	The data quality was not significantly affected and no further corrective action was taken.
WW-1-452	12/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
WW-2-489	12/14/2021	The data quality was not significantly affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
W W-2-489	12/14/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
WW-2-664	12/14/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
W W 2 004	12/14/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
WW-3-469	12/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
WW-3-569	12/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
BLM-42-569	12/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
DI M 42 700	12/12/2021	corrective action was appropriate.
BLM-42-709	12/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
1 L-11-4/0	12/1/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-11-530	12/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-11-710	12/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-11-820	12/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-11-980	12/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-6-528	12/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-6-568	12/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
CT (CT)	10/5/0001	corrective action was appropriate.
ST-6-678	12/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-6-824	12/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
31-0-624	12///2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-6-970	12/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
21 0 7 7 0	12///2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
WW-2-489	12/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
WW-2-664	12/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
WW 2 460	10/7/2021	corrective action was appropriate.
WW-3-469	12///2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
WW-3-569	12/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
** ** -3-303	12///2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
BLM-42-569	12/13/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
	12.13.2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-42-709	12/13/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-470	12/1/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-530	12/1/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-710	12/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-820	12/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-980	12/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-528	12/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-568	12/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-2-489	12/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-2-664		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-EFF-2		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-42-569	12/13/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-42-569	12/13/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-42-709	12/13/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-7-509	12/6/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-7-509	12/6/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JP-3-509	12/9/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JP-3-509	12/9/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-530	12/1/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-710		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-8-455		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-8-605		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-4-481		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-4-481		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-690		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-528		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-568		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-678		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-824		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-970		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
		·
WW-1-452		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-489		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-664		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-3-469		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WW-3-569		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
WW-3-569		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BW-7-211	12/15/2021	For SW-846 Method 8260C in blind control sample (2112151030C), the percent recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (66%), trichloroethene (65%), tetrachloroethene
		(68%), and trichlorofluoromethane (71%) were outside of the standard limits (75-125%).
		Additionally, vinyl chloride (0.22 ug/L) was detected below the reporting limit but none
		was added. Affected data are appropriately qualified.
200-G-220	12/2/2021	For SW-846 Method 8260C, 2-propanol (4.3 ug/L) was detected in the method blank for
		analytical batch 748553 below the reporting limit. No groundwater data are affected by this
200-G-340	12/2/2021	method blank contamination. For SW-846 Method 8260C, 2-propanol (4.3 ug/L) was detected in the method blank for
200-G-340	12/2/2021	analytical batch 748553 below the reporting limit. No groundwater data are affected by this
		method blank contamination.
200-G-175	12/6/2021	For SW-846 Method 8260C, field duplicate samples 2112061030Y and 2112061031Y the
		relative percent difference for trichlorofluoromethane (CFC 11) was 39.0%. This value is
200 C 175	12/6/2021	outside the upper acceptance limit for relative percent difference of 25%.
200-G-175	12/0/2021	For SW-846 Method 8260C, field duplicate samples 2112061030Y and 2112061031Y the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 38.5%. This value
		is outside the upper acceptance limit for relative percent difference of 25%.
B655-INF-2	12/6/2021	For SW-846 Method 8260C, field duplicate samples 2112061416 and 2112061417 the relative
		percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 6.1%. Upper acceptance limit
DOGG DEE 2	10/6/2021	for relative percent difference is 25%.
B655-INF-2	12/6/2021	For SW-846 Method 8260C, field duplicate samples 2112061416 and 2112061417 the relative percent difference for trichlorofluoromethane (CFC 11) was 2.6%. Upper acceptance limit for
		relative percent difference is 25%.
B655-INF-2	12/6/2021	For SW-846 Method 8260C, field duplicate samples 2112061416 and 2112061417 the relative
		percent difference for trichloroethene (TCE) was 5.3%. Upper acceptance limit for relative
		percent difference is 25%.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-27-270		For SW-846 Method 8260C, field duplicate samples 2112150930A and 2112150931A the
		relative percent difference for dichlorofluoromethane (CFC 21) was 3.6%. Upper acceptance
		limit for relative percent difference is 25%.
BLM-27-270	12/15/2021	For SW-846 Method 8260C, field duplicate samples 2112150930A and 2112150931A the
		relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 15.9%.
		Upper acceptance limit for relative percent difference is 25%.
BLM-27-270	12/15/2021	For SW-846 Method 8260C, field duplicate samples 2112150930A and 2112150931A the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 5.7%. Upper
DI M 07 070	10/15/2021	acceptance limit for relative percent difference is 25%.
BLM-27-270	12/15/2021	For SW-846 Method 8260C, field duplicate samples 2112150930A and 2112150931A the
		relative percent difference for trichlorofluoromethane (CFC 11) was 4.8%. Upper acceptance limit for relative percent difference is 25%.
ST-3-586	12/12/2021	For SW-846 Method 8260C, relative percent differences (RPD) for duplicate samples
31-3-300	12/13/2021	2112130940C and 2112130941C were within control limits or below the calculable range.
200-G-420	12/1/2021	For SW-846 Method 8260C, sulfur dioxide (11 ug/L) was tentatively identified by a GC/MS
200-G-420	12/1/2021	library search in the method blank for analytical batch 748546. No groundwater data are
		affected by this method blank contamination.
200-G-495	12/1/2021	For SW-846 Method 8260C, sulfur dioxide (11 ug/L) was tentatively identified by a
		GC/MS library search in the method blank for analytical batch 748546. Affected data are
		appropriately qualified.
200-G-495	12/1/2021	For SW-846 Method 8260C, sulfur dioxide (16 ug/L) was tentatively identified by a
		GC/MS library search in sample 2112011030Y.
ST-1-541	12/16/2021	For SW-846 Method 8260C, sulfur dioxide (33 ug/L) was tentatively identified by a
200 5 120	12/1/2021	GC/MS library search in sample 2112160950A.
200-G-420	12/1/2021	For SW-846 Method 8260C, sulfur dioxide (6.3 ug/L) was tentatively identified by a GC/MS
		library search in the equipment blank (2112011325Y). No groundwater data are affected by this
BLM-27-270	12/15/2021	equipment blank contamination. For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
DLIVI-2/-2/0	12/13/2021	library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
BW-7-211	12/15/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
2 , 211	12/13/2021	library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
PL-4-464	12/15/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
		library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
ST-1-541	12/16/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
		library search in the method blank for analytical batch 749858. Affected data are
GT 1 620	10/16/2021	appropriately qualified.
ST-1-630	12/16/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
		library search in the method blank for analytical batch 749858. No groundwater data are affected by this method blank contamination.
ST-3-586	12/13/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
31-3-360	12/13/2021	library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
ST-3-666	12/15/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
		library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
ST-3-735	12/14/2021	For SW-846 Method 8260C, sulfur dioxide (8 ug/L) was tentatively identified by a GC/MS
		library search in the method blank for analytical batch 749858. No groundwater data are
		affected by this method blank contamination.
200-G-175	12/6/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.

Well ID	Event Date	vent Date SW-846 Method 8260C QA Narratives							
200-G-420	12/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
200-G-495	12/1/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
B650-INF-1	12/6/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
B655-INF-2	12/6/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
BLM-27-270	12/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
BW-7-211	12/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
PL-2-504	12/10/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
PL-4-464	12/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
ST-1-541	12/16/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
ST-1-630	12/16/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
ST-3-586	12/13/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
ST-3-666	12/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
ST-3-735	12/14/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.							
200-G-175	12/6/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a							

Well ID	Event Date	SW-846 Method 8260C QA Narratives						
		high bias. The sample data is not significantly affected. No further corrective action was						
200-G-220	12/2/2021	appropriate. For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analy in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
200-G-340	12/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
200-G-420	12/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
200-G-495	12/1/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
B650-INF-1	12/6/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
B655-INF-2	12/6/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
BLM-27-270	12/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
BW-7-211	12/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
PL-4-464	12/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
ST-1-541	12/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.						
ST-1-630	12/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a						

Well ID	Event Date	t Date SW-846 Method 8260C QA Narratives							
		high bias. The sample data is not significantly affected. No further corrective action was							
		appropriate.							
ST-3-586	12/13/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes							
		in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the							
		MRL in the associated field samples. The error associated with elevated recovery equates to a							
		high bias. The sample data is not significantly affected. No further corrective action was appropriate.							
ST-3-666	12/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes							
51 5 000	12/13/2021	in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the							
		MRL in the associated field samples. The error associated with elevated recovery equates to a							
		high bias. The sample data is not significantly affected. No further corrective action was							
		appropriate.							
ST-3-735	12/14/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes							
		in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the							
		MRL in the associated field samples. The error associated with elevated recovery equates to a							
		high bias. The sample data is not significantly affected. No further corrective action was							
200-G-220	12/2/2021	appropriate. For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
200-G-220	12/2/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
		no further corrective action was taken.							
200-G-340	12/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.							
200-G-420	12/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
200 0 .20	12/1/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
		no further corrective action was taken.							
200-G-495	12/1/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
		no further corrective action was taken.							
BLM-27-270	12/15/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
DW 7 211	12/15/2021	no further corrective action was taken.							
BW-7-211	12/15/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
		no further corrective action was taken.							
PL-4-464	12/15/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		exceedance equates to a potential high bias, the data quality was not significantly affected and							
CT 1 5 4 1	10/16/2021	no further corrective action was taken.							
ST-1-541	12/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did.							
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							
		not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the							

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-1-630	12/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-3-586	12/13/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-3-666	12/15/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-3-735	12/14/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-G-175	12/6/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-G-220	12/2/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-G-340	12/2/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-G-495	12/1/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
700-B-510	12/9/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	12/6/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2	12/6/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-27-270	12/15/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BW-7-211	12/15/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PL-2-504	12/10/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PL-4-464		For SW-846 Method 8260C, there were no detections in the field blank.
ST-1-541	12/16/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-1-630	12/16/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-486	12/9/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-586	12/13/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-666	12/15/2021	For SW-846 Method 8260C, there were no detections in the field blank.
ST-3-735	12/14/2021	For SW-846 Method 8260C, there were no detections in the field blank.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
BW-7-211	12/15/2021	For Modified EPA Method 607 in blind control sample (2112151031C), all recoveries were within standard limits.
200-G-175	12/6/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.
200-G-220	12/2/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.
200-G-340	12/2/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.
200-G-420	12/1/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.

Well ID	Event Date	Modified EPA Method 607 QA Narratives							
200-G-495	12/1/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.							
B650-EFF-1	12/6/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.							
B650-INF-1	12/6/2021	r Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank 21M08CM1. Affected data are appropriately qualified.							
B655-EFF-2	12/6/2021	r Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank 21M08CM1. Affected data are appropriately qualified.							
B655-INF-2	12/6/2021	For Modified EPA Method 607, bromacil (0.07 ug/L) was detected in the method blank PB21M08CM1. Affected data are appropriately qualified.							
PL-2-504	12/10/2021	For Modified EPA Method 607, field duplicate samples 2112100952A and 2112100953A the relative percent difference for N-nitrosodimethylamine was 13.3%. Upper acceptance limit for relative percent difference is 25%.							
PL-2-504	12/10/2021	For Modified EPA Method 607, field duplicate samples 2112100952A and 2112100953A the relative percent difference for N-nitrodimethylamine was 9.5%. Upper acceptance limit for relative percent difference is 25%.							
PL-2-504	12/10/2021	For Modified EPA Method 607, field duplicate samples 2112100952A and 2112100953A the relative percent difference for bromacil was 12.9%. Upper acceptance limit for relative percent difference is 25%.							
ST-3-735	12/14/2021	For Modified EPA Method 607, field duplicate samples 2112141253C and 2112141254C the relative percent difference for bromacil was 93.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.							
ST-3-735	12/14/2021	For Modified EPA Method 607, field duplicate samples 2112141253C and 2112141254C the relative percent difference for N-nitrosodimethylamine was 4.3%. Upper acceptance limit for relative percent difference is 25%.							
ST-3-735	12/14/2021	For Modified EPA Method 607, field duplicate samples 2112141253C and 2112141254C the relative percent difference for N-nitrodimethylamine was 3.8%. Upper acceptance limit for relative percent difference is 25%.							
BLM-27-270	12/15/2021	For Modified EPA Method 607, field duplicate samples 2112150933A and 2112150934A the relative percent difference for bromacil was 83.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.							
BLM-27-270	12/15/2021	For Modified EPA Method 607, field duplicate samples 2112150933A and 2112150934A the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.							
BLM-27-270	12/15/2021	For Modified EPA Method 607, field duplicate samples 2112150933A and 2112150934A the relative percent difference for N-nitrosodimethylamine was 3.9%. Upper acceptance limit for relative percent difference is 25%.							
200-G-220	12/2/2021	For Modified EPA Method 607, the sample extract of 2112021321Y was spiked twice with internal standards. Surrogate and bromacil results were adjusted in the forms to reflect the correct amount.							

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
ST-6-568	12/6/2021	For Low Level Nitrosamine Method in blind control sample (2112061455B), all recoveries were within standard limits.
PL-8-605	12/8/2021	For Low Level Nitrosamine Method, field duplicate samples 2112081009Y and 2112081035Y the relative percent difference for N-nitrosodimethylamine was 66.2%. This value is outside the upper acceptance limit for relative percent difference of 25%.
WW-3-569	12/7/2021	For Low Level Nitrosamine Method, for sample 2112071102Y the recovery of the internal standard NDMA-d6 (4.5%) was outside laboratory control limits (10-100%). The lab was unable to re-extract the sample due to a lack of reserve. The signal to noise (actual was >10) is greater than the minimum stated in the laboratory TAP. Native NDMA was not detected in the sample. No additional corrective action was required.
BLM-42-709	12/13/2021	For Low Level Nitrosamine Method, matrix spike recoveries for sample 2112131418A and duplicate sample 2112131419A were within laboratory control limits.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-42-569	12/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.41 ng/L) was detected in the
		field blank (2112131013A) below the reporting limit. No groundwater data are affected by this
		field blank contamination.
WW-2-489	12/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.44 ng/L) was detected in the
		trip blank (2112140750A) below the reporting limit. No groundwater data are affected by this
0 1	1.010.00.00.00.00.00.00.00.00.00.00.00.0	trip blank contamination.
PL-8-455	12/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.56 ng/L) was detected in
D(50 EEE 1	12/6/2021	the equipment blank (2112081336Y). Affected data are appropriately qualified.
B650-EFF-1		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.59 ng/L) was detected in the field blank (2112061302). Affected data are appropriately qualified.
BLM-7-509	12/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.66 ng/L) was detected in the trip blank (2112060801A). No groundwater data are affected by this trip blank contamination.
ST-4-481	12/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.78 ng/L) was detected in the
		trip blank (2112080701C). No groundwater data are affected by this trip blank contamination.
B655-EFF-2	12/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.8 ng/L) was detected in
		the field blank (2112061404). Affected data are appropriately qualified.
WW-1-452	12/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.17 ng/L) was detected in
ST-6-568	12/6/2021	the field blank (2112061428A). Affected data are appropriately qualified. For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.54 ng/L) was detected in
31-0-300	12/0/2021	the field blank (2112061452B). Affected data are appropriately qualified.
WW-3-569	12/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.66 ng/L) was detected in the
		trip blank (2112070801Y). No groundwater data are affected by this trip blank contamination.
PL-11-710	12/2/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples
GT 6 560	10/6/0001	2112021507B and 2112021508B were within control limits or below the calculable range.
ST-6-568	12/6/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples
BLM-42-569	12/12/2021	2112061450B and 2112061451B were within control limits or below the calculable range. For Low Level Nitrosamine Method, there were no detections in the trip blank.
BLM-42-709		For Low Level Nitrosamine Method, there were no detections in the field blank.
		·
BLM-7-509		For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-3-509		For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-3-509		For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-11-470		For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-11-470		For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-530		For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-710	12/2/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-11-710	12/2/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-820	12/2/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-11-980	12/2/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-4-464	12/15/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-8-605	12/8/2021	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
ST-4-481	12/8/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-4-690		For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-528		For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-678		For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-824		For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-6-970		For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-2-489		For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-2-664		For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-3-469		For Low Level Nitrosamine Method, there were no detections in the equipment blank.
WW-3-569	12/7/2021	For Low Level Nitrosamine Method, there were no detections in the equipment blank.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
PL-11-470	12/1/2021	For SW-846 Method 8270D, field duplicate samples 2112011434B and 2112011435B the relative percent difference for 1,4-dioxane was 26.7%. This value is outside the upper acceptance limit for relative percent difference of 25%.
ST-6-528	12/6/2021	For SW-846 Method 8270D, field duplicate samples 2112061434B and 2112061435B the relative percent difference for 1,4-dioxane was 0.0%. Upper acceptance limit for relative percent difference is 25%.
ST-6-568	12/6/2021	For SW-846 Method 8270D, field duplicate samples 2112061453B and 2112061454B the relative percent difference for 1,4-dioxane was 8.7%. Upper acceptance limit for relative percent difference is 25%.
ST-6-678	12/7/2021	For SW-846 Method 8270D, there were no detections in the field blank.

Well ID	Event Date	Total Metals QA Narratives
BW-7-211	12/15/2021	For Total Metals, blind control sample (2112151032C) was prepared at a concentration below the reporting limits for calcium. The result for this metal is not qualified based on this control.
200-G-340	12/2/2021	For Total Metals, calcium (0.4 mg/L), magnesium (0.1 mg/L), molybdenum (0.004 mg/L), strontium (0.01 mg/L) and zinc (0.007 mg/L) were detected in the equipment blank (2112020731Y) below the reporting limit. Affected data are appropriately qualified.
700-B-510	12/9/2021	For Total Metals, field duplicate samples 2112091423A and 2112091424A the relative percent difference for strontium was 1.1%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/9/2021	For Total Metals, field duplicate samples 2112091423A and 2112091424A the relative percent difference for sodium was 0.6%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/9/2021	For Total Metals, field duplicate samples 2112091423A and 2112091424A the relative percent difference for calcium was 0.4%. Upper acceptance limit for relative percent difference is 25%.
700-B-510	12/9/2021	For Total Metals, field duplicate samples 2112091423A and 2112091424A the relative percent difference for magnesium was 0.0%. Upper acceptance limit for relative percent difference is 25%.

Table 8 – WSTF Blank Sample Detections

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
PL-11-470	12/1/2021		8260_LL	VOA-TB	7446-09-5	Sulfur Dioxide	9.8	ug/L	TIC RB TB FB
PL-11-980	12/2/2021	Carboy G1	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	7.6	ug/L	TIC FB
200-G-420	12/1/2021	Carboy G3	8260	VOA-EB	7446-09-5	Sulfur Dioxide	6.3	ug/L	TIC EB
PL-11-470	12/1/2021		8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	5.6	ug/L	TIC RB TB FB
PL-11-820	12/2/2021	Carboy G1	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	5.5	ug/L	TIC FB
PL-11-710	12/2/2021	Carboy G1	8260_LL	VOA-TB	7446-09-5	Sulfur Dioxide	5.5	ug/L	TIC TB
WW-3-569	12/7/2021	Carboy G3	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	1.66	ng/L	TB
ST-6-568	12/6/2021	Carboy	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	1.54	ng/L	FB
WW-1-452	12/6/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	1.17	ng/L	FB
B655-EFF-2	12/6/2021		NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.8	ng/L	FB
ST-4-481	12/8/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.78	ng/L	TB
BLM-7-509	12/6/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.66	ng/L	TB
B650-EFF-1	12/6/2021		NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.59	ng/L	FB
PL-8-455	12/8/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.56	ng/L	EB
WW-2-489	12/14/2021	Carboy G3	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.44	ng/L	J TB
BLM-42-569	12/13/2021	Carboy G3	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.41	ng/L	J FB
200-G-340	12/2/2021	Carboy G3	METALS	METALS-EB	7440-70-2	Calcium, Total	0.4	mg/L	J EB

NASA White Sands Test Facility

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
B650-EFF-1	12/6/2021		8260_LL	VOA-FB	74-87-3	Chloromethane	0.3	ug/L	J RB FB
200-G-340	12/2/2021	Carboy G3	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.1	mg/L	J EB
200-G-340	12/2/2021	Carboy G3	METALS	METALS-EB	7440-24-6	Strontium, Total	0.01	mg/L	J EB
200-G-340	12/2/2021	Carboy G3	METALS	METALS-EB	7440-66-6	Zinc, Total	0.007	mg/L	J EB
200-G-340	12/2/2021	Carboy G3	METALS	METALS-EB	7439-98-7	Molybdenum, Total	0.004	mg/L	J EB

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

January 2022

NM 8800019434

Report Submitted: April 18, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in January 2022.
- The quantity and type of quality control samples collected or prepared in January 2022.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the January 2022 OAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in January 2022. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for January 2022

Well ID	Event Date
BLM-10-517	1/3/2022
BLM-17-550	1/3/2022
ST-7-453	1/3/2022
ST-7-544	1/3/2022
JP-1-424	1/4/2022
JP-2-447	1/4/2022

Well ID	Event Date
ST-7-779	1/4/2022
ST-7-970	1/4/2022
400-A-151	1/5/2022
BLM-6-488	1/5/2022
JER-2-504	1/5/2022
JER-2-584	1/5/2022

Well ID	Event Date
JER-2-684	1/5/2022
B650-EFF-1	1/6/2022
B650-INF-1	1/6/2022
JER-1-483	1/6/2022
JER-1-563	1/6/2022
JP-3-509	1/6/2022

Well ID	Event Date
JP-3-689	1/6/2022
B655-EFF-2	1/7/2022
B655-INF-2	1/7/2022
JER-1-683	1/7/2022
PL-10-592	1/10/2022
PL-1-486	1/10/2022
WW-5-459	1/10/2022
WW-5-579	1/10/2022
PFE-4A	1/11/2022
PFE-5	1/11/2022

Well ID	Event Date
PL-10-484	1/11/2022
WW-5-809	1/11/2022
WW-5-909	1/11/2022
BLM-15-305	1/12/2022
PFE-2	1/12/2022
PFE-7	1/12/2022
PL-6-1195	1/12/2022
BLM-18-430	1/13/2022
PL-6-1335	1/13/2022
100-F-358	1/18/2022

Well ID	Event Date
100-G-223	1/18/2022
400-FV-131	1/18/2022
400-HV-147	1/18/2022
PL-6-915	1/18/2022
300-F-175	1/19/2022
600-G-138	1/19/2022
PL-6-545	1/19/2022
PL-6-725	1/19/2022

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Chloride by EPA Method 300.0	1	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	11	0	0	0	0	0	0
Nitrosamines by EPA Method 607	20	1	1	0	1	3	0
Perchlorate by SW-846 Method 6850	8	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	3	0	0	0	0	0	0
PCBs by SW-846 Method 8082	3	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	3	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	14	14	0	0	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	32	25	7	8	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	15	1	0	0	0	1	0
Dioxins/Furans by SW-846 Method 8290	3	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	3	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	3	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	3	0	0	0	0	0	0
Anions by Various EPA Methods	8	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	17	1	1	0	1	2	1
Nitrosamines by Low-Level Method	34	27	7	10	1	4	1
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 2/1/2021	QC Qty. since 2/1/2021	QC % since 2/1/2021	Sample Quantity January 2022	QC Quantity January 2022	QC % January 2022
VOA Duplicates	10	523	54	10	46	4	9
VOA Matrix Spikes	2	523	11	2	46	1	2
607 Duplicates	10	324	34	10	20	3	15
607 Matrix Spikes	2	324	7	2	20	0	0
607 Equipment Blanks	2	324	10	3	20	1	5
607 Field Blanks	2	324	9	3	20	1	5
NDMA_LL Duplicates	10	312	37	12	34	4	12
NDMA_LL Matrix Spikes	2	312	8	3	34	1	3

Quality Control Requirement	Requirement %	Samp. Qty. since 2/1/2021	QC Qty. since 2/1/2021	QC % since 2/1/2021	Sample Quantity January 2022	QC Quantity January 2022	QC % January 2022
Metals Duplicates	10	208	21	10	17	2	12
Metals Matrix Spikes	2	208	5	2	17	1	6
Metals Equipment Blanks	5	208	12	6	17	1	6
Metals Field Blanks	5	208	11	5	17	1	6

Quality Control Requirement	Requirement %	Sample Events since 2/1/2021	QC Qty. since 2/1/2021	QC % since 2/1/2021	Sample Events January 2022	QC Quantity January 2022	QC % January 2022
VOA Equipment Blanks and Field Blanks	Should approach 100%	523	523	100%	46	46	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	308	308	100%	34	34	100%

Quality Control Requirement	Requirement %	Shipments since 2/1/2021	TB Qty. since 2/1/2021	TB % since 2/1/2021	Shipments in January 2022	TB Quantity January 2022	QC % January 2022
VOA Trip Blank (per shipment)	Should approach 100%	96	96	100%	8	8	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	94	94	100%	10	10	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	11	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	69	0	1	0	0	0	0	0
Perchlorate by SW-846 Method 6850	8	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	63	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	21	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	18	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1175	0	0	0	1	0	0	0
Low Level Volatile Organics by SW-846 Method 8260C		1	2	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D		1	0	0	0	2	0	0
Dioxins/Furans by SW-846 Method 8290		0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B		0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	3	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	3	0	0	0	0	0	0	0
Anions by Various EPA Methods	32	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	513	0	1	0	0	0	0	0
Nitrosamines by Low-Level Method	76	0	2	1	0	2	0	0
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11 % 11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	11	0	0	0	0	0	0	0	0	1
Nitrosamines by EPA Method 607	69	0	0	0	0	2	0	0	0	2
Perchlorate by SW-846 Method 6850	8	0	0	0	0	0	0	0	0	1
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	63	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	21	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	18	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1175	0	1	0	0	1	0	0	0	22
Low Level Volatile Organics by SW-846 Method 8260C	2086	0	4	0	0	4	0	0	0	11
Semi-Volatile Organics by SW-846 Method 8270D	486	0	3	0	0	0	0	0	0	5
Dioxins/Furans by SW-846 Method 8290	75	0	0	0	0	0	0	0	0	3
Cyanide by SW-846 Method 9012B	3	0	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	3	0	0	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066		0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	32	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	513	0	0	0	0	2	0	0	0	90
Nitrosamines by Low-Level Method	76	1	0	0	0	0	0	0	0	10
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0	0	0	0

Table 7 – Qi	uality Assur	ance Narratives
Well ID	Event Date	SW-846 Method 8260C QA Narratives
JER-2-504	1/5/2022	For Low Level SW-846 Method 8260C, 2-propanol (3.5 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751223 below the reporting limit. No groundwater data are affected by this method blank contamination.
JER-2-584	1/5/2022	For Low Level SW-846 Method 8260C, 2-propanol (3.5 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751223 below the reporting limit. No groundwater data are affected by this method blank contamination.
JER-2-684	1/5/2022	For Low Level SW-846 Method 8260C, 2-propanol (3.5 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751223 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-1-486	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the field blank (2201101001A) below the reporting limit. Affected data are appropriately qualified.
PL-6-1195	1/12/2022	For Low Level SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for analytical batch 752071 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-6-915	1/18/2022	For Low Level SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the equipment blank (2201180930Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
PL-10-484	1/11/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. Affected data are appropriately qualified.
PL-10-592	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. Affected data are appropriately qualified.
PL-1-486	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. Affected data are appropriately qualified.
WW-5-459	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
WW-5-579	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
WW-5-809	1/11/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
WW-5-909	1/11/2022	For Low Level SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-10-484	1/11/2022	For Low Level SW-846 Method 8260C, chloromethane (0.32 ug/L) was detected in the equipment blank (2201110905Y) below the reporting limit. Affected data are appropriately qualified.
WW-5-809	1/11/2022	For Low Level SW-846 Method 8260C, chloromethane (0.32 ug/L) was detected in the field blank (2201111406B) below the reporting limit. No groundwater data are affected by this field blank contamination.
PL-10-592	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.37 ug/L) was detected in the equipment blank (2201100930Y) below the reporting limit. Affected data are appropriately qualified.
WW-5-459	1/10/2022	For Low Level SW-846 Method 8260C, chloromethane (0.41 ug/L) was detected in the field blank (2201101346B) below the reporting limit. No groundwater data are affected by this field blank contamination.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2201061411C were within laboratory control limits.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
WW-5-909		For Low Level SW-846 Method 8260C, one unknown compound (5.7 ug/L) was tentatively
		identified by a GC/MS library search in sample 2201111435B.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, one unknown compound (5.2 ug/L) was tentatively
		identified by a GC/MS library search in sample 2201061410C.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, one unknown compound (7.1 ug/L) was tentatively
		identified by a GC/MS library search in sample 2201061442B.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (5.6 ug/L) was tentatively identified by
		a GC/MS library search in the field blank (2201061443B). No groundwater data are affected by
		this field blank contamination.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (10 ug/L) was tentatively identified
		by a GC/MS library search in the field blank (2201060941C). Affected data are
		appropriately qualified.
B650-EFF-1	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified by a
		GC/MS library search in the method blank for analytical batch 751443. No groundwater data are
200	1 /= /2 2 2	affected by this method blank contamination.
B655-EFF-2	1/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified by a
		GC/MS library search in the method blank for analytical batch 751443. No groundwater data are
IED 1 402	1/6/2022	affected by this method blank contamination.
JER-1-483	1/0/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751443. No groundwater data are
		affected by this method blank contamination.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified by a
JEK-1-303	1/0/2022	GC/MS library search in the method blank for analytical batch 751443. No groundwater data are
		affected by this method blank contamination.
JER-1-683	1/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified
3EK-1-003	1///2022	by a GC/MS library search in the method blank for analytical batch 751443. Affected data
		are appropriately qualified.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified
01 0 005	1,0,2022	by a GC/MS library search in the method blank for analytical batch 751443. Affected data
		are appropriately qualified.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.1 ug/L) was tentatively identified by a
		GC/MS library search in the method blank for analytical batch 751443. No groundwater data are
		affected by this method blank contamination.
JER-1-483	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.3 ug/L) was tentatively identified by a
		GC/MS library search in the trip blank (2201060730B). No groundwater data are affected by
		this trip blank contamination.
JER-1-683	1/7/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (7.5 ug/L) was tentatively identified
		by a GC/MS library search in sample 2201071335B.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, sulfur dioxide (8.1 ug/L) and 1-propene, 2-methyl-
		(11 ug/L) were tentatively identified by a GC/MS library search in sample 2201060940C.
100-F-358	1/18/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/18/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
D650 PPP 1	1/6/2022	data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	1/6/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
D655 EEE 2	1/7/2022	data quality was not significantly affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
B655-EFF-2	1///2022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analytes in the Continuing Cambration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
		data quality was not significantly affected and no future confective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-10-517	1/3/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-1-483	1/6/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
IED 1 (02	1/7/2022	data quality was not significantly affected and no further corrective action was taken.
JER-1-683	1///2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-2-504	1/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
JLIC-2-304	1/3/2022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-2-584	1/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-2-684	1/5/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JP-1-424	1/4/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JP-2-447	1/4/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
ID 2 500	1/6/2022	data quality was not significantly affected and no further corrective action was taken.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
31 -3-009	1/0/2022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
PL-6-1335	1/13/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
12 0 1333	171372022	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
PL-6-915	1/18/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-453	1/3/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-7-544	1/3/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-779	1/4/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-970	1/4/2022	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/19/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
D.(50 EEE 1	1/6/2022	corrective action was appropriate.
B650-EFF-1	1/6/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
B655-EFF-2	1/7/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
D033-L11-2	1///2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
BLM-10-517	1/3/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-1-483	1/6/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
JER-1-683	1/7/2022	corrective action was appropriate. For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
JEK-1-005	1///2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-2-504	1/5/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
JEIC 2 JUT	11312022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-2-584	1/5/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
	1.0.2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-2-684	1/5/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
ID 1 424	1/4/2022	corrective action was appropriate.
JP-1-424	1/4/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
JP-2-447	1/4/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
JF-2-44/	1/4/2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
01 J-JUJ	1/0/2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-10-484	1/11/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
DI 10 500	1/10/2022	corrective action was appropriate. Detections below the MRL are appropriately qualified.
PL-10-592	1/10/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Detections below the MRL are appropriately qualified.
PL-1-486	1/10/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
FL-1-460	1/10/2022	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate. Detections below the MRL are appropriately qualified.
PL-6-1195	1/12/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-6-1335	1/13/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-6-545	1/19/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-6-725	1/19/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-7-453	1/3/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-7-544	1/3/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-7-779	1/4/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-7-970	1/4/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
WW-5-459	1/10/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate. Detection in the field blank below the MRL is appropriately
		qualified.
WW-5-579	1/10/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate. Detections below the MRL are appropriately qualified.
WW-5-809	1/11/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate. Detections below the MRL are appropriately qualified.
WW-5-909	1/11/2022	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
300-F-175	1/19/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
B650-EFF-1	1/6/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
B655-EFF-2	1/7/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-10-517	1/3/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JER-1-483	1/6/2022	
JEK-1-465	1/0/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-1-563	1/6/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
2210 1 000	17 07 2 0 2 2	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-1-683	1/7/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
TED 2 504	1 /5 /2 0 2 2	affected and no further corrective action was taken.
JER-2-504	1/5/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-2-584	1/5/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
DERC 2 30.	17072022	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-2-684	1/5/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
	1/1/2022	affected and no further corrective action was taken.
JP-1-424	1/4/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JP-2-447	1/4/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
J1 -2- 11 /	1/7/2022	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JP-3-509	1/6/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JP-3-689	1/6/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-10-484	1/11/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-10-592	1/10/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-1-486	1/10/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-1195	1/12/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-1335	1/13/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-545	1/19/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-6-725	1/19/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-453	1/3/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-544	1/3/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-779	1/4/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
	1/1/2022	affected and no further corrective action was taken.
ST-7-970		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-5-459		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-5-579	1/10/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-5-809		For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WW-5-909	1/11/2022	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/18/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
100-G-223	1/18/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
300-F-175		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B650-EFF-1	1/6/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-10-517		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-10-517		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JER-1-483		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-1-683		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-504		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JER-2-504		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-584		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-684		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-1-424		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-2-447 JP-3-689		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-1-486		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-1195 PL-6-1195		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank. For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-1193 PL-6-1335		For Low Level SW-846 Method 8260C, there were no detections in the trip blank. For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-1335		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank. For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-6-1333 PL-6-545		For Low Level SW-846 Method 8260C, there were no detections in the trip blank. For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-725		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-6-725		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
111-0-723	1/19/2022	of Low Level 5 w-640 Method 6200C, there were no detections in the trip offank.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-6-915	1/18/2022	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-7-453	1/3/2022	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-544		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-779		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-7-970		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-579		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-909		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-18-430		For SW-846 Method 8260C in blind control sample (2201131030C), the percent recovery for trichlorofluoromethane (135%) was outside of the standard limits (75-125%). Affected data are appropriately qualified.
BLM-17-550		For SW-846 Method 8260C, 2-propanol (3.5 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751223 below the reporting limit. No groundwater data are affected by this method blank contamination.
B650-INF-1	1/6/2022	For SW-846 Method 8260C, 2-propanol (3.8 ug/L) was detected below the reporting limit and sulfur dioxide (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751557 below the reporting limit. No groundwater data are affected by this method blank contamination.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, 2-propanol (3.8 ug/L) was detected below the reporting limit and sulfur dioxide (5.3 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 751557 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-5	1/11/2022	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for analytical batch 752071 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-4A	1/11/2022	For SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-5	1/11/2022	For SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the method blank for analytical batch 751958 below the reporting limit. No groundwater data are affected by this method blank contamination.
400-A-151	1/5/2022	For SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the method blank for analytical batch 751311 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-6-488	1/5/2022	For SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the method blank for analytical batch 751311 below the reporting limit. Affected data are appropriately qualified.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, field duplicate samples 2201070604 and 2201070605 the relative percent difference for trichloroethene (TCE) was 4.0%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, field duplicate samples 2201070604 and 2201070605 the relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper acceptance limit for relative percent difference is 25%.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, field duplicate samples 2201070604 and 2201070605 the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper acceptance limit for relative percent difference is 25%.
PFE-7	1/12/2022	For SW-846 Method 8260C, field duplicate samples 2201121315 and 2201121316 the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 15.8%. Upper acceptance limit for relative percent difference is 25%.
PFE-7	1/12/2022	For SW-846 Method 8260C, field duplicate samples 2201121315 and 2201121316 the relative percent difference for trichloroethene (TCE) was 5.0%. Upper acceptance limit for relative percent difference is 25%.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PFE-7		For SW-846 Method 8260C, field duplicate samples 2201121315 and 2201121316 the relative
		percent difference for trichlorofluoromethane (CFC 11) was 2.5%. Upper acceptance limit for relative percent difference is 25%.
600-G-138	1/19/2022	For SW-846 Method 8260C, field duplicate samples 2201191101A and 2201191102A the
		relative percent difference for trichloroethene (TCE) was 3.2%. Upper acceptance limit for relative percent difference is 25%.
600-G-138	1/19/2022	For SW-846 Method 8260C, field duplicate samples 2201191101A and 2201191102A the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 3.2%. Upper acceptance
DIM (400	1 /5 /2022	limit for relative percent difference is 25%.
BLM-6-488	1/5/2022	For SW-846 Method 8260C, relative percent differences (RPD) for duplicate samples 2201051440A and 2201051441A were within control limits or below the calculable range.
BLM-15-305	1/12/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (5.1 ug/L) was tentatively identified
		by a GC/MS library search in sample 2201121415C.
BLM-6-488	1/5/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (5.4 ug/L) and one unknown
		compound (12 ug/L) were tentatively identified by a GC/MS library search in duplicate sample 2201051441A.
PFE-7	1/12/2022	For SW-846 Method 8260C, silane, methoxytrimethyl- (6.3 ug/L) was tentatively identified by a GC/MS library search in duplicate sample 2201121316.
BLM-17-550	1/3/2022	For SW-846 Method 8260C, sulfur dioxide (10 ug/L) was tentatively identified by a GC/MS library search in sample 2201031430A.
BLM-17-550	1/3/2022	For SW-846 Method 8260C, sulfur dioxide (19 ug/L) was tentatively identified by a
		GC/MS library search in the field blank (2201031431A). Affected data are appropriately
400 4 151	1 /5 /2022	qualified.
400-A-151	1/5/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
400-FV-131	1/18/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
400 1137 147	1/10/2022	was not significantly affected and no further corrective action was taken.
400-HV-147	1/18/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B650-INF-1	1/6/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
DOSE DIE O	1/5/2022	was not significantly affected and no further corrective action was taken.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-15-305	1/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-17-550	1/3/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-18-430	1/13/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
	-::	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-6-488	1/5/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PFE-2	1/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PFE-7	1/12/2022	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-A-151	1/5/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-FV-131	1/18/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-HV-147	1/18/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
600-G-138	1/19/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B650-INF-1	1/6/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-15-305	1/12/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-17-550	1/3/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-18-430	1/13/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
BLM-6-488	1/5/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected groundwater data below the MRL are appropriately qualified.
PFE-2	1/12/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PFE-4A	1/11/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PFE-5	1/11/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PFE-7	1/12/2022	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
400-A-151	1/5/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-FV-131	1/18/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-HV-147	1/18/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
600-G-138	1/19/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B650-INF-1	1/6/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2	1/7/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
BLM-15-305	1/12/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-17-550	1/3/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-18-430	1/13/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-6-488	1/5/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-2	1/12/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-4A	1/11/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-5	1/11/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-7	1/12/2022	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-A-151	1/5/2022	For SW-846 Method 8260C, there were no detections in the field blank.
400-FV-131	1/18/2022	For SW-846 Method 8260C, there were no detections in the field blank.
400-HV-147	1/18/2022	For SW-846 Method 8260C, there were no detections in the field blank.
600-G-138	1/19/2022	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1		For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-15-305		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-18-430		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-6-488		For SW-846 Method 8260C, there were no detections in the field blank.
PFE-2		For SW-846 Method 8260C, there were no detections in the field blank.
PFE-4A		For SW-846 Method 8260C, there were no detections in the field blank.
PFE-5	1/11/2022	For SW-846 Method 8260C, there were no detections in the field blank.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PFE-7	1/12/2022	For SW-846 Method 8260C, there were no detections in the field blank.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
BLM-18-430	1/13/2022	For Modified EPA Method 607 in blind control sample (2201131031C), all recoveries were within standard limits.
BLM-18-430	1/13/2022	For Modified EPA Method 607, bromacil (0.03 ug/L) was detected in method blank PB22A19HE1. Affected data are appropriately qualified.
PL-6-1335	1/13/2022	For Modified EPA Method 607, bromacil (0.03 ug/L) was detected in method blank PB22A19HE1. Affected data are appropriately qualified.
PL-6-1335	1/13/2022	For Modified EPA Method 607, bromacil (0.057 ug/L) was detected in the equipment blank (2201130856Y). Affected data are appropriately qualified.
BLM-6-488	1/5/2022	For Modified EPA Method 607, due to a laboratory error sample 2201051145A was not analyzed as a matrix spike sample. It will be treated as a duplicate sample in the database.
BLM-17-550	1/3/2022	For Modified EPA Method 607, field duplicate samples 2201031432A and 2201031433A the relative percent difference for N-nitrosodimethylamine was 4.7%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-550	1/3/2022	For Modified EPA Method 607, field duplicate samples 2201031432A and 2201031433A the relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-17-550	1/3/2022	For Modified EPA Method 607, field duplicate samples 2201031432A and 2201031433A the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-6-488	1/5/2022	For Modified EPA Method 607, field duplicate samples 2201051444A and 2201051445A the relative percent difference for bromacil was 1.1%. Upper acceptance limit for relative percent difference is 25%.
PFE-2	1/12/2022	For Modified EPA Method 607, field duplicate samples 2201121258 and 2201121259 the relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
PFE-2	1/12/2022	For Modified EPA Method 607, field duplicate samples 2201121258 and 2201121259 the relative percent difference for N-nitrodimethylamine was 1.3%. Upper acceptance limit for relative percent difference is 25%.
100-F-358	1/18/2022	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
WW-5-909	1/11/2022	For Low Level Nitrosamine Method in blind control sample (2201111510B), all recoveries were within standard limits.
WW-5-809	1/11/2022	For Low Level Nitrosamine Method, field duplicate samples 2201111407B and 2201111408B the relative percent difference for N-nitrosodimethylamine was 102.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.
JER-1-683	1/7/2022	For Low Level Nitrosamine Method, for sample 21071337B the recovery of the internal standard DMN-d6 (134%) was outside laboratory control limits (10-100%). No corrective action was required for elevated recovery since the signal to noise exceeded the minimum of 3, and native DMN was detected in the sample. Affected data are appropriately qualified.
PL-6-545	1/19/2022	For Low Level Nitrosamine Method, matrix spike recoveries for sample 2201191410Y and 2201191440Y were within laboratory control limits.
WW-5-579	1/10/2022	For Low Level Nitrosamine Method, N-nitrodimethylamine (0.25 ng/L) was detected in the field blank (2201101411B) below the reporting limit. No groundwater data are affected by this field blank contamination.
PL-6-1335	1/13/2022	For Low Level Nitrosamine Method, N-nitrodimethylamine (0.26 ng/L) was detected in the equipment blank (2201130955Y) below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
PL-10-484	1/11/2022	For Low Level Nitrosamine Method, N-nitrodimethylamine (0.33 ng/L) was detected in the
		equipment blank (2201110906Y) below the reporting limit. Affected data are appropriately
PL-6-1335	1/13/2022	qualified. For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.44 ng/L) was detected in
1 11-0-1333	1/13/2022	the trip blank (2201130751Y) below the reporting limit. Affected data are appropriately qualified.
JER-1-483	1/6/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2201061412B and 2201061413B were within control limits or below the calculable range.
PL-10-592	1/10/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2201101046Y and 2201101047Y were within control limits or below the calculable range.
ST-7-544	1/3/2022	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2201031524B and 2201031525B were within control limits or below the calculable range.
100-F-358	1/18/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
100-G-223	1/18/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
300-F-175	1/19/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
B650-EFF-1	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
B655-EFF-2	1/7/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-10-517	1/3/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-10-517	1/3/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
BLM-6-488	1/5/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-483	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
JER-1-483	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-563	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-683	1/7/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-2-504	1/5/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-2-504	1/5/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
JER-2-584	1/5/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-2-684	1/5/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-1-424	1/4/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-2-447	1/4/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-3-509	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-3-689	1/6/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PFE-7	1/12/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-10-484	1/11/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-10-592	1/10/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-1-486	1/10/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-1-486	1/10/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-6-1195	1/12/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-6-1195	1/12/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-6-545	1/19/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-6-725	1/19/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-6-725	1/19/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-6-915	1/18/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-6-915	1/18/2022	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
ST-7-453	1/3/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-7-544	1/3/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.
ST-7-779	1/4/2022	For Low Level Nitrosamine Method, there were no detections in the trip blank.
ST-7-779	1/4/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives							
ST-7-970	1/4/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.							
WW-5-459	1/10/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.							
WW-5-809	1/11/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.							
WW-5-909	1/11/2022	For Low Level Nitrosamine Method, there were no detections in the field blank.							

Well ID	Event Date	SW-846 Method 8270D QA Narratives
PL-10-592	1/10/2022	For SW-846 Method 8270D, 1,4-dioxane (0.047 ug/L) was detected in the field blank (2201101346Y). Affected data are appropriately qualified.
100-G-223	1/18/2022	For SW-846 Method 8270D, cyclopentasiloxane, decamethyl- (5.1 ug/L) and two unknown compounds were tentatively identified by a GC/MS library search in sample 2201181439C.
300-F-175	1/19/2022	For SW-846 Method 8270D, cyclopentasiloxane, decamethyl- (7.1 ug/L) was tentatively identified by a GC/MS library search in sample 2201190939C.
BLM-6-488	1/5/2022	For SW-846 Method 8270D, cyclopentasiloxane, decamethyl- (7.4 ug/L) was tentatively identified by a GC/MS library search in sample 2201051448A.
BLM-6-488	1/5/2022	For SW-846 Method 8270D, cyclopentasiloxane, decamethyl- (7.6 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 393676. Affected data are appropriately qualified.
JER-1-563	1/6/2022	For SW-846 Method 8270D, field duplicate samples 2201061446B and 2201061447B the relative percent difference for 1,4-dioxane was 34.3%. This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-6-488	1/5/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for benzidine. The Duplicate Laboratory Control Sample (DLCS) passed limits. There were no detections of the analyte(s) in the associated field samples. The analytes affected are flagged in the LCS Summary. Potentially affected groundwater data are appropriately qualified.
BLM-6-488	1/5/2022	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Duplicate Laboratory Control Sample (DLCS) was exceeded for one or more analytes. The Laboratory Control Sample (LCS) passed limits. There were no detections of the analyte(s) in the associated field samples. The analytes affected are flagged in the LCS Summary. Potentially affected groundwater data are appropriately qualified.
100-F-358	1/18/2022	For SW-846 Method 8270D, the lower control limit was exceeded by more than 40% for 4-nitroquinonline-1-oxide in the Continuing Calibration Verification (CCV) due to standards not matching. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. No further corrective action was taken.
100-G-223	1/18/2022	For SW-846 Method 8270D, the lower control limit was exceeded by more than 40% for 4-nitroquinonline-1-oxide in the Continuing Calibration Verification (CCV) due to standards not matching. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. No further corrective action was taken.
100-F-358	1/18/2022	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/18/2022	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/18/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/18/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-6-488	1/5/2022	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
100-F-358	1/18/2022	For SW-846 Method 8270D, three unknown compounds were tentatively identified by a GC/MS library search in sample 2201180940C.
100-F-358	1/18/2022	For SW-846 Method 8270D, two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 394363. Affected data are appropriately qualified.
100-G-223	1/18/2022	For SW-846 Method 8270D, two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 394363. Affected data are appropriately qualified.
300-F-175	1/19/2022	For SW-846 Method 8270D, two unknown compounds were tentatively identified by a GC/MS library search in the method blank for analytical batch 394363. Affected data are appropriately qualified.

Well ID	Event Date	Total Metals QA Narratives
BLM-18-430		For Total Metals, blind control sample (2201131032C) was prepared at a concentration below the reporting limits for calcium and boron. The results for these metals are not qualified based on this control.
JP-3-509	1/6/2022	For Total Metals, field duplicate samples 2201060944C and 2201060945C the relative percent difference for calcium was 1.8%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/6/2022	For Total Metals, field duplicate samples 2201060944C and 2201060945C the relative percent difference for magnesium was 1.8%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/6/2022	For Total Metals, field duplicate samples 2201060944C and 2201060945C the relative percent difference for sodium was 0.0%. Upper acceptance limit for relative percent difference is 25%.
JP-3-509	1/6/2022	For Total Metals, field duplicate samples 2201060944C and 2201060945C the relative percent difference for strontium was 1.7%. Upper acceptance limit for relative percent difference is 25%.
B655-EFF-2	1/7/2022	For Total Metals, field duplicate samples 2201070515 and 2201070516 the relative percent difference for calcium was 2.6%. Upper acceptance limit for relative percent difference is 25%.
B655-EFF-2	1/7/2022	For Total Metals, field duplicate samples 2201070515 and 2201070516 the relative percent difference for magnesium was 2.3%. Upper acceptance limit for relative percent difference is 25%.
B655-EFF-2	1/7/2022	For Total Metals, field duplicate samples 2201070515 and 2201070516 the relative percent difference for sodium was 2.3%. Upper acceptance limit for relative percent difference is 25%.
B655-EFF-2	1/7/2022	For Total Metals, field duplicate samples 2201070515 and 2201070516 the relative percent difference for strontium was 2.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-10-517	1/3/2022	For Total Metals, for matrix spike sample 2201031051A the concentrations of calcium and magnesium in the native sample were greater than four times the concentration of the spike added. The sample results for these metals are not qualified based on this control.
PL-6-915	1/18/2022	For Total Metals, iron (0.08 mg/L), strontium (0.005 mg/L) and zinc (0.008 mg/L) were detected in the equipment blank (2201180932Y) below the reporting limit. Affected data are appropriately qualified.
B655-EFF-2	1/7/2022	For Total Metals, selenium (0.008 mg/L) was detected in the method blank for analytical batch 393920 below the reporting limit. No groundwater data are affected by this method blank contamination.
B655-INF-2	1/7/2022	For Total Metals, selenium (0.008 mg/L) was detected in the method blank for analytical batch 393920 below the reporting limit. No groundwater data are affected by this method blank contamination.

Well ID	Event Date	Total Metals QA Narratives
JP-3-509	1/6/2022	For Total Metals, selenium (0.008 mg/L) was detected in the method blank for analytical batch 393920 below the reporting limit. No groundwater data are affected by this method blank contamination.
JP-3-689	1/6/2022	For Total Metals, selenium (0.008 mg/L) was detected in the method blank for analytical batch 393920 below the reporting limit. No groundwater data are affected by this method blank contamination.
100-F-358	1/18/2022	For Total Metals, there were no detections in the field blank.
BLM-18-430	1/13/2022	For Total Metals, zinc (0.006 mg/L) was detected in the method blank for analytical batch 394322 below the reporting limit. Affected data are appropriately qualified.
PL-6-1335	1/13/2022	For Total Metals, zinc (0.006 mg/L) was detected in the method blank for analytical batch 394322 below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	Miscellaneous QA Narratives
PL-6-1335	1/13/2022	For Standard Method 2540C, total dissolved solids (9 mg/L) was detected in the method blank for analytical batch 752169 below the reporting limit. No groundwater data are affected by this method blank contamination.
100-F-358	1/18/2022	For SW-846 Method 8081B, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV) on one detector. All recoveries were acceptable on the secondary detector. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
100-G-223	1/18/2022	For SW-846 Method 8081B, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV) on one detector. All recoveries were acceptable on the secondary detector. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
300-F-175	1/19/2022	For SW-846 Method 8081B, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV) on one detector. All recoveries were acceptable on the secondary detector. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Table 8 – WSTF Blank Sample Detections

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
BLM-17-550	1/3/2022	Carboy G3	8260	VOA-FB	7446-09-5	Sulfur Dioxide	19	ug/L	TIC FB
JP-3-509	1/6/2022	Carboy G1	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	10	ug/L	TIC RB FB
JER-1-483	1/6/2022	Carboy G3	8260_LL	VOA-TB	7446-09-5	Sulfur Dioxide	7.3	ug/L	TIC RB TB
JER-1-563	1/6/2022	Carboy G3	8260_LL	VOA-FB	7446-09-5	Sulfur Dioxide	5.6	ug/L	TIC RB FB
PL-6-1335	1/13/2022	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.44	ng/L	J TB
WW-5-459	1/10/2022	Carboy G3	8260_LL	VOA-FB	74-87-3	Chloromethane	0.41	ug/L	J RB A FB
PL-10-592	1/10/2022	Carboy G2	8260_LL	VOA-EB	74-87-3	Chloromethane	0.37	ug/L	J RB A EB
PL-10-484	1/11/2022	Carboy G2	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.33	ng/L	J EB
WW-5-809	1/11/2022	Carboy G3	8260_LL	VOA-FB	74-87-3	Chloromethane	0.32	ug/L	J RB A FB
PL-10-484	1/11/2022	Carboy G2	8260_LL	VOA-EB	74-87-3	Chloromethane	0.32	ug/L	J RB A EB
PL-6-915	1/18/2022	Carboy G2	8260_LL	VOA-EB	74-87-3	Chloromethane	0.29	ug/L	J EB
PL-1-486	1/10/2022	Carboy G3	8260_LL	VOA-FB	74-87-3	Chloromethane	0.28	ug/L	J RB A FB
PL-6-1335	1/13/2022	Carboy G2	NDMA_LL	NDMA_LL-EB	4164-28-7	N-Nitrodimethylamine	0.26	ng/L	J EB
WW-5-579	1/10/2022	Carboy G3	NDMA_LL	NDMA_LL-FB	4164-28-7	N-Nitrodimethylamine	0.25	ng/L	J FB
PL-6-915	1/18/2022	Carboy G2	METALS	METALS-EB	7439-89-6	Iron, Total	0.08	mg/L	J EB
PL-6-1335	1/13/2022	Carboy G2	607	NDMA-EB	314-40-9	Bromacil	0.057	μg/L	RB EB

NASA White Sands Test Facility

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
PL-10-592	1/10/2022	Carboy G2	8270	SVOA_SIM-FB	123-91-1	1,4-Dioxane	0.047	ug/L	FB
PL-6-915	1/18/2022	Carboy G2	METALS	METALS-EB	7440-66-6	Zinc, Total	0.008	mg/L	J EB
PL-6-915	1/18/2022	Carboy G2	METALS	METALS-EB	7440-24-6	Strontium, Total	0.005	mg/L	J EB

Appendix D Comparison to Cleanup Levels

Appendix D.1: Groundwater Monitoring Wells
Appendix D.2: PFTS
Appendix D.3: MPITS

Appendix D.1 Groundwater Monitoring Wells

Analytical Results for Groundwater Monitoring Wells that Exceed Clean Up Levels

CAS Number 67-66-3	Analyte Chloroform					
Cleanup Level 2.2 ug/L	Source GMP					
Event Analysis Well ID Date Method	Sample Constituent	Result Units	Quant Limit	Det Limit	Xtret Effic	OA Flag
BLM-15-305 1/12/2022 8260	2201121415C Chloroform	2.4 ug/L	1	0.24		QA Flag

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

Well ID	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
400-A-151	1/5/2022		2201051006A	N-Nitrosodimethylamine	5.9		0.0095	0.0048	45	QA Flag
400-A-131 400-C-143	1/3/2022		2111171103C	N-Nitrosodimethylamine N-Nitrosodimethylamine	3.4	μg/L μg/L	0.0095	0.0048	54	
BLM-15-305	1/12/2021		2201121417C	N-Nitrosodimethylamine	9		0.0093	0.0048	46	
BLM-17-493	1/12/2022		2111030952B	N-Nitrosodimethylamine	0.86	μg/L μg/L	0.0090	0.0048	53	
BLM-17-493 BLM-17-550	1/3/2021		2111030932B 2201031432A	N-Nitrosodimethylamine N-Nitrosodimethylamine	0.63		0.0094	0.0047	45	
BLM-17-550	1/3/2022		2201031432A 2201031433A	N-Nitrosodimethylamine	0.66	μg/L	0.0094	0.0047	45	
BLM-17-330 BLM-18-430	1/3/2022		2201031433A 2201131007C	N-Nitrosodimethylamine N-Nitrosodimethylamine	0.00	μg/L	0.0094	0.0047	33	
BLM-16-430 BLM-26-404	1/13/2022		2111031457B	N-Nitrosodimethylamine	0.014	μg/L μg/L	0.0097	0.0049	53	
BLM-27-270	12/15/2021		2111031437B 2112150933A	N-Nitrosodimethylamine N-Nitrosodimethylamine	2.5		0.0093	0.0048	50	
BLM-27-270 BLM-27-270	12/15/2021		2112150933A 2112150934A	•	2.6	μg/L		0.0047		
BLM-27-270 BLM-32-543				N-Nitrosodimethylamine	1.8	μg/L	0.0095	0.0048	50	
	11/1/2021 11/3/2021	_	2111011527B	N-Nitrosodimethylamine		ng/L	0.49		52	
BLM-36-350 BLM-36-350	11/3/2021		2111031352Y	N-Nitrosodimethylamine	0.62	μg/L	0.0096	0.0048 0.0048	53	
BLM-38-620	11/3/2021		2111031420Y 2111041311Y	N-Nitrosodimethylamine N-Nitrosodimethylamine	0.56 2.05	μg/L	0.0095 0.5	0.0048	53	EB
		_		•		ng/L			50	ED
BW-5-295	11/4/2021		2111041413B	N-Nitrosodimethylamine	0.49	μg/L	0.0096	0.0048	52 53	
BW-5-295	11/4/2021		2111041414B	N-Nitrosodimethylamine	0.54	μg/L	0.0095	0.0048	52	
BW-7-211	12/15/2021		2112150840C	N-Nitrosodimethylamine	1.2	μg/L	0.0095	0.0048	50	
JER-1-563		NDMA_LL	2201061444B	N-Nitrosodimethylamine	1.3	ng/L	0.48	0.4		
JER-1-683	1/7/2022	_	2201071337B	N-Nitrosodimethylamine	1.43	ng/L	0.5	0.42		
JER-2-584	1/5/2022	_	2201051502B	N-Nitrosodimethylamine	1.34	ng/L	0.48	0.4		
JER-2-684		NDMA_LL	2201051527B	N-Nitrosodimethylamine	1.75	ng/L	0.47	0.4	5.4	D
NASA 6	11/15/2021		2111151107C	N-Nitrosodimethylamine	15	μg/L	0.19	0.094	54	D
NASA 6	11/15/2021		2111151108C	N-Nitrosodimethylamine	15	μg/L	0.19	0.097	54	D
PL-11-470	12/1/2021	_	2112011432B	N-Nitrosodimethylamine	5.13	ng/L	0.48	0.4		
PL-11-530	12/1/2021	_	2112011452B	N-Nitrosodimethylamine	2.14	ng/L	0.48	0.4		
PL-12-570	11/3/2021	_	2111031006C	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.4		
PL-12-800	11/3/2021	_	2111031432C	N-Nitrosodimethylamine	3.5	ng/L	0.51	0.43		
PL-12-800	11/3/2021	_	2111031434C	N-Nitrosodimethylamine	3.5	ng/L	0.51	0.42	51	
PL-2-504	12/10/2021		2112100952A	N-Nitrosodimethylamine	0.16	μg/L	0.0095	0.0048	51	
PL-2-504	12/10/2021		2112100953A	N-Nitrosodimethylamine	0.14	μg/L	0.0094	0.0047	51	*
PL-7-480	11/8/2021	_	2111081446Y	N-Nitrosodimethylamine	2.87	ng/L	0.48	0.4		* TD FD
PL-7-560	11/8/2021	_	2111080941Y	N-Nitrosodimethylamine	1.69	ng/L	0.48	0.4		* TB EB
PL-8-455	12/8/2021	_	2112081441Y	N-Nitrosodimethylamine	2.75	ng/L	0.48	0.4		EB
PL-8-605	12/8/2021	_	2112081035Y	N-Nitrosodimethylamine	1.77	ng/L	0.47	0.4	5.4	QD
ST-1-473	11/15/2021		2111151418A	N-Nitrosodimethylamine	0.33	μg/L	0.0098	0.0049	54	
ST-1-473	11/15/2021		2111151417A	N-Nitrosodimethylamine	0.28	μg/L	0.0094	0.0047	54	
ST-1-541	12/16/2021	607	2112160952A	N-Nitrosodimethylamine	1.7	μg/L	0.0095	0.0048	50	

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
ST-1-630	12/16/2021	607	2112161002C	N-Nitrosodimethylamine	0.22	μg/L	0.0094	0.0047	50	
ST-3-486	12/9/2021	607	2112090942C	N-Nitrosodimethylamine	0.09	$\mu g/L$	0.0095	0.0048	51	
ST-3-586	12/13/2021	607	2112130943C	N-Nitrosodimethylamine	0.0066	$\mu g/L$	0.0094	0.0047	51	J
ST-3-666	12/15/2021	607	2112151412C	N-Nitrosodimethylamine	0.046	$\mu g/L$	0.0095	0.0048	50	
ST-3-735	12/14/2021	607	2112141254C	N-Nitrosodimethylamine	0.47	$\mu g/L$	0.0095	0.0048	50	
ST-3-735	12/14/2021	607	2112141253C	N-Nitrosodimethylamine	0.45	$\mu g/L$	0.01	0.005	50	
ST-5-485	11/1/2021	NDMA_LL	2111011406Y	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		EB
WW-3-469	12/7/2021	NDMA_LL	2112071431Y	N-Nitrosodimethylamine	2.16	ng/L	0.48	0.4		
WW-5-809	1/11/2022	NDMA_LL	2201111407B	N-Nitrosodimethylamine	1.82	ng/L	0.48	0.4		QD
WW-5-909	1/11/2022	NDMA LL	2201111437B	N-Nitrosodimethylamine	2.31	ng/L	0.47	0.4		

CAS Number 127-18-4 Analyte Tetrachloroethene (PCE)

Cleanup Level 5 ug/L Source GMP

Event Analysis Quant Det Xtrct

Well ID Date Method Sample Constituent Result Units Limit Effic OA Flag

	Event	Analysis					Quant	Det	Xtrct		
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag	
ST-1-473	11/15/2021	8260	2111151415A	Tetrachloroethene (PCE)	6.8	ug/L	1	0.21			
ST-1-541	12/16/2021	8260	2112160950A	Tetrachloroethene (PCE)	6.5	ug/L	1	0.21			
ST-1-630	12/16/2021	8260	2112161000C	Tetrachloroethene (PCE)	8.4	ug/L	1	0.21			

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
200-I-185	11/10/2021	8260	2111101020Y	Trichloroethene (TCE)	13	ug/L	1	0.2		
200-I-300	11/16/2021	8260	2111161400Y	Trichloroethene (TCE)	29	ug/L	1	0.2		
200-I-300	11/16/2021	8260	2111161401Y	Trichloroethene (TCE)	28	ug/L	1	0.2		
600-G-138	1/19/2022	8260	2201191102A	Trichloroethene (TCE)	32	ug/L	1	0.2		
600-G-138	1/19/2022	8260	2201191101A	Trichloroethene (TCE)	31	ug/L	1	0.2		
BLM-17-493	11/3/2021	8260	2111030950B	Trichloroethene (TCE)	58	ug/L	1	0.2		
BLM-17-550	1/3/2022	8260	2201031430A	Trichloroethene (TCE)	85	ug/L	1	0.2		
BLM-18-430	1/13/2022	8260	2201131005C	Trichloroethene (TCE)	9.9	ug/L	1	0.2		
BLM-26-404	11/3/2021	8260	2111031455B	Trichloroethene (TCE)	20	ug/L	1	0.2		
BLM-36-350	11/3/2021	8260	2111031351Y	Trichloroethene (TCE)	66	ug/L	1	0.2		
BLM-36-350	11/3/2021	8260	2111031350Y	Trichloroethene (TCE)	65	ug/L	1	0.2		
PL-12-570	11/3/2021	8260	2111031003C	Trichloroethene (TCE)	7.5	ug/L	1	0.2		
PL-12-570	11/3/2021	8260	2111031005C	Trichloroethene (TCE)	7.1	ug/L	1	0.2		
PL-12-800	11/3/2021	8260	2111031430C	Trichloroethene (TCE)	13	ug/L	1	0.2		
PL-2-504	12/10/2021	8260	2112100950A	Trichloroethene (TCE)	66	ug/L	1	0.2		
ST-1-473	11/15/2021	8260	2111151415A	Trichloroethene (TCE)	230	ug/L	2.5	0.5		
ST-1-541	12/16/2021	8260	2112160950A	Trichloroethene (TCE)	150	ug/L	1	0.2		
ST-1-630	12/16/2021	8260	2112161000C	Trichloroethene (TCE)	260	ug/L	2.5	0.5		
ST-3-735	12/14/2021	8260	2112141251C	Trichloroethene (TCE)	25	ug/L	1	0.2		

Appendix D.2 PFTS

Analytical Results for PFTS and PFE Wells that Exceed Clean Up Levels

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 mg/L) Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
B650-INF-1	11/2/2021	1 607	2111021428	N-Nitrosodimethylamine	0.075	μg/L	0.0094	0.0047	53	
B650-INF-1	1/6/2022	2 607	2201061023	N-Nitrosodimethylamine	0.08	$\mu g/L$	0.0096	0.0048	43	
B650-INF-1	12/6/2021	1 607	2112061317	N-Nitrosodimethylamine	0.099	$\mu g/L$	0.0095	0.0048	59	
PFE-2	1/12/2022	2 607	2201121259	N-Nitrosodimethylamine	0.15	$\mu g/L$	0.0095	0.0048	46	
PFE-2	1/12/2022	2 607	2201121258	N-Nitrosodimethylamine	0.15	$\mu g/L$	0.0098	0.0049	46	
PFE-4A	1/11/2022	2 607	2201111237	N-Nitrosodimethylamine	0.0067	$\mu g/L$	0.0096	0.0048	46	J
PFE-5	1/11/2022	2 607	2201111258	N-Nitrosodimethylamine	0.32	$\mu g/L$	0.0099	0.005	46	
PFE-7	1/12/2022	2 NDMA_LL	2201121319	N-Nitrosodimethylamine	1.18	ng/L	0.5	0.42		

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

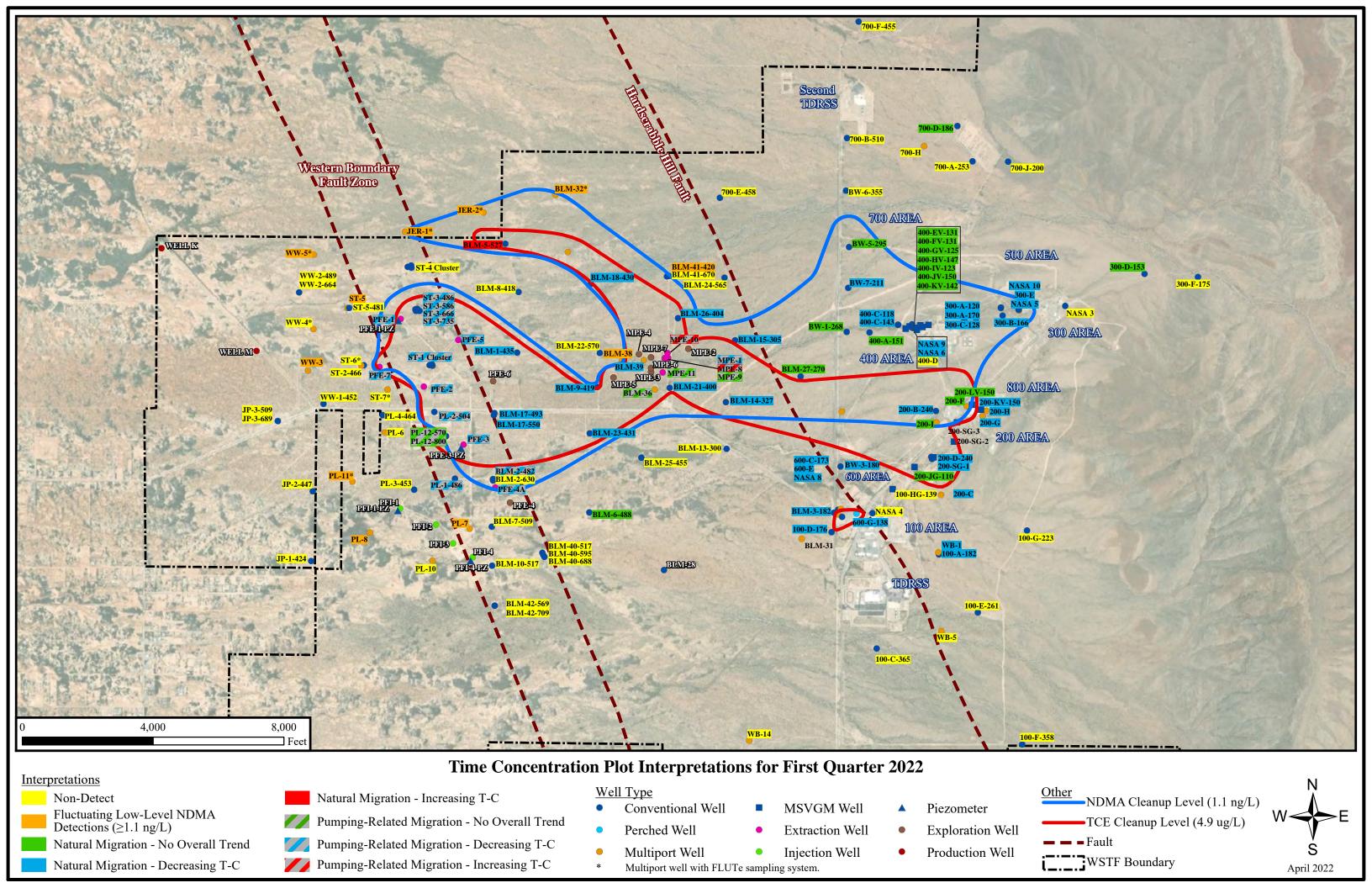
	Event	Analysis					Quant	Det	Xtrct		
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag	
B650-INF-	1 11/2/202	1 8260	2111021426	Trichloroethene (TCE)	25	ug/L	1	0.2			
B650-INF-	1 11/2/202	1 8260	2111021425	Trichloroethene (TCE)	25	ug/L	1	0.2			
B650-INF-	1 1/6/202	2 8260	2201061021	Trichloroethene (TCE)	26	ug/L	1	0.2			
B650-INF-	1 12/6/202	1 8260	2112061315	Trichloroethene (TCE)	18	ug/L	1	0.2			
PFE-2	1/12/202	2 8260	2201121256	Trichloroethene (TCE)	55	ug/L	1	0.2			
PFE-5	1/11/202	2 8260	2201111256	Trichloroethene (TCE)	41	ug/L	1	0.2			

Appendix D.3 MPITS

Analytical Results for MPITS and MPE Wells that Exceed Clean Up Levels

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Clean Up Level 0.0011 ug/L (1.1 ng/L) Source GMP


	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
B655-EFF-2	12/6/2021	NDMA_LL	2112061403	N-Nitrosodimethylamine	1.14	ng/L	0.48	0.4		FB
B655-INF-2	1/7/2022	607	2201070607	N-Nitrosodimethylamine	1.9	$\mu g/L$	0.0094	0.0047	43	
B655-INF-2	11/2/2021	607	2111021203	N-Nitrosodimethylamine	1.8	$\mu g/L$	0.0094	0.0047	53	
B655-INF-2	12/6/2021	607	2112061419	N-Nitrosodimethylamine	1.6	$\mu g/L$	0.0095	0.0048	59	
MPE-1	11/4/2021	607	2111040918	N-Nitrosodimethylamine	3.8	$\mu g/L$	0.0095	0.0048	52	
MPE-10	11/4/2021	607	2111040943	N-Nitrosodimethylamine	3.5	$\mu g/L$	0.0095	0.0048	52	
MPE-11	11/4/2021	607	2111040903	N-Nitrosodimethylamine	0.14	$\mu g/L$	0.0095	0.0048	52	
MPE-8	11/4/2021	607	2111040933	N-Nitrosodimethylamine	2.7	$\mu g/L$	0.0095	0.0048	52	

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Clean Up Level 4.9 ug/L Source GMP

	Event	Analysis						Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	R	esult	Units	Limit	Limit	Effic	QA Flag
B655-INF-2	1/7/2022	2 8260	2201070604	Trichloroethene (TCE)	51	1	ug/L	1	0.2		
B655-INF-2	1/7/2022	2 8260	2201070605	Trichloroethene (TCE)	49	ı	ug/L	1	0.2		
B655-INF-2	11/2/2021	8260	2111021201	Trichloroethene (TCE)	49	ι	ug/L	1	0.2		
B655-INF-2	12/6/2021	8260	2112061416	Trichloroethene (TCE)	39	ι	ug/L	1	0.2		
B655-INF-2	12/6/2021	8260	2112061417	Trichloroethene (TCE)	37	ι	ug/L	1	0.2		
MPE-1	11/4/2021	8260	2111040916	Trichloroethene (TCE)	86	ι	ug/L	1	0.2		
MPE-10	11/4/2021	8260	2111040941	Trichloroethene (TCE)	70	ι	ug/L	1	0.2		
MPE-11	11/4/2021	8260	2111040901	Trichloroethene (TCE)	5.3	ι	ug/L	1	0.2		
MPE-8	11/4/2021	8260	2111040931	Trichloroethene (TCE)	88	1	ug/L	1	0.2		

Appendix E Time-Concentration Plots

Appendix E:

Reporting Period: 1Q/2022

Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Upgradient Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	g/L)		NDMA	607 Cond	entration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-F-358 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2022	0.43 DL	2010	0.21 DL	2022	0.63 DL	2010	0.2 DL	2022	0.005 DL	NP	2012	0.004 DL	NP	2022	N/A		N/A	
100-G-223 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2022	0.43 DL	2010	0.21 DL	2022	0.63 DL	2010	0.2 DL	2022	0.005 DL	NP	2012	0.004 DL	NP	2022	N/A		N/A	
300-F-175 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2022	0.43 DL	2010	0.21 DL	2022	0.63 DL	2010	0.2 DL	2022	0.005 DL	NP	2016	0.004 DL	NP	2022	N/A		N/A	
NASA 3 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	

100/600 Area Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-C-365 Conv	1989	Non Detect	1.00 DL	2010	0.24 DL	2021	1.00 DL	2010	0.21 DL	2021	1.00 DL	2010	0.2 DL	2021	0.05 RL	NP	1992	0.004 DL	NP	2021	N/A		N/A	
100-D-176 Conv	1997	Natural Migration (Decreasing)	1.60 DL	2003	0.24 DL	2021	2.00 DL	1999	0.21 DL	2021	9.60	1999	3.00	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
100-HG-139 MSVGM	2011	Non Detect	0.79 J	2011	0.24 DL	2021	0.33 J	2015	0.21 DL	2021	10	2014	0.2 DL	2021	0.005 DL	NP	2020	0.004 DL	NP	2021	0.93 RB FB	2012	0.93 RB FB	2012
600-C-173 Conv	1988	Natural Migration (Decreasing)	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	9.00	1998	1.80 RB FB	2021	0.1	NP	1988	0.004 DL	NP	2021	N/A		N/A	
600-E WestBay	1998	Natural Migration (Decreasing)	1.60 DL	2002	0.24 DL	2021	2.00 DL	1999	0.21 DL	2021	2.00 DL	1999	0.61 J	2021	0.005 DL	NP	2016	0.004 DL	NP	2021	N/A		N/A	
600-G-138 Conv	2011	Natural Migration (Decreasing)	5.10	2017	0.76 J	2022	0.3 DL	2018	0.21 DL	2022	130	2012	32	2022	0.1 DL	NP	2021	0.1 DL	NP	2021	0.96 RB FB	2012	0.96 RB FB	2012
BW-3-180 Conv	1988	Natural Migration (Decreasing)	10	1988	0.33 J Q	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
NASA 4 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	3.50	2009	0.33 J RB FB	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
NASA 8 Conv	1988	Natural Migration (Decreasing)	5.00	1996	0.27 DL	2018	2.50 RL	1996	0.28 DL	2018	130	1995	7.90	2018	0.05 RL	NP	1993	0.004 DL	NP	2018	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well 1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Concer	ntration (u	g/L)		NDMA	607 Conc	entration	n (ug/L)		NDMA	LL Cond	entration	(ng/L)
Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
WB-1 1990 Westbay	Natural Migration (Decreasing)	15	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.26 J	2021	0.05 RL	NP	1993	0.004 DL	NP	2021	N/A		N/A	

200 Area Well Group

Well	1st Sample	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)							NDMA LL Concentration (ng/L)			
			Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year	
200-B-240 Conv	1989	Natural Migration (Decreasing)	280	1996	92	2021	15 QD	1989	2.90	2021	290 QD	1989	61	2021	1.60	25	1993	0.37	38	2021	N/A		N/A		
200-C WestBay	1993	Natural Migration (Decreasing)	51	1996	16	2021	2.50 RL	1996	0.21 DL	2021	4.30	2003	2.50	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		
200-D-240 Conv	1988	Natural Migration (Decreasing)	240 QD	1995	54	2021	2.50 RL	1995	0.31 J	2021	110	1990	14	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		
200-F WestBay	1995	Natural Migration (No Overall Trend)	41	2005	5.50	2021	2.50 RL	1996	0.45 J	2021	34	2009	21	2021	0.41 J A	1	2021	0.41 J A	1	2021	N/A		N/A		
200-G WestBay	1995	Natural Migration (Decreasing)	55	1995	4.60 QD	2021	2.50 RL	1996	0.21 DL	2021	4.80	2004	2.10	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		
200-H WestBay	1994	Natural Migration (Decreasing)	6.00	2003	0.92 J	2021	2.50 RL	1996	0.21 DL	2021	3.00 J	1997	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		
200-I WestBay	1997	Natural Migration (No Overall Trend)	2.40 J	1999	0.27 J	2021	2.00 DL	1999	0.55 J	2021	35	2019	29	2021	0.021 J	42	2006	0.004 DL	NP	2021	N/A		N/A		
200-JG-110 MSVGM	2012	Natural Migration (No Overall Trend)	17	2013	5.20	2021	2.20	2020	2.10	2021	25	2013	24	2021	0.005 DL	NP	2012	0.004 DL	NP	2021	0.93 J	2012	0.93 J	2012	
200-KV-150 MSVGM	2015	Natural Migration (Decreasing)	90	2020	18	2021	0.3 DL	2015	0.21 DL	2021	22	2020	2.90	2021	0.005 DL	NP	2020	0.004 DL	NP	2021	N/A		N/A		
200-LV-150 Conv	2018	Natural Migration (No Overall Trend)	0.27 DL	2018	0.24 DL	2021	0.3 DL	2018	0.21 DL	2021	0.89 J Q	2018	0.24 J	2021	0.004 DL	NP	2018	0.004 DL	NP	2021	N/A		N/A		
200-SG-1 MSVGM	2004	Natural Migration (Decreasing)	81	2008	9.10	2021	17	2007	4.60	2021	380	2007	110	2021	0.016 J	44	2008	0.004 DL	NP	2021	N/A		N/A		
BLM-3-182 Conv	1988	Natural Migration (Decreasing)	10	1988	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	41	1991	3.30	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		

300/400 Area Well Group

Reporting Period: 1Q/2022

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st Sample	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)						NDMA LL Concentration (ng/L)			
			Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
300-A-120 Conv	1988	Natural Migration (Decreasing)	4300 FB	1996	52	2021	2.50 RL	1996	0.21 DL	2021	2.50	2004	0.34 J	2021	46	24	1990	2.90 QD	58	2021	N/A		N/A	
300-A-170 Conv	1988	Natural Migration (Decreasing)	6000	1988	320	2021	2.50 RL	1996	0.21 DL	2021	7.00	1988	1.10	2021	48 QD	21	1995	3.80	39	2021	N/A		N/A	
300-B-166 Conv	1988	Natural Migration (Decreasing)	1600	1988	190	2021	2.50 RL	1996	0.21 DL	2021	8.00	1988	0.2 DL	2021	14	39	1991	7.80	36	2021	N/A		N/A	
300-C-128 Conv	1988	Natural Migration (Decreasing)	3000	1988	420	2021	2.50 RL	1996	0.21 DL	2021	3.70 J	1996	2.10	2021	47	32	2000	7.80	50	2021	N/A		N/A	
300-D-153 Conv	1988	Natural Migration (No Overall Trend)	6.30	2013	2.20	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
300-E WestBay	1995	Natural Migration (Decreasing)	180	1996	9.00	2021	2.50 RL	1996	0.21 DL	2021	9.30	1997	1.40	2021	49 A	1	2021	0.004 DL	NP	2021	N/A		N/A	
400-A-151 Conv	1989	Natural Migration (No Overall Trend)	450	1990	230	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.9 J	2022	280	18	1991	13	45	2022	N/A		N/A	
400-C-118 Conv	1989	Natural Migration (Decreasing)	1600	1989	200	2019	2.50 RL	1996	0.21 DL	2019	5.00	1989	1.60	2019	87	38	1989	4.90	55	2019	N/A		N/A	
400-C-143 Conv	1989	Natural Migration (Decreasing)	1600	1989	200	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	1.40	2021	93	15	1989	6.30	54	2021	N/A		N/A	
400-EV-131 MSVGM	2017	Natural Migration (No Overall Trend)	520	2017	440	2021	0.3 DL	2018	0.21 DL	2021	13	2017	2.10	2021	3.30	46	2020	1.80	44	2021	N/A		N/A	
400-FV-131 MSVGM	2017	Natural Migration (No Overall Trend)	290	2021	130	2022	0.3 DL	2018	0.21 DL	2022	1.90	2021	0.86 J	2022	3.30	60	2020	1.40	53	2021	N/A		N/A	
400-GV-125 MSVGM	2017	Natural Migration (No Overall Trend)	320	2021	180	2021	0.3 DL	2018	0.21 DL	2021	1.80	2021	1.40	2021	5.70	44	2021	5.70	44	2021	N/A		N/A	
400-HV-147 MSVGM	2017	Natural Migration (No Overall Trend)	240	2021	180	2022	0.3 DL	2018	0.21 DL	2022	2.00	2017	0.58 J	2022	320 D	53	2021	320 D	53	2021	N/A		N/A	
400-IV-123 MSVGM	2017	Natural Migration (No Overall Trend)	430	2017	140	2021	0.93 J	2018	0.21 DL	2021	0.29 J	2021	0.29 J	2021	0.041	87	2017	0.004 DL	NP	2021	N/A		N/A	
400-JV-150 MSVGM	2017	Natural Migration (No Overall Trend)	970	2021	590	2021	0.3 DL	2018	0.21 DL	2021	1.50	2017	0.95 J	2021	5.90	44	2021	5.90	44	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Concer	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
400-KV-142 MSVGM	2017	Natural Migration (No Overall Trend)	1700	2018	990	2019	7.00 DL	2018	0.21 DL	2019	5.00 DL	2018	0.37 J	2019	1.50	36	2019	1.50	36	2019	N/A		N/A	
BW-1-268 Conv	1989	Natural Migration (No Overall Trend)	1100	1989	190	2021	2.50 RL	1996	0.21 DL	2021	5.00	1989	1.10	2021	130	18	1991	11	58	2021	N/A		N/A	
BW-5-295 Conv	1989	Natural Migration (No Overall Trend)	360	1989	86	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.46 J	2021	1.90	49	1997	1.00	52	2021	N/A		N/A	
BW-7-211 Conv	1989	Natural Migration (Decreasing)	2400	1991	130 Q	2021	2.50 RL	1995	0.21 DL	2021	13	1989	1.00 Q	2021	17	34	1994	2.40	50	2021	N/A		N/A	
NASA 10 Conv	1988	Natural Migration (Decreasing)	250	1996	11	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	4.70	19	1996	0.099	58	2021	N/A		N/A	
NASA 5 Conv	1988	Natural Migration (Decreasing)	350	1991	25 Q	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	13	19	1996	0.81	58	2021	N/A		N/A	
NASA 6 Conv	1988	Natural Migration (Decreasing)	1300	1996	150	2021	2.50 RL	1996	0.21 DL	2021	5.00	1990	0.31 J	2021	95	21	1996	28 D	54	2021	N/A		N/A	
NASA 9 Conv	1988	Natural Migration (Decreasing)	2000	1996	110	2019	12 RL	1988	0.21 DL	2019	12 RL	1988	0.56 J	2019	18	32	1990	1.40	52	2019	N/A		N/A	

Northern Boundary Well Group

Well	1st	Interpretation	Max Year Last Your Ct 2.50 1996 0.16 DL Ct 2.50 RL 1995 0.24 DL Ct DL Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct			(ug/L)	PCE	Concen	itration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Concentration	າ (ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year Last	Year
700-A-253 Conv	1990	Non Detect		1996		2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A	N/A	
700-B-510 Conv	1990	Non Detect		1995		2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A	N/A	
700-D-186 Conv	1990	Natural Migration (No Overall Trend)	2.50 RL	1995	0.44 J	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.34 J	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A	N/A	
700-E-458 Conv	1990	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A	N/A	
700-F-455 Conv	1991	Non Detect	2.50 RL	1996	0.37 DL	2005	2.50 RL	1996	0.27 DL	2005	2.50 RL	1996	0.52 DL	2005	0.05 RL	NP	1997	0.005 DL	NP	2005	N/A	N/A	
700-H WestBay	1999	Non Detect	1.60 DL	2003	0.16 DL	2021	0.62 DL	2004	0.21 DL	2021	1.90 RB TB EB	2021	0.2 DL	2021	0.005 DL	NP	2013	0.004 DL	NP	2021	N/A	N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Max Year Last Ye 1.60 DL 2003 DL 0.16 DL 20 2.50 RL 1995 DL 0.24 DL 20 .L 1.60 DL 2002 DL 0.24 DL 20 .L 0.27 DL 2018 DL 0.24 DL 20 .DL 0.27 DL 2018 DL 0.24 DL 20			(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
700-J-200 Conv	1999	Non Detect		2003		2021	0.62 DL	2004	0.21 DL	2021	3.70	2005	0.2 DL	2021	0.005 DL	NP	2017	0.004 DL	NP	2021	N/A		N/A	
BLM-24-565 Conv	1991	Non Detect		1995		2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-32 Westbay	1997	Fluctuating LL NDMA		2002		2021	2.00 DL	1999	0.21 DL	2021	2.00 DL	1999	0.2 DL	2021	0.016 J	36	2004	0.004 DL	NP	2021	21	2015	1.80	2021
BLM-41-420 Conv	2013	Fluctuating LL NDMA		2018		2021	0.3 DL	2013	0.21 DL	2021	1.00	2013	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	5.40	2017	1.6 QD FB	2021
BLM-41-670 Conv	2013	Non Detect		2018		2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2013	0.004 DL	NP	2021	5.50 FB	2017	0.84 TB FB	2021
BW-6-355 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.32	37	2004	0.004 DL	NP	2021	N/A		N/A	
JER-1 Westbay	2004	Fluctuating LL NDMA	0.6 DL	2004	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.72	2011	0.2 DL	2022	0.014 J	41	2005	0.004 DL	NP	2021	360	2009	1.40	2022
JER-2 Westbay	2004	Fluctuating LL NDMA	0.6 DL	2004	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.63 DL	2010	0.2 DL	2022	0.016 J	43	2005	0.004 DL	NP	2021	290 QD	2006	1.80	2022

Southern Boundary Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	itration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	(ug/L)		NDMA	LL Conce	ntration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-E-261 Conv	1989	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1996	0.004 DL	NP	2021	N/A		N/A	
BLM-13-300 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-25-455 Conv	1991	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-40-517 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.3 DL	2017	0.21 DL	2021	0.22 DL	2017	0.2 DL	2021	0.005 DL	NP	2018	0.004 DL	NP	2021	1.10	2017	0.48	2021
BLM-40-595 FLUTe	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2019	0.004 DL	NP	2021	0.67 FB	2014	0.4 DL	2021
BLM-40-688 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.3 DL	2016	0.21 DL	2021	0.22 DL	2016	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	0.74	2016	0.48	2021
BLM-6-488 Conv	1990	Natural Migration (No Overall Trend)	3.10 J	1999	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	14	1999	0.57 J	2022	0.05 RL	NP	1997	0.004 DL	NP	2022	45 FB	2001	0.4 DL	2022
WB-14 Westbay	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.26 J	2021	0.05 RL	NP	1993	0.004 DL	NP	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concen	itration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA (307 Conc	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
WB-5	1990	Non Detect	2.50	1996	0.24	2021	2.50	1996	0.21	2021	2.50	1996	0.2 DL	2021	0.05	NP	1991	0.004	NP	2021	N/A		N/A	
Westbay			RL		DL		RL		DL		RL				RL			DL						

MPCA Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	ntration (u	g/L)	TCE	Conce	ntration (u	g/L)		NDMA	607 Con	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-14-327 Conv	1990	Natural Migration (Decreasing)	230	1995	95	2021	9.20	2002	3.80	2021	180	1995	75	2021	1.20	18	2002	0.58	53	2021	N/A		N/A	
BLM-15-305 Conv	1989	Natural Migration (Decreasing)	770	1991	110	2022	2.50 RL	1996	0.21 DL	2022	22	1989	1.40	2022	150 A	8	1989	20	46	2022	N/A		N/A	
BLM-18-430 Conv	1989	Natural Migration (Decreasing)	120 QD	2005	17 Q	2022	2.50 RL	1996	0.21 DL	2022	58	2009	9.90	2022	0.15 QD	31	2009	0.042	33	2022	N/A		N/A	
BLM-21-400 Conv	1991	Natural Migration (Decreasing)	320	1996	79	2021	12	1995	2.40	2021	220	1991	48	2021	5.60	16	1995	1.10	39	2021	N/A		N/A	
BLM-22-570 Conv	1990	Non Detect	2.50 RL	1995	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-23-431 Conv	1990	Natural Migration (Decreasing)	240	1995	39 Q	2021	8.00	1991	1.60 Q	2021	240	1995	53 Q	2021	1.10	33	2006	0.52	44	2021	N/A		N/A	
BLM-26-404 Conv	1991	Natural Migration (Decreasing)	110	2008	55	2021	2.50 RL	1996	0.61 J	2021	28	2008	20	2021	1.20	50	1991	0.32	53	2021	N/A		N/A	
BLM-27-270 Conv	1991	Natural Migration (No Overall Trend)	500	2010	430	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	1.10	2021	13	41	2006	5.20	50	2021	N/A		N/A	
BLM-36 WestBay	2000	Pumping Related Migration (No Overall Trend)	98	2011	36	2021	4.40	2011	3.20	2021	97	2008	66	2021	2.00	43	2007	1.20	53	2021	N/A		N/A	
BLM-38 WestBay	2000	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.024 J	33	2002	0.004 DL	NP	2021	2.05 EB	2021	2.05 EB	2021
BLM-39 WestBay	2000	Natural Migration (Decreasing)	340	2005	81	2021	10	2007	6.80	2021	330 QD	2002	180	2021	9.70	19	2002	5.50	58	2021	N/A		N/A	
BLM-5-527 Conv	1988	Natural Migration (Incr easing)	23	2020	19	2021	2.50 RL	1996	0.82 J	2021	29	2020	28	2021	0.21	38	2021	0.2	54	2021	220 G	2017	220 G	2017
BLM-8-418 Conv	1988	Non Detect	2.50 RL	1996	0.25 J	2021	2.50 RL	1996	0.21 DL	2021	3.80 QD	2001	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	itration (u	g/L)	TCE	E Conce	ntration (u	g/L)		NDMA	607 Cond	entration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample			Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-9-419 Conv	1989	Natural Migration (Decreasing)	320	1991	3.30	2021	12	1989	0.24 J	2021	240	1989	2.10	2021	8.80	16	1995	0.02 J	42	2021	N/A		N/A	

Main Plume Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Conce	ntration (u	g/L)		NDMA	607 Cond	centration	ı (ug/L)		NDMA	LL Cond	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-1-435 Conv	1988	Natural Migration (Decreasing)	270	1991	45	2020	18	1988	2.40	2020	360	1988	62	2020	5.90	108	1997	1.30	68	2020	N/A		N/A	
BLM-17-493 Conv	1989	Natural Migration (Decreasing)	480	1989	45	2021	31	1989	2.20	2021	430	1989	58	2021	11 A Q	7	1989	1.60	53	2021	N/A		N/A	
BLM-17-550 Conv	1990	Natural Migration (Decreasing)	440	1991	98	2022	20	1990	3.60	2022	390	1991	85	2022	8.10	16	1995	1.50	45	2022	N/A		N/A	
BLM-2-482 Conv	1988	Pumping Related Migration (Decreasing)	320	1996	9.40	2012	16	1996	0.35 J	2012	450	1990	11	2012	2.30 QD	30	2006	0.072	58	2012	N/A		N/A	
BLM-2-630 Conv	1988	Non Detect	470 QD	1988	0.24 DL	2021	8.00	1991	0.21 DL	2021	310 QD	1988	0.2 DL	2021	1.30	31	2002	0.004 DL	NP	2021	N/A		N/A	
PL-1-486 Conv	1988	Pumping Related Migration (Decreasing)	190	1996	0.24 DL	2022	4.60	2004	0.21 DL	2022	180	2004	0.2 DL	2022	0.093	43	2005	0.004 DL	NP	2021	260 QD	2002	0.41 DL	2022
PL-2-504 Conv	1989	Pumping Related Migration (Decreasing)	230	1996	43	2021	2.50 RL	1996	1.30	2021	180	2004	66	2021	0.45 QD	58	2021	0.31	51	2021	300 G RB Q	2020	300 G RB Q	2020
ST-1-473 Conv	1989	Pumping Related Migration (Decreasing)	610	1996	170	2021	13	2010	6.80	2021	370	2005	230	2021	1.70	27	2009	0.61	54	2021	N/A		N/A	
ST-1-541 Conv	1992	Pumping Related Migration (Decreasing)	790	1995	160	2021	37	1995	6.50	2021	650	1995	150	2021	4.80 QD	37	2003	3.40	50	2021	N/A		N/A	
ST-1-630 Conv	1992	Pumping Related Migration (Decreasing)	410	2006	210	2021	19 QD	2007	8.40	2021	440	2000	260	2021	1.90	40	2019	0.44	50	2021	N/A		N/A	
ST-3-486	1991	Pumping Related Migration (Decreasing)	800	1996	2.50	2021	19	2003	0.35 J	2021	690	1991	3.80	2021	4.40	45	2011	0.18	51	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	itration (u	g/L)	TCI	E Conce	ntration (u	ıg/L)		NDMA	607 Conc	entration	ı (ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
ST-3-586 Conv	1992	Pumping Related Migration (Decreasing)	640 T TB Q	1996	0.64 J	2021	15	2007	0.21 DL	2021	320	2005	0.82 J	2021	3.80 QD	37	2003	0.012 J	51	2021	N/A		N/A	
ST-3-666 Conv	1992	Pumping Related Migration (Decreasing)	280	2009	2.70	2021	15	2009	0.28 J	2021	320	2009	4.20	2021	3.70	30	2006	0.092	50	2021	N/A		N/A	
ST-3-735 Conv	1992	Pumping Related Migration (Decreasing)	240	2005	13	2021	14	2007	0.96 J	2021	320	2005	25	2021	7.80 QD	32	2009	0.94	50	2021	N/A		N/A	

Plume Front Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	tration (น	g/L)	TCE	Concer	ntration (u	ıg/L)		NDMA	607 Cond	centration	ı (ug/L)		NDMA	LL Cond	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-10-517 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	4.40	2012	0.2 DL	2022	0.095 RL	NP	1988	0.004 DL	NP	2022	5.90	2020	0.4 DL	2022
BLM-7-509 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.09 J	32	1996	0.004 DL	NP	2021	0.76 FB	2018	0.4 DL	2021
PL-3-453 Conv	1989	Non Detect	5.00 RL	1989	0.24 DL	2020	2.50 RL	1996	0.21 DL	2020	2.50 RL	1996	0.2 DL	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	3.80 RB FB	2005	3.80 RB FB	2005
PL-4-464 Conv	1990	Non Detect	28	2005	0.3 J	2021	2.50 RL	1996	0.21 DL	2021	21	2005	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.70 RB FB	2005	0.4 DL	2021
PL-6 Westbay	1992	Non Detect	4.10 J	1996	0.24 DL	2022	5.60	1996	0.21 DL	2022	4.90 J	1996	0.2 DL	2022	0.64	28	1999	0.004 DL	NP	2022	23	2001	0.45 J	2022
PL-7 Westbay	1993	Fluctuating LL NDMA	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	4.90	2021	2.90 *	2021
ST-2-466 Conv	1989	Non Detect	2.50 RL	1995	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.60 RB	2004	0.48	2021
ST-4-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	1.80 FB	2012	0.4 DL	2021
ST-4-589 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	1.10 RB Q	2008	0.4 DL	2021
ST-4-690 Conv	1992	Non Detect	3.00 J	1998	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	10	1998	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.70	2008	0.43 J	2021
ST-5 Westbay	1992	Fluctuating LL NDMA	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	7.20	2017	1.10 EB	2021
ST-5-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.005 DL	NP	2021	0.7 FB	2002	0.48	2021

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concer	itration (u	g/L)	TCE	E Concei	ntration (u	g/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Cond	centration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
ST-6 Westbay	1998	Non Detect	21 EB	2005	0.62	2021	2.00 DL	1999	0.21 DL	2021	67	2004	0.73	2021	0.012	90	2017	0.004 DL	NP	2021	28 RB FB Q	2005	0.4 DL	2021
ST-7 Westbay	1999	Pumping Related Migration (No Overall Trend)	1.60 DL	2003	1.50	2022	0.62 DL	2004	0.21 DL	2022	1.40	2022	1.40	2022	0.005 DL	NP	2013	0.004 DL	NP	2021	3.80 FB	2002	0.4 DL	2022
WW-1-452 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.3 T	30	2006	0.004 DL	NP	2021	3.20 RB FB	2012	1.00 FB	2021

Sentinel Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE (Concent	tration (น	g/L)	TCE	Concer	ntration (u	ıg/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-A-182 Conv	1989	Natural Migration (Decreasing)	5.00	1995	1.90	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
400-D WestBay	1995	Non Detect	3.30 J EB	1996	0.24 DL	2021	3.50 J	1998	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.29	34	1996	0.004 DL	NP	2021	N/A		N/A	
BLM-42-569 Conv	2020	Non Detect	0.24 DL	2021	0.24 DL	2021	0.21 DL	2021	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.004 DL	NP	2021	0.004 DL	NP	2021	1.60 RB * TB FB	2021	0.4 DL	2021
BLM-42-709 Conv	2020	Non Detect	0.24 DL	2021	0.24 DL	2021	0.21 DL	2021	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.004 DL	NP	2020	0.004 DL	NP	2021	1.50 RB * FB	2021	0.51	2021
JP-1-424 Conv	1988	Non Detect	5.50	2001	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	2.50 RL	1996	0.2 DL	2022	0.061 J	36	1998	0.005 DL	NP	2021	15 RB QD	2004	0.4 DL	2022
JP-2-447 Conv	1988	Non Detect	2.50 RL	1996	0.24 DL	2022	2.50 RL	1996	0.21 DL	2022	4.50	2001	0.2 DL	2022	0.05 RL	NP	1997	0.004 DL	NP	2021	14	2000	0.4 DL	2022
JP-3-509 Conv	2013	Non Detect	0.27 DL	2019	0.24 DL	2022	0.28 DL	2019	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.004 DL	NP	2017	0.004 DL	NP	2021	0.85 * TB	2021	0.4 DL	2022
JP-3-689 Conv	2014	Non Detect	0.27 DL	2019	0.24 DL	2022	0.28 DL	2019	0.21 DL	2022	0.2 DL	2022	0.2 DL	2022	0.005 DL	NP	2014	0.004 DL	NP	2021	1.80 TB FB	2021	0.4 DL	2022
PL-10 Westbay	2002	Non Detect	1.60 DL	2003	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.62 DL	2004	0.2 DL	2022	0.005 DL	NP	2021	0.005 DL	NP	2021	6.10	2019	0.95	2022
PL-11 FLUTe	2017	Fluctuating LL NDMA	0.45 J	2019	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.22 J	2019	0.2 DL	2021	0.005 DL	NP	2017	0.004 DL	NP	2021	5.90 SP	2019	5.10	2021
PL-12-570 Conv	2020	Pumping Related Migration (No Overall Trend)	17	2020	5.30	2021	0.46 J	2020	0.21 DL	2021	20	2020	7.50	2021	0.004 DL	NP	2020	0.004 DL	NP	2021	3.60	2020	1.40	2021
PL-12-800 Conv	2020	Pumping Related	14	2020	8.90	2021	0.24 J	2021	0.21 DL	2021	17	2020	13	2021	0.004 DL	NP	2021	0.004 DL	NP	2021	4.60 FB	2021	3.50	2021

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE	E Conce	ntration (u	ıg/L)		NDMA LL Concentration (ng/L)								
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
		Migration (No Overall Trend)																						
PL-8 Westbay	2000	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	12.0 FB	2002	2.80 EB	2021
WW-2-489 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2014	0.004 DL	NP	2021	0.41 J FB	2016	0.4 DL	2021
WW-2-664 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2014	0.004 DL	NP	2021	1.80 RB * FB	2021	0.4 DL	2021
WW-3 Westbay	2001	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.012 J	40	2004	0.004 DL	NP	2021	95 RB *	2007	2.20	2021
WW-4 Westbay	2001	Non Detect	1.60 DL	2002	0.24 DL	2019	0.62 DL	2004	0.21 DL	2019	0.7 DL	2003	0.2 DL	2019	0.005 DL	NP	2016	0.004 DL	NP	2018	35	2016	0.22 DL	2019
WW-5 Westbay	2001	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2022	0.62 DL	2004	0.21 DL	2022	0.62 DL	2004	0.2 DL	2022	0.005 DL	NP	2016	0.004 DL	NP	2021	6.50 *	2021	2.30	2022

Other Well Group

Well	1st	Freon 11 Concentration (ug/L)				Concer	itration (u	g/L)	TC	E Concei	ntration (u	ıg/L)		NDMA LL Concentration (ng/L)										
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
MPE-1 Conv*	1999	Pumping Related Migration (Decreasing)	560	2005	150	2021	8.70	2010	4.80	2021	180	2010	86	2021	25	30	2009	7.30	52	2021	N/A		N/A	
MPE-10 Conv*	2004	Pumping Related Migration (Increasing)	150	2017	87	2021	3.50	2020	3.30	2021	70	2021	70	2021	8.50	40	2021	6.70	52	2021	N/A		N/A	
MPE-11 Conv*	2004	Pumping Related Migration (No Overall Trend)	65	2008	12	2021	1.60	2008	0.32 J	2021	41	2008	5.30	2021	1.60	40	2007	0.27	52	2021	N/A		N/A	
MPE-8 Conv*	2003	Pumping Related Migration (Increasing)	200	2020	180	2021	4.20	2021	4.20	2021	88	2021	88	2021	6.50	40	2021	5.20	52	2021	N/A		N/A	
MPE-9 Conv*	2004	Pumping Related Migration (No Overall Trend)	250	2015	54	2021	5.60	2018	3.20	2021	130	2018	87	2021	13	35	2019	9.50	44	2021	N/A		N/A	
PFE-1 Conv*	2000	Pumping Related Migration (Decreasing)	110	2010	3.80	2021	4.80	2010	0.32 J	2021	140	2005	5.90	2021	0.39	36	2017	0.12	53	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	Freon 11 Concentration (ug/L)				Concen	tration (u	g/L)	TCE	Conce	ntration (u	g/L)	NDMA 607 Concentration (ug/L)							NDMA LL Concentration (ng/L)				
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year		
PFE-2 Conv*	2000	Pumping Related Migration (Decreasing)	170	2007	58	2022	7.60	2007	2.10	2022	220	2007	55	2022	0.39	38	2021	0.33	46	2022	N/A		N/A			
PFE-3 Conv*	1991	Pumping Related Migration (Decreasing)	290	2006	37	2021	18	2004	1.80	2021	340	2004	44	2021	3.90	18	1991	0.34	38	2021	N/A		N/A			
PFE-4A Conv*	2001	Pumping Related Migration (Decreasing)	190	2004	1.10	2022	8.40	2007	0.21 DL	2022	240	2004	1.10	2022	0.26	36	2010	0.014 J	46	2022	N/A		N/A			
¹ PFE-5	2000	Pumping Related Migration (Decreasing)	120	2009	18	2022	7.70	2006	1.60	2022	180	2009	41	2022	2.40	33	2006	0.7	46	2022	N/A		N/A			
PFE-7 Conv*	2001	Pumping Related Migration (Decreasing)	32	2004	4.00	2022	0.81 J	2004	0.21 DL	2022	41	2004	4.10	2022	0.022	44	2004	0.005 DL	NP	2022	N/A		N/A			

Notes:

T-C plot interpretations are based on a review of all T-C plots for a given well. This table generalizes the historical maximum concentration and last concentrations for four of the primary VOCs in groundwater. Evaluation of the data in this table should be used in conjunction with T-C plots as the maximum and current values do not always accurately represent the overall T-C plot trend.

NDMA analytical results using two methods: 1) Method 607 (ug/L), extraction efficiency provided, the applicable detection limit is typically 0.004 to 0.005 ug/L; and 2) Low Level (ng/L), the applicable detection limit is 0.22 to 0.23 ng/L.

For wells with several maximum concentrations with the same value (typically the detection limit), the latest sampling event for which the detection limit applied was used for the sample year.

J = Concentration values between the detection limit and practical quantitation limit.

FB = Detected in field blank

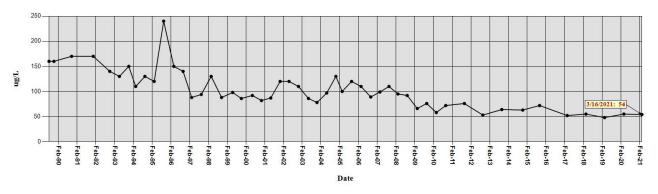
EB = Detected in equipment blank

NP = NDMA Method 607 extraction efficiency not provided where the analytical result is non-detect (eg, 0.004DL or 0.05RL)

TB = Detected in trip blank

QD = duplicate error

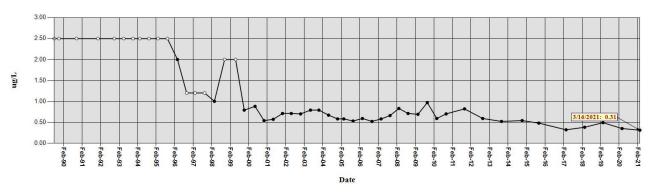
RL = Concentration presents half of the reporting limit. The maximum reporting limits and most recent year it was used are reported in the table. Reporting limits can change over time, typically decreasing as analytical techniques improve.


DL = Maximum detection limit and most recent year they were used are reported in the table. Detection limits can change over time, typically decreasing as analytical techniques improve.

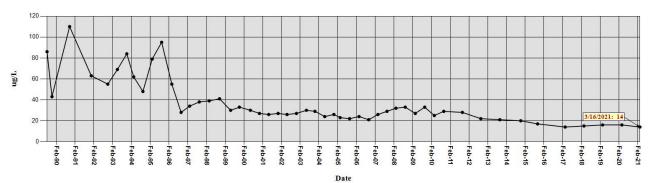
¹Well PFE-5 taken offline in 2011. Last sampled on 2/19/2014 using a Bennett pump.

Well ID: 200-D-240
CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260

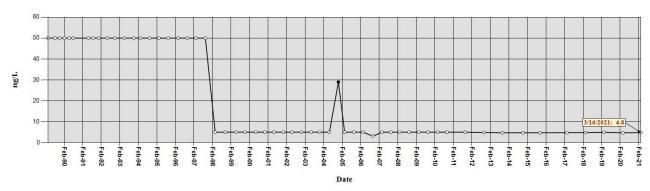

---- Non-Detect ---- Detection

Well ID: 200-D-240 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

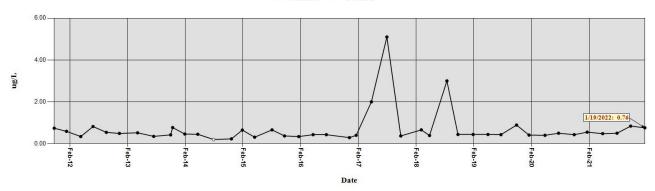
--> Non-Detect --> Detection

Well ID: 200-D-240 CAS RN: 79-01-6 Trichloroethene

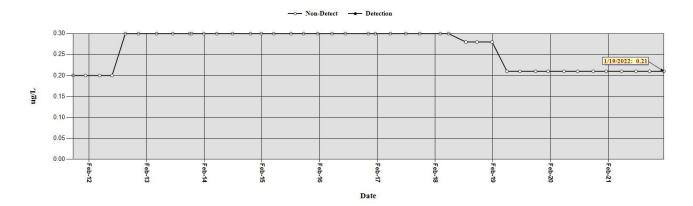

Analysis: 8260

Well ID: 200-D-240 CAS RN: 62-75-9 N-Nitrosodimethylamine

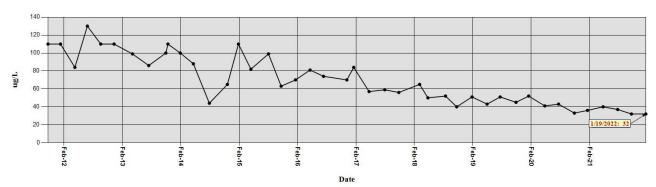
Analysis: 607


Results are Corrected for Extraction Efficiency

Well ID: 600-G-138 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

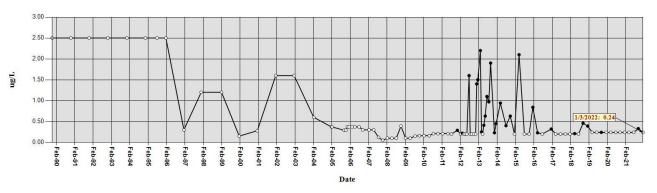

Analysis: 8260

→ Non-Detect → Detection


Well ID: 600-G-138 CAS RN: 127-18-4 Tetrachloroethene

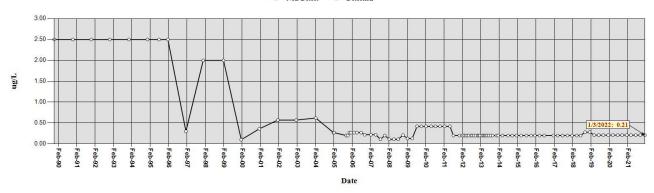
Analysis: 8260

Well ID: 600-G-138 CAS RN: 79-01-6 Trichloroethene

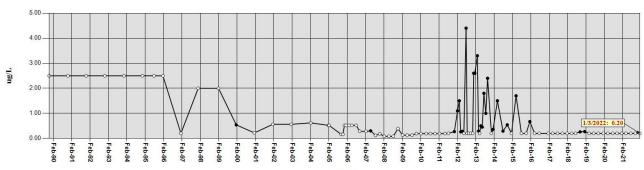

Analysis: 8260

Well ID: BLM-10-517 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

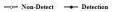
Analysis: 8260

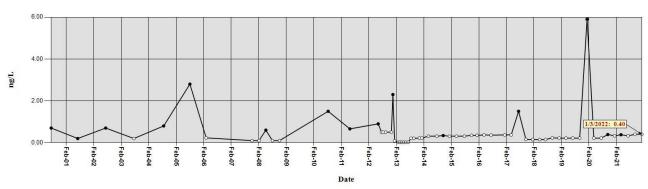

→ Non-Detect → Detection

Well ID: BLM-10-517 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

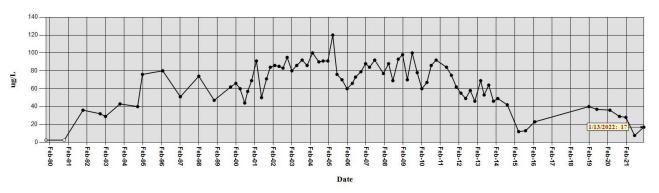
→ Non-Detect → Detection


Well ID: BLM-10-517 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

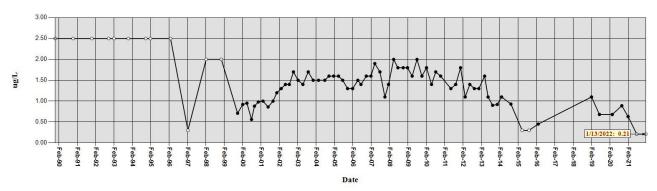
Well ID: BLM-10-517 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: NDMA_LL

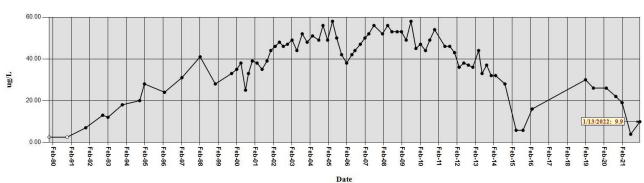


Well ID: BLM-18-430 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260

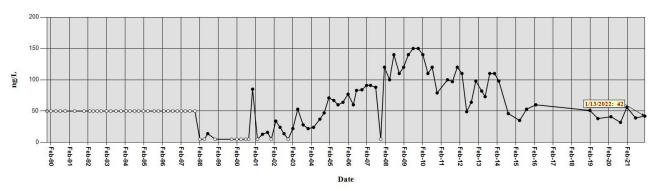


Well ID: BLM-18-430 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

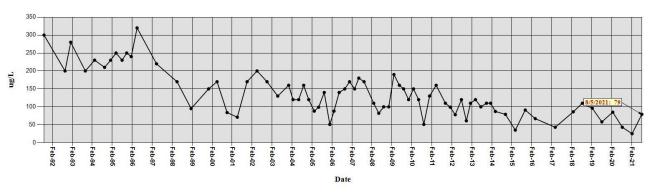
→ Non-Detect → Detection

Well ID: BLM-18-430 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

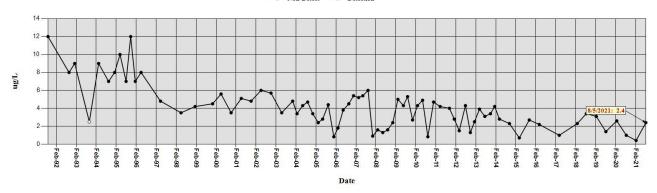
Well ID: BLM-18-430 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

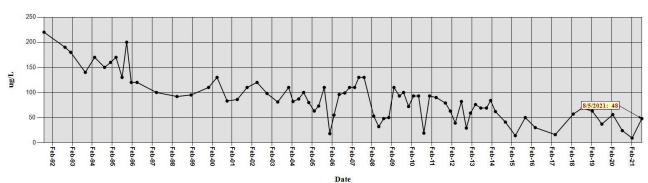

Results are Corrected for Extraction Efficiency

Well ID: BLM-21-400 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

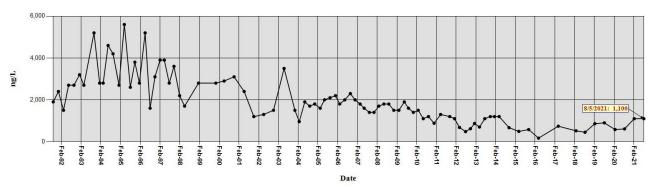
Analysis: 8260



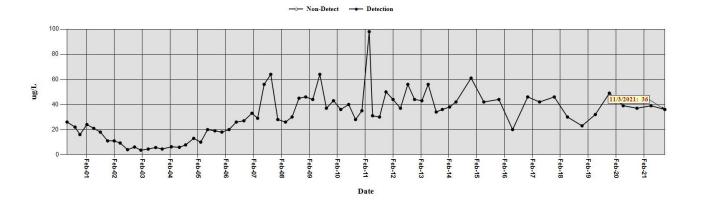
Well ID: BLM-21-400 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

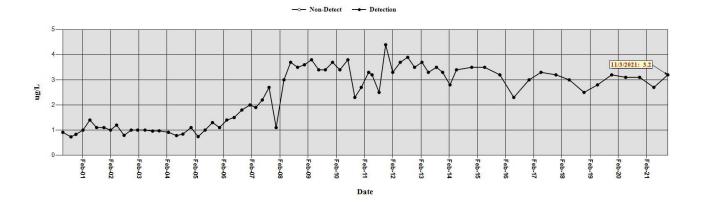
Well ID: BLM-21-400 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

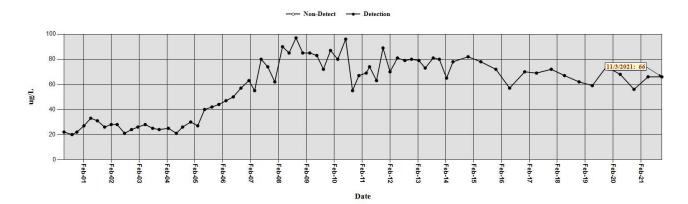
Well ID: BLM-21-400 CAS RN: 62-75-9 N-Nitrosodimethylamine


Analysis: 607

Results are Corrected for Extraction Efficiency


Well ID: BLM-36-350 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

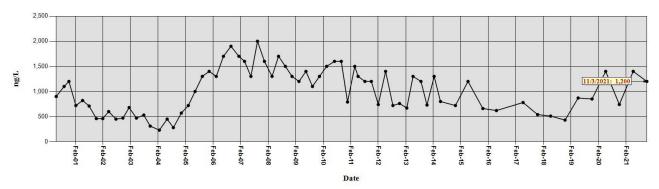
Analysis: 8260


Well ID: BLM-36-350 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

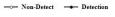
Well ID: BLM-36-350 CAS RN: 79-01-6 Trichloroethene

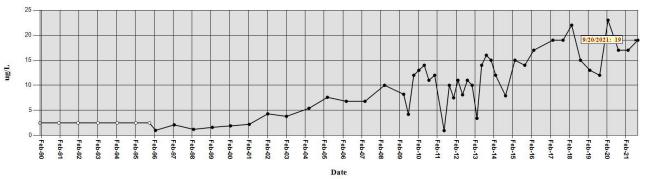
Analysis: 8260



Well ID: BLM-36-350 CAS RN: 62-75-9 N-Nitrosodimethylamine

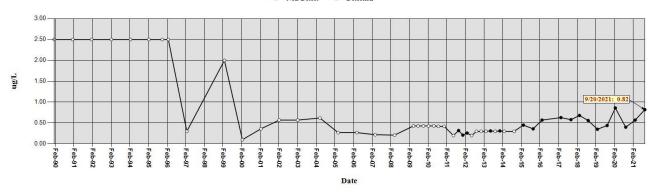
Analysis: 607


Results are Corrected for Extraction Efficiency

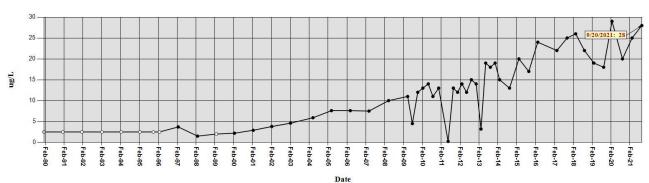

-->- Non-Detect --> Detection

Well ID: BLM-5-527 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

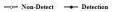
Analysis: 8260

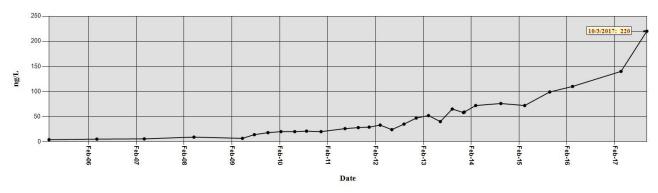


Well ID: BLM-5-527 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

→ Non-Detect → Detection

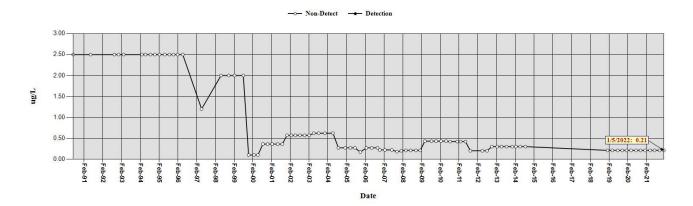

Well ID: BLM-5-527 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

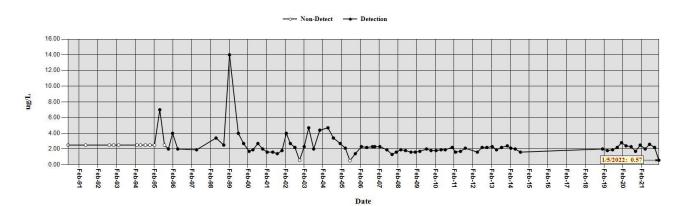
Well ID: BLM-5-527 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: NDMA_LL

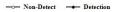
Well ID: BLM-6-488 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

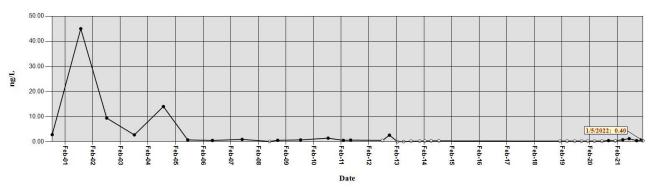

Analysis: 8260

Well ID: BLM-6-488 CAS RN: 127-18-4 Tetrachloroethene


Date

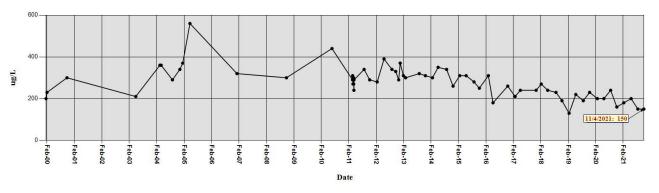
Analysis: 8260


Well ID: BLM-6-488 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

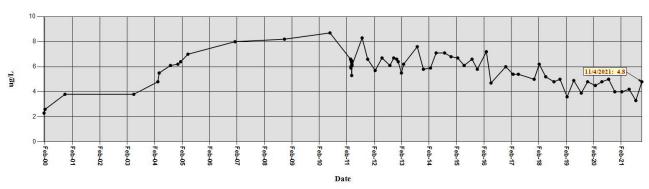
Well ID: BLM-6-488 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: NDMA_LL

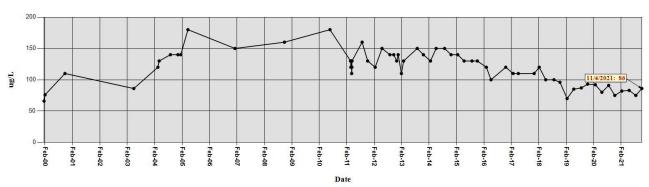


Well ID: MPE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260


→ Non-Detect → Detection

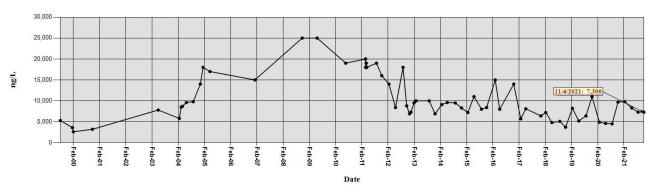
Well ID: MPE-1 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

→ Non-Detect → Detection

Well ID: MPE-1 CAS RN: 79-01-6 Trichloroethene

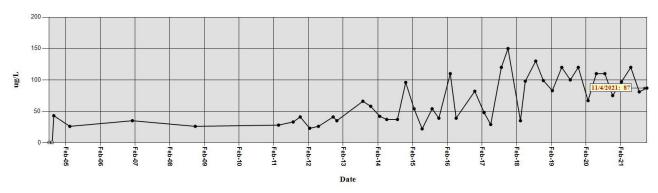
Analysis: 8260



Well ID: MPE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine

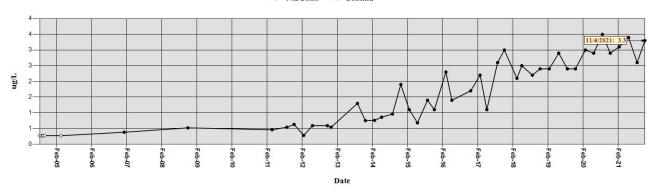
Analysis: 607

Results are Corrected for Extraction Efficiency

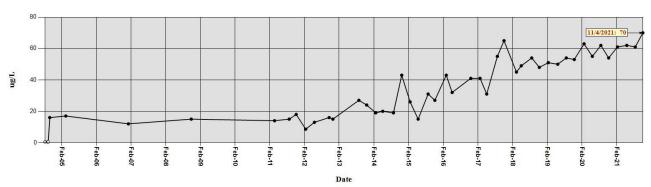

-->- Non-Detect --> Detection

Well ID: MPE-10 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



Well ID: MPE-10 CAS RN: 127-18-4 Tetrachloroethene

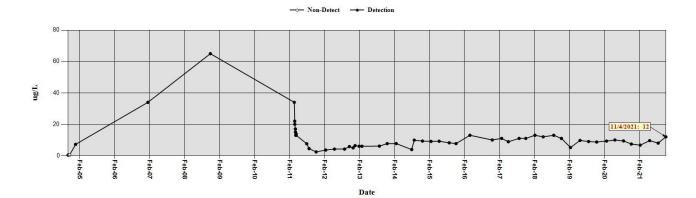

Analysis: 8260

→ Non-Detect → Detection

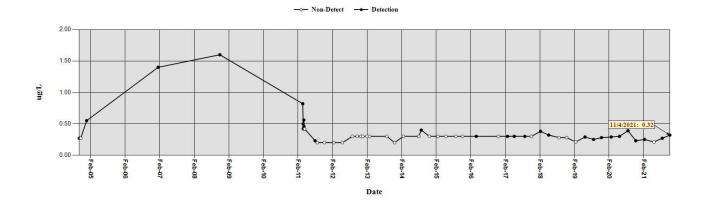
Well ID: MPE-10 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

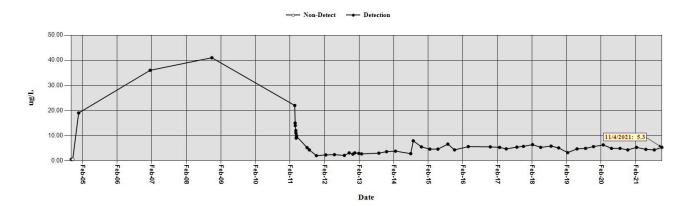
Well ID: MPE-10 CAS RN: 62-75-9 N-Nitrosodimethylamine


Analysis: 607

Results are Corrected for Extraction Efficiency

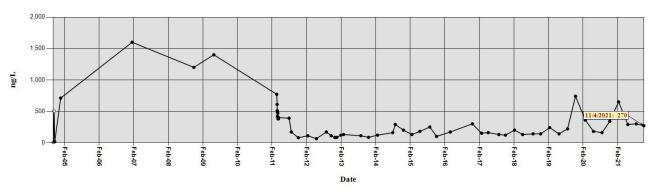

Well ID: MPE-11 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260


Well ID: MPE-11 CAS RN: 127-18-4 Tetrachloroethene

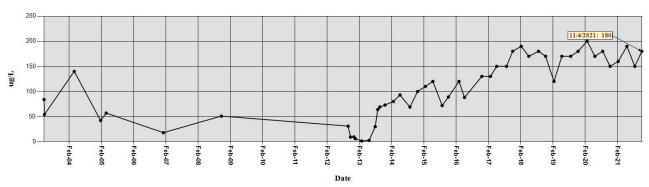
Analysis: 8260

Well ID: MPE-11 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

Well ID: MPE-11 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607


Results are Corrected for Extraction Efficiency

Well ID: MPE-8 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



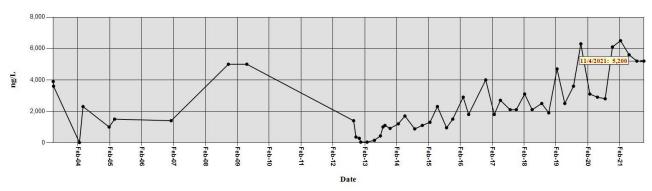
Well ID: MPE-8 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

→ Non-Detect → Detection

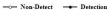
Well ID: MPE-8 CAS RN: 79-01-6 Trichloroethene

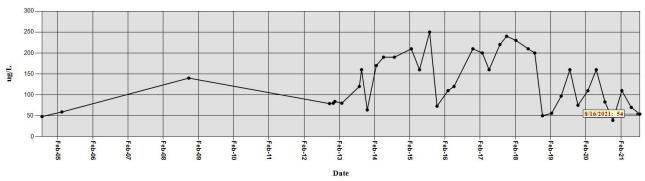
Analysis: 8260



Well ID: MPE-8 CAS RN: 62-75-9 N-Nitrosodimethylamine

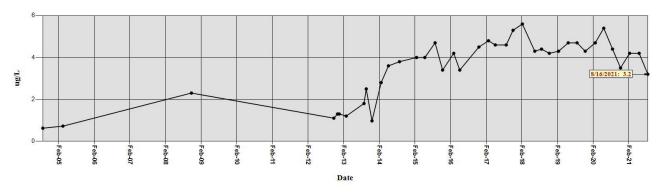
Analysis: 607


Results are Corrected for Extraction Efficiency

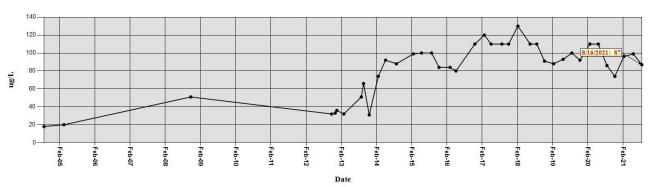

-->- Non-Detect --> Detection

Well ID: MPE-9 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



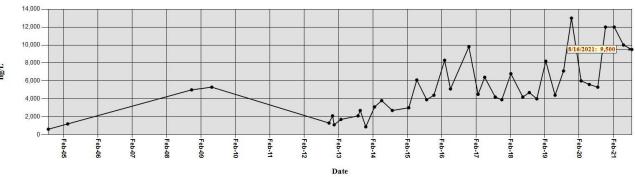
Well ID: MPE-9 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

→ Non-Detect → Detection

Well ID: MPE-9 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

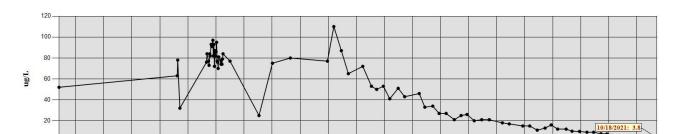


Well ID: MPE-9 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

Results are Corrected for Extraction Efficiency

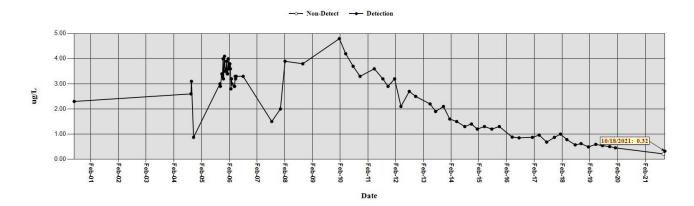
-->- Non-Detect --> Detection



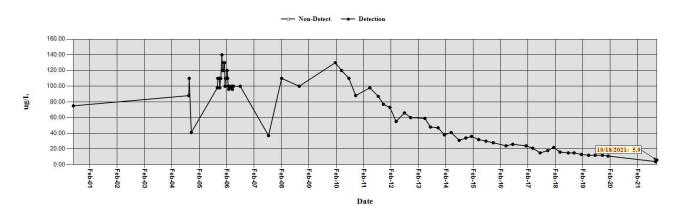
no/L

Well ID: PFE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260

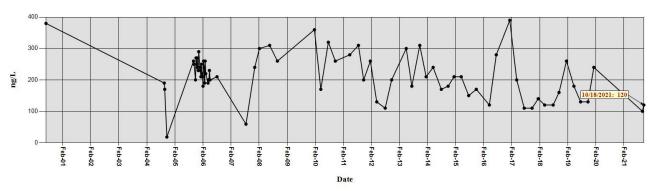

→ Non-Detect → Detection

Date


Well ID: PFE-1 CAS RN: 127-18-4 Tetrachloroethene

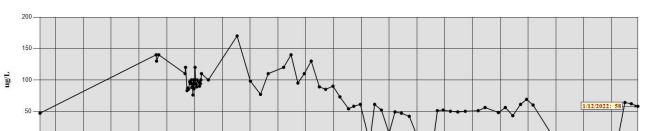
Analysis: 8260

Well ID: PFE-1 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

Well ID: PFE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607


Results are Corrected for Extraction Efficiency

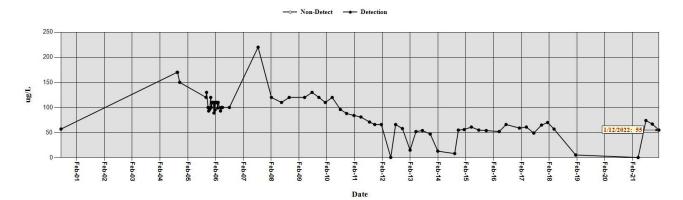
Well ID: PFE-2 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260

→ Non-Detect → Detection

Well ID: PFE-2

Date

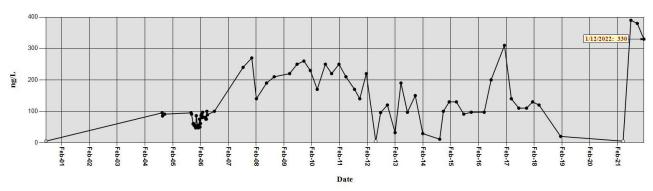

CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

0 -

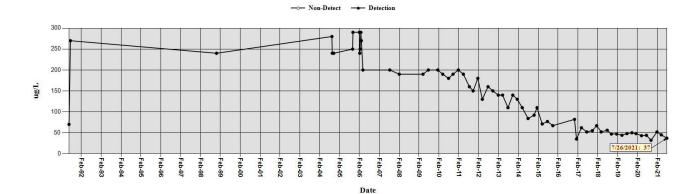
> Well ID: PFE-2 CAS RN: 79-01-6 Trichloroethene

> > Analysis: 8260

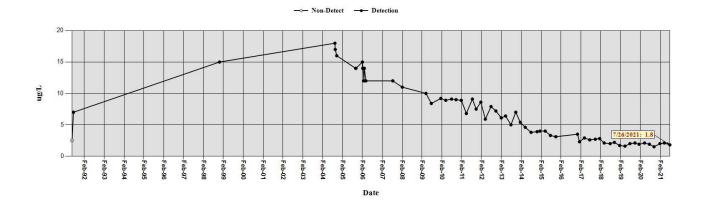


Well ID: PFE-2 CAS RN: 62-75-9 N-Nitrosodimethylamine

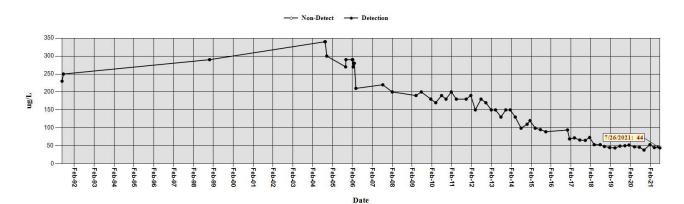
Analysis: 607


Results are Corrected for Extraction Efficiency

-->- Non-Detect --> Detection


Well ID: PFE-3 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

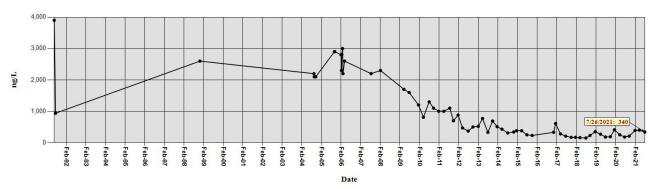
Analysis: 8260


Well ID: PFE-3
CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260

Well ID: PFE-3 CAS RN: 79-01-6 Trichloroethene

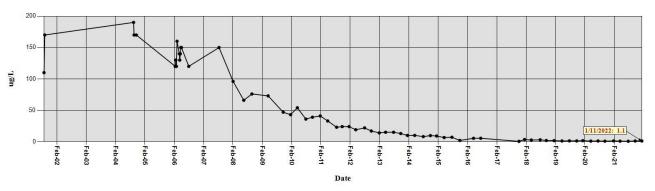
Analysis: 8260



Well ID: PFE-3 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

Results are Corrected for Extraction Efficiency


-->- Non-Detect --> Detection

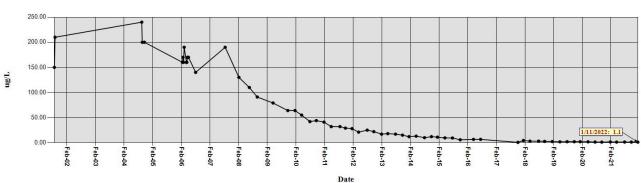
Well ID: PFE-4A CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



Well ID: PFE-4A CAS RN: 127-18-4 Tetrachloroethene

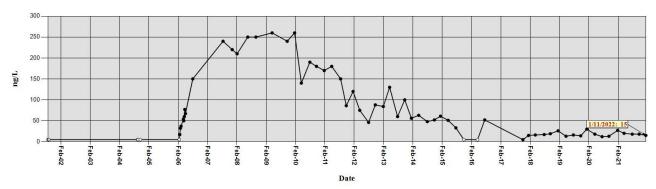
Analysis: 8260


→ Non-Detect → Detection

Well ID: PFE-4A CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

→ Non-Detect → Detection

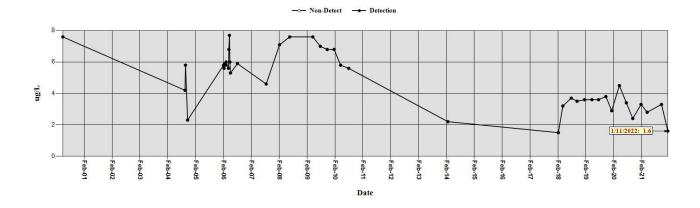


Well ID: PFE-4A CAS RN: 62-75-9 N-Nitrosodimethylamine

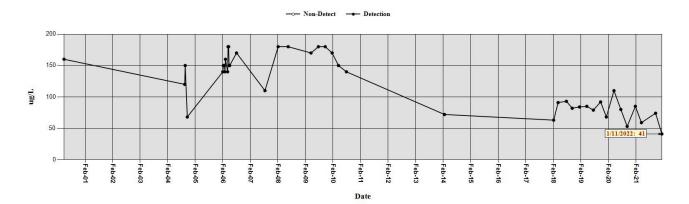
Analysis: 607

Results are Corrected for Extraction Efficiency

-->- Non-Detect --> Detection

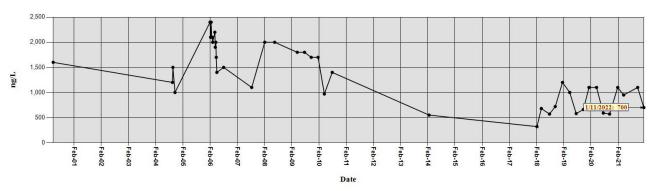

Well ID: PFE-5 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260


Well ID: PFE-5 CAS RN: 127-18-4 Tetrachloroethene

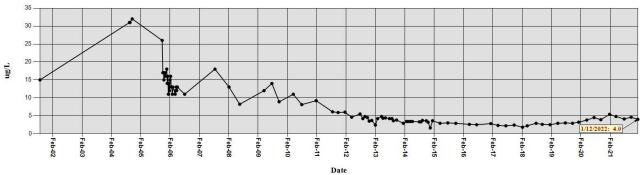
Analysis: 8260

Well ID: PFE-5 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

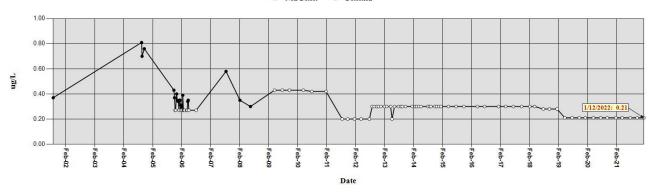
Well ID: PFE-5 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607


Results are Corrected for Extraction Efficiency

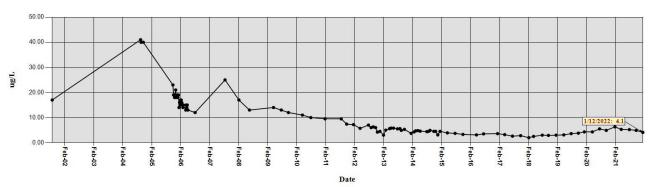
Well ID: PFE-7 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



Well ID: PFE-7 CAS RN: 127-18-4 Tetrachloroethene

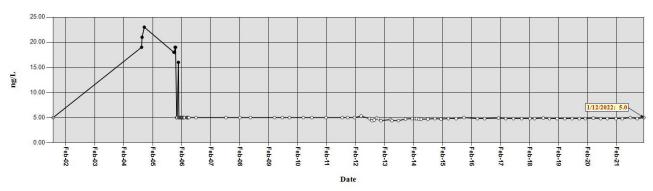
Analysis: 8260


→ Non-Detect → Detection

Well ID: PFE-7 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

→ Non-Detect → Detection



Well ID: PFE-7 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

Results are Corrected for Extraction Efficiency

→ Non-Detect → Detection

Appendix F Summary of Source Area Investigations

Summary of Groundwater Monitoring Projects and Source Area Investigations

1.0 Groundwater Monitoring Well Abandonment, Installation, and Reconfiguration

1.1 Well Abandonment and Replacement

There was no fieldwork related to well abandonment or replacement in the first quarter of 2022.

1.1.1 Wells BLM-42 and PL-12

In 2019, NASA plugged and abandoned (P&A) wells BLM-37 and PL-5 in accordance with the *Work Plan for Abandonment of NASA WSTF Monitoring Well BLM-37 and Replacement with Monitoring Well BLM-42* (NASA, 2018) and the *NASA WSTF Drilling Work Plan for Groundwater Monitoring Well PL-12* (NASA, 2017a). NASA replaced these wells with BLM-42 and PL-12, respectively. NASA submitted the *Well Completion Report for BLM-42* on May 4, 2020 (NASA, 2020f). NMED reviewed the report and issued an approval with modifications on May 6, 2021 (NMED, 2021l). NASA submitted a response to the approval with modifications of the BLM-42 well completion report on May 18, 2021 (NASA, 2021i). NASA also submitted the *Well Completion Report for Well PL-12* on May 4, 2020 (NASA, 2020g). NMED reviewed the report and issued an approval on May 6, 2021 (NMED, 2021j).

A comprehensive summary of activities and correspondence related to wells BLM-42 and PL-12 was provided in the Periodic Monitoring Report – Third Quarter 2021 (NASA, 2021z).

1.1.2 Well BLM-30

On November 5, 2020, NMED issued an approval with modifications (NMED, 2020j) of NASA's plan to P&A well BLM-30 and replace it with new well BLM-43. NMED directed NASA to perform geophysical logging and to provide a well completion report for BLM-43 no later than November 30, 2021. NASA submitted the *Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43* on February 3, 2021 (NASA, 2021a) and corresponded with the New Mexico Office of the State Engineer (NASA, 2021e) on the plugging plan for well BLM-30 and application for a permit to drill well BLM-43. On September 28, 2021, NASA submitted the *Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43* (NASA, 2021t). NMED approved the request on October 27, 2021, which extended the due date for submittal of the report to November 30, 2022 (NMED, 2021q).

1.1.3 Well BLM-28

NASA plans to abandon well BLM-28 and install replacement well 600C-001-GW. See also Section 1.4.1.

1.1.4 Well NASA 9

In June of 2020, NASA attempted to remove the dedicated low-flow bladder pump from well NASA 9 to extend the tubing and lower the pump intake due to declining water levels. During removal activities, the tubing bundle separated from the pump, and the pump then dropped into the 5-foot (ft) well sump. During attempts to recover the pump using special fishing tools, NASA discovered that the inside of the 2-inch stainless-steel casing was obstructed with small roots just above and below the static water level. Numerous attempts to lock onto the top of the pump with the fishing tool were unsuccessful and the

bladder pump could not be retrieved. On November 15, 2021, NMED approved the 2021 Groundwater Monitoring Plan (GMP) with a modification that directed NASA to submit a work plan for abandoning and replacing well NASA 9 (NMED, 2021r). NASA plans to prepare and submit the required work plan.

1.2 Well Abandonment

There was no fieldwork related to well abandonment in the first quarter of 2022.

1.2.1 200-SG Wells

On September 13, 2018, NMED approved NASA's April 24, 2018 GMP update for 2018 (NMED, 2018a; NASA, 2018b) with modifications, one of which required NASA to provide additional information on wells 200-SG-2 and 200-SG-3 and provide the rationale for not including them in the sampling schedule. NASA's December 3, 2018 response provided the required information and indicated that NASA would evaluate wells 200-SG-2 and 200-SG-3 for potential future sampling (NASA, 2018d). In April 2019, NASA evaluated the performance of the two wells, and determined that the groundwater levels in each are inadequate to allow for the collection of representative samples. NASA also determined that the relatively low concentrations of WSTF COC in these wells are not representative of groundwater within the Gardner Spring Arroyo in which monitoring well 200-D-109 is installed.

In their January 25, 2021 Approval with Modifications of the NASA Groundwater Monitoring Plan 2020 Update, NMED directed NASA to prepare and submit a work plan for abandonment of monitoring wells 200-SG-2 and 200-SG-3 and installation of replacement wells, to be submitted for review no later than November 30, 2021 (NMED, 2021b). NASA submitted the Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3 for NMED review on November 30, 2021 (NASA, 2021aa). NMED approved the work plan on January 10, 2022 (NMED, 2022a). NASA does not intend to replace these wells and they are not included in this Plan. NASA continues to plan for well plugging and abandonment.

1.3 Well Installation

There was no fieldwork related to well installation in the first quarter of 2022.

1.3.1 New Well 600C-001-GW

NMED is reviewing the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW*, submitted on August 31, 2021 (NASA, 2021v, pp1-2).

1.4 Westbay Well Reconfiguration

As of calendar Year 2020, NASA has reconfigured two Westbay wells (JP-3 and WW-2) to dual-zone dedicated low-flow bladder pumps and seven Westbay wells (BLM-32, JER-1, JER-2, ST-6, ST-7, WW-4, and WW-5) to multiport Water FLUTe sampling systems.

1.4.1 BLM-28

NASA submitted the *Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon* on May 4, 2020 (NASA, 2020i). On November 19, 2020, NMED provided requirements for abandonment and replacement of the well (NMED, 2020l). The requirements were that after complete evaluation of all available data and information, NASA would then either submit a work

plan for a replacement monitoring well or formally notify NMED that BLM-28 will not be replaced no later than January 31, 2022.

Following NMED's direction from the November 19, 2020 response for reconfiguring BLM-28, NASA submitted a work plan for abandonment of well BLM-28 on April 29, 2021 (NASA, 2021h). NASA then determined that a replacement well is necessary and developed and submitted the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW* on August 31, 2021 (NASA, 2021p, p1).

1.4.2 BLM-30

On November 5, 2020, NMED issued an approval with modifications (NMED, 2020i) of NASA's plan to P&A well BLM-30 and replace it with new well BLM-43 and required geophysical logging and a due date as November 30, 2021 for the BM-43 well completion report. NASA provided a response to the Approval with Modifications on February 3, 2021 (NASA, 2021a) and corresponded with the New Mexico Office of the State Engineer (NASA, 2021e) on the plugging plan for well BLM-30 and application for a permit to drill well BLM-43. Owing to contractor backlog due to COVID, NASA requested a one-year extension to submit the completion report on September 28, 2021 (NASA, 2021y).

1.4.3 BW-4

NASA determined that the well BW-4 can be reconfigured for continued use and submitted a well reconfiguration work plan for well BW-4 on June 29, 2021 (NASA, 2021m, p5).

1.4.4 Data Representativeness and Westbay Well Reconfiguration Plan

The FLUTe Data Representativeness investigation took the form of isolation and serial sampling of four zones of well WW-4 with the FLUTe liner removed. NASA completed the groundwater data representativeness evaluation performed at groundwater monitoring well WW-4 and submitted the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* to NMED on February 27, 2020 (NASA, 2020d, pp2-13). NMED reviewed the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* (2/27/2020) and on June 3, 2021 issued an Approval with Modifications (NMED, 2021m). This approval required a change to the investigation report indicating a need for an expanded investigation, and a subsequent work plan for the investigation. NASA submitted a response to the approval with modifications on August 17, 2021 (NASA, 2021u, p14).

The Westbay Well Reconfiguration Plan required time extensions to allow NASA to evaluate data from FLUTe sampling systems currently in place at WSTF, in the form of data from Westbay wells converted to FLUTe, and from laboratory testing of the FLUTe sample components. Beginning in 2020, NMED approved an extension request to submit the well reconfiguration work plan no later than December 31, 2020 (NMED, 2020d). On November 30, 2020, NASA submitted a *Request for Fourth Extension of Time for Well Reconfiguration Work Plan* (NASA, 2020r). NMED approved the fourth extension request for submittal of the well reconfiguration work plan for wells PL-6, PL-7, PL-8, PL-10, ST-5, and WW-3 on January 25, 2021 (NMED, 2021a). NASA submitted the *Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3* to NMED on April 29, 2021 (NASA, 2021g, pp2-4).

2.0 Source Area Investigations

2.1 200 Area

At the start of 2020, NMED approved a request for extension on January 16 for NASA to respond to 12 comments and submit a revised investigation report by February 3, 2020 (NMED, 2020b). NASA

developed the required responses to the 12 comments in NMED's June 5, 2019 Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report (NMED, 2019b) and submitted the *NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report* on January 30, 2020 (NASA, 2020b).

2.2 300 Area

Work in the 300 Area is primarily related to investigation and closure of the adjacent 400 Area. Prior to 2020, NASA's May 30, 2019 300 Area Supplemental Abbreviated Drilling Work Plan (NASA, 2019f) was the first document submitted. NMED disapproved the work plan on March 19, 2021 (NMED, 2021f) and directed NASA to address four comments and submit a revised work plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan on July 14, 2021 (NASA, 2021p).

2.3 400 Area

Prior to 2020, NASA's last submittal for the 400 Area was the December 30, 2019 400 Area Closure Investigation Report (NASA, 2019q; revised). NMED disapproved report on March 19, 2021 (NMED, 2021g) and directed NASA to address 17 comments and submit a revised report no later than July 30, 2021. NASA submitted the NASA WSTF 400 Area Closure Investigation Report – NMED Third Disapproval Response on July 27, 2021 (NASA, 2021s, Response Table). NASA also submitted the 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on May 29, 2019 (NASA, 2019d) and the related 300 Area Supplemental Abbreviated Drilling Work Plan (NASA, 2019f) for two additional multiport soil vapor and groundwater monitoring wells in the 300 Area. NMED disapproved the 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on March 15, 2021 (NMED, 2021e), and NMED directed NASA to address three comments and submit a revised monitoring plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on July 14, 2021 (NASA, 2021q, Response Table).

2.4 600 Area Perched Groundwater Investigations

2.4.1 600 Area Perched Groundwater Extraction

NASA initiated extraction of perched groundwater from monitoring well 600-G-138 on April 19, 2013 in accordance with the NMED-approved 600 Area Perched Groundwater Extraction Pilot Test Work Plan (NASA, 2012). NASA has continued to extract groundwater in accordance with the plan and submit annual status reports. NASA submitted the Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 8 on April 29, 2021 (NASA, 2021f). NMED approved the report on December 8, 2021 (NMED, 2021s).

2.4.2 600 Area Perched Groundwater Investigation.

At the start of 2020, a 600 Area Perched Groundwater investigation and report was scheduled in accordance with the *Abbreviated Investigation Work Plan for 600 Area Perched Groundwater* (NASA, 2016b). This work plan was subsequently changed per NASA's August 7, 2019 *Request to Remove Electrical Resistivity Component of the 600 Area Perched Groundwater Geophysical Survey based on Geophysical Subcontractor Input Received during the Procurement Process* (NASA, 2019j) and NMED's August 23, 2019 approval (NMED, 2019c).

In 2019, a seismic reflection and reflection survey was completed in accordance with the AIWP and work scope modification (NASA, 2019o). NASA provided the *Synopsis of the Findings of the 600 Area Closure Geophysical Seismic Refraction Tomography and Reflection Surveys with Revised Soil Boring*

Locations Submitted for NMED Approval on December 19, 2019 (NASA, 2019p). Because of an indeterminate review period for that status report and the start of drilling dependent on approval of the boring locations recommended therein, NASA had submitted a Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report on March 24, 2020 (NASA, 2020c). NMED approved the extension on July 1, 2020 to 150 days after NMED provides comments (NMED, 2020l).

On December 22, 2020, NMED issued its *Approval with Modifications 600 Area Closure Geophysical Survey Status Report* (NMED, 2020m) and established a due date for the 600 Area Perched Groundwater Investigation Report of December 31, 2021. On May 18, 2021, NASA provided the *Response to NMED Approval with Modifications for the 600 Area Closure Geophysical Survey Status Report – Comment 2 (Further Investigation*) (NASA, 2021j) in which NASA proposed a different approach for collection of geophysical data up- and down-gradient of the 600 Area Closure. The accuracy of the 600 Area geophysical survey would be assessed by comparing the actual bedrock depths from six NMED-approved perched groundwater investigation borings to the predicted depths from the geophysical survey before expanding the geophysical survey. NMED concurred with the approach on July 6, 2021 (NMED, 2021n). During the remainder of 2021, NASA performed planning and procurement activities in preparation for investigation fieldwork, which was initiated in January 2022 as described in Section 6.4.4 of the report body.

2.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

2.5.1 Interim Status Reports and Investigation Reports

2.5.1.1 100 Area Lagoons

On May 29, 2019, NASA submitted the NASA WSTF (White Sands Test Facility) 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report (NASA, 2019e). NMED responded to that report on May 14, 2020 (NMED, 2020i) and informed NASA that comments would be incorporated into the SWMU 2 Investigation Report. NASA submitted the NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report on August 3, 2020 (NASA, 2020l).

2.5.1.2 200 Area Lagoons

NASA submitted the NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report to NMED on November 25, 2019 (NASA, 2019n) The report remains under review as of this report date.

2.5.1.3 600 Area Lagoons

NASA submitted the NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report to NMED on November 26, 2019 (NASA, 20190). The report remains under review as of this report date.

2.5.1.4 STGT Lagoons

In February 2020, NASA and a subcontracted drilling company completed installation of the five remaining soil borings at the STGT Wastewater Lagoons. NASA collected and managed samples of subsurface soil and shipped them to the off-site laboratories for analysis. This activity completed soil sampling described in the NMED-approved work plan. NASA conducted soil vapor sampling at the STGT Wastewater Lagoons in March 2020. This completed all investigation fieldwork described in the

NMED-approved work plan. NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report on October 13, 2020 (NASA, 2020o, p42). The report remains under review as of this report date.

2.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines)

NASA provided the *Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report* to NMED on July 30, 2019 (NASA, 2019i). On November 16, 2020, NMED disapproved the revised report (NMED, 2020k) and directed NASA to address 16 comments and perform resampling along the HWTL by August 30, 2021. On May 19, 2021, NASA requested that the due date for submittal of a revised report be extended from August 30, 2021 to November 30, 2021 (NASA, 2021l). NMED approved this extension on July 6, 2021 (NMED, 2021o). NASA completed the collection of replacement soil samples for the analysis of volatile organic compounds along the HWTL on August 31, 2021. NASA installed 12 soil vapor implants at the sampling locations nearest the 200 Area occupied buildings and collected soil vapor samples using 1-liter SUMMA canisters on September 23, 2021. Due to ongoing drilling and laboratory contractor backlog due to COVID, on September 14, 2021, NASA then requested a second extension to submit the revised IR by January 31, 2022 (NASA, 2021w).

2.7 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

Preliminary investigation fieldwork was performed at the 600 Area BLM Off-Site Soil Pile in November and December 2015. NASA submitted the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report on February 25, 2016 (NASA, 2016a). NMED disapproved three revisions of the report prior to 2020. NMED provided the Approval with Modifications 600 Area Bureau of Land Management Off-Site Soil Pile (SWMU 16) Revised Investigation Report on May 6, 2021 (NMED, 2021k). The Approval with Modifications required submittal of an Accelerated Corrective Measures work plan no later than September 30, 2021. NASA submitted the Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report on July 20, 2021 (NASA, 2021r) and then submitted the Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) on September 28, 2021 (NASA, 2021x, p9).

2.8 SWMUs 18–20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank, and 800 Area Oxidizer Burner)

NMED reviewed the Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report (NASA, 2019g) and issued the Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report on August 27, 2020 (NMED, 2020i).

2.9 SWMUs 21-27 (Septic Tanks)

NMED disapproved NASA's July 23, 2019, Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (NASA, 2019h, the revised IR) on January 29, 2021 and directed NASA to address six comments no later than May 30, 2021 (NMED 2021c). NASA addressed the six comments and submitted the Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report on May 18, 2021 (NASA, 2021k, Response Table).

2.10 SWMUs 29-31 (Small Arms Firing Ranges)

Leading up to 2020, NASA completed additional fieldwork required to respond to NMED's February 21, 2019, Second Disapproval of Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. NMED (NMED, 2019a) approved NASA's October 28, 2019 request to extend the due date for submittal

of the disapproval response and revised remedy completion report from December 31, 2019 to February 28, 2020 (NASA, 2019l). NASA determined that additional time was required to complete the planned human and ecological health risk assessment for the three SWMUs and submitted the Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report on January 29, 2020 (NASA, 2020a). NMED approved the request on March 21, 2020 (NMED, 2020d), extending the due date for submittal of the report from February 28, 2020 to April 24, 2020. NASA prepared the response to NMED's February 21, 2019 Second Disapproval of Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report (March 30, 2018) and submitted the Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report on August 3, 2020 (NASA, 2020k).

2.11 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

Anticipating closure of Test Stand 302 apart from a full closure, NASA submitted the 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) (NASA, 2020l) on August 17, 2020.

2.12 SWMU 47 (500 Area Fuel Storage Area)

NASA submitted the 500 Area Fuel Storage (SWMU 47) Investigation Work Plan on September 26, 2018 (NASA, 2018c). NMED disapproved the work plan on August 8, 2019 (NMED, 2019d) and directed NASA to address 14 comments and submit a revised work plan by November 25, 2019. NASA submitted the *Response to Disapproval of 500 Area (SWMU 47) Investigation Work Plan* on November 21, 2019 (NASA, 2019m). NMED disapproved the revised work plan on March 19, 2021 and directed NASA to address five comments and submit a revised IWP no later than July 31, 2021 (NMED, 2021h). NASA addressed NMED's comments and submitted the *Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan* on June 29, 2021 (NASA, 20210, Response Table).

2.13 SWMU 49 (700 Area Landfill)

NASA submitted the NASA White Sands Test Facility (WSTF) SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan (IWP) and Historical Information Summary (HIS) on December 28, 2017 (NASA, 2017b). NMED disapproved the work plan (NMED, 2018b) and directed NASA to address eight comments and submit a revised work plan by May 31, 2019. NASA submitted the Response to NMED Disapproval SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary on March 28, 2019 (NASA, 2019b). NMED approved the work plan with modification on June 6, 2019 (NMED, 2019c). The planned investigation includes Phase 1A and Phase 1B soil vapor sampling and surface geophysics. In November 2019 and December 2019, NASA deployed 159 passive soil vapor samplers and completed the Phase 1A soil vapor survey. NASA and the subcontracted geophysics firm performed the EMI and magnetic gradient field surveys between February 24 and 28, 2020.

Because of project delays created by the COVID-19 pandemic, NASA submitted a *Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on May 4, 2020 (NASA, 2020h). NMED approved the request on July 1, 2020 (NMED, 2020g), extending the date for submittal of the Phase 1 investigation report to March 31, 2021. Meanwhile, NASA completed procurement of the ground penetrating radar and passive seismic surveys as described in the NMED-approved landfill investigation work plan. Due to the ongoing pandemic, NASA submitted a *Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on February 3, 2021 (NASA, 2021b). NMED approved the request on March 15, 2021 (NMED, 2021d), extending the due date for submittal of the Phase 1 investigation report to April 29, 2022.

2.14 SWMU 50 (First TDRSS Diesel Release)

NASA submitted the First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report on March 14, 2019 (NASA, 2019a). NMED disapproved the report on July 8, 2020 (NMED, 2020n) and directed NASA to address 17 NMED comments and submit a revised report no later than October 30, 2020. NASA submitted the Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report on November 9, 2020 (NASA, 2020p).

2.15 SWMU 52 (Second TDRSS UST)

On August 11, 2020, NASA discovered a diesel fuel leak in the area of the SWMU 52 Underground Storage Tank (UST), which is located north of WSTF at the White Sands Complex. NASA initiated a preliminary investigation and confirmed that the leak originated from a puncture in the return fuel line between emergency generator and the UST. NASA informed the NMED HWB of the release via email on August 13, 2020 and in writing in the August 17, 2020 NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification (NASA, 2020m). NASA submitted the Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report to NMED HWB on February 18, 2021 (NASA, 2021c).

Parallel activities are performed with notifications and approvals provided to the NMED Petroleum Storage Tank Bureau (PSTB). During August and September 2020, White Sands Complex personnel coordinated corrective action for this release through the NMED PSTB. On September 21, 2020, NASA submitted the *NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update* (NASA, 2020n. p7). The update summarized corrective action performed to date, including the removal of 32 yd³ of diesel-contaminated soil from the area of the leak. NASA then submitted the *Second TDRSS UST Minimum Site Assessment Work Plan* (NASA, 2020p) to the PSTB on November 18, 2020. The work plan described an investigation to determine the extent and magnitude of soil contamination caused by the diesel release. On February 4, 2021 (NMED PSTB, 2021), the NMED PSTB approved NASA's *Second TDRSS UST Minimum Site Assessment Work Plan* of November 18, 2020 (NASA, 2020q, pp3-6). NASA submitted the *Second TDRS UST Minimum Site Assessment Report* to the NMED PSTB on June 25, 2021 (NASA, 2021m). The HWB was copied. The work conducted for the investigation and report had been under a PSTB-approved Minimum Site Investigation Work Plan (NMED PSTB, 2021).

In December 2020, NASA completed shipping the remaining petroleum contaminated soil previously removed from the release location soil to the Valencia Regional Landfill and Recycling Facility for bioremediation and disposal. In total, approximately 214 yd³ of contaminated soil was removed from the release area. NASA drilled five boreholes for characterization of the release from March 22 through March 26, 2021 in accordance with the work plan.

The NMED HWB disapproved the *Second TDRS UST Minimum Site Assessment Report* on March 1, 2022 and directed NASA to address four NMED comments and submit a revised report no later than May 6, 2022 (NMED, 2022b).

2.16 Newly Identified SWMU

NASA identified the location of a former 500 Area oxidizer as a potential new SWMU. On October 16, 2019, NASA submitted the *Fifteen-Day Notification of a Newly Identified SWMU within the WSTF 500 Area* (NASA, 2019k). NMED acknowledged receipt of NASA's fifteen-day notification on November 13, 2019 (NMED, 2019f) and directed NASA to provide a Release Assessment Report no later than May 29,

2020. NASA researched historical information on the newly identified SWMU and submitted the 500 Area Newly Identified SMWU Release Assessment Report on June 22, 2020 (NASA, 2020j, p4). NMED approved the report on December 20, 2021 and directed NASA to prepare and submit an investigation work plan for the unit no later than August 31, 2022 (NMED, 2021t).

3.0 References

- NASA Johnson Space Center White Sands Test Facility. (2012, November 13). 600 Area Perched Groundwater Extraction Pilot Test Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016a, February 25). NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2016b, June 28). *Abbreviated Investigation Work Plan for the 600 Area Perched Groundwater*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017a, December 27). NASA WSTF Drilling Work Plan for Groundwater Monitoring Well PL-12. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2017b, December 28). NASA White Sands Test Facility (WSTF) SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018a, January 30). Work Plan for Abandonment of NASA WSTF Monitoring Well BLM-37 and Replacement with Monitoring Well BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018b, April 24). NASA WSTF Groundwater Monitoring Plan Update for 2018. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018c, September 26). 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2018d, December 3). Response to NMED Approval with Modifications WSTF 2018 Groundwater Monitoring Plan Correction. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019a, March 14). First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, March 28). Response to NMED Disapproval SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- cNASA Johnson Space Center White Sands Test Facility. (2019d, May 29). 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, May 29). NASA WSTF (White Sands Test Facility) 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2019f, May 30). 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019g, June 27). Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019h, July 23). Response to Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019i, July 30). Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019j, August 7). Request to Remove Electrical Resistivity Component of the 600 Area Perched Groundwater Geophysical Survey based on Geophysical Subcontractor Input Received during the Procurement Process. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019k, October 16). Fifteen-Day Notification of a Newly Identified SWMU within the WSTF 500 Area. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019l, October 28). Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29 31) Response to Second Disapproval Remedy Completion Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019m, November 21). Response to Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019n, November 25). NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019o, November 26). NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019p, December 19). Synopsis of the Findings of the 600 Area Closure Geophysical Seismic Refraction Tomography and Reflection Surveys with Revised Soil Boring Locations Submitted for NMED Approval. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019q, December 30). *NASA WSTF 400 Area Closure Investigation Report NMED Second Disapproval Response*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, January 29). Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29 31) Response to Second Disapproval Remedy Completion Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, January 30). NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, February 6). *Third Request for Extension of Time for BLM-42 and PL-12 Well Completion Reports*. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2020d, February 27). *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020e, March 24). Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020f, May 4). NASA White Sands Test Facility (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020g, May 4). NASA White Sands Test Facility (WSTF) Well Completion Report for PL-12. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020h, May 4). Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020i, May 4). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020j, June 22). 500 Area Newly Identified SWMU Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020k, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020l, August 17). NASA White Sands Test Facility (WSTF) 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020m, August 17). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020n, September 21). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020o, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020p, November 9). Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Las Cruces, NM.
- NASA White Sands Complex. (2020q, November 18). Second TDRSS UST Minimum Site Assessment Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020r, November 30). Request for Fourth Extension of Time for Well Reconfiguration Work Plan. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2021a, February 3). Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, February 3). Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, February 18). Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021d, March 15). Application for Permit to Drill Monitoring Well (BLM-43) with No Consumptive Use of Water at NASA-JSC White Sands Test Facility. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, March 15). Well Plugging Plan of Operations for NASA Well BLM-30. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, April 29). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 8. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021h, April 29). Well Abandonment Work Plan for Well BLM-28. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, May 18). Response to Approval with Modifications for NASA White Sands Test Facility (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, May 18). Response to NMED Approval with Modifications for the 600 Area Closure Geophysical Survey Status Report Comment 2 (Further Investigation). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021l, May 19). Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, June 25). Second TDRS UST Minimum Site Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021n, June 29). NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021o, June 29). Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2021p, July 14). Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021q, July 14). Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021r, July 20) Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021s, July 27). *NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021t, August 17). Response to Approval with Modifications for Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021u, August 31). Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021v, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021w, September 14). Request for Second Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021x, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021y, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021z, October 28). *NASA WSTF Periodic Monitoring Report Third Quarter 2021*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021aa, November 30). Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2018a, September 13). Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2018b, November 29). Disapproval SWMU 49, 700 Area Landfill Phase I Investigation Work Plan and Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019a, February 21). Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2019b, June 5). Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019c, June 6). Approval with Modifications SWMU 49, 700 Area Landfill Phase I Investigation Work Plan and Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019d, August 8). Disapproval 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019e, August 23). Work Scope Modification Request Abbreviated Investigation Work Plan for 600 Area Perched Groundwater. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2019f, November 13). Fifteen-Day Notification of a Newly Identified SWMU Within WSTF 500 Area. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020a, January 16). *Approval Request for Extension of Time for Well Reconfiguration Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020b, January 16). Approval Request for Second of Extension of Time for Response to Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020c, February 17). *Approval Third Request for Extension of Time for BLM-42 and PL-12 Well Completion Reports*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020d, March 21). Approval Request for Second Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020e, May 14). 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020f, July 1). Approval Request for Extension of Time for Submittal of 600 Area Perched Groundwater Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020g, July 1). Approval Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020h, July 8). Disapproval First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020i, August 27). Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020j, November 5). Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement With Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020k, November 16). Disapproval 200 Area Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2020l, November 19). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020m, December 22). *Approval with Modifications 600 Area Closure Geophysical Survey Status Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021a, January 25). *Approval Request for Fourth Extension of Time for Well Reconfiguration Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, January 25). *Approval with Modifications Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021c, January 29). Disapproval Revised WSTF Septic Tanks (SWMUs 21-27) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021d, March 15). Approval Request for Extension of Time for Submittal of The SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021e, March 15). Disapproval 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021f, March 19). *Disapproval 300 Area Supplemental Abbreviated Drilling Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021g, March 19). *Disapproval 400 Area Closure Investigation Report.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021h, March 19). Disapproval 500 Area Fuel Storage (SWMU 47) Investigation Work Plan: Phase I. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021i, May 6). Approval Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Project Year 7. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021j, May 6). *Approval PL-12 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021k, May 6). Approval with Modifications 600 Area Bureau of Land Management Off-Site Soil Pile (SWMU 16) Revised Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021l, May 6). *Approval with Modification BLM-42 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021m, June 3). *Approval with Modifications Groundwater Data Representativeness Phase I: Water FLUTe Well Evaluation Abbreviated Investigation Report.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021n, July 6). 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021o, July 7). Approval Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.

NASA White Sands Test Facility

- NMED Hazardous Waste Bureau. (2021p, August 27). Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021q, October 27). Approval Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021r, November 15). *Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021s, December 8). Approval Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Year 8. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021t, December 20). *Approval 500 Area Newly Identified SWMU Release Assessment Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022a, January 10). *Approval Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2022b, March 1). Disapproval Second TRDSS Underground Storage Tank (SWMU 52) Release Assessment Report. Santa Fe, NM.
- NMED Petroleum Storage Tank Bureau. (2021, February 4). *Technical Approval of Minimum Site Assessment Workplan for White Sand Complex*. Santa Fe, NM.