National Aeronautics and Space Administration **Lyndon B. Johnson Space Center White Sands Test Facility** P.O. Box 20 Las Cruces, NM 88004-0020

February 1, 2022

Reply to Attn of:

RE-22-016

Mr. Rick Shean, Bureau Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

Subject: NASA WSTF Periodic Monitoring Report – Fourth Quarter 2021

Enclosed is the NASA WSTF Periodic Monitoring Report (PMR) for the fourth quarter of 2021. This report provides detailed information about routine groundwater, Plume Front Treatment System (PFTS), and Mid-plume Interception and Treatment System (MPITS) monitoring performed between August 1, 2021 and October 31, 2021. Analytical data processed through the WSTF data management system, operational and performance data for both treatment systems, and site-wide potentiometric surface data are also provided for the same reporting period. Activity updates not associated with or reliant upon analytical data are reported for the previous calendar quarter.

This submittal includes an Executive Summary of the PMR that provides important events and observations as Enclosure 1, suggestions for installing and using WSTF PMR Databases as Enclosure 2, a bound paper copy of the main body of the report (pages i-115) as Enclosure 3, a DVD-ROM containing the entire report, the accompanying historical analytical databases, an Excel spreadsheet comprising groundwater data for the last four calendar quarters (November 2020 to October 2021) as Enclosure 4, a CD-ROM containing analytical lab reports for the reporting period as Enclosure 5, and three D-size paper maps of WSTF depicting pertinent features and conceptualized NDMA, TCE, and PCE groundwater plumes as Enclosure 6.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RE-22-016 2

If you have any questions or comments concerning this submittal, please contact Antonette Doherty of my staff at 575-202-5406.

TIMOTHY
DAVIS

Digitally signed by TIMOTHY DAVIS
Date: 2022.02.01
08:09:27 -07'00'

Timothy J. Davis Chief, Environmental Office

5 Enclosures

cc: (*with CD only) Mr. Gabriel Acevedo Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

*Ms. Melanie Sandoval Ground Water Quality Bureau New Mexico Environment Department 1190 St. Francis Drive Santa Fe, NM 87502

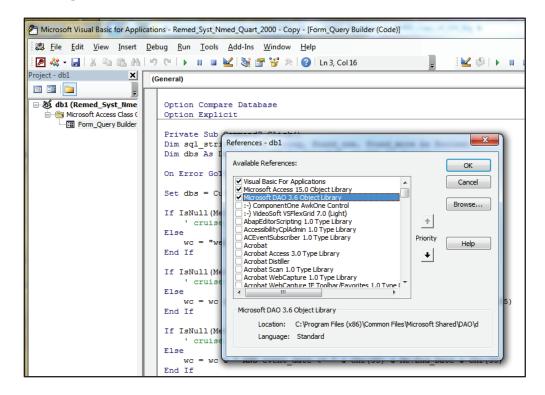
Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to groundwater monitoring wells, PFTS, and MPITS samples collected between August 1, 2021 and October 31, 2021. The data were processed through the WSTF data management system during the fourth calendar quarter of 2021.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.


NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2021a). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

RE-22-016 5

Suggestions for Installing and Using WSTF PMR Databases

- 1. Ensure Microsoft Access 2013 is installed.
- 2. Ensure the following Microsoft libraries are installed:
 - Visual Basic for Applications
 - Microsoft Access 15.0 Object Library
 - Microsoft DAO 3.6 Object Library

To verify the presence of these libraries, choose any table, click "Database Tools" on the menu bar, then click the "Visual Basic" button. A new window will open (see example below). Click "Tools" on the menu bar, then click "References". Another window will open (see example below), showing the libraries available. Ensure the boxes are checked for the three required libraries.

- 3. Copy the database files from the DVD to your hard drive. This will improve the performance of databases.
- 4. After running a query, you can export the data to Excel by selecting *External Data* on the menu bar, then click the *Export to Excel* button.

NASA WSTF Periodic Monitoring Report for Fourth Quarter 2021 NM8800019434

NASA WSTF Periodic Monitoring Report for Fourth Quarter 2021

Reporting Period: August 1, 2021 through October 31, 2021

Report Deadline: January 31, 2022

NM8800019434

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

See Electronic Signature

Timothy J. Davis Chief, NASA Environmental Office Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to samples collected from groundwater monitoring wells, as well as PFTS and MPITS sampling locations between August 1, 2021 and October 31, 2021. The data were processed through the WSTF data management system during the fourth calendar quarter of 2021.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.

NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2021a). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

NASA WSTF Periodic Monitoring Report for Fourth Quarter 2021 NM8800019434

NASA WSTF Periodic Monitoring Report for Fourth Quarter 2021

Reporting Period: August 1, 2021 through October 31, 2021

Report Deadline: January 31, 2022

NM8800019434

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

See Electronic Signature

Timothy J. Davis Chief, NASA Environmental Office Date

National Aeronautics and Space Administration

Johnson Space Center White Sands Test Facility 12600 NASA Road Las Cruces, NM 88012 www.nasa.gov/centers/wstf

www.nasa.gov

Executive Summary

Groundwater monitoring is performed at the National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) to meet regulatory requirements, monitor the effectiveness of corrective actions, develop additional corrective actions, and provide environmental data for a variety of investigations. This Periodic Monitoring Report (PMR) includes the following:

- Purpose, scope, and discussion of the groundwater monitoring data contained in this report.
- Discussion of applicable cleanup levels and comparisons of those cleanup levels to current groundwater contaminant concentrations.
- Detailed information related to the operation, maintenance, and status of the Plume Front Treatment System (PFTS) and the Mid-plume Interception and Treatment System (MPITS), NASA's presumptive remedy interim measures corrective actions for groundwater.
- Information related to the development and implementation of source area investigations and, where applicable, related corrective actions.
- Evaluations of groundwater and treatment system monitoring results and chemical analytical data as it relates to the effectiveness of groundwater remediation.
- Conclusions and recommendations based upon groundwater and remediation system monitoring analytical data and the subsequent evaluations and interpretations of those data presented in this report.

Analytical data included in this report correspond to samples collected from groundwater monitoring wells, as well as PFTS and MPITS sampling locations between August 1, 2021 and October 31, 2021. The data were processed through the WSTF data management system during the fourth calendar quarter of 2021.

A variety of data elements including PFTS and MPITS operational and performance data, potentiometric surface maps, and plume isoconcentration maps are used to evaluate the effects of the PFTS and MPITS on the WSTF groundwater contaminant plume. An evaluation of the PFTS data elements indicates that the PFTS is currently achieving plume capture and contaminant extraction in the Plume Front area. Data elements related to MPITS operation are presented and contaminant mass removal for both systems is included in this report.

NASA's groundwater monitoring objectives are discussed in more detail in the applicable sections of this report. It is recommended that groundwater monitoring continue in accordance with the Groundwater Monitoring Plan (NASA, 2021a). NASA also recommends that groundwater corrective action operations at the PFTS and MPITS continue as scheduled. Further, NASA recommends that source area investigations continue in accordance with NMED-approved schedules.

The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official endorsement either expressed or implied of such products or manufacturers by the National Aeronautics and Space Administration.

Table of Contents

Exec	cutive	Summary	.iii
Tabl	le of C	ontents	.iv
List	of Fig	ures	.vi
List	of Tab	bles	vii
		onyms and Abbreviations	
1.0		roduction	
2.0		ope of Activities	
3.0		eanup Levels	
		CHARGE STANDARDS FOR PFTS AND MPITS EFFLUENT	
3.1		W DETECTIONS	_
3.2 4.0			
		utine Groundwater Monitoring	
4.1 4.2		RRENT STATUS AND MONITORING PERFORMED	
4.2	4.2.1		
	4.2.1	Groundwater Elevations	
4.3		OUNDWATER CHEMICAL ANALYTICAL RESULTS	
5.0		eatment System Monitoring	
5.1		JME FRONT TREATMENT SYSTEM	
	5.1.1	PFTS Operational Status	
	5.1.2	PFTS Performance.	
	5.1.3	Extraction and Injection Well Performance	
	5.1.4	PFTS Chamical Appletical Paralle	
	5.1.5 5.1.6	PFTS Chemical Analytical Results	
5.2		PF 18 Mass Removal D-PLUME INTERCEPTION AND TREATMENT SYSTEM	
3.2	5.2.1	MPITS Monitoring Results	
	5.2.1	MPITS Operational Status	
	5.2.3	MPITS Performance	
	5.2.4	MPITS Extraction Well and Infiltration Basin Performance	
	5.2.5	MPITS Chemical Analytical Results	
	5.2.6	MPITS Mass Removal	
5.3		MEDIATION SYSTEMS OPERATION COSTS	
6.0		STF Water Supply Well Monitoring	
6.1		TER QUALITY MEASUREMENTS (INDICATOR PARAMETERS)	
6.2		EMICAL ANALYTICAL RESULTS.	
7.0		scussion and Conclusions	
7.1		MMARY OF GROUNDWATER MONITORING PROJECTS	
/.1	7.1.1	Monitoring Well Performance or Sampling Equipment Issues	
	7.1.1	Monitoring Well Installation and Well Plugging and Abandonment	
	7.1.2	Westbay Well Reconfiguration	
	7.1.3	Groundwater Monitoring Data Representativeness	
7.2		MPARISON OF ANALYTICAL DATA TO CLEANUP LEVELS	
1.2	7.2.1	Groundwater Monitoring Wells	
	7.2.1	Plume Front Treatment System	
	7.2.3	Mid-plume Interception and Treatment System	
7.3		NTAMINANT PLUME EVALUATION	
1.5	7.3.1	Site Conceptual Model and Treatment System Remedy Objectives	
	7.3.1	Definition of Site-Specific Capture Zone	
	7.3.3	Groundwater Elevations	
	7.3.4	Overall Plume Front Iso-concentration Maps	
	7.3.5	Plume Front Isoconcentration Maps	
	7.3.6	Combined Plume Isoconcentration Maps and Potentiometric Surface Map	
		1	

Table of Contents

	7.3.7	Time-concentration Plots and Groundwater Data Analytical Trends	18					
	7.3.8	MODPATH Particle Tracking Simulation	21					
	7.3.9	Evaluation of Vertical Gradients	23					
	7.3.10	Plume Capture Interpretation and Conclusions	23					
7.4	SUM	MARY OF SOURCE AREA INVESTIGATIONS	24					
	7.4.1	200 Area	24					
	7.4.2	300 Area	24					
	7.4.3	400 Area	24					
	7.4.4	600 Area Perched Groundwater Extraction and Investigations						
	7.4.5	SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)						
	7.4.6	SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])						
	7.4.7	SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)						
	7.4.8	SWMUs 18-20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank,						
	800 Are	a Oxidizer Burner)						
	7.4.9	SWMUs 21–27 (Septic Tanks)						
	7.4.10	SWMUs 29–31 (Small Arms Firing Ranges)						
	7.4.11	SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)						
	7.4.12	SWMU 47 (500 Fuel Storage Area)						
	7.4.13	SWMU 49 (700 Area Landfill)						
	7.4.14	SWMU 50 (First TDRS Diesel Release)						
	7.4.15	SWMU 52 (Second TDRS UST)						
	7.4.16	Newly Identified SWMU						
8.0		ned Activities						
8.1	Gro	UNDWATER MONITORING AND RELATED PROJECTS						
	8.1.1	Groundwater Monitoring	28					
	8.1.3	Westbay Well Reconfiguration						
	8.1.4	Monitoring Well Installation						
8.2		UNDWATER REMEDIATION SYSTEM MONITORING						
9.0	Refe	rences	29					
Figu	ıres		34					
Tab	les		60					
Apr	endix A	Indicator Parameters and Analytical Data	A					
		.1 Monitor Well Indicator Parameters						
		.2 Monitor Well Analytical Data						
		.3 PFTS Indicator Parameters						
		.4 PFTS Analytical Data						
		.5 MPITS Indicator Parameters						
		.6 MPITS Analytical Data						
		.7 Drinking Water Sampling Events						
		.8 Detections for Drinking Water Sampling Events						
App	endix B	Sampling Event Logbook Entries and Internal CoC Forms	B					
Apr	endix C	Chemical Analytical Program (Internal QA reports)	C					
		Comparison to Cleanup Levels						
		.1 Groundwater Monitoring Wells						
		.2 PFTS						
	Appendix D.3 MPITS							
	Appendix E Time Concentration Plots E							
	Appendix F Summary of Source Area InvestigationsF							
App	ichulx F	Summary of Source Area Investigations	Г					

NASA White Sands Test Facility

List of Figures

FIGURE 1.1	WSTF LOCATION MAP	35
FIGURE 1.2	WSTF WELL LOCATION MAP	36
FIGURE 4.1	GROUNDWATER ELEVATIONS AND GENERALIZED FLOW DIRECTIONS FOR THE REPORTING PERIOD	37
FIGURE 4.2	SITE-WIDE N-NITROSODIMETHYLAMINE (NDMA) CONCENTRATIONS FOR THE REPORTING PERIOD	38
FIGURE 4.3	SITE-WIDE TRICHLOROETHENE (TCE) CONCENTRATIONS FOR THE REPORTING PERIOD	39
FIGURE 4.4	SITE-WIDE TETRACHLOROETHENE (PCE) CONCENTRATIONS FOR THE REPORTIN PERIOD	
FIGURE 4.5	SITE-WIDE FREON 11 CONCENTRATIONS FOR THE REPORTING PERIOD	41
FIGURE 4.6	SITE-WIDE FREON 113 CONCENTRATIONS FOR THE REPORTING PERIOD	42
FIGURE 7.1	WSTF CONCEPTUAL MODEL	43
FIGURE 7.2	PFTS TARGET CAPTURE ZONE	44
FIGURE 7.3	PLUME FRONT GROUNDWATER ELEVATIONS FOR THE REPORTING PERIOD	45
FIGURE 7.4	MID-PLUME GROUNDWATER ELEVATIONS FOR THE REPORTING PERIOD	46
FIGURE 7.5	NDMA DELINEATION IN GROUNDWATER	47
FIGURE 7.6	TRICHLOROETHENE (TCE) DELINEATION IN GROUNDWATER	48
FIGURE 7.7	TETRACHLOROETHENE (PCE) DELINEATION IN GROUNDWATER	49
FIGURE 7.8	FREON 11 DELINEATION IN GROUNDWATER	50
FIGURE 7.9	NDMA CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIOD	51
FIGURE 7.10	TCE CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIOD	52
FIGURE 7.11	PCE CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIOD	53
FIGURE 7.12	FREON 11 CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERIC	
FIGURE 7.13	FREON 113 CONCENTRATIONS AT THE PLUME FRONT FOR THE REPORTING PERI-	
FIGURE 7.14	PLUME FRONT GROUNDWATER ELEVATIONS AND TRICHLOROETHENE CONCENTRATIONS FOR THE REPORTING PERIOD	56
FIGURE 7.15	MODPATH PARTICLE TRACKING SIMULATION AT THE PLUME FRONT (ENDING 12/31/2061)	57
FIGURE 7.16	MODPATH PARTICLE TRACKING SIMULATION AT THE PLUME FRONT (ENDING 12/31/2110)	58
FIGURE 7.17	WSTF SWMUS AND HWMUS	59

NASA White Sands Test Facility

List of Tables

TABLE 3.1	DP-1255 DISCHARGE STANDARDS AND GROUNDWATER CLEANUP LEVELS FOR WSTF COC	61
TABLE 3.2	ACCEPTED NEW DETECTIONS FOR – THIS REPORTING PERIOD	62
TABLE 3.3	UNCONFIRMED NEW DETECTIONS – RESOLUTION PENDING	63
TABLE 3.4	UNCONFIRMED DETECTIONS RESOLVED THIS REPORTING PERIOD	64
TABLE 4.1	GROUNDWATER MONITORING WELLS/ZONES ANALYZED FOR THE REPORTING PERIOD	
TABLE 4.2	GROUNDWATER ELEVATION DATA	67
TABLE 5.1	PFTS AND MPITS OPERATIONAL STATUS FOR THE REPORTING PERIOD	70
TABLE 5.2	PFTS AND MPITS SYSTEM SHUTDOWNS FOR THE REPORTING PERIOD	71
TABLE 5.3	PFTS AIR STRIPPER AND UV REACTOR PERFORMANCE FOR THE REPORTING PERIOD	72
TABLE 5.4	PFTS EXTRACTION AND INJECTION WELL FLOW RATES FOR THE REPORTING PERIOD	73
TABLE 5.5	COMPARISON OF SPECIFIC CAPACITIES FOR THE PLUME FRONT WELLS	74
TABLE 5.6	PLUME FRONT MASS REMOVAL	75
TABLE 5.7	MPITS AIR STRIPPER AND UV REACTOR PERFORMANCE FOR THE REPORTING PERIOD	76
TABLE 5.8	MID-PLUME MASS REMOVAL	77
TABLE 5.9	GROUNDWATER TREATMENT SYSTEM OPERATION COSTS (\$ / 1,000 GALS)	78
TABLE 7.1	STATUS OF WELLS WITH SAMPLING ISSUES	79
TABLE 7.2	PLUME FRONT VERTICAL GRADIENTS FOR THE REPORTING PERIOD	81

List of Acronyms and Abbreviations

μg/L Micrograms per liter Area of concern **AOC** bgs Below ground surface Bureau of Land Management **BLM** COC Contaminant of concern Chain-of-Custody CoC Discharge Plan DP DTW Depth to water

EPA Environmental Protection Agency

FLUTe Flexible Liner Underground Technologies, LLC

Freon 11 Trichlorofluoromethane

ft Foot/feet g Gram

GMP Groundwater Monitoring Plan

gpm Gallons per minute

gpm/ft Gallons per minute per foot HIS Historical Information Summary HWTL Hazardous Waste Transmission Lines

IDWInvestigation-Derived WasteIWPInvestigation Work PlanJDMBJornada del Muerto BasinJERJornada Experimental Range

kg Kilogram L Liter

MDL Method detection limit mg/L Milligrams per liter

MPCA Mid-plume Constriction Area

MPE Mid-plume Extraction

MPITS Mid-plume Interception and Treatment System NASA National Aeronautics and Space Administration

ND Not detected

NDMA N-nitrosodimethylamine ng/L Nanograms per liter

NMED New Mexico Environment Department

NMED HWB New Mexico Environment Department Hazardous Waste

Bureau

NMED PSTB New Mexico Environment Department Petroleum Storage

Tank Bureau

NMOSE New Mexico Office of the State Engineer

PCE Tetrachloroethene

Permit NMED Hazardous Waste Permit

PFE Plume Front Extraction PFI Plume Front Injection

PFTS Plume Front Treatment System PMR Periodic Monitoring Report

QA Quality Assurance

RSMP Remediation System Monitoring Plan

scfm Standard cubic feet per minute STGT Second TDRS Ground Terminal

NASA White Sands Test Facility

SVOC Semi-volatile Organic Compound SWMU Solid Waste Management Unit

T-C Time-concentration TCE Trichloroethene

TCLP Toxicity Characteristic Leaching Procedure

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TP Toxic Pollutants

USGS United States Geological Survey

UV Ultraviolet

VOC Volatile Organic Compound
WBFZ Western Boundary Fault Zone
WSTF NASA Johnson Space Center

White Sands Test Facility

1.0 Introduction

National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) is located at 12600 NASA Road near Las Cruces, New Mexico. WSTF (U.S. Environmental Protection Agency [EPA] and New Mexico Environment Department [NMED] Facility Identification Number NM8800019434) currently operates as a field test facility under the NASA Lyndon B. Johnson Space Center in Houston, Texas. Figure 1.1 is a map showing the location of WSTF in southern Doña Ana County.

The facility provides testing services to NASA for United States space programs and support for the Department of Defense, Department of Energy, private industry, and foreign government agencies. The primary WSTF mission is to develop, qualify, and test the limits of spacecraft propulsion systems and subsystems. The installation also operates several laboratory facilities that conduct simulated use tests for space station materials, as well as compatibility testing.

WSTF historical operations resulted in a groundwater contaminant plume that requires extensive investigation activities and associated corrective actions. NASA developed and implemented a strategy for remediating contaminated WSTF groundwater in 1996, based on an analysis of potential risk to human health and the environmental and hydrogeological characteristics of the site. This strategy involves a sequential three-phase approach: 1) to stabilize the leading edge of the plume in the alluvial aquifer at the Plume Front area through operation of the Plume Front Treatment System (PFTS); 2) to intercept a high-concentration portion of the plume within fractured bedrock in the Mid-plume area through operation of the Mid-plume Interception and Treatment System (MPITS); and 3) to investigate contaminant source areas and remediate, as appropriate, any remaining sources of contamination identified during ongoing investigations.

There are currently 215 active groundwater monitoring locations (treatment system sample ports, extraction wells, conventional wells, and multiport well zones) in use at WSTF. Figure 1.2 provides a map of the facility and shows the locations of groundwater monitoring wells and components of the PFTS and the MPITS. Routine groundwater monitoring is performed in accordance with the NMED Hazardous Waste Permit (Permit; NMED, 2009), the Groundwater Monitoring Plan (GMP; NASA, 2021a), and the Remediation System Monitoring Plan (RSMP; NASA, 2021f).

This report provides details of groundwater (routine and related to corrective actions), PFTS, and MPITS samples processed through the WSTF data management system during the fourth quarter of 2021. Between August 1 and October 31, 2021, groundwater samples were collected at 119 groundwater monitoring wells or zones (111 sample events), seven PFTS sampling locations (12 sample events), and seven MPITS sampling locations (11 sample events). Specific monitoring activities for routine groundwater sampling are discussed in Section 4.0. The individual sampling activity at each monitoring well, well zone, or other sampling point is identified as a discrete sampling event (by location and sampling date). This report includes and discusses these sampling events.

The PFTS was operational on 65 of 92 days during the reporting period at an average flow rate of 739 gallons per minute (gpm) while running. Approximately 205 acre-feet (ft) of groundwater were treated at the PFTS during this timeframe. Specific information related to operation, maintenance, and monitoring of the PFTS is included in Section 5.1 of this report. The MPITS was operational on 73 of 92 days during the reporting period, treating approximately 2.9 acre-ft of groundwater including investigation-derived waste (IDW). Specific information on MPITS operation, maintenance, monitoring, and related activities is provided in Section 5.2.

2.0 Scope of Activities

Groundwater and remediation systems sampling event analytical results and remediation systems operational data are provided for the reporting period. Updates for activities that are not associated with or reliant upon groundwater analytical data are provided for the calendar quarter.

NASA routinely collects groundwater and treatment system samples for the analysis of volatile organic compounds (VOC), N-nitrosodimethylamine (NDMA), and several inorganic compounds. On a less frequent basis, semi-volatile organic compounds (SVOCs) are sampled, and in certain wells, 1,4-dioxane, total petroleum hydrocarbons, and 40 CFR Part 264 Appendix IX compounds. The GMP (NASA, 2021a) identifies the specific samples that are to be collected at each groundwater monitoring well. The RSMP (NASA, 2021f) provides sampling requirements for the PFTS and the MPITS.

Groundwater quality data, collectively referred to as indicator parameters, are collected during each sampling event. Indicator parameters may include temperature, pH, conductivity, turbidity, and (at wells sampled using low-flow procedures) oxidation-reduction potential and dissolved oxygen. Depth to groundwater (DTW) is also measured at each conventional monitoring well during the sampling event. Indicator parameters associated with sampling events during the reporting period are included in Appendix A as follows: groundwater monitoring wells (Section 4.2.2) – Appendix A.1; PFTS (Section 5.1.4.2) – Appendix A.3; and MPITS (Section 5.2.1.2) – Appendix A.5.

Chemical analytical data (detections only) for sampling events during the reporting period are discussed in the following sections: groundwater monitoring wells (Section 4.3) – <u>Appendix A.2</u>; PFTS (Section 5.1.5) – <u>Appendix A.4</u>; and MPITS (Section 5.2.5) – <u>Appendix A.6</u>.

Chemical analytical data (detections only) for drinking water wells during the comprehensive period are discussed in the following sections: WSTF water quality parameters (Section 6.0) – Appendix A.7 and chemical analytical results (Section 6.2) – Appendix A.8.

Field data and the recording of other specific sampling-related details for each sampling event are discussed in Sections 4.0, 5.1, and 5.2 of this report. Logbook entries and internal chain-of-custody (CoC) forms from sampling events included in the report are provided in Appendix B. The external CoC forms associated with the sampling events can be found in the Lab Reports included on the enclosed DVD. Appendix C provides internal monthly WSTF Quality Assurance (QA) Reports for the reporting period. Appendix D includes the comparison of analytical results from the groundwater monitoring wells (Appendix D.1), PFTS (Appendix D.2), and MPITS (Appendix D.3) with cleanup levels. Only results that exceed cleanup levels are included in these appendices.

During the course of groundwater, PFTS, MPITS, and other related sampling, IDW such as decontamination water and purged groundwater is produced. This IDW is treated by the MPITS as specified in the GMP (NASA, 2021a).

3.0 Cleanup Levels

Cleanup levels for all hazardous constituents detected in WSTF groundwater are summarized in the GMP update (NASA, 2021a) for 2021, submitted to NMED on April 19, 2021. That document outlines the process for developing cleanup levels as specified in Attachment 15 of the Permit (NMED, 2009).

3.1 Discharge Standards for PFTS and MPITS Effluent

The Ground Water Discharge Permit Renewal and Modification, DP-1255 (NMED, 2017) specifies that "Remediated groundwater discharged from the two remediation systems shall not exceed the concentrations in the most recent version of NMED's *Risk Assessment Guidance for Investigation and Remediation Table A-1 Soil Screening Levels for Tap Water...*" for NDMA, trichloroethene (TCE), tetrachloroethene (PCE), and chloroform (NMED, 20211). <u>Table 3.1</u> includes the updated DP-1255 discharge standards for the four constituents. Please note that previous versions of the quarterly Periodic Monitoring Reports (PMRs) included constituents that are not listed in the current version of DP-1255 (NMED, 2017). This PMR only lists the four constituents required by the current DP-1255 (NDMA, TCE, PCE, and chloroform).

3.2 New Detections

The GMP requires that NASA report new detections of hazardous constituents in groundwater (NASA, 2021a). Each quarter, NASA adds several new constituents to the list of analytes detected at certain WSTF groundwater wells. As a result, a number of new detections have been reported in sampling results at those wells. Most of the new detections are consistent with regional groundwater chemistry and require no action beyond continued monitoring and reporting. New detections, including non-hazardous constituents, reported in sampling events during the reporting period are provided in <u>Table 3.2</u>.

The GMP also requires detection monitoring at specific compliance points downgradient of the closures and operational areas of the facility. The wells specified are BLM-3-182 (for the 100 and 600 Areas), 200-B-240 and 200-SG-1 (for the 200 Area), 300-A-120 (for the 300 Area), and 400-C-118 (for the 400 Area). No detection monitoring was performed during the reporting period.

In addition to the inorganic constituents that are characteristic of regional groundwater, NASA observed several new detections that require further evaluation. The hazardous constituents in <u>Table 3.3</u> have not been previously detected at the wells listed in the table. As specified in Section 3.3 of the GMP, NASA has scheduled resampling of these wells to confirm these detections (NASA, 2021a). <u>Table 3.4</u> lists the resampling date and the resolution of some of the unconfirmed detections reported in previous PMRs. The wells were resampled as required and the new detections were resolved as indicated in the table.

4.0 Routine Groundwater Monitoring

A variety of groundwater monitoring data are collected from monitoring wells and the groundwater treatment systems during routine WSTF operations. These data consist of measured groundwater elevations, calculated groundwater piezometric elevations, the graphical representations of groundwater elevation generated from these data, and groundwater indicator parameters (field water quality measurements).

Data presented in this section, including groundwater elevations and indicator parameters, were collected from various groundwater monitoring locations during the reporting period. Groundwater chemical analytical data also from this timeframe, while not considered monitoring data in some contexts, are also presented in this section.

4.1 Current Status and Monitoring Performed

NASA continues to monitor groundwater to maintain a complete understanding of plume characteristics, contaminant migration, and the overall impact of ongoing corrective action efforts. This section discusses

the results of routine groundwater samples collected from groundwater monitoring wells or zones during the reporting period and processed using the WSTF data management system during the fourth quarter of 2021. <u>Table 4.1</u> provides a list of the monitoring wells, drinking water wells, PFTS and MPITS sampling locations, and their associated sampling events for which analytical data are presented in this report.

4.2 Groundwater Monitoring Results

This section provides the results of groundwater monitoring, including groundwater elevations and groundwater quality measurements.

4.2.1 Groundwater Elevations

Groundwater elevations at WSTF's conventional monitoring wells, piezometers, and exploration wells are determined by manually measuring the water level. Piezometric elevations at Westbay^{®1} multiport wells are calculated based on the groundwater formation pressures measured at target monitoring zones. Piezometric elevations for Flexible Liner Underground Technologies, LLC (FLUTeTM) multiport monitoring wells are calculated from dedicated pressure transducer measurements at specified monitoring zones. DTW or formation pressures are measured quarterly and during each sampling event.

Formation pressures at multiport wells in the Plume Front and Mid-plume areas are typically measured during the same week as quarterly DTW measurements at conventional wells. Groundwater elevations from Westbay zones are calculated from pressure data typically collected at the uppermost sampling ports (proximal to the water table) using Westbay pressure measurement equipment. Potentiometric data from multiport wells in other areas of the site are also available. Groundwater elevations are subject to quality review prior to their use in data presentations. Anomalous or erroneous values are flagged as unusable and excluded from the dataset used to generate graphical presentations of groundwater elevation.

The groundwater surface depicted in Figure 4.1 was developed by hand-contouring the most recent water level dataset that corresponds to the analytical reporting period. These data were collected from July 22 to August 10, 2021 and are provided in Table 4.2. In Figure 4.1, groundwater elevation contours depict a general westward groundwater flow across the facility. Subtle variations in groundwater elevation may occur within discrete transmissive flow paths at varying depths below ground surface (bgs) in the fractured bedrock aquifer located east of the Western Boundary Fault Zone (WBFZ). Due to the scale, these local elevation variations may not be reflected in the figure. The prominent transition in the hydraulic gradient from the WSTF pediment area east of the WBFZ (0.05 ft/ft) to the relatively flat southern Jornada del Muerto Basin (JDMB) of the WSTF Plume Front area (0.0002 ft/ft) is also evident in the figure. No contours are depicted in the Plume Front area because the range of observed water elevations in that area is less than the contour interval (40 ft). Further discussion of Plume Front and Midplume groundwater elevations is provided in Section 7.3.3 of this report.

4.2.2 Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters are obtained from field quality measurements performed during each sampling event. The groundwater indicator parameters associated with the groundwater monitoring well sampling events included in this report (see <u>Table 4.1</u>) are provided in <u>Appendix A.1</u>.

¹ Westbay is a registered trademark of Nova Metrix Ground Monitoring (Canada) Ltd.

Indicator parameters and other specific sampling-related details associated with each monitoring well sampling event are recorded by technicians in the field sampling record. Appendix B provides the field sampling records and field/internal CoC forms for each sampling event performed during the reporting period. The WSTF external CoC forms for groundwater samples collected during these sampling events are provided in the Lab Reports on the enclosed DVD.

4.3 Groundwater Chemical Analytical Results

<u>Table 4.1</u> lists groundwater monitoring wells sampled during the reporting period. Groundwater chemical analytical data from these wells were processed through the WSTF data management system during the fourth calendar quarter of 2021 and detections are included in <u>Appendix A.2</u>.

NASA has also included a copy of the historical analytical database with this report. The database is provided to facilitate NMED's review of groundwater analytical data provided in this report and to allow for the historical comparisons required by the Permit (NMED, 2009). NASA's historical database is an operational tool developed, maintained, and used by NASA environmental staff to manage and archive environmental data. It is not intended to serve specifically as a regulatory reporting mechanism. NASA reserves the right to implement changes to the database that are deemed appropriate to meet the WSTF internal environmental data management requirements. Any changes will not affect the integrity of historical analytical data. The amount of historical data has exceeded the capacity of a Microsoft Access®² database, and as a result, all the historical data cannot be contained in the database included with this report for use by NMED. Historical data prior to 2000 was removed from the reporting database to facilitate database operation and ease of use by NMED. Pre-2000 historical data of significance in decision-making is appropriately reflected in the time-concentration (T-C) plots presented in Appendix E.

A summary of internal QA methods applied to groundwater chemical analytical data is provided in <u>Appendix C</u>. The QA reports included in <u>Appendix C</u> apply to analytical results from sampling events performed during the reporting period. As requested by NMED (NMED, 2013a), all laboratory analytical reports corresponding to the analytical data presented in this report are also provided electronically (.pdf format) with this submittal.

The most recent chemical analytical data, including data processed in the fourth quarter of 2021, were used to develop manually contoured plume isoconcentration maps for NDMA (Figure 4.2) and TCE (Figure 4.3). The lowest iso-concentration contour on each map corresponds to the required cleanup level for that analyte. Figure 4.4, Figure 4.5, and Figure 4.6 present iso-concentration contours for PCE, Freon^{®3} 11, and Freon 113, respectively.

The configuration of the NDMA and TCE plumes for the fourth quarter 2021 is similar to the plumes presented for the first three quarters of 2021. The 10,000 ng/L NDMA isoconcentration line encloses the 400 Area wells and well BLM-15-305, separately. There may, however, be an uncharacterized connection.

5.0 Treatment System Monitoring

This section provides information related to NASA's environmental remediation systems at WSTF. It provides the current operational status of the treatment systems and includes a discussion of the

-

² Microsoft Access is a registered trademark of the Microsoft Corporation.

³ Freon is a registered trademark of The Chemours Company CF, LLC.

capabilities and performance of the treatment systems, pertinent monitoring data from the systems, and applicable chemical analytical data associated with remediation system monitoring.

5.1 Plume Front Treatment System

The PFTS is a pump and treat groundwater remediation system that utilizes air stripping and ultraviolet (UV) photolysis to remove VOC and nitrosamines from contaminated groundwater. The system is an interim measures presumptive remedy located at the leading edge of the WSTF contaminant plume. It was implemented during the first phase of NASA's remediation strategy to stabilize plume migration. This section provides information related to PFTS operation, performance, and monitoring during the reporting period. Chemical analytical data from PFTS sampling events completed during the reporting period are also provided.

5.1.1 PFTS Operational Status

The operational status of the PFTS is summarized in <u>Table 5.1</u> and <u>Table 5.2</u>.

5.1.2 PFTS Performance

This section summarizes the performance of the air strippers and UV reactor for the reporting period. Additional operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the PFTS is properly functioning and is adequately treating the WSTF contaminants of concern (COC).

Operational records indicate that the PFTS performed favorably during the reporting period. System availability statistics, which exclude scheduled shutdowns for planned maintenance, indicate that the system was operational for 83.5% of October, 89.5% of November, and 95.7% of December 2021. Notable events during the reporting period included the following:

- Changed out the UV lamps with a full set of new lamps on October 1, 2021.
- Extraction well PFE-5 was brought back online on October 14, 2021 after completing drying a section of piping that was flooded by a heavy thunderstorm in June 2021.
- Installed a new air compressor for the water-level bubbler at PFE-3 and verified that it is operating correctly.
- Replaced an approximately 40-ft section of recirculation piping as part of planned system maintenance and installed isolation valves on each of the air stripper units as part of planned system improvements.

5.1.2.1 Air Stripper Capabilities and Performance

The PFTS consists, in part, of two multi-sieve tray air strippers that operate in a parallel configuration to treat the WSTF VOC of concern. A single air stripper can be used when the system is operating at 650 gpm or less. Both air strippers are used when the system flow rate is greater than 650 gpm. The air strippers must maintain an air flow rate between 3,600 standard cubic feet per minute (scfm) and 4,680 scfm to ensure treatment of VOC. Table 5.3 provides the VOC performance data for the air strippers during the reporting period. Chemical analytical data provided in this report demonstrate that DP-1255 discharge limits and Permit-required cleanup levels were achieved throughout the reporting period.

5.1.2.2 UV Reactor Capabilities and Performance

The PFTS includes a 12-lamp Rayox^{®4} UV reactor that uses UV photolysis to break down nitrosamines (specifically NDMA) in groundwater. The UV reactor is designed to operate at a minimum hydraulic flow rate of 200 gpm and a maximum flow rate of 3,000 gpm. <u>Table 5.3</u> provides the NDMA treatment performance data for the UV reactor during the reporting period. As indicated by these data, system design parameters and cleanup levels for NDMA were achieved during the reporting period.

5.1.3 Extraction and Injection Well Performance

Extraction and injection well performance for the reporting period, as based on volumetric flow rates, extraction well drawdown, and water levels and injection well specific capacities, is summarized below. Average Plume Front injection (PFI) well flow rates and average Plume Front extraction (PFE) well flow rates for the reporting period are provided in <u>Table 5.4</u>. Additional events relevant to the performance of individual extraction or injection wells during the reporting period are summarized below.

NASA removed well PFI-1 from service in December 2019 as the result of excessive gravel pack found in the discharge water while backflushing. NASA undertook efforts in April, August, and September 2021 to remove the downhole equipment from well PFI-1 using a pump hoist truck so the well casing and screen could be inspected with a downhole video camera and potentially repaired. All efforts to remove the equipment from well PFI-1 were unsuccessful due to the presence of a large volume of gravel pack within the well screen, along with a suspected breach in the well casing and/or screen that is acting as a subsurface obstruction to prevent the removal of the equipment. Based on this finding, NASA concludes that well PFI-1 is permanently out of service. An evaluation regarding options to replace well PFI-1 or redistribute treated groundwater produced by the PFTS is underway.

NASA removed well PFE-2 from service on October 1, 2021 following the installation of a new pump and motor at well PFE-1 in September 2021. This configuration change was completed so well PFE-1 could be reactivated in place of well PFE-2 while maintaining the overall groundwater extraction flow rate during the continued operation of the system. Well PFE-2 was reactivated on October 13, 2021. On the same day a ground fault at well PFE-3 required NASA to remove that well from service for the remainder of the reporting period. Work to repair well PFE-3 and return it to service is expected in the first quarter of 2022.

Well PFE-4A was briefly taken out of service from December 1 to December 2, 2021 to change out a faulty motor starter. Well PFE-4A otherwise was in use while the PFTS was operating.

NASA reactivated well PFE-5 on October 14, 2021, after runoff from a thunderstorm on June 11, 2021 invaded a nearby manway and portions of the dual wall piping tied to the well, resulting in protracted efforts to dry the flooded piping. Well PFE-5 remained in use over the rest of the reporting period while the PFTS was operating.

Well PFE-7 remained fully operational during the reporting period.

_

⁴ Rayox is a registered trademark of Calgon Carbon Corporation.

5.1.3.1 Extraction and Injection Well Flow Rates and Specific Capacities

Flow rates for extraction and injection wells were measured and monitored throughout the reporting period. While in operation during the reporting period, flow rates for extraction wells PFE-2, PFE-4A, and PFE-7 were stable and relatively unchanged from the previous reporting period. As noted above, wells PFE-1 and PFE-5 were out of service during the previous reporting period. NASA operated wells PFE-1 and PFE-5 throughout the reporting period at approximately 247 gpm and 3.5 gpm, respectively.

Flow rates for extraction wells PFE-1, PFE-4A, and PFE-5 were below their respective design flow rates during the reporting period, whereas wells PFE-2 and PFE-7 operated above their design flow rates. Well PFE-3 was out of service for most of the reporting period and is expected to be repaired in the first quarter of 2022. As a result of wells PFE-3 and PFI-1 not being operational, the overall production of the PFTS was reduced during this period.

Injection well PFI-2 operated slightly below its design flow rate during the reporting period; whereas wells PFI-3 and PFI-4 operated below and above their design flow rates, respectively. As previously discussed, well PFI-1 was shut down in December 2019 to investigate a suspected casing breach. Attempts to remove the downhole equipment from PFI-1 in April, August, and September 2021 were unsuccessful, resulting in the determination that the well cannot be reactivated.

Specific capacities for the PFE and PFI wells are provided in <u>Table 5.5</u> and are expressed in gallons per minute per foot (gpm/ft). Generally, PFE well specific capacities are higher than PFI well specific capacities. This is due to the differences between extraction and injection well hydraulics.

5.1.3.2 Injection Well Water Level Variations, Well Monitoring, and Maintenance

Water levels at the PFI wells are monitored on a continual basis using dedicated pressure transducers that record the levels at 3-minute intervals. Specific well capacities are tracked daily while the system is in operation. Periodic backflushing of the injection wells is performed when the wells exhibit rising water levels associated with decreased well capacities and during start-ups and shutdowns. Operations personnel use static water table levels as a guide for setting the injection flow rates to each well to maintain a stable injection operation. This has lowered the initial design rates at the PFI wells. The original design flow rates in <u>Table 5.4</u> were not reduced to account for the one nonoperational extraction well.

5.1.4 PFTS Monitoring Results

System monitoring involves the evaluation of a variety of data collected during routine PFTS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from the data (Section 7.3.3), and groundwater indicator parameters (water quality field measurements). The data presented in this section were collected from PFTS monitoring locations during the reporting period. Groundwater chemical analytical data from PFTS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.1.4.1 PFTS Monitoring Events

This section and associated appendices discuss the results of routine PFTS samples processed through the WSTF data management system during the reporting period. Groundwater samples processed and included in this report were collected at two PFTS monitoring locations during the reporting period.

<u>Table 4.1</u> provides a list of the PFTS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.1.4.2 PFTS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by field technicians in the field sampling record. The groundwater indicator parameters measured at each PFTS sampling event in <u>Table 4.1</u> are provided in <u>Appendix A.3</u>. <u>Appendix B</u> provides the field sampling records and internal CoC forms and the lab reports include laboratory CoC forms for each of the PFTS sampling events discussed in this section.

5.1.5 PFTS Chemical Analytical Results

This section and associated appendices provide the groundwater chemical analytical data processed through the WSTF data management system during the fourth calendar quarter of 2021. Appendix A.4 provides the analytical results (detections only) from PFTS sampling events performed during the reporting period. A summary of internal QA methods applied to groundwater chemical analytical data is provided in Appendix C.

5.1.6 PFTS Mass Removal

<u>Table 5.6</u> uses available analytical data to calculate the mass of the various WSTF COC removed by the PFTS between November 1, 2020 and October 31, 2021. During this 12-month period, the PFTS removed approximately 24 kilograms (kg) of TCE, 22 kg of trichlorofluoromethane (Freon 11), 769 grams (g) of PCE, and 183 g of NDMA.

The contaminant mass removal was calculated as follows:

Mass Removal =
Total Volume Treated x (Influent Concentration – Effluent Concentration)

5.2 Mid-plume Interception and Treatment System

The MPITS is the major component of the second phase of NASA's overall groundwater plume remediation strategy. This interim measure presumptive remedy was designed to intercept high COC concentrations within the fractured bedrock aquifer of the Mid-plume Constriction Area (MPCA).

The operational status of the MPITS is summarized below. Component/system failures, repair, and scheduled maintenance activities accounted for the majority of the short duration shutdowns during the reporting period.

5.2.1 MPITS Monitoring Results

System monitoring involves the collection and evaluation of a variety of data during routine MPITS sampling-related operations. Groundwater monitoring data consist of measured groundwater elevations, calculated groundwater piezometric elevations, graphical representations of groundwater elevation generated from these data (refer to Section 7.3.3), and groundwater indicator parameters (water quality field measurements).

The data presented in this section were collected from seven MPITS monitoring locations during the reporting period. Groundwater chemical analytical data from MPITS sampling events, while not considered monitoring data in some contexts, are also presented in this section.

5.2.1.1 MPITS Monitoring Events

This section and associated appendices discuss the results of routine MPITS samples collected during the reporting period and processed by the WSTF data management system during the reporting period.

<u>Table 4.1</u> includes the MPITS monitoring locations and sampling event dates for which analytical data are presented in this report.

5.2.1.2 MPITS Groundwater Quality Measurements (Indicator Parameters)

Groundwater indicator parameters and other specific sampling-related details associated with each sampling event are recorded by the field technicians in the field sampling record. The groundwater indicator parameters measured at each MPITS sampling event listed in <u>Table 4.1</u> are provided in <u>Appendix A.5</u>. <u>Appendix B</u> provides the field sampling records and internal CoC for each of the MPITS sampling events discussed in this section. The laboratory CoC for each of the MPITS sampling events discussed in this section are provided in the Lab Reports enclosed on the DVD.

5.2.2 MPITS Operational Status

The operational status of the MPITS is included in Table 5.1 and Table 5.2.

5.2.3 MPITS Performance

This section summarizes the MPITS air stripper and UV reactor performance during the reporting period. Operational status and other details may also be presented or discussed. A variety of parameters are monitored regularly to ensure that the MPITS is functioning properly and effectively treating the WSTF groundwater for COC reduction.

Operational records indicate that the MPITS performed favorably during the reporting period. System availability statistics, which exclude scheduled shutdowns for planned maintenance, indicate that the system was operational for 99.2% of October, 92.7% of November, and 100% of December 2021. Notable events during the reporting period included the following:

- The planned shutdown of the system from October 1 to October 21, 2021 while awaiting the delivery of replacement UV lamps which had been delayed due to pandemic-related supply chain issues.
- Power outages on November 6 and November 13, 2021.
- A planned data center outage on November 18, 2021.
- Shut down of the system on November 29, 2021 to replace failed batteries in the infiltration basin flow meter.
- The planned shutdown of the system on December 16, 2021 for the scheduled installation of a new electrical powerline recloser.

5.2.3.1 Air Stripper Capabilities and Performance

The MPITS consists of a single sieve tray air stripper designed to treat WSTF groundwater VOCs of concern at flow rates up to 125 gpm. Table 5.7 provides the VOC performance data for the air stripper based on MPITS analytical data for the reporting period. As indicated by these data, system design parameters and discharge limits for the VOCs were achieved during the reporting period, with the exception of one TCE effluent sample in August. The MPITS influent is composed of groundwater from operational Mid-plume extraction (MPE) wells and IDW generated during groundwater sampling, well maintenance, well evaluation activities, and other groundwater-related operations at WSTF. Effluent sample results are closely monitored to ensure the air stripper continues to function properly.

5.2.3.2 UV Reactor Capabilities and Performance

The MPITS uses a 72-lamp UV photolysis reactor to break down nitrosamines in groundwater. The UV reactor is designed to operate at flow rates between 20 and 125 gpm. The reactor is capable of automatically adjusting power to the lamps to meet a target of 4.1 orders of magnitude reduction in contaminant concentrations. However, electrical power to the lamps is currently set manually at 100 percent to comply with current internal NASA operational requirements. The UV reactor achieved approximately four orders of magnitude reduction during the reporting period. Table 5.7 shows the UV reactor's performance for the reporting period. As indicated by these data, system design parameters and discharge limits for NDMA were achieved during the reporting period. Effluent sample results are closely monitored to ensure the UV Reactor continues to function properly.

5.2.4 MPITS Extraction Well and Infiltration Basin Performance

MPE-1, MPE-8, MPE-10, and MPE-11 operated at various flow rates during the reporting period. NASA removed well MPE-9 from service on September 7, 2021, due to electrical damage to the submersible motor from an apparent lightning strike. A new submersible motor for MPE-9 was installed at the end of December 2021 and the well is scheduled to be returned to operation in January 2022.

There were no MPITS infiltration basin performance anomalies during the reporting period.

5.2.4.1 Extraction Well Flow Rates and Production Capacities

The MPE wells are completed in a fractured bedrock aquifer. Reduced well production capacity has resulted in cyclic operation of the extraction wells. Extraction well performance is characterized by evaluating well pumping rates and drawdown of water levels during pumping at each extraction well. NASA observed no extraction well performance anomalies with respect to pumping rates and water-level drawdowns during the reporting period.

5.2.4.2 Infiltration Basin Performance, Monitoring, and Maintenance

The MPITS infiltration basin was designed to accept up to 200 gpm. The treatment system must maintain a minimum operational flow of 25 gpm to achieve treatment design parameters before discharging the treated effluent to the infiltration basin. No operational or performance issues were identified during the reporting period.

5.2.5 MPITS Chemical Analytical Results

<u>Appendix A.6</u> provides the MPITS chemical analytical data for the analytical reporting period (detections only). A summary of internal QA methods applied to groundwater chemical analytical data is provided in <u>Appendix C</u>.

5.2.6 MPITS Mass Removal

<u>Table 5.8</u> summarizes the mass of the various WSTF COC removed by the MPITS between November 1, 2020 and October 31, 2021. Approximately 2.9 kg of COC mass was removed by the MPITS during this 12-month period. In addition to groundwater extracted in the MPCA, the MPITS accepts and treats IDW generated during other groundwater investigations. The contaminant mass removal was calculated as follows:

Mass Removal =

Volume of Water Extracted at Each Well x (Contaminant Concentration at Each Well – MPITS Effluent
Concentration)

5.3 Remediation Systems Operation Costs

<u>Table 5.9</u> presents the costs for operating the PFTS and MPITS for the 12 months from November 1, 2020 to October 31, 2021. The table summarizes the cost of the labor and materials for operation and maintenance of both systems, and includes the electrical costs associated with system operations.

6.0 WSTF Water Supply Well Monitoring

6.1 Water Quality Measurements (Indicator Parameters)

Groundwater indicator parameters are obtained from field quality measurements performed during each water supply well sampling event. The groundwater indicator parameters associated with the water supply well sampling events for the November 2020 through October 2021 period are included in this report (see Table 4.1) are provided in Appendix A.7.

Indicator parameters and other specific sampling-related details associated with each monitor well sampling event are recorded by technicians in the field sampling record. Appendix B provides the field sampling records and field/internal CoC forms for each sampling event performed during the reporting period. The WSTF external CoC forms for groundwater samples collected during these sampling events are provided in the Lab Reports on the enclosed DVD.

6.2 Chemical Analytical Results

Table 4.1 lists supply wells sampled during 2021. Groundwater chemical analytical data from these wells were processed through the WSTF data management system during 2021 and are included in Appendix A.8. Because analytical data from WSTF water supply wells are not considered groundwater monitoring data, they are not included in the historical analytical database provided with this report. Data are not used for decision-making or to prepare graphical representations of groundwater characteristics. Although data from the water supply wells are subject to quality review upon receipt, they are not evaluated with groundwater chemical analytical data and are thus not included in the internal QA reports provided in Appendix C. As requested by NMED via email (NMED, 2013a), laboratory analytical reports

corresponding to the analytical data presented in this report are also provided electronically (.pdf format) with this submittal.

7.0 Discussion and Conclusions

Routine groundwater monitoring is conducted at WSTF to support a variety of projects. The primary objectives of routine groundwater monitoring at WSTF are to delineate the extensive contaminant plume resulting from historical contaminant releases at the facility, support the development and implementation of corrective actions, and monitor the impact of these corrective actions during implementation and operation. Groundwater sampling at WSTF is currently focused on the Plume Front and Mid-plume areas, both of which are critical to NASA's overall groundwater remediation efforts.

This section provides discussion and conclusions based on the results of groundwater monitoring conducted at WSTF. Also included is a summary discussion of the remediation systems' performance, monitoring results, system modifications, and compliance with discharge requirements and/or applicable cleanup levels. Chemical analytical results from the PFTS, MPITS, and routine groundwater monitoring are compared to cleanup levels (refer to <u>Appendix D</u>). This section also provides NASA's anticipated future groundwater monitoring and related activities at WSTF.

7.1 Summary of Groundwater Monitoring Projects

Routine groundwater monitoring was performed during this quarter in accordance with currently approved permits, plans, and other regulatory requirements. In general, the WSTF contaminant plume is relatively stable in nature and extent. The potential for continued migration of the plume resulted in the development of the phased approach to groundwater remediation discussed in Section 1.0. NASA continues to collect a variety of groundwater data from the comprehensive WSTF groundwater monitoring network. Monitoring results are presented in detail in the relevant sections of this report and in later sections of this summary. Several noteworthy projects related to routine groundwater monitoring are discussed below.

7.1.1 Monitoring Well Performance or Sampling Equipment Issues

NASA was unable to sample three wells during the reporting period (August 1, 2021 – October 31, 2021) because of mechanical or well performance issues only. This section does not address wells that were not sampled due to resource limitations.

- In October 2021, well JP-3-509 was not sampled because the sampling system was not operational.
- In October 2021, NASA could not sample wells PL-3-453 and 400-C-118 because the water levels were inadequate for the collection of representative groundwater samples.

The current new occurrences of sampling issues, backlog of prior unresolved issues, and issues resolved this quarter are shown on Table 7.1.

7.1.2 Monitoring Well Installation and Well Plugging and Abandonment

There was no physical well installation or plugging and abandonment activity this quarter. Other fourth quarter 2021 activity included:

- Last quarter, NASA determined that additional groundwater monitoring is required beneath the screened interval of current monitoring well BLM-10-517. NASA prepared and submitted the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW* on August 31, 2021 (NASA, 2021m). NASA received NMED's October 14, 2021 fee assessment for review of the work plan (NMED, 2021d) and provided the fee for review of the plan on October 28, 2021 (NASA, 2021u).
- In its January 25, 2021 Approval with Modifications of the NASA Groundwater Monitoring Plan 2020 Update, NMED (2021a) directed NASA to submit a work plan for abandonment of monitoring wells 200-SG-2 and 200-SG-3 and installation of replacement wells by November 30, 2021. On November 30, 2021, NASA submitted a letter to NMED that attached a draft New Mexico Office of the State Engineer (NMOSE) Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3 with an attachment indicating why NASA does not intend to replace the wells (NASA, 2021x).

7.1.3 Westbay Well Reconfiguration

There was no physical well reconfiguration activity the fourth quarter of 2021. Historical information and full submittal history for well reconfiguration projects are provided in <u>Appendix F.</u>

- NASA plans to plug and abandon groundwater monitoring well BLM-28. NMED is reviewing the Well Abandonment Work Plan for Well BLM-28, submitted on April 29, 2021 (NASA, 2021b). NASA (2021m) determined that a replacement well is necessary and submitted the NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW on August 31, 2021. NASA received NMED's October 14, 2021 fee assessment for review of the work plan (NMED, 2021c) and provided the fee for review of the plan on October 28, 2021 (NASA, 2021t).
- As described in previous reports, NASA plans to plug, abandon, and replace groundwater monitoring well BLM-30 with well BLM-43. Plugging, abandonment, and replacement have been approved by the NMOSE (2021a) and NMED (NMED, 2020b). The well completion report for BLM-43 was due to NMED no later than November 30, 2021. To accommodate subcontractor schedule impacts caused by COVID-19, NASA submitted the *Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Well BLM-43* on September 28, 2021 (NASA, 2021q). NMED (2021f) approved the request on October 27, 2021, extending the submittal date to November 30, 2022.
- NMED is reviewing the *NASA WSTF Well Reconfiguration Work Plan for Well BW-4*, submitted on June 29, 2021 (NASA, 2021g).
- NMED is reviewing the *Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3*, submitted on April 29, 2021 (NASA, 2021b).

7.1.4 Groundwater Monitoring Data Representativeness

Activities in the fourth quarter 2021 included the following:

NASA submitted the Abbreviated Investigation Work Plan for Groundwater Data
Representativeness, Phase 2: FLUTe Well Evaluation to NMED on November 2, 2021 (NASA,
(2021v). NASA received NMED's December 1, 2021 fee assessment for review of the work plan
(NMED, 2021k) and provided the fee for review of the plan on December 14, 2021 (NASA,
2021z).

7.2 Comparison of Analytical Data to Cleanup Levels

This section and the associated appendix compare the chemical analytical data obtained from groundwater remediation system sampling points and groundwater monitoring wells to the approved cleanup levels provided in the GMP (NASA, 2021a). <u>Appendix D</u> provides a comparison of groundwater data to cleanup levels for the current analytical reporting period.

7.2.1 Groundwater Monitoring Wells

<u>Appendix D.1</u> includes a comparison of groundwater monitoring well data to applicable cleanup levels for the analytical reporting period. Only analytical results that exceed cleanup levels are included in the tables.

7.2.2 Plume Front Treatment System

Groundwater samples were collected from the PFTS influent and effluent as required by the RSMP (NASA, 2021f) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.1.5 and <u>Appendix A.4</u>. <u>Appendix D.2</u> includes any PFTS influent results that exceeded cleanup levels during the current analytical reporting period. The PFTS effluent met all DP-1255 discharge limits and Permit cleanup levels.

7.2.3 Mid-plume Interception and Treatment System

Groundwater samples were collected from the MPITS influent and effluent as required by the RSMP (NASA, 2021f) and DP-1255 (NMED, 2017). Chemical analytical data from these sampling events were presented in Section 5.2.5 and <u>Appendix A.6</u>. <u>Appendix D.3</u> includes any MPITS influent data that exceeded cleanup levels during the current analytical reporting period. The MPITS effluent met all DP-1255 discharge limits and Permit cleanup levels, except for one TCE detection in August 2021 (concentration of 2.2 μ g/L) that exceeded the design parameter of 1.0 μ g/L.

7.3 Contaminant Plume Evaluation

System operational and performance data, potentiometric surface maps, groundwater velocity vectors, and a variety of chemical analytical data were used to perform the plume capture evaluation for 2021. The evaluation process is based on the six steps described in "A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems" (EPA, 2008). The steps are:

- 1. Review site data, site conceptual model, and remedy objectives.
- 2. Define site-specific target capture zone(s).
- 3. Interpret water levels.
- 4. Perform calculations, and groundwater modeling (particle tracking).
- 5. Evaluate concentration trends.
- 6. Interpret actual capture based on steps 1-5, compare to target capture zone(s), and assess uncertainties and data gaps.

7.3.1 Site Conceptual Model and Treatment System Remedy Objectives

The WSTF conceptual groundwater model, presented in Figure 7.1, identifies contaminant source areas in the 200, 300, and 400 Areas of the site. Groundwater flows generally westward from the source areas through a fractured bedrock aquifer to the MPCA where the MPITS extraction wells are located. Groundwater not intercepted by the MPITS continues to flow westward through the WBFZ to the southern JDMB alluvial aquifer at the Plume Front area. The PFTS extraction wells are completed in alluvium within the WBFZ, which is an area where Tertiary volcanic bedrock is offset to a depth of over 2,000 ft into the southern JDMB across a series of sub-parallel half-graben step faults. The WSTF groundwater contaminant plume is approximately 4 miles long and 1 mile wide at its broadest extent.

Remedy objectives for the PFTS and MPITS are described in the RSMP (NASA, 2021f). The objective of the PFTS is to control threats to human health and the environment through stabilization and mass removal of groundwater contamination encountered at the leading (westernmost) edge of the WSTF groundwater contaminant plume. The current objective of the MPITS is to intercept and treat contaminated groundwater moving from the source areas in the WSTF industrial area towards the Plume Front area. The MPITS is also used to treat and dispose of IDW generated during well sampling and testing activities in accordance with the GMP (NASA, 2021a).

7.3.2 Definition of Site-Specific Capture Zone

Figure 7.2 provides a comparison of the current contaminant plume location to the original capture zone for the PFTS. A composite of the 2002 (5 μg/L TCE) and 1999 (10 ng/L NDMA) equiconcentration lines defined the original PFTS capture zone. These values were the cleanup levels for those contaminants at that time. All other COC groundwater plumes exist within the boundaries of the TCE and NDMA plumes. The current capture zone extent is defined as the 4.9 μg/L TCE and 1.1 ng/L NDMA equiconcentration lines. These TCE and NDMA concentrations are the current cleanup levels identified in the GMP (NASA, 2021a). The current capture zone is mostly contained within the original capture zone, with the exception of the areas near well PFE-7 and west of monitoring well PL-5. Though the current plume extends beyond the original designed capture zone at this location, particle tracking shows that the PFTS is capable of intercepting contamination in this area (Section 7.3.8).

Low-level NDMA detections at or above the 1.1 ng/L cleanup level at wells PL-7, PL-8, PL-10, PL-11, ST-4-481, ST-5, ST-6, WW-2-664, WW-2, WW-3, and WW-5 are not considered part of the WSTF groundwater contamination plume and are not included in the current definition of the capture zone. NDMA has been regularly observed at low concentrations in samples taken from Westbay and FLUTe multiport wells. NASA believes the NDMA observed at these wells may be caused by analytical interference or degradation of monitoring well components, especially in the lower monitoring zones. Many of these observed detections carry multiple data qualifiers. NASA will continue to closely monitor NDMA results for these wells and report any observable trend in NDMA concentration in subsequent PMRs. The northwestern extension of the Mid-plume contaminant lobe is located outside of the original capture zone. This was not addressed during the original design of the PFTS, because no monitoring data existed for this area during that time. Even though the original design did not address contamination in this area, current particle tracking shows that the westernmost particles in this area remain in bedrock throughout the simulation period (Section 7.3.8).

7.3.3 Groundwater Elevations

A manually contoured potentiometric surface map (<u>Figure 7.3</u>) is provided for the WSTF Plume Front area that correlates with the end of the current reporting period. Data used to generate contours for this

map are identical to the data used to generate the site-wide contours (<u>Figure 4.1</u>). The 40-ft contour used in the site-wide piezometric map is supplemented by 2-ft contours in the Plume Front potentiometric surface map. Arrows indicate the direction of groundwater flow. The influence of PFTS operation is evident by the depression in the potentiometric surface that is caused by pumping at the PFE wells. The hydraulic mound produced by injecting treated water at the PFI wells is apparent at the southern edge of the figure.

Groundwater elevations measured in the MPCA during this analytical reporting period are presented in the manually contoured Mid-plume potentiometric surface map (Figure 7.4). The data used to generate contours for this map are the same values used to generate the site-wide potentiometric map (Figure 4.1). The general west-trending groundwater flow direction through the Mid-plume area is apparent in Figure 7.4, though local variations may exist within discrete fractures or higher conductivity flow zones within the fractured bedrock aquifer in this area. Groundwater elevation is generally depressed downgradient of well MPE-11 near well MPE-6 plume isoconcentration maps.

7.3.4 Overall Plume Front Iso-concentration Maps

Figure 7.5 through Figure 7.8 present manually contoured iso-concentration maps of the WSTF groundwater contaminant plume between the fourth quarter 2013 and the fourth quarter 2021 for NDMA, TCE, PCE, and Freon 11. The manual contouring method allows a geologist to evaluate plume contaminants against interpreted hydrogeological features in order to create a realistic representation of the contaminant plume. Hydrogeological conditions considered during the manual contouring of contaminant concentrations are primarily hydrostratigraphic units or significant structural features that cause the juxtaposition of variable hydraulic conductivities. The lowest value solid isoconcentration line on each map corresponds to the required cleanup level for the analyte presented. The isoconcentration maps are consistent with the maps presented in previous reports (i.e., a like-to-like comparison in the case of NDMA), the monthly evaluation of contaminant concentrations, and site-wide plume maps that have been provided to NMED over the last several years. The isoconcentration contours on the four maps provided in each figure clearly show the decreasing concentrations and overall contaminant mass reduction within the groundwater contaminant plume. The Freon 113 plume was excluded for three reasons: the nature of Freon 113 is highly volatile and shows widely fluctuating results over time, the interior plume mass does not show a significant reduction, and the plume concentrations are below the EPA Regional Screening Level (RSL; 10,000 ug/L).

7.3.5 Plume Front Isoconcentration Maps

<u>Figure 7.9</u> through <u>Figure 7.13</u> present manually contoured isoconcentration maps of the Plume Front for NDMA, TCE, PCE, Freon 11, and Freon 113 using data processed during this reporting period. The lowest value solid isoconcentration line on each map corresponds to the required cleanup level for the analyte presented.

Two exceedances of the NDMA cleanup level were observed in the Plume Front Area this quarter. These included NDMA detections at wells at well BLM-32 (2.2 ng/L) and well JER-2 (7.7 ng/L). Ten exceedances of NDMA cleanup levels were observed in sentinel wells this quarter. These comprised NDMA detections at wells PL-7 (1.4 ng/L), PL-8 (1.1 ng/L), PL-10 (1.5 ng/L), PL-11 (1.5 ng/L), ST-4-481 (1.7 ng/L), ST-5 (2.4 ng/L), ST-6 (1.5 ng/L), WW-2-664 (1.8 ng/L), WW-3 (7.1 ng/L), and WW-5 (4.5 ng/L). VOCs were not detected at or above the cleanup level at these wells. The following quality exceptions exist:

• The NDMA result at well BLM-32 was qualified with "FB" and "QD" data quality exceptions.

- The NDMA result at well JER-2 was not qualified with a data quality exception.
- The NDMA result at well PL-7 was qualified with an "EB" data quality exception.
- The NDMA result at well PL-8 was qualified with "RB", "*", and "EB" data quality exceptions.
- The NDMA result at well PL-10 was qualified with an "EB" data quality exception.
- The NDMA result at well PL-11 was qualified with "RB", "FB", and "QD" data quality exceptions.
- The NDMA result at well ST-4-481 was qualified with "RB", "*", "TB", and "FB" data quality exceptions.
- The NDMA result at well ST-5 was qualified with "EB" data quality exceptions.
- The NDMA result at well ST-6 was qualified with "RB", "A", "FB", and "QD" data quality exceptions.
- The NDMA result at well WW-2-664 was qualified with "RB", "*", "FB" data quality exceptions.
- The NDMA result at well WW-3 was qualified with a "QD" data quality exception.
- The NDMA result at well WW-5 was qualified with a "QD" data quality exception.

"A" indicates NDMA for a laboratory control sample, initial calibration verification or continuing calibration verification was outside standard limits. "EB" indicates NDMA was detected in the equipment blank. "FB" indicates NDMA was detected in the field blank. "RB" indicates NDMA was detected in the reference blank. "QD" indicates the relative percent difference for a field duplicate was outside standard limits. "*" indicates a user defined qualifier and to see the quality assurance narrative.

7.3.6 Combined Plume Isoconcentration Maps and Potentiometric Surface Map

<u>Figure 7.14</u> shows the interrelationship of the Plume Front potentiometric surface and manually contoured TCE plume for the current analytical reporting period. TCE was selected because it is the most widely distributed health-risk-driving contaminant in the conceptualized contaminant plume.

7.3.7 Time-concentration Plots and Groundwater Data Analytical Trends

T-C plots are used to evaluate and summarize contaminant concentration trends in WSTF wells over time on a quarterly basis as presented in this report. A detailed interpretation of the concentration trends shown in T-C plots is provided in this PMR.

To facilitate the evaluation of T-C plots, WSTF monitoring wells are grouped as listed in Table 5 of the GMP (NASA, 2021a). T-C plots are generated using analytical data from each monitoring and remediation well where available. The concentration trends for four of the primary COC (Freon 11, TCE, PCE, and NDMA) in groundwater are reviewed by technical personnel to develop the summary table presented in Appendix E. This table includes the historical maximum contaminant concentrations, the latest concentrations, and an interpretation of the current concentration trend for each well. For NDMA, results are presented for both EPA Method 607 and low-level laboratory analysis. T-C trend evaluation places greater emphasis on the most recent analytical results reported over the last several years. As a result, the current T-C interpretation may therefore not reflect the full historical variability in T-C behavior through the life of the well, particularly for the older wells at WSTF installed in the mid-1980s through the 1990s.

The determination of a trend for an anomalous COC concentration within a specific well is based on the evaluation of analytical data collected over several quarters (typically a minimum of three to four sampling events) in conjunction with other potentially influencing factors (including hydrogeology, aquifer recharge conditions, monitoring well development activities, and changes in the operational status of remediation wells) before a modification to the T-C plot interpretation is performed. This approach is necessary to avoid the premature identification of a trend that represents a short-term fluctuation that reverts back to previous conditions.

A summary site-wide well map and analytical table depicting the most recent interpreted T-C trend for each individual well is included in <u>Appendix E</u>. A summary evaluation of each of the GMP well groups is provided in the following paragraphs, along with a discussion of the T-C plots for specific wells identified within the group. T-C plots (for the specific wells where identified) are also provided as attachments in <u>Appendix E</u>.

Upgradient Well Group: Four wells designated as upgradient monitoring wells are located east of the WSTF industrialized areas. There have been no confirmed VOC or NDMA detections in groundwater for these wells, and all wells are all classified as not detected (ND).

100/600 Area Well Group: Monitoring wells in this group are located within the 100 Area and adjacent easternmost part of the 600 Area. These wells are located in the vicinity of the southeastern boundary of the contaminant source areas and groundwater plume. Where located within the footprint of the groundwater plume, the wells typically show decreasing groundwater concentration trend for Freon 11, TCE, and PCE. This trend is applicable to both wells within the primary bedrock aquifer and well 600-G-138 (T-C plot provided) that is screened across a localized perched groundwater horizon on the top of andesite bedrock at the bedrock-alluvial interface. NDMA is derived primarily from the northern source areas and is not identified within the 100 and 600 Areas.

200 Area Well Group: The 200 Area represents the primary historical source of contamination for the TCE and Freon 11 components of the WSTF groundwater plume. Maximum concentrations in groundwater were identified in the late 1980s through mid-1990s. Over the last 30 years, the majority of 200 Area T-C plots have displayed a decreasing trend in contaminant concentrations for these VOCs. As an example, TCE in well 200-D-240 (T-C plot provided) has decreased from 110 μ g/L in 1990 to 14 μ g/L in 2021. The declines are interpreted to reflect natural plume migration and degradation under the influence of a steep horizontal hydraulic gradient of 0.05 ft/ft within a relatively porous fractured limestone bedrock aquifer, in conjunction with the implementation of effective waste management practices at WSTF that eliminated waste discharges. Wells that display more irregular concentrations with no distinct trend are typically associated with screened intervals characterized by lower hydraulic conductivity and reduced groundwater flow.

300/400 Area Well Group: The T-C plots for monitoring wells generally show groundwater VOC concentration trends that have been either fluctuating (most notably wells installed recently in January 2017 within poorly fractured andesite bedrock as part of the 400 Area Closure Investigation) or have declined over the long-term following initial well installation. Declining concentrations primarily correlate to wells characterized by higher hydraulic conductivity and/or groundwater flow screened across the andesite bedrock-alluvium interface. These wells are located within or adjacent to the 300/400 Area primary arroyo that experiences greater natural recharge. Wells that do not display declines are typically located off the axis of recharge drainages and may also be protected from infiltration by localized less permeable surfaces such as the Closure impoundment caps. Similar to the 200 Area, the predominant declines in the 300 and 400 Areas reflect the influence of migration related to the strong hydraulic gradient of 0.05 ft/ft along the WSTF pediment slope in conjunction with the implementation of effective

waste management practices that eliminated waste discharges. Local disparities for concentrations reported within adjacent bedrock monitoring wells (particularly for NDMA) is interpreted to be a result of both the limited connectivity of andesite bedrock fractures, and the position of the screened intervals relative to the andesite bedrock-alluvial interface. Higher hydraulic conductivity, groundwater flow, and contaminant decline are typically attributed screened intervals within the alluvium on top of bedrock.

Northern Boundary Well Group: The monitoring wells in this group are generally characterized by low-level contaminant concentrations that do not display any sustained T-C trends or are ND. Fluctuating low-level NDMA is reported this quarter from the latest samples collected in wells BLM-32 (2.2 ng/L), BLM-41-420 (1.6 ng/L), and JER-2 (7.7 ng/L). All three wells are located adjacent to the boundary of the northwest-trending plume arm that coincides with northwest-trending structural controls in the bedrock (identified from seismic geophysical surveys) that extend northwest from the Mid-plume constriction area.

Southern Boundary Well Group: Monitoring wells in this group are located south of the NDMA and TCE plumes, do not exceed the low-level NDMA cleanup level of 1.1 ng/L, and are classified as ND. A single well (BLM-6-488, T-C plot provided) continues to show a low fluctuating concentration of TCE (2.2 μ g/L) below the NMED cleanup level and is characterized as exhibiting "natural migration - no overall T-C trend."

MPCA Well Group: T-C plots for monitoring wells in this group that characterize the MPCA generally show declining contaminant trends associated with either natural plume migration and degradation or the effect of system stresses imparted by MPITS pumping since startup in 2011. T-C plots for wells BLM-21-400, BLM-36, BLM-18-430, and BLM-5-527 are included in <u>Appendix E</u>.

Well BLM-21-400 is located adjacent and south of the MPITS extraction wells and immediately downgradient of the interpreted primary confluence of the TCE and NDMA groundwater plumes sources (Freon 11 and TCE originate from the 200 Area [upgradient well BLM-14-327] and NDMA originates from the 300 and 400 Areas [upgradient well BLM-15-305]). Contaminant concentrations in BLM-21-400 since installation in 1991 show a natural decreasing trend for Freon 11 (320 to 79 μ g/L), TCE (220 to 48 μ g/L), PCE (12 to 2.4 μ g/L), and NDMA (5.6 to 1.1 μ g/L). This well is being monitored with respect to potential pumping-related migration under the influence of nearby extraction well MPE-11.

Multiport well BLM-36 is located downgradient and to the south-southwest of the MPITS. The T-C plots for the shallow zone in well BLM-36 (BLM-36-350) identify groundwater contamination that has not been detected in deeper zones of this well, providing a significant location for vertical delineation in the Mid-plume. BLM-36-350 has shown fluctuating but relatively consistent concentrations for groundwater contaminants since activation of the MPITS and is currently classified as "pumping-related migration – no overall trend."

Wells BLM-18-430 and BLM-5-527 are located in the northwest-trending arm of the WSTF groundwater contaminant plume that extends from the MPCA. These wells are monitored to determine the effect of operation of the MPITS on the migration of groundwater contaminants into this area. The T-C plot for well BLM-18-430 shows a decline in contaminant concentrations since startup of the MPITS, inferred to be related to the arrest of contaminant migration to the northwest arm through continued operation of the MPE wells. Well BLM-5-527 is currently the other of the two monitoring wells on-site (in addition to 400-FV-131) interpreted as "natural migration – increasing T-C" trend. Increases in this well are inferred to reflect the migration of contaminants into low conductivity rhyolite bedrock of the extreme northwest section of the northwest-trending arm not impacted since the inception of MPITS pumping. Pumping activity (13,350 gallons extracted) within well BLM-5-527 between April 6, 2020 and May 5, 2020 as

part of the Targeted Mobile Remediation Process Pilot Test at WSTF may also have impacted contaminant concentrations in the area by temporarily creating a cone of depression.

Main Plume Well Group: Wells in this group are located within the western section of the groundwater plume at the Plume Front and show widespread declining trends related to natural migration or pumping depending on proximity to the PFTS remediation wells. Contaminant concentrations within this well group typically decline significantly during intervals of system operation and rebound during quiescent periods.

Plume Front Well Group: Monitoring wells within this group are generally located outside the boundary of the contaminant plume and groundwater analytical results are typically ND. Well BLM-10-517 (located south of the southern plume boundary, T-C plot provided) has displayed periodic trace detections of TCE and Freon 11 since early 2012. The latest groundwater sampling indicated that the Freon 11 concentration is 0.33 μ g/L (with a J flag) and TCE (detection limit 0.21 μ g/L) is ND. Low-level NDMA was also below the detection limit of 0.4 μ g/L at well BLM-10-517. Well ST-7 is located west of PFTS extraction well PFE-2 and south of extraction well PFE-7. Low-level TCE (0.75 μ g/L) may have migrated northward to ST-7 as a result of continued pumping of well PFE-7. The fluctuating concentration of TCE and Freon 11 in the area of ST-7 demonstrate pumping related migration of contaminants through the heterogeneity of the alluvial aquifer. For this quarter, fluctuating low-level NDMA detections were identified in three Plume Front wells (PL-7 [1.4 μ g/L], and ST-5 [2.4 μ g/L], and ST-6 [1.5 μ g/L]).

Sentinel Well Group: Monitoring wells within this group form a more distal tier located outside the groundwater contaminant plume and have all historically shown analytical results that are ND. For this quarter, fluctuating low-level NDMA detections have been identified in six of the sentinel wells (JP-3 [1.8 ng/L], PL-10 [1.5 ng/L], PL-8 [1.1 ng/L], WW-2-664 [1.8 ng/L], WW-3 [7.1 ng/L], and WW-5 [4.5 ng/L]).

Other Well Group – Mid-plume Extraction Wells: The T-C plots for the five MPITS wells are included in <u>Appendix E</u>. The COC concentrations for Freon 11 and TCE in wells MPE-8 and MPE-10 have displayed a generally increasing trend since 2013, under the influence of pumping-related plume migration. Wells MPE-1 (decreasing), MPE-9 (fluctuating), and MPE-11 (fluctuating) are also influenced by continued operation of the MPITS.

Other Well Group – Plume Front Extraction Wells: The T-C Plots for the six PFTS wells; PFE-1, PFE-2, PFE-3, PFE-4A, PFE-5, and PFE-7 are included in <u>Appendix E</u>. The high-volume extraction wells generally exhibit declining trends due to pumping-related plume dilution within the alluvial aquifer at the Plume Front. Well PFE-5 was installed further east with a screened zone primarily in fractured bedrock within the WBFZ displays significantly lower well yield, with no overall trend and a relatively elevated concentration of NDMA.

7.3.8 MODPATH Particle Tracking Simulation

Particle tracking analysis was conducted to assess the capability of the PFTS to effectively contain the TCE and NDMA plumes, which are the most extensive contaminant plumes at the Plume Front. All other COC plumes are within or coincident with the footprint of these primary contaminants. Consequently, simulated capture of the TCE and NDMA plumes confirms capture of the remaining contaminant plumes.

The WSTF groundwater model was originally developed to support the design of the PFTS and was used to optimize remediation well locations and well flow rates. The model currently uses the MODFLOW-SURFACTTM groundwater modeling computer code, which is based on the United States Geological

Survey (USGS) modular finite difference groundwater flow model code MODFLOW. MODFLOW-SURFACT was designed to simulate flow through porous medium. Where required, an equivalent porous medium approach is used to simulate flow though fractured bedrock in the WSTF model. This approach assumes that groundwater flow through fractured bedrock can approximate porous medium flow conditions when a large enough model area or volume is considered. This allows the MODFLOW-SURFACT modeling code to be used for porous medium and fractured bedrock aquifers. Results from model calibration indicate this approach can generally approximate groundwater flow from the WSTF source areas, through the Mid-plume area, to the alluvial aquifer of the southern JDMB. The inherent assumptions used in this method does not allow the model to predict exact groundwater elevations and groundwater flow directions for specific locations within the bedrock aquifer. Instead, predicted hydraulic heads and flow directions produced by the WSTF groundwater model approximate generalized groundwater elevation and flow conditions for bedrock areas.

NASA completed calibration and sensitivity analysis of the updated WSTF groundwater model in 2013. This revision incorporated updated hydrogeologic data obtained from recently drilled wells and aquifer tests into the model. Boundary condition values were also updated. Values for the general head boundary condition at the western extent of the model were updated with predictive hydraulic heads data from regional southern JDMB groundwater model. This regional model is administered by the New Mexico Office of the State Engineer and accounts for the anticipated increase in pumping throughout the southern JDMB over time. After flow model calibration, the model was calibrated for TCE and NDMA contaminant transport.

The USGS particle tracking code MODPATH was used in conjunction with the NASA WSTF groundwater flow model to conduct particle tracking simulations for this current contaminant plume capture evaluation. MODPATH is a post-processing package developed by the USGS that simulates adjective transport of virtual particles through a simulated flow field. It uses the numerical flow model output in combination with a semi-analytical particle tracking scheme to calculate flow paths within each finite-difference model grid cell throughout a defined simulation period (USGS, 1994). The WSTF groundwater flow model has a simulation period from 1962 through 2110. Particle paths, or traces, are computed in MODPATH by tracking particles from cell to cell until the individual particle reaches a boundary, an internal sink, or satisfies some other specified termination criterion.

The first MODPATH simulation for this evaluation began on the last day of the current reporting period, October 31, 2021, and ran through December 31, 2061. PFTS extraction and injection well flow rates were varied to account for the appropriate operational scheme during a given stress period. These varying flow rates in the simulation account for PFTS extraction or injection well downtime associated with equipment failure or maintenance periods. The current WSTF potable water supply wells, Well K and Well M, are included in the simulation. Water supply well J2 is assumed activated in 2022, with shutoff of Well K that same year.

Particle starting locations in the MODPATH simulation corresponded to the maximum extent of the 4.9 µg/L TCE and 1.1 ng/L NDMA equiconcentration lines presented in this report. Particles were released at a 250 ft interval along the composite TCE-NDMA equiconcentration line representing the main body of the plume in model layers 8 through 13. These model layers correspond to saturated layers in the model that contain the WSTF groundwater contamination plume. Results from the MODPATH simulation are presented in Figure 7.15. A second extended MODPATH simulation was run through 2110 to confirm that all traces, especially those at the southwestern boundary of the current plume extent, reach or are trending towards PFE wells over time (Figure 7.16). These results indicate successful simulated capture of the WSTF contaminant plume by the PFTS.

Particles released at the northwestern extension of the Mid-plume contaminant lobe are within a fractured bedrock aquifer, east of the WBFZ and southern JDMB alluvial aquifer. MODPATH results indicate most of these particles remain in the bedrock aquifer through the end of the 2061 simulation period, with the exception of several particles released southeast of monitoring well JER-1. These particles travel west in the bedrock aquifer and turn south towards PFTS extraction well PFE-1 once they enter the alluvial aquifer in later stress periods. The PFTS was not specifically designed to address the northwestern Midplume contaminant lobe feature, but results from the extended simulation through 2110 indicate particles released in that area are either captured by or are trending towards PFE wells once they enter the alluvial aquifer (Figure 7.16). NASA will continue to closely monitor contaminant concentrations in this area to confirm successful plume capture.

7.3.9 Evaluation of Vertical Gradients

Vertical gradients at select well locations within the contaminated Plume Front aquifer are recorded and examined bi-annually. Gradients are expressed as pressure differences between screened zones in well clusters or multi-port wells. Analyses of these pressure gradients (Table 7.2) are performed as a line of evidence to verify effectiveness of the PFTS on contaminant plume capture. Downward vertical gradients are expected to be observed in well clusters and multiport wells in close proximity to extraction wells. During this reporting period, downward vertical gradients were observed in well clusters BLM-17, BLM-36, and all but the deepest segment of well ST-5. Well PL-10 experienced upward vertical gradients in the deepest two zones, as expected, due to the well's close proximity to PFTS injection wells. The shallowest zone of PL-10 experienced a slightly downward vertical gradient, likely due the nearby injection wells having less influence in shallower portions of the water table.

Conclusions drawn from the examination of vertical gradients from data collected from 1990 to the present indicate in general that:

- Pumping from the PFTS wells impacts the contaminated aquifers in the Plume Front at all levels, ranging from shallow to levels deeper than where extraction pumps are set.
- Pumping shows the most discernable effects when the combined extraction rate of the PFE wells approaches or exceeds the design flow rate of 1,000 gpm and remains consistent.
- Vertical gradient responses in the different well groups monitored are not uniform and reflect the lack of homogeneity of the alluvial aquifer and natural recharge pulses moving westward from the San Andres Mountain front.

For the current reporting period, vertical gradient responses were unremarkable and continue to indicate that the PFTS impacts the target depth range in the contaminated aquifer. No significant changes in groundwater flow at depth are indicated.

7.3.10 Plume Capture Interpretation and Conclusions

None of the Plume Front evaluation elements discussed in this section suggest unanticipated migration of the current observed plume beyond the PFTS limit of capture. NASA has determined that capture at the Plume Front is sufficient and will be maintained by continued operation of the PFTS. Additionally, none of the Mid-plume evaluation elements discussed in this section suggest that the MPITS is ineffective in treating water extracted from the MPCA area.

7.4 Summary of Source Area Investigations

The following subsections summarize the status of each solid waste management unit (SWMU) or hazardous waste management unit (HWMU) (Figure 7.17) at WSTF and provide specific information on work performed during the fourth calendar quarter of 2021. Historical information through the end of 2019 including investigation status, and full submittal history for each potential source area is provided in Appendix F.

7.4.1 200 Area

NASA continues work associated with the investigation of two HWMUs and SWMUs in the 200 Area. NASA performed a wide-area soil vapor survey in the 200 and 600 Areas to assess the potential risk to workers posed by soil vapor intrusion into the buildings adjacent to areas with the greatest soil vapor concentrations. NMED disapproved NASA's report on the assessment, stating that the vapor intrusion pathway is complete from the standpoint of risk assessment. During the fourth quarter of 2021, activities related to this SWMU included:

• NMED is reviewing the NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report (NASA, 2020a).

7.4.2 300 Area

NASA performed routine groundwater sampling at the 300 Area and recommended a corrective measures study in conjunction with the 400 Area. There was activity at the 300 Area based on NMED's prior disapproval of the 300 Area Supplemental Abbreviated Drilling Work Plan (May 30, 2019; NASA, 2019b) and resulting direction. See next section and Appendix F, Section 2.2.

7.4.3 400 Area

There were no document submittals for the 400 Area in the fourth quarter of 2021. Recent and ongoing activity includes:

- Last quarter, NASA submitted the NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response on July 27, 2021 (NASA, 2021k). NASA received NMED's September 8, 2021 fee assessment for review of the third document revision of the 400 Area Closure IR and provided the fee for review of the report on September 28, 2021 (NASA, 2021p).
- NMED is reviewing the Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan (July 14, 2021; NASA, 2021j).
- NMED is reviewing the NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response (July 27, 2021; NASA, 2021k).
- NMED is reviewing the *Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan* (July 14, 2021; NASA, 2021i).

7.4.4 600 Area Perched Groundwater Extraction and Investigations

NASA is currently conducting a perched groundwater extraction pilot test in the 600 Area and investigating the presence of additional perched groundwater beneath and adjacent to the 600 Area Closure. During the fourth quarter of 2021, activities related to this HWMU included:

- NASA continued extraction of perched groundwater from monitoring well 600-G-138 in accordance with NMED's March 1, 2013, Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area. Approximately 736 gallons of perched groundwater were removed from 600-G-138 from October 2021 through December 2021 and transported to the MPITS for treatment.
- NASA planned for drilling the boreholes at the 600 Area closure per NMED's *Approval with Modifications 600 Area Closure Geophysical Survey Status Report* (NMED, 2020c) and to submit the Investigation Report. Recognizing a continued delay in obtaining the services of a qualified driller due to COVID backlog, NASA requested an extension for submittal of the 600 Area Perched Groundwater Investigation Report on October 5, 2021 (NASA, 2021r). NMED approved the extension on October 27, 2021 (NMED, 2021e).
- NASA also submitted an application to drill the perched groundwater boreholes through the NMOSE (NASA, 2021w) and received approval on November 9, 2021 (NMOSE, 2021b).

7.4.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

NASA continued work required to investigate and close the WSTF Wastewater Lagoons in the 100, 200, and 600 Areas and at the Second Tracking and Data Relay Satellite (TDRS) Ground Terminal (STGT). Activities during the fourth quarter of 2021 included:

- NMED is reviewing the NASA WSTF 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report (NASA, 2020c).
- NMED is reviewing the NASA WSTF 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report (NASA, 2019d).
- NMED is reviewing the NASA WSTF 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report (NASA, 2019e).
- NMED is reviewing the NASA White Sands Test Facility WSTF STGT Wastewater Lagoons Closure (AOC 51) Investigation Report (NASA, 2020f).

7.4.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines [HWTL])

NASA performed an investigation of the abandoned HWTL that consisted of HWTL excavation, pipeline removal, soil sampling, and the submittal of an investigation report. Activities during the fourth quarter of 2021 included the following:

- On September 14, 2021, NASA requested a second extension of time for submittal of a response to disapproval of the HWTL IR (NASA, 2021n). NMED approved the extension request on October 27, 2021 (NMED, 2021g).
- NASA is revising the HWTL investigation report (July 30, 2019) in response to NMED's November 16, 2020 disapproval. This includes planning to resample along the HWTL as required by the disapproval. The due date is January 30, 2022.

7.4.7 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

NASA completed a multi-part investigation of the 600 Area BLM Off-Site Soil Pile and has addressed NMED comments on multiple iterations of the investigation report. Activities in the fourth quarter of 2021 were:

- NASA submitted the Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU
 16 (600 Area BLM Off-Site Soil Pile) to NMED on September 28, 2021 (NASA, 2021o). NASA
 received NMED's November 18, 2021 fee assessment for review of the work plan (NMED,
 2021j) and provided the fee for review of the plan on December 7, 2021 (NASA, 2021y).
- NMED is reviewing NASA's Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) (September 28, 2021).
- 7.4.8 SWMUs 18–20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank, and 800 Area Oxidizer Burner)

NASA performed investigation fieldwork at the 800 Area Below Grade Storage Tank (SWMU 19) in December 2015 and October 2017 and provided the results to NMED in an investigation report, which NMED disapproved twice.

7.4.9 SWMUs 21–27 (Septic Tanks)

Activities during the fourth quarter of 2021 included the following:

• NMED is reviewing NASA's Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (May 18, 2021; revised IR; NASA, 2021d).

7.4.10 SWMUs 29–31 (Small Arms Firing Ranges)

NASA performed initial corrective measures fieldwork at the three closed small arms firing ranges, summarized the results for NMED, and recommended additional fieldwork based on NMED feedback. NASA submitted the *Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31)* Remedy Completion Report and Risk Assessment Report on August 3, 2020 (NASA, 2020d). During the fourth quarter of 2021, activities related to these SWMUs included:

• NMED is reviewing the Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report (August 3, 2020; NASA, 2020d).

7.4.11 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

The 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) (NASA, 2020e) were submitted to the NMED HWB on August 17, 2020. NASA received and paid the NMED HWB Fee Assessment (NMED, 2020a; NASA, 2020g). During the fourth quarter of 2021, activities related to this SWMU included the following:

 NMED is reviewing the 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) IWP and HIS.

7.4.12 SWMU 47 (500 Fuel Storage Area)

NASA plans to perform an investigation of the 500 Area Fuel Storage Area (SWMU 47). During the fourth quarter of 2021, activities related to this SWMU included the following:

• NMED is reviewing NASA's Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan (June 29, 2021; revised IWP; NASA, 2021h).

7.4.13 SWMU 49 (700 Area Landfill)

NMED-approved investigation work at the closed landfill as described in the *Response to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary* (NASA, 2019c). Activities during the fourth quarter of 2021 include the following:

- NASA reviewed soil vapor data from the Phase 1A soil vapor survey and concluded that a Phase 1B survey would not provide any more useful information. NASA submitted a letter, *Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation*, on the lack of need to perform for a Phase 1B SVS for the 700 Area Landfill to NMED on October 19, 2021 (NASA, 2021s). NMED disapproved the approach and asked for clarification on November (NMED, 2021h). NASA provided a revised discussion on December 21, 2021 (NASA, 2021bb).
- NASA continued work on the Phase I field investigation report, due April 29, 2022.

7.4.14 SWMU 50 (First TDRS Diesel Release)

NASA performed NMED-approved investigation fieldwork at SWMU 50 and provided the results to NMED in the *First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report* (NASA, 2019a). Activities during the fourth quarter of 2021 include the following:

• NMED is reviewing NASA's Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report (November 9, 2020; NASA, 2020h).

7.4.15 SWMU 52 (Second TDRS UST)

On August 11, 2020, NASA discovered a diesel fuel leak in the area of the SWMU 52 Underground Storage Tank (UST), which is located north of WSTF at the White Sands Complex. SWMU 52 related activities performed during the fourth quarter of 2021 included the following:

• NMED is reviewing the *Second TDRS UST Minimum Site Assessment Report* (June 25, 2021; NASA, 2021e).

7.4.16 Newly Identified SWMU

While researching documentation related to the Fuel Treatment Unit, NASA identified the location of a former 500 Area oxidizer as a potential new SWMU. Activities during the fourth quarter of 2021 include the following:

• On December 20, 2021, NMED (2021m) approved the 500 Area Newly Identified SMWU Release Assessment Report (June 22, 2020; NASA, 2020b). NMED directed NASA to list the former oxidizer burner as a SWMU requiring corrective action in the WSTF Hazardous Waste Permit (during a Permit renewal or modification, as applicable) and to submit an investigation work plan for the unit no later than August 31, 2022.

8.0 Planned Activities

This section discusses NASA's planned activities related to groundwater monitoring at WSTF.

8.1 Groundwater Monitoring and Related Projects

8.1.1 Groundwater Monitoring

NASA plans to continue routine groundwater monitoring in accordance with the GMP (NASA, 2021a). Sampling for per- and polyfluoroalkyl substances will be included in 2022 per NMED's November 15, 2021 Approval with Modifications of the 2021 GMP (NMED, 2021i), and will be reflected in the GMP update for 2022. NASA committed to PFAS sampling in its *Response to Approval with Modifications of NASA WSTF Groundwater Monitoring Plan Update for 2021* (NASA, 2021aa).

8.1.2 Monitoring Well Performance or Sampling Equipment Issues

This section presents plans to address wells that could not be sampled in the reporting period (August 1, 2021 through October 31, 2021) due to mechanical or well performance issues and were not resolved by the end of the period. The backlog of prior unresolved issues is shown on <u>Table 7.1</u>. The section also presents issues that have been resolved.

- In October 2021, well JP-3-509 was not sampled because the sampling system was not operational. NASA will repair the system.
- In the Approval with Modifications of the 2021 GMP update, NMED stated, "Due to reported damage associated with root growth at monitoring well NASA 9, a work plan for abandonment and replacement of the monitoring well must be submitted to NMED for approval... The work plan for abandonment and replacement of monitoring well NASA 9 must be submitted no later than April 29, 2022" (NMED, 2021i). NASA plans to prepare and consider and submit the required well replacement work plan.
- There were prior period sampling failure issues resolved this quarter. Based on water level measurements at wells 400-IV-123 and 300-C-128 in September 2021, NASA scheduled them for groundwater sampling in October 2021. Sampling efforts were successful.

8.1.3 Westbay Well Reconfiguration.

NASA expects to plug and abandon well BLM-28. NASA plans to plug and abandon the borehole at former monitoring well BLM-30 in conjunction with drilling and completing replacement well BLM-43.

8.1.4 Monitoring Well Installation

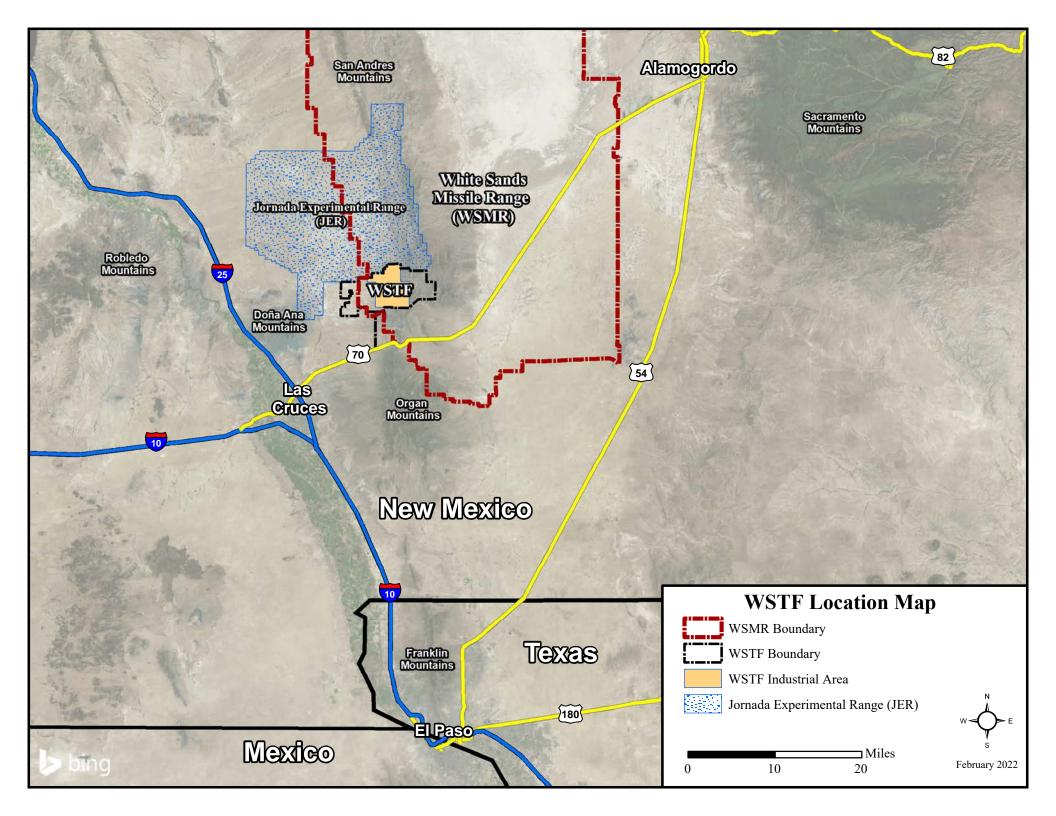
In addition to replacement well BLM-43 mentioned in the preceding section, NASA plans to replace well BLM-28 and to install a deeper monitoring well adjacent to existing well BLM-10-517.

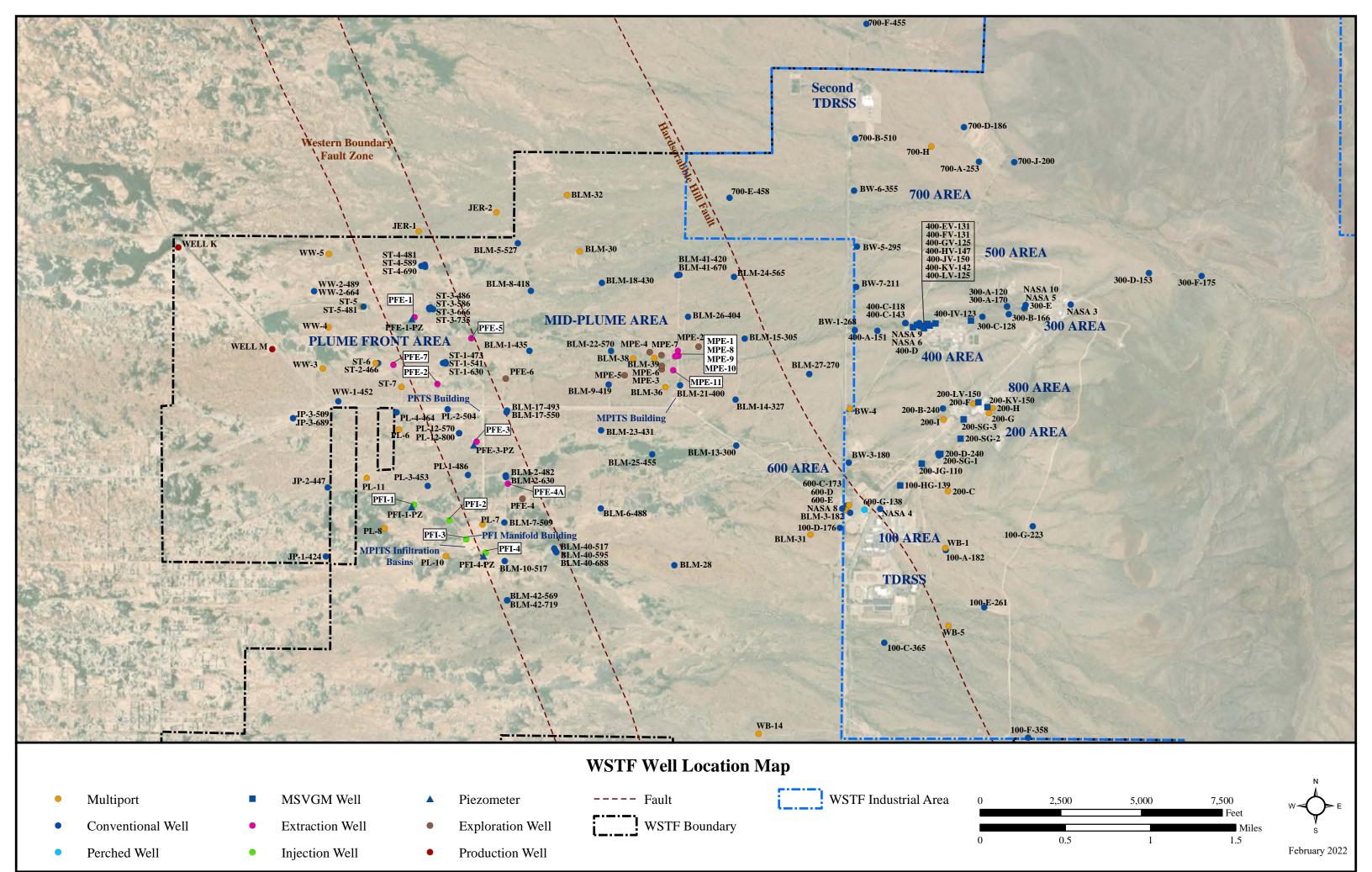
8.2 Groundwater Remediation System Monitoring

The RSMP (NASA, 2021f) and DP-1255 (NMED, 2017) include provisions for monitoring the effectiveness of the PFTS and MPITS. Sampling at designated locations, including extraction wells and remediation system sampling points, will continue as required during remediation system operational periods in accordance with the RSMP and/or DP-1255. Monitoring well sampling to assess remediation system effectiveness will continue in accordance with the GMP (NASA, 2021a).

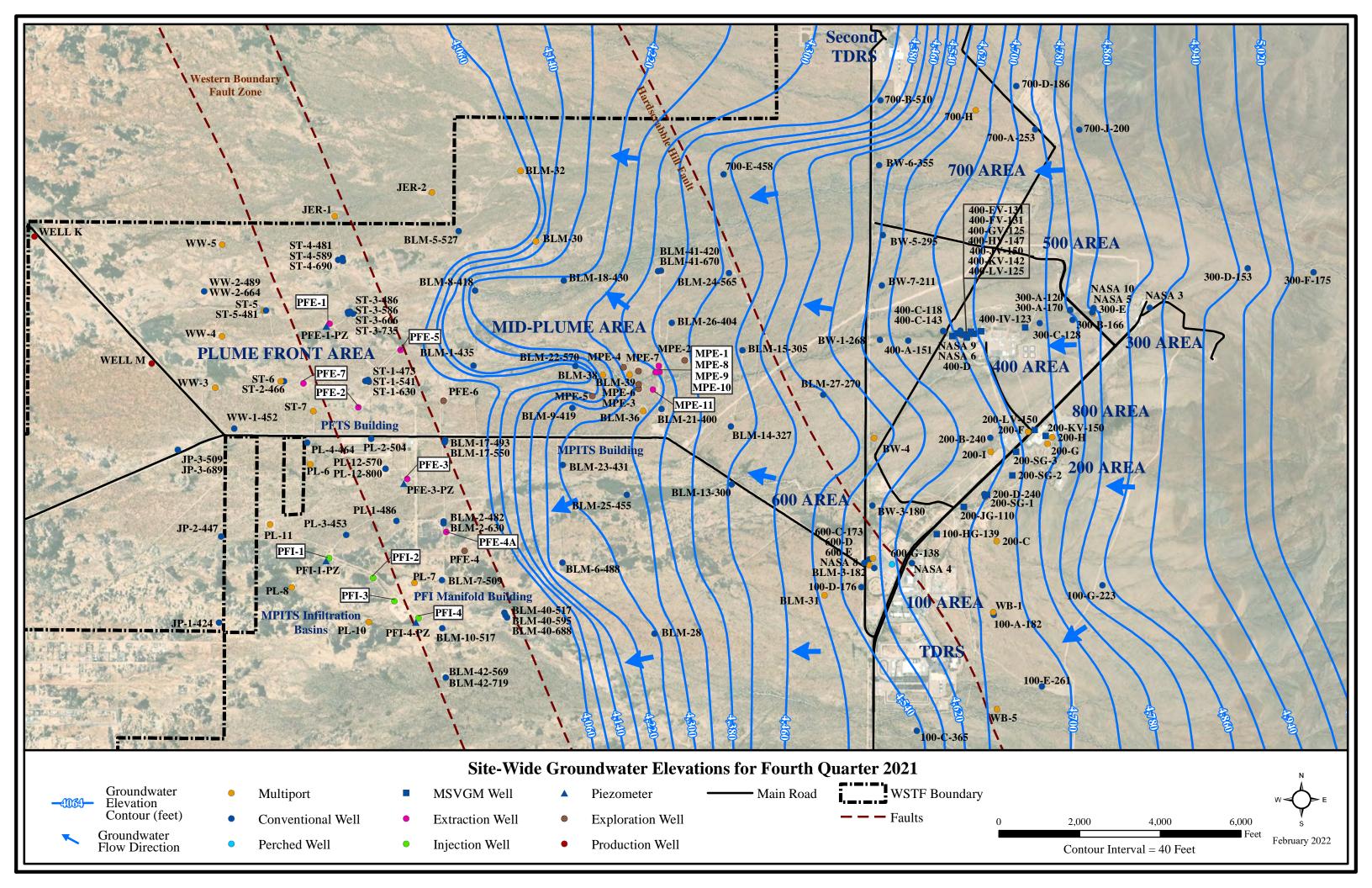
9.0 References

- EPA. Office of Research and Development. (2008, January). A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems. Cincinnati, OH.
- NASA Johnson Space Center White Sands Test Facility. (2019a, March 14). First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, May 30). 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019c, August 8). Response to NMED Approval with Modifications SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019d, November 25). NASA White Sands Test Facility (WSTF) 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, November 26). NASA White Sands Test Facility (WSTF) 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, January 30). NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, June 22). 500 Area Newly Identified SWMU Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, August 3). NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020d, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020e, August 17). NASA White Sands Test Facility (WSTF) 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.

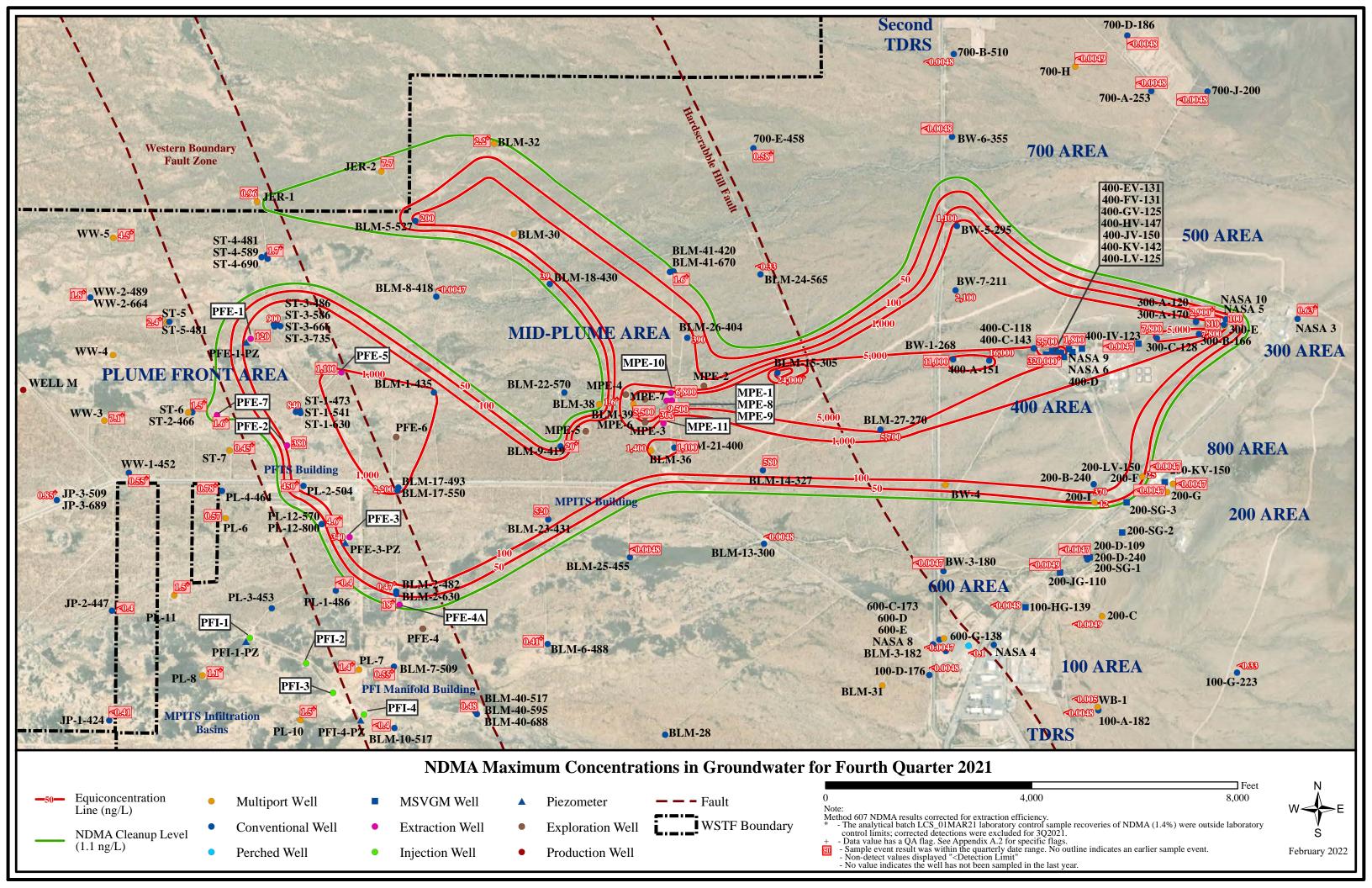

- NASA Johnson Space Center White Sands Test Facility. (2020f, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020g, October 28). Fee Assessment for 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) IWP and HIS (NMED Invoice Number HWB-NASA-20-013). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020h, November 9). Response to Approval with Modifications of Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020i, November 9). Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021a, April 19). NASA White Sands Test Facility (WSTF) Groundwater Monitoring Plan (GMP) Update for 2021. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, April 29). Well Abandonment Work Plan for Well BLM-28. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021d, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, June 25). Second TDRS UST Minimum Site Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, June 29). *NASA WSTF Remediation System Monitoring Plan Annual Update for 2021*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, June 29). *NASA WSTF Well Reconfiguration Work Plan for Well BW-4*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021h, June 29). Response to Second Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, July 14). Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, July 14). Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, July 27). NASA WSTF 400 Area Closure Investigation Report NMED Third Disapproval Response. Las Cruces, NM.

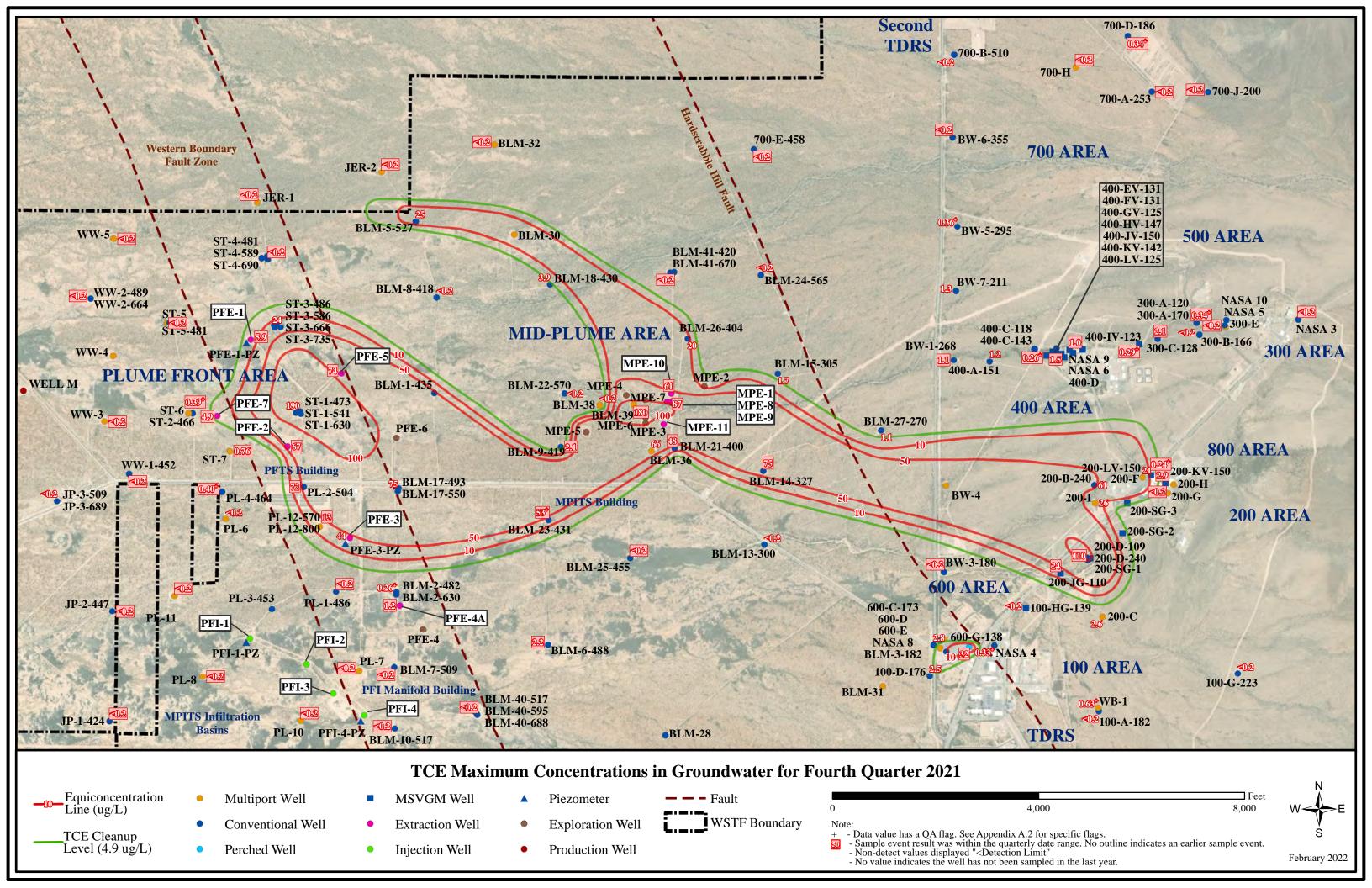

- NASA Johnson Space Center White Sands Test Facility. (2021l, August 31). NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021n, September 14). Request for Second Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021o, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021p, September 28). Fee Assessment for the 400 Area Closure Investigation Report Third Document Revision (NMED Invoice Number HWB-NASA-21-014). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021q, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021r, October 5). Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021s, October 19). Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021t, October 28). Fee Assessment for the NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW (NMED Invoice Number HWB-NASA-21-015). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021u, October 28). Fee Assessment for the NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW (NMED Invoice Number HWB-NASA-21-016). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021v, November 2). *Abbreviated Investigation Work Plan for Groundwater Data Representativeness, Phase 2: FLUTe Well Evaluation.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021w, November 2). *Application for Permit to Drill Six Monitoring Wells with No Consumptive Use of Water at the NASA-JSC White Sands Test Facility*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021x, November 30). Well Plugging Plan of Operations for Multiport Soil Vapor Groundwater Monitoring Wells 200-SG-2 and 200-SG-3. Las Cruces, NM.

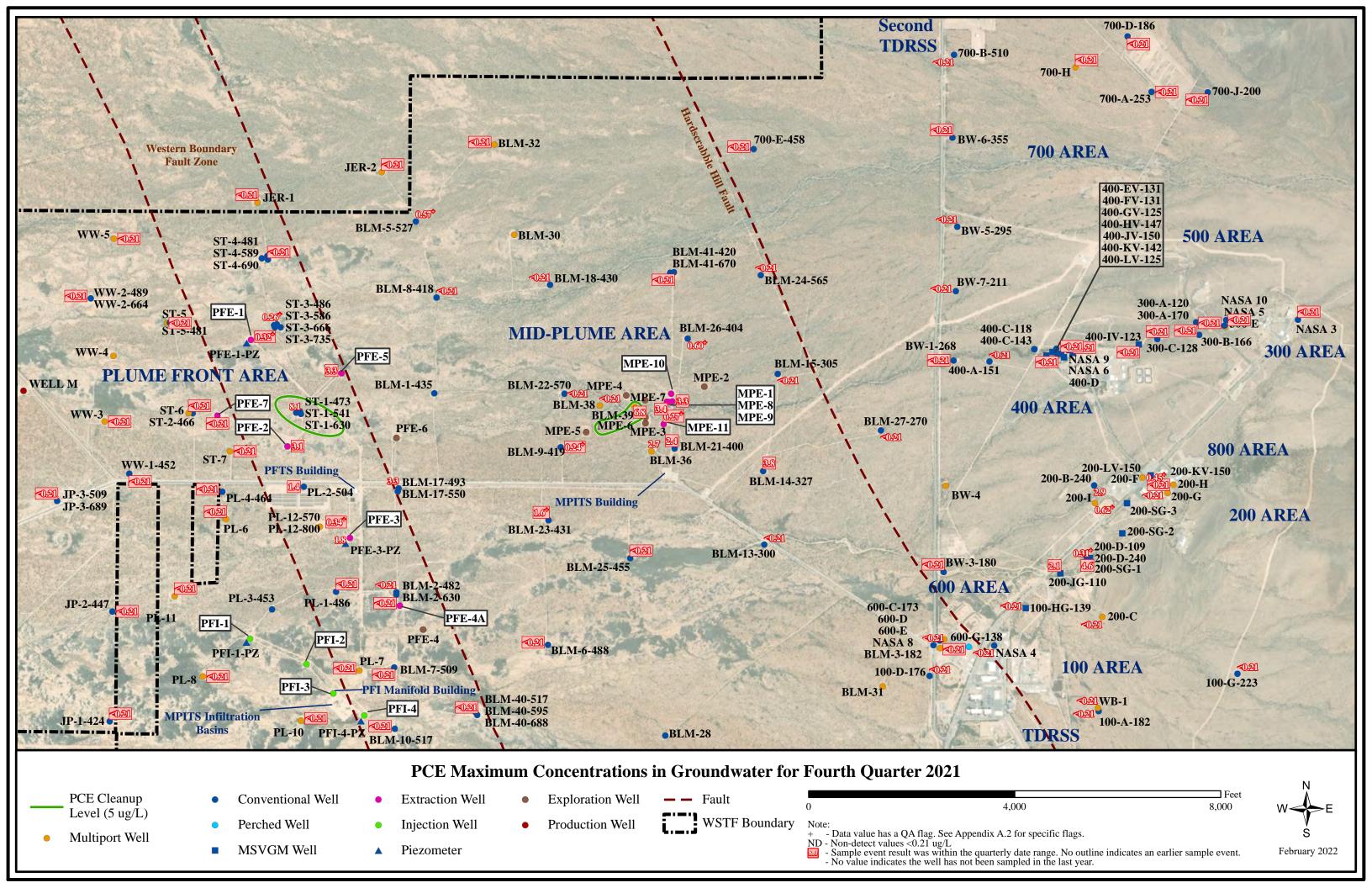
- NASA Johnson Space Center White Sands Test Facility. (2021y, December 7). Fee Assessment for the 600 Area BLM OSP (SWMU 16) Accelerated Corrective Measure Work Plan (NMED Invoice Number HWB-NASA-21-017). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021z, December 14). Fee Assessment for the Groundwater Data Representativeness Phase II: FLUTe Well Investigation Work Plan (NMED Invoice Number HWB-NASA-21-019). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021aa, December 21). Response to Approval with Modifications of NASA WSTF Groundwater Monitoring Plan Update for 2021. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021bb, December 21). Revised Discussion Relative to the Phase 1A and Phase 1B Soil Vapor Survey (SVS) Component of the Ongoing 700 Area Landfill Phase I Investigation. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2009, November 3). Hazardous Waste Permit No. NM8800019434 (modified December 2019). Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013a, January 9). NASA WSTF PMRs. Email. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2013b, March 1). Approval Time Extension for Implementation of the Perched Groundwater Extraction Pilot Test at the 600 Area. Santa Fe, NM.
- NMED Ground Water Quality Bureau. (2017, July 14). *Discharge Permit Renewal and Modification, DP-1255, NASA White Sands Testing Facility.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020a, September 22). Fee Assessment 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan and Historical Information Summary. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020b, November 5). Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020c, December 22). *Approval with Modifications 600 Area Closure Geophysical Survey Status Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021a, January 25). *Approval with Modifications Groundwater Monitoring Plan*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, September 8). Fee Assessment Third Document Revision 400 Area Closure Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021c, October 14). Fee Assessment Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021d, October 14). Fee Assessment Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW. Santa Fe, NM.

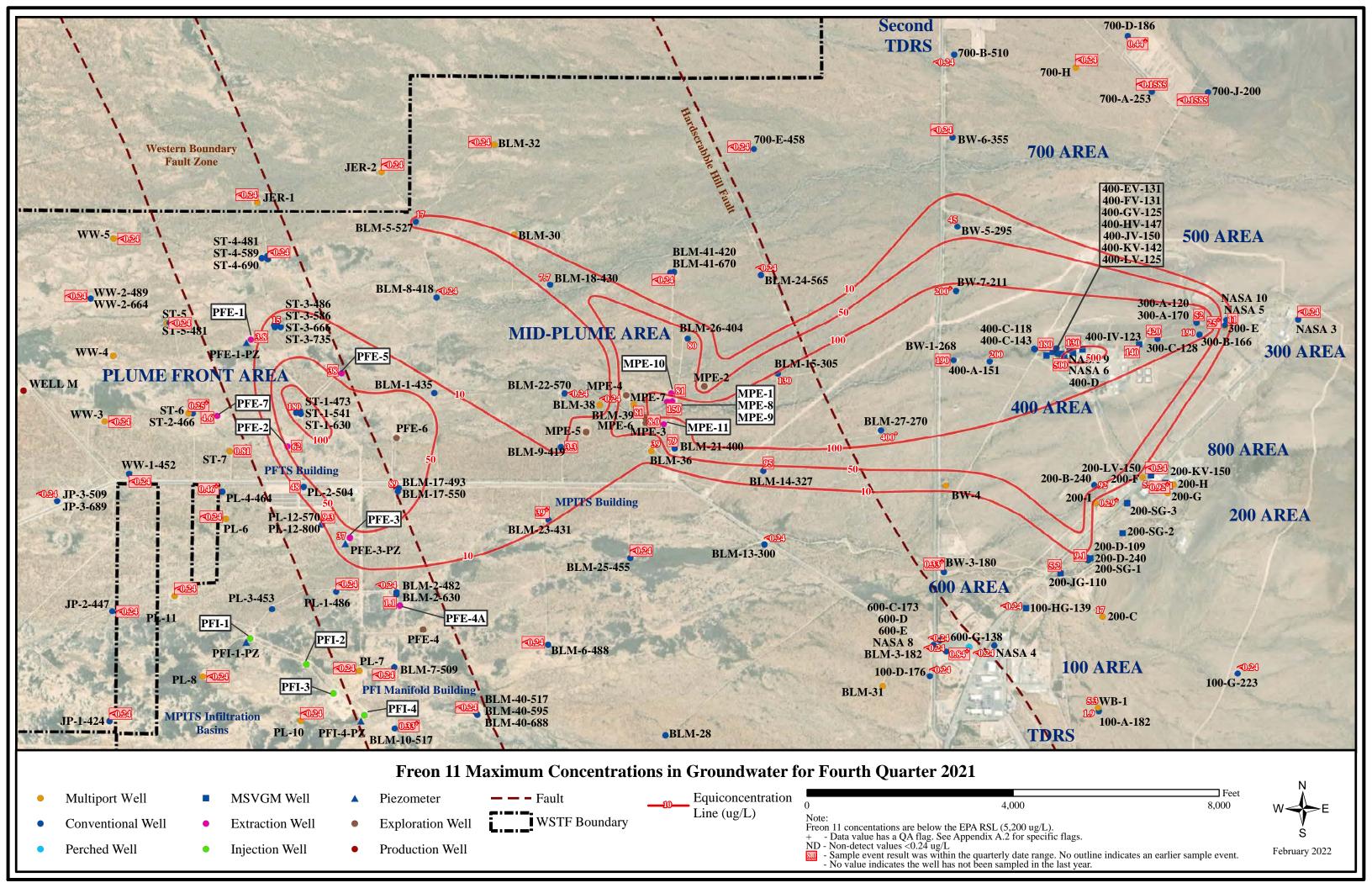

- NMED Hazardous Waste Bureau. (2021e, October 27). Approval Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021f, October 27). Approval Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021g, October 27). Approval Request for Second Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021h, November 12). Disapproval 700 Area Landfill (SWMU 49) Phase I Investigation Soil Vapor Survey. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021i, November 15). Approval with Modifications White Sands Test Facility Groundwater Monitoring Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021j, November 18). Fee Assessment 600 Area Bureau of Land Management Off-site Soil Pile (SWMU 16) Accelerated Corrective Measures Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021k, December 1). Fee Assessment Abbreviated Investigation Work Plan for Groundwater Data Representativeness Phase 2: Water FLUTe Well Evaluation. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021l, December 2). Risk Assessment Guidance for Investigations and Remediation Volume 1, November 2021. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021m, December 20). *Approval 500 Area Newly Identified SWMU Release Assessment Report*. Santa Fe, NM.
- NM Office of the State Engineer. (2021a, May 11). *Plugging Plan Approval for well LRG-18199-POD1*. Las Cruces, NM.
- NM Office of the State Engineer. (2021b, November 9). *Approved Permit to Drill a Well for Non-Consumptive Purposes 600A Wells*. Las Cruces, NM.
- USGS. (1994, September). Users Guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. U.S. Geological Survey Open File Report 94-464. Reston, VA.

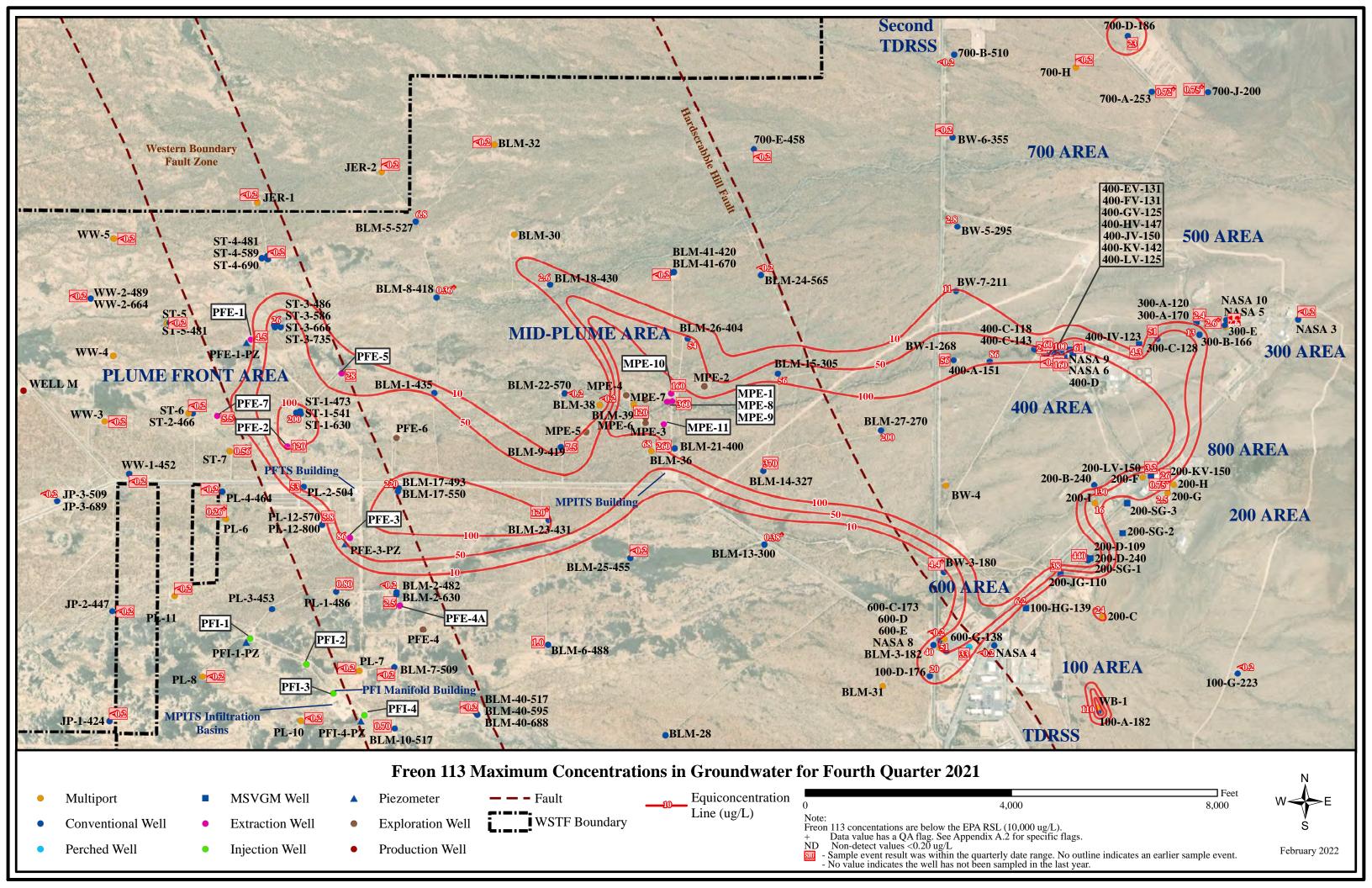
Figures

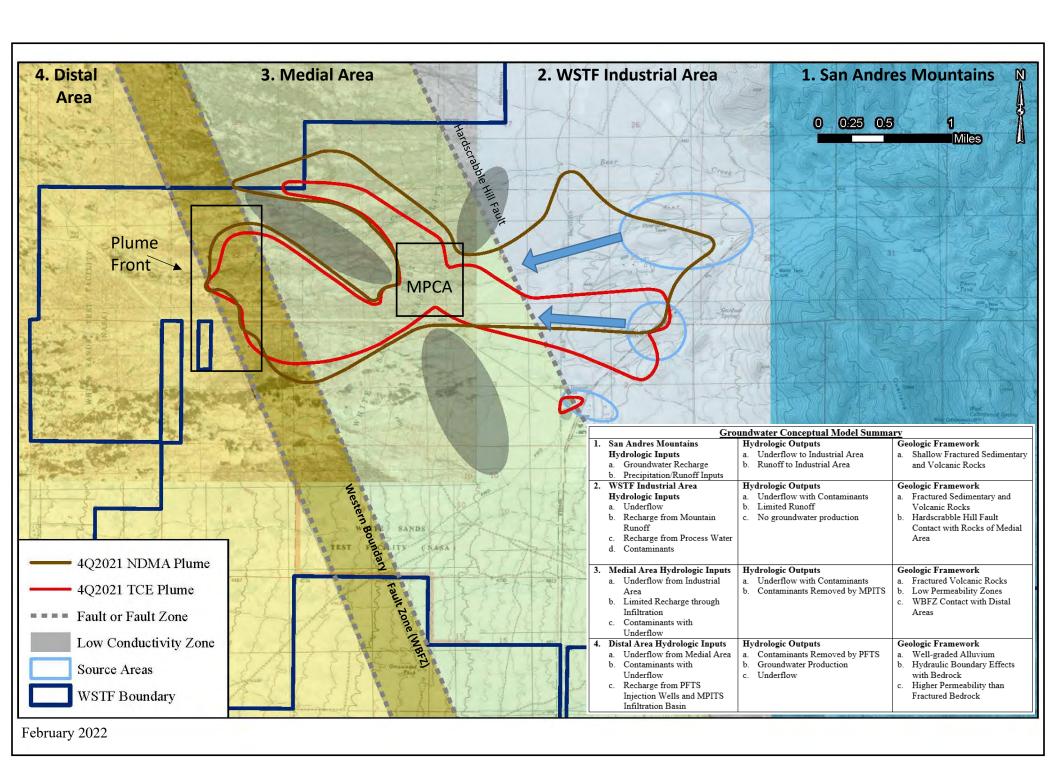


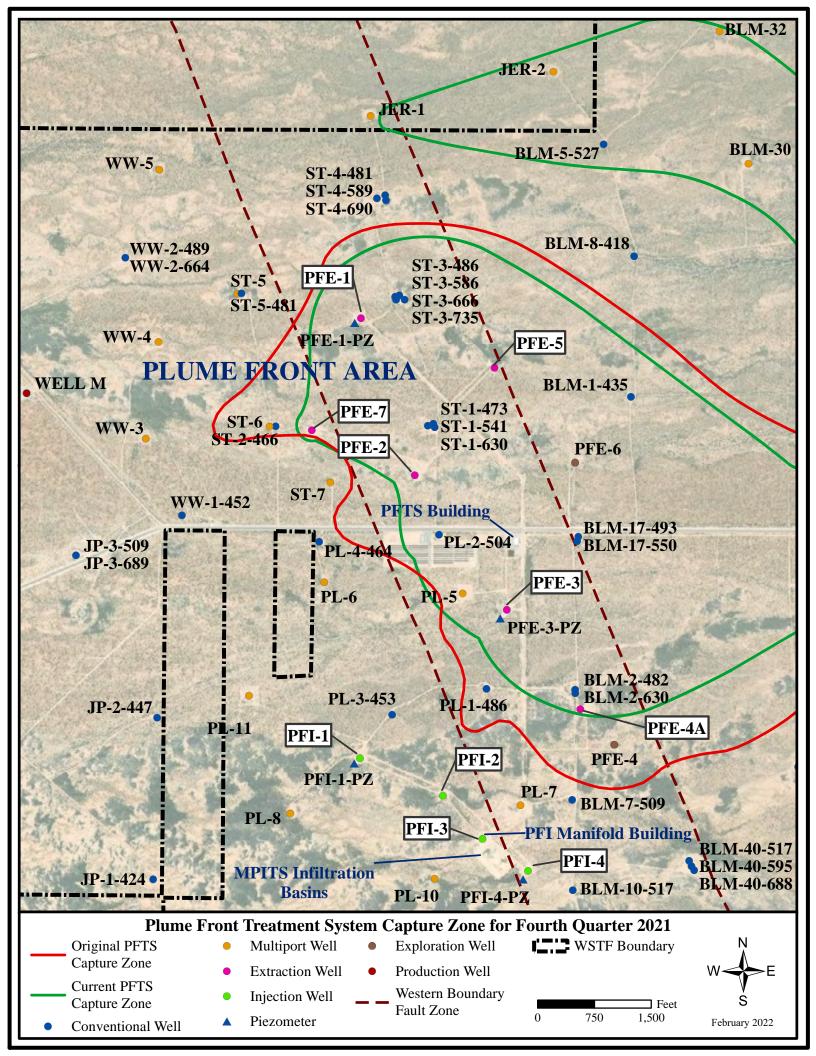

Figure 4.1 Groundwater Elevations and Generalized Flow Directions for the Report	ing Period
(SEE NEXT PAGE)	

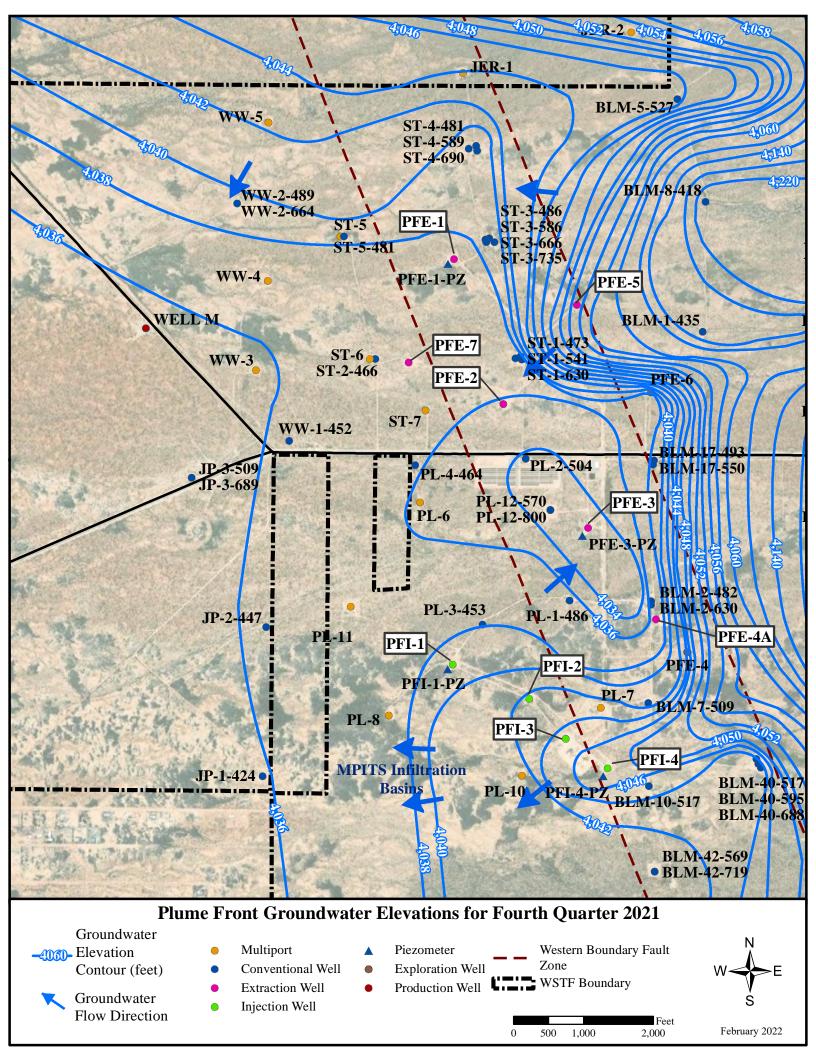

E' 43	
Figure 4.2	Site-Wide N-Nitrosodimethylamine (NDMA) Concentrations for the Reporting Period
	(SEE NEXT PAGE)

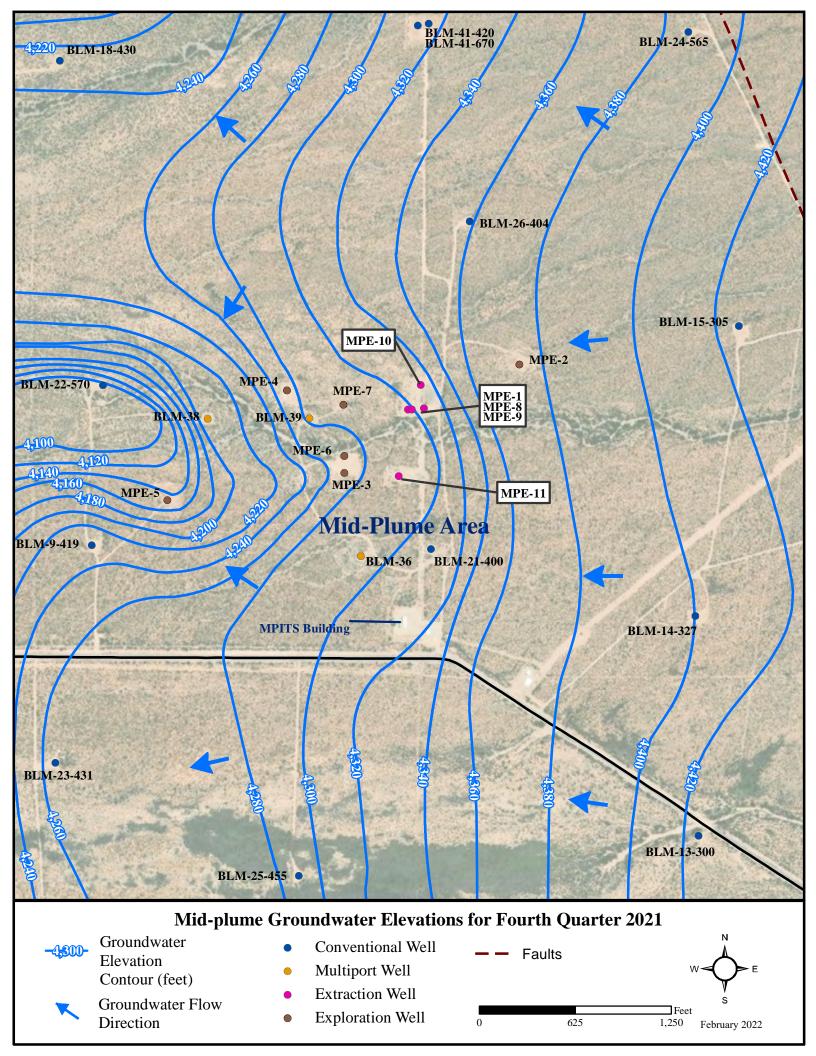


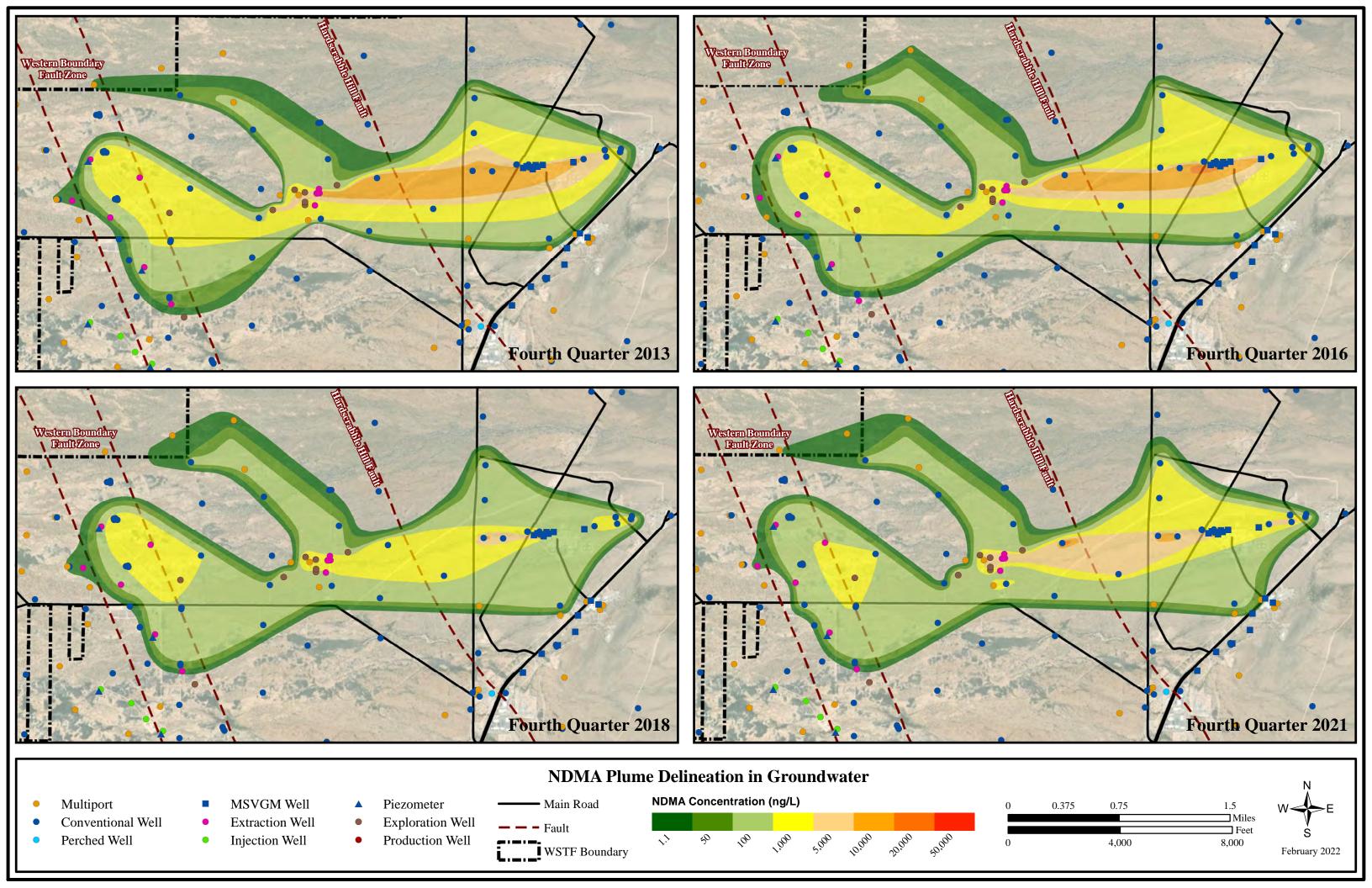


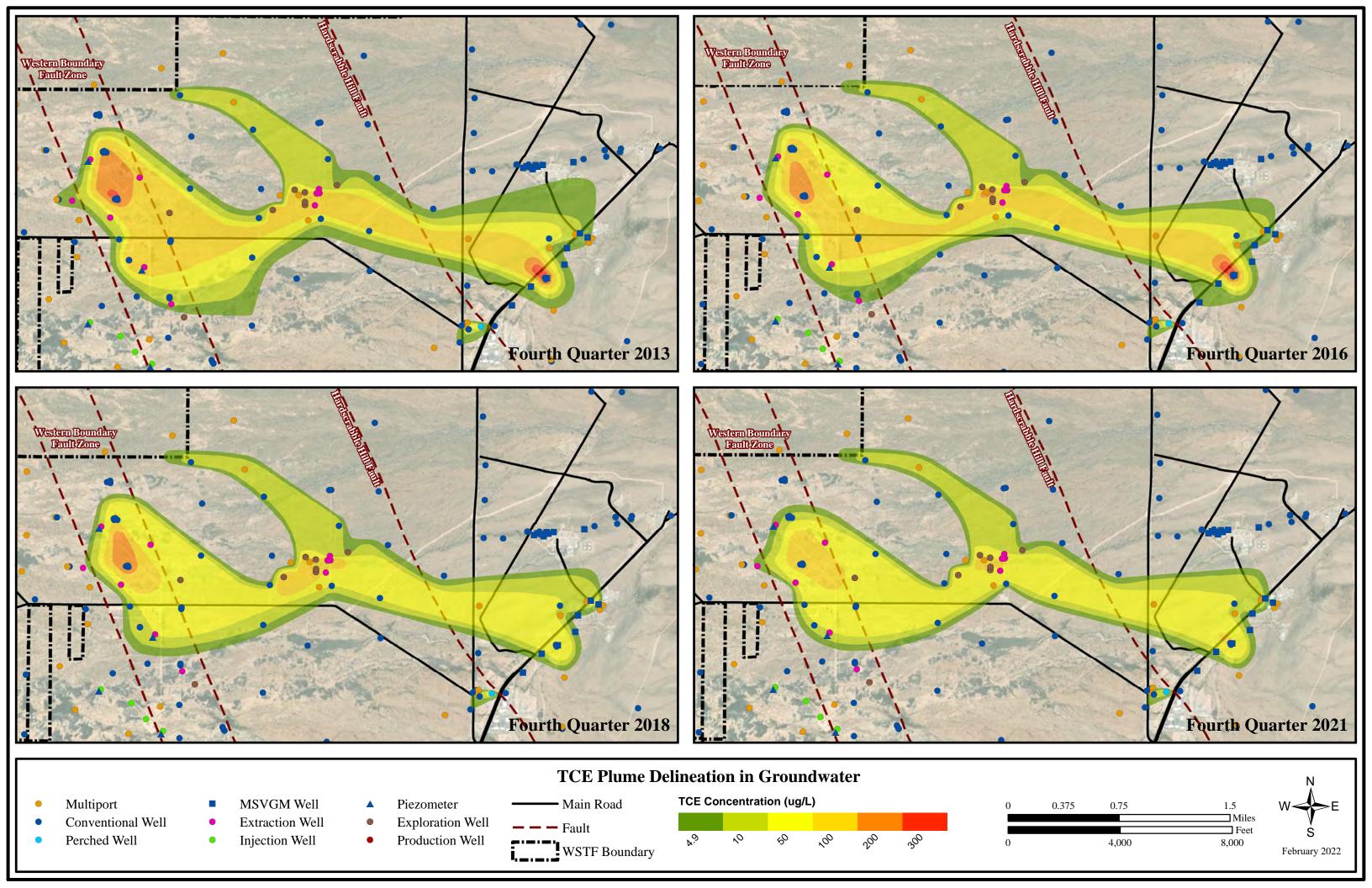


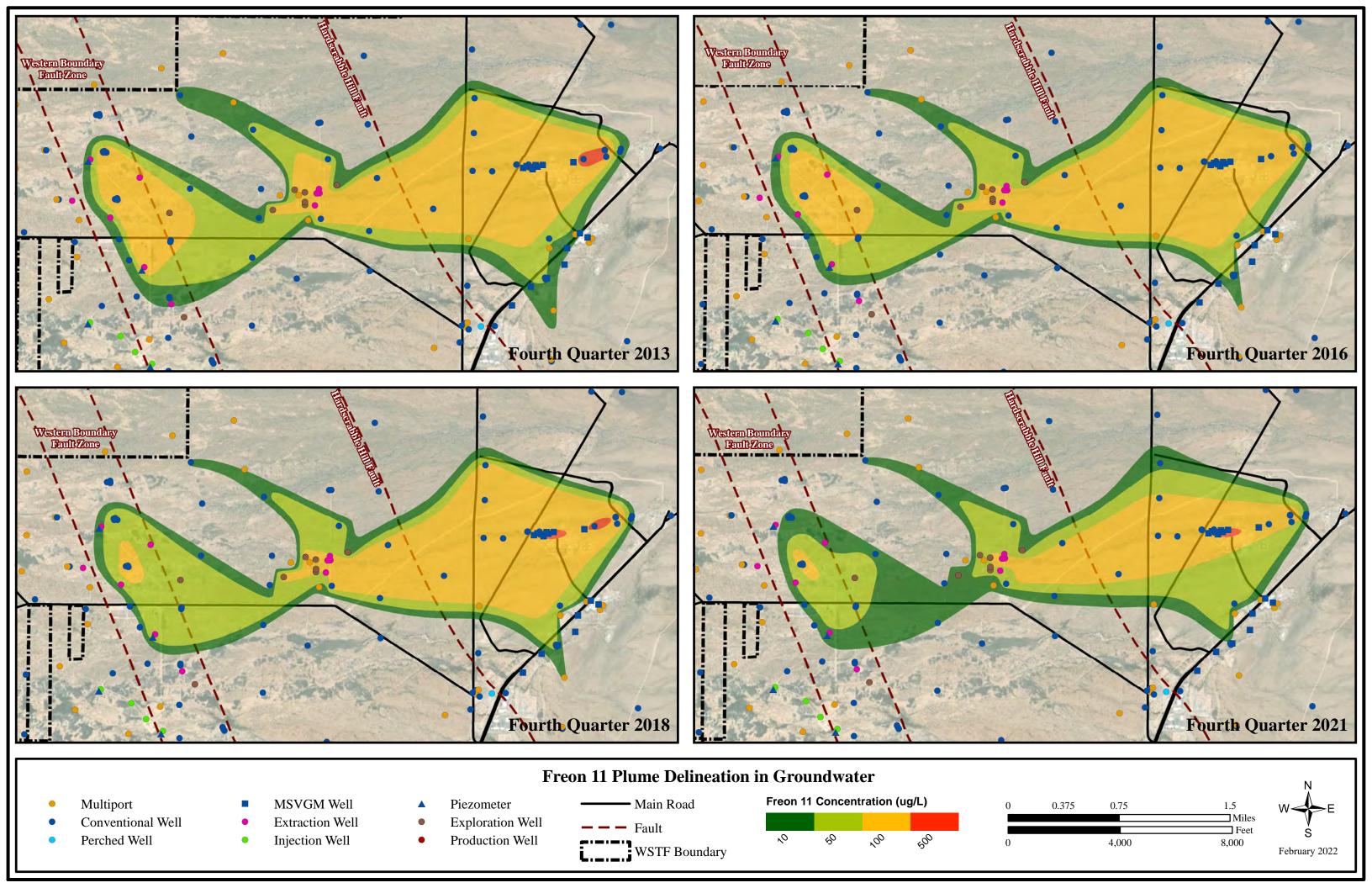

Figure 4.4 Site-Wide Tetrachloroether	ne (PCE) Concentrations for the Reporting Period
	(SEE NEXT PAGE)

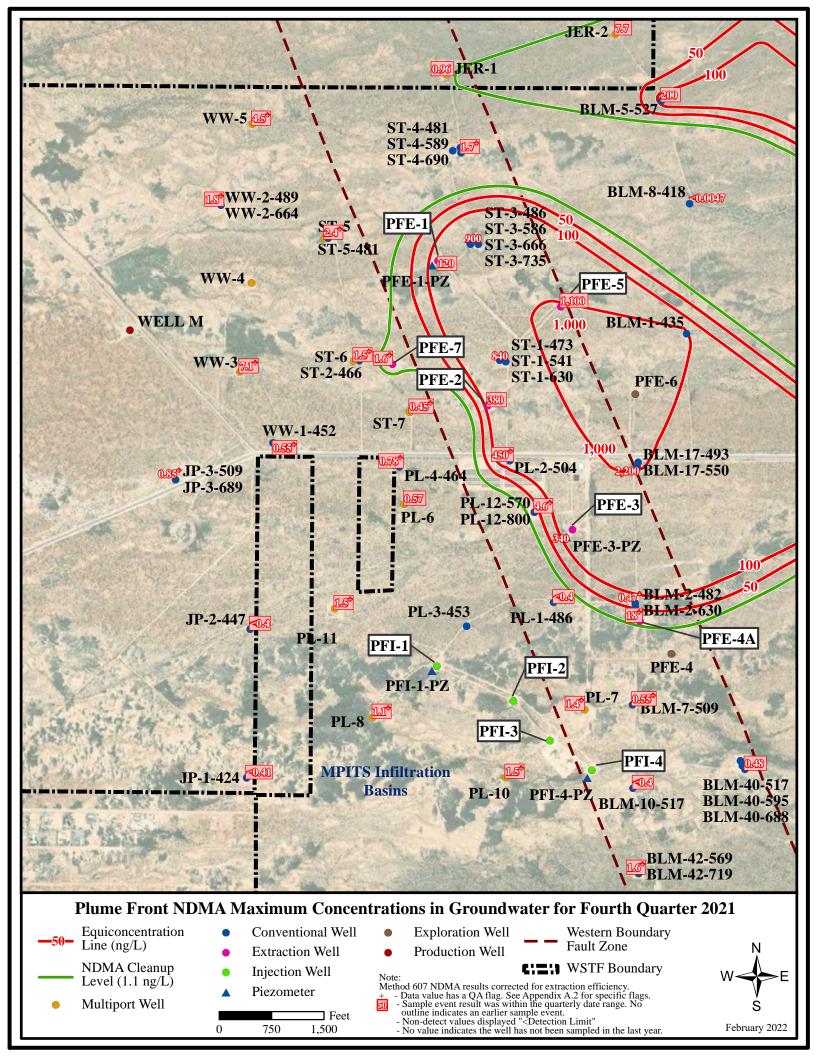


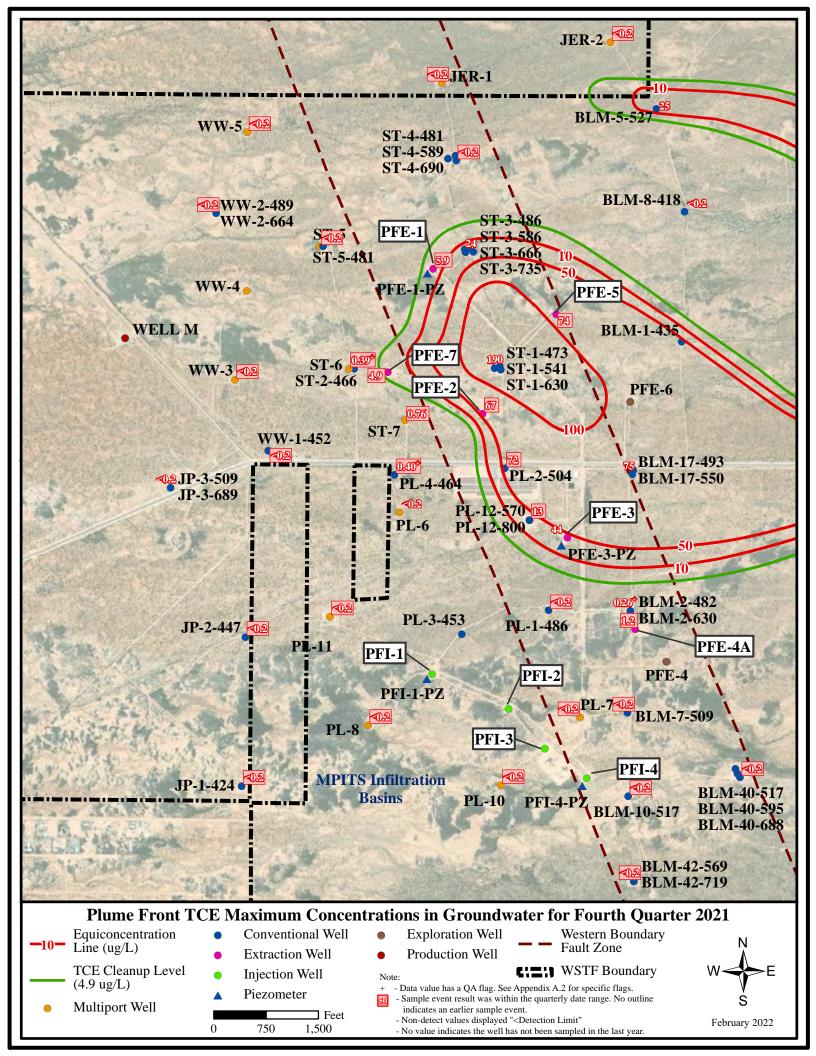


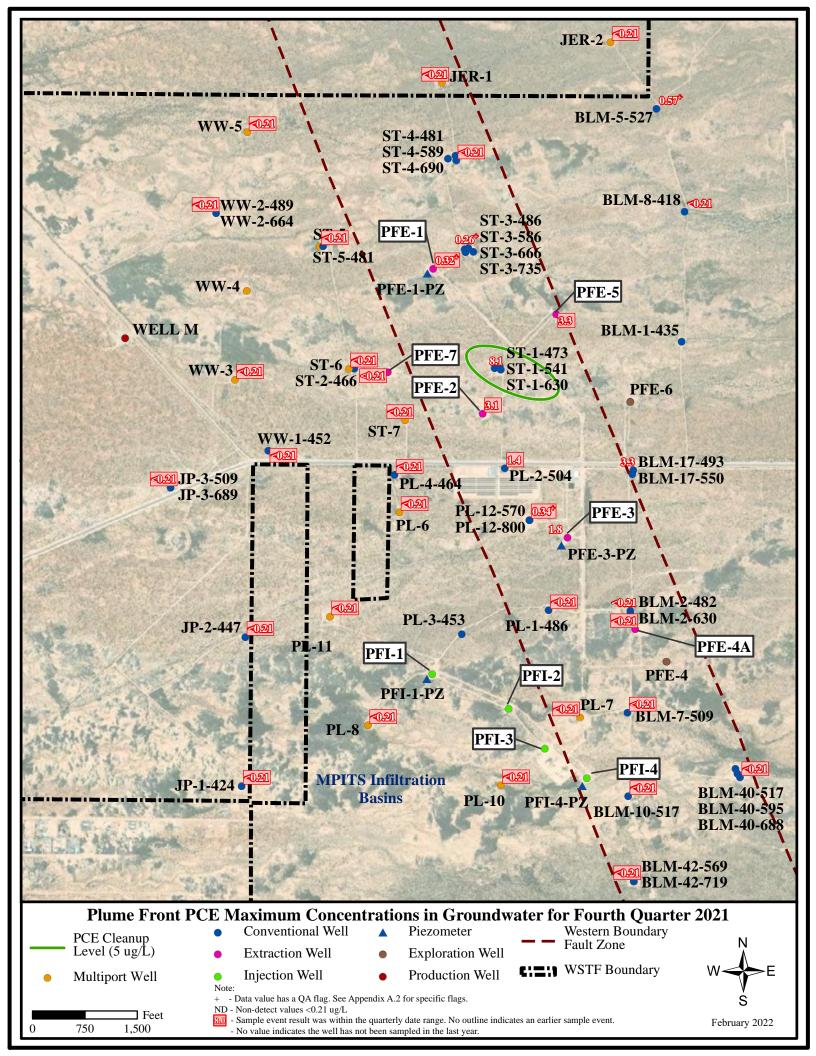



Figure 7.3	Plume Front Groundwater Elevations for the Reporting Period
	(SEE NEXT PAGE)
	(0221/2111102)


Figure 7.4	Mid-plume Groundwater Elevations for the Reporting Period			
	,			
	(SEE NEXT PAGE)			






Figure 7.9	NDMA Concentrations at the Plume Front for the Reporting Period
	(SEE NEXT PAGE)

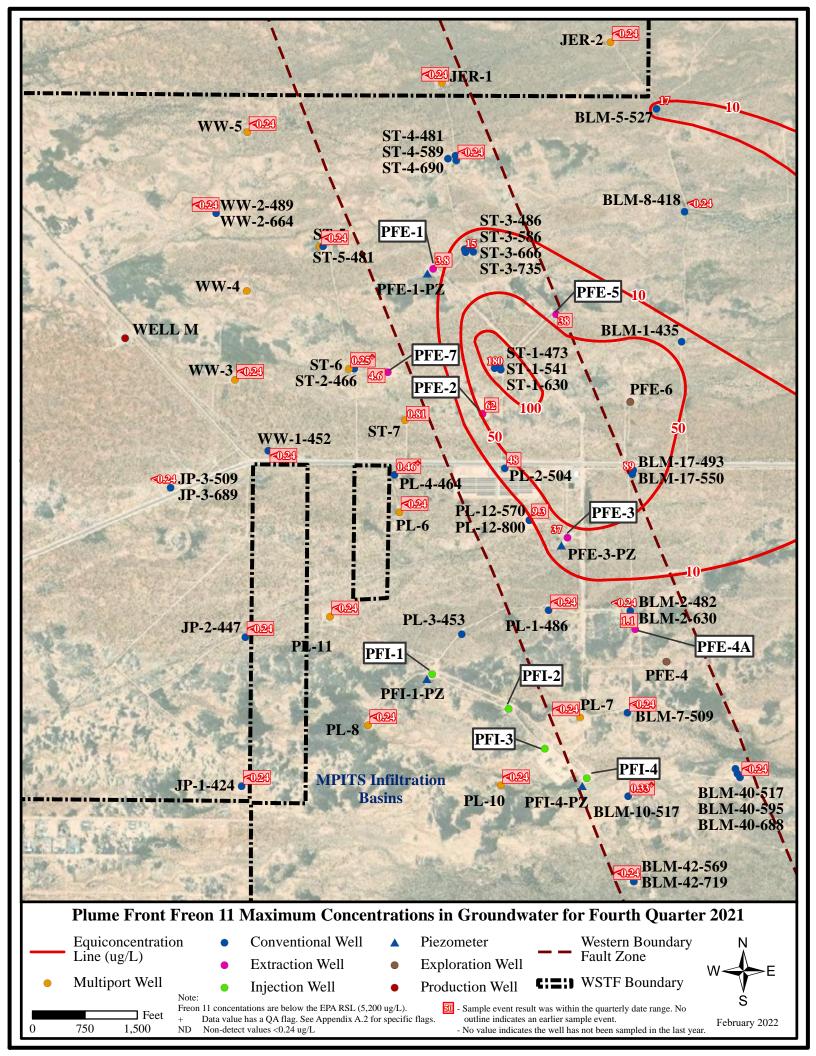
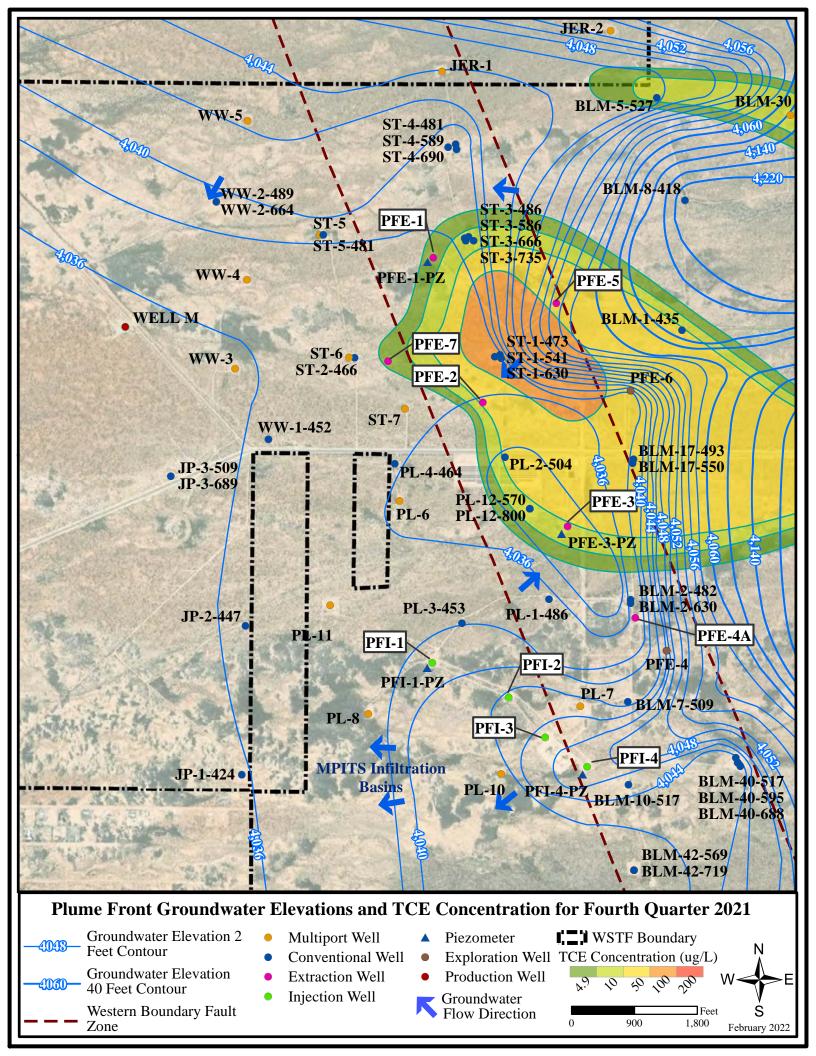
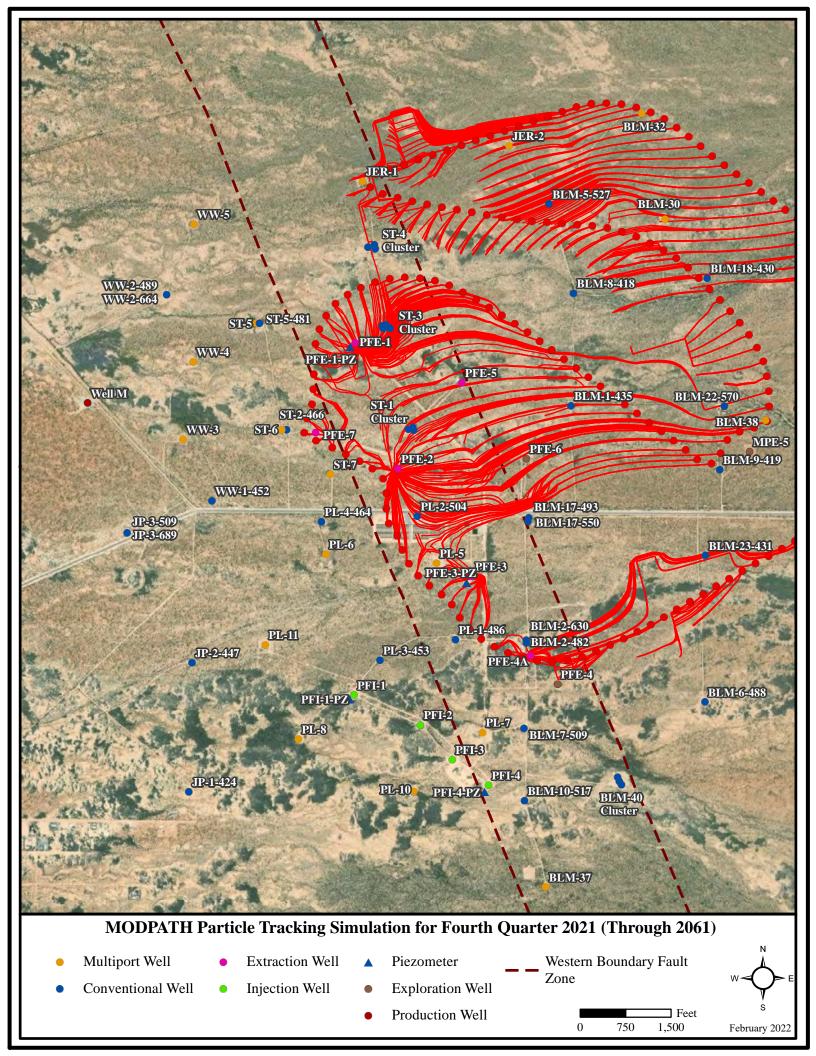
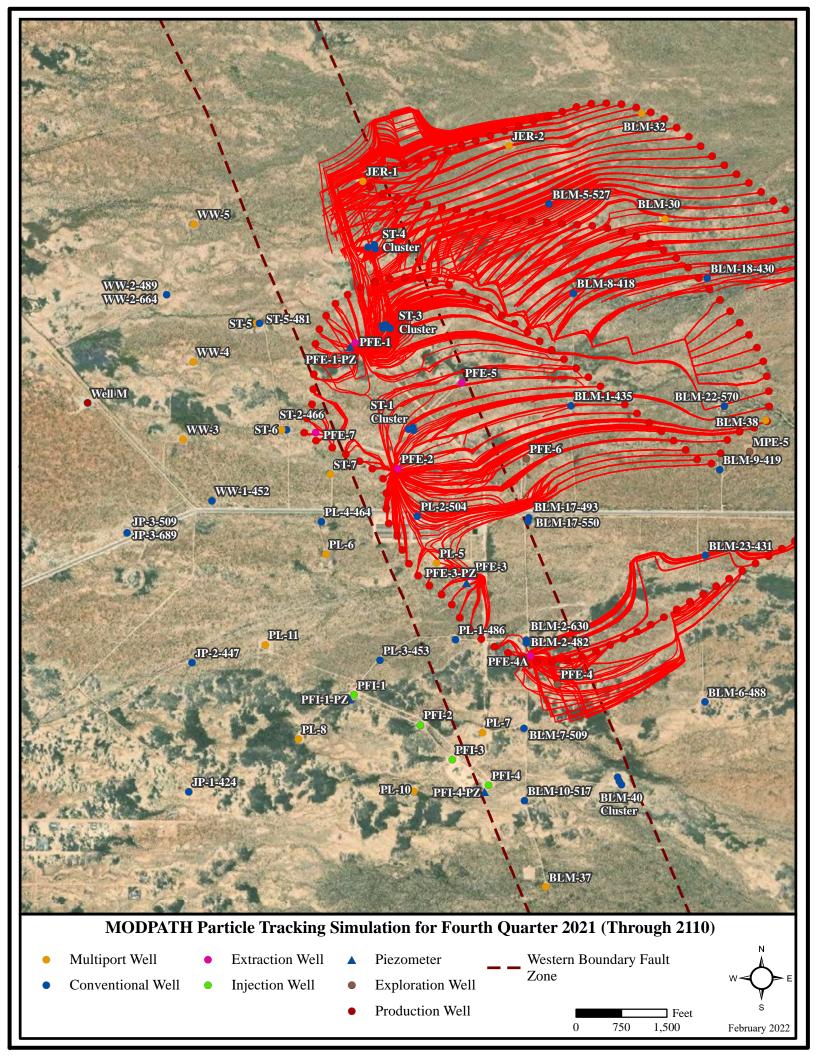

Figure 7.10	TCE Concentrations at the Plume Front for the Reporting Period
	(SEE NEXT PAGE)
	(====,====)


Figure 7.11	PCE Concentrations at the Plume Front for the Reporting Period				
	2 5				
	(SEE NEXT PAGE)				
	(GEE NEXT TROE)				


Figure 7.12	Freon 11 Concentrations at the Plume Front for the Reporting Period
11gure 7.12	Treon 11 Concentrations at the 1 tame 1 tone for the reporting 1 criou
	(SEE NEXT PAGE)


Figure 7.13	Freon 113 Concentrations at the Plume Front for the Reporting Period
	(SEE NEXT PAGE)


Figure 7.14	Plume Front Groundwater Elevations and Trichloroethene Concentrations for the Reporting Period				
	(SEE NEXT PAGE)				

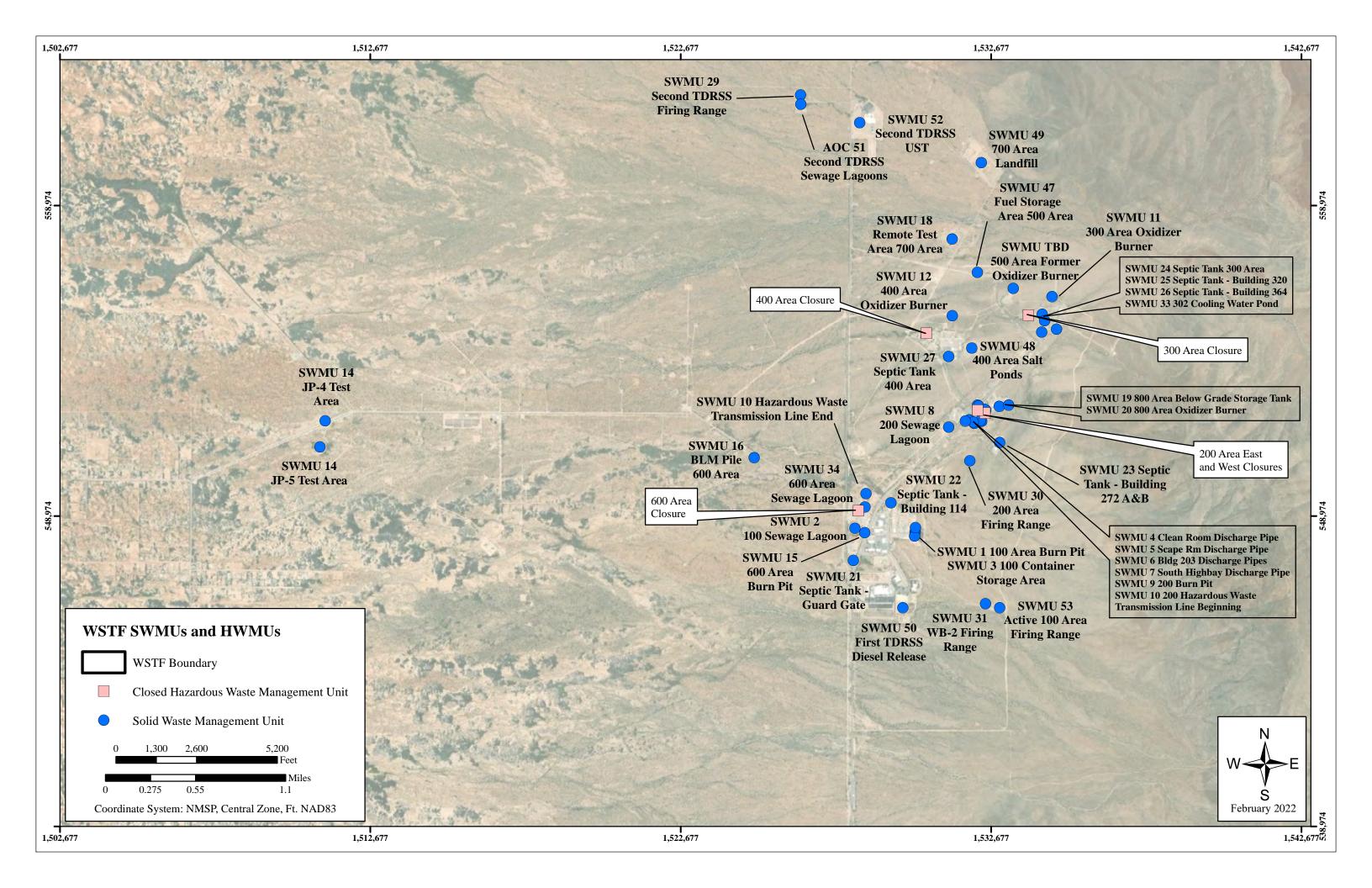


Figure 7.15	MODPATH Particle Tracking Simulation at the Plume Front (Ending 12/31/2061)
_ 5	
	(SEE NEXT PAGE)

Figure 7.16	MODPATH Particle Tracking Simulation at the Plume Front (Ending 12/31/2110)
Tigure 7.10	MODIFICIAL TRACKING SIMULATION ACTION (Entring 12/01/2110)
	(SEE NEXT PAGE)

Tables

Table 3.1 DP-1255 Discharge Standards and Groundwater Cleanup Levels for WSTF COC

Contaminant	Chemical Abstract Number	DP-1255 Standard (μg/L)	Cleanup Level (µg/L)	
Carcinogens				
NDMA	62-75-9	0.0049	0.0011^{1}	
TCE	79-01-6	2.59	4.9^{1}	
PCE	127-18-4	40.3	5.0^{2}	
Chloroform	67-66-3	2.29	2.2^{1}	

Notes:

- Cleanup Level based on EPA RSL equivalent to the most conservative value equivalent to 1E-05 risk for carcinogens or H=1 for non-carcinogens as updated in the 2021 GMP update (NASA, 2021a).
- Cleanup Level based on Maximum Contaminant Levels found in 40 Code of Federal Regulations Parts 141: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=a4752225928ed82c597f05b633d21806&mc=true&n=pt40.25.141&r=PART&ty=HTML

 Table 3.2
 Accepted New Detections for This Reporting Period

Well ID	CAS Number	Analyte
BLM-32-571	7440-50-8	Copper, Total
ST-6-970	7439-96-5	Manganese, Total
700-E-458	7440-02-0	Nickel, Total

Table 3.3 Unconfirmed New Detections – Resolution Pending

Table 3.3 Unconfirmed New Detections – Resolution Pending			
Well ID	CAS Number	Analyte	Scheduled Resample Date
BLM-2-630	7440-02-0	Nickel, Total	11/9/21
ST-1-541	7440-47-3	Chromium, Total	11/11/21
200-I-795	314-40-9	Bromacil	11/18/21
200-I-795	62-75-9	N-Nitrosodimethylamine	11/18/21
PL-6-1195	7440-47-3	Chromium, Total	1/6/22
PL-6-1335	4164-28-7	N-Nitrodimethylamine	1/7/22
100-F-358	12672-29-6	Aroclor 1248	1/20/22
100-F-358	314-40-9	Bromacil	1/20/22
ST-2-466	314-40-9	Bromacil	2/2/22
BLM-13-300	314-40-9	Bromacil	3/4/22
BLM-42-709	117-81-7	Bis(2-ethylhexyl) Phthalate	3/13/22
WW-4-948	314-40-9	Bromacil	3/18/22
BLM-40-517	314-40-9	Bromacil	4/1/22
BLM-40-517	62-75-9	N-Nitrosodimethylamine	4/4/22
BLM-14-327	7429-90-5	Aluminum, Total	4/15/22
BLM-8-418	314-40-9	Bromacil	5/6/22
BLM-38-480	314-40-9	Bromacil	5/11/22
WB-1-200	75-15-0	Carbon Disulfide	5/18/22
ST-6-568	117-81-7	Bis(2-ethylhexyl) Phthalate	9/15/22
ST-6-678	314-40-9	Bromacil	9/16/22
PL-3-453	314-40-9	Bromacil	10/4/22
ST-7-779	7440-50-8	Copper, Total	10/6/22
JER-2-584	7440-66-6	Zinc, Total	10/13/22
JER-1-483	314-40-9	Bromacil	10/14/22
BLM-41-420	314-40-9	Bromacil	10/18/22
WW-5-459	117-81-7	Bis(2-ethylhexyl) Phthalate	10/19/22
WW-5-809	117-81-7	Bis(2-ethylhexyl) Phthalate	10/20/22
BLM-40-595	14797-73-0	Perchlorate	4/12/23
PL-10-484	314-40-9	Bromacil	10/6/23

Table 3.4 Unconfirmed Detections Resolved This Reporting Period

Well ID	CAS Number	Analyte	Scheduled Resample Date	Resolution
BLM-32-632	314-40-9	Bromacil	8/6/21	Unconfirmed
ST-4-589	314-40-9	Bromacil	8/13/21	Unconfirmed
200-Н-331	314-40-9	Bromacil	8/18/21	Unconfirmed
BW-1-268	7429-90-5	Aluminum, Total	9/9/21	Unconfirmed
PL-8-605	314-40-9	Bromacil	9/9/21	Unconfirmed
PL-11-470	314-40-9	Bromacil	9/15/21	Unconfirmed
PL-11-980	314-40-9	Bromacil	9/17/21	Unconfirmed
700-D-186	314-40-9	Bromacil	9/23/21	Unconfirmed
PL-10-484	123-91-1	1,4-Dioxane	10/6/21	Unconfirmed
PL-10-592	123-91-1	1,4-Dioxane	10/6/21	Unconfirmed
JER-1-563	75-15-0	Carbon Disulfide	10/15/21	Unconfirmed
WW-5-909	117-81-7	Bis(2-ethylhexyl) Phthalate	10/22/21	Unconfirmed

Table 4.1 Groundwater Monitoring Wells/Zones Analyzed for the Reporting Period

Well Name	Event	Well Group	•	Well Name	Event	Well Group	 Well Name	Event	Well Group
wen reame	Date	wen Group	-	vven rvame	Date	wen Group		Date	wen Group
200-H-225	08/12/21	200	_	BLM-21-400	08/05/21	Mid-plume	JP-2-447	10/21/21	Sentinel
200-H-331	08/11/21	200	_	BLM-23-431	08/03/21	Mid-plume	JP-3-689	10/07/21	Sentinel
200-H-433	08/11/21	200	_	BLM-25-455	08/03/21	S. Boundary	NASA 10	09/15/21	300/400
200-JG-110	09/20/21	200	_	BLM-32-543	08/09/21	N. Boundary	NASA 3	08/09/21	Upgradient
200-KV-150	09/14/21	200	_	BLM-32-571	08/09/21	N. Boundary	NASA 5	09/15/21	300/400
200-LV-150	10/20/21	200	_	BLM-32-632	08/09/21	N. Boundary	PL-10-484	10/06/21	Sentinel
200-SG-1	09/07/21	200	_	BLM-39-385	10/07/21	Mid-plume	PL-10-592	10/06/21	Sentinel
300-A-120	09/13/21	300/400	_	BLM-39-560	10/07/21	Mid-plume	PL-11-470	09/13/21	Sentinel
300-C-128	10/19/21	300/400	_	BLM-40-517	10/04/21	S. Boundary	PL-11-530	09/13/21	Sentinel
300-D-153	09/16/21	300/400	_	BLM-40-595	10/04/21	S. Boundary	PL-11-710	09/14/21	Sentinel
400-D-195	08/16/21	300/400	_	BLM-40-688	10/05/21	S. Boundary	PL-11-820	09/14/21	Sentinel
400-D-275	08/16/21	300/400	_	BLM-41-420	10/18/21	N. Boundary	PL-11-980	09/14/21	Sentinel
400-D-355	08/12/21	300/400	_	BLM-41-670	10/19/21	N. Boundary	PL-12-570	08/04/21	In Plume
400-EV-131	08/02/21	300/400	_	BLM-42-569	09/07/21	Sentinel	PL-12-800	08/03/21	In Plume
400-FV-131	10/18/21	300/400	_	BLM-42-709	09/07/21	Sentinel	PL-1-486	10/14/21	In Plume
400-GV-125	08/03/21	300/400	_	BLM-5-527	09/20/21	Mid-plume	PL-2-504	09/14/21	In Plume
400-HV-147	10/18/21	300/400	_	BLM-6-488	10/15/21	S. Boundary	PL-4-464	09/14/21	Plume Front
400-IV-123	10/19/21	300/400	_	BLM-7-509	09/01/21	Plume Front	PL-6-545	10/13/21	Plume Front
400-JV-150	08/02/21	300/400	_	BLM-9-419	09/02/21	Mid-plume	PL-6-725	10/12/21	Plume Front
600-G-138	10/21/21	100/600	_	BW-1-268	09/09/21	300/400	PL-7-480	08/10/21	Plume Front
700-A-253	09/29/21	N. Boundary	_	BW-3-180	10/19/21	100/600	PL-7-560	08/05/21	Plume Front
700-D-186	09/28/21	N. Boundary	_	BW-6-355	09/20/21	N. Boundary	PL-8-455	09/02/21	Sentinel
700-E-458	08/18/21	N. Boundary	_	JER-1-483	10/14/21	N. Boundary	PL-8-605	09/02/21	Sentinel
700-H-350	09/28/21	N. Boundary	_	JER-1-563	10/15/21	N. Boundary	ST-4-481	09/02/21	Plume Front
700-H-535	09/29/21	N. Boundary	_	JER-1-683	10/15/21	N. Boundary	ST-4-589	08/02/21	Plume Front
700-H-670	09/29/21	N. Boundary	_	JER-2-504	10/07/21	N. Boundary	ST-4-690	09/02/21	Plume Front
700-J-200	09/28/21	N. Boundary	_	JER-2-584	10/13/21	N. Boundary	ST-5-1175	08/04/21	Plume Front
BLM-10-517	10/05/21	Plume Front	=	JER-2-684	10/13/21	N. Boundary	ST-5-485	08/04/21	Plume Front
BLM-14-327	10/18/21	Mid-plume	•	JP-1-424	10/06/21	Sentinel	ST-5-655	08/02/21	Plume Front

Well Name	Event Date	Well Group
ST-5-815	08/03/21	Plume Front
ST-5-985	08/02/21	Plume Front
ST-6-528	09/15/21	Plume Front
ST-6-568	09/15/21	Plume Front
ST-6-678	09/16/21	Plume Front
ST-6-824	09/16/21	Plume Front
ST-6-970	09/16/21	Plume Front
ST-7-453	10/04/21	Plume Front

Well Name	Event Date	Well Group
ST-7-544	10/04/21	Plume Front
ST-7-779	10/06/21	Plume Front
ST-7-970	10/06/21	Plume Front
WB-14-520	08/23/21	S. Boundary
WB-5-250	08/19/21	S. Boundary
WB-5-280	08/18/21	S. Boundary
WB-5-345	08/17/21	S. Boundary
WW-1-452	09/01/21	Plume Front

Well Name	Event Date	Well Group
WW-2-489	09/08/21	Sentinel
WW-2-664	09/08/21	Sentinel
WW-3-469	09/01/21	Sentinel
WW-3-569	09/01/21	Sentinel
WW-5-459	10/19/21	Sentinel
WW-5-579	10/19/21	Sentinel
WW-5-809	10/20/21	Sentinel
WW-5-909	10/20/21	Sentinel

Plume Front				
Well Name	Event Date			
B650-EFF-1	08/12/21			
B650-EFF-1	09/27/21			
B650-EFF-1	10/13/21			
B650-INF-1	08/12/21			
B650-INF-1	09/27/21			
B650-INF-1	10/13/21			
PFE-1	09/30/21			

Plume Front			
Well Name	Event Date		
PFE-1	10/18/21		
PFE-2	10/18/21		
PFE-4A	10/20/21		
PFE-5	10/20/21		
PFE-7	10/20/21		

Mid-plume				
Well Name	Event Date			
B655-EFF-2	08/12/21			
B655-EFF-2	09/13/21			
B655-EFF-2	10/19/21			
B655-INF-2	08/12/21			
B655-INF-2	09/13/21			
B655-INF-2	10/19/21			
MPE-1	08/16/21			

Mid-plume			
Well Name Event Date			
MPE-10	08/16/21		
MPE-11	08/16/21		
MPE-8	08/16/21		
MPE-9	08/16/21		

Drinking Water			
Well Name	Event Date		
WELL K	11/13/20		
WELL K	12/03/20		
WELL K	01/08/21		
WELL K	02/05/21		
WELL K	03/01/21		
WELL K	04/02/21		

Drinking Water				
Well Name	Event Date			
WELL K	05/03/21			
WELL K	06/02/21			
WELL K	07/06/21			
WELL K	08/09/21			
WELL K	09/13/21			
WELL K	10/12/21			

Drinking Water			
Well Name	Event Date		
WELL M	11/10/20		
WELL M	12/01/20		
WELL M	01/13/21		
WELL M	02/23/21		
WELL M	03/02/21		
WELL M	04/06/21		

Drinking Water			
Well Name	Event Date		
WELL M	05/04/21		
WELL M	06/01/21		
WELL M	07/07/21		
WELL M	08/10/21		
WELL M	09/14/21		
WELL M	10/19/21		

Table 4.2 Groundwater Elevation Data

Table 4.2 Groundwater Elevation Data					
Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
100-A-182	198	182	192	4,669.69	11/29/21
100-C-365	391	365	386	4,535.06	11/29/21
100-D-176	201	176	196	4,568.79	11/29/21
100-E-261	277	261	271	4,681.96	11/29/21
100-F-358	378	358	368	4,713.07	11/29/21
100-G-223	238	223	233	4,851.26	11/29/21
100-HG-139	165	139	159	4,647.21	11/29/21
200-B-240	255	240	250	4,647.00	11/29/21
200-C(170) ⁱ	290	N/A	N/A	4,680.80	11/24/21
200-D-240	280	240	250	4,661.89	11/29/21
200-F(370) ⁱ	590	N/A	N/A	4,715.01	11/24/21
200-G(220) ⁱ	515	N/A	N/A	4,722.98	11/24/21
200-H(331) ⁱ	458	N/A	N/A	4,734.06	11/24/21
200-I(300) ⁱ	815	N/A	N/A	4,651.95	11/24/21
200-JG-110	150	110	130	4,655.35	11/29/21
200-KV-150	175	150	170	4,726.03	11/29/21
200-LV-150	175	150	170	4,727.86	11/29/21
200-SG-1	138	123	138	4,652.16	11/29/21
300-A-120	151	120	146	4,785.43	11/29/21
300-B-166	181	165	176	4,773.22	11/29/21
300-C-128	160	128	154	4,739.78	11/29/21
300-D-153	179	153	174	4,949.42	11/29/21
300-E(138) ⁱ	395	N/A	N/A	4,805.40	11/24/21
300-F-175	195	175	185	5,043.80	11/29/21
400-A-151	187	151	176	4,636.53	11/29/21
400-C-143	159	143	153	4,669.24	11/29/21
400-D(275) ⁱ	380	N/A	N/A	4,663.73	11/24/21
600-E(280) ⁱ	690	N/A	N/A	4,559.00	11/24/21
700-A-253	269	253	263	4,723.73	11/29/21
700-B-510	550	510	531	4,341.58	11/29/21
700-D-186	202	186	196	4,720.45	11/29/21
700-H(350) ⁱ	695	N/A	N/A	4,636.90	11/24/21
700-J-200	230	200	220	4,834.07	11/29/21
BLM-10-517	532	517	527	4,045.95	11/29/21
BLM-13-300	316	300	310	4,421.92	11/29/21
BLM-1-435	451	435	446	4,145.52	11/29/21
BLM-14-327	343	327	337	4,400.19	11/29/21
BLM-15-305	321	305	315	4,423.02	11/29/21
BLM-17-493	519	493	513	4,041.53	11/29/21

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
BLM-18-430	456	430	451	4,226.22	11/29/21
BLM-21-400	413	400	410	4,312.85	11/29/21
BLM-22-570	597	570	592	4,095.55	11/29/21
BLM-23-431	447	431	441	4,261.06	11/29/21
BLM-24-565	590	565	585	4,385.44	11/29/21
BLM-25-455	470	455	465	4,283.40	11/29/21
BLM-2-630	498	482	493	4,037.36	11/29/21
BLM-26-404	420	404	414	4,358.22	11/29/21
BLM-27-270	286	270	280	4,498.03	11/29/21
BLM-28 (Borehole) ⁱ	555	N/A	N/A	4,257.99	11/29/21
BLM-3-182	208	182	203	4,568.73	11/29/21
BLM-36(350) ⁱⁱ	905	604	614	4,334.88	11/24/21
BLM-38(480) ⁱⁱ	641	475	485	4,207.47	11/24/21
BLM-39(385)ii	595	379	389	4,282.31	11/24/21
BLM-40-517	532	517	527	4,043.46	11/29/21
BLM-41-420	435	420	430	4,317.81	11/29/21
BLM-5-527	560	527	538	4,045.90	11/29/21
BLM-6-488	503	488	498	4,231.32	11/29/21
BLM-7-509	525	509	520	4,041.99	11/29/21
BLM-8-418	434	418	428	4,223.67	11/29/21
BLM-9-419	445	419	440	4,226.99	11/29/21
BW-1-268	294	268	289	4,606.70	11/29/21
BW-3-180	205	180	200	4,565.24	11/29/21
BW-5-295	311	295	305	4,581.65	11/29/21
BW-6-355	381	355	376	4,573.22	11/29/21
BW-7-211	225	211	222	4,606.91	11/29/21
JP-1-424	440	424	434	4,035.57	11/29/21
JP-2-447	462	446	457	4,036.75	11/29/21
MPE-2	600	400	580	4,372.21	11/29/21
MPE-5	590	450	570	4,145.22	11/29/21
MPE-6	603	383	602	4,269.62	11/29/21
MPE-7	600	401	600	4,231.24	11/29/21
NASA 10	135	110	130	4,823.11	11/29/21
NASA 3	144	119	139	4,889.30	11/29/21
NASA 4	171	146	166	4,637.64	11/29/21
NASA 5	135	110	130	4,792.49	11/29/21
NASA 6	153	128	148	4,690.09	11/29/21
NASA 8	197	172	192	4,568.49	11/29/21
PFE-1-PZ	609	588	598	4,037.48	11/29/21

Well Name	Total Depth (ft bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Groundwater Elevation (ft amsl)	Measurement Date
PFE-3-PZ	620	590	600	4,032.07	11/29/21
PFE-4	877	397	876	4,042.78	11/29/21
PFE-6	539	434	534	4,038.21	11/29/21
PFI-1-PZ	619	589	599	4,034.43	11/29/21
PFI-4-PZ	600	398	600	4,047.18	11/29/21
PL-10(484) ⁱⁱ	1000	479	489	4,041.23	11/24/21
PL-1-486	502	486	496	4,037.14	11/29/21
PL-2-504	520	504	514	4,033.83	11/29/21
PL-3-453	469	453	464	4,037.98	11/29/21
PL-4-464	480	464	474	4,036.01	11/29/21
PL-6(545) ⁱⁱ	1860	540	550	4,034.66	11/24/21
PL-7(480) ⁱⁱ	655	475	485	4,042.81	11/24/21
PL-8(455) ⁱⁱ	1000	448	458	4,036.76	11/24/21
ST-1-473	488	473	483	4,034.63	11/29/21
ST-2-466	481	466	476	4,035.91	11/29/21
ST-3-486	502	486	496	4,038.03	11/29/21
ST-4-481	497	481	491	4,038.97	11/29/21
ST-5-481	497	481	491	4,038.33	11/29/21
WB-14(520) ⁱ	545	N/A	N/A	4,432.71	11/24/21
WB-5(250) ⁱ	400	N/A	N/A	4,667.13	11/24/21
WW-1-452	468	452	462	4,036.58	11/29/21
WW-3(469) ⁱⁱ	1014	464	474	4,035.94	11/24/21

Depth to top and bottom of screen are indicated as not applicable (N/A) for multiport Westbay wells that are completed in an open borehole. The depth of the Westbay monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation were calculated from the formation pressure at the indicated port depth.

The screen depths listed for retrofit multiport wells indicate the top and bottom of the screen in the outer casing of the well that corresponds to the measurement port used at that location. The depth of the monitoring port used to calculate the piezometric surface is provided in parenthesis with the well name. Depth to water and groundwater elevation for Westbay multiport monitoring wells were calculated from the formation pressure at the indicated port depth. Depth to water and groundwater elevation for FLUTe multiport monitoring wells were calculated from pressure transducer readings collected on the measurement date.

Table 5.1 PFTS and MPITS Operational Status for the Reporting Period

	Plume	Front Treatm	ent System	Mid-plume Treatment System			
Month	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)	Days Operated	Average Flow Rate (gpm)	Groundwater Treated (acre-ft)	
Aug-21	31 of 31	669	92.5	31 of 31	8.8	1.14	
Sep-21	7 of 30	772	28.6	30 of 30	9.0	1.17	
Oct-21	27 of 31	776	84.0	12 of 31	8.7	0.61	

Table 5.2 PFTS and MPITS System Shutdowns for the Reporting Period

Shutdown Date	Restart Date	Type of Shutdown	Description
Plume Front Tre	atment System S	Shutdowns	
8/6/21	8/6/21	Unplanned	The system shut down automatically because of a disruption in the power supply caused by a thunderstorm.
8/12/21	8/12/21	Unplanned	The system shut down automatically because of a disruption in the power supply caused by a thunderstorm.
8/23/21	8/23/21	Unplanned	The system shut down automatically because of a disruption in the power supply caused by an equipment failure.
8/30/21	9/22/21	Planned	NASA shut down the system for scheduled rehabilitation and repair work at wells PFE-1, PFE-4A, PFI-2, PFI-3, and PFI-4.
9/30/21	9/30/21	Planned	NASA shut down the system to replace the UV lamps in the photolysis reactor.
10/2/21	10/4/21	Unplanned	The system shut down automatically because of a false leak detection alarm thought to have been cause by condensate in the dual wall piping serving PFE-2.
10/4/21	10/4/21	Unplanned	The system shut down automatically because of a submonitor undercurrent fault at well PFE-4A.
10/8/21	10/12/21	Unplanned	The system shut down automatically because of a communication error at well PFI-4.
Mid-plume Inter	ception and Tre	atment System Shutd	owns
8/6/21	8/6/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply caused by a thunderstorm.
8/12/21	8/12/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply caused by a thunderstorm.
8/27/21	8/27/21	Unplanned	The system shut down automatically because of a disruption in the electrical power supply caused by a thunderstorm.
9/9/21	9/9/21	Unplanned	The system shut down automatically because of a false low-level alarm associated with the surge tank.
10/1/21	10/19/21	Planned	NASA shut the system down while awaiting delivery of replacement UV lamps that had been delayed in U.S. Customs.
10/19/21	10/21/21	Unplanned	NASA activated the system on 10/19/21 to collect required influent and effluent samples. The system was returned to inactive status pending receipt of replacement UV lamps.

Table 5.3 PFTS Air Stripper and UV Reactor Performance for the Reporting Period

	Analyte	Unit	Design	Aug-21	Sept-21	Oct-21
	TCE	μg/L	130	35	13	2.7
Air Stripper	PCE	$\mu g/L$	0.66	1.6	0.57 J	$< 0.21^2$
Influent Concentrations	Freon 11	$\mu g/L$	860	36	8.3	1.7
Concentrations	Chloroform	μg/L	NA^1	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
A: C4	TCE	μg/L	5.0	< 0.202	$< 0.20^2$	$< 0.20^2$
Air Stripper Effluent	PCE	$\mu g/L$	5.0	$< 0.21^2$	$< 0.21^2$	$< 0.21^2$
Concentrations	Freon 11	$\mu g/L$	100	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
	Chloroform	μg/L	NA ¹	$< 0.24^2$	$< 0.24^2$	$< 0.24^2$
UV Reactor Influent Concentrations	NDMA ³	ng/L	2,000	202ª	111 ^b	57°
UV Reactor Effluent Concentrations	NDMA ⁴	ng/L	< 2.0	0.71 RB A FB	0.69 RB A FB	<0.4 ²

A = The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.

FB = The analyte was detected in the field blank.J = The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS = Not sampled during the reporting period.

RB = The analyte was detected in the method blank.

¹ Chloroform was not included as an analyte in the system design criteria; not applicable (NA).

² Analytical result for the constituent was below the method detection limit (MDL; provided).

Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 43%a, 61%b, 58%c

Analytical results from the low-level NDMA analytical method. NDMA was not detected by modified Method 607.

Table 5.4 PFTS Extraction and Injection Well Flow Rates for the Reporting Period

1 able 5.4	FF15 Extraction and injection wen Flow Rates for the Reporting Feriod						
	Well Name	Design Flow Rate (gpm)	Operational Average Flow Rate ¹ (gpm)	Overall Average Flow Rate ² (gpm)	Operational Percent of Well Design	Overall Percent of Well Design	
	PFE-1	288	247	189	86%	66%	
	PFE-2	224	230	160	103%	72%	
Extraction Wells	PFE-3	213	223	10	105%	5%	
(gpm)	PFE-4A	200	166	125	83%	63%	
	PFE-5	5.5	3.5	2.4	63%	44%	
	PFE-7	125	144	110	115%	88%	
	PFI-1	269	N/O	N/O	N/O	N/O	
Injection Wells (gpm)	PFI-2	269	282	191	105%	71%	
	PFI-3	344	335	227	98%	66%	
	PFI-4	194	264	179	136%	92%	

¹ Operational averages are averages based on when a well was in operating status. Backwashing and downtime events are not included.

² Overall averages are averages based on the overall status of the well and include backwashing and downtime events.

N/O - The well was not operating during the reporting period.

Table 5.5 Comparison of Specific Capacities for the Plume Front Wells

Well Name	Specific Capacity at Installation	Specific Capacity Jan-21	Specific Capacity Apr-21	Specific Capacity Jul-21	Specific Capacity Oct-21
PFE-1	8.3	NA^1	NA ¹	NA ¹	6.6
PFE-2	5.7	NA ¹	6.4	6.5	6.6
PFE-3	19.4	11.6	10.6	10.0	10.5
PFE-4A	3.1	2.3	2.3	2.7	2.4
PFE-5	0.14	< 0.1	< 0.1	NA ¹	0.1
PFE-7	6	6.3	5.9	6.0	5.8
	Specific	Specific	Specific	Specific	Specific

Well Name	Specific Capacity at Installation (Ideal Range)	Specific Capacity Jan-21	Specific Capacity Apr-21	Specific Capacity Jul-21	Specific Capacity Oct-21
PFI-1	2.8-5	NA^1	NA^1	NA^1	NA^1
PFI-2	2.8–7	2.9	2.3	2.2	1.6
PFI-3	2–4	2.4	2.3	1.9	2.0
PFI-4	2.3-3.5	2.0	2.3	1.6	1.5

Notes: Specific capacities are used to measure well performances and have units of gallons per minute per foot of drawdown.

NA¹ – Not Applicable due to well being inoperative during reporting period.

Table 5.6 Plume Front Mass Removal¹

	Tuble 200 Thumb Trong Temoval						
Date	TCE (kg)	Freon 11 (kg)	Chloroform(g)	PCE (g)	NDMA (g)		
Nov-20	< 0.1	< 0.1	ND	< 0.1	< 0.1		
Dec-20	1.5	1.1	ND	38	14		
Jan-21	1.7	1.5	ND	57	18		
Feb-21	1.4	0.91	ND	23	16		
Mar-21	1.5	1.4	ND	57	15		
Apr-21	1.4	1.3	ND	36	8.5		
May-21	3.7	3.9	ND	115	27		
Jun-21	3.3	3.4	ND	99	24		
Jul-21	4.4	3.7	ND	172	28		
Aug-21	4.0	4.1	ND	159	23		
Sep-21	0.45	0.28	ND	13	3.9		
Oct-21	0.26	0.15	ND	ND	5.9		
Total ²	23.6	21.7	ND	769	183		

¹⁾ Mass removed calculated as: (Influent concentration - Effluent concentration) * volume of water extracted

²⁾ Total mass removed during the period covered by this table.

Table 5.7 MPITS Air Stripper and UV Reactor Performance for the Reporting Period

	Analyte	Unit	Design Parameter	Aug-21	Sep-21	Oct-21
Air Stripper	TCE	μg/L	140	72	40	39
Influent	PCE	$\mu g/L$	6.4	3.4	2	2.2
Concentrations	Freon 11	$\mu g/L$	240	140	89	79
(MPE Wells)	Chloroform	$\mu g/L$	NA^2	< 0.241	< 0.241	< 0.241
Air Stripper	TCE	μg/L	140	NS	NS	32
Influent	PCE	μg/L	6.4	NS	NS	< 0.211
Concentrations	Freon 11	μg/L	240	NS	NS	0.84 J
(Well 600-G-138)	Chloroform	$\mu g/L$	NA^2	NS	NS	0.52 J
	TCE	μg/L	1.0	2.2	< 0.201	< 0.201
Air Stripper Effluent	PCE	μg/L	1.0	< 0.211	< 0.211	< 0.211
Enluent Concentrations	Freon 11	μg/L	50	7.5	< 0.241	$< 0.24^{1}$
	Chloroform	$\mu g/L$	NA^2	< 0.241	$< 0.24^{1}$	$< 0.24^{1}$
UV Reactor Influent Concentrations (MPE Wells)	NDMA ³	ng/L	25,500	6,000ª	2,800 ^b	2,600°
UV Reactor Influent Concentrations (Well 600-G-138)	NDMA	ng/L	25,500	NS	NS	NS
UV Reactor Effluent Concentrations ⁴	NDMA ⁴	ng/L	< 2.0	1.4 RB A FB	0.51 RB FB	0.66

^{* =} For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (179%) in the laboratory fortified blank (LFB21A28CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.

A = The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.

FB = The analyte was detected in the field blank.J = The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.

NS = Not sampled during the reporting period. Well 600-G-138 is sampled annually for NDMA in accordance with the GMP (NASA, 2021a). Analytical data are provided in this table when available.

RB = The analyte was detected in the method blank.

Analytical result for the constituent was below the MDL (provided).

² Chloroform was not included in the design analyte list; not applicable (NA).

Reported NDMA concentration is corrected for extraction efficiency. Modified EPA Method 607 batch-specific laboratory control sample recovery of NDMA: 43%, 58%, 50%.

Analytical results from low-level analytical method and was below the MDL (provided). Results for Method 607 were ND.

Table 5.8 Mid-plume Mass Removal¹

Date	TCE (g)	F11 (g)	Chloroform (g)	PCE (g)	NDMA (g)
Nov-20	69	130	ND	3.2	9.4
Dec-20	72	140	ND	3.4	9.8
Jan-21	66	130	ND	3.1	9.0
Feb-21	94	190	0.01	4.0	11
Mar-21	120	190	0.01	5.2	14
Apr-21	100	210	0.01	4.4	12
May-21	69	150	ND	3.1	6.2
Jun-21	83	179	ND	3.6	7.3
Jul-21	70	151	ND	3.1	6.2
Aug-21	65	113	ND	2.8	6.0
Sep-21	62	121	ND	2.5	5.3
Oct-21	35	70	ND	1.4	3.0
Total ²	905	1774	0.03	40	99

¹⁾ Mass calculation: volume of water extracted at each well * (contaminant concentration at each well – MPITS effluent concentration)

²⁾ Total mass removed during the period covered by this table.

Table 5.9 Groundwater Treatment System Operation Costs (\$ / 1,000 gals)

Date	Gallons ¹ Treated	ECO Labor + Materials	TEST Labor + Materials	L+M cost per 1,000 gal	Energy Cost	Energy Cost per 1,000 gal	Total Cost	Total Cost per 1,000 gal treated
Nov-20	378,947	\$60,571	\$86,828	\$388.97	\$5,714	\$15.08	\$153,113	\$404.05
Dec-20	13,448,852	\$60,571	\$69,775	\$9.69	\$10,076	\$0.75	\$140,422	\$10.44
Jan-21	25,292,665	\$60,571	\$66,177	\$5.01	\$26,323	\$1.04	\$153,071	\$6.05
Feb-21	22,918,654	\$60,571	\$62,487	\$5.37	\$23,938	\$1.04	\$146,996	\$6.41
Mar-21	24,723,395	\$60,571	\$89,304	\$6.06	\$21,923	\$0.89	\$171,798	\$6.95
Apr-21	26,173,206	\$48,457	\$56,956	\$4.03	\$24,106	\$0.92	\$129,519	\$4.95
May-21	28,802,957	\$60,547	\$53,940	\$3.97	\$23,373	\$0.81	\$137,860	\$4.79
Jun-21	26,672,390	\$118,079	\$66,298	\$6.91	\$29,110 ²	\$1.09	\$213,487	\$8.00
Jul-21	28,005,674	\$65,147	\$49,923	\$4.11	\$38,4212	\$1.37	\$153,491	\$5.48
Aug-21	33,533,267	\$101,792	\$49,614	\$4.52	\$40,3902	\$1.20	\$191,796	\$5.72
Sep-21	9,661,806	\$122,151	\$55,846	\$18.42	\$20,0212	\$2.07	\$198,017	\$20.49
Oct-21	24,289,224	\$81,434	\$45,431	\$5.22	\$26,1502	\$0.82	\$153,015	\$6.05
12-Month Total	263,901,037	\$900,462	\$752,579	\$6.26	\$289,545	\$1.10	\$1,942,585	\$7.36

Gallons treated reflects amount of water extracted during power reporting period.

Includes Peak Demand Rates.

		Table 7.1 Status of W	Vells with Sampling Issues	
Well	Date of Discovery	Description	Scheduled for Sampling this Qtr? / Est. Next Sampling Date per GMP	Description of Future Plan or Resolution
New Occurre	ences this Qua	rter		
JP-3-509	Oct-21	Sampling system not operational	Yes / Jan-22 (quarterly for NDMA, VOC; annual for others)	Troubleshoot and repair.
Unresolved Is	ssues			
BLM-1-435	Apr-20	Sampling failed, as there was not enough water in the screen to fill the sample bottles. Failed again, in April 2021 and October 2021.	Yes / Apr-22 (semiannually)	Well is a poor producer. It is typically purged dry the first day, then sampled the following day. The condition of the well is being evaluated.
400-C-118	Nov-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	Yes / Oct-22 (annually)	Monitor the water level in this well and sample if the water level recovers enough to obtain a representative sample.
400-C-143	Apr-21	Unable to collect groundwater sample because the water level in the well was insufficient for sampling.	No / Apr-22 (annually)	Monitor the water level in this well and sample if the water level recovers enough to obtain a representative sample.
PL-3-453	Dec-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	Yes / Jan-22 (quarterly for NDMA, VOC; annual for others)	Monitor the water level in this well and sample if the water level recovers enough to obtain a representative sample.
WW-4	Jul-19 (FLUTe removal)	Water FLUTe sampling system removed Data Representativeness Phase 1: Water FLUTe Well Evaluation.	No / TBD (quarterly)	FLUTe system is scheduled to be reinstalled and sampled in first quarter 2022.

Well	Date of Discovery	Description	Scheduled for Sampling this Qtr? / Est. Next Sampling Date per GMP	Description of Future Plan or Resolution
NASA 9	Oct-20	Could not be sampled - intrusion of roots into the well casing and screen.	Yes / Oct-22 (annually)	A work plan for abandonment and possible replacement of the monitoring well will be submitted to NMED for approval no later than April 29, 2022.
Issues Resolv	ed this Quart	er (will not appear in future Periodic Mon	itoring Reports)	
400-IV-123	Nov-20	Unable to collect groundwater sample because the water level in the well was insufficient for sampling. Insufficient recharge.	Yes / Feb-22 (quarterly for VOC; annually for others)	Based on water level measurement in September 2021, NASA sampled the well successfully in October 2021.
300-C-128	Aug-20	Could not be sampled - the water level in the well has dropped below the bottom of the screened interval.	Yes / Oct-22 (annually)	Based on water level measurement in September 2021, NASA sampled the well successfully in October 2021.
200-LV-150	Nov-19	Insufficient recharge - Sampled on February 13, 2020 and May 12, 2020 using an unapproved sample method.	Yes / Oct-22 (annually)	NASA evaluated the well and replaced the sampling system in September 2021. Testing indicated that the well might recharge enough for sample collection. Sampling in October 2021 was successful.

Table 7.2 Plume Front Vertical Gradients for the Reporting Period

Well	Type of Well	Screen Midpoint (ft bgs)	Sample Date	Water Level (ft amsl)	Water Level Difference (ft) ¹	Screen Depth Difference (ft) ¹	Vertical Gradient ^{1,2} (ft/ft)
ST-5-485	Westbay	485.05	5/3/21	4,038.16			
ST-5-655	Westbay	655.05	5/3/21	4,037.08	-1.080	170	-0.006
ST-5-815	Westbay	815	5/3/21	4,036.38	-0.700	159.95	-0.004
ST-5-985	Westbay	984.9	5/3/21	4,032.42	-3.960	169.9	-0.023
ST-5-1175	Westbay	1,175.1	5/3/21	4,034.49	2.070	190.2	0.011
PL-7-480	Westbay	480	5/3/21	4,041.3			
PL-7-560	Westbay	560	5/3/21	4,044.32	3.020	80	0.038
PL-10-484	Westbay	484.3	5/3/21	4,040.87			
PL-10-592	Westbay	594.3	5/3/21	4,040.75	-0.120	110	-0.001
PL-10-813	Westbay	814.3	5/3/21	4,048.78	8.030	220	0.037
PL-10-962	Westbay	964.4	5/3/21	4,063.11	14.330	150.1	0.096
BLM-17-493	Conventional	503.18	4/26/21	4,039.31			
BLM-17-550	Conventional	555.65	4/26/21	4,033.39	-5.92	52.47	-0.113

¹ Relative to well screen directly above. ² Negative = Downwards

Appendix A Indicator Parameters and Analytical Data

Appendix A.1: Monitor Well Indicator Parameters
Appendix A.2: Monitor Well Analytical Data
Appendix A.3: PFTS Indicator Parameters
Appendix A.4: PFTS Analytical Data
Appendix A.5: MPITS Indicator Parameters
Appendix A.6: MPITS Analytical Data
Appendix A.7: Drinking Water Sampling Events
Appendix A.8: Detections for Drinking Water Sampling Events

Appendix A.1 Monitor Well Indicator Parameters

Summary of Water Quality Parameters for the Sampling Events in this Reporting Period

Well ID	200-Н-225	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108120935	5Y Conductivity		1119	μS/cm	
2108120935	SY DTW		79.12	ft	
2108120935	Formation Pressure		41.77	psia	
2108120935	SY pH		7.02	NA	
2108120935	Y Temperature		22.8	°C	
2108120935	Y Turbidity		0.86	NTU	
2108121042	2Y Conductivity		1278	μS/cm	
2108121042	2Y DTW		79.30	ft	
2108121042	2Y pH		7.55	NA	
2108121042	2Y Temperature		27.4	°C	
2108121042	2Y Turbidity		0.56	NTU	
Well ID	200-Н-331	Event Date	8/11/2021		
Sample	Parameter		Result	Units	
2108110905	5Y Atmospheric Pressur	e	12.57	psia	
2108110905	SY Conductivity		2310	μS/cm	
2108110905	Formation Pressure		100.19	psia	
2108110905	5Y pH		7.85	NA	
2108110905	Y Temperature		22.3	°C	
2108110905	Y Turbidity		1.04	NTU	
2108111022	2Y Atmospheric Pressur	e	12.56	psia	
2108111022	2Y Conductivity		2430	μS/cm	
2108111022	2Y pH		7.80	NA	
2108111022	2Y Temperature		22.4	°C	
2108111022	2Y Turbidity		1.01	NTU	
Well ID	200-Н-433	Event Date	8/11/2021		
Sample	Parameter		Result	Units	
2108111450	OY Atmospheric Pressur	e	12.56	psia	
2108111450	OY Conductivity		2330	μS/cm	
2108111450	Y Formation Pressure		187.06	psia	
2108111450)Y pH		7.29	NA	
2108111450	Y Temperature		24.3	°C	
2108111450	Y Turbidity		0.61	NTU	

Well ID 200)-JG-110	Event Date	9/20/2021		
Sample	Parameter		Result	Units	
2109200845A	Conductivity		1304	μS/cm	
2109200845A	DTW		120.97	ft	
2109200845A	pН		8.24	NA	
2109200845A	Temperature		22.2	°C	
2109200845A	Turbidity		1.24	NTU	
2109200848A	Conductivity		1309	μS/cm	
2109200848A	DTW		121.18	ft	
2109200848A	pН		8.21	NA	
2109200848A	Temperature		22.1	°C	
2109200848A	Turbidity		1.06	NTU	
2109200851A	Conductivity		1311	μS/cm	
2109200851A	DTW		121.18	ft	
2109200851A	pH		8.18	NA	
2109200851A	Temperature		22.4	°C	
2109200851A	Turbidity		1.03	NTU	
Well ID 200)-KV-150	Event Date	9/14/2021		
Sample	Parameter		Result	Units	
2109140855C	Conductivity		1780	μS/cm	
2109140855C	DTW		158.86	ft	
2109140855C	pН		8.36	NA	
2109140855C	Temperature		22.0	°C	
2109140855C	Turbidity		4.78	NTU	
2109140915C	Conductivity		1738	μS/cm	
2109140915C	DTW		162.39	ft	
2109140915C	pH		8.16	NA	
2109140915C	Temperature		22.5	°C	
2109140915C	Turbidity		3.87	NTU	

Well ID 200	0-LV-150	Event Date	10/20/2021		
Sample	Parameter		Result	Units	
2110200920A	Conductivity		1319	μS/cm	
2110200920A	DO		1.65	mg/L	
2110200920A	DTW		156.83	ft	
2110200920A	ORP		-160	mV	
2110200920A	pH		7.54	NA	
2110200920A	Temperature		20.77	°C	
2110200920A	Turbidity		3.55	NTU	
2110200922A	Conductivity		1337	μS/cm	
2110200922A	DO		1.67	mg/L	
2110200922A	DTW		157.60	ft	
2110200922A	ORP		-157	mV	
2110200922A	pН		7.50	NA	
2110200922A	Temperature		20.83	°C	
2110200922A	Turbidity		3.06	NTU	
2110200924A	Conductivity		1321	μS/cm	
2110200924A	DO		1.70	mg/L	
2110200924A	DTW		157.60	ft	
2110200924A	ORP		-156	mV	
2110200924A	pН		7.47	NA	
2110200924A	Temperature		20.80	°C	
21102002244	=				
2110200924A	Turbidity		3.63	NTU	
	Turbidity 0-SG-1	Event Date	9/ 7/2021	NTU	
	•	Event Date		Units	
Well ID 200	0-SG-1	Event Date	9/7/2021		
Well ID 200 Sample	0-SG-1 Parameter	Event Date	9/7/2021 Result	Units	
Well ID 200 Sample 2109071025B	0-SG-1 Parameter Conductivity	Event Date	9/7/2021 Result	Units μS/cm	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B	O-SG-1 Parameter Conductivity DTW	Event Date	9/7/2021 Result 1243 133.75	Units μS/cm ft	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B	Parameter Conductivity DTW pH	Event Date	9/7/2021 Result 1243 133.75 7.36	Units μS/cm ft NA	
Well ID 200 Sample 2109071025B 2109071025B	Parameter Conductivity DTW pH Temperature	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9	Units μS/cm ft NA °C	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B	Parameter Conductivity DTW pH Temperature Turbidity	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02	Units μS/cm ft NA °C NTU	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248	Units μS/cm ft NA °C NTU μS/cm	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25	Units μS/cm ft NA °C NTU μS/cm ft	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25 7.27	Units μS/cm ft NA °C NTU μS/cm ft NA	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25 7.27 23.2	Units μS/cm ft NA °C NTU μS/cm ft NA °C	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25 7.27 23.2 2.47	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25 7.27 23.2 2.47 1233	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm	
Well ID 200 Sample 2109071025B 2109071025B 2109071025B 2109071025B 2109071025B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B 2109071045B	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	9/7/2021 Result 1243 133.75 7.36 22.9 3.02 1248 134.25 7.27 23.2 2.47 1233 134.60	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft NA °C	

Well ID 30	00-A-120	Event Date	9/13/2021		
Sample	Parameter		Result	Units	
2109130950A	Conductivity		800	μS/cm	
2109130950A	DO		1.05	mg/L	
2109130950A	DTW		127.95	ft	
2109130950A	ORP		47	mV	
2109130950A	pH		8.47	NA	
2109130950A	Temperature		21.43	°C	
2109130950A	Turbidity		2.09	NTU	
2109130952A	Conductivity		816	μS/cm	
2109130952A	DO		1.11	mg/L	
2109130952A	DTW		128.25	ft	
2109130952A	ORP		69	mV	
2109130952A	pН		8.11	NA	
2109130952A	Temperature		21.47	°C	
2109130952A	Turbidity		3.25	NTU	
2109130954A	Conductivity		803	μS/cm	
2109130954A	DO		0.94	mg/L	
2109130954A	DTW		128.25	ft	
2109130954A	ORP		70	mV	
2109130954A	pH		8.27	NA	
2109130954A	Temperature		21.44	°C	
2109130954A	Turbidity		2.84	NTU	

Well ID 30	0-C-128 E	Event Date	10/19/2021		
Sample	Parameter		Result	Units	
2110191400A	Conductivity		1036	μS/cm	
2110191400A	DO		6.70	mg/L	
2110191400A	DTW		142.75	ft	
2110191400A	ORP		119	mV	
2110191400A	pH		7.08	NA	
2110191400A	Temperature		22.95	°C	
2110191400A	Turbidity		2.33	NTU	
2110191402A	Conductivity		1045	μS/cm	
2110191402A	DO		6.24	mg/L	
2110191402A	DTW		142.80	ft	
2110191402A	ORP		118	mV	
2110191402A	pH		7.03	NA	
2110191402A	Temperature		22.66	°C	
2110191402A	Turbidity		0.91	NTU	
2110191404A	Conductivity		1026	μS/cm	
2110191404A	DO		6.52	mg/L	
2110191404A	DTW		142.80	ft	
2110191404A	ORP		118	mV	
2110191404A	pН		7.05	NA	
2110191404A	Temperature		22.78	°C	
2110191404A	Turbidity		1.11	NTU	
Well ID 30	0-D-153 E	Event Date	9/16/2021		
Sample	Parameter		Result	Units	
2109161330C					
	Conductivity		1254	μS/cm	
2109161330C	Conductivity DTW		1254 160.70	μS/cm ft	
2109161330C 2109161330C	· ·				
	DTW		160.70	ft	
2109161330C	DTW pH		160.70 7.53	ft NA	
2109161330C 2109161330C	DTW pH Temperature		160.70 7.53 22.9	ft NA °C	
2109161330C 2109161330C 2109161330C	DTW pH Temperature Turbidity		160.70 7.53 22.9 1.68	ft NA °C NTU	
2109161330C 2109161330C 2109161330C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW pH		160.70 7.53 22.9 1.68 1271 162.63 7.42	ft NA °C NTU μS/cm ft NA	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW		160.70 7.53 22.9 1.68 1271 162.63	ft NA °C NTU μS/cm ft	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW pH		160.70 7.53 22.9 1.68 1271 162.63 7.42	ft NA °C NTU μS/cm ft NA	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C 2109161440C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW pH Temperature		160.70 7.53 22.9 1.68 1271 162.63 7.42 22.8	ft NA °C NTU	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C 2109161440C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity		160.70 7.53 22.9 1.68 1271 162.63 7.42 22.8 1.35	ft NA °C NTU μS/cm ft NA °C NTU	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C 2109161440C 2109161440C 2109161440C	DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity		160.70 7.53 22.9 1.68 1271 162.63 7.42 22.8 1.35	ft NA °C NTU	
2109161330C 2109161330C 2109161330C 2109161440C 2109161440C 2109161440C 2109161440C 2109161440C 2109161450C 2109161450C	DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity		160.70 7.53 22.9 1.68 1271 162.63 7.42 22.8 1.35	ft NA °C NTU	

Well ID 400)-D-195	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108161550Y	Atmospheric Pressure	:	12.52	psia	
2108161550Y	Conductivity		412	μS/cm	
2108161550Y	DTW		205.80	ft	
2108161550Y	Formation Pressure		31.11	psia	
2108161550Y	pH		7.97	NA	
2108161550Y	Temperature		24.9	°C	
2108161550Y	Turbidity		0.86	NTU	
2108171050Y	Atmospheric Pressure	e	12.64	psia	
2108171050Y	Conductivity		453	μS/cm	
2108171050Y	DTW		205.90	ft	
2108171050Y	pH		8.14	NA	
2108171050Y	Temperature		25.3	°C	
2108171050Y	Turbidity		1.04	NTU	
Well ID 400)-D-275	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108161020Y	Atmospheric Pressure	2	12.50	psia	
2108161020Y	Conductivity		718	μS/cm	
2108161020Y	DTW		205.53	ft	
2108161020Y	Formation Pressure		61.57	psia	
2108161020Y	pН		8.24	NA	
2108161020Y	Temperature		25.0	°C	
2108161020Y	Turbidity		0.71	NTU	
2108161410Y	Atmospheric Pressure	2	12.52	psia	
2108161410Y	Conductivity		735	μS/cm	
2108161410Y	DTW		205.80	ft	
2108161410Y	pH		7.58	NA	
2108161410Y	Temperature		25.7	°C	
2108161410Y	Turbidity		0.53	NTU	
Well ID 400)-D-355	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108121500Y	Conductivity		689	μS/cm	
2108121500Y	DTW		205.15	ft	
2108121500Y	Formation Pressure		96.22	psia	
2108121500Y	pН		8.30	NA	
2108121500Y	Temperature		24.4	°C	
2108121500Y	Turbidity		1.40	NTU	
	Conductivity		764	μS/cm	
2108121550Y			205.53	ft	
2108121550Y 2108121550Y	DTW				
	DTW pH		8.19	NA	
2108121550Y				NA °C	

Well ID 400)-EV-131	Event Date	8/2/2021		
Sample	Parameter		Result	Units	
2108020950C	Conductivity		1490	μS/cm	
2108020950C	DO		5.68	mg/L	
2108020950C	DTW		142.80	ft	
2108020950C	ORP		25	mV	
2108020950C	pН		8.45	NA	
2108020950C	Temperature		28.07	°C	
2108020950C	Turbidity		2.32	NTU	
2108020953C	Conductivity		1486	μS/cm	
2108020953C	DO		5.66	mg/L	
2108020953C	ORP		23	mV	
2108020953C	pН		8.41	NA	
2108020953C	Temperature		28.09	°C	
2108020953C	Turbidity		2.20	NTU	
2108020955C	Conductivity		1489	μS/cm	
2108020955C	DO		5.68	mg/L	
2108020955C	DTW		143.17	ft	
2108020955C	ORP		25	mV	
2108020955C	pН		8.39	NA	
2108020955C	Temperature		28.13	°C	
2108020955C	Turbidity		2.23	NTU	
Well ID 400)-FV-131	Event Date	10/18/2021		
Sample	Parameter		Result	Units	
2110180950A	Conductivity		1343	μS/cm	
2110180950A	DO		2.36	mg/L	
2110180950A	DTW		128.65	ft	
2110180950A	ORP		96	mV	
2110180950A	pН		7.53	NA	
2110180950A	Temperature		22.71	°C	
2110180950A	Turbidity		2.73	NTU	
2110180952A	Conductivity		1333	μS/cm	
2110180952A	DO		2.32	mg/L	
2110180952A	DTW		129.20	ft	
2110180952A	ORP		94	mV	
2110180952A	pН		7.56	NA	
2110180952A	Temperature		22.19	°C	
2110180952A	Turbidity		2.68	NTU	
2110180954A	Conductivity		1346	μS/cm	
2110180954A	DO		2.20	mg/L	
2110180954A	DTW		129.90	ft	
2110180954A	ORP		93	mV	
2110180954A	рН		7.57	NA	
2110180954A	Temperature		21.90	°C	
2110180954A	Turbidity		2.88	NTU	

Well ID 400)-GV-125	Event Date	8/3/2021		
Sample	Parameter		Result	Units	
2108030855C	Conductivity		1510	μS/cm	
2108030855C	DO		5.94	mg/L	
2108030855C	DTW		131.58	ft	
2108030855C	ORP		26	mV	
2108030855C	pН		8.29	NA	
2108030855C	Temperature		22.57	°C	
2108030855C	Turbidity		1.69	NTU	
2108030857C	Conductivity		1630	μS/cm	
2108030857C	DO		5.90	mg/L	
2108030857C	ORP		25	mV	
2108030857C	pН		8.22	NA	
2108030857C	Temperature		22.54	°C	
2108030857C	Turbidity		1.73	NTU	
2108030859C	Conductivity		1580	μS/cm	
2108030859C	DO		5.91	mg/L	
2108030859C	DTW		131.90	ft	
2108030859C	ORP		25	mV	
2108030859C	pН		8.26	NA	
2108030859C	Temperature		22.55	°C	
2108030859C	Turbidity		1.70	NTU	
Well ID 400)-HV-147	Event Date	10/18/2021		
Sample	Parameter		Result	Units	
2110181400A	Conductivity		1870	μS/cm	
2110181400A	DO		4.76	mg/L	
2110181400A	DTW		138.50	ft	
2110181400A	ORP		99	mV	
2110181400A	pН		7.60	NA	
2110181400A	Temperature		23.20	°C	
2110181400A	Turbidity		1.21	NTU	
2110181402A	Conductivity		1860	μS/cm	
2110181402A	DO		4.05	mg/L	
2110181402A	DTW		138.90	ft	
2110181402A	ORP		99	mV	
2110181402A	pН		7.62	NA	
2110181402A	Temperature		23.17	°C	
2110181402A	Turbidity		0.78	NTU	
2110181404A	Conductivity		1870	μS/cm	
2110181404A	DO		3.41	mg/L	
2110181404A	DTW		138.90	ft	
2110181404A	ORP		98	mV	
2110181404A	pН		7.64	NA	
2110181404A	Temperature		23.24	°C	
2110181404A	Turbidity		0.71	NTU	

Well ID 400)-IV-123	Event Date	10/19/2021		
Sample	Parameter		Result	Units	
2110190950A	Conductivity		393	μS/cm	
2110190950A	DO		6.17	mg/L	
2110190950A	DTW		129.90	ft	
2110190950A	ORP		101	mV	
2110190950A	pН		7.03	NA	
2110190950A	Temperature		22.17	°C	
2110190950A	Turbidity		1.27	NTU	
2110190952A	Conductivity		391	μS/cm	
2110190952A	DO		6.30	mg/L	
2110190952A	DTW		131.85	ft	
2110190952A	ORP		99	mV	
2110190952A	pН		7.28	NA	
2110190952A	Temperature		22.20	°C	
2110190952A	Turbidity		1.44	NTU	
2110190954A	Conductivity		390	μS/cm	
2110190954A	DO		6.21	mg/L	
2110190954A	DTW		131.85	ft	
2110190954A	ORP		99	mV	
21101000544	**		7. 22	NIA	
2110190954A	pH		7.33	NA	
	pH Temperature			°C	
2110190954A 2110190954A 2110190954A	pH Temperature Turbidity		7.33 22.18 1.35		
2110190954A 2110190954A	Temperature	Event Date	22.18	°C	
2110190954A 2110190954A	Temperature Turbidity	Event Date	22.18 1.35	°C	
2110190954A 2110190954A Well ID 400	Temperature Turbidity 0-JV-150	Event Date	22.18 1.35 8/2/2021	°C NTU	
2110190954A 2110190954A Well ID 400 Sample	Temperature Turbidity 0-JV-150 Parameter	Event Date	22.18 1.35 8/2/2021 Result	°C NTU Units	
2110190954A 2110190954A Well ID 400 Sample 2108021408C	Temperature Turbidity 1-JV-150 Parameter Conductivity	Event Date	22.18 1.35 8/2/2021 Result	°C NTU Units μS/cm	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07	°C NTU Units μS/cm mg/L	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50	°C NTU Units μS/cm mg/L ft	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9	°C NTU Units μS/cm mg/L ft mV	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26	°C NTU Units μS/cm mg/L ft mV NA	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67	°C NTU Units μS/cm mg/L ft mV NA °C	
2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82	°C NTU Units μS/cm mg/L ft mV NA °C NTU	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L my/L	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV/ NA	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76 2260	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Temperature Turbidity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76 2260	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76 2260 3.10	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76 2260 3.10 147.10	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L ft ft	
2110190954A 2110190954A 2110190954A Well ID 400 Sample 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021408C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C 2108021410C	Temperature Turbidity D-JV-150 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	22.18 1.35 8/2/2021 Result 2250 3.07 146.50 9 8.26 24.67 3.82 2200 3.10 11 8.25 24.63 3.76 2260 3.10 147.10 11	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm ft mV NA °C NTU μS/cm ft mg/L ft mV NA	

Well ID 600	0-G-138	Event Date	10/21/2021		
Sample	Parameter		Result	Units	
2110211100A	Conductivity		1699	μS/cm	
2110211100A	DTW		145.00	ft	
2110211100A	pН		7.85	NA	
2110211100A	Temperature		18.6	°C	
2110211100A	Turbidity		1.71	NTU	
2110211109A	Conductivity		1714	μS/cm	
2110211109A	DTW		145.60	ft	
2110211109A	pН		7.95	NA	
2110211109A	Temperature		18.8	°C	
2110211109A	Turbidity		1.64	NTU	
Well ID 700	0-A-253	Event Date	9/29/2021		
Sample	Parameter		Result	Units	
2109290855C	Conductivity		1129	μS/cm	
2109290855C	pН		7.49	NA	
2109290855C	Temperature		21.9	°C	
2109290855C	Turbidity		0.52	NTU	
2109290945C	Conductivity		1143	μS/cm	
2109290945C	pН		7.41	NA	
2109290945C	Temperature		22.8	°C	
2109290945C	Turbidity		0.76	NTU	
Well ID 700	0-D-186	Event Date	9/28/2021		
Sample	Parameter		Result	Units	
2109280855C	Conductivity		1384	μS/cm	
2109280855C	pН		7.53	NA	
2109280855C	Temperature		19.9	°C	
2109280855C	Turbidity		0.23	NTU	
2109280940C	Conductivity		1377	μS/cm	
2109280940C	pН		7.50	NA	
2109280940C	Temperature		19.7	°C	

Well ID	700-E-458	Event Date	8/18/2021		
Sample	Parameter		Result	Units	
2108180915	C Conductivity		808	μS/cm	
2108180915	C DO		4.51	mg/L	
2108180915	C DTW		310.73	ft	
2108180915	C ORP		-88	mV	
2108180915	С рН		9.37	NA	
2108180915	C Temperature		22.40	°C	
2108180915	C Turbidity		1.30	NTU	
2108180918	C Conductivity		816	μS/cm	
2108180918	C DO		4.44	mg/L	
2108180918	C DTW		311.82	ft	
2108180918	C ORP		-90	mV	
2108180918	С рН		9.43	NA	
2108180918	C Temperature		22.41	°C	
2108180918	C Turbidity		1.16	NTU	
2108180921	C Conductivity		819	μS/cm	
2108180921	C DO		4.29	mg/L	
2108180921	C DTW		311.86	ft	
2108180921	C ORP		-90	mV	
2108180921	C pH		9.48	NA	
2108180921	C Temperature		22.47	°C	
2108180921	C Turbidity		1.09	NTU	
Well ID	700-H-350	Event Date	9/28/2021		
Sample					
Sample	Parameter		Result	Units	
2109280920		re	Result	Units psia	
	Y Atmospheric Pressu	re			
2109280920	Y Atmospheric Pressu Y Conductivity	re	12.34	psia	
2109280920 2109280920	Y Atmospheric Pressury Conductivity Y DTW	re	12.34 818	psia μS/cm	
2109280920 2109280920 2109280920	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure	re	12.34 818 260.80	psia μS/cm ft	
2109280920 2109280920 2109280920 2109280920	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH	те	12.34 818 260.80 64.59	psia μS/cm ft psia	
2109280920 2109280920 2109280920 2109280920 2109280920	Y Atmospheric Pressury Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature	re	12.34 818 260.80 64.59 7.80	psia μS/cm ft psia NA	
2109280920 2109280920 2109280920 2109280920 2109280920 2109280920	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity		12.34 818 260.80 64.59 7.80 17.8	psia μS/cm ft psia NA °C	
2109280920 2109280920 2109280920 2109280920 2109280920 2109280920 2109280920	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur		12.34 818 260.80 64.59 7.80 17.8 1.11	psia μS/cm ft psia NA °C NTU	
2109280920 2109280920 2109280920 2109280920 2109280920 2109280920 2109281546	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity		12.34 818 260.80 64.59 7.80 17.8 1.11	psia μS/cm ft psia NA °C NTU psia	
2109280920 2109280920 2109280920 2109280920 2109280920 2109280920 2109281546 2109281546	Y Atmospheric Pressur Y Conductivity Y DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW		12.34 818 260.80 64.59 7.80 17.8 1.11	psia μS/cm ft psia NA °C NTU psia μS/cm	
2109280920 2109280920 2109280920 2109280920 2109280920 2109280920 2109281546 2109281546 2109281546	Y Atmospheric Pressur Y Conductivity YY DTW Y Formation Pressure Y pH Y Temperature Y Turbidity Y Atmospheric Pressur Y Conductivity Y DTW Y pH		12.34 818 260.80 64.59 7.80 17.8 1.11 12.31 831 261.07	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 70	0-H-535 Event Da	te 9/29/2021		
Sample	Parameter	Result	Units	
2109291550Y	Atmospheric Pressure	12.39	psia	
2109291550Y	Conductivity	672	μS/cm	
2109291550Y	DTW	261.33	ft	
2109291550Y	Formation Pressure	150.85	psia	
2109291550Y	pН	8.61	NA	
2109291550Y	Temperature	20.2	°C	
2109291550Y	Turbidity	1.13	NTU	
2109301055Y	Atmospheric Pressure	12.37	psia	
2109301055Y	Conductivity	713	μS/cm	
2109301055Y	DTW	261.85	ft	
2109301055Y	pН	8.77	NA	
2109301055Y	Temperature	18.5	°C	
	m at the	0.06	NUTLI	
2109301055Y	Turbidity	0.26	NTU	
	0-H-670 Event Da		NIU	
			Units	
Well ID 70	0-H-670 Event Da	te 9/29/2021		
Well ID 70 Sample	0-H-670 Event Da Parameter	te 9/29/2021 Result	Units	
Well ID 70 Sample 2109290823Y	0-H-670 Event Da Parameter Atmospheric Pressure	te 9/29/2021 Result	Units psia	
Well ID 70 Sample 2109290823Y 2109290823Y	0-H-670 Event Da Parameter Atmospheric Pressure Conductivity	9/29/2021 Result 12.36 635	Units psia μS/cm	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y	0-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW	12.36 635 261.07	Units psia μS/cm ft	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	12.36 635 261.07 202.60	Units psia μS/cm ft psia	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.36 635 261.07 202.60 8.50	Units psia μS/cm ft psia NA	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.36 635 261.07 202.60 8.50 18.0	Units psia μS/cm ft psia NA °C	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.36 635 261.07 202.60 8.50 18.0 1.92	Units psia μS/cm ft psia NA °C NTU	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.36 635 261.07 202.60 8.50 18.0 1.92	Units psia μS/cm ft psia NA °C NTU psia	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109291120Y 2109291120Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.36 635 261.07 202.60 8.50 18.0 1.92 12.38 627	Units psia μS/cm ft psia NA °C NTU psia μS/cm	
Well ID 70 Sample 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109290823Y 2109291120Y 2109291120Y 2109291120Y	O-H-670 Event Da Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	te 9/29/2021 Result 12.36 635 261.07 202.60 8.50 18.0 1.92 12.38 627 261.33	Units psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID 70	0-J-200	Event Date	9/28/2021		
Sample	Parameter		Result	Units	
2109280900A	Conductivity		1160	μS/cm	
2109280900A	DO		1.54	mg/L	
2109280900A	DTW		116.40	ft	
2109280900A	ORP		181	mV	
2109280900A	рН		7.44	NA	
2109280900A	Temperature		21.66	°C	
2109280900A	Turbidity		5.81	NTU	
2109280902A	Conductivity		1159	μS/cm	
2109280902A	DO		1.23	mg/L	
2109280902A	DTW		116.88	ft	
2109280902A	ORP		181	mV	
2109280902A	pН		7.52	NA	
2109280902A	Temperature		21.65	°C	
2109280902A	Turbidity		6.11	NTU	
2109280904A	Conductivity		1158	μS/cm	
2109280904A	DO		1.13	mg/L	
2109280904A	DTW		116.88	ft	
2109280904A	ORP		181	mV	
2109280904A	pН		7.45	NA	
2109280904A	Temperature		21.65	°C	
2109280904A	Turbidity		7.17	NTU	
2109290820A	Conductivity		1168	$\mu S/cm$	
2109290820A	DO		3.34	mg/L	
2109290820A	DTW		116.40	ft	
2109290820A	ORP		169	mV	
2109290820A	pН		7.38	NA	
2109290820A	Temperature		21.76	°C	
2109290820A	Turbidity		6.05	NTU	
2109290822A	Conductivity		1165	μS/cm	
2109290822A	DO		2.98	mg/L	
2109290822A	DTW		116.60	ft	
2109290822A	ORP		168	mV	
2109290822A	pН		7.40	NA	
2109290822A	Temperature		21.79	°C	
2109290822A	Turbidity		5.08	NTU	
2109290824A	Conductivity		1179	$\mu S/cm$	
2109290824A	DO		2.92	mg/L	
2109290824A	DTW		116.60	ft	
2109290824A	ORP		167	mV	
2109290824A	pН		7.41	NA	
2109290824A	Temperature		21.77	°C	
2109290824A	Turbidity		5.19	NTU	

Well ID B	LM-10-517	Event Date	10/5/2021		
Sample	Parameter		Result	Units	
2110051430A	Conductivity		996	μS/cm	
2110051430A	DO		6.18	mg/L	
2110051430A	DTW		495.55	ft	
2110051430A	ORP		149	mV	
2110051430A	pН		6.68	NA	
2110051430A	Temperature		21.72	°C	
2110051430A	Turbidity		0.33	NTU	
2110051433A	Conductivity		1003	μS/cm	
2110051433A	DO		6.40	mg/L	
2110051433A	DTW		495.55	ft	
2110051433A	ORP		148	mV	
2110051433A	pH		6.73	NA	
2110051433A	Temperature		21.80	°C	
2110051433A	Turbidity		0.24	NTU	
2110051436A	Conductivity		1009	μS/cm	
2110051436A	DO		6.62	mg/L	
2110051436A	DTW		495.55	ft	
2110051436A	ORP		145	mV	
2110051436A	pН		6.74	NA	
2110051436A	Temperature		21.83	°C	
2110051436A	Turbidity		0.25	NTU	
Well ID B	LM-14-327	Event Date	10/18/2021		
Sample	Parameter		Result	Units	
Sample 2110181400C	Parameter Conductivity		Result	Units μS/cm	
2110181400C	Conductivity		1301	μS/cm	
2110181400C 2110181400C	Conductivity DTW		1301 278.43	μS/cm ft	
2110181400C 2110181400C 2110181400C	Conductivity DTW pH		1301 278.43 7.45	μS/cm ft NA	
2110181400C 2110181400C 2110181400C 2110181400C	Conductivity DTW pH Temperature		1301 278.43 7.45 20.13	μS/cm ft NA °C	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C	Conductivity DTW pH Temperature Turbidity		1301 278.43 7.45 20.13 1.52	μS/cm ft NA °C NTU	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity		1301 278.43 7.45 20.13 1.52	μS/cm ft NA °C NTU μS/cm	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW		1301 278.43 7.45 20.13 1.52 1293 278.61	μS/cm ft NA °C NTU μS/cm ft	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH		1301 278.43 7.45 20.13 1.52 1293 278.61 7.41	μS/cm ft NA °C NTU μS/cm ft NA	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature		1301 278.43 7.45 20.13 1.52 1293 278.61 7.41 20.2	μS/cm ft NA °C NTU μS/cm ft NA °C	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity		1301 278.43 7.45 20.13 1.52 1293 278.61 7.41 20.2 1.44	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity		1301 278.43 7.45 20.13 1.52 1293 278.61 7.41 20.2 1.44	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
2110181400C 2110181400C 2110181400C 2110181400C 2110181400C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C 2110181403C	Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity		1301 278.43 7.45 20.13 1.52 1293 278.61 7.41 20.2 1.44 1290 278.61	μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Well ID BL	M-21-400	Event Date	8/5/2021		
Sample	Parameter		Result	Units	
2108050850B	Conductivity		1133	μS/cm	
2108050850B	DO		8.17	mg/L	
2108050850B	DTW		338.64	ft	
2108050850B	ORP		-24	mV	
2108050850B	pН		8.40	NA	
2108050850B	Temperature		21.76	°C	
2108050850B	Turbidity		2.20	NTU	
2108050851B	Conductivity		1148	μS/cm	
2108050851B	DO		7.83	mg/L	
2108050851B	DTW		339.19	ft	
2108050851B	ORP		-20	mV	
2108050851B	pН		8.44	NA	
2108050851B	Temperature		21.85	°C	
2108050851B	Turbidity		2.06	NTU	
2108050852B	Conductivity		1157	μS/cm	
2108050852B	DO		7.29	mg/L	
2108050852B	DTW		339.27	ft	
2108050852B	ORP		-18	mV	
2100030032 D					
2108050852B 2108050852B	pН		8.45	NA	
	•		8.45 21.98	NA °C	
2108050852B	pH Temperature Turbidity				
2108050852B 2108050852B 2108050852B	Temperature	Event Date	21.98	°C	
2108050852B 2108050852B 2108050852B	Temperature Turbidity	Event Date	21.98 1.75	°C	
2108050852B 2108050852B 2108050852B Well ID BL	Temperature Turbidity M-23-431	Event Date	21.98 1.75 8/3/2021	°C NTU	
2108050852B 2108050852B 2108050852B Well ID BL Sample	Temperature Turbidity M-23-431 Parameter	Event Date	21.98 1.75 8/3/2021 Result	°C NTU Units μS/cm	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity	Event Date	21.98 1.75 8/3/2021 Result	°C NTU Units	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80	°C NTU Units μS/cm mg/L	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2	°C NTU Units μS/cm mg/L ft mV	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80	°C NTU Units μS/cm mg/L ft mV NA	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58	°C NTU Units μS/cm mg/L ft mV	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46	°C NTU Units μS/cm mg/L ft mV NA °C	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33	°C NTU Units μS/cm mg/L ft mV NA °C NTU	
2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L my/L	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV/ NA	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53 22.42	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV/ NA	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53 22.42 1.36	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53 22.42 1.36 1383	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53 22.42 1.36 1383 1.54	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2108050852B 2108050852B 2108050852B 2108050852B Well ID BL Sample 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031410C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031412C 2108031414C 2108031414C 2108031414C	Temperature Turbidity M-23-431 Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	21.98 1.75 8/3/2021 Result 1381 1.53 331.80 -2 8.58 22.46 1.33 1380 1.57 -2 8.53 22.42 1.36 1383 1.54 -3	°C NTU Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	

Well ID B	LM-25-455	Event Date	8/3/2021		
Sample	Parameter		Result	Units	
2108030950B	Conductivity		1028	μS/cm	
2108030950B	DTW		339.00	ft	
2108030950B	pH		7.49	NA	
2108030950B	Temperature		23.1	°C	
2108030950B	Turbidity		0.73	NTU	
2108030953B	Conductivity		1020	μS/cm	
2108030953B	DTW		339.51	ft	
2108030953B	pН		7.53	NA	
2108030953B	Temperature		23.5	°C	
2108030953B	Turbidity		0.65	NTU	
2108030956B	Conductivity		1017	μS/cm	
2108030956B	DTW		336.58	ft	
2108030956B	pН		7.57	NA	
2108030956B	Temperature		23.6	°C	
2108030956B	Turbidity		0.62	NTU	
Well ID B	LM-32-543	Event Date	8/9/2021		
Sample	Parameter		Result	Units	
2108091300B	Conductivity		1009	μS/cm	
2108091300B	pН		8.27	NA	
2108091300B	Temperature		26.2	°C	
2108091300B	Turbidity		0.47	NTU	
2108091659B	Conductivity		1021	μS/cm	
2108091659B	pH		7.37	NA	
2108091659B	Temperature		24.7	°C	
2108091659B	Turbidity		0.60	NTU	
		Event Date	8/9/2021		
Well ID B	LM-32-571	Event Date	0/ // 2021		
Well ID B Sample	LM-32-571 Parameter	Event Date	Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result		
Sample 2108091306B	Parameter Conductivity	Event Date	Result	μS/cm	
Sample 2108091306B 2108091306B	Parameter Conductivity pH	Event Date	947 8.11	μS/cm NA	
Sample 2108091306B 2108091306B 2108091306B	Parameter Conductivity pH Temperature	Event Date	947 8.11 25.8	μS/cm NA °C	
Sample 2108091306B 2108091306B 2108091306B 2108091306B	Parameter Conductivity pH Temperature Turbidity	Event Date	947 8.11 25.8 0.53	μS/cm NA °C NTU	
2108091306B 2108091306B 2108091306B 2108091306B 2108091306B 2108091559B	Parameter Conductivity pH Temperature Turbidity Conductivity	Event Date	947 8.11 25.8 0.53 959	μS/cm NA °C NTU μS/cm	

Well ID BL	M-32-632	Event Date	8/9/2021		
Sample	Parameter		Result	Units	
2108091315B	Conductivity		976	μS/cm	
2108091315B	pН		8.04	NA	
2108091315B	Temperature		25.5	°C	
2108091315B	Turbidity		0.45	NTU	
2108091620B	Conductivity		989	μS/cm	
2108091620B	pН		7.58	NA	
2108091620B	Temperature		25.1	°C	
2108091620B	Turbidity		0.51	NTU	
Well ID BL	M-39-385	Event Date	10/7/2021		
Sample	Parameter		Result	Units	
2110071454Y	Atmospheric Pressur	re	12.54	psia	
2110071454Y	Conductivity		1148	μS/cm	
2110071454Y	Formation Pressure		25.41	psia	
2110071454Y	pН		8.40	NA	
2110071454Y	Temperature		20.1	°C	
2110071454Y	Turbidity		1.50	NTU	
2110120905Y	Atmospheric Pressur	re	12.50	psia	
2110120905Y	Conductivity		1130	μS/cm	
2110120905Y	DTW		369.27	ft	
2110120905Y	pН		8.32	NA	
2110120905Y	Temperature		19.0	°C	
2110120905Y	Turbidity		1.12	NTU	
Well ID BL	M-39-560	Event Date	10/7/2021		
Sample	Parameter		Result	Units	
2110070948Y	Atmospheric Pressur	re	12.57	psia	
2110070948Y	Conductivity		681	μS/cm	
2110070948Y	Formation Pressure		99.54	psia	
2110070948Y	pH		8.76	NA	
2110070948Y	Temperature		19.0	°C	
2110070948Y	Turbidity		1.81	NTU	
2110071348Y	Atmospheric Pressur	re	12.57	psia	
2110071348Y	Conductivity		770	μS/cm	
21100/15401	pН		7.54	NA	
2110071348Y	PII				
	Temperature		21.2	°C	

Well ID I	BLM-40-517	Event Date	10/4/2021		
Sample	Parameter		Result	Units	
2110041410A	Conductivity		826	μS/cm	
2110041410A	DO		5.95	mg/L	
2110041410A	DTW		523.67	ft	
2110041410A	ORP		148	mV	
2110041410A	pН		6.89	NA	
2110041410A	Temperature		21.08	°C	
2110041410A	Turbidity		0.31	NTU	
2110041413A	Conductivity		820	μS/cm	
2110041413A	DO		5.61	mg/L	
2110041413A	DTW		524.08	ft	
2110041413A	ORP		146	mV	
2110041413A	pН		6.90	NA	
2110041413A	Temperature		21.14	°C	
2110041413A	Turbidity		0.23	NTU	
2110041416A	Conductivity		816	μS/cm	
2110041416A	DO		5.29	mg/L	
2110041416A	DTW		524.10	ft	
2110041416A	ORP		146	mV	
2110041416A	pH		6.93	NA	
2110041416A	Temperature		21.19	°C	
2110041416A	Turbidity		0.22	NTU	

	at Date 10/4/2021		
Parameter	Result	Units	
Conductivity	572	μS/cm	
DO	5.87	mg/L	
DTW	522.50	ft	
ORP	153	mV	
pH	6.32	NA	
Temperature	20.78	$^{\circ}\mathrm{C}$	
Turbidity	0.21	NTU	
Conductivity	574	μS/cm	
DO	5.98	mg/L	
DTW	523.18	ft	
ORP	153	mV	
pH	6.31	NA	
Temperature	20.83	°C	
Turbidity	0.20	NTU	
Conductivity	577	μS/cm	
DO	6.03	mg/L	
DTW	523.18	ft	
ORP	152	mV	
pH	6.28	NA	
Temperature	20.88	°C	
Turbidity	0.14	NTU	
I-40-688 Even	nt Date 10/5/2021		
Parameter	Result	Units	
Conductivity	747	μS/cm	
DO	4.22	mg/L	
ORP	169	mV	
pH	6.43	NA	
Temperature	20.78	$^{\circ}\mathrm{C}$	
Turbidity	0.27	NTU	
,			
Conductivity	740	μS/cm	
•	740 4.09	μS/cm mg/L	
Conductivity		•	
Conductivity DO	4.09	mg/L	
Conductivity DO ORP	4.09 168	mg/L mV	
Conductivity DO ORP pH	4.09 168 6.45	mg/L mV NA	
Conductivity DO ORP pH Temperature	4.09 168 6.45 20.86 0.29	mg/L mV NA °C	
Conductivity DO ORP pH Temperature Turbidity Conductivity DO	4.09 168 6.45 20.86 0.29	mg/L mV NA °C NTU	
Conductivity DO ORP pH Temperature Turbidity Conductivity	4.09 168 6.45 20.86 0.29	mg/L mV NA °C NTU μS/cm	
Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH	4.09 168 6.45 20.86 0.29 737 3.97	mg/L mV NA °C NTU μS/cm mg/L mV NA	
Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	4.09 168 6.45 20.86 0.29 737 3.97 165	mg/L mV NA °C NTU μS/cm mg/L mV	
	DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity	DO 5.87 DTW 522.50 ORP 153 pH 6.32 Temperature 20.78 Turbidity 0.21 Conductivity 574 DO 5.98 DTW 523.18 ORP 153 pH 6.31 Temperature 20.83 Turbidity 0.20 Conductivity 577 DO 6.03 DTW 523.18 ORP 152 pH 6.28 Temperature 20.88 Turbidity 0.14 1-40-688 Event Date 10/5/2021 Parameter Result Conductivity 747 DO 4.22 ORP 169 pH 6.43 Temperature 20.78	DO 5.87 mg/L DTW 522.50 ft ORP 153 mV pH 6.32 NA Temperature 20.78 °C Turbidity 0.21 NTU Conductivity 574 μS/cm DO 5.98 mg/L ORP 153 mV pH 6.31 NA Temperature 20.83 °C Turbidity 0.20 NTU Conductivity 577 μS/cm DO 6.03 mg/L DTW 523.18 ft ORP 155 mV PH 6.31 NA Temperature 20.83 °C Turbidity 0.20 NTU Conductivity 577 μS/cm DO 6.03 mg/L DTW 523.18 ft ORP 152 mV PH 6.28 NA Temperature 20.88 °C Turbidity 0.14 NTU 1-40-688 Event Date 10/5/2021 Parameter Result Units Conductivity 747 μS/cm DO 4.22 mg/L ORP 169 mV pH 6.43 NA Temperature 169 mV pH 6.43 NA Temperature 20.78 °C

Well ID BL	M-41-420	Event Date	10/18/2021		
Sample	Parameter		Result	Units	
2110181005C	Conductivity		1113	μS/cm	
2110181005C	DTW		353.13	ft	
2110181005C	pН		7.72	NA	
2110181005C	Temperature		18.6	°C	
2110181005C	Turbidity		1.07	NTU	
2110181008C	Conductivity		1118	μS/cm	
2110181008C	DTW		354.05	ft	
2110181008C	pН		7.70	NA	
2110181008C	Temperature		18.8	°C	
2110181008C	Turbidity		1.01	NTU	
2110181011C	Conductivity		1110	μS/cm	
2110181011C	DTW		354.05	ft	
2110181011C	pН		7.64	NA	
2110181011C	Temperature		19.1	°C	
2110181011C	Turbidity		0.89	NTU	
Well ID BL	M-41-670	Event Date	10/19/2021		
Well ID BL Sample	M-41-670 Parameter	Event Date	10/19/2021 Result	Units	
		Event Date		Units μS/cm	
Sample	Parameter	Event Date	Result		
Sample 2110191425C	Parameter Conductivity	Event Date	Result	μS/cm	
Sample 2110191425C 2110191425C	Parameter Conductivity DTW	Event Date	1063 391.43	μS/cm ft	
Sample 2110191425C 2110191425C 2110191425C	Parameter Conductivity DTW pH	Event Date	1063 391.43 7.65	μS/cm ft NA	
Sample 2110191425C 2110191425C 2110191425C 2110191425C	Parameter Conductivity DTW pH Temperature	Event Date	Result 1063 391.43 7.65 19.3	μS/cm ft NA °C	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C	Parameter Conductivity DTW pH Temperature Turbidity	Event Date	Result 1063 391.43 7.65 19.3 1.44	μS/cm ft NA °C NTU	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057	μS/cm ft NA °C NTU μS/cm	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15	μS/cm ft NA °C NTU μS/cm ft	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15 7.62	μS/cm ft NA °C NTU μS/cm ft NA	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15 7.62 19.4	μS/cm ft NA °C NTU μS/cm ft NA °C	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15 7.62 19.4 1.32	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15 7.62 19.4 1.32 1055	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 2110191425C 2110191425C 2110191425C 2110191425C 2110191425C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C 2110191428C	Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	Result 1063 391.43 7.65 19.3 1.44 1057 392.15 7.62 19.4 1.32 1055 392.15	μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Well ID BI	LM-42-569	Event Date	9/7/2021		
Sample	Parameter		Result	Units	
2109070900C	Conductivity		628	μS/cm	
2109070900C	DO		4.92	mg/L	
2109070900C	ORP		-74	mV	
2109070900C	pН		8.52	NA	
2109070900C	Temperature		26.63	°C	
2109070900C	Turbidity		0.96	NTU	
2109070902C	Conductivity		627	μS/cm	
2109070902C	DO		4.91	mg/L	
2109070902C	ORP		-75	mV	
2109070902C	pН		8.55	NA	
2109070902C	Temperature		26.62	°C	
2109070902C	Turbidity		0.92	NTU	
2109070904C	Conductivity		629	μS/cm	
2109070904C	DO		4.92	mg/L	
2109070904C	ORP		-74	mV	
2109070904C	pН		8.53	NA	
2109070904C	Temperature		26.64	°C	
	Temperature Turbidity		26.64 0.97	°C NTU	
2109070904C 2109070904C	=	Event Date			
2109070904C 2109070904C	Turbidity	Event Date	0.97		
2109070904C 2109070904C Well ID BI	Turbidity _M-42-709	Event Date	9/ 7/2021	NTU	
2109070904C 2109070904C Well ID BI Sample	Turbidity M-42-709 Parameter	Event Date	0.97 9/7/2021 Result	NTU Units	
2109070904C 2109070904C Well ID BI Sample 2109071445C	Turbidity M-42-709 Parameter Conductivity	Event Date	0.97 9/7/2021 Result	NTU Units μS/cm	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C	Turbidity LM-42-709 Parameter Conductivity DO	Event Date	0.97 9/7/2021 Result 625 4.86	NTU Units μS/cm mg/L	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C	Turbidity LM-42-709 Parameter Conductivity DO ORP	Event Date	0.97 9/7/2021 Result 625 4.86 -93	NTU Units μS/cm mg/L mV	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C	Turbidity M-42-709 Parameter Conductivity DO ORP pH	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41	NTU Units μS/cm mg/L mV NA	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32	NTU Units μS/cm mg/L mV NA °C	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83	NTU Units μS/cm mg/L mV NA °C NTU	
2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626	NTU Units μS/cm mg/L mV NA °C NTU μS/cm	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity LM-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity AM-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity AM-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Temperature	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38 23.31	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity LM-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Turbidity	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38 23.31 0.79	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity AM-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38 23.31 0.79 623	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38 23.31 0.79 623 4.84	NTU Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
2109070904C 2109070904C 2109070904C Well ID BI Sample 2109071445C 2109071445C 2109071445C 2109071445C 2109071445C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C 2109071447C	Turbidity M-42-709 Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	0.97 9/7/2021 Result 625 4.86 -93 8.41 23.32 0.83 626 4.83 -92 8.38 23.31 0.79 623 4.84 -92	NTU Units µS/cm mg/L mV NA °C NTU µS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	

Well ID BL	M-5-527	Event Date	9/20/2021		
Sample	Parameter		Result	Units	
2109200955C	Conductivity		1105	μS/cm	
2109200955C	DO		7.98	mg/L	
2109200955C	ORP		74	mV	
2109200955C	pН		8.79	NA	
2109200955C	Temperature		22.16	°C	
2109200955C	Turbidity		0.98	NTU	
2109200957C	Conductivity		1091	μS/cm	
2109200957C	DO		8.17	mg/L	
2109200957C	ORP		74	mV	
2109200957C	pН		8.80	NA	
2109200957C	Temperature		22.00	°C	
2109200957C	Turbidity		1.00	NTU	
2109200959C	Conductivity		1106	μS/cm	
2109200959C	DO		8.10	mg/L	
2109200959C	ORP		73	mV	
2109200959C	pН		8.81	NA	
2109200959C	Temperature		21.96	°C	
	m 1:1:		0.68	NTU	
2109200959C	Turbidity		0.08	1110	
	M-6-488	Event Date	10/15/2021		
	•	Event Date		Units	
Well ID BL	M-6-488	Event Date	10/15/2021		
Well ID BL Sample	M-6-488 Parameter	Event Date	10/15/2021 Result	Units	
Well ID BL Sample	M-6-488 Parameter Conductivity	Event Date	10/15/2021 Result	Units μS/cm	
Well ID BL Sample 2110150900C 2110150900C	M-6-488 Parameter Conductivity DO	Event Date	10/15/2021 Result 1405 6.02	Units μS/cm mg/L	
Well ID BL Sample 2110150900C 2110150900C 2110150900C	M-6-488 Parameter Conductivity DO DTW	Event Date	10/15/2021 Result 1405 6.02 360.25	Units μS/cm mg/L ft	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C	Parameter Conductivity DO DTW ORP	Event Date	10/15/2021 Result 1405 6.02 360.25 146	Units μS/cm mg/L ft mV	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C	Parameter Conductivity DO DTW ORP pH	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50	Units μS/cm mg/L ft mV NA	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C	Parameter Conductivity DO DTW ORP pH Temperature	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46	Units μS/cm mg/L ft mV NA	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17	Units μS/cm mg/L ft mV NA °C NTU	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420	Units μS/cm mg/L ft mV NA °C NTU μS/cm	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C	Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57 5.94	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57 5.94	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150906C 2110150906C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57 5.94 1427 5.56	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150906C 2110150906C 2110150906C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57 5.94 1427 5.56 360.35	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU	
Well ID BL Sample 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150900C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150903C 2110150906C 2110150906C 2110150906C 2110150906C	Parameter Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP	Event Date	10/15/2021 Result 1405 6.02 360.25 146 6.50 19.46 6.17 1420 5.80 360.35 141 6.53 19.57 5.94 1427 5.56 360.35 137	Units μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV NA °C NTU ft mV NA °C NTU μS/cm ft mV NA °C NTU μS/cm	

Well ID	BLM-7-509	Event Date	9/1/2021		
Sample	Parameter		Result	Units	
210901095	5B Conductivity		1118	μS/cm	
210901095	5B DO		5.69	mg/L	
210901095	5B ORP		-46	mV	
210901095	5B pH		8.93	NA	
210901095	5B Temperature		21.29	°C	
210901095	5B Turbidity		0.41	NTU	
210901095	6B Conductivity		1118	μS/cm	
210901095	6B DO		5.36	mg/L	
210901095	6B ORP		-46	mV	
210901095	6В рН		8.93	NA	
210901095	6B Temperature		21.31	°C	
210901095	6B Turbidity		0.39	NTU	
210901095	7B Conductivity		1117	μS/cm	
210901095	7B DO		5.41	mg/L	
210901095	7B ORP		-46	mV	
210901095	7B pH		8.95	NA	
210901095	7B Temperature		21.26	°C	
210901095	7B Turbidity		0.44	NTU	
210909095	5B Conductivity		1129	μS/cm	
210909095	5B DO		5.17	mg/L	
210909095	5B DTW		495.30	ft	
210909095	5B ORP		-52	mV	
210909095	5B pH		8.61	NA	
210909095	5B Temperature		20.65	°C	
210909095	5B Turbidity		0.54	NTU	
210909095	•		1133	μS/cm	
210909095	8B DO		4.99	mg/L	
210909095	8B DTW		495.44	ft	
210909095	8B ORP		-50	mV	
210909095	8B pH		8.63	NA	
210909095	•		20.72	°C	
210909095	8B Turbidity		0.47	NTU	
210909100	•		1136	μS/cm	
210909100			4.75	mg/L	
210909100			495.44	ft	
210909100	1B ORP		-48	mV	
210909100	1B pH		8.68	NA	
210909100	=		20.82	°C	
210909100	1B Turbidity		0.40	NTU	

Well ID B	LM-9-419	Event Date	9/2/2021		
Sample	Parameter		Result	Units	
2109021025C	Conductivity		1028	μS/cm	
2109021025C	DO		4.72	mg/L	
2109021025C	DTW		378.72	ft	
2109021025C	ORP		-73	mV	
2109021025C	pH		8.15	NA	
2109021025C	Temperature		21.61	°C	
2109021025C	Turbidity		3.47	NTU	
2109021027C	Conductivity		1026	μS/cm	
2109021027C	DO		4.65	mg/L	
2109021027C	DTW		379.20	ft	
2109021027C	ORP		-74	mV	
2109021027C	pН		8.12	NA	
2109021027C	Temperature		21.63	°C	
2109021027C	Turbidity		3.42	NTU	
2109021029C	Conductivity		1029	μS/cm	
2109021029C	DO		4.34	mg/L	
2109021029C	DTW		379.20	ft	
2109021029C	ORP		-74	mV	
2109021029C	pH		8.09	NA	
2109021029C	Temperature		21.59	°C	
2109021029C	Turbidity		3.34	NTU	

Well ID	BW-1-268	Event Date	9/9/2021		
Sample	Parameter		Result	Units	
21090908101	B Conductivity		1281	μS/cm	
2109090810H	B DO		7.16	mg/L	
2109090810H	B DTW		169.40	ft	
2109090810H	3 ORP		46	mV	
2109090810I	В рН		7.96	NA	
2109090810I	B Temperature		20.75	°C	
2109090810I	3 Turbidity		0.49	NTU	
2109090811H	3 Conductivity		1272	μS/cm	
21090908111	B DO		6.80	mg/L	
2109090811I	B DTW		169.72	ft	
21090908111	3 ORP		45	mV	
21090908111	В рН		8.01	NA	
21090908111	B Temperature		20.78	°C	
21090908111			0.54	NTU	
2109090812I	B Conductivity		1268	μS/cm	
2109090812H	B DO		6.53	mg/L	
21090908121	B DTW		169.84	ft	
2109090812H	3 ORP		43	mV	
2109090812H	В рН		8.03	NA	
2109090812H	B Temperature		20.82	°C	
21090908121	B Turbidity		0.46	NTU	
W 11 TB	BW-3-180	Event Date	10/19/2021		
w eii ID	D W -3-100				
	Parameter		Result	Units	
Sample	Parameter			Units μS/cm	
Sample 21101910400	Parameter C Conductivity		Result		
	Parameter C Conductivity DTW		Result	μS/cm	
Sample 21101910400 21101910400	Parameter C Conductivity DTW DH		2340 170.91	μS/cm ft	
Sample 21101910400 21101910400 21101910400	Parameter C Conductivity DTW DH C pH Temperature		2340 170.91 8.11	μS/cm ft NA	
Sample 21101910400 21101910400 21101910400 21101910400	Parameter C Conductivity DTW DH C pH Temperature Turbidity		2340 170.91 8.11 17.3	μS/cm ft NA °C	
Sample 21101910400 21101910400 21101910400 21101910400	Parameter C Conductivity DTW DH C pH Temperature Turbidity C Conductivity		2340 170.91 8.11 17.3 14.8	μS/cm ft NA °C NTU	
Sample 21101910400 21101910400 21101910400 21101910400 21101910400	Parameter C Conductivity DTW DPH Temperature Turbidity C Conductivity DTW		2340 170.91 8.11 17.3 14.8	μS/cm ft NA °C NTU μS/cm	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430	Parameter C Conductivity DTW DH C PH C Temperature Turbidity C Conductivity DTW DTW DH		2340 170.91 8.11 17.3 14.8 2330 172.15	μS/cm ft NA °C NTU μS/cm ft	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430 21101910430	Parameter C Conductivity DTW DH C Temperature C Turbidity C Conductivity DTW DTW DTW DTW DTW DTW Temperature		2340 170.91 8.11 17.3 14.8 2330 172.15 8.09	μS/cm ft NA °C NTU μS/cm ft NA	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430 21101910430 21101910430	Parameter C Conductivity DTW pH C Temperature Turbidity C Conductivity DTW pH C Temperature Turbidity C Temperature Turbidity		2340 170.91 8.11 17.3 14.8 2330 172.15 8.09 17.0	μS/cm ft NA °C NTU μS/cm ft NA °C	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430 21101910430 21101910430 21101910430	Parameter C Conductivity DTW DH C Temperature C Turbidity C Conductivity DTW DTW DTW DTW DTW C PH C Temperature Turbidity C Conductivity C COnductivity C COnductivity		2340 170.91 8.11 17.3 14.8 2330 172.15 8.09 17.0 12.8	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430 21101910430 21101910430 21101910430 21101910430 21101910430	Parameter C Conductivity DTW DH C Temperature C Turbidity C DTW DTW DTW DTW DTW C pH C Temperature C Turbidity C Conductivity DTW C DTW		2340 170.91 8.11 17.3 14.8 2330 172.15 8.09 17.0 12.8 2300	μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
Sample 21101910400 21101910400 21101910400 21101910400 21101910430 21101910430 21101910430 21101910430 21101910430 21101910430 21101910430	Parameter C Conductivity DTW PH C Temperature C Turbidity C DTW DTW DTW C pH C Temperature C Turbidity C DTW C pH C Temperature C Turbidity C DTW C pH C Temperature C Turbidity C DTW C pH C Turbidity C DTW C DTW C DTW		Result 2340 170.91 8.11 17.3 14.8 2330 172.15 8.09 17.0 12.8 2300 172.15	μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Sample Parameter Result Units			9/20/2021	Event Date	V-6-355	Well ID BW
2109201445C DO 3.14 mg/L 2109201445C DTW 245.35 ft 2109201445C ORP 27 mV 2109201445C pH 8.02 NA 2109201445C Temperature 21.98 °C 2109201445C Turbidity 1.50 NTU 2109201447C Conductivity 1040 μS/cm 2109201447C DO 3.26 mg/L 2109201447C DTW 247.55 ft 2109201447C ORP 27 mV 2109201447C ORP 27 mV 2109201447C DFH 8.05 NA 2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201447C Turbidity 1.34 NTU 2109201449C DO 3.42 mg/L 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C DTW 247.55 ft 2109201449C DTW 247.55 ft 2109201449C DFH 8.00 NA 2109201449C DFH 8.00 NA 2109201449C PH 8.00 NA 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B PH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		Units	Result		Parameter	Sample
2109201445C DTW 245.35 ft		μS/cm	1046		Conductivity	2109201445C
2109201445C ORP 27 mV		mg/L	3.14		DO	2109201445C
2109201445C pH 8.02 NA		ft	245.35		DTW	2109201445C
2109201445C Temperature 21.98 °C		mV	27		ORP	2109201445C
2109201447C Conductivity 1040		NA	8.02		pН	2109201445C
2109201447C Conductivity 1040		°C	21.98		Temperature	2109201445C
2109201447C DO 3.26 mg/L 2109201447C DTW 247.55 ft 2109201447C ORP 27 mV 2109201447C pH 8.05 NA 2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C PH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B PH 7.72 NA 2110141340B Turbidity 0.48 NTU 211014135B Conductivity 1050		NTU	1.50		Turbidity	2109201445C
2109201447C DTW 247.55 ft 2109201447C ORP 27 mV 2109201447C pH 8.05 NA 2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B PH 7.72 NA 2110141340B Temperature 21.5 °C 211014135B Conductivity 1050 μS/cm 211014155B Conductivity 1050 μS/cm 211014155B Temperature 20.1		μS/cm	1040		Conductivity	2109201447C
2109201447C ORP 27 mV 2109201447C pH 8.05 NA 2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C pH 8.00 NA 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 211014135B Conductivity 1050 μS/cm 211014155B Temperature 20.1 °C		mg/L	3.26		DO	2109201447C
2109201447C pH 8.05 NA 2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B PH 7.72 NA 2110141340B Turbidity 0.48 NTU 211014135B Conductivity 1050 μS/cm 2110141455B PH 7.75 NA 21101415B Temperature 20.1 °C		ft	247.55		DTW	2109201447C
2109201447C Temperature 21.92 °C 2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B PH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 211014155B Conductivity 1050 μS/cm 211014155B Temperature 20.1 °C		mV	27		ORP	2109201447C
2109201447C Turbidity 1.34 NTU 2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 211014135B Conductivity 1050 μS/cm 211014145B Conductivity 1050 μS/cm 211014145B Temperature 20.1 °C		NA	8.05		pН	2109201447C
2109201449C Conductivity 1034 μS/cm 2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Turbidity Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141340B Turbidity 0.48 NTU 211014135B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		°C	21.92		Temperature	2109201447C
2109201449C DO 3.42 mg/L 2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B Temperature 20.1 °C		NTU	1.34		Turbidity	2109201447C
2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B PH 7.75 NA 2110141455B Temperature 20.1 °C		μS/cm	1034		Conductivity	2109201449C
2109201449C DTW 247.55 ft 2109201449C ORP 26 mV 2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B PH 7.75 NA 2110141455B Temperature 20.1 °C		mg/L	3.42		DO	2109201449C
2109201449C pH 8.00 NA 2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B PH 7.75 NA 2110141455B Temperature 20.1 °C			247.55		DTW	2109201449C
2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		mV	26		ORP	2109201449C
2109201449C Temperature 22.01 °C 2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B PH 7.75 NA 2110141455B Temperature 20.1 °C		NA	8.00		pН	2109201449C
2109201449C Turbidity 0.98 NTU Well ID JER-1-483 Event Date 10/14/2021 Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		°C	22.01		-	2109201449C
Sample Parameter Result Units 2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		NTU				
2110141340B Conductivity 1116 μS/cm 2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 211014155B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C	,		10/14/2021	Event Date	R-1-483	Well ID JEI
2110141340B pH 7.72 NA 2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		Units	Result		Parameter	Sample
2110141340B Temperature 21.5 °C 2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		μS/cm	1116		Conductivity	2110141340B
2110141340B Turbidity 0.48 NTU 2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		NA	7.72		pН	2110141340B
2110141455B Conductivity 1050 μS/cm 2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		°C	21.5		Temperature	2110141340B
2110141455B pH 7.75 NA 2110141455B Temperature 20.1 °C		NTU	0.48		Turbidity	2110141340B
2110141455B Temperature 20.1 °C		μS/cm	1050		Conductivity	2110141455B
		NA	7.75		pН	2110141455B
		°C	20.1		Temperature	2110141455B
		NTU	0.35			2110141455B
Well ID JER-1-563 Event Date 10/15/2021			10/15/2021	Event Date	R-1-563	Well ID JEI
Sample Parameter Result Units		Units	Result		Parameter	Sample
2110151022B Conductivity 1149 μS/cm		μS/cm	1149		Conductivity	2110151022B
2110151022B pH 8.67 NA		•				
2110151022B Temperature 20.8 °C					-	
2110151022B Turbidity 1.35 NTU					-	
2110151130B Conductivity 1143 μS/cm		μS/cm	1143		Conductivity	2110151130B
2110151130B pH 8.43 NA		•				
2110151130B Temperature 20.9 °C					-	
2110151130B Turbidity 0.31 NTU						
			, , , , ,		,	

Well ID JE	CR-1-683	Event Date	10/15/2021		
Sample	Parameter		Result	Units	
2110151030B	Conductivity		1107	μS/cm	
2110151030B	pН		8.35	NA	
2110151030B	Temperature		20.2	°C	
2110151030B	Turbidity		0.47	NTU	
2110151155B	Conductivity		1110	μS/cm	
2110151155B	pН		8.28	NA	
2110151155B	Temperature		20.2	°C	
2110151155B	Turbidity		0.42	NTU	
Well ID JE	CR-2-504	Event Date	10/7/2021		
Sample	Parameter		Result	Units	
2110071400B	Conductivity		1130	μS/cm	
2110071400B	pН		8.40	NA	
2110071400B	Temperature		25.1	°C	
2110071400B	Turbidity		0.72	NTU	
2110071520B	Conductivity		1137	μS/cm	
2110071520B	pН		8.31	NA	
2110071520B	Temperature		22.9	°C	
2110071520B	Turbidity		0.66	NTU	
Well ID JE	CR-2-584	Event Date	10/13/2021		
Well ID GE	11 2 30 1		10/15/2021		
Sample	Parameter	_,	Result	Units	
				Units μS/cm	
Sample	Parameter		Result		
Sample 2110131300B	Parameter Conductivity		Result	μS/cm	
Sample 2110131300B 2110131300B	Parameter Conductivity pH		1175 8.48	μS/cm NA	
Sample 2110131300B 2110131300B 2110131300B	Parameter Conductivity pH Temperature		1175 8.48 21.3	μS/cm NA °C	
Sample 2110131300B 2110131300B 2110131300B 2110131300B	Parameter Conductivity pH Temperature Turbidity		1175 8.48 21.3 0.75	μS/cm NA °C NTU	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature		Result 1175 8.48 21.3 0.75 1163 8.55 21.4	μS/cm NA °C NTU μS/cm NA °C	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH		Result 1175 8.48 21.3 0.75 1163 8.55	μS/cm NA °C NTU μS/cm NA	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature	Event Date	Result 1175 8.48 21.3 0.75 1163 8.55 21.4	μS/cm NA °C NTU μS/cm NA °C	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61	μS/cm NA °C NTU μS/cm NA °C	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter Conductivity		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result 1183	μS/cm NA °C NTU μS/cm NA °C NTU	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B 21101313130B 2110131330B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter Conductivity pH		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result 1183 8.24	μS/cm NA °C NTU μS/cm NA °C NTU Units	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 21101313131B Well ID JE Sample 2110131330B 2110131330B 2110131330B	Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter Conductivity pH Temperature		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result 1183 8.24 22.7	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA γC	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 2110131417B 21101313131B Well ID JE Sample 2110131330B 2110131330B 2110131330B 2110131330B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter Conductivity pH Temperature Turbidity		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result 1183 8.24 22.7 1.12	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU	
Sample 2110131300B 2110131300B 2110131300B 2110131300B 2110131417B 2110131417B 2110131417B 2110131417B 21101313131B Well ID JE Sample 2110131330B 2110131330B 2110131330B 2110131330B	Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity CR-2-684 Parameter Conductivity pH Temperature Turbidity CR-2-684 Conductivity pH Temperature Turbidity Conductivity		Result 1175 8.48 21.3 0.75 1163 8.55 21.4 0.61 10/13/2021 Result 1183 8.24 22.7 1.12 1164	μS/cm NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm NA °C NTU	

Well ID JP	°-1-424	Event Date	10/6/2021		
Sample	Parameter		Result	Units	
2110061350A	Conductivity		1017	μS/cm	
2110061350A	DO		6.32	mg/L	
2110061350A	DTW		413.68	ft	
2110061350A	ORP		143	mV	
2110061350A	pН		6.81	NA	
2110061350A	Temperature		21.89	°C	
2110061350A	Turbidity		0.35	NTU	
2110061353A	Conductivity		1010	μS/cm	
2110061353A	DO		6.12	mg/L	
2110061353A	DTW		413.80	ft	
2110061353A	ORP		144	mV	
2110061353A	pH		6.81	NA	
2110061353A	Temperature		21.93	°C	
2110061353A	Turbidity		0.22	NTU	
2110061356A	Conductivity		1000	μS/cm	
2110061356A	DO		6.01	mg/L	
2110061356A	DTW		413.80	ft	
2110061356A	ORP		144	mV	
2110061356A	pH		6.83	NA	
2110061356A	Temperature		21.98	°C	
2110061356A	Turbidity		0.19	NTU	

Well ID JP	-2-447	Event Date	10/21/2021		
Sample	Parameter		Result	Units	
2110210925C	Conductivity		1048	μS/cm	
2110210925C	DO		11.18	mg/L	
2110210925C	DTW		414.10	ft	
2110210925C	ORP		157	mV	
2110210925C	pH		7.62	NA	
2110210925C	Temperature		20.71	°C	
2110210925C	Turbidity		0.96	NTU	
2110210927C	Conductivity		1037	μS/cm	
2110210927C	DO		11.12	mg/L	
2110210927C	DTW		414.15	ft	
2110210927C	ORP		157	mV	
2110210927C	pН		7.63	NA	
2110210927C	Temperature		20.67	°C	
2110210927C	Turbidity		0.64	NTU	
2110210929C	Conductivity		1053	μS/cm	
2110210929C	DO		10.91	mg/L	
2110210929C	DTW		414.15	ft	
2110210929C	ORP		157	mV	
2110210929C	pН		7.65	NA	
21102100200	Temperature		20.69	$^{\circ}\mathrm{C}$	
2110210929C	remperature		20.07	•	
2110210929C 2110210929C	Turbidity		0.70	NTU	
2110210929C		Event Date			
2110210929C	Turbidity	Event Date	0.70		
2110210929C Well ID JP	Turbidity -3-689	Event Date	0.70 10/7/2021	NTU	
2110210929C Well ID JP Sample	Turbidity -3-689 Parameter	Event Date	0.70 10/7/2021 Result	NTU Units	
2110210929C Well ID JP Sample 2110070950A	Turbidity -3-689 Parameter Conductivity	Event Date	0.70 10/7/2021 Result	NTU Units μS/cm	
2110210929C Well ID JP Sample 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO	Event Date	0.70 10/7/2021 Result 1019 7.12	NTU Units μS/cm mg/L	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP	Event Date	0.70 10/7/2021 Result 1019 7.12 69	NTU Units μS/cm mg/L mV	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP pH	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55	NTU Units μS/cm mg/L mV NA	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99	NTU Units μS/cm mg/L mV NA °C	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01	Units μS/cm mg/L mV NA °C ft	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81	NTU Units μS/cm mg/L mV NA °C ft NTU	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55 21.05	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55 21.05 0.74	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55 21.05 0.74 1006	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55 21.05 0.74 1006 6.53	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
2110210929C Well ID JP Sample 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070950A 2110070953A 2110070953A 2110070953A 2110070953A 2110070953A 2110070956A 2110070956A 2110070956A	Turbidity -3-689 Parameter Conductivity DO ORP pH Temperature Transducer Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	0.70 10/7/2021 Result 1019 7.12 69 6.55 20.99 14.01 0.81 1013 6.84 67 6.55 21.05 0.74 1006 6.53 66	NTU Units μS/cm mg/L mV NA °C ft NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	

Well ID NA	ASA 10	Event Date	9/15/2021		
Sample	Parameter		Result	Units	
2109151340C	Conductivity		678	μS/cm	
2109151340C	DTW		110.58	ft	
2109151340C	pН		7.88	NA	
2109151340C	Temperature		24.9	°C	
2109151340C	Turbidity		1.90	NTU	
2109151415C	Conductivity		671	μS/cm	
2109151415C	DTW		111.36	ft	
2109151415C	pН		7.92	NA	
2109151415C	Temperature		25.1	°C	
2109151415C	Turbidity		1.66	NTU	
2109151427C	Conductivity		684	μS/cm	
2109151427C	DTW		111.50	ft	
2109151427C	pH		8.01	NA	
2109151427C	Temperature		25.8	°C	
2109151427C	Turbidity		1.30	NTU	
Well ID NA	ASA 3	Event Date	8/9/2021		
Sample	Parameter		Result	Units	
2108090940C	Conductivity		981	μS/cm	
2108090940C	DO		5.99	mg/L	
2108090940C	DTW		122.75	ft	
2108090940C	ORP		-31	mV	
2108090940C	pН		8.63	NA	
	pri				
2108090940C	Temperature		23.04	°C	
	=		23.04 1.66	°C NTU	
2108090940C	Temperature				
2108090940C 2108090940C	Temperature Turbidity		1.66	NTU	
2108090940C 2108090940C 2108090942C	Temperature Turbidity Conductivity		1.66 983	NTU μS/cm	
2108090940C 2108090940C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO		1.66 983 5.87	NTU μS/cm mg/L	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO DTW		1.66 983 5.87 125.10	NTU μS/cm mg/L ft	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO DTW ORP		1.66 983 5.87 125.10 -31	NTU μS/cm mg/L ft mV	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO DTW ORP pH		1.66 983 5.87 125.10 -31 8.65	NTU μS/cm mg/L ft mV NA	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature		1.66 983 5.87 125.10 -31 8.65 23.06	NTU μS/cm mg/L ft mV NA	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity		1.66 983 5.87 125.10 -31 8.65 23.06 0.90	NTU μS/cm mg/L ft mV NA °C NTU	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090944C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity		1.66 983 5.87 125.10 -31 8.65 23.06 0.90 984	NTU μS/cm mg/L ft mV NA °C NTU μS/cm	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090944C 2108090944C 2108090944C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO		1.66 983 5.87 125.10 -31 8.65 23.06 0.90 984 5.45	NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090944C 2108090944C 2108090944C 2108090944C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW		1.66 983 5.87 125.10 -31 8.65 23.06 0.90 984 5.45 125.10	NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft	
2108090940C 2108090940C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090942C 2108090944C 2108090944C 2108090944C 2108090944C 2108090944C	Temperature Turbidity Conductivity DO DTW ORP pH Temperature Turbidity Conductivity DO DTW ORP		1.66 983 5.87 125.10 -31 8.65 23.06 0.90 984 5.45 125.10 -30	NTU μS/cm mg/L ft mV NA °C NTU μS/cm mg/L ft mV	

Well ID NA	SA 5	Event Date	9/15/2021		
Sample	Parameter		Result	Units	
2109150900C	Conductivity		1059	μS/cm	
2109150900C	DTW		111.19	ft	
2109150900C	рН		8.13	NA	
2109150900C	Temperature		22.2	°C	
2109150900C	Turbidity		3.75	NTU	
2109150920C	Conductivity		1070	μS/cm	
2109150920C	DTW		111.81	ft	
2109150920C	pН		8.05	NA	
2109150920C	Temperature		22.0	°C	
2109150920C	Turbidity		3.01	NTU	
2109150929C	Conductivity		1072	μS/cm	
2109150929C	DTW		111.86	ft	
2109150929C	pН		7.99	NA	
2109150929C	Temperature		22.6	°C	
2109150929C	Turbidity		2.71	NTU	
Well ID PL	-10-484	Event Date	10/6/2021		
Sample	Parameter		Result	Units	
2110060905Y	Atmospheric Pressure		12.59	psia	
2110060905Y	Conductivity		1107	μS/cm	
2110060905Y	Formation Pressure		21.96	psia	
2110060905Y	pН		8.80	NA	
2110060905Y	Temperature		18.4	°C	
2110060905Y	Turbidity		2.60	NTU	
2110061045Y	Atmospheric Pressure		12.58	psia	
2110061045Y	Conductivity		1109	μS/cm	
2110061045Y	pН		8.78	NA	
2110061045Y	Temperature		18.4	°C	
2110061045Y	Turbidity		2.27	NTU	
Well ID PL	-10-592	Event Date	10/6/2021		
Sample	Parameter		Result	Units	
2110061351Y	Atmospheric Pressure		12.58	psia	
2110061351Y	Conductivity		1121	μS/cm	
2110061351Y	Formation Pressure		68.98	psia	
2110061351Y	pН		7.65	NA	
2110061351Y	Temperature		21.3	°C	
2110061351Y	Turbidity		1.73	NTU	
2110061457Y	Atmospheric Pressure		12.57	psia	
2110061457Y	Conductivity		1125	μS/cm	
	pН		7.58	NA	
2110061457Y	•				
	Temperature		21.3	°C	

Well ID P	L-11-470	Event Date	9/13/2021		
Sample	Parameter		Result	Units	
2109131100B	Conductivity		1159	μS/cm	
2109131100B	pH		8.76	NA	
2109131100B	Temperature		28.4	°C	
2109131100B	Turbidity		1.32	NTU	
2109131410B	Conductivity		1153	μS/cm	
2109131410B	pH		7.95	NA	
2109131410B	Temperature		23.8	°C	
2109131410B	Turbidity		1.00	NTU	
Well ID P	L-11-530	Event Date	9/13/2021		
Sample	Parameter		Result	Units	
2109131105B	Conductivity		1112	μS/cm	
2109131105B	pН		8.77	NA	
2109131105B	Temperature		27.5	°C	
2109131105B	Turbidity		0.79	NTU	
2109131455B	Conductivity		1168	μS/cm	
2109131455B	pH		7.79	NA	
2109131455B	Temperature		24.5	°C	
2109131455B	Turbidity		0.85	NTU	
Well ID P	L-11-710	Event Date	9/14/2021		
Sample	Parameter		Result	Units	
2109141330B	Conductivity		1146	μS/cm	
2109141330B 2109141330B	Conductivity pH		1146 8.46	μS/cm NA	
2109141330B	pH		8.46	NA	
2109141330B 2109141330B	pH Temperature		8.46 26.4	NA °C	
2109141330B 2109141330B 2109141330B	pH Temperature Turbidity		8.46 26.4 0.92	NA °C NTU μS/cm NA	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH Temperature		8.46 26.4 0.92 1216 7.97 25.5	NA °C NTU μS/cm NA °C	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH		8.46 26.4 0.92 1216 7.97	NA °C NTU μS/cm NA	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH Temperature	Event Date	8.46 26.4 0.92 1216 7.97 25.5	NA °C NTU μS/cm NA °C	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH Temperature Turbidity	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63	NA °C NTU μS/cm NA °C	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63	NA °C NTU μS/cm NA °C NTU	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B 2109141450B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result	NA °C NTU μS/cm NA °C NTU Units μS/cm NA	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B Well ID P Sample	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter Conductivity	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result	NA °C NTU μS/cm NA °C NTU Units	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B Well ID P Sample 2109141335B 2109141335B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter Conductivity pH	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result 1037 8.51	NA °C NTU μS/cm NA °C NTU Units μS/cm NA	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B Well ID P Sample 2109141335B 2109141335B 2109141335B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter Conductivity pH Temperature	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result 1037 8.51 24.0	NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B Well ID P Sample 2109141335B 2109141335B 2109141335B 2109141335B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter Conductivity pH Temperature Turbidity	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result 1037 8.51 24.0 1.07	NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU	
2109141330B 2109141330B 2109141330B 2109141450B 2109141450B 2109141450B Well ID P Sample 2109141335B 2109141335B 2109141335B 2109141335B 2109141335B	pH Temperature Turbidity Conductivity pH Temperature Turbidity L-11-820 Parameter Conductivity pH Temperature Turbidity Conductivity pH Temperature Turbidity Conductivity	Event Date	8.46 26.4 0.92 1216 7.97 25.5 0.63 9/14/2021 Result 1037 8.51 24.0 1.07 1046	NA °C NTU μS/cm NA °C NTU Units μS/cm NA °C NTU μS/cm	

Well ID PL	ı-11-980	Event Date	9/14/2021		
Sample	Parameter		Result	Units	
2109141340B	Conductivity		1002	μS/cm	
2109141340B	pН		8.75	NA	
2109141340B	Temperature		26.5	°C	
2109141340B	Turbidity		0.68	NTU	
2109141515B	Conductivity		1004	μS/cm	
2109141515B	pН		8.10	NA	
2109141515B	Temperature		24.0	°C	
2109141515B	Turbidity		0.57	NTU	
Well ID PL	J-12-570	Event Date	8/4/2021		
Sample	Parameter		Result	Units	
2108040930C	Conductivity		1100	μS/cm	
2108040930C	DO		5.80	mg/L	
2108040930C	DTW		484.10	ft	
2108040930C	ORP		6	mV	
2108040930C	pН		8.38	NA	
2108040930C	Temperature		21.61	°C	
2108040930C	Turbidity		1.19	NTU	
2108040932C	Conductivity		1102	μS/cm	
2108040932C	DO		5.77	mg/L	
2108040932C	ORP		7	mV	
2108040932C	pН		8.33	NA	
2108040932C	Temperature		21.61	°C	
2108040932C	Turbidity		1.16	NTU	
2108040933C	Conductivity		1105	μS/cm	
2108040933C	DO		5.81	mg/L	
2108040933C	DTW		484.21	ft	
2108040933C	ORP		7	mV	
2108040933C	pН		8.40	NA	
2108040933C	Temperature		21.62	°C	
2108040933C	Turbidity		1.15	NTU	

Well ID Pl	L-12-800	Event Date	8/3/2021		
Sample	Parameter		Result	Units	
2108041425C	Conductivity		1104	μS/cm	
2108041425C	DO		8.48	mg/L	
2108041425C	DTW		484.10	ft	
2108041425C	ORP		-61	mV	
2108041425C	pН		9.35	NA	
2108041425C	Temperature		22.27	°C	
2108041425C	Turbidity		1.80	NTU	
2108041427C	Conductivity		1101	μS/cm	
2108041427C	DO		8.39	mg/L	
2108041427C	ORP		-60	mV	
2108041427C	pН		9.26	NA	
2108041427C	Temperature		22.24	°C	
2108041427C	Turbidity		1.73	NTU	
2108041429C	Conductivity		1105	μS/cm	
2108041429C	DO		8.42	mg/L	
2108041429C	DTW		484.21	ft	
2108041429C	ORP		-59	mV	
2108041429C	pH		9.17	NA	
2108041429C	Temperature		22.26	°C	
2108041429C	Turbidity		1.79	NTU	
Well ID Pl	L-1-486	Event Date	10/14/2021		
Sample	Parameter		Result	Units	
2110141415C	Conductivity		992	μS/cm	
2110141415C	DO		6.80	mg/L	
2110141415C	DTW		485.13	ft	
2110141415C	ORP		161	mV	
2110141415C	pН		6.75	NA	
2110141415C	Temperature		21.66	°C	
2110141415C	Turbidity		0.52	NTU	
2110141418C	Conductivity		981	μS/cm	
2110141418C	DO		6.54	mg/L	
2110141418C	DTW		485.20	ft	
2110141418C	ORP		162	mV	
2110141418C	pН		6.78	NA	
2110141418C	Temperature		21.72	°C	
2110141418C	Turbidity		0.44	NTU	
2110141421C	Conductivity		978	μS/cm	
2110141421C	DO		6.28	mg/L	
2110141421C	DTW		485.20	ft	
2110141421C	ORP		162	mV	
2110141421C	pН		6.79	NA	
2110141421C	Temperature		21.74	°C	
2110141421C	Turbidity		0.43	NTU	

Well ID PL	-2-504	Event Date	9/14/2021		
Sample	Parameter		Result	Units	
2109140930A	Conductivity		1117	μS/cm	
2109140930A	DO		7.61	mg/L	
2109140930A	DTW		477.40	ft	
2109140930A	ORP		199	mV	
2109140930A	pН		5.24	NA	
2109140930A	Temperature		21.35	°C	
2109140930A	Turbidity		0.69	NTU	
2109140932A	Conductivity		1134	μS/cm	
2109140932A	DO		7.66	mg/L	
2109140932A	DTW		477.50	ft	
2109140932A	ORP		199	mV	
2109140932A	pН		5.81	NA	
2109140932A	Temperature		21.42	°C	
2109140932A	Turbidity		0.95	NTU	
2109140934A	Conductivity		1125	μS/cm	
2109140934A	DO		7.69	mg/L	
2109140934A	DTW		477.50	ft	
2109140934A	ORP		197	mV	
2109140934A	pН		5.77	NA	
2109140934A	Temperature		21.26	°C	
2109140934A	Turbidity		0.88	NTU	

Well ID PL	-4-464 Event	Date 9/14/2021		
Sample	Parameter	Result	Units	
2109141500A	Conductivity	1128	μS/cm	
2109141500A	DO	8.18	mg/L	
2109141500A	DTW	448.90	ft	
2109141500A	ORP	112	mV	
2109141500A	pН	6.56	NA	
2109141500A	Temperature	22.38	°C	
2109141500A	Turbidity	2.93	NTU	
2109141502A	Conductivity	1126	μS/cm	
2109141502A	DO	8.21	mg/L	
2109141502A	DTW	449.45	ft	
2109141502A	ORP	111	mV	
2109141502A	pН	7.02	NA	
2109141502A	Temperature	22.69	°C	
2109141502A	Turbidity	1.30	NTU	
2109141504A	Conductivity	1118	μS/cm	
2109141504A	DO	8.23	mg/L	
2109141504A	DTW	449.85	ft	
2109141504A	ORP	116	mV	
2109141504A	pН	7.21	NA	
2109141504A	Temperature	22.48	°C	
2109141504A	Turbidity	0.94	NTU	
Well ID PL	6-545 Event	Date 10/13/2021		
Sample	Parameter	Result	Units	
2110130940Y	Atmospheric Pressure	12.54	psia	
2110130940Y	Conductivity	1031	μS/cm	
2110130940Y	Formation Pressure	56.32	psia	
2110130940Y	pH	8.35	NA	
2110130940Y	Temperature	21.8	°C	
2110130940Y	Turbidity	2.40	NTU	
2110131040Y	Atmospheric Pressure	12.51	psia	
2110131040Y	Conductivity	1026	μS/cm	
	pН	8.50	NA	
2110131040Y				
2110131040Y 2110131040Y	Temperature	21.7	°C	

Well ID PL	-6-725	Event Date	10/12/2021		
Sample	Parameter		Result	Units	
2110121045Y	Atmospheric Pressure	;	12.44	psia	
2110121045Y	Conductivity		1013	μS/cm	
2110121045Y	Formation Pressure		134.45	psia	
2110121045Y	pН		7.86	NA	
2110121045Y	Temperature		20.7	°C	
2110121045Y	Turbidity		1.79	NTU	
2110121112Y	Atmospheric Pressure	;	12.42	psia	
2110121112Y	Conductivity		1002	μS/cm	
2110121112Y	pН		7.94	NA	
2110121112Y	Temperature		20.5	°C	
2110121112Y	Turbidity		1.33	NTU	
Well ID PL	-7-480	Event Date	8/10/2021		
Sample	Parameter		Result	Units	
2108100930Y	Atmospheric Pressure	;	12.63	psia	
2108100930Y	Conductivity		1043	μS/cm	
2108100930Y	Formation Pressure		14.32	psia	
2108100930Y	pН		8.23	NA	
2108100930Y	Temperature		23.6	°C	
2108100930Y	Turbidity		1.16	NTU	
2108101410Y	Conductivity		1038	μS/cm	
2108101410Y	pН		8.05	NA	
2108101410Y	Temperature		23.8	°C	
2108101410Y	Turbidity		1.43	NTU	
Well ID PL	-7-560	Event Date	8/5/2021		
Sample	Parameter		Result	Units	
2108051415Y	Atmospheric Pressure	;	12.80	psia	
2108051415Y	Conductivity		960	μS/cm	
210005141537	DTW		480.60	ft	
2108051415Y					
2108051415Y 2108051415Y	Formation Pressure		48.48	psia	
	Formation Pressure pH		48.48 7.88	psia NA	
2108051415Y					
2108051415Y 2108051415Y	pН		7.88	NA	
2108051415Y 2108051415Y 2108051415Y	pH Temperature		7.88 25.8	NA °C	
2108051415Y 2108051415Y 2108051415Y 2108051415Y	pH Temperature Turbidity		7.88 25.8 1.61	NA °C NTU	
2108051415Y 2108051415Y 2108051415Y 2108051415Y 2108051458Y	pH Temperature Turbidity Conductivity		7.88 25.8 1.61 1076	NA °C NTU μS/cm	
2108051415Y 2108051415Y 2108051415Y 2108051415Y 2108051458Y 2108051458Y	pH Temperature Turbidity Conductivity DTW		7.88 25.8 1.61 1076 480.71	NA °C NTU μS/cm ft	

Well ID PL	-8-455 Event Date	9/2/2021		
Sample	Parameter	Result	Units	
2109021450Y	Atmospheric Pressure	12.58	psia	
2109021450Y	Conductivity	806	μS/cm	
2109021450Y	DTW	438.17	ft	
2109021450Y	Formation Pressure	22.94	psia	
2109021450Y	рН	7.84	NA	
2109021450Y	Temperature	22.1	$^{\circ}\mathrm{C}$	
2109021450Y	Turbidity	5.36	NTU	
2109021557Y	Atmospheric Pressure	12.62	psia	
2109021557Y	Conductivity	821	μS/cm	
2109021557Y	DTW	438.30	ft	
2109021557Y	рН	7.99	NA	
2109021557Y	Temperature	22.5	$^{\circ}\mathrm{C}$	
2109021557Y	Turbidity	2.87	NTU	
Well ID PL	2-8-605 Event Date	9/2/2021		
Sample	Parameter	Result	Units	
2109021035Y	A + 1 D	12.60	psia	
	Atmospheric Pressure	12.60	psia	
2109021035Y	Conductivity	901	psia μS/cm	
2109021035Y 2109021035Y	_		1	
	Conductivity	901	μS/cm	
2109021035Y	Conductivity DTW	901 438.00	μS/cm ft	
2109021035Y 2109021035Y	Conductivity DTW Formation Pressure	901 438.00 87.84	μS/cm ft psia	
2109021035Y 2109021035Y 2109021035Y	Conductivity DTW Formation Pressure pH	901 438.00 87.84 7.93	μS/cm ft psia NA	
2109021035Y 2109021035Y 2109021035Y 2109021035Y	Conductivity DTW Formation Pressure pH Temperature	901 438.00 87.84 7.93 20.9	μS/cm ft psia NA °C	
2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021035Y	Conductivity DTW Formation Pressure pH Temperature Turbidity	901 438.00 87.84 7.93 20.9 6.19	μS/cm ft psia NA °C NTU	
2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021335Y	Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	901 438.00 87.84 7.93 20.9 6.19	μS/cm ft psia NA °C NTU psia	
2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021335Y 2109021335Y	Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	901 438.00 87.84 7.93 20.9 6.19	μS/cm ft psia NA °C NTU psia μS/cm	
2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021035Y 2109021335Y 2109021335Y 2109021335Y	Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	901 438.00 87.84 7.93 20.9 6.19 12.62 889 438.17	μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID ST	-4-481	Event Date	9/2/2021		
Sample	Parameter		Result	Units	
2109020955B	Conductivity		938.59	μS/cm	
2109020955B	DO		6.18	mg/L	
2109020955B	ORP		409.5	mV	
2109020955B	pH		7.18	NA	
2109020955B	Temperature		21.27	°C	
2109020955B	Turbidity		0.36	NTU	
2109020956B	Conductivity		938.65	μS/cm	
2109020956B	DO		6.18	mg/L	
2109020956B	ORP		409.7	mV	
2109020956B	pН		7.20	NA	
2109020956B	Temperature		21.31	°C	
2109020956B	Turbidity		0.41	NTU	
2109020957B	Conductivity		938.61	μS/cm	
2109020957B	DO		6.19	mg/L	
2109020957B	ORP		409.5	mV	
2109020957B	pH		7.19	NA	
21000202555	Temperature		21.33	°C	
2109020957B	Temperature		21.55		
2109020957B 2109020957B	Turbidity		0.39	NTU	
2109020957B		Event Date		NTU	
2109020957B Well ID ST	Turbidity	Event Date	0.39	NTU Units	
2109020957B Well ID ST Sample	Turbidity -4-589	Event Date	0.39 8/2/2021		
2109020957B Vell ID ST Sample 2108020925B	Turbidity -4-589 Parameter	Event Date	0.39 8/2/2021 Result	Units	
2109020957B Vell ID ST Sample 2108020925B 2108020925B	Turbidity -4-589 Parameter Conductivity	Event Date	0.39 8/2/2021 Result	Units μS/cm	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B	Turbidity 7-4-589 Parameter Conductivity DTW	Event Date	0.39 8/2/2021 Result 997 456.95	Units μS/cm ft	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B	Turbidity 7-4-589 Parameter Conductivity DTW pH	Event Date	0.39 8/2/2021 Result 997 456.95 6.95	Units μS/cm ft NA	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7	Units μS/cm ft NA °C	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25	Units μS/cm ft NA °C NTU	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990	Units μS/cm ft NA °C NTU μS/cm	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99	Units μS/cm ft NA °C NTU μS/cm ft	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99 6.98	Units μS/cm ft NA °C NTU μS/cm ft NA	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99 6.98 21.9	Units μS/cm ft NA °C NTU μS/cm ft NA	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99 6.98 21.9 1.16	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B 2108020931B 2108020931B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99 6.98 21.9 1.16 983	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm	
2109020957B Well ID ST Sample 2108020925B 2108020925B 2108020925B 2108020925B 2108020925B 2108020928B 2108020928B 2108020928B 2108020928B 2108020928B	Turbidity 7-4-589 Parameter Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity DTW pH Temperature Turbidity Conductivity	Event Date	0.39 8/2/2021 Result 997 456.95 6.95 21.7 1.25 990 456.99 6.98 21.9 1.16 983 456.99	Units μS/cm ft NA °C NTU μS/cm ft NA °C NTU μS/cm ft	

Well ID ST	-4-690 Event I	Date 9/2/2021		
Sample	Parameter	Result	Units	
2109021455B	Conductivity	808.16	μS/cm	
2109021455B	DO	3.68	mg/L	
2109021455B	ORP	306	mV	
2109021455B	pН	7.99	NA	
2109021455B	Temperature	25.92	°C	
2109021455B	Turbidity	2.64	NTU	
2109021456B	Conductivity	808.17	μS/cm	
2109021456B	DO	3.62	mg/L	
2109021456B	ORP	306.6	mV	
2109021456B	pH	7.97	NA	
2109021456B	Temperature	26.03	°C	
2109021456B	Turbidity	1.94	NTU	
2109021457B	Conductivity	808.17	μS/cm	
2109021457B	DO	3.70	mg/L	
2109021457B	ORP	306.7	mV	
2109021457B	pH	7.97	NA	
2109021457B	Temperature	26.10	°C	
2109021457B	Turbidity	1.83	NTU	
Well ID ST	-5-1175 Event I	Date 8/4/2021		
Sample	Parameter	Result	Units	
Sample 2108041440Y	Parameter Atmospheric Pressure	Result	Units psia	
-				
2108041440Y	Atmospheric Pressure	12.64	psia	
2108041440Y 2108041440Y	Atmospheric Pressure Conductivity	12.64 1549	psia μS/cm	
2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW	12.64 1549 472.45	psia μS/cm ft	
2108041440Y 2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW Formation Pressure	12.64 1549 472.45 339.36	psia μS/cm ft psia	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.64 1549 472.45 339.36 8.27	psia μS/cm ft psia NA	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.64 1549 472.45 339.36 8.27 26.0	psia μS/cm ft psia NA °C	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	12.64 1549 472.45 339.36 8.27 26.0 1.18	psia μS/cm ft psia NA °C NTU	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	12.64 1549 472.45 339.36 8.27 26.0 1.18	psia μS/cm ft psia NA °C NTU psia	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108050945Y 2108050945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.64 1549 472.45 339.36 8.27 26.0 1.18	psia μS/cm ft psia NA °C NTU psia μS/cm	
2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108041440Y 2108050945Y 2108050945Y 2108050945Y	Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.64 1549 472.45 339.36 8.27 26.0 1.18 12.69 1743 472.56	psia μS/cm ft psia NA °C NTU psia μS/cm ft	

Well ID ST	-5-485	Event Date	8/4/2021		
Sample	Parameter		Result	Units	
2108041020Y	Atmospheric Pressure	e	12.73	psia	
2108041020Y	Conductivity		980	μS/cm	
2108041020Y	DTW		472.36	ft	
2108041020Y	Formation Pressure		40.81	psia	
2108041020Y	pН		8.15	NA	
2108041020Y	Temperature		23.6	°C	
2108041020Y	Turbidity		2.12	NTU	
2108041315Y	Atmospheric Pressure	e	12.70	psia	
2108041315Y	Conductivity		992	μS/cm	
2108041315Y	DTW		472.45	ft	
2108041315Y	pН		8.23	NA	
2108041315Y	Temperature		24.2	°C	
2108041315Y	Turbidity		1.50	NTU	
Well ID ST	-5-655	Event Date	8/2/2021		
Sample	Parameter		Result	Units	
2108020950Y	Conductivity		872	μS/cm	
2108020950Y	DTW		471.90	ft	
2108020950Y	Formation Pressure		114.43	psia	
2108020950Y	pН		8.09	NA	
2108020950Y	Temperature		24.6	°C	
2108020950Y	Turbidity		0.71	NTU	
2108021405Y	Conductivity		877	μS/cm	
2108021405Y	DTW		471.99	ft	
2108021405Y	pН		7.79	NA	
2108021405Y	Temperature		25.3	°C	
2108021405Y	Turbidity		0.69	NTU	
Well ID ST	-5-815	Event Date	8/3/2021		
Sample	Parameter		Result	Units	
2108031430Y	Conductivity		799	μS/cm	
2108031430Y	Formation Pressure		183.48	psia	
2108031430Y	pН		8.38	NA	
2108031430Y	Temperature		26.8	°C	
2108031430Y	Turbidity		1.07	NTU	
210004005437	Conductivity		810	μS/cm	
2108040854Y			8.23	NA	
2108040854Y 2108040854Y	pН		0.23		
	pH Temperature		24.4 0.93	°C	

Well ID ST	-5-985	Event Date	8/2/2021		
Sample	Parameter		Result	Units	
2108030810Y	Conductivity		1323	μS/cm	
2108030810Y	DTW		471.99	ft	
2108030810Y	Formation Pressure		257.12	psia	
2108030810Y	pH		8.40	NA	
2108030810Y	Temperature		23.2	°C	
2108030810Y	Turbidity		1.57	NTU	
2108031040Y	Conductivity		1463	μS/cm	
2108031040Y	DTW		472.20	ft	
2108031040Y	pH		7.64	NA	
2108031040Y	Temperature		25.7	°C	
2108031040Y	Turbidity		1.07	NTU	
Well ID ST	-6-528	Event Date	9/15/2021		
Sample	Parameter		Result	Units	
2109151055B	Conductivity		1147	μS/cm	
2109151055B	pH		7.97	NA	
2109151055B	Temperature		26.7	°C	
2109151055B	Turbidity		1.39	NTU	
2109151410B	Conductivity		1168	$\mu S/cm$	
2109151410B	pН		7.55	NA	
2109151410B	Temperature		24.0	°C	
2109151410B	Turbidity		1.24	NTU	
Well ID ST	-6-568	Event Date	9/15/2021		
Sample	Parameter		Result	Units	
2109151100B	Conductivity		1118	μS/cm	
2109151100B	pН		8.53	NA	
2109151100B	Temperature		25.0	°C	
2109151100B	Turbidity		0.90	NTU	
2109151430B	Conductivity		1107	μS/cm	
2109151430B	pН		7.53	NA	
2100151420D	Temperature		24.3	°C	
2109151430B	1 omporature		25	=	

Well ID ST	-6-678	Event Date	9/16/2021		
Sample	Parameter		Result	Units	
2109161250B	Conductivity		1070	μS/cm	
2109161250B	pH		8.48	NA	
2109161250B	Temperature		24.2	°C	
2109161250B	Turbidity		0.99	NTU	
2109161515B	Conductivity		1089	μS/cm	
2109161515B	pH		8.56	NA	
2109161515B	Temperature		23.1	°C	
2109161515B	Turbidity		2.28	NTU	
Well ID ST	-6-824	Event Date	9/16/2021		
Sample	Parameter		Result	Units	
2109161255B	Conductivity		969	μS/cm	
2109161255B	pH		8.08	NA	
2109161255B	Temperature		23.8	°C	
2109161255B	Turbidity		1.88	NTU	
2109161450B	Conductivity		1027	μS/cm	
2109161450B	pH		8.10	NA	
2109161450B	Temperature		24.1	°C	
2109161450B	Turbidity		0.69	NTU	
Well ID ST	-6-970	Event Date	9/16/2021		
Sample	Parameter		Result	Units	
2109161305B	Conductivity		1052	μS/cm	
2109161305B	pH		8.31	NA	
2109161305B	Temperature		24.1	°C	
2109161305B	Turbidity		1.87	NTU	
2109161501B	Conductivity		1091	μS/cm	
2109161501B	pH		7.90	NA	
2109161501B	Temperature		23.1	°C	
2109161501B	Turbidity		1.23	NTU	
Well ID ST	-7-453	Event Date	10/4/2021		
Sample	Parameter		Result	Units	
2110041410B	Conductivity		1247	μS/cm	
2110041410B	pH		7.53	NA	
2110041410B	Temperature		25.3	°C	
2110041410B	Turbidity		1.68	NTU	
2110041540B	Conductivity		1272	μS/cm	
2110041540B	pH		7.20	NA	
2110041540B	Temperature		22.6	°C	
2110041540B	Turbidity		0.77	NTU	

Well ID ST	-7-544	Event Date	10/4/2021		
Sample	Parameter		Result	Units	
2110041425B	Conductivity		1224	μS/cm	
2110041425B	pН		7.94	NA	
2110041425B	Temperature		25.2	°C	
2110041425B	Turbidity		1.08	NTU	
2110041620B	Conductivity		1261	μS/cm	
2110041620B	pH		7.51	NA	
2110041620B	Temperature		22.6	°C	
2110041620B	Turbidity		0.54	NTU	
Well ID ST	-7-779	Event Date	10/6/2021		
Sample	Parameter		Result	Units	
2110061325B	Conductivity		1102	μS/cm	
2110061325B	pН		8.36	NA	
2110061325B	Temperature		27.8	°C	
2110061325B	Turbidity		0.90	NTU	
2110061416B	Conductivity		1111	μS/cm	
2110061416B	pН		8.48	NA	
2110061416B	Temperature		26.4	°C	
2110061416B	Turbidity		0.62	NTU	
Well ID ST	-7-970	Event Date	10/6/2021		
Sample	Parameter		Result	Units	
2110061340B	Conductivity		982	μS/cm	
2110061340B	pH		8.26	NA	
2110061340B	Temperature		25.3	$^{\circ}\mathrm{C}$	
2110061340B	Turbidity		0.62	NTU	
2110061526B	Conductivity		1002	μS/cm	
2110061526B	pН		8.20	NA	
2110061526B	Temperature		24.4	$^{\circ}\mathrm{C}$	
2110061526B	Turbidity		0.31	NTU	

Well ID W	B-14-520 Event Date	8/23/2021		
Sample	Parameter	Result	Units	
2108230955Y	Atmospheric Pressure	12.56	psia	
2108230955Y	Conductivity	726	μS/cm	
2108230955Y	DTW	306.72	ft	
2108230955Y	Formation Pressure	109.00	psia	
2108230955Y	pН	7.23	NA	
2108230955Y	Temperature	26.4	°C	
2108230955Y	Turbidity	4.77	NTU	
2108231108Y	Atmospheric Pressure	12.58	psia	
2108231108Y	Conductivity	751	μS/cm	
2108231108Y	DTW	307.25	ft	
2108231108Y	рН	7.29	NA	
2108231108Y	Temperature	26.7	°C	
2108231108Y	Turbidity	1.76	NTU	
Well ID W	B-5-250 Event Date	8/19/2021		
Well ID W	B-5-250 Event Date Parameter	8/19/2021 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2108191435Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity	12.50 1142	psia μS/cm	
Sample 2108191435Y 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity DTW	12.50 1142 219.50	psia μS/cm ft	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	Result 12.50 1142 219.50 31.58	psia μS/cm ft psia	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	Result 12.50 1142 219.50 31.58 7.87	psia μS/cm ft psia NA	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	Result 12.50 1142 219.50 31.58 7.87 25.2	psia μS/cm ft psia NA °C	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.50 1142 219.50 31.58 7.87 25.2 67.5	psia μS/cm ft psia NA °C NTU	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.50 1142 219.50 31.58 7.87 25.2 67.5	psia μS/cm ft psia NA °C NTU psia	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	Result 12.50 1142 219.50 31.58 7.87 25.2 67.5	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191555Y 2108191555Y 2108191555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	Result 12.50 1142 219.50 31.58 7.87 25.2 67.5 12.52 1238 219.63	psia μS/cm ft psia NA °C NTU psia μS/cm ft	
Sample 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191435Y 2108191555Y 2108191555Y 2108191555Y 2108191555Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH	Result 12.50 1142 219.50 31.58 7.87 25.2 67.5 12.52 1238 219.63 7.05	psia μS/cm ft psia NA °C NTU psia μS/cm ft NA	

Well ID W	B-5-280 Event Date	8/18/2021		
Sample	Parameter	Result	Units	
2108181525Y	Atmospheric Pressure	12.58	psia	
2108181525Y	Conductivity	1258	μS/cm	
2108181525Y	DTW	219.30	ft	
2108181525Y	Formation Pressure	44.85	psia	
2108181525Y	pH	7.88	NA	
2108181525Y	Temperature	25.0	°C	
2108181525Y	Turbidity	134	NTU	
2108191335Y	Atmospheric Pressure	12.52	psia	
2108191335Y	Conductivity	1318	μS/cm	
2108191335Y	DTW	219.50	ft	
2108191335Y	рН	7.62	NA	
2108191335Y	Temperature	24.7	°C	
2108191335Y	Turbidity	196	NTU	
Well ID W	B-5-345 Event Date	8/17/2021		
Well ID WI Sample	B-5-345 Event Date Parameter	8/17/2021 Result	Units	
			Units psia	
Sample	Parameter	Result		
Sample 2108171525Y	Parameter Atmospheric Pressure	Result	psia	
Sample 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity	12.58 1219	psia μS/cm	
Sample 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW	12.58 1219 219.05	psia μS/cm ft	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure	12.58 1219 219.05 76.60	psia μS/cm ft psia	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH	12.58 1219 219.05 76.60 7.36	psia μS/cm ft psia NA	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature	12.58 1219 219.05 76.60 7.36 24.9	psia μS/cm ft psia NA °C	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity	Result 12.58 1219 219.05 76.60 7.36 24.9 157	psia μS/cm ft psia NA °C NTU	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure	Result 12.58 1219 219.05 76.60 7.36 24.9 157	psia μS/cm ft psia NA °C NTU psia	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108181015Y 2108181015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity	12.58 1219 219.05 76.60 7.36 24.9 157 12.56 1320	psia μS/cm ft psia NA °C NTU psia μS/cm	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108181015Y 2108181015Y 2108181015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW	12.58 1219 219.05 76.60 7.36 24.9 157 12.56 1320 219.30	psia μS/cm ft psia NA °C NTU psia μS/cm ft	
Sample 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108171525Y 2108181015Y 2108181015Y 2108181015Y 2108181015Y	Parameter Atmospheric Pressure Conductivity DTW Formation Pressure pH Temperature Turbidity Atmospheric Pressure Conductivity DTW pH	Result 12.58 1219 219.05 76.60 7.36 24.9 157 12.56 1320 219.30 7.07	psia μS/cm ft psia NA °C NTU psia μS/cm ft NA	

Well ID	WW-1-452	Event Date	9/1/2021		
Sample	Parameter		Result	Units	
2109011455	5B Conductivity		1107	μS/cm	
2109011455	5B DO		5.96	mg/L	
2109011455	5B ORP		-42	mV	
2109011455	5B pH		8.83	NA	
2109011455	5B Temperature		23.13	°C	
2109011455	5B Turbidity		0.34	NTU	
2109011456	6B Conductivity		1105	μS/cm	
2109011456	6B DO		6.43	mg/L	
2109011456	6B ORP		-42	mV	
2109011456	6B pH		8.84	NA	
2109011456	6B Temperature		22.98	°C	
2109011456	6B Turbidity		0.37	NTU	
2109011457	7B Conductivity		1105	$\mu S/cm$	
2109011457	7B DO		5.82	mg/L	
2109011457	7B ORP		-42	mV	
2109011457	7В рН		8.84	NA	
2109011457	7B Temperature		23.08	°C	
2109011457	7B Turbidity		0.41	NTU	
2109091410	0B Conductivity		1093	$\mu S/cm$	
2109091410	OB DO		6.11	mg/L	
2109091410	OB DTW		422.05	ft	
2109091410	OB ORP		-38	mV	
2109091410	OB pH		8.69	NA	
2109091410	OB Temperature		22.74	°C	
2109091410	0B Turbidity		0.49	NTU	
2109091413	3B Conductivity		1089	μS/cm	
2109091413	3B DO		5.82	mg/L	
2109091413	3B DTW		422.17	ft	
2109091413	3B ORP		-36	mV	
2109091413	3В рН		8.64	NA	
2109091413	•		22.87	°C	
2109091413	3B Turbidity		0.48	NTU	
2109091416	•		1080	μS/cm	
2109091416			5.50	mg/L	
2109091416			422.17	ft	
2109091416	6B ORP		-33	mV	
2109091416	6B pH		8.59	NA	
2109091416	=		23.00	°C	
2109091416	6B Turbidity		0.41	NTU	

Well ID W	W-2-489	Event Date	9/8/2021		
Sample	Parameter		Result	Units	
2109080945B	Conductivity		944	μS/cm	
2109080945B	DO		4.96	mg/L	
2109080945B	ORP		26	mV	
2109080945B	рН		8.85	NA	
2109080945B	Temperature		22.22	°C	
2109080945B	Turbidity		5.97	NTU	
2109080948B	Conductivity		955	μS/cm	
2109080948B	DO		4.74	mg/L	
2109080948B	ORP		26	mV	
2109080948B	pН		8.87	NA	
2109080948B	Temperature		22.30	°C	
2109080948B	Turbidity		5.27	NTU	
2109080951B	Conductivity		962	μS/cm	
2109080951B	DO		4.46	mg/L	
2109080951B	ORP		28	mV	
2109080951B	pН		8.87	NA	
2109080951B	Temperature		22.36	°C	
	Tr. 1 1 114			NTU	
2109080951B	Turbidity		4.81	NIU	
	W-2-664	Event Date	9/8/2021	NIU	
	-	Event Date		Units	
Well ID W	W-2-664	Event Date	9/8/2021		
Well ID W Sample	W-2-664 Parameter	Event Date	9/8/2021 Result	Units	
Well ID W Sample 2109081415B	W-2-664 Parameter Conductivity	Event Date	9/8/2021 Result	Units μS/cm	
Well ID W Sample 2109081415B 2109081415B	W-2-664 Parameter Conductivity DO	Event Date	9/8/2021 Result	Units μS/cm mg/L	
Well ID W Sample 2109081415B 2109081415B 2109081415B	Parameter Conductivity DO ORP	Event Date	9/8/2021 Result 927 5.13 -28	Units μS/cm mg/L mV	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B	Parameter Conductivity DO ORP pH	Event Date	9/8/2021 Result 927 5.13 -28 9.13	Units μS/cm mg/L mV NA	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B	Parameter Conductivity DO ORP pH Temperature	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95	Units μS/cm mg/L mV NA °C	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B	Parameter Conductivity DO ORP pH Temperature Turbidity	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27	Units μS/cm mg/L mV NA °C NTU	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926	Units μS/cm mg/L mV NA °C NTU μS/cm	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B 2109081418B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10 23.07	Units µS/cm mg/L mV NA °C NTU µS/cm mg/L mV NA	
Well ID Well I	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Turbidity	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10 23.07 1.17	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C	
Well ID W Sample 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081415B 2109081418B 2109081418B 2109081418B 2109081418B 2109081418B 2109081418B	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10 23.07 1.17 919	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU	
Well ID Well I	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10 23.07 1.17 919 4.72	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	
Well ID Well I	Parameter Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP pH Temperature Turbidity Conductivity DO ORP	Event Date	9/8/2021 Result 927 5.13 -28 9.13 22.95 1.27 926 4.94 -29 9.10 23.07 1.17 919 4.72 -29	Units μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L mV NA °C NTU μS/cm mg/L	

Well ID W	W-3-469 Event Date	9/1/2021		
Sample	Parameter	Result	Units	
2109011345Y	Atmospheric Pressure	12.53	psia	
2109011345Y	Conductivity	1060	μS/cm	
2109011345Y	DTW	408.96	ft	
2109011345Y	Formation Pressure	39.19	psia	
2109011345Y	pН	7.64	NA	
2109011345Y	Temperature	20.7	°C	
2109011345Y	Turbidity	2.48	NTU	
2109011417Y	Atmospheric Pressure	12.51	psia	
2109011417Y	Conductivity	1051	μS/cm	
2109011417Y	DTW	409.12	ft	
2109011417Y	рН	7.59	NA	
2109011417Y	Temperature	20.9	°C	
2109011417Y	Turbidity	1.59	NTU	
2109091425Y	Atmospheric Pressure	12.49	psia	
2109091425Y	Conductivity	1084	μS/cm	
2109091425Y	DTW	409.35	ft	
2109091425Y	Formation Pressure	39.27	psia	
2109091425Y	рН	7.55	NA	
2109091425Y	Temperature	21.0	°C	
2109091425Y	Turbidity	2.97	NTU	
2109091527Y	Atmospheric Pressure	12.58	psia	
2109091527Y	Conductivity	1062	μS/cm	
2109091527Y	DTW	409.50	ft	
2109091527Y	pH	7.43	NA	
2109091527Y	Temperature	21.4	°C	
2109091527Y	Turbidity	2.10	NTU	

Well ID WV	W-3-569 Event Dat	e 9/1/2021		
Sample	Parameter	Result	Units	
2109010845Y	Atmospheric Pressure	12.54	psia	
2109010845Y	Conductivity	1049	μS/cm	
2109010845Y	DTW	408.80	ft	
2109010845Y	Formation Pressure	82.48	psia	
2109010845Y	pН	8.15	NA	
2109010845Y	Temperature	19.7	°C	
2109010845Y	Turbidity	4.04	NTU	
2109010950Y	Atmospheric Pressure	12.52	psia	
2109010950Y	Conductivity	1037	μS/cm	
2109010950Y	DTW	408.96	ft	
2109010950Y	pH	8.03	NA	
2109010950Y	Temperature	19.6	°C	
2109010950Y	Turbidity	1.72	NTU	
2109071530Y	Conductivity	1025	μS/cm	
2109071530Y	DTW	409.12	ft	
2109071530Y	Formation Pressure	82.48	psia	
2109071530Y	pН	7.91	NA	
2109071530Y	Temperature	23.5	°C	
2109071530Y	Turbidity	0.38	NTU	
2109071558Y	Conductivity	1025	μS/cm	
2109071558Y	DTW	409.35	ft	
2109071558Y	pН	7.93	NA	
2109071558Y	Temperature	23.3	°C	
2109071558Y	Turbidity	0.41	NTU	
Well ID WV	W-5-459 Event Dat	e 10/19/2021		
Sample	Parameter	Result	Units	
2110191045B	Conductivity	1079	μS/cm	
2110191045B	рH	7.88	NA	
2110191045B	Temperature	21.8	°C	
2110191045B	Turbidity	0.39	NTU	
2110191300B	Conductivity	1060	μS/cm	
2110191300B	pН	7.90	NA	
2110191300B	Temperature	22.2	°C	
	Turbidity	0.40	NTU	

Well ID V	VW-5-579	Event Date	10/19/2021		
Sample	Parameter		Result	Units	
2110191100B	Conductivity		1031	μS/cm	
2110191100B	pН		7.94	NA	
2110191100B	Temperature		21.9	°C	
2110191100B	Turbidity		1.09	NTU	
2110191420B	Conductivity		1035	μS/cm	
2110191420B	pН		7.96	NA	
2110191420B	Temperature		22.5	°C	
2110191420B	Turbidity		0.37	NTU	
Well ID V	VW-5-809	Event Date	10/20/2021		
Sample	Parameter		Result	Units	
2110201025B	Conductivity		1001	μS/cm	
2110201025B	pН		8.61	NA	
2110201025B	Temperature		20.9	°C	
2110201025B	Turbidity		0.84	NTU	
2110201410B	Conductivity		1007	μS/cm	
2110201410B	pH		8.55	NA	
2110201410B	Temperature		20.9	°C	
2110201410B	Turbidity		0.90	NTU	
Well ID V	VW-5-909	Event Date	10/20/2021		
Sample	Parameter		Result	Units	
2110201030B	Conductivity		1313	μS/cm	
2110201030B	pН		8.71	NA	
2110201030B	Temperature	20.9		°C	
2110201030B	Turbidity		0.81	NTU	
2110201418B	Conductivity		1310	μS/cm	
2110201418B	pН		8.69	•	
2110201418B	Temperature		20.8	°C	
2110201418B	Turbidity		0.86	NTU	

Appendix A.2 Monitor Well Analytical Data

Detections for Monitoring Well Sampling Events in this Reporting Period

Analytical Results for Sampling Events at 200-H-225

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/12/2021	8260	2108121000Y	Dichlorofluoromethane (CFC 21)	1	ug/L	1	0.2		
8/12/2021	8260	2108121000Y	Tetrahydrofuran (THF)	8	ug/L	5	1.7		
8/12/2021	8260	2108121000Y	Trichlorofluoromethane (CFC 11)	0.92	ug/L	1	0.24		J
8/12/2021	8260	2108121000Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.66	ug/L	1	0.2		J
8/12/2021	8260	2108121000Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.75	ug/L	1	0.2		J
8/12/2021	607	2108121001Y	Bromacil	0.023	μg/L	0.0094	0.0047	109	
8/12/2021	METALS	2108121035Y	Sodium, Total	33.9	mg/L	1	0.2		
8/12/2021	METALS	2108121035Y	Zinc, Total	0.046	mg/L	0.02	0.003		
8/12/2021	METALS	2108121035Y	Strontium, Total	2.18	mg/L	0.1	0.002		
8/12/2021	METALS	2108121035Y	Potassium, Total	2.2	mg/L	2	0.4		
8/12/2021	METALS	2108121035Y	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/12/2021	METALS	2108121035Y	Magnesium, Total	68	mg/L	1	0.03		
8/12/2021	METALS	2108121035Y	Barium, Total	0.026	mg/L	0.02	0.003		
8/12/2021	METALS	2108121035Y	Calcium, Total	141	mg/L	1	0.3		
8/12/2021	METALS	2108121035Y	Thallium, Total	0.00007	mg/L	0.001	0.00004		J
8/12/2021	METALS	2108121035Y	Boron, Total	0.06	mg/L	0.2	0.02		J
8/12/2021	METALS	2108121035Y	Manganese, Total	0.01	mg/L	0.01	0.004		
8/12/2021	ANIONS	2108121036Y	Chloride	35.6	mg/L	2	0.5		
8/12/2021	ANIONS	2108121036Y	Fluoride, undistilled	1.3	mg/L	0.1	0.01		
8/12/2021	ANIONS	2108121036Y	Alkalinity, Total as CaCO3	277	mg/L	2	1.8		
8/12/2021	ANIONS	2108121036Y	Sulfate	370	mg/L	10	2		
8/12/2021	6850	2108121037Y	Perchlorate	0.13	ug/L	0.2	0.06		J

Analytical Results for Sampling Events at 200-H-331

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/11/2021	METALS	2108111005Y	Manganese, Total	0.028	mg/L	0.01	0.004		
8/11/2021	METALS	2108111005Y	Molybdenum, Total	0.003	mg/L	0.025	0.003		J
8/11/2021	METALS	2108111005Y	Zinc, Total	2.62	mg/L	0.02	0.003		QD
8/11/2021	METALS	2108111005Y	Strontium, Total	13.9	mg/L	1	0.02		
8/11/2021	METALS	2108111005Y	Sodium, Total	37.3	mg/L	1	0.2		
8/11/2021	METALS	2108111005Y	Nickel, Total	0.008	mg/L	0.04	0.003		J EB
8/11/2021	METALS	2108111005Y	Iron, Total	0.22	mg/L	0.1	0.07		
8/11/2021	METALS	2108111005Y	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
8/11/2021	METALS	2108111005Y	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
8/11/2021	METALS	2108111005Y	Calcium, Total	401	mg/L	10	3		
8/11/2021	METALS	2108111005Y	Boron, Total	0.12	mg/L	0.2	0.02		J
8/11/2021	METALS	2108111005Y	Barium, Total	0.016	mg/L	0.02	0.003		J
8/11/2021	METALS	2108111005Y	Potassium, Total	3.2	mg/L	2	0.4		
8/11/2021	METALS	2108111005Y	Magnesium, Total	138	mg/L	1	0.03		
8/11/2021	METALS	2108111006Y	Potassium, Total	2.7	mg/L	2	0.4		
8/11/2021	METALS	2108111006Y	Zinc, Total	1.27	mg/L	0.02	0.003		QD
8/11/2021	METALS	2108111006Y	Sodium, Total	35	mg/L	1	0.2		
8/11/2021	METALS	2108111006Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
8/11/2021	METALS	2108111006Y	Manganese, Total	0.019	mg/L	0.01	0.004		
8/11/2021	METALS	2108111006Y	Iron, Total	0.12	mg/L	0.1	0.07		
8/11/2021	METALS	2108111006Y	Cobalt, Total	0.001	mg/L	0.05	0.0009		J
8/11/2021	METALS	2108111006Y	Calcium, Total	404	mg/L	10	3		
8/11/2021	METALS	2108111006Y	Boron, Total	0.1	mg/L	0.2	0.02		J
8/11/2021	METALS	2108111006Y	Barium, Total	0.013	mg/L	0.02	0.003		J
8/11/2021	METALS	2108111006Y	Magnesium, Total	138	mg/L	1	0.03		
8/11/2021	METALS	2108111006Y	Strontium, Total	13.9	mg/L	1	0.02		

Analytical Results for Sampling Events at 200-H-433

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/11/2021	8260	2108111510Y	2-Propanol	21	ug/L	50	3.4		J
8/11/2021	8260	2108111510Y	Silane, fluorotrimethyl-	19	ug/L	NA	NA		TIC
8/11/2021	8260	2108111510Y	Silane, methoxytrimethyl-	5.6	ug/L	NA	NA		TIC
8/11/2021	METALS	2108111535Y	Barium, Total	0.01	mg/L	0.02	0.003		J
8/11/2021	METALS	2108111535Y	Zinc, Total	0.051	mg/L	0.02	0.003		
8/11/2021	METALS	2108111535Y	Strontium, Total	14.4	mg/L	1	0.02		
8/11/2021	METALS	2108111535Y	Sodium, Total	32.8	mg/L	1	0.2		
8/11/2021	METALS	2108111535Y	Potassium, Total	2.3	mg/L	2	0.4		
8/11/2021	METALS	2108111535Y	Manganese, Total	0.011	mg/L	0.01	0.004		
8/11/2021	METALS	2108111535Y	Magnesium, Total	140	mg/L	1	0.03		
8/11/2021	METALS	2108111535Y	Boron, Total	0.08	mg/L	0.2	0.02		J
8/11/2021	METALS	2108111535Y	Calcium, Total	432	mg/L	10	3		

Analytical Results for Sampling Events at 200-JG-110

	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/20/2021	8260	2109200855A	Trichloroethene (TCE)	24	ug/L	1	0.2		
9/20/2021	8260	2109200855A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.58	ug/L	1	0.2		J
9/20/2021	8260	2109200855A	Trichlorofluoromethane (CFC 11)	5	ug/L	1	0.24		
9/20/2021	8260	2109200855A	Chloromethane	0.8	ug/L	2	0.28		J RB A FB
9/20/2021	8260	2109200855A	1,1,2-Trichloro-1,2,2-Trifluoroethane	38	ug/L	1	0.2		
9/20/2021	8260	2109200855A	Tetrachloroethene (PCE)	2.1	ug/L	1	0.21		
9/20/2021	8260	2109200856A	1,1,2-Trichloro-1,2,2-Trifluoroethane	38	ug/L	1	0.2		
9/20/2021	8260	2109200856A	Chloromethane	0.69	ug/L	2	0.28		J RB A FB
9/20/2021	8260	2109200856A	Tetrachloroethene (PCE)	2.1	ug/L	1	0.21		
9/20/2021	8260	2109200856A	Trichloroethene (TCE)	23	ug/L	1	0.2		
9/20/2021	8260	2109200856A	Trichlorofluoromethane (CFC 11)	5.2	ug/L	1	0.24		
9/20/2021	8260	2109200856A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.54	ug/L	1	0.2		J
9/20/2021	607	2109200858A	Bromacil	0.065	μ g/L	0.0097	0.0049	130.4	
9/20/2021	METALS	2109200900A	Calcium, Total	136	mg/L	1	0.3		
9/20/2021	METALS	2109200900A	Strontium, Total	3.13	mg/L	0.1	0.002		
9/20/2021	METALS	2109200900A	Sodium, Total	41.5	mg/L	1	0.2		
9/20/2021	METALS	2109200900A	Potassium, Total	3.5	mg/L	2	0.4		
9/20/2021	METALS	2109200900A	Magnesium, Total	75	mg/L	1	0.03		
9/20/2021	METALS	2109200900A	Boron, Total	0.08	mg/L	0.2	0.02		J
9/20/2021	METALS	2109200900A	Barium, Total	0.043	mg/L	0.02	0.003		
9/20/2021	METALS	2109200900A	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
9/20/2021	ANIONS	2109200901A	Alkalinity, Total as CaCO3	223	mg/L	2	1.8		
9/20/2021	ANIONS	2109200901A	Chloride	56.5	mg/L	2	0.5		
9/20/2021	ANIONS	2109200901A	Fluoride, undistilled	1.18	mg/L	0.1	0.01		
9/20/2021	ANIONS	2109200901A	Sulfate	420	mg/L	10	2		
9/20/2021	SM2540C	2109200902A	Total Dissolved Solids (TDS)	915	mg/L	10	9		
9/20/2021	6850	2109200903A	Perchlorate	0.35	ug/L	0.2	0.06		
9/20/2021	353.2	2109200904A	Nitrate+Nitrite as Nitrogen	1.66	mg/L	0.05	0.002		

Analytical Results for Sampling Events at 200-KV-150

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/14/2021	8260	2109140900C	Trichloroethene (TCE)	2.8	ug/L	1	0.2		
9/14/2021	8260	2109140900C	Trichlorofluoromethane (CFC 11)	16	ug/L	1	0.24		
9/14/2021	8260	2109140900C	Chloromethane	0.36	ug/L	2	0.28		J RB A
9/14/2021	8260	2109140900C	1,1,2-Trichloro-1,2,2-Trifluoroethane	25	ug/L	1	0.2		
9/14/2021	8260	2109140900C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.61	ug/L	1	0.2		J
9/14/2021	8260	2109140900C	Dichlorofluoromethane (CFC 21)	0.47	ug/L	1	0.2		J
9/14/2021	8260	2109140902C	1,1,2-Trichloro-1,2,2-Trifluoroethane	26	ug/L	1	0.2		
9/14/2021	8260	2109140902C	Dichlorofluoromethane (CFC 21)	0.43	ug/L	1	0.2		J
9/14/2021	8260	2109140902C	Trichloroethene (TCE)	2.9	ug/L	1	0.2		
9/14/2021	8260	2109140902C	Trichlorofluoromethane (CFC 11)	18	ug/L	1	0.24		
9/14/2021	8260	2109140902C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.56	ug/L	1	0.2		J
9/14/2021	607	2109140903C	Bromacil	0.27	μg/L	0.0094	0.0047	140	
9/14/2021	METALS	2109140904C	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
9/14/2021	METALS	2109140904C	Potassium, Total	4.9	mg/L	2	0.4		
9/14/2021	METALS	2109140904C	Silver, Total	0.0007	mg/L	0.01	0.0006		J
9/14/2021	METALS	2109140904C	Sodium, Total	13.9	mg/L	1	0.2		
9/14/2021	METALS	2109140904C	Strontium, Total	0.66	mg/L	0.1	0.002		
9/14/2021	METALS	2109140904C	Manganese, Total	0.017	mg/L	0.01	0.004		
9/14/2021	METALS	2109140904C	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
9/14/2021	METALS	2109140904C	Boron, Total	0.04	mg/L	0.2	0.02		J
9/14/2021	METALS	2109140904C	Zinc, Total	0.026	mg/L	0.02	0.003		FB
9/14/2021	METALS	2109140904C	Thallium, Total	0.00009	mg/L	0.001	0.00004		J
9/14/2021	METALS	2109140904C	Magnesium, Total	17.2	mg/L	1	0.03		
9/14/2021	METALS	2109140904C	Iron, Total	0.32	mg/L	0.1	0.07		
9/14/2021	METALS	2109140904C	Copper, Total	0.005	mg/L	0.02	0.004		J
9/14/2021	METALS	2109140904C	Calcium, Total	61.2	mg/L	1	0.3		
9/14/2021	METALS	2109140904C	Barium, Total	0.083	mg/L	0.02	0.003		
9/14/2021	METALS	2109140904C	Arsenic, Total	0.0015	mg/L	0.001	0.0004		
9/14/2021	METALS	2109140904C	Antimony, Total	0.0163	mg/L	0.001	0.0002		
9/14/2021	METALS	2109140904C	Aluminum, Total	0.26	mg/L	0.1	0.03		
9/14/2021	METALS	2109140904C	Chromium, Total	0.003	mg/L	0.01	0.002		J
9/14/2021	ANIONS	2109140906C	Sulfate	92.8	mg/L	2	0.4		
9/14/2021	ANIONS	2109140906C	Alkalinity, Total as CaCO3	127	mg/L	2	1.8		
9/14/2021	ANIONS	2109140906C	Fluoride, undistilled	0.3	mg/L	0.1	0.01		
9/14/2021	ANIONS	2109140906C	Chloride	31.4	mg/L	2	0.5		
9/14/2021	SM2540C	2109140907C	Total Dissolved Solids (TDS)	344	mg/L	10	9		
9/14/2021	6850	2109140908C	Perchlorate	0.29	ug/L	0.2	0.06		
9/14/2021	353.2	2109140909C	Nitrate+Nitrite as Nitrogen	1.48	mg/L	0.05	0.002		

Analytical Results for Sampling Events at 200-LV-150

Event	Analysis Method	Campla	Constituent	Dogult	IImita	Quant	Det Limit	Xtrct	OA Flag
Date	Witting	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/20/2021	8260	2110200930A	Trichloroethene (TCE)	0.24	ug/L	1	0.2		J
10/20/2021	8260	2110200930A	1,1,2-Trichloro-1,2,2-Trifluoroethane	3.2	ug/L	1	0.2		
10/20/2021	8260	2110200930A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.8	ug/L	1	0.2		
10/20/2021	607	2110200932A	Bromacil	0.011	μg/L	0.0094	0.0047	111	
10/20/2021	METALS	2110200934A	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
10/20/2021	METALS	2110200934A	Manganese, Total	0.07	mg/L	0.01	0.004		
10/20/2021	METALS	2110200934A	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
10/20/2021	METALS	2110200934A	Strontium, Total	2.47	mg/L	0.1	0.002		
10/20/2021	METALS	2110200934A	Sodium, Total	32.2	mg/L	1	0.2		
10/20/2021	METALS	2110200934A	Potassium, Total	7.1	mg/L	2	0.4		
10/20/2021	METALS	2110200934A	Nickel, Total	0.006	mg/L	0.04	0.003		J
10/20/2021	METALS	2110200934A	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
10/20/2021	METALS	2110200934A	Zinc, Total	0.017	mg/L	0.02	0.003		J
10/20/2021	METALS	2110200934A	Antimony, Total	0.0011	mg/L	0.001	0.0002		
10/20/2021	METALS	2110200934A	Iron, Total	0.93	mg/L	0.1	0.07		
10/20/2021	METALS	2110200934A	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
10/20/2021	METALS	2110200934A	Chromium, Total	0.007	mg/L	0.01	0.002		J
10/20/2021	METALS	2110200934A	Calcium, Total	154	mg/L	1	0.3		
10/20/2021	METALS	2110200934A	Boron, Total	0.08	mg/L	0.2	0.02		J
10/20/2021	METALS	2110200934A	Barium, Total	0.055	mg/L	0.02	0.003		
10/20/2021	METALS	2110200934A	Arsenic, Total	0.0108	mg/L	0.001	0.0004		
10/20/2021	METALS	2110200934A	Aluminum, Total	0.19	mg/L	0.1	0.03		
10/20/2021	METALS	2110200934A	Magnesium, Total	93.1	mg/L	1	0.03		
10/20/2021	ANIONS	2110200936A	Sulfate	339	mg/L	8	1.6		
10/20/2021	ANIONS	2110200936A	Fluoride, undistilled	0.8	mg/L	0.1	0.01		
10/20/2021	ANIONS	2110200936A	Alkalinity, Total as CaCO3	344	mg/L	2	1.8		
10/20/2021	ANIONS	2110200936A	Chloride	96.3	mg/L	2	0.5		
10/20/2021	SM2540C	2110200937A	Total Dissolved Solids (TDS)	977	mg/L	10	9		
10/20/2021	353.2	2110200939A	Nitrate+Nitrite as Nitrogen	0.135	mg/L	0.05	0.002		

Analytical Results for Sampling Events at 200-SG-1

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/7/2021	8260	2109071050B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	8.3		1	0.2	Line	
9/7/2021	8260	2109071050B 2109071050B	2,2-Dichloro-1,1,1-trifluoroethane (CFC 123a)	0.25	ug/L	1	0.2		J
9/7/2021	8260	2109071050B 2109071050B	Trichlorofluoromethane (CFC 123)	9.1	ug/L	1	0.24		J
9/7/2021	8260	2109071050B 2109071050B	Ethene, chlorotrifluoro-	5.5	ug/L	NA	NA		TIC
9/7/2021	8260	2109071050B 2109071050B	Dichlorofluoromethane (CFC 21)	1.8	ug/L	1	0.2		TIC
9/7/2021	8260	2109071050B 2109071050B	1,1,2-Trichloro-1,2,2-Trifluoroethane	440	ug/L ug/L	5	0.2		
9/7/2021	8260	2109071050B 2109071050B	Tetrachloroethene (PCE)	4.6	ug/L ug/L	1	0.21		
9/7/2021	8260	2109071050B 2109071050B	Trichloroethene (TCE)	110	ug/L ug/L	1	0.21		
9/7/2021	607	2109071050B 2109071052B	Bromacil	0.099	ug/L μg/L	0.0094	0.2	105	
9/7/2021	8270	2109071032B 2109071100B	Unknown Hydrocarbon	10	μg/L ug/L	0.0094 NA	0.0047 NA	103	TIC
9/7/2021	8270	2109071100B 2109071100B	Unknown Hydrocarbon	4.7		NA NA	NA NA		TIC
9/7/2021	8270	2109071100B 2109071100B	Unknown Hydrocarbon	8.9	ug/L ug/L	NA NA	NA NA		TIC
9/7/2021	8270	2109071100B 2109071100B	Unknown Hydrocarbon	8	_	NA NA	NA NA		TIC
9/7/2021	8270	2109071100B 2109071100B	Unknown Hydrocarbon	5.4	ug/L	NA NA	NA NA		TIC
9/7/2021	8270	2109071100B 2109071100B	Unknown Hydrocarbon	7.2	ug/L	NA NA	NA NA		TIC
9/7/2021	8290	2109071100B 2109071310B	OCDD	0.885	ug/L pg/L	23.6	0.247		J RB
9/7/2021	METALS	2109071310B 2109071318B	Manganese, Total	0.007	mg/L	0.01	0.247		J KB
9/7/2021	METALS	2109071318B 2109071318B	Sodium, Total	39.5	mg/L	1	0.004		,
9/7/2021	METALS	2109071318B 2109071318B	Strontium, Total	2.44	mg/L	0.1	0.20		
9/7/2021	METALS	2109071318B 2109071318B	Potassium, Total	3.2	mg/L	2	0.002		
9/7/2021	METALS	2109071318B 2109071318B	Molybdenum, Total	0.008	-	0.025	0.4		J
9/7/2021	METALS	2109071318B 2109071318B	Calcium, Total	122	mg/L mg/L	0.023	0.003		,
9/7/2021	METALS	2109071318B 2109071318B	Boron, Total	0.08	mg/L	0.2	0.02		J
9/7/2021	METALS	2109071318B 2109071318B	Thallium, Total	0.00005	mg/L	0.201	0.00004		J
9/7/2021	METALS	2109071318B 2109071318B	Barium, Total	0.00003	mg/L	0.001	0.0004		,
9/7/2021	METALS	2109071318B 2109071318B	Antimony, Total	0.029	mg/L	0.02	0.0003		J
9/7/2021	METALS	2109071318B 2109071318B	Magnesium, Total	66	mg/L	1	0.0002		,
9/7/2021	ANIONS	2109071318B 2109071319B	Fluoride, undistilled	1.35	mg/L	0.1	0.03		
9/7/2021	ANIONS	2109071319B 2109071319B	Sulfate	349	mg/L	10	2		
9/7/2021	ANIONS	2109071319B 2109071319B	Chloride	49.6	mg/L	2	0.5		
9/7/2021	ANIONS	2109071319B 2109071319B	Alkalinity, Total as CaCO3	281	mg/L	2	1.8		
9/7/2021	SM2540C	2109071319B 2109071320B	Total Dissolved Solids (TDS)	877	mg/L	10	9		
9/7/2021	6850	2109071320B 2109071321B	Perchlorate	0.19	ug/L	0.2	0.06		J
9/7/2021		2109071321B 2109071322B	Nitrate+Nitrite as Nitrogen	0.19	mg/L	0.2	0.002		3
9/ //2021	333.2	21030/1322B	minate-minue as minogen	0.30/	mg/L	0.03	0.002		

Analytical Results for Sampling Events at 300-A-120

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/13/2021	8260	2109131000A	Trichlorofluoromethane (CFC 11)	52	ug/L	1	0.24		
9/13/2021	8260	2109131000A	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.3	ug/L	1	0.2		
9/13/2021	8260	2109131000A	Chloromethane	0.3	ug/L	2	0.28		J A
9/13/2021	8260	2109131000A	Trichloroethene (TCE)	0.25	ug/L	1	0.2		J
9/13/2021	8260	2109131001A	Trichlorofluoromethane (CFC 11)	50	ug/L	1	0.24		
9/13/2021	8260	2109131001A	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.4	ug/L	1	0.2		
9/13/2021	8260	2109131001A	Trichloroethene (TCE)	0.34	ug/L	1	0.2		J
9/13/2021	607	2109131003A	N-Nitrosodimethylamine	1.7	μg/L	0.0096	0.0048	58	QD
9/13/2021	607	2109131003A	N-Nitrodimethylamine	2.5	$\mu g/L$	0.0096	0.0048	102.6	
9/13/2021	607	2109131003A	Bromacil	0.72	μg/L	0.0096	0.0048	140	
9/13/2021	607	2109131004A	Bromacil	0.67	μg/L	0.0097	0.0049	140	
9/13/2021	607	2109131004A	N-Nitrosodimethylamine	1.3	μg/L	0.0097	0.0049	58	QD
9/13/2021	607	2109131004A	N-Nitrodimethylamine	2	μg/L	0.0097	0.0049	102.6	
9/13/2021	8270	2109131005A	Bis(2-ethylhexyl) Phthalate	12	ug/L	4.7	3.9		
9/13/2021	METALS	2109131010A	Molybdenum, Total	0.016	mg/L	0.025	0.003		J
9/13/2021	METALS	2109131010A	Strontium, Total	1.4	mg/L	0.1	0.002		
9/13/2021	METALS	2109131010A	Sodium, Total	43.3	mg/L	1	0.2		
9/13/2021	METALS	2109131010A	Potassium, Total	2.1	mg/L	2	0.4		
9/13/2021	METALS	2109131010A	Chromium, Total	0.043	mg/L	0.01	0.002		
9/13/2021	METALS	2109131010A	Nickel, Total	0.27	mg/L	0.04	0.003		
9/13/2021	METALS	2109131010A	Zinc, Total	0.004	mg/L	0.02	0.003		J
9/13/2021	METALS	2109131010A	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
9/13/2021	METALS	2109131010A	Iron, Total	0.23	mg/L	0.1	0.07		
9/13/2021	METALS	2109131010A	Calcium, Total	58.6	mg/L	1	0.3		
9/13/2021	METALS	2109131010A	Boron, Total	0.11	mg/L	0.2	0.02		J
9/13/2021	METALS	2109131010A	Barium, Total	0.049	mg/L	0.02	0.003		
9/13/2021	METALS	2109131010A	Aluminum, Total	0.03	mg/L	0.1	0.03		J
9/13/2021	METALS	2109131010A	Manganese, Total	0.005	mg/L	0.01	0.004		J
9/13/2021	METALS	2109131010A	Magnesium, Total	42.4	mg/L	1	0.03		
9/13/2021	ANIONS	2109131011A	Alkalinity, Total as CaCO3	204	mg/L	2	1.8		
9/13/2021	ANIONS	2109131011A	Chloride	39.3	mg/L	2	0.5		
9/13/2021	ANIONS	2109131011A	Fluoride, undistilled	0.6	mg/L	0.1	0.01		
9/13/2021	ANIONS	2109131011A	Sulfate	164	mg/L	8	1.6		
9/13/2021	SM2540C	2109131012A	Total Dissolved Solids (TDS)	498	mg/L	10	9		
9/13/2021		2109131013A	Perchlorate	0.54	ug/L	0.2	0.06		
9/13/2021	353.2	2109131014A	Nitrate+Nitrite as Nitrogen	3.21	mg/L	0.25	0.008		
9/13/2021	8290	2109131017A	Total Hepta-Dioxins	0.274	pg/L	NA	NA		J
9/13/2021	8290	2109131017A	1,2,3,4,6,7,8-HpCDD	0.274	pg/L	12.5	0.179		J

Analytic	Analytical Results for Sampling Events at 300-A-120									
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
9/13/2021	8290	2109131017A	OCDD	1.32	pg/L	25	0.219		J RB	

Analytical Results for Sampling Events at 300-C-128

Event Date	Analysis Method	Sampla	Constituent	Dogult	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date		Sample	Constituent	Result	Units	Lillit	Lillit	Effic	QA Flag
10/19/2021	8260	2110191410A	1,1,2-Trichloro-1,2,2-Trifluoroethane	51	ug/L	1	0.2		
10/19/2021	8260	2110191410A	Dichlorofluoromethane (CFC 21)	0.73	ug/L	1	0.2		J
10/19/2021	8260	2110191410A	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
10/19/2021	8260	2110191410A	Trichlorofluoromethane (CFC 11)	420	ug/L	5	1.2		
10/19/2021	607	2110191412A	N-Nitrosodimethylamine	3.9	μg/L	0.0096	0.0048	50	
10/19/2021	607	2110191412A	N-Nitrodimethylamine	6.4	μg/L	0.0096	0.0048	91	
10/19/2021	607	2110191412A	Bromacil	3.3	μg/L	0.0096	0.0048	111	
10/19/2021	METALS	2110191413A	Potassium, Total	2.4	mg/L	2	0.4		
10/19/2021	METALS	2110191413A	Nickel, Total	0.019	mg/L	0.04	0.003		J
10/19/2021	METALS	2110191413A	Zinc, Total	0.007	mg/L	0.02	0.003		J
10/19/2021	METALS	2110191413A	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J
10/19/2021	METALS	2110191413A	Strontium, Total	3.77	mg/L	0.1	0.002		
10/19/2021	METALS	2110191413A	Aluminum, Total	0.06	mg/L	0.1	0.03		J
10/19/2021	METALS	2110191413A	Magnesium, Total	66.6	mg/L	1	0.03		
10/19/2021	METALS	2110191413A	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
10/19/2021	METALS	2110191413A	Calcium, Total	101	mg/L	1	0.3		
10/19/2021	METALS	2110191413A	Boron, Total	0.12	mg/L	0.2	0.02		J
10/19/2021	METALS	2110191413A	Barium, Total	0.034	mg/L	0.02	0.003		
10/19/2021	METALS	2110191413A	Sodium, Total	47.6	mg/L	1	0.2		
10/19/2021	353.2	2110191414A	Nitrate+Nitrite as Nitrogen	6.05	mg/L	0.5	0.02		
10/19/2021 10/19/2021	METALS METALS	2110191413A 2110191413A	Barium, Total Sodium, Total	0.034 47.6	mg/L mg/L	0.02 1	0.003 0.2		l

Analytical Results for Sampling Events at 300-D-153

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/16/2021	8260	2109161441C	Unknown	7.2	ug/L	NA	NA		TIC RB
9/16/2021	8260	2109161441C	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	ug/L	1	0.2		
9/16/2021	8260	2109161441C	Trichlorofluoromethane (CFC 11)	2.2	ug/L	1	0.24		
9/16/2021	METALS	2109161444C	Potassium, Total	5.1	mg/L	2	0.4		
9/16/2021	METALS	2109161444C	Boron, Total	0.13	mg/L	0.2	0.02		J
9/16/2021	METALS	2109161444C	Zinc, Total	0.005	mg/L	0.02	0.003		J
9/16/2021	METALS	2109161444C	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
9/16/2021	METALS	2109161444C	Strontium, Total	2.82	mg/L	0.1	0.002		
9/16/2021	METALS	2109161444C	Sodium, Total	37.1	mg/L	1	0.2		
9/16/2021	METALS	2109161444C	Nickel, Total	0.025	mg/L	0.04	0.003		J
9/16/2021	METALS	2109161444C	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
9/16/2021	METALS	2109161444C	Calcium, Total	113	mg/L	1	0.3		
9/16/2021	METALS	2109161444C	Barium, Total	0.027	mg/L	0.02	0.003		
9/16/2021	METALS	2109161444C	Aluminum, Total	0.04	mg/L	0.1	0.03		J
9/16/2021	METALS	2109161444C	Magnesium, Total	82.2	mg/L	1	0.03		
9/16/2021	METALS	2109161445C	Nickel, Total	0.026	mg/L	0.04	0.003		J
9/16/2021	METALS	2109161445C	Sodium, Total	37.4	mg/L	1	0.2		
9/16/2021	METALS	2109161445C	Zinc, Total	0.006	mg/L	0.02	0.003		J
9/16/2021	METALS	2109161445C	Strontium, Total	2.82	mg/L	0.1	0.002		
9/16/2021	METALS	2109161445C	Potassium, Total	5.1	mg/L	2	0.4		
9/16/2021	METALS	2109161445C	Magnesium, Total	83	mg/L	1	0.03		
9/16/2021	METALS	2109161445C	Calcium, Total	114	mg/L	1	0.3		
9/16/2021	METALS	2109161445C	Boron, Total	0.13	mg/L	0.2	0.02		J
9/16/2021	METALS	2109161445C	Barium, Total	0.027	mg/L	0.02	0.003		
9/16/2021	METALS	2109161445C	Aluminum, Total	0.04	mg/L	0.1	0.03		J
9/16/2021	METALS	2109161445C	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
9/16/2021	METALS	2109161445C	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
					-				

Analytical Results for Sampling Events at 400-D-195

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/16/2021	8260 LL	2108170850Y	2-Propanol	6.3	ug/L	40	3.4		JEB
8/16/2021	8260 LL	2108170850Y	Chloromethane	0.34	ug/L ug/L	0.5	0.28		J RB A
8/16/2021	8260 LL	2108170850Y	Tetrahydrofuran (THF)	7.3	ug/L	5	1.7		
8/16/2021	METALS	2108171043Y	Potassium, Total	1.5	mg/L	2	0.4		J
8/16/2021	METALS	2108171043Y	Zinc, Total	0.013	mg/L	0.02	0.003		J
8/16/2021	METALS	2108171043Y	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J
8/16/2021	METALS	2108171043Y	Sodium, Total	50.9	mg/L	1	0.2		
8/16/2021	METALS	2108171043Y	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
8/16/2021	METALS	2108171043Y	Magnesium, Total	12.6	mg/L	1	0.03		
8/16/2021	METALS	2108171043Y	Calcium, Total	18.3	mg/L	1	0.3		
8/16/2021	METALS	2108171043Y	Boron, Total	0.09	mg/L	0.2	0.02		J
8/16/2021	METALS	2108171043Y	Barium, Total	0.011	mg/L	0.02	0.003		J
8/16/2021	METALS	2108171043Y	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
8/16/2021	METALS	2108171043Y	Manganese, Total	0.009	mg/L	0.01	0.004		J
8/16/2021	METALS	2108171043Y	Strontium, Total	0.95	mg/L	0.1	0.002		

Analytical Results for Sampling Events at 400-D-275

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/16/2021	8260 LL	2108161050Y	Acrylonitrile	1.8	ug/L	2.5	0.9		J
8/16/2021	8260 LL	2108161050Y	Tetrahydrofuran (THF)	3.7	ug/L	5	1.7		J
8/16/2021	METALS	2108161325Y	Barium, Total	0.018	mg/L	0.02	0.003		J
8/16/2021	METALS	2108161325Y	Strontium, Total	2.06	mg/L	0.1	0.002		
8/16/2021	METALS	2108161325Y	Sodium, Total	84.4	mg/L	1	0.2		
8/16/2021	METALS	2108161325Y	Potassium, Total	1.9	mg/L	2	0.4		J
8/16/2021	METALS	2108161325Y	Molybdenum, Total	0.013	mg/L	0.025	0.003		J
8/16/2021	METALS	2108161325Y	Manganese, Total	0.02	mg/L	0.01	0.004		
8/16/2021	METALS	2108161325Y	Magnesium, Total	20	mg/L	1	0.03		
8/16/2021	METALS	2108161325Y	Boron, Total	0.32	mg/L	0.2	0.02		
8/16/2021	METALS	2108161325Y	Zinc, Total	0.007	mg/L	0.02	0.003		J
8/16/2021	METALS	2108161325Y	Calcium, Total	33	mg/L	1	0.3		
8/16/2021	ANIONS	2108161326Y	Sulfate	193	mg/L	10	2		
8/16/2021	ANIONS	2108161326Y	Fluoride, undistilled	0.38	mg/L	0.1	0.01		
8/16/2021	ANIONS	2108161326Y	Chloride	23	mg/L	2	0.5		
8/16/2021	ANIONS	2108161326Y	Alkalinity, Total as CaCO3	124	mg/L	2	1.8		
8/16/2021	SM2540C	2108161327Y	Total Dissolved Solids (TDS)	446	mg/L	10	9		
8/16/2021	353.2	2108161329Y	Nitrate+Nitrite as Nitrogen	0.003	mg/L	0.05	0.002		J

Analytical Results for Sampling Events at 400-D-355

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/12/2021	8260 LL	2108121525Y	Acrylonitrile	1.6	ug/L	2.5	0.9		J
8/12/2021	8260_LL	2108121525Y	Chloromethane	0.32	ug/L	0.5	0.28		J RB A EB
8/12/2021	8260_LL	2108121525Y	Tetrahydrofuran (THF)	1.8	ug/L	5	1.7		J
8/12/2021	METALS	2108121545Y	Magnesium, Total	18.6	mg/L	1	0.03		
8/12/2021	METALS	2108121545Y	Zinc, Total	0.013	mg/L	0.02	0.003		J
8/12/2021	METALS	2108121545Y	Strontium, Total	2.48	mg/L	0.1	0.002		
8/12/2021	METALS	2108121545Y	Sodium, Total	90.6	mg/L	1	0.2		
8/12/2021	METALS	2108121545Y	Potassium, Total	1.9	mg/L	2	0.4		J
8/12/2021	METALS	2108121545Y	Manganese, Total	0.024	mg/L	0.01	0.004		
8/12/2021	METALS	2108121545Y	Calcium, Total	35.7	mg/L	1	0.3		
8/12/2021	METALS	2108121545Y	Boron, Total	0.38	mg/L	0.2	0.02		
8/12/2021	METALS	2108121545Y	Barium, Total	0.018	mg/L	0.02	0.003		J
8/12/2021	METALS	2108121545Y	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
8/12/2021	METALS	2108121545Y	Aluminum, Total	0.05	mg/L	0.1	0.03		J
8/12/2021	METALS	2108121545Y	Molybdenum, Total	0.014	mg/L	0.025	0.003		J

Analytical Results for Sampling Events at 400-EV-131

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/2/2021	8260	2108021000C	1,1,2-Trichloro-1,2,2-Trifluoroethane	49	ug/L	1	0.2		
8/2/2021	8260	2108021000C	Chloromethane	0.3	ug/L	2	0.28		J FB
8/2/2021	8260	2108021000C	Dichlorofluoromethane (CFC 21)	0.42	ug/L	1	0.2		J
8/2/2021	8260	2108021000C	Trichloroethene (TCE)	1	ug/L	1	0.2		
8/2/2021	8260	2108021000C	Trichlorofluoromethane (CFC 11)	130	ug/L	2	0.48		
8/2/2021	8260	2108021001C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.32	ug/L	1	0.2		J
8/2/2021	8260	2108021001C	Trichlorofluoromethane (CFC 11)	130	ug/L	2.5	0.6		
8/2/2021	8260	2108021001C	Silane, methoxytrimethyl-	13	ug/L	NA	NA		TIC
8/2/2021	8260	2108021001C	Dichlorofluoromethane (CFC 21)	0.37	ug/L	1	0.2		J
8/2/2021	8260	2108021001C	Chloromethane	0.36	ug/L	2	0.28		J FB
8/2/2021	8260	2108021001C	1,1,2-Trichloro-1,2,2-Trifluoroethane	61	ug/L	1	0.2		
8/2/2021	8260	2108021001C	Trichloroethene (TCE)	0.83	ug/L	1	0.2		J
8/2/2021	607	2108021003C	N-Nitrodimethylamine	1.7	μg/L	0.01	0.0052	96	
8/2/2021	607	2108021003C	Bromacil	5.6	μg/L	0.01	0.0052	102	
8/2/2021	607	2108021003C	N-Nitrosodimethylamine	0.78	μg/L	0.01	0.0052	44	
8/2/2021	METALS	2108021004C	Manganese, Total	0.007	mg/L	0.01	0.004		J
8/2/2021	METALS	2108021004C	Zinc, Total	0.003	mg/L	0.02	0.003		J
8/2/2021	METALS	2108021004C	Vanadium, Total	0.0009	mg/L	0.05	0.0007		J
8/2/2021	METALS	2108021004C	Thallium, Total	0.00005	mg/L	0.001	0.00004		J
8/2/2021	METALS	2108021004C	Strontium, Total	4.51	mg/L	0.1	0.002		
8/2/2021	METALS	2108021004C	Sodium, Total	89.6	mg/L	1	0.2		
8/2/2021	METALS	2108021004C	Potassium, Total	4.4	mg/L	2	0.4		
8/2/2021	METALS	2108021004C	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
8/2/2021	METALS	2108021004C	Iron, Total	0.18	mg/L	0.1	0.07		
8/2/2021	METALS	2108021004C	Chromium, Total	0.004	mg/L	0.01	0.002		J
8/2/2021	METALS	2108021004C	Calcium, Total	114	mg/L	1	0.3		
8/2/2021	METALS	2108021004C	Boron, Total	0.22	mg/L	0.2	0.02		
8/2/2021	METALS	2108021004C	Barium, Total	0.032	mg/L	0.02	0.003		
8/2/2021	METALS	2108021004C	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
8/2/2021	METALS	2108021004C	Aluminum, Total	0.11	mg/L	0.1	0.03		
8/2/2021	METALS	2108021004C	Magnesium, Total	83.8	mg/L	1	0.03		
8/2/2021	METALS	2108021004C	Nickel, Total	0.005	mg/L	0.04	0.003		J
8/2/2021	ANIONS	2108021005C	Alkalinity, Total as CaCO3	241	mg/L	2	1.8		
8/2/2021	ANIONS	2108021005C	Sulfate	413	mg/L	10	2		
8/2/2021	ANIONS	2108021005C	Fluoride, undistilled	1.05	mg/L	0.1	0.01		
8/2/2021	ANIONS	2108021005C	Chloride	100	mg/L	8	1.7		
8/2/2021	SM2540C	2108021006C	Total Dissolved Solids (TDS)	1050	mg/L	13	12		
8/2/2021	6850	2108021007C	Perchlorate	1.1	ug/L	0.2	0.06		

Analyti	Analytical Results for Sampling Events at 400-EV-131										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
8/2/2021	353.2	2108021008C	Nitrate+Nitrite as Nitrogen	5.79	mg/L	0.25	0.008				

Analytical Results for Sampling Events at 400-FV-131

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/18/2021	8260	2110181000A	1,1,2-Trichloro-1,2,2-Trifluoroethane	21	ug/L	1	0.2		
10/18/2021	8260	2110181000A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5.6	ug/L	1	0.2		
10/18/2021	8260	2110181000A	Dichlorofluoromethane (CFC 21)	4.7	ug/L	1	0.2		
10/18/2021	8260	2110181000A	Trichloroethene (TCE)	0.26	ug/L	1	0.2		J
10/18/2021	8260	2110181000A	Trichlorofluoromethane (CFC 11)	28	ug/L	1	0.24		
10/18/2021	607	2110181002A	N-Nitrosodimethylamine	0.76	μg/L	0.0098	0.0049	53	
10/18/2021	607	2110181002A	N-Nitrodimethylamine	0.54	μg/L	0.0098	0.0049	89	
10/18/2021	607	2110181002A	Bromacil	0.49	μg/L	0.0098	0.0049	120	
10/18/2021	607	2110181003A	N-Nitrosodimethylamine	0.73	μg/L	0.0094	0.0047	53	
10/18/2021	607	2110181003A	N-Nitrodimethylamine	0.54	μg/L	0.0094	0.0047	89	
10/18/2021	607	2110181003A	Bromacil	0.51	μg/L	0.0094	0.0047	120	
10/18/2021	METALS	2110181004A	Manganese, Total	0.039	mg/L	0.01	0.004		
10/18/2021	METALS	2110181004A	Zinc, Total	0.004	mg/L	0.02	0.003		J
10/18/2021	METALS	2110181004A	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
10/18/2021	METALS	2110181004A	Strontium, Total	2.46	mg/L	0.1	0.002		
10/18/2021	METALS	2110181004A	Sodium, Total	116	mg/L	1	0.2		
10/18/2021	METALS	2110181004A	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
10/18/2021	METALS	2110181004A	Arsenic, Total	0.0019	mg/L	0.001	0.0004		
10/18/2021	METALS	2110181004A	Magnesium, Total	79.8	mg/L	1	0.03		
10/18/2021	METALS	2110181004A	Calcium, Total	101	mg/L	1	0.3		
10/18/2021	METALS	2110181004A	Boron, Total	0.24	mg/L	0.2	0.02		
10/18/2021	METALS	2110181004A	Barium, Total	0.045	mg/L	0.02	0.003		
10/18/2021	METALS	2110181004A	Potassium, Total	3.1	mg/L	2	0.4		
10/18/2021	ANIONS	2110181005A	Chloride	52.4	mg/L	2	0.5		
10/18/2021	ANIONS	2110181005A	Fluoride, undistilled	0.85	mg/L	0.1	0.01		
10/18/2021	ANIONS	2110181005A	Alkalinity, Total as CaCO3	391	mg/L	2	1.8		
10/18/2021	ANIONS	2110181005A	Sulfate	334	mg/L	8	1.6		
10/18/2021	SM2540C	2110181006A	Total Dissolved Solids (TDS)	987	mg/L	10	9		
10/18/2021	6850	2110181007A	Perchlorate	0.33	ug/L	0.2	0.06		
10/18/2021	353.2	2110181008A	Nitrate+Nitrite as Nitrogen	1.85	mg/L	0.05	0.002		

Analytical Results for Sampling Events at 400-GV-125

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date		Sample	Constituent	Nesuit	Units	Limit	Limit	Effic	QA FIAG
8/3/2021	8260	2108030900C	1,1,2-Trichloro-1,2,2-Trifluoroethane	60	ug/L	1	0.2		
8/3/2021	8260	2108030900C	Trichlorofluoromethane (CFC 11)	180	ug/L	1	0.24		
8/3/2021	8260	2108030900C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	4.4	ug/L	1	0.2		
8/3/2021	8260	2108030900C	Chloromethane	0.28	ug/L	2	0.28		J RB A
8/3/2021	8260	2108030900C	Dichlorofluoromethane (CFC 21)	3.5	ug/L	1	0.2		
8/3/2021	8260	2108030900C	Trichloroethene (TCE)	1.5	ug/L	1	0.2		
8/3/2021	607	2108030902C	N-Nitrosodimethylamine	2.5	μg/L	0.0094	0.0047	44	
8/3/2021	607	2108030902C	N-Nitrodimethylamine	4.2	μg/L	0.0094	0.0047	96	
8/3/2021	607	2108030902C	Bromacil	4.6	μg/L	0.0094	0.0047	102	
8/3/2021	METALS	2108030903C	Nickel, Total	0.008	mg/L	0.04	0.003		J
8/3/2021	METALS	2108030903C	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
8/3/2021	METALS	2108030903C	Strontium, Total	3.72	mg/L	0.1	0.002		
8/3/2021	METALS	2108030903C	Potassium, Total	4.3	mg/L	2	0.4		
8/3/2021	METALS	2108030903C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/3/2021	METALS	2108030903C	Calcium, Total	118	mg/L	1	0.3		
8/3/2021	METALS	2108030903C	Boron, Total	0.33	mg/L	0.2	0.02		
8/3/2021	METALS	2108030903C	Barium, Total	0.043	mg/L	0.02	0.003		
8/3/2021	METALS	2108030903C	Arsenic, Total	0.001	mg/L	0.001	0.0004		
8/3/2021	METALS	2108030903C	Sodium, Total	87.3	mg/L	1	0.2		
8/3/2021	METALS	2108030903C	Magnesium, Total	89.5	mg/L	1	0.03		
8/3/2021	ANIONS	2108030904C	Chloride	99	mg/L	10	3		
8/3/2021	ANIONS	2108030904C	Fluoride, undistilled	1	mg/L	0.1	0.01		
8/3/2021	ANIONS	2108030904C	Alkalinity, Total as CaCO3	260	mg/L	2	1.8		
8/3/2021	ANIONS	2108030904C	Sulfate	413	mg/L	10	2		
8/3/2021	SM2540C	2108030905C	Total Dissolved Solids (TDS)	1040	mg/L	10	9		
8/3/2021	6850	2108030906C	Perchlorate	1	ug/L	0.2	0.06		
8/3/2021	353.2	2108030907C	Nitrate+Nitrite as Nitrogen	7.87	mg/L	0.25	0.008		

Analytical Results for Sampling Events at 400-HV-147

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/18/2021	8260	2110181410A	Trichloroethene (TCE)	0.93	ug/L	1	0.2		J
10/18/2021	8260	2110181410A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.2	ug/L	1	0.2		
10/18/2021	8260	2110181410A	Trichlorofluoromethane (CFC 11)	160	ug/L	1	0.24		
10/18/2021	8260	2110181410A	Chloroform	0.85	ug/L	1	0.24		J
10/18/2021	8260	2110181410A	1,1,2-Trichloro-1,2,2-Trifluoroethane	82	ug/L	1	0.2		
10/18/2021	8260	2110181410A	Dichlorofluoromethane (CFC 21)	3	ug/L	1	0.2		
10/18/2021	8260	2110181412A	1,1,2-Trichloro-1,2,2-Trifluoroethane	76	ug/L	1	0.2		
10/18/2021	8260	2110181412A	Chloroform	0.75	ug/L	1	0.24		J
10/18/2021	8260	2110181412A	Dichlorofluoromethane (CFC 21)	3	ug/L	1	0.2		
10/18/2021	8260	2110181412A	Trichloroethene (TCE)	0.58	ug/L	1	0.2		J
10/18/2021	8260	2110181412A	Trichlorofluoromethane (CFC 11)	160	ug/L	1	0.24		
10/18/2021	8260	2110181412A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.2	ug/L	1	0.2		
10/18/2021	607	2110181413A	N-Nitrosodimethylamine	170	μg/L	0.49	0.24	53	D
10/18/2021	607	2110181413A	N-Nitrodimethylamine	330	μg/L	0.49	0.24	89	D
10/18/2021	607	2110181413A	Bromacil	3.4	μg/L	0.49	0.24	120	D
10/18/2021	METALS	2110181414A	Thallium, Total	0.00004	mg/L	0.001	0.00004		J
10/18/2021	METALS	2110181414A	Boron, Total	0.73	mg/L	0.2	0.02		
10/18/2021	METALS	2110181414A	Barium, Total	0.077	mg/L	0.02	0.003		
10/18/2021	METALS	2110181414A	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
10/18/2021	METALS	2110181414A	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
10/18/2021	METALS	2110181414A	Magnesium, Total	111	mg/L	1	0.03		
10/18/2021	METALS	2110181414A	Zinc, Total	0.005	mg/L	0.02	0.003		J
10/18/2021	METALS	2110181414A	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
10/18/2021	METALS	2110181414A	Strontium, Total	5.86	mg/L	0.1	0.002		
10/18/2021	METALS	2110181414A	Sodium, Total	131	mg/L	1	0.2		
10/18/2021	METALS	2110181414A	Potassium, Total	4.5	mg/L	2	0.4		
10/18/2021	METALS	2110181414A	Manganese, Total	0.008	mg/L	0.01	0.004		J
10/18/2021	METALS	2110181414A	Cobalt, Total	0.003	mg/L	0.05	0.0009		J
10/18/2021	METALS	2110181414A	Calcium, Total	148	mg/L	1	0.3		
10/18/2021	METALS	2110181414A	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
10/18/2021	ANIONS	2110181415A	Sulfate	385	mg/L	8	1.6		
10/18/2021	ANIONS	2110181415A	Alkalinity, Total as CaCO3	278	mg/L	2	1.8		
10/18/2021	ANIONS	2110181415A	Chloride	89.9	mg/L	2	0.5		
10/18/2021	ANIONS	2110181415A	Fluoride, undistilled	0.51	mg/L	0.1	0.01		
10/18/2021	SM2540C	2110181416A	Total Dissolved Solids (TDS)	1400	mg/L	10	9		
10/18/2021	6850	2110181417A	Perchlorate	0.72	ug/L	0.2	0.06		
10/18/2021	353.2	2110181418A	Nitrate+Nitrite as Nitrogen	77.6	mg/L	5	0.2		

Analytical Results for Sampling Events at 400-IV-123

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/19/2021	8260	2110191000A	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.3	ug/L	1	0.2		
10/19/2021	8260	2110191000A	Dichlorofluoromethane (CFC 21)	0.5	ug/L	1	0.2		J
10/19/2021	8260	2110191000A	Trichloroethene (TCE)	0.29	ug/L	1	0.2		J
10/19/2021	8260	2110191000A	Trichlorofluoromethane (CFC 11)	140	ug/L	1	0.24		
10/19/2021	607	2110191002A	N-Nitrodimethylamine	0.02	μg/L	0.0094	0.0047	91	
10/19/2021	607	2110191002A	Bromacil	0.01	μg/L	0.0094	0.0047	111	J
10/19/2021	METALS	2110191003A	Chromium, Total	0.005	mg/L	0.01	0.002		J
10/19/2021	METALS	2110191003A	Vanadium, Total	0.007	mg/L	0.05	0.0007		J
10/19/2021	METALS	2110191003A	Strontium, Total	0.9	mg/L	0.1	0.002		
10/19/2021	METALS	2110191003A	Sodium, Total	34.3	mg/L	1	0.2		
10/19/2021	METALS	2110191003A	Potassium, Total	3.1	mg/L	2	0.4		
10/19/2021	METALS	2110191003A	Magnesium, Total	27.7	mg/L	1	0.03		
10/19/2021	METALS	2110191003A	Boron, Total	0.15	mg/L	0.2	0.02		J
10/19/2021	METALS	2110191003A	Barium, Total	0.027	mg/L	0.02	0.003		
10/19/2021	METALS	2110191003A	Arsenic, Total	0.0086	mg/L	0.001	0.0004		
10/19/2021	METALS	2110191003A	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
10/19/2021	METALS	2110191003A	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
10/19/2021	METALS	2110191003A	Calcium, Total	19.1	mg/L	1	0.3		
10/19/2021	ANIONS	2110191004A	Chloride	7.2	mg/L	2	0.5		
10/19/2021	ANIONS	2110191004A	Fluoride, undistilled	0.62	mg/L	0.1	0.01		
10/19/2021	ANIONS	2110191004A	Alkalinity, Total as CaCO3	171	mg/L	2	1.8		
10/19/2021	ANIONS	2110191004A	Sulfate	42.9	mg/L	2	0.4		
10/19/2021	SM2540C	2110191005A	Total Dissolved Solids (TDS)	245	mg/L	10	9		
10/19/2021	6850	2110191006A	Perchlorate	0.9	ug/L	0.2	0.06		
10/19/2021	353.2	2110191007A	Nitrate+Nitrite as Nitrogen	1.76	mg/L	0.05	0.002		

Analytical Results for Sampling Events at 400-JV-150

Event	Analysis	G .		.	T T •.	Quant	Det	Xtrct	0.4 51
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/2/2021	8260	2108021418C	Trichloroethene (TCE)	0.64	ug/L	1	0.2		J
8/2/2021	8260	2108021418C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.67	ug/L	1	0.2		J
8/2/2021	8260	2108021418C	Trichlorofluoromethane (CFC 11)	500	ug/L	5	1.2		
8/2/2021	8260	2108021418C	Chloromethane	0.3	ug/L	2	0.28		J FB
8/2/2021	8260	2108021418C	1,1,2-Trichloro-1,2,2-Trifluoroethane	160	ug/L	1	0.2		
8/2/2021	8260	2108021418C	Dichlorofluoromethane (CFC 21)	2.5	ug/L	1	0.2		
8/2/2021	607	2108021420C	N-Nitrosodimethylamine	2.6	$\mu g/L$	0.0098	0.0049	44	
8/2/2021	607	2108021420C	N-Nitrodimethylamine	4.6	$\mu g/L$	0.0098	0.0049	96	
8/2/2021	607	2108021420C	Bromacil	1.6	$\mu g/L$	0.0098	0.0049	102	
8/2/2021	607	2108021421C	N-Nitrosodimethylamine	2.6	$\mu g/L$	0.0098	0.0049	44	
8/2/2021	607	2108021421C	N-Nitrodimethylamine	4.5	μg/L	0.0098	0.0049	96	
8/2/2021	607	2108021421C	Bromacil	1.6	$\mu g/L$	0.0098	0.0049	102	
8/2/2021	METALS	2108021422C	Molybdenum, Total	0.004	mg/L	0.025	0.003		J
8/2/2021	METALS	2108021422C	Thallium, Total	0.00004	mg/L	0.001	0.00004		J
8/2/2021	METALS	2108021422C	Strontium, Total	4.34	mg/L	0.1	0.002		
8/2/2021	METALS	2108021422C	Sodium, Total	197	mg/L	10	2		
8/2/2021	METALS	2108021422C	Nickel, Total	0.005	mg/L	0.04	0.003		J
8/2/2021	METALS	2108021422C	Arsenic, Total	0.001	mg/L	0.001	0.0004		J
8/2/2021	METALS	2108021422C	Magnesium, Total	115	mg/L	1	0.03		
8/2/2021	METALS	2108021422C	Potassium, Total	5.2	mg/L	2	0.4		
8/2/2021	METALS	2108021422C	Calcium, Total	153	mg/L	1	0.3		
8/2/2021	METALS	2108021422C	Boron, Total	0.98	mg/L	0.2	0.02		
8/2/2021	METALS	2108021422C	Barium, Total	0.039	mg/L	0.02	0.003		
8/2/2021	METALS	2108021422C	Manganese, Total	0.009	mg/L	0.01	0.004		J
8/2/2021	ANIONS	2108021423C	Chloride	147	mg/L	8	1.7		
8/2/2021	ANIONS	2108021423C	Fluoride, undistilled	0.7	mg/L	0.1	0.01		
8/2/2021	ANIONS	2108021423C	Alkalinity, Total as CaCO3	301	mg/L	2	1.8		
8/2/2021	ANIONS	2108021423C	Sulfate	726	mg/L	20	4		
8/2/2021	SM2540C	2108021424C	Total Dissolved Solids (TDS)	1670	mg/L	14	13		
8/2/2021	6850	2108021425C	Perchlorate	1.4	ug/L	0.2	0.06		
8/2/2021	353.2	2108021426C	Nitrate+Nitrite as Nitrogen	14	mg/L	0.5	0.02		

Analytical Results for Sampling Events at 600-G-138

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/21/2021	8260	2110211105A	Trichlorofluoromethane (CFC 11)	0.84	ug/L	1	0.24		J
10/21/2021	8260	2110211105A	Chloroform	0.52	ug/L	1	0.24		J
10/21/2021	8260	2110211105A	Silane, fluorotrimethyl-	6.7	ug/L	NA	NA		TIC
10/21/2021	8260	2110211105A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.64	ug/L	1	0.2		J
10/21/2021	8260	2110211105A	Chloromethane	0.31	ug/L	2	0.28		J RB
10/21/2021	8260	2110211105A	1,1,2-Trichloro-1,2,2-Trifluoroethane	33	ug/L	1	0.2		
10/21/2021	8260	2110211105A	Trichloroethene (TCE)	32	ug/L	1	0.2		
10/21/2021	300.0	2110211107A	Chloride	161	mg/L	6	1.3		
10/21/2021	353.2	2110211108A	Nitrate+Nitrite as Nitrogen	9.43	mg/L	0.5	0.02		

Analytical Results for Sampling Events at 700-A-253

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/29/2021	8260	2109290900C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.5	ug/L	1.0	0.200		J
9/29/2021	8260	2109290900C	2-Propanol	8.4	ug/L	50	3.40		J
9/29/2021	8260	2109290900C	Silane, fluorotrimethyl-	9.4	ug/L	NA	NA		TIC
9/29/2021	8260	2109290900C	Silane, methoxytrimethyl-	5.4	ug/L	NA	NA		TIC
9/29/2021	8260	2109290900C	Unknown	5.4	ug/L	NA	NA		TIC
9/29/2021	6850	2109290903C	Perchlorate	0.25	ug/L	0.20	0.060		

Analytical Results for Sampling Events at 700-D-186

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/28/2021	8260	2109280902C	Chloromethane	0.3	ug/L	2.0	0.280		J RB FB
9/28/2021	8260	2109280902C	Unknown	6.8	ug/L	NA	NA		TIC
9/28/2021	8260	2109280902C	Silane, methoxytrimethyl-	5.9	ug/L	NA	NA		TIC
9/28/2021	8260	2109280902C	Silane, fluorotrimethyl-	10	ug/L	NA	NA		TIC
9/28/2021	8260	2109280902C	Trichloroethene (TCE)	0.34	ug/L	1.0	0.200		J
9/28/2021	8260	2109280902C	2-Propanol	18	ug/L	50	3.40		J
9/28/2021	8260	2109280902C	1,1,2-Trichloro-1,2,2-Trifluoroethane	23	ug/L	1.0	0.200		
9/28/2021	8260	2109280902C	Trichlorofluoromethane (CFC 11)	0.4	ug/L	1.0	0.240		J
9/28/2021	6850	2109280905C	Perchlorate	0.49	ug/L	0.20	0.060		

Analytical Results for Sampling Events at 700-E-458

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/18/2021	NDMA_LL	2108180940C	N-Nitrosodimethylamine	0.58	ng/L	0.47	0.43		RB * A TB FB
8/18/2021	METALS	2108180952C	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
8/18/2021	METALS	2108180952C	Zinc, Total	0.007	mg/L	0.02	0.003		J
8/18/2021	METALS	2108180952C	Vanadium, Total	0.01	mg/L	0.05	0.0007		J
8/18/2021	METALS	2108180952C	Strontium, Total	0.79	mg/L	0.1	0.002		
8/18/2021	METALS	2108180952C	Sodium, Total	143	mg/L	1	0.2		
8/18/2021	METALS	2108180952C	Potassium, Total	1.2	mg/L	2	0.4		J
8/18/2021	METALS	2108180952C	Magnesium, Total	4.6	mg/L	1	0.03		
8/18/2021	METALS	2108180952C	Iron, Total	0.7	mg/L	0.1	0.07		
8/18/2021	METALS	2108180952C	Chromium, Total	0.072	mg/L	0.01	0.002		
8/18/2021	METALS	2108180952C	Calcium, Total	18.9	mg/L	1	0.3		
8/18/2021	METALS	2108180952C	Boron, Total	0.17	mg/L	0.2	0.02		J
8/18/2021	METALS	2108180952C	Barium, Total	0.02	mg/L	0.02	0.003		J
8/18/2021	METALS	2108180952C	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
8/18/2021	METALS	2108180952C	Nickel, Total	0.061	mg/L	0.04	0.003		
8/18/2021	ANIONS	2108180954C	Fluoride, undistilled	0.58	mg/L	0.1	0.01		
8/18/2021	ANIONS	2108180954C	Sulfate	207	mg/L	8	1.6		
8/18/2021	ANIONS	2108180954C	Chloride	36.7	mg/L	2	0.5		
8/18/2021	ANIONS	2108180954C	Alkalinity, Total as CaCO3	103	mg/L	2	1.8		
8/18/2021	SM2540C	2108181005C	Total Dissolved Solids (TDS)	508	mg/L	10	9		
8/18/2021	6850	2108181006C	Perchlorate	0.8	ug/L	0.2	0.06		
8/18/2021	353.2	2108181007C	Nitrate+Nitrite as Nitrogen	3.71	mg/L	0.25	0.008		

Analytic	Analytical Results for Sampling Events at 700-H-350										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag		
9/28/2021	6850	2109281545Y	Perchlorate	0.8	ug/L	0.20	0.060				

Analytical Results for Sampling Events at 700-H-535

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/29/2021	METALS	2109301020Y	Vanadium, Total	0.004	mg/L	0.050	0.00070		J EB
9/29/2021	METALS	2109301020Y	Calcium, Total	27.8	mg/L	1.0	0.30		
9/29/2021	METALS	2109301020Y	Boron, Total	0.19	mg/L	0.20	0.0200		J
9/29/2021	METALS	2109301020Y	Barium, Total	0.018	mg/L	0.020	0.003		J
9/29/2021	METALS	2109301020Y	Arsenic, Total	0.0004	mg/L	0.0010	0.000400		J
9/29/2021	METALS	2109301020Y	Strontium, Total	1.9	mg/L	0.10	0.002		
9/29/2021	METALS	2109301020Y	Sodium, Total	110	mg/L	1.0	0.200		
9/29/2021	METALS	2109301020Y	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
9/29/2021	METALS	2109301020Y	Magnesium, Total	9.6	mg/L	1.0	0.03		
9/29/2021	METALS	2109301020Y	Manganese, Total	0.012	mg/L	0.010	0.004		
9/29/2021	ANIONS	2109301021Y	Alkalinity, Total as CaCO3	108	mg/L	2.0	1.80		
9/29/2021	ANIONS	2109301021Y	Chloride	29.4	mg/L	2.0	0.500		
9/29/2021	ANIONS	2109301021Y	Fluoride, undistilled	0.63	mg/L	0.10	0.01		
9/29/2021	ANIONS	2109301021Y	Sulfate	200	mg/L	8.0	1.60		
9/29/2021	SM2540C	2109301050Y	Total Dissolved Solids (TDS)	477	mg/L	13	12.0		
9/29/2021	353.2	2109301052Y	Nitrate+Nitrite as Nitrogen	0.003	mg/L	0.050	0.002		J

Analytical Results for Sampling Events at 700-H-670

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/29/2021	8260	2109290850Y	Chloromethane	0.29	ug/L	2.0	0.280		J RB EB
9/29/2021	8260	2109290850Y	Styrene	0.76	ug/L	1.0	0.200		J
9/29/2021	METALS	2109290852Y	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
9/29/2021	METALS	2109290852Y	Zinc, Total	0.004	mg/L	0.020	0.003		J
9/29/2021	METALS	2109290852Y	Vanadium, Total	0.0007	mg/L	0.050	0.00070		J
9/29/2021	METALS	2109290852Y	Sodium, Total	116	mg/L	1.0	0.200		
9/29/2021	METALS	2109290852Y	Manganese, Total	0.009	mg/L	0.010	0.004		J
9/29/2021	METALS	2109290852Y	Magnesium, Total	8	mg/L	1.0	0.03		
9/29/2021	METALS	2109290852Y	Calcium, Total	24.1	mg/L	1.0	0.30		
9/29/2021	METALS	2109290852Y	Boron, Total	0.2	mg/L	0.20	0.0200		
9/29/2021	METALS	2109290852Y	Barium, Total	0.014	mg/L	0.020	0.003		J
9/29/2021	METALS	2109290852Y	Arsenic, Total	0.0004	mg/L	0.0010	0.000400		J
9/29/2021	METALS	2109290852Y	Strontium, Total	1.76	mg/L	0.10	0.002		
9/29/2021	METALS	2109290915Y	Arsenic, Total	0.0005	mg/L	0.0010	0.000400		J
9/29/2021	METALS	2109290915Y	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
9/29/2021	METALS	2109290915Y	Vanadium, Total	0.0009	mg/L	0.050	0.00070		J
9/29/2021	METALS	2109290915Y	Zinc, Total	0.009	mg/L	0.020	0.003		J
9/29/2021	METALS	2109290915Y	Strontium, Total	1.73	mg/L	0.10	0.002		
9/29/2021	METALS	2109290915Y	Sodium, Total	116	mg/L	1.0	0.200		
9/29/2021	METALS	2109290915Y	Manganese, Total	0.007	mg/L	0.010	0.004		J
9/29/2021	METALS	2109290915Y	Magnesium, Total	8	mg/L	1.0	0.03		
9/29/2021	METALS	2109290915Y	Calcium, Total	24.1	mg/L	1.0	0.30		
9/29/2021	METALS	2109290915Y	Barium, Total	0.013	mg/L	0.020	0.003		J
9/29/2021	METALS	2109290915Y	Boron, Total	0.2	mg/L	0.20	0.0200		

Analytical Results for Sampling Events at 700-J-200

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/28/2021	8260	2109280910A	Unknown	6.9	ug/L	NA	NA		TIC
9/28/2021	8260	2109280910A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.46	ug/L	1.0	0.200		J
9/28/2021	8260	2109280910A	2-Propanol	14	ug/L	50	3.40		J
9/28/2021	8260	2109280910A	Chloromethane	0.34	ug/L	2.0	0.280		J RB FB
9/28/2021	8260	2109280910A	Unknown	14	ug/L	NA	NA		TIC
9/28/2021	8260	2109280910A	Silane, methoxytrimethyl-	6.1	ug/L	NA	NA		TIC
9/28/2021	6850	2109280913A	Perchlorate	0.064	ug/L	0.20	0.060		J

Analytical Results for Sampling Events at BLM-10-517

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/5/2021	8260_LL	2110051440A	Trichlorofluoromethane (CFC 11)	0.33	ug/L	0.5	0.24		J
10/5/2021	8260_LL	2110051440A	Unknown	7.7	ug/L	NA	NA		TIC RB FB
10/5/2021	8260_LL	2110051440A	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.7	ug/L	0.5	0.2		

Analytical Results for Sampling Events at BLM-14-327

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
Date		Sample	Constituent	Result	Units	Limit	Limit	LIIIC	QATIAg
10/18/2021	8260	2110181410C	Trichloroethene (TCE)	75	ug/L	1	0.2		
10/18/2021	8260	2110181410C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.2	ug/L	1	0.2		
10/18/2021	8260	2110181410C	Trichlorofluoromethane (CFC 11)	95	ug/L	1	0.24		
10/18/2021	8260	2110181410C	Tetrachloroethene (PCE)	3.8	ug/L	1	0.21		
10/18/2021	8260	2110181410C	Dichlorofluoromethane (CFC 21)	0.32	ug/L	1	0.2		J
10/18/2021	8260	2110181410C	1,1,2-Trichloro-1,2,2-Trifluoroethane	370	ug/L	5	1		
10/18/2021	8260	2110181410C	cis-1,2-Dichloroethene	0.39	ug/L	1	0.23		J
10/18/2021	607	2110181412C	N-Nitrosodimethylamine	0.31	μg/L	0.0094	0.0047	53	
10/18/2021	607	2110181412C	N-Nitrodimethylamine	0.31	μg/L	0.0094	0.0047	89	
10/18/2021	607	2110181412C	Bromacil	0.89	μg/L	0.0094	0.0047	120	
10/18/2021	607	2110181413C	N-Nitrodimethylamine	0.31	μg/L	0.0095	0.0048	89	
10/18/2021	607	2110181413C	Bromacil	0.91	μ g/L	0.0095	0.0048	120	
10/18/2021	607	2110181413C	N-Nitrosodimethylamine	0.3	μg/L	0.0095	0.0048	53	

Analytical Results for Sampling Events at BLM-21-400

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
		зитри	Constituent	resure	Cints			Eme	Z111 mg
8/5/2021	8260	2108050853B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2	ug/L	1	0.2		
8/5/2021	8260	2108050853B	Dichlorofluoromethane (CFC 21)	0.61	ug/L	1	0.2		J
8/5/2021	8260	2108050853B	Tetrachloroethene (PCE)	2.4	ug/L	1	0.21		
8/5/2021	8260	2108050853B	Trichloroethene (TCE)	48	ug/L	1	0.2		
8/5/2021	8260	2108050853B	Trichlorofluoromethane (CFC 11)	79	ug/L	1	0.24		
8/5/2021	8260	2108050853B	cis-1,2-Dichloroethene	0.3	ug/L	1	0.23		J
8/5/2021	8260	2108050853B	1,1,2-Trichloro-1,2,2-Trifluoroethane	260	ug/L	5	1		
8/5/2021	607	2108050855B	Bromacil	0.55	μ g/L	0.0095	0.0048	98	
8/5/2021	607	2108050855B	N-Nitrosodimethylamine	0.4	μ g/L	0.0095	0.0048	39	
8/5/2021	607	2108050855B	N-Nitrodimethylamine	0.37	μ g/L	0.0095	0.0048	89	
8/5/2021	607	2108050856B	N-Nitrosodimethylamine	0.41	μg/L	0.0095	0.0048	39	
8/5/2021	607	2108050856B	N-Nitrodimethylamine	0.37	μ g/L	0.0095	0.0048	89	
8/5/2021	607	2108050856B	Bromacil	0.55	μg/L	0.0095	0.0048	98	

Analytical Results for Sampling Events at BLM-23-431

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/3/2021	8260	2108031420C	Dichlorofluoromethane (CFC 21)	6.9	ug/L	1	0.2		
8/3/2021	8260	2108031420C	Trichlorofluoromethane (CFC 11)	39	ug/L	1	0.24		Q
8/3/2021	8260	2108031420C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	15	ug/L	1	0.2		
8/3/2021	8260	2108031420C	1,1,2-Trichloro-1,2,2-Trifluoroethane	120	ug/L	1	0.2		Q
8/3/2021	8260	2108031420C	Trichloroethene (TCE)	53	ug/L	1	0.2		Q
8/3/2021	8260	2108031420C	1,1-Dichloroethene	0.56	ug/L	1	0.2		J
8/3/2021	8260	2108031420C	Tetrachloroethene (PCE)	1.6	ug/L	1	0.21		Q
8/3/2021	8260	2108031421C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	14	ug/L	1	0.2		
8/3/2021	8260	2108031421C	1,1,2-Trichloro-1,2,2-Trifluoroethane	120	ug/L	1	0.2		Q
8/3/2021	8260	2108031421C	Dichlorofluoromethane (CFC 21)	7	ug/L	1	0.2		
8/3/2021	8260	2108031421C	Tetrachloroethene (PCE)	1.6	ug/L	1	0.21		Q
8/3/2021	8260	2108031421C	Trichloroethene (TCE)	51	ug/L	1	0.2		Q
8/3/2021	8260	2108031421C	Trichlorofluoromethane (CFC 11)	39	ug/L	1	0.24		Q
8/3/2021	607	2108031423C	Bromacil	0.53	μg/L	0.0094	0.0047	102	
8/3/2021	607	2108031423C	N-Nitrosodimethylamine	0.23	μg/L	0.0094	0.0047	44	
8/3/2021	607	2108031423C	N-Nitrodimethylamine	0.23	$\mu g/L$	0.0094	0.0047	96	
8/3/2021	METALS	2108031424C	Molybdenum, Total	0.014	mg/L	0.025	0.003		J
8/3/2021	METALS	2108031424C	Strontium, Total	3.98	mg/L	0.1	0.002		
8/3/2021	METALS	2108031424C	Sodium, Total	53.4	mg/L	1	0.2		
8/3/2021	METALS	2108031424C	Potassium, Total	3.8	mg/L	2	0.4		
8/3/2021	METALS	2108031424C	Boron, Total	0.11	mg/L	0.2	0.02		J
8/3/2021	METALS	2108031424C	Nickel, Total	0.309	mg/L	0.04	0.003		
8/3/2021	METALS	2108031424C	Zinc, Total	0.044	mg/L	0.02	0.003		
8/3/2021	METALS	2108031424C	Magnesium, Total	73.5	mg/L	1	0.03		
8/3/2021	METALS	2108031424C	Calcium, Total	146	mg/L	1	0.3		
8/3/2021	METALS	2108031424C	Barium, Total	0.021	mg/L	0.02	0.003		
8/3/2021	METALS	2108031424C	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
8/3/2021	METALS	2108031424C	Antimony, Total	0.0032	mg/L	0.001	0.0002		
8/3/2021	METALS	2108031424C	Chromium, Total	0.023	mg/L	0.01	0.002		

Analytical Results for Sampling Events at BLM-25-455

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/3/2021	8260	2108031000B	Chloromethane	0.36	ug/L	2	0.28		J RB A
8/3/2021	METALS	2108031008B	Arsenic, Total	0.002	mg/L	0.001	0.0004		
8/3/2021	METALS	2108031008B	Nickel, Total	0.062	mg/L	0.04	0.003		
8/3/2021	METALS	2108031008B	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
8/3/2021	METALS	2108031008B	Zinc, Total	0.009	mg/L	0.02	0.003		J
8/3/2021	METALS	2108031008B	Strontium, Total	2.15	mg/L	0.1	0.002		
8/3/2021	METALS	2108031008B	Sodium, Total	28.2	mg/L	1	0.2		
8/3/2021	METALS	2108031008B	Potassium, Total	3.7	mg/L	2	0.4		
8/3/2021	METALS	2108031008B	Magnesium, Total	47.4	mg/L	1	0.03		
8/3/2021	METALS	2108031008B	Chromium, Total	0.009	mg/L	0.01	0.002		J
8/3/2021	METALS	2108031008B	Calcium, Total	81.5	mg/L	1	0.3		
8/3/2021	METALS	2108031008B	Barium, Total	0.025	mg/L	0.02	0.003		
8/3/2021	METALS	2108031008B	Boron, Total	0.08	mg/L	0.2	0.02		J
8/3/2021	METALS	2108031008B	Molybdenum, Total	0.024	mg/L	0.025	0.003		J

Analytical Results for Sampling Events at BLM-32-543

Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct	QA Flag
		Constituent	Result	Units	Limit	Limit	EIIIC	QA Flag
NDMA_LL	2108091505B	N-Nitrosodimethylamine	2.2	ng/L	0.48	0.44		FB QD
NDMA_LL	2108091505B	N-Nitrodimethylamine	0.21	ng/L	0.48	0.092		J
NDMA_LL	2108091550B	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.44		FB QD
NDMA_LL	2108091550B	N-Nitrodimethylamine	0.3	ng/L	0.48	0.091		J
8270	2108091630B	Unknown Hydrocarbon	20	ug/L	NA	NA		TIC RB
8270	2108091630B	Benzenesulfonamide, N-butyl-	2200	ug/L	NA	NA		TIC
8270	2108091630B	Unknown	4	ug/L	NA	NA		TIC
8270	2108091630B	Unknown Hydrocarbon	6.4	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown Hydrocarbon	12	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown Hydrocarbon	19	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown Hydrocarbon	26	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown Hydrocarbon	15	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown	6.2	ug/L	NA	NA		TIC RB
8270	2108091630B	Unknown Hydrocarbon	24	ug/L	NA	NA		TIC RB
ANIONS	2108091655B	Alkalinity, Total as CaCO3	184	mg/L	2	1.8		
ANIONS	2108091655B	Chloride	50.6	-	2	0.5		
ANIONS	2108091655B	Fluoride, undistilled	0.98		0.1	0.01		
ANIONS	2108091655B	Sulfate	295	_	8	1.6		
SM2540C	2108091656B	Total Dissolved Solids (TDS)	697	_	10	9		
		· · ·		_		0.06		
				_				
	Method NDMA_LL NDMA_LL NDMA_LL 8270	Method Sample NDMA_LL 2108091505B NDMA_LL 2108091505B NDMA_LL 2108091550B NDMA_LL 2108091550B 8270 2108091630B 81000 2108091630B 8270 2108091630B 8270 2108091630B 8270 2108091630B 8270 2108091655B ANIONS 2108091655B ANIONS 2108091655B ANIONS 2108091655B SM2540C 2108091656B 2108091657B	Method Sample Constituent NDMA_LL 2108091505B N-Nitrosodimethylamine NDMA_LL 2108091505B N-Nitrodimethylamine NDMA_LL 2108091550B N-Nitrosodimethylamine NDMA_LL 2108091550B N-Nitrodimethylamine 8270 2108091630B Unknown Hydrocarbon 8270 2108091630B Unknown 8270 2108091630B Unknown 8270 2108091630B Unknown Hydrocarbon 8270 2108091630B Unknown Hydrocarbon 8270 2108091630B Unknown Hydrocarbon 8270 2108091630B Unknown 8270 2108091655B Alkalinity, Total as CaCO3 ANIONS 2108091655B Chloride ANIONS 2108091655B Fluoride, undistilled ANIONS 2108091655B Total Diss	Method Sample Constituent Result NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 NDMA_LL 2108091550B N-Nitrosodimethylamine 1.6 NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 8270 2108091630B Unknown Hydrocarbon 20 8270 2108091630B Unknown 4 8270 2108091630B Unknown 4 8270 2108091630B Unknown Hydrocarbon 12 8270 2108091630B Unknown Hydrocarbon 19 8270 2108091630B Unknown Hydrocarbon 26 8270 2108091630B Unknown 6.2 8270 2108091630B Unknown 6.2 8270 2108091630B Unknown 6.2 8270 2108091630B Unknown 6.2 8270 2108091630B Unknown 50.2 8270 2108091655B Al	Method Sample Constituent Result Units NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L NDMA_LL 2108091550B N-Nitrosodimethylamine 1.6 ng/L NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 ng/L 8270 2108091630B Unknown Hydrocarbon 20 ug/L 8270 2108091630B Unknown 4 ug/L 8270 2108091630B Unknown 4 ug/L 8270 2108091630B Unknown Hydrocarbon 12 ug/L 8270 2108091630B Unknown Hydrocarbon 19 ug/L 8270 2108091630B Unknown Hydrocarbon 26 ug/L 8270 2108091630B Unknown Hydrocarbon 15 ug/L 8270 2108091630B Unknown 6.2 ug/L 8270 2108091630B Unknown 6.2 ug/L <td>Method Sample Constituent Result Units Limit NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 ng/L 0.48 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA 8270 2108091630B Unknown 4 ug/L NA 8270 2108091630B Unknown Hydrocarbon 6.4 ug/L NA 8270 2108091630B Unknown Hydrocarbon 12 ug/L NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA 8270 2108091630B Unknown 26 ug/L NA</td> <td>Method Sample Constituent Result Units Limit Limit NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 0.44 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 0.092 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 0.091 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA NA 8270 2108091630B Benzenesulfonamide, N-butyl- 2200 ug/L NA NA 8270 2108091630B Unknown 4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 12 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 6.2</td> <td>Method Sample Constituent Result Units Limit Limit Effic NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 0.44 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 0.092 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 0.44 NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 ng/L 0.48 0.091 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA NA 8270 2108091630B Unknown 4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 6.4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon</td>	Method Sample Constituent Result Units Limit NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 ng/L 0.48 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA 8270 2108091630B Unknown 4 ug/L NA 8270 2108091630B Unknown Hydrocarbon 6.4 ug/L NA 8270 2108091630B Unknown Hydrocarbon 12 ug/L NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA 8270 2108091630B Unknown 26 ug/L NA	Method Sample Constituent Result Units Limit Limit NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 0.44 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 0.092 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 0.091 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA NA 8270 2108091630B Benzenesulfonamide, N-butyl- 2200 ug/L NA NA 8270 2108091630B Unknown 4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 12 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 6.2	Method Sample Constituent Result Units Limit Limit Effic NDMA_LL 2108091505B N-Nitrosodimethylamine 2.2 ng/L 0.48 0.44 NDMA_LL 2108091505B N-Nitrodimethylamine 0.21 ng/L 0.48 0.092 NDMA_LL 2108091550B N-Nitrodimethylamine 1.6 ng/L 0.48 0.44 NDMA_LL 2108091550B N-Nitrodimethylamine 0.3 ng/L 0.48 0.091 8270 2108091630B Unknown Hydrocarbon 20 ug/L NA NA 8270 2108091630B Unknown 4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 6.4 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 19 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon 15 ug/L NA NA 8270 2108091630B Unknown Hydrocarbon

Analytical Results for Sampling Events at BLM-32-571

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
								Line	- Carring
8/9/2021	NDMA_LL	2108091510B	N-Nitrosodimethylamine	0.89	ng/L	0.48	0.44		i
8/9/2021	METALS	2108091535B	Barium, Total	0.032	mg/L	0.02	0.003		
8/9/2021	METALS	2108091535B	Boron, Total	0.1	mg/L	0.2	0.02		J
8/9/2021	METALS	2108091535B	Calcium, Total	81.2	mg/L	1	0.3		
8/9/2021	METALS	2108091535B	Copper, Total	0.026	mg/L	0.02	0.004		
8/9/2021	METALS	2108091535B	Magnesium, Total	58.2	mg/L	1	0.03		
8/9/2021	METALS	2108091535B	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/9/2021	METALS	2108091535B	Potassium, Total	3.2	mg/L	2	0.4		
8/9/2021	METALS	2108091535B	Sodium, Total	37.7	mg/L	1	0.2		
8/9/2021	METALS	2108091535B	Strontium, Total	1.99	mg/L	0.1	0.002		
8/9/2021	METALS	2108091535B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
8/9/2021	METALS	2108091535B	Zinc, Total	0.129	mg/L	0.02	0.003		
8/9/2021	METALS	2108091535B	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
8/9/2021	ANIONS	2108091555B	Alkalinity, Total as CaCO3	182	mg/L	2	1.8		
8/9/2021	ANIONS	2108091555B	Sulfate	280	mg/L	8	1.6		
8/9/2021	ANIONS	2108091555B	Chloride	47	mg/L	2	0.5		
8/9/2021	ANIONS	2108091555B	Fluoride, undistilled	0.98	mg/L	0.1	0.01		
8/9/2021	SM2540C	2108091556B	Total Dissolved Solids (TDS)	661	mg/L	10	9		
8/9/2021	6850	2108091557B	Perchlorate	0.47	ug/L	0.2	0.06		
8/9/2021	353.2	2108091558B	Nitrate+Nitrite as Nitrogen	1.64	mg/L	0.05	0.002		

Analytical Results for Sampling Events at BLM-32-632

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/9/2021	NDMA_LL	2108091515B	N-Nitrosodimethylamine	0.59	ng/L	0.48	0.44		
8/9/2021	METALS	2108091542B	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/9/2021		2108091542B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
8/9/2021	METALS	2108091542B	Strontium, Total	2.01	mg/L	0.1	0.002		
8/9/2021	METALS	2108091542B	Boron, Total	0.1	mg/L	0.2	0.02		J
8/9/2021	METALS	2108091542B	Sodium, Total	37.6	mg/L	1	0.2		
8/9/2021	METALS	2108091542B	Zinc, Total	0.099	mg/L	0.02	0.003		QD
8/9/2021	METALS	2108091542B	Potassium, Total	3.2	mg/L	2	0.4		
8/9/2021	METALS	2108091542B	Magnesium, Total	57.8	mg/L	1	0.03		
8/9/2021	METALS	2108091542B	Lead, Total	0.004	mg/L	0.05	0.003		J
8/9/2021	METALS	2108091542B	Calcium, Total	81.4	mg/L	1	0.3		
8/9/2021	METALS	2108091542B	Barium, Total	0.038	mg/L	0.02	0.003		
8/9/2021	METALS	2108091542B	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
8/9/2021	METALS	2108091542B	Copper, Total	0.056	mg/L	0.02	0.004		
8/9/2021	METALS	2108091542B	Manganese, Total	0.009	mg/L	0.01	0.004		J
8/9/2021	METALS	2108091615B	Manganese, Total	0.009	mg/L	0.01	0.004		J
8/9/2021	METALS	2108091615B	Zinc, Total	0.073	mg/L	0.02	0.003		QD
8/9/2021	METALS	2108091615B	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
8/9/2021	METALS	2108091615B	Strontium, Total	2.02	mg/L	0.1	0.002		
8/9/2021	METALS	2108091615B	Sodium, Total	37.5	mg/L	1	0.2		
8/9/2021	METALS	2108091615B	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/9/2021	METALS	2108091615B	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
8/9/2021	METALS	2108091615B	Lead, Total	0.004	mg/L	0.05	0.003		J
8/9/2021	METALS	2108091615B	Copper, Total	0.055	mg/L	0.02	0.004		
8/9/2021	METALS	2108091615B	Calcium, Total	80.8	mg/L	1	0.3		
8/9/2021	METALS	2108091615B	Boron, Total	0.1	mg/L	0.2	0.02		J
8/9/2021	METALS	2108091615B	Barium, Total	0.038	mg/L	0.02	0.003		
8/9/2021	METALS	2108091615B	Magnesium, Total	57.6	mg/L	1	0.03		
8/9/2021	METALS	2108091615B	Potassium, Total	3.2	mg/L	2	0.4		
8/9/2021	ANIONS	2108091616B	Alkalinity, Total as CaCO3	180	mg/L	2	1.8		
8/9/2021		2108091616B	Sulfate	272	mg/L	8	1.6		
8/9/2021		2108091616B	Chloride	50.3	mg/L	2	0.5		
8/9/2021		2108091616B	Fluoride, undistilled	0.99	mg/L	0.1	0.01		
8/9/2021	SM2540C	2108091617B	Total Dissolved Solids (TDS)	704	mg/L	10	9		
8/9/2021	6850	2108091618B	Perchlorate	0.63	ug/L	0.2	0.06		
8/9/2021	353.2	2108091619B	Nitrate+Nitrite as Nitrogen	1.75	mg/L	0.05	0.002		

Analytical Results for Sampling Events at BLM-39-385

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/7/2021	8260	2110071520Y	Trichlorofluoromethane (CFC 11)	81	ug/L	1	0.24		
10/7/2021	8260	2110071520Y	Trichloroethene (TCE)	180	ug/L	1	0.2		
10/7/2021	8260	2110071520Y	Unknown	6.6	ug/L	NA	NA		TIC RB EB
10/7/2021	8260	2110071520Y	Tetrachloroethene (PCE)	6.8	ug/L	1	0.21		
10/7/2021	8260	2110071520Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	120	ug/L	1	0.2		
10/7/2021	8260	2110071520Y	Dichlorofluoromethane (CFC 21)	1.3	ug/L	1	0.2		
10/7/2021	8260	2110071520Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		EB
10/7/2021	607	2110120835Y	N-Nitrosodimethylamine	3.2	μg/L	0.0094	0.0047	58	
10/7/2021	607	2110120835Y	N-Nitrodimethylamine	1.7	μg/L	0.0094	0.0047	101	
10/7/2021	607	2110120835Y	Bromacil	0.5	μg/L	0.0094	0.0047	132	

Analytical Results for Sampling Events at BLM-39-560

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/7/2021	8260	2110071258Y	Dichlorofluoromethane (CFC 21)	5.8	ug/L	1	0.2		QD
10/7/2021	8260	2110071258Y	Unknown	6.3	ug/L	NA	NA		TIC RB EB
10/7/2021	8260	2110071258Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	8.6	ug/L	1	0.2		QD
10/7/2021	8260	2110071258Y	Vinyl Chloride	0.37	ug/L	1	0.2		J
10/7/2021	8260	2110071258Y	Trichlorofluoromethane (CFC 11)	3.4	ug/L	1	0.24		QD
10/7/2021	8260	2110071258Y	Tetrachloroethene (PCE)	0.41	ug/L	1	0.21		J
10/7/2021	8260	2110071258Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	11	ug/L	1	0.2		QD
10/7/2021	8260	2110071258Y	Trichloroethene (TCE)	12	ug/L	1	0.2		
10/7/2021	8260	2110071259Y	Trichlorofluoromethane (CFC 11)	2.4	ug/L	1	0.24		QD
10/7/2021	8260	2110071259Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	7.1	ug/L	1	0.2		QD
10/7/2021	8260	2110071259Y	Unknown	6.6	ug/L	NA	NA		TIC RB EB
10/7/2021	8260	2110071259Y	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	5.5	ug/L	1	0.2		QD
10/7/2021	8260	2110071259Y	Trichloroethene (TCE)	9.5	ug/L	1	0.2		
10/7/2021	8260	2110071259Y	Dichlorofluoromethane (CFC 21)	4.3	ug/L	1	0.2		QD
10/7/2021	8260	2110071259Y	Tetrachloroethene (PCE)	0.32	ug/L	1	0.21		J
10/7/2021	607	2110071300Y	N-Nitrosodimethylamine	0.012	μg/L	0.0095	0.0048	56	

Analytical Results for Sampling Events at BLM-40-517

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/4/2021	8260_LL	2110041420A	2-Propanol	5.6	ug/L	40	3.4		J RB
10/4/2021	8260_LL	2110041420A	Unknown	6.5	ug/L	NA	NA		TIC RB FB
10/4/2021	NDMA LL	2110041423A	N-Nitrosodimethylamine	0.48	ng/L	0.47	0.4		

Event	Analysis Method	C1-	Constituent	D14	TT *4	Quant	Det	Xtrct	OA Ela
Date	Wicthou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/4/2021	8260_LL	2110041000A	Unknown	7.5	ug/L	NA	NA		TIC RB TB FB
10/4/2021	METALS	2110041007A	Barium, Total	0.023	mg/L	0.02	0.003		
10/4/2021	METALS	2110041007A	Potassium, Total	3.8	mg/L	2	0.4		
10/4/2021	METALS	2110041007A	Zinc, Total	0.004	mg/L	0.02	0.003		J
10/4/2021	METALS	2110041007A	Vanadium, Total	0.018	mg/L	0.05	0.0007		J
10/4/2021	METALS	2110041007A	Strontium, Total	0.92	mg/L	0.1	0.002		
10/4/2021	METALS	2110041007A	Sodium, Total	92.9	mg/L	1	0.2		
10/4/2021	METALS	2110041007A	Magnesium, Total	8.9	mg/L	1	0.03		
10/4/2021	METALS	2110041007A	Arsenic, Total	0.0022	mg/L	0.001	0.0004		
10/4/2021	METALS	2110041007A	Boron, Total	0.11	mg/L	0.2	0.02		J
10/4/2021	METALS	2110041007A	Calcium, Total	24.3	mg/L	1	0.3		
10/4/2021	METALS	2110041007A	Molybdenum, Total	0.022	mg/L	0.025	0.003		J

Event	Analysis Method	Commle	Constituent	D a sult	TI\$4 a	Quant	Det	Xtrct	OA Elec
Date	Wicthou	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/5/2021	8260_LL	2110050940A	1,2-Dichloroethane	1.1	ug/L	0.5	0.2		
10/5/2021	8260_LL	2110050940A	Unknown	7.2	ug/L	NA	NA		TIC RB TB FB
10/5/2021	METALS	2110050946A	Nickel, Total	0.017	mg/L	0.04	0.003		J
10/5/2021	METALS	2110050946A	Zinc, Total	0.666	mg/L	0.02	0.003		
10/5/2021	METALS	2110050946A	Vanadium, Total	0.008	mg/L	0.05	0.0007		J
10/5/2021	METALS	2110050946A	Thallium, Total	0.00006	mg/L	0.001	0.00004		J
10/5/2021	METALS	2110050946A	Strontium, Total	0.78	mg/L	0.1	0.002		
10/5/2021	METALS	2110050946A	Potassium, Total	3	mg/L	2	0.4		
10/5/2021	METALS	2110050946A	Molybdenum, Total	0.11	mg/L	0.025	0.003		
10/5/2021	METALS	2110050946A	Antimony, Total	0.0013	mg/L	0.001	0.0002		
10/5/2021	METALS	2110050946A	Magnesium, Total	6	mg/L	1	0.03		
10/5/2021	METALS	2110050946A	Sodium, Total	131	mg/L	1	0.2		
10/5/2021	METALS	2110050946A	Calcium, Total	27.7	mg/L	1	0.3		
10/5/2021	METALS	2110050946A	Boron, Total	0.15	mg/L	0.2	0.02		J
10/5/2021	METALS	2110050946A	Barium, Total	0.034	mg/L	0.02	0.003		
10/5/2021	METALS	2110050946A	Arsenic, Total	0.0028	mg/L	0.001	0.0004		
10/5/2021	METALS	2110050946A	Manganese, Total	0.025	mg/L	0.01	0.004		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/18/2021	607	2110181017C	Bromacil	0.015	μg/L	0.0095	0.0048	120	
10/18/2021	NDMA_LL	2110181018C	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.4		QD FB
10/18/2021	NDMA_LL	2110181019C	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		QD FB
10/18/2021	METALS	2110181021C	Potassium, Total	4.2	mg/L	2	0.4		
10/18/2021	METALS	2110181021C	Vanadium, Total	0.0008	mg/L	0.05	0.0007		J
10/18/2021	METALS	2110181021C	Thallium, Total	0.00008	mg/L	0.001	0.00004		J
10/18/2021	METALS	2110181021C	Barium, Total	0.061	mg/L	0.02	0.003		
10/18/2021	METALS	2110181021C	Strontium, Total	2.61	mg/L	0.1	0.002		
10/18/2021	METALS	2110181021C	Zinc, Total	0.007	mg/L	0.02	0.003		J
10/18/2021	METALS	2110181021C	Sodium, Total	37.1	mg/L	1	0.2		
10/18/2021	METALS	2110181021C	Magnesium, Total	67.8	mg/L	1	0.03		
10/18/2021	METALS	2110181021C	Cobalt, Total	0.002	mg/L	0.05	0.0009		J
10/18/2021	METALS	2110181021C	Boron, Total	0.07	mg/L	0.2	0.02		J
10/18/2021	METALS	2110181021C	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
10/18/2021	METALS	2110181021C	Antimony, Total	0.0005	mg/L	0.001	0.0002		J
10/18/2021	METALS	2110181021C	Molybdenum, Total	0.016	mg/L	0.025	0.003		J
10/18/2021	METALS	2110181021C	Calcium, Total	104	mg/L	1	0.3		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/19/2021	8260_LL	2110191435C	1,2-Dichloroethane	0.84	ug/L	0.5	0.2		
10/19/2021	NDMA_LL	2110191438C	N-Nitrosodimethylamine	0.84	ng/L	0.48	0.4		TB FB
10/19/2021	METALS	2110191440C	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
10/19/2021	METALS	2110191440C	Chromium, Total	0.004	mg/L	0.01	0.002		J
10/19/2021	METALS	2110191440C	Calcium, Total	89.8	mg/L	1	0.3		
10/19/2021	METALS	2110191440C	Boron, Total	0.1	mg/L	0.2	0.02		J
10/19/2021	METALS	2110191440C	Barium, Total	0.065	mg/L	0.02	0.003		
10/19/2021	METALS	2110191440C	Arsenic, Total	0.0029	mg/L	0.001	0.0004		
10/19/2021	METALS	2110191440C	Strontium, Total	2.11	mg/L	0.1	0.002		
10/19/2021	METALS	2110191440C	Potassium, Total	6.7	mg/L	2	0.4		
10/19/2021	METALS	2110191440C	Manganese, Total	0.084	mg/L	0.01	0.004		QD
10/19/2021	METALS	2110191440C	Magnesium, Total	49.8	mg/L	1	0.03		
10/19/2021	METALS	2110191440C	Sodium, Total	72.6	mg/L	1	0.2		
10/19/2021	METALS	2110191441C	Barium, Total	0.066	mg/L	0.02	0.003		
10/19/2021	METALS	2110191441C	Sodium, Total	73.3	mg/L	1	0.2		
10/19/2021	METALS	2110191441C	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
10/19/2021	METALS	2110191441C	Potassium, Total	6.8	mg/L	2	0.4		
10/19/2021	METALS	2110191441C	Strontium, Total	2.15	mg/L	0.1	0.002		
10/19/2021	METALS	2110191441C	Magnesium, Total	50.5	mg/L	1	0.03		
10/19/2021	METALS	2110191441C	Boron, Total	0.1	mg/L	0.2	0.02		J
10/19/2021	METALS	2110191441C	Arsenic, Total	0.0033	mg/L	0.001	0.0004		
10/19/2021	METALS	2110191441C	Manganese, Total	0.109	mg/L	0.01	0.004		QD
10/19/2021	METALS	2110191441C	Calcium, Total	90.8	mg/L	1	0.3		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/7/2021	607	2109070922C	Bromacil	0.047	μg/L	0.0097	0.0049	105	
9/7/2021	NDMA_LL	2109070923C	N-Nitrosodimethylamine	1.6	ng/L	0.47	0.4		RB * TB FB
9/7/2021	8270	2109070925C	Unknown Hydrocarbon	4.5	ug/L	NA	NA		TIC
9/7/2021	8270	2109070925C	Unknown Hydrocarbon	5.8	ug/L	NA	NA		TIC
9/7/2021	8270	2109070925C	Unknown Hydrocarbon	7.2	ug/L	NA	NA		TIC
9/7/2021	8270	2109070925C	Unknown Hydrocarbon	6.3	ug/L	NA	NA		TIC
9/7/2021	8270	2109070925C	Unknown Hydrocarbon	8.1	ug/L	NA	NA		TIC
9/7/2021	METALS	2109070926C	Potassium, Total	5.4	mg/L	2	0.4		
9/7/2021	METALS	2109070926C	Vanadium, Total	0.014	mg/L	0.05	0.0007		J
9/7/2021	METALS	2109070926C	Strontium, Total	1.65	mg/L	0.1	0.002		
9/7/2021	METALS	2109070926C	Sodium, Total	43.7	mg/L	1	0.2		
9/7/2021	METALS	2109070926C	Barium, Total	0.033	mg/L	0.02	0.003		
9/7/2021	METALS	2109070926C	Molybdenum, Total	0.017	mg/L	0.025	0.003		J
9/7/2021	METALS	2109070926C	Magnesium, Total	29.2	mg/L	1	0.03		
9/7/2021	METALS	2109070926C	Boron, Total	0.09	mg/L	0.2	0.02		J
9/7/2021	METALS	2109070926C	Arsenic, Total	0.0016	mg/L	0.001	0.0004		
9/7/2021	METALS	2109070926C	Calcium, Total	44.6	mg/L	1	0.3		
9/7/2021	ANIONS	2109070927C	Alkalinity, Total as CaCO3	180	mg/L	2	1.8		
9/7/2021	ANIONS	2109070927C	Chloride	18.6	mg/L	2	0.5		
9/7/2021	ANIONS	2109070927C	Fluoride, undistilled	0.59	mg/L	0.1	0.01		
9/7/2021	ANIONS	2109070927C	Sulfate	117	mg/L	4	0.8		
9/7/2021	SM2540C	2109070928C	Total Dissolved Solids (TDS)	405	mg/L	10	9		
9/7/2021	6850	2109070929C	Perchlorate	0.28	ug/L	0.2	0.06		
9/7/2021	353.2	2109070930C	Nitrate+Nitrite as Nitrogen	1.11	mg/L	0.05	0.002		

Event	Analysis					Quant	Det	Xtrct	0.1.77
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/7/2021	607	2109071455C	Bromacil	0.01	μg/L	0.0094	0.0047	105	
9/7/2021	NDMA_LL	2109071457C	N-Nitrosodimethylamine	1.5	ng/L	0.47	0.4		RB * FB
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	10	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	17	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	22	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	20	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	17	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	11	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Unknown Hydrocarbon	5.4	ug/L	NA	NA		TIC
9/7/2021	8270	2109071459C	Bis(2-ethylhexyl) Phthalate	5.6	ug/L	4.7	3.9		
9/7/2021	METALS	2109071500C	Magnesium, Total	28.7	mg/L	1	0.03		
9/7/2021	METALS	2109071500C	Vanadium, Total	0.015	mg/L	0.05	0.0007		J
9/7/2021	METALS	2109071500C	Strontium, Total	1.62	mg/L	0.1	0.002		
9/7/2021	METALS	2109071500C	Sodium, Total	43.6	mg/L	1	0.2		
9/7/2021	METALS	2109071500C	Molybdenum, Total	0.016	mg/L	0.025	0.003		J
9/7/2021	METALS	2109071500C	Calcium, Total	43.7	mg/L	1	0.3		
9/7/2021	METALS	2109071500C	Boron, Total	0.09	mg/L	0.2	0.02		J
9/7/2021	METALS	2109071500C	Barium, Total	0.032	mg/L	0.02	0.003		
9/7/2021	METALS	2109071500C	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
9/7/2021	METALS	2109071500C	Potassium, Total	5.3	mg/L	2	0.4		
9/7/2021	ANIONS	2109071501C	Alkalinity, Total as CaCO3	181	mg/L	2	1.8		
9/7/2021	ANIONS	2109071501C	Chloride	18.1	mg/L	2	0.5		
9/7/2021	ANIONS	2109071501C	Fluoride, undistilled	0.59	mg/L	0.1	0.01		
9/7/2021	ANIONS	2109071501C	Sulfate	114	mg/L	4	0.8		
9/7/2021	SM2540C	2109071502C	Total Dissolved Solids (TDS)	399	mg/L	10	9		
9/7/2021	6850	2109071503C	Perchlorate	0.24	ug/L	0.2	0.06		
9/7/2021	353.2	2109071504C	Nitrate+Nitrite as Nitrogen	1.11	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/20/2021	8260	2109201005C	1,1,2-Trichloro-1,2,2-Trifluoroethane	10	ug/L	1	0.2		
9/20/2021	8260	2109201005C	Trichlorofluoromethane (CFC 11)	19	ug/L	1	0.24		
9/20/2021	8260	2109201005C	Trichloroethene (TCE)	28	ug/L	1	0.2		
9/20/2021	8260	2109201005C	Tetrachloroethene (PCE)	0.82	ug/L	1	0.21		J
9/20/2021	8260	2109201005C	Chloromethane	0.67	ug/L	2	0.28		J RB A TB FB
9/20/2021	607	2109201007C	N-Nitrosodimethylamine	0.11	$\mu g/L$	0.0094	0.0047	54	
9/20/2021	607	2109201007C	N-Nitrodimethylamine	0.066	μ g/L	0.0094	0.0047	99.4	
9/20/2021	607	2109201007C	Bromacil	0.0075	μg/L	0.0094	0.0047	130.4	J
9/20/2021	METALS	2109201008C	Strontium, Total	2.32	mg/L	0.1	0.002		
9/20/2021	METALS	2109201008C	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J
9/20/2021	METALS	2109201008C	Sodium, Total	36.8	mg/L	1	0.2		
9/20/2021	METALS	2109201008C	Potassium, Total	3.1	mg/L	2	0.4		
9/20/2021	METALS	2109201008C	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
9/20/2021	METALS	2109201008C	Calcium, Total	111	mg/L	1	0.3		
9/20/2021	METALS	2109201008C	Boron, Total	0.07	mg/L	0.2	0.02		J
9/20/2021	METALS	2109201008C	Barium, Total	0.034	mg/L	0.02	0.003		
9/20/2021	METALS	2109201008C	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
9/20/2021	METALS	2109201008C	Magnesium, Total	63.9	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/15/2021	8260	2110150910C	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	ug/L	1	0.2		
10/15/2021	8260	2110150910C	Trichloroethene (TCE)	2.2	ug/L	1	0.2		
10/15/2021	8260	2110150910C	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.31	ug/L	1	0.2		J
10/15/2021	NDMA_LL	2110150912C	N-Nitrosodimethylamine	0.41	ng/L	0.48	0.4		J

Analyti	Analytical Results for Sampling Events at BLM-7-509									
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
9/1/2021	NDMA_LL	2109091005B	N-Nitrosodimethylamine	0.55	ng/L	0.48	0.4		RB TB FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/2/2021	8260	2109021030C	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
9/2/2021	8260	2109021030C	Trichlorofluoromethane (CFC 11)	3.2	ug/L	1	0.24		
9/2/2021	8260	2109021030C	1,1,2-Trichloro-1,2,2-Trifluoroethane	7.5	ug/L	1	0.2		
9/2/2021	8260	2109021031C	1,1,2-Trichloro-1,2,2-Trifluoroethane	7.1	ug/L	1	0.2		
9/2/2021	8260	2109021031C	Tetrachloroethene (PCE)	0.24	ug/L	1	0.21		J
9/2/2021	8260	2109021031C	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
9/2/2021	8260	2109021031C	Trichlorofluoromethane (CFC 11)	3.3	ug/L	1	0.24		
9/2/2021	607	2109021033C	N-Nitrosodimethylamine	0.0086	μg/L	0.0095	0.0048	42	J
9/2/2021	607	2109021033C	Bromacil	0.065	μg/L	0.0095	0.0048	78	RB QD
9/2/2021	607	2109021033C	N-Nitrodimethylamine	0.0057	μg/L	0.0095	0.0048	75	J
9/2/2021	607	2109021034C	N-Nitrosodimethylamine	0.0075	μg/L	0.0094	0.0047	42	J
9/2/2021	607	2109021034C	N-Nitrodimethylamine	0.0057	μg/L	0.0094	0.0047	75	J
9/2/2021	607	2109021034C	Bromacil	0.0094	μg/L	0.0094	0.0047	78	RB QD
9/2/2021	METALS	2109021035C	Strontium, Total	2.38	mg/L	0.1	0.002		
9/2/2021	METALS	2109021035C	Zinc, Total	0.028	mg/L	0.02	0.003		
9/2/2021	METALS	2109021035C	Sodium, Total	28.2	mg/L	1	0.2		
9/2/2021	METALS	2109021035C	Potassium, Total	3.6	mg/L	2	0.4		
9/2/2021	METALS	2109021035C	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
9/2/2021	METALS	2109021035C	Calcium, Total	108	mg/L	1	0.3		
9/2/2021	METALS	2109021035C	Boron, Total	0.08	mg/L	0.2	0.02		J
9/2/2021	METALS	2109021035C	Barium, Total	0.046	mg/L	0.02	0.003		
9/2/2021	METALS	2109021035C	Arsenic, Total	0.0012	mg/L	0.001	0.0004		
9/2/2021	METALS	2109021035C	Magnesium, Total	56.8	mg/L	1	0.03		

Part Method Sample Constituent Result Units Limit Limit Effic QA Flag	Event	Analysis	G .			T T 1.	Quant	Det	Xtrct	0.4 51
99/2021 8260 2109090815B 1,1,2-Trichloro-1,2,2-Trifluorocthane 56 ug/L 1 0,2	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
99/2021 8260 2109090815B 1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a) 2,2 ug/L 1 0,2	9/9/2021	8260	2109090815B	Trichlorofluoromethane (CFC 11)	190	ug/L	1	0.24		
99/2021 8260 2109909815B Trichlorothenc (TCE) 1.1 ug/L 1 0.2	9/9/2021	8260	2109090815B	1,1,2-Trichloro-1,2,2-Trifluoroethane	56	ug/L	1	0.2		
99/2021 8260 2109090815B Dichlorofluoromethane (CFC 21) 3.7 ug/L 1 0.2	9/9/2021	8260	2109090815B	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.2	ug/L	1	0.2		
9/9/2021 607 2109090817B N-Nitrodimethylamine 5.5 μg/L 0.0096 0.0048 140 9/9/2021 607 2109090817B Bromacil 4 μg/L 0.0096 0.0048 140 9/9/2021 607 2109090817B N-Nitrodimethylamine 6.1 μg/L 0.0096 0.0048 58 9/9/2021 METALS 2109090818B N-Nitrodimethylamine 6.1 μg/L 0.0096 0.0048 58 9/9/2021 METALS 2109090818B Antimony, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090818B Antimony, Total 0.0005 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090818B Barium, Total 0.0090 mg/L 0.001 0.0004 J 9/9/2021 METALS 2109090818B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090818B Magnesium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Strontium, Total 0.298 mg/L 0.2 0.02 9/9/2021 METALS 2109090818B Strontium, Total 0.23 mg/L 0.2 0.003 J 9/9/2021 METALS 2109090818B Strontium, Total 0.23 mg/L 0.2 0.003 J 9/9/2021 METALS 2109090818B Strontium, Total 0.298 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.090 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magne	9/9/2021	8260	2109090815B	Trichloroethene (TCE)	1.1	ug/L	1	0.2		
9/9/2021 607 2109090817B Bromacil 4 μg/L 0.0096 0.0048 140 9/9/2021 607 2109090817B N-Nitrosodimethylamine 6.1 μg/L 0.0096 0.0048 58 9/9/2021 METALS 2109090818B Calcium, Total 0.0005 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090818B Arisenic, Total 0.0009 mg/L 0.001 0.0004 J 9/9/2021 METALS 2109090818B Barium, Total 0.0037 mg/L 0.02 0.003 9/9/2021 METALS 2109090818B Barium, Total 0.004 mg/L 0.01 0.0002 J 9/9/2021 METALS 2109090818B Barium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Scioulim, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Scrontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Bron, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Bron, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Bron, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 210909081B Bron, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Potassium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Scioum, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.000 mg/L 0.002 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.000 mg/L 0.000 0.0000 J 9/9/2021 METALS 2109090819B Magnesium, Total	9/9/2021	8260	2109090815B	Dichlorofluoromethane (CFC 21)	3.7	ug/L	1	0.2		
9/9/2021 METALS 2109090818B Calcium, Total 0.0009 mg/L 0.001 0.0004	9/9/2021	607	2109090817B	N-Nitrodimethylamine	5.5	μg/L	0.0096	0.0048	102.6	
9/9/2021 METALS 2109090818B Calcium, Total 0.0005 mg/L 0.001 0.0002 J	9/9/2021	607	2109090817B	Bromacil	4	μg/L	0.0096	0.0048	140	
9/9/2021 METALS 2109090818B Arismony, Total 0.0005 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090818B Arsenic, Total 0.0009 mg/L 0.001 0.0004 J 9/9/2021 METALS 2109090818B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090818B Chromium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Sodium, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Soron, Total 0.031 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Soron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Soron, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 mg/L 0.000 0.000 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 mg/L 0.000 0.000 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 mg/L 0.000 0.000 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 J 9/9/2021 METALS 2109090819B Boron, Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	9/9/2021	607	2109090817B	N-Nitrosodimethylamine	6.1	μg/L	0.0096	0.0048	58	
9/9/2021 METALS 2109090818B Arsenic, Total 0.0009 mg/L 0.001 0.0004 J 9/9/2021 METALS 2109090818B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090818B Chromium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 68.2 mg/L 1 0.03 9/9/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 1 0.2 9/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 1 0.02 9/9/2021 METALS 2109090818B Strontium, Total 0.011 mg/L 0.02 9/9/2021 METALS 2109090818B Strontium, Total 0.011 mg/L 0.02 9/9/2021 METALS 2109090818B Strontium, Total 0.011 mg/L 0.02 9/9/2021 METALS 2109090818B Boron, Total 0.011 mg/L 0.02 9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.00 9/9/2021 METALS 2109090819B Potassium, Total 0.03 mg/L 0.2 0.00 9/9/2021 METALS 2109090819B Sodium, Total 0.000 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 0.006 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Boron, Total 0.002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Boron, Total 0.002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Boron, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.002 mg/L 0.002 0.003	9/9/2021	METALS	2109090818B	Calcium, Total	104	mg/L	1	0.3		
99/2021 METALS 2109090818B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090818B Chromium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 0.011 mg/L 1 0.03 9/9/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 2.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.02 9/9/2021 METALS 2109090818B Strontium, Total 0.23 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Cinc, Total 0.009 mg/L 0.2 0.02 9/9/2021 METALS	9/9/2021	METALS	2109090818B	Antimony, Total	0.0005	mg/L	0.001	0.0002		J
99/2021 METALS 2109090818B Chromium, Total 0.004 mg/L 0.01 0.002 J 9/9/2021 METALS 2109090818B Magnesium, Total 68.2 mg/L 1 0.03 9/9/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Sodium, Total 2.98 mg/L 0.1 0.02 9/9/2021 METALS 2109090818B Siron tium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Bron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Sodium, Total 9.89 mg/L 0.02 0.003 J 9/9/2021	9/9/2021	METALS	2109090818B	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
99/9/2021 METALS 2109090818B Magnesium, Total 68.2 mg/L 1 0.03 9/9/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 0.1 0.02 9/9/2021 METALS 2109090818B Storium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Since, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Sciling, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J	9/9/2021	METALS	2109090818B	Barium, Total	0.037	mg/L	0.02	0.003		
99/2021 METALS 2109090818B Molybdenum, Total 0.011 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 9/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 1 0.2 9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Size, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J	9/9/2021	METALS	2109090818B	Chromium, Total	0.004	mg/L	0.01	0.002		J
99/9/2021 METALS 2109090818B Potassium, Total 3.1 mg/L 2 0.4 99/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 1 0.2 9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Zinc, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.02 0.003 J 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 9.89 mg/L 1 0.2 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 0.03 3 9	9/9/2021	METALS	2109090818B	Magnesium, Total	68.2	mg/L	1	0.03		
9/9/2021 METALS 2109090818B Sodium, Total 98.6 mg/L 1 0.2 9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Zinc, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 104 mg/L 1 0.3 9/9/2021	9/9/2021	METALS	2109090818B	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
9/9/2021 METALS 2109090818B Strontium, Total 2.98 mg/L 0.1 0.002 9/9/2021 METALS 2109090818B Zinc, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021	9/9/2021	METALS	2109090818B	Potassium, Total	3.1	mg/L	2	0.4		
9/9/2021 METALS 2109090818B Zinc, Total 0.011 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	9/9/2021	METALS	2109090818B	Sodium, Total	98.6	mg/L	1	0.2		
9/9/2021 METALS 2109090818B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Boron, Total 10.4 mg/L 1 0.3 9/9/2021 METALS 2109090819B Antimony, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021	9/9/2021	METALS	2109090818B	Strontium, Total	2.98	mg/L	0.1	0.002		
9/9/2021 METALS 2109090819B Potassium, Total 3 mg/L 2 0.4 9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.02 0.003	9/9/2021	METALS	2109090818B	Zinc, Total	0.011	mg/L	0.02	0.003		J
9/9/2021 METALS 2109090819B Zinc, Total 0.009 mg/L 0.02 0.003 J 9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090818B	Boron, Total	0.23	mg/L	0.2	0.02		
9/9/2021 METALS 2109090819B Sodium, Total 98.9 mg/L 1 0.2 9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.01 0.002	9/9/2021	METALS	2109090819B	Potassium, Total	3	mg/L	2	0.4		
9/9/2021 METALS 2109090819B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Zinc, Total	0.009	mg/L	0.02	0.003		J
9/9/2021 METALS 2109090819B Magnesium, Total 67.1 mg/L 1 0.03 9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Sodium, Total	98.9	mg/L	1	0.2		
9/9/2021 METALS 2109090819B Calcium, Total 104 mg/L 1 0.3 9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
9/9/2021 METALS 2109090819B Boron, Total 0.23 mg/L 0.2 0.02 9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Magnesium, Total	67.1	mg/L	1	0.03		
9/9/2021 METALS 2109090819B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Calcium, Total	104	mg/L	1	0.3		
9/9/2021 METALS 2109090819B Barium, Total 0.037 mg/L 0.02 0.003 9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Boron, Total	0.23	mg/L	0.2	0.02		
9/9/2021 METALS 2109090819B Strontium, Total 3.02 mg/L 0.1 0.002	9/9/2021	METALS	2109090819B	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
	9/9/2021	METALS	2109090819B	Barium, Total	0.037	mg/L	0.02	0.003		
9/9/2021 METALS 2109090819B Arsenic, Total 0.0006 mg/L 0.001 0.0004 J	9/9/2021	METALS	2109090819B	Strontium, Total	3.02	mg/L	0.1	0.002		
,	9/9/2021	METALS	2109090819B	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
9/9/2021 METALS 2109090819B Chromium, Total 0.004 mg/L 0.01 0.002 J	9/9/2021	METALS	2109090819B	Chromium, Total	0.004	mg/L	0.01	0.002		J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/19/2021	8260	2110191050C	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.4	ug/L	1	0.2		Q
10/19/2021	8260	2110191050C	Trichlorofluoromethane (CFC 11)	0.32	ug/L	1	0.24		J Q
10/19/2021	8260	2110191051C	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.4	ug/L	1	0.2		Q
10/19/2021	8260	2110191051C	Trichlorofluoromethane (CFC 11)	0.33	ug/L	1	0.24		J Q
10/19/2021	607	2110191053C	Bromacil	0.28	μg/L	0.0094	0.0047	111	
10/19/2021	METALS	2110191054C	Molybdenum, Total	0.034	mg/L	0.025	0.003		
10/19/2021	METALS	2110191054C	Iron, Total	1.79	mg/L	0.1	0.07		
10/19/2021	METALS	2110191054C	Zinc, Total	0.008	mg/L	0.02	0.003		J
10/19/2021	METALS	2110191054C	Vanadium, Total	0.0007	mg/L	0.05	0.0007		J
10/19/2021	METALS	2110191054C	Strontium, Total	7.51	mg/L	0.1	0.002		
10/19/2021	METALS	2110191054C	Sodium, Total	136	mg/L	1	0.2		
10/19/2021	METALS	2110191054C	Potassium, Total	2.6	mg/L	2	0.4		
10/19/2021	METALS	2110191054C	Nickel, Total	0.853	mg/L	0.04	0.003		
10/19/2021	METALS	2110191054C	Magnesium, Total	87	mg/L	1	0.03		
10/19/2021	METALS	2110191054C	Antimony, Total	0.0004	mg/L	0.001	0.0002		J
10/19/2021	METALS	2110191054C	Chromium, Total	0.337	mg/L	0.01	0.002		
10/19/2021	METALS	2110191054C	Calcium, Total	264	mg/L	10	3		
10/19/2021	METALS	2110191054C	Boron, Total	0.09	mg/L	0.2	0.02		J
10/19/2021	METALS	2110191054C	Barium, Total	0.027	mg/L	0.02	0.003		
10/19/2021	METALS	2110191054C	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
10/19/2021	METALS	2110191054C	Manganese, Total	0.006	mg/L	0.01	0.004		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
	0260	-						Line	
9/20/2021	8260	2109201450C	Chloromethane	0.48	ug/L	2	0.28		J RB A FB
9/20/2021	METALS	2109201454C	Magnesium, Total	23.9	mg/L	1	0.03		
9/20/2021	METALS	2109201454C	Zinc, Total	0.028	mg/L	0.02	0.003		
9/20/2021	METALS	2109201454C	Strontium, Total	3.06	mg/L	0.1	0.002		
9/20/2021	METALS	2109201454C	Sodium, Total	98.6	mg/L	1	0.2		
9/20/2021	METALS	2109201454C	Potassium, Total	1.9	mg/L	2	0.4		J
9/20/2021	METALS	2109201454C	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
9/20/2021	METALS	2109201454C	Chromium, Total	0.002	mg/L	0.01	0.002		J
9/20/2021	METALS	2109201454C	Calcium, Total	88.9	mg/L	1	0.3		
9/20/2021	METALS	2109201454C	Boron, Total	0.22	mg/L	0.2	0.02		
9/20/2021	METALS	2109201454C	Barium, Total	0.033	mg/L	0.02	0.003		
9/20/2021	METALS	2109201454C	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
9/20/2021	METALS	2109201454C	Nickel, Total	0.034	mg/L	0.04	0.003		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/14/2021	607	2110141343B	Bromacil	0.026	μg/L	0.0095	0.0048	120	_
10/14/2021	8270	2110141428B	1,4-Dioxane	1.6	ug/L	0.04	0.027		
10/14/2021	8270	2110141446B	Benzenesulfonamide, N-butyl-	270	ug/L	NA	NA		TIC
10/14/2021	METALS	2110141447B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
10/14/2021	METALS	2110141447B	Zinc, Total	0.135	mg/L	0.02	0.003		
10/14/2021	METALS	2110141447B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
10/14/2021	METALS	2110141447B	Strontium, Total	2.77	mg/L	0.1	0.002		
10/14/2021	METALS	2110141447B	Sodium, Total	47	mg/L	1	0.2		
10/14/2021	METALS	2110141447B	Manganese, Total	0.006	mg/L	0.01	0.004		J
10/14/2021	METALS	2110141447B	Magnesium, Total	66.1	mg/L	1	0.03		
10/14/2021	METALS	2110141447B	Lead, Total	0.005	mg/L	0.05	0.003		J
10/14/2021	METALS	2110141447B	Calcium, Total	107	mg/L	1	0.3		
10/14/2021	METALS	2110141447B	Boron, Total	0.08	mg/L	0.2	0.02		J
10/14/2021	METALS	2110141447B	Barium, Total	0.016	mg/L	0.02	0.003		J
10/14/2021	METALS	2110141447B	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
10/14/2021	METALS	2110141447B	Potassium, Total	4.1	mg/L	2	0.4		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/15/2021	8260_LL	2110151023B	Toluene	0.27	ug/L	0.5	0.2		J
10/15/2021	8260_LL	2110151023B	Sulfur Dioxide	7.3	ug/L	NA	NA		TIC
10/15/2021	NDMA_LL	2110151100B	N-Nitrosodimethylamine	0.96	ng/L	0.5	0.42		
10/15/2021	NDMA_LL	2110151100B	N-Nitrodimethylamine	0.68	ng/L	0.5	0.21		
10/15/2021	8270	2110151127B	1,4-Dioxane	3.9	ug/L	0.04	0.027		
10/15/2021	8270	2110151128B	Unknown	17	ug/L	NA	NA		TIC
10/15/2021	8270	2110151128B	Unknown	4.5	ug/L	NA	NA		TIC
10/15/2021	8270	2110151128B	Unknown	23	ug/L	NA	NA		TIC
10/15/2021	8270	2110151128B	Unknown	12	ug/L	NA	NA		TIC
10/15/2021	8270	2110151128B	Benzenesulfonamide, N-butyl-	2800	ug/L	NA	NA		TIC
10/15/2021	8270	2110151128B	Unknown	17	ug/L	NA	NA		TIC
10/15/2021	METALS	2110151129B	Iron, Total	0.32	mg/L	0.1	0.07		
10/15/2021	METALS	2110151129B	Strontium, Total	2.57	mg/L	0.1	0.002		
10/15/2021	METALS	2110151129B	Sodium, Total	67.5	mg/L	1	0.2		
10/15/2021	METALS	2110151129B	Potassium, Total	4.4	mg/L	2	0.4		
10/15/2021	METALS	2110151129B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
10/15/2021	METALS	2110151129B	Magnesium, Total	60.5	mg/L	1	0.03		
10/15/2021	METALS	2110151129B	Calcium, Total	96.6	mg/L	1	0.3		
10/15/2021	METALS	2110151129B	Boron, Total	0.09	mg/L	0.2	0.02		J
10/15/2021	METALS	2110151129B	Barium, Total	0.025	mg/L	0.02	0.003		
10/15/2021	METALS	2110151129B	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
10/15/2021	METALS	2110151129B	Manganese, Total	0.248	mg/L	0.01	0.004		

Constitution Cons	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
1015/2021 NDMA_LL 2110151098 N-Nitrodimethylamine 0.98 ng/L 0.48 0.4 FB 1015/2021 8270 21101511108 1.4-Dioxane 3.6 ng/L 0.44 0.027 1015/2021 8270 21101511108 1.4-Dioxane 3.7 ng/L 0.44 0.027 1015/2021 8270 21101511408 Unknown 1.7 ng/L 0.4 0.027 1015/2021 8270 21101511408 Unknown 2.4 ng/L 0.4 0.027 1015/2021 8270 21101511408 Unknown 1.1 ng/L 0.4 0.4 0.027 1015/2021 8270 21101511408 Unknown 1.1 ng/L 0.4 0.4 0.4 0.2 0.			-						EIIIC	- 3
		_				_				J
1015/2021 8270 21101511118		_								
1015/2021 8270 2110151111B 1,4-Dioxane 3.7 ug/L 0.04 0.027 1015/2021 8270 2110151140B Unknown 17 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 24 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 6.8 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 6.8 ug/L NA NA TIC 1015/2021 8270 2110151140B 1,4-Dioxane, 2,5-dimethyl- 6.5 ug/L NA NA TIC 1015/2021 8270 2110151140B Benzensuffonamide, N-butyl- 2800 ug/L NA NA TIC 1015/2021 METALS 2110151141B Strontium, Total 0.675 mg/L 0.1 0.004 1015/2021 METALS 2110151141B Strontium, Total 2.51 mg/L 0.1 0.02 1015/2021 METALS 2110151141B Magnesium, Total 5.53 mg/L 1 0.3 1015/2021 METALS 2110151141B Magnesium, Total 0.006 mg/L 0.02 0.003 Jacobia 1015/2021 METALS 2110151141B Magnesium, Total 0.006 mg/L 0.02 0.003 Jacobia 1015/2021 METALS 2110151141B Magnesium, Total 0.09 mg/L 0.02 0.003 Jacobia 1015/2021 METALS 2110151141B Magnesium, Total 0.09 mg/L 0.02 0.003 Jacobia 1015/2021 METALS 2110151141B Magnesium, Total 0.006 mg/L 0.02 0.003 Jacobia 1015/2021 METALS 2110151141B Magnesium, Total 0.006 mg/L 0.01 0.0004 Jacobia 1015/2021 METALS 2110151141B Arsenic, Total 0.006 mg/L 0.01 0.0004 Jacobia 1015/2021 METALS 2110151141B Arsenic, Total 0.006 mg/L 0.01 0.0004 Jacobia 1015/2021 METALS 2110151141B Arsenic, Total 0.006 mg/L 0.01 0.0002 Jacobia 1015/2021 METALS 2110151141B Arsenic, Total 0.065 mg/L 0.01 0.0002 Jacobia 1015/2021 METALS 2110151142B Strontium, Total 0.065 mg/L 0.0 0.0003 Jacobia 1015/2021 METALS 2110151142B Strontium, Total 0.06 mg/L 0.0 0.0003 Jacobia 0.0006 mg/L 0.0006 Jacobia 0.0006 Jacobia 0.0006 Mg/L 0.0006 Jacobia 0.00		_		•		_				FB
1015/2021 8270 2110151140B Unknown 17 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 11 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 11 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 6.8 ug/L NA NA TIC 1015/2021 8270 2110151140B Unknown 6.8 ug/L NA NA TIC 1015/2021 8270 2110151140B Enzinesulforamide, N-butyl- 6.5 ug/L NA NA TIC 1015/2021 METALS 2110151141B Maganese, Total 0.675 mg/L 0.01 0.004 1015/2021 METALS 2110151141B Strontum, Total 2.51 mg/L 0.1 0.002 1015/2021 METALS 2110151141B Magustum, Total 5.53 mg/L 0.02 1015/2021 METALS 2110151141B Magustum, Total 6.39 mg/L 0.03 1015/2021 METALS 2110151141B Magustum, Total 6.39 mg/L 0.03 1015/2021 METALS 2110151141B Boron, Total 0.006 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Boron, Total 0.09 mg/L 0.0 0.0002 January 1015/2021 METALS 2110151141B Boron, Total 0.009 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Boron, Total 0.009 mg/L 0.00 0.0004 January 1015/2021 METALS 2110151141B Boron, Total 0.009 mg/L 0.00 0.0004 January 1015/2021 METALS 2110151141B Antimony, Total 0.0005 mg/L 0.001 0.0002 January 1015/2021 METALS 2110151141B Antimony, Total 0.0005 mg/L 0.001 0.0002 January 1015/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.00 0.0003 January 1015/2021 METALS 2110151141B Barium, Total 0.066 mg/L 0.02 0.003 January 1015/2021 METALS 2110151142B Barium, Total 0.066 mg/L 0.02 0.003 January 1015/2021 METALS 2110151142B Strontum, Total 0.066 mg/L 0.02 0.003 January 1015/2021 METALS 2110151142B Magustum, Total 0.066 mg/L 0.02 0.003 January 1015/2021 METALS 2110151142B Magustum, Total 0.066 mg/L 0.02 0.003						_				
1015/2021 8270 2110151140B Unknown 11 ug/L NA NA NA TIC 1015/2021 8270 2110151140B Unknown 6.8 ug/L NA NA NA TIC 1015/2021 8270 2110151140B 1,4-Dioxane, 2,5-dimethyl- 6.5 ug/L NA NA NA TIC 1015/2021 8270 2110151140B 1,4-Dioxane, 2,5-dimethyl- 6.5 ug/L NA NA NA TIC 1015/2021 METALS 2110151141B Manganese, Total 0.675 mg/L 0.01 0.004 1015/2021 METALS 2110151141B Strontum, Total 2.51 mg/L 0.1 0.002 1015/2021 METALS 2110151141B Strontum, Total 2.51 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Maganesium, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Maganesium, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Maganesium, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Maganesium, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Maganesium, Total 0.006 mg/L 0.2 0.003 J 1015/2021 METALS 2110151141B Boron, Total 0.006 mg/L 0.2 0.003 J 1015/2021 METALS 2110151141B Barium, Total 0.005 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 1015/2021 METALS 2110151141B Barium, Total 0.0000 mg/L 0.001 0.0002 J 1015/2021 METALS 2110151141B Boron, Total 0.000 mg/L 0.00 0.0003 J 1015/2021 METALS 2110151142B Barium, Total 0.000 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Strontum, Total 0.000 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Strontum, Total 0.000 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Strontum, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Strontum, Total 0.006 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Maganesium, Total 0.006 mg/L 0.02 0.003 J 1015/2	10/15/2021	8270	2110151111B	1,4-Dioxane	3.7		0.04	0.027		
1015/2021 8270 2110151140B Unknown 0.8 ug/L NA NA NA TIC 1015/2021 8270 2110151140B Unknown 0.8 ug/L NA NA NA TIC 1015/2021 8270 2110151140B D. L. D. D. D. D. D. D.	10/15/2021	8270	2110151140B	Unknown	17	ug/L	NA	NA		TIC
1015/2021 8270 2110151140B	10/15/2021	8270	2110151140B	Unknown	24	ug/L	NA	NA		TIC
1015/2021 8270 2110151140B 1,4-Dioxanc, 2,5-dimethyl- 6.5 ug/L NA NA NA TIC 1015/2021 8270 2110151140B Benzensulfonamide, N-butyl- 2800 ug/L NA NA NA TIC 1015/2021 METALS 2110151141B Manganeses, Total 0.675 mg/L 0.01 0.004 1015/2021 METALS 2110151141B Strontium, Total 2.51 mg/L 0.1 0.002 1015/2021 METALS 2110151141B Sdodium, Total 55.3 mg/L 1 0.2 1015/2021 METALS 2110151141B Molybdenum, Total 63.9 mg/L 1 0.03 1015/2021 METALS 2110151141B Magnesium, Total 63.9 mg/L 1 0.03 1015/2021 METALS 2110151141B Barium, Total 0.09 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Barium, Total 0.09 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Barium, Total 0.066 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Barium, Total 0.008 mg/L 0.001 0.0004 J 1015/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 1015/2021 METALS 2110151141B Arsenic, Total 0.87 mg/L 0.1 0.07 1015/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.00002 J 1015/2021 METALS 2110151141B Barium, Total 0.87 mg/L 0.1 0.07 1015/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Strontium, Total 0.065 mg/L 0.1 0.002 1015/2021 METALS 2110151142B Strontium, Total 0.066 mg/L 0.2 0.003 1015/2021 METALS 2110151142B Strontium, Total 0.066 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Strontium, Total 0.066 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Strontium, Total 0.006 mg/L 0.01 0.004 1015/2021 METALS 2110151142B Manganeses, Total 0.67 mg/L 0.01 0.004 1015/2021 METALS 2110151142B Manganeses, Total 0.68 mg/L 0.1 0.07 1015/2021 METALS 2110151142B Barium, Total 0.86 mg/L 0.1 0.07	10/15/2021	8270	2110151140B	Unknown	11	ug/L	NA	NA		TIC
1015/2021 8270 2110151141B Benzencsulfonamide, N-butyl- 2800 ug/L NA NA NA TIC 1015/2021 METALS 2110151141B Manganese, Total 0.675 mg/L 0.01 0.004 1015/2021 METALS 2110151141B Strontium, Total 2.51 mg/L 0.1 0.002 1015/2021 METALS 2110151141B Sodium, Total 55.3 mg/L 1 0.2 1015/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 1015/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 1 0.03 1015/2021 METALS 2110151141B Magnesium, Total 0.01 mg/L 1 0.3 1015/2021 METALS 2110151141B Barium, Total 0.09 mg/L 0.2 0.02 J 1015/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Astimony, Total 0.065 mg/L 0.02 0.003 J 1015/2021 METALS 2110151141B Astimony, Total 0.0080 mg/L 0.001 0.0004 J 1015/2021 METALS 2110151141B Astimony, Total 0.87 mg/L 0.01 0.0002 J 1015/2021 METALS 2110151141B Antimony, Total 0.87 mg/L 0.1 0.07 1015/2021 METALS 2110151141B Barium, Total 0.87 mg/L 0.0 0.0002 J 1015/2021 METALS 2110151141B Barium, Total 0.87 mg/L 0.0 0.0002 J 1015/2021 METALS 2110151142B Barium, Total 0.86 mg/L 0.02 0.003 U 1015/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 U 1015/2021 METALS 2110151142B Strontium, Total 4.3 mg/L 2 0.4 0.0002 U 1015/2021 METALS 2110151142B Manganese, Total 0.066 mg/L 0.02 0.003 J 1015/2021 METALS 2110151142B Manganese, Total 0.066 mg/L 0.01 0.004 U 1015/2021 METALS 2110151142B Manganese, Total 0.066 mg/L 0.01 0.004 U 1015/2021 METALS 2110151142B Manganese, Total 0.06 mg/L 0.1 0.07 U 1015/2021 METALS 2110151142B Manganese, Total 0.06 mg/L 0.1 0.002 U	10/15/2021	8270	2110151140B	Unknown	6.8	ug/L	NA	NA		TIC
10/15/2021 METALS 2110151141B Manganese, Total 0.675 mg/L 0.01 0.004 10/15/2021 METALS 2110151141B Scortium, Total 2.51 mg/L 0.1 0.002 10/15/2021 METALS 2110151141B Scortium, Total 55.3 mg/L 1 0.2 10/15/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151141B Magnesium, Total 63.9 mg/L 1 0.3 10/15/2021 METALS 2110151141B Magnesium, Total 101 mg/L 1 0.3 10/15/2021 METALS 2110151141B Barium, Total 0.090 mg/L 0.2 0.003 10/15/2021 METALS 2110151141B Barium, Total 0.096 mg/L 0.2 0.003 10/15/2021 METALS 2110151141B Barium, Total 0.096 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Arsenic, Total 0.0002 mg/L 0.01 0.0002 J 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.0 0.003 U 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 U 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 U 10/15/2021 METALS 2110151142B Strontium, Total 0.05 mg/L 0.02 0.003 U 10/15/2021 METALS 2110151142B Potassium, Total 0.065 mg/L 0.0 0.0002 U 10/15/2021 METALS 2110151142B Potassium, Total 0.066 mg/L 0.0 0.0004 U 0.0004	10/15/2021	8270	2110151140B	1,4-Dioxane, 2,5-dimethyl-	6.5	ug/L	NA	NA		TIC
1015/2021 METALS 2110151141B Schontium, Total 5.51 mg/L 0.1 0.002 1015/2021 METALS 2110151141B Sodium, Total 5.53 mg/L 1 0.2 1015/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 1015/2021 METALS 2110151141B Magnesium, Total 0.63 mg/L 1 0.03 1015/2021 METALS 2110151141B Boron, Total 0.09 mg/L 0.2 0.02 J 1015/2021 METALS 2110151141B Boron, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 1015/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0002 J 1015/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 1015/2021 METALS 2110151141B Barium, Total 0.87 mg/L 0.1 0.07 1015/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Barium, Total 0.87 mg/L 0.1 0.00 1015/2021 METALS 2110151142B Schontium, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Schontium, Total 0.065 mg/L 0.02 0.003 1015/2021 METALS 2110151142B Schontium, Total 2.5 mg/L 0.1 0.002 1015/2021 METALS 2110151142B Schontium, Total 2.5 mg/L 0.1 0.002 1015/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 1015/2021 METALS 2110151142B Magnesium, Total 0.066 mg/L 0.025 0.003 J 1015/2021 METALS 2110151142B Magnesium, Total 0.066 mg/L 0.025 0.003 J 1015/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 1015/2021 METALS 2110151142B Magnesium, Total 0.66 mg/L 0.01 0.004 1015/2021 METALS 2110151142B Magnesium, Total 0.66 mg/L 0.01 0.004 1015/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.01 0.002 J	10/15/2021	8270	2110151140B	Benzenesulfonamide, N-butyl-	2800	ug/L	NA	NA		TIC
10/15/2021 METALS 2110151141B Sodium, Total 55.3 mg/L 1 0.2 10/15/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 0.025 0.003 Jaccomian Jaccomi	10/15/2021	METALS	2110151141B	Manganese, Total	0.675	mg/L	0.01	0.004		
10/15/2021 METALS 2110151141B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151141B Magnesium, Total 63.9 mg/L 1 0.03 10/15/2021 METALS 2110151141B Calcium, Total 101 mg/L 1 0.3 10/15/2021 METALS 2110151141B Boron, Total 0.009 mg/L 0.02 0.002 J 10/15/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.01 0.0002 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.01 0.0002 J 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.03 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.000 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151141B	Strontium, Total	2.51	mg/L	0.1	0.002		
10/15/2021 METALS 2110151141B Magnesium, Total 101 mg/L 1 0.3 10/15/2021 METALS 2110151141B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151141B Boron, Total 0.0065 mg/L 0.02 0.003 10/15/2021 METALS 2110151141B Barium, Total 0.0065 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Artimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Brion, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Brion, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Brium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Barium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Strontium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Sodium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Magnesium, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.99 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021 MET	10/15/2021	METALS	2110151141B	Sodium, Total	55.3	mg/L	1	0.2		
10/15/2021 METALS 2110151141B Calcium, Total 101 mg/L 1 0.3 10/15/2021 METALS 2110151141B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.002 0.003 10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Magnesium, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.066 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.066 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.067 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Magnesium, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.090 mg/L 0.001 0.0002 J 10/15/2021	10/15/2021	METALS	2110151141B	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
10/15/2021 METALS 2110151141B Boron, Total 0.09 mg/L 0.2 0.02 0.003 10/15/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 0.87 mg/L 0.2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 2.5 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Iron, Total 0.09 mg/L 0.0	10/15/2021	METALS	2110151141B	Magnesium, Total	63.9	mg/L	1	0.03		
10/15/2021 METALS 2110151141B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151141B Arsenic, Total 0.0002 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 2.5 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.067 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.1 0.03 10/15/2021 METALS 2110151142B Manganese, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.86 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0902 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0902 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151142B 0.001 0.0020 J 10/15/2021 M	10/15/2021	METALS	2110151141B	Calcium, Total	101	mg/L	1	0.3		
10/15/2021 METALS 2110151141B Arsenic, Total 0.0008 mg/L 0.001 0.0004 J 10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Magnesium, Total 0.006 mg/L 0.02 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 <td< td=""><td>10/15/2021</td><td>METALS</td><td>2110151141B</td><td>Boron, Total</td><td>0.09</td><td>mg/L</td><td>0.2</td><td>0.02</td><td></td><td>J</td></td<>	10/15/2021	METALS	2110151141B	Boron, Total	0.09	mg/L	0.2	0.02		J
10/15/2021 METALS 2110151141B Antimony, Total 0.0002 mg/L 0.001 0.0002 J 10/15/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/	10/15/2021	METALS	2110151141B	Barium, Total	0.065	mg/L	0.02	0.003		
10/15/2021 METALS 2110151141B Iron, Total 0.87 mg/L 0.1 0.07 10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Magnesium, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 0.86 mg/L 0.1 0.07 10/15/2021 <th< td=""><td>10/15/2021</td><td>METALS</td><td>2110151141B</td><td>Arsenic, Total</td><td>0.0008</td><td>mg/L</td><td>0.001</td><td>0.0004</td><td></td><td>J</td></th<>	10/15/2021	METALS	2110151141B	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
10/15/2021 METALS 2110151141B Potassium, Total 4.4 mg/L 2 0.4 10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.0002 mg/L 0.001 0	10/15/2021	METALS	2110151141B	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
10/15/2021 METALS 2110151142B Barium, Total 0.065 mg/L 0.02 0.003 10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.	10/15/2021	METALS	2110151141B	Iron, Total	0.87	mg/L	0.1	0.07		
10/15/2021 METALS 2110151142B Strontium, Total 2.5 mg/L 0.1 0.002 10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151141B	Potassium, Total	4.4	mg/L	2	0.4		
10/15/2021 METALS 2110151142B Sodium, Total 54.6 mg/L 1 0.2 10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Barium, Total	0.065	mg/L	0.02	0.003		
10/15/2021 METALS 2110151142B Potassium, Total 4.3 mg/L 2 0.4 10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Strontium, Total	2.5	mg/L	0.1	0.002		
10/15/2021 METALS 2110151142B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Sodium, Total	54.6	mg/L	1	0.2		
10/15/2021 METALS 2110151142B Manganese, Total 0.67 mg/L 0.01 0.004 10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Potassium, Total	4.3	mg/L	2	0.4		
10/15/2021 METALS 2110151142B Magnesium, Total 63.6 mg/L 1 0.03 10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
10/15/2021 METALS 2110151142B Iron, Total 0.86 mg/L 0.1 0.07 10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Manganese, Total	0.67	mg/L	0.01	0.004		
10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Magnesium, Total	63.6	mg/L	1	0.03		
10/15/2021 METALS 2110151142B Boron, Total 0.09 mg/L 0.2 0.02 J 10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Iron, Total	0.86	mg/L	0.1	0.07		
10/15/2021 METALS 2110151142B Antimony, Total 0.0002 mg/L 0.001 0.0002 J	10/15/2021	METALS	2110151142B	Boron, Total	0.09		0.2	0.02		J
	10/15/2021	METALS	2110151142B	Antimony, Total	0.0002	_	0.001	0.0002		J
	10/15/2021	METALS	2110151142B	-	100	_	1	0.3		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/7/2021	8260_LL	2110071401B	Unknown	6.3	ug/L	NA	NA		TIC RB FB
10/7/2021	8260_LL	2110071401B	Toluene	0.29	ug/L	0.5	0.2		J
10/7/2021	NDMA_LL	2110071425B	N-Nitrosodimethylamine	3	ng/L	0.5	0.42		FB
10/7/2021	8270	2110071445B	Benzenesulfonamide, N-butyl-	130	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown Hydrocarbon	4.8	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown Hydrocarbon	6.4	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown Hydrocarbon	5.4	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown Hydrocarbon	4.3	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown	7.6	ug/L	NA	NA		TIC
10/7/2021	8270	2110071445B	Unknown	110	ug/L	NA	NA		TIC
10/7/2021	8270	2110071515B	1,4-Dioxane	1.4	ug/L	0.04	0.027		
10/7/2021	8270	2110071516B	1,4-Dioxane	1.2	ug/L	0.04	0.027		
10/7/2021	METALS	2110071517B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
10/7/2021	METALS	2110071517B	Lead, Total	0.007	mg/L	0.05	0.003		J
10/7/2021	METALS	2110071517B	Zinc, Total	0.028	mg/L	0.02	0.003		
10/7/2021	METALS	2110071517B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J RB
10/7/2021	METALS	2110071517B	Thallium, Total	0.0002	mg/L	0.001	0.00004		J
10/7/2021	METALS	2110071517B	Strontium, Total	2.42	mg/L	0.1	0.002		
10/7/2021	METALS	2110071517B	Sodium, Total	40.1	mg/L	1	0.2		
10/7/2021	METALS	2110071517B	Potassium, Total	3.7	mg/L	2	0.4		
10/7/2021	METALS	2110071517B	Magnesium, Total	58.6	mg/L	1	0.03		
10/7/2021	METALS	2110071517B	Calcium, Total	91.2	mg/L	1	0.3		
10/7/2021	METALS	2110071517B	Boron, Total	0.07	mg/L	0.2	0.02		J
10/7/2021	METALS	2110071517B	Barium, Total	0.053	mg/L	0.02	0.003		
10/7/2021	METALS	2110071517B	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
10/7/2021	METALS	2110071517B	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
10/7/2021	METALS	2110071517B	Manganese, Total	0.014	mg/L	0.01	0.004		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/13/2021	8260_LL	2110131301B	Toluene	0.25	ug/L	0.5	0.2		J
10/13/2021	NDMA_LL	2110131325B	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		FB
10/13/2021	8270	2110131345B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131345B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Benzenesulfonamide, N-butyl-	170	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Unknown	6.8	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131345B	Unknown	4.1	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Unknown	8.1	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Unknown	22	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131345B	Unknown Hydrocarbon	5.1	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Unknown Hydrocarbon	17	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131345B	Unknown	4.1	ug/L	NA	NA		TIC
10/13/2021	8270	2110131345B	Unknown Hydrocarbon	18	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131415B	1,4-Dioxane	0.9	ug/L	0.04	0.027		
10/13/2021	METALS	2110131416B	Manganese, Total	0.032	mg/L	0.01	0.004		
10/13/2021	METALS	2110131416B	Zinc, Total	0.031	mg/L	0.02	0.003		
10/13/2021	METALS	2110131416B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
10/13/2021	METALS	2110131416B	Thallium, Total	0.00008	mg/L	0.001	0.00004		J
10/13/2021	METALS	2110131416B	Strontium, Total	2.89	mg/L	0.1	0.002		
10/13/2021	METALS	2110131416B	Sodium, Total	53.1	mg/L	1	0.2		
10/13/2021	METALS	2110131416B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
10/13/2021	METALS	2110131416B	Magnesium, Total	55.6	mg/L	1	0.03		
10/13/2021	METALS	2110131416B	Calcium, Total	94.6	mg/L	1	0.3		
10/13/2021	METALS	2110131416B	Boron, Total	0.09	mg/L	0.2	0.02		J
10/13/2021	METALS	2110131416B	Barium, Total	0.061	mg/L	0.02	0.003		
10/13/2021	METALS	2110131416B	Arsenic, Total	0.0013	mg/L	0.001	0.0004		
10/13/2021	METALS	2110131416B	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
10/13/2021	METALS	2110131416B	Potassium, Total	6.2	mg/L	2	0.4		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/13/2021	8260_LL	2110131331B	Toluene	1.3	ug/L	0.5	0.2		
10/13/2021	NDMA_LL	2110131420B	N-Nitrosodimethylamine	7.7	ng/L	0.49	0.41		
10/13/2021	8270	2110131445B	Unknown	5	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Unknown	10	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Unknown	34	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Benzenesulfonamide, N-butyl-	160	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Unknown	120	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Unknown Hydrocarbon	8	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131445B	Unknown Hydrocarbon	6.7	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131445B	Unknown Hydrocarbon	4.1	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131445B	Unknown	4.6	ug/L	NA	NA		TIC
10/13/2021	8270	2110131445B	Unknown	6.6	ug/L	NA	NA		TIC RB
10/13/2021	8270	2110131505B	1,4-Dioxane	5	ug/L	0.04	0.027		
10/13/2021	METALS	2110131506B	Potassium, Total	6.3	mg/L	2	0.4		
10/13/2021	METALS	2110131506B	Zinc, Total	0.32	mg/L	0.02	0.003		
10/13/2021	METALS	2110131506B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
10/13/2021	METALS	2110131506B	Tin, Total	0.01	mg/L	0.5	0.008		J
10/13/2021	METALS	2110131506B	Thallium, Total	0.0003	mg/L	0.001	0.00004		J
10/13/2021	METALS	2110131506B	Sodium, Total	56.9	mg/L	1	0.2		
10/13/2021	METALS	2110131506B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
10/13/2021	METALS	2110131506B	Strontium, Total	2.86	mg/L	0.1	0.002		
10/13/2021	METALS	2110131506B	Lead, Total	0.022	mg/L	0.05	0.003		J
10/13/2021	METALS	2110131506B	Copper, Total	0.006	mg/L	0.02	0.004		J
10/13/2021	METALS	2110131506B	Calcium, Total	89.9	mg/L	1	0.3		
10/13/2021	METALS	2110131506B	Boron, Total	0.09	mg/L	0.2	0.02		J
10/13/2021	METALS	2110131506B	Barium, Total	0.052	mg/L	0.02	0.003		
10/13/2021	METALS	2110131506B	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
10/13/2021	METALS	2110131506B	Magnesium, Total	53.1	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
10/6/2021	8260_LL	2110061400A	2-Propanol	9.9	ug/L	40	3.4		J	
10/6/2021	8260_LL	2110061400A	Unknown	5.9	ug/L	NA	NA		TIC	
10/6/2021	8260 LL	2110061400A	Unknown	7.4	ug/L	NA	NA		TIC RB FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/7/2021	8260_LL	2110071000A	Unknown	7.7	ug/L	NA	NA		TIC RB TB FB
10/7/2021	NDMA_LL	2110071002A	N-Nitrosodimethylamine	1.8	ng/L	0.48	0.4		TB FB

Analytical Results for Sampling Events at NASA 10

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/15/2021	8260	2109151420C	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.2	ug/L	1	0.2		
9/15/2021	8260	2109151420C	Trichlorofluoromethane (CFC 11)	11	ug/L	1	0.24		
9/15/2021	8260	2109151421C	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.1	ug/L	1	0.2		
9/15/2021	8260	2109151421C	Trichlorofluoromethane (CFC 11)	11	ug/L	1	0.24		
9/15/2021	607	2109151423C	N-Nitrodimethylamine	0.25	μg/L	0.0095	0.0048	102.6	
9/15/2021	607	2109151423C	Bromacil	0.53	μg/L	0.0095	0.0048	140	
9/15/2021	607	2109151423C	N-Nitrosodimethylamine	0.058	μg/L	0.0095	0.0048	58	
9/15/2021	607	2109151424C	N-Nitrosodimethylamine	0.055	μg/L	0.0095	0.0048	58	
9/15/2021	607	2109151424C	N-Nitrodimethylamine	0.24	μg/L	0.0095	0.0048	102.6	
9/15/2021	607	2109151424C	Bromacil	0.5	μg/L	0.0095	0.0048	140	
9/15/2021	METALS	2109151425C	Calcium, Total	42.2	mg/L	1	0.3		
9/15/2021	METALS	2109151425C	Thallium, Total	0.0003	mg/L	0.001	0.00004		J
9/15/2021	METALS	2109151425C	Strontium, Total	0.74	mg/L	0.1	0.002		
9/15/2021	METALS	2109151425C	Sodium, Total	52.7	mg/L	1	0.2		
9/15/2021	METALS	2109151425C	Potassium, Total	5.3	mg/L	2	0.4		
9/15/2021	METALS	2109151425C	Molybdenum, Total	0.019	mg/L	0.025	0.003		J
9/15/2021	METALS	2109151425C	Chromium, Total	0.003	mg/L	0.01	0.002		J
9/15/2021	METALS	2109151425C	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
9/15/2021	METALS	2109151425C	Boron, Total	0.15	mg/L	0.2	0.02		J
9/15/2021	METALS	2109151425C	Barium, Total	0.056	mg/L	0.02	0.003		
9/15/2021	METALS	2109151425C	Arsenic, Total	0.0004	mg/L	0.001	0.0004		J
9/15/2021	METALS	2109151425C	Magnesium, Total	29.7	mg/L	1	0.03		
9/15/2021	353.2	2109151426C	Nitrate+Nitrite as Nitrogen	5.74	mg/L	0.5	0.02		

Analytical Results for Sampling Events at NASA 3

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/9/2021	8260_LL	2108090950C	2-Propanol	3.9	ug/L	40	3.4		J
8/9/2021	NDMA_LL	2108090953C	N-Nitrosodimethylamine	0.63	ng/L	0.47	0.43		FB Q
8/9/2021	8270	2108090955C	Unknown	6.6	ug/L	NA	NA		TIC
8/9/2021	8270	2108090955C	Unknown	4.1	ug/L	NA	NA		TIC
8/9/2021	8270	2108090955C	Unknown	4.6	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown Hydrocarbon	11	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown Hydrocarbon	14	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown Hydrocarbon	15	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown Hydrocarbon	8.9	ug/L	NA	NA		TIC RB
8/9/2021	8270	2108090955C	Unknown	7.6	ug/L	NA	NA		TIC RB
8/9/2021	8290	2108090958C	1,2,3,7,8-PeCDF	0.803	pg/L	12	0.223		J RB
8/9/2021	8290	2108090958C	OCDF	0.698	pg/L	24	0.28		J RB
8/9/2021	8290	2108090958C	Total Penta-Furans	0.803	pg/L	NA	NA		J RB
8/9/2021	ANIONS	2108091001C	Sulfate	254	mg/L	8	1.6		
8/9/2021	ANIONS	2108091001C	Alkalinity, Total as CaCO3	250	mg/L	2	1.8		
8/9/2021	ANIONS	2108091001C	Chloride	32.6	mg/L	2	0.5		
8/9/2021	ANIONS	2108091001C	Fluoride, undistilled	1.14	mg/L	0.1	0.01		
8/9/2021	SM2540C	2108091002C	Total Dissolved Solids (TDS)	696	mg/L	10	9		
8/9/2021	6850	2108091003C	Perchlorate	0.22	ug/L	0.2	0.06		
8/9/2021	353.2	2108091004C	Nitrate+Nitrite as Nitrogen	1.4	mg/L	0.05	0.002		

Analytical Results for Sampling Events at NASA 5

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
9/15/2021	8260	2109150921C	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.6	ug/L	1	0.2	Line	Q
9/15/2021	8260	2109150921C	Trichlorofluoromethane (CFC 11)	25	ug/L ug/L	1	0.24		Q
9/15/2021	607	2109150923C	N-Nitrodimethylamine	1.5	ug/L μg/L	0.0095	0.0048	102.6	Q
9/15/2021	607	2109150923C 2109150923C	Bromacil	0.78	μg/L μg/L	0.0095	0.0048	140	
9/15/2021	607	2109150923C 2109150923C	N-Nitrosodimethylamine	0.47		0.0095	0.0048	58	
9/15/2021	METALS	2109150923C 2109150924C	•	0.47	μg/L	0.0093	0.0048	30	
			Barium, Total		mg/L				
9/15/2021	METALS	2109150924C	Nickel, Total	0.06	mg/L	0.04	0.003		•
9/15/2021	METALS	2109150924C	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
9/15/2021	METALS	2109150924C	Manganese, Total	0.005	mg/L	0.01	0.004		J
9/15/2021	METALS	2109150924C	Magnesium, Total	46	mg/L	1	0.03		
9/15/2021	METALS	2109150924C	Iron, Total	0.29	mg/L	0.1	0.07		
9/15/2021	METALS	2109150924C	Chromium, Total	0.032	mg/L	0.01	0.002		
9/15/2021	METALS	2109150924C	Potassium, Total	2.6	mg/L	2	0.4		
9/15/2021	METALS	2109150924C	Sodium, Total	75.5	mg/L	1	0.2		
9/15/2021	METALS	2109150924C	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
9/15/2021	METALS	2109150924C	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
9/15/2021	METALS	2109150924C	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
9/15/2021	METALS	2109150924C	Thallium, Total	0.0001	mg/L	0.001	0.00004		J
9/15/2021	METALS	2109150924C	Strontium, Total	1.26	mg/L	0.1	0.002		
9/15/2021	METALS	2109150924C	Boron, Total	0.27	mg/L	0.2	0.02		
9/15/2021	METALS	2109150924C	Calcium, Total	70.3	mg/L	1	0.3		
9/15/2021	ANIONS	2109150925C	Sulfate	144	mg/L	4	0.8		
9/15/2021	ANIONS	2109150925C	Fluoride, undistilled	0.96	mg/L	0.1	0.01		
9/15/2021	ANIONS	2109150925C	Alkalinity, Total as CaCO3	268	mg/L	2	1.8		
9/15/2021	ANIONS	2109150925C	Chloride	67.4	mg/L	2	0.5		
9/15/2021	SM2540C	2109150926C	Total Dissolved Solids (TDS)	640	mg/L	10	9		
9/15/2021	6850	2109150927C	Perchlorate	0.76	ug/L	0.2	0.06		
9/15/2021	353.2	2109150927C 2109150928C	Nitrate+Nitrite as Nitrogen	6.76	mg/L	0.5	0.00		
11312021	ے. <i>د</i> ر د	21071307200	Tittate : Tittite as Tittogen	0.70	mg/L	0.5	0.02		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
10/6/2021	8260_LL	2110060934Y	Unknown	7.5	ug/L	NA	NA		TIC RB EB	
10/6/2021	607	2110060935Y	Bromacil	0.027	$\mu g/L$	0.0095	0.0048	130		
10/6/2021	NDMA LL	2110061015Y	N-Nitrosodimethylamine	1.5	ng/L	0.48	0.4		EB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/6/2021	8260_LL	2110061420Y	Unknown	7.6	ug/L	NA	NA		TIC RB
10/6/2021	NDMA LL	2110061422Y	N-Nitrosodimethylamine	0.61	ng/L	0.49	0.41		EB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
	9260 11	2109131300B	Toluene	0.9		0.5	0.2		
9/13/2021	8260_LL				ug/L				
9/13/2021	NDMA_LL	2109131303B	N-Nitrosodimethylamine	0.77	ng/L	0.48	0.4		RB TB FB
9/13/2021	8270	2109131335B	Benzenesulfonamide, N-butyl-	75	ug/L	NA	NA		TIC
9/13/2021	8270	2109131405B	1,4-Dioxane	1.9	ug/L	0.04	0.027		
9/13/2021	METALS	2109131406B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
9/13/2021	METALS	2109131406B	Zinc, Total	0.126	mg/L	0.02	0.003		
9/13/2021	METALS	2109131406B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
9/13/2021	METALS	2109131406B	Strontium, Total	2.83	mg/L	0.1	0.002		
9/13/2021	METALS	2109131406B	Potassium, Total	4.3	mg/L	2	0.4		
9/13/2021	METALS	2109131406B	Manganese, Total	0.01	mg/L	0.01	0.004		
9/13/2021	METALS	2109131406B	Magnesium, Total	57.1	mg/L	1	0.03		
9/13/2021	METALS	2109131406B	Iron, Total	0.09	mg/L	0.1	0.07		J
9/13/2021	METALS	2109131406B	Calcium, Total	97.5	mg/L	1	0.3		
9/13/2021	METALS	2109131406B	Boron, Total	0.1	mg/L	0.2	0.02		J
9/13/2021	METALS	2109131406B	Barium, Total	0.036	mg/L	0.02	0.003		
9/13/2021	METALS	2109131406B	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
9/13/2021	METALS	2109131406B	Antimony, Total	0.0003	mg/L	0.001	0.0002		J
9/13/2021	METALS	2109131406B	Sodium, Total	64.3	mg/L	1	0.2		
9/13/2021	METALS	2109131406B	Lead, Total	0.012	mg/L	0.05	0.003		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
-					Cints			EIIIC	Q/11 mg
9/13/2021	8260_LL	2109131315B	Toluene	0.32	ug/L	0.5	0.2		J
9/13/2021	NDMA_LL	2109131318B	N-Nitrosodimethylamine	0.9	ng/L	0.48	0.4		RB FB QD
9/13/2021	NDMA_LL	2109131350B	N-Nitrosodimethylamine	1.5	ng/L	0.48	0.4		RB FB QD
9/13/2021	8270	2109131415B	Benzenesulfonamide, N-butyl-	110	ug/L	NA	NA		TIC
9/13/2021	8270	2109131450B	1,4-Dioxane	1.7	ug/L	0.04	0.027		
9/13/2021	8270	2109131451B	1,4-Dioxane	1.8	ug/L	0.04	0.027		
9/13/2021	METALS	2109131452B	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
9/13/2021	METALS	2109131452B	Barium, Total	0.04	mg/L	0.02	0.003		
9/13/2021	METALS	2109131452B	Zinc, Total	0.032	mg/L	0.02	0.003		
9/13/2021	METALS	2109131452B	Vanadium, Total	0.003	mg/L	0.05	0.0007		J
9/13/2021	METALS	2109131452B	Strontium, Total	2.26	mg/L	0.1	0.002		
9/13/2021	METALS	2109131452B	Sodium, Total	112	mg/L	1	0.2		
9/13/2021	METALS	2109131452B	Potassium, Total	4.3	mg/L	2	0.4		
9/13/2021	METALS	2109131452B	Magnesium, Total	39.8	mg/L	1	0.03		
9/13/2021	METALS	2109131452B	Lead, Total	0.005	mg/L	0.05	0.003		J
9/13/2021	METALS	2109131452B	Iron, Total	0.1	mg/L	0.1	0.07		J
9/13/2021	METALS	2109131452B	Arsenic, Total	0.0015	mg/L	0.001	0.0004		
9/13/2021	METALS	2109131452B	Boron, Total	0.17	mg/L	0.2	0.02		J
9/13/2021	METALS	2109131452B	Calcium, Total	73	mg/L	1	0.3		
9/13/2021	METALS	2109131452B	Manganese, Total	0.071	mg/L	0.01	0.004		
			,		0				

Event	Analysis					Quant	Det	Xtret	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/14/2021	8260_LL	2109141350B	2-Propanol	8.6	ug/L	40	3.4		J FB
9/14/2021	8260_LL	2109141350B	Toluene	0.2	ug/L	0.5	0.2		J
9/14/2021	NDMA_LL	2109141353B	N-Nitrosodimethylamine	0.79	ng/L	0.47	0.4		RB A
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	12	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141435B	Benzenesulfonamide, N-butyl-	150	ug/L	NA	NA		TIC
9/14/2021	8270	2109141435B	Unknown	4.4	ug/L	NA	NA		TIC
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	5.7	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	9.5	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	15	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	8.4	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141435B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141445B	1,4-Dioxane	0.74	ug/L	0.04	0.027		
9/14/2021	METALS	2109141446B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
9/14/2021	METALS	2109141446B	Vanadium, Total	0.005	mg/L	0.05	0.0007		J
9/14/2021	METALS	2109141446B	Zinc, Total	0.049	mg/L	0.02	0.003		
9/14/2021	METALS	2109141446B	Strontium, Total	3.01	mg/L	0.1	0.002		
9/14/2021	METALS	2109141446B	Sodium, Total	64.3	mg/L	1	0.2		
9/14/2021	METALS	2109141446B	Potassium, Total	4.4	mg/L	2	0.4		
9/14/2021	METALS	2109141446B	Calcium, Total	100	mg/L	1	0.3		
9/14/2021	METALS	2109141446B	Boron, Total	0.1	mg/L	0.2	0.02		J
9/14/2021	METALS	2109141446B	Barium, Total	0.033	mg/L	0.02	0.003		
9/14/2021	METALS	2109141446B	Arsenic, Total	0.0007	mg/L	0.001	0.0004		J
9/14/2021	METALS	2109141446B	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
9/14/2021	METALS	2109141446B	Magnesium, Total	57.3	mg/L	1	0.03		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/14/2021	8260_LL	2109141400B	Toluene	0.2	ug/L	0.5	0.2		J
9/14/2021	NDMA_LL	2109141403B	N-Nitrosodimethylamine	0.72	ng/L	0.47	0.4		RB A FB
9/14/2021	8270	2109141455B	Benzenesulfonamide, N-butyl-	130	ug/L	NA	NA		TIC
9/14/2021	METALS	2109141500B	Potassium, Total	5	mg/L	2	0.4		
9/14/2021	METALS	2109141500B	Zinc, Total	0.135	mg/L	0.02	0.003		
9/14/2021	METALS	2109141500B	Vanadium, Total	0.01	mg/L	0.05	0.0007		J
9/14/2021	METALS	2109141500B	Sodium, Total	55.4	mg/L	1	0.2		
9/14/2021	METALS	2109141500B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
9/14/2021	METALS	2109141500B	Lead, Total	0.008	mg/L	0.05	0.003		J
9/14/2021	METALS	2109141500B	Calcium, Total	83.9	mg/L	1	0.3		
9/14/2021	METALS	2109141500B	Boron, Total	0.07	mg/L	0.2	0.02		J
9/14/2021	METALS	2109141500B	Barium, Total	0.042	mg/L	0.02	0.003		
9/14/2021	METALS	2109141500B	Arsenic, Total	0.0009	mg/L	0.001	0.0004		J
9/14/2021	METALS	2109141500B	Magnesium, Total	53	mg/L	1	0.03		
9/14/2021	METALS	2109141500B	Strontium, Total	3.28	mg/L	0.1	0.002		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/14/2021	8260_LL	2109141345B	Chloromethane	0.29	ug/L	0.5	0.28		J A
9/14/2021	8260_LL	2109141345B	Toluene	0.29	ug/L	0.5	0.2		J
9/14/2021	NDMA_LL	2109141416B	N-Nitrosodimethylamine	0.93	ng/L	0.48	0.4		RB A * FB
9/14/2021	8270	2109141425B	Benzenesulfonamide, N-butyl-	65	ug/L	NA	NA		TIC
9/14/2021	8270	2109141425B	Unknown Hydrocarbon	4.3	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141425B	Unknown Hydrocarbon	4	ug/L	NA	NA		TIC RB
9/14/2021	8270	2109141425B	Unknown	4.9	ug/L	NA	NA		TIC RB
9/14/2021	METALS	2109141510B	Barium, Total	0.026	mg/L	0.02	0.003		
9/14/2021	METALS	2109141510B	Zinc, Total	0.218	mg/L	0.02	0.003		
9/14/2021	METALS	2109141510B	Vanadium, Total	0.02	mg/L	0.05	0.0007		J
9/14/2021	METALS	2109141510B	Strontium, Total	1.52	mg/L	0.1	0.002		
9/14/2021	METALS	2109141510B	Molybdenum, Total	0.019	mg/L	0.025	0.003		J
9/14/2021	METALS	2109141510B	Sodium, Total	130	mg/L	1	0.2		
9/14/2021	METALS	2109141510B	Potassium, Total	4.3	mg/L	2	0.4		
9/14/2021	METALS	2109141510B	Lead, Total	0.008	mg/L	0.05	0.003		J
9/14/2021	METALS	2109141510B	Copper, Total	0.004	mg/L	0.02	0.004		J
9/14/2021	METALS	2109141510B	Chromium, Total	0.004	mg/L	0.01	0.002		J
9/14/2021	METALS	2109141510B	Boron, Total	0.29	mg/L	0.2	0.02		
9/14/2021	METALS	2109141510B	Calcium, Total	46.6	mg/L	1	0.3		
9/14/2021	METALS	2109141510B	Arsenic, Total	0.0043	mg/L	0.001	0.0004		
9/14/2021	METALS	2109141510B	Magnesium, Total	22.4	mg/L	1	0.03		

Event	Analysis				***	Quant	Det	Xtrct	0.4 51
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/4/2021	8260	2108040940C	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.8	ug/L	1	0.2		
8/4/2021	8260	2108040940C	Silane, methoxytrimethyl-	8.8	ug/L	NA	NA		TIC FB
8/4/2021	8260	2108040940C	Unknown	8.2	ug/L	NA	NA		TIC
8/4/2021	8260	2108040940C	Trichlorofluoromethane (CFC 11)	9.3	ug/L	1	0.24		
8/4/2021	8260	2108040940C	Trichloroethene (TCE)	13	ug/L	1	0.2		
8/4/2021	8260	2108040940C	Tetrachloroethene (PCE)	0.34	ug/L	1	0.21		J
8/4/2021	8260	2108040940C	2-Propanol	7.3	ug/L	50	3.4		J FB
8/4/2021	8260	2108040940C	Unknown	6.1	ug/L	NA	NA		TIC FB
8/4/2021	8260	2108040940C	Chloromethane	0.47	ug/L	2	0.28		J RB A FB
8/4/2021	NDMA_LL	2108040943C	N-Nitrodimethylamine	0.86	ng/L	0.49	0.2		
8/4/2021	NDMA_LL	2108040943C	N-Nitrosodimethylamine	3.2	ng/L	0.49	0.34		FB
8/4/2021	METALS	2108040946C	Molybdenum, Total	0.007	mg/L	0.025	0.003		J
8/4/2021	METALS	2108040946C	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
8/4/2021	METALS	2108040946C	Strontium, Total	2.57	mg/L	0.1	0.002		
8/4/2021	METALS	2108040946C	Sodium, Total	37.8	mg/L	1	0.2		
8/4/2021	METALS	2108040946C	Nickel, Total	0.012	mg/L	0.04	0.003		J
8/4/2021	METALS	2108040946C	Magnesium, Total	66.9	mg/L	1	0.03		
8/4/2021	METALS	2108040946C	Calcium, Total	113	mg/L	1	0.3		
8/4/2021	METALS	2108040946C	Boron, Total	0.07	mg/L	0.2	0.02		J
8/4/2021	METALS	2108040946C	Barium, Total	0.027	mg/L	0.02	0.003		
8/4/2021	METALS	2108040946C	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
8/4/2021	METALS	2108040946C	Zinc, Total	0.005	mg/L	0.02	0.003		J
8/4/2021	METALS	2108040946C	Potassium, Total	3.8	mg/L	2	0.4		
8/4/2021	ANIONS	2108040947C	Sulfate	341	mg/L	8	1.6		
8/4/2021	ANIONS	2108040947C	Fluoride, undistilled	1.15	mg/L	0.1	0.01		
8/4/2021	ANIONS	2108040947C	Chloride	37.9	mg/L	2	0.5		
8/4/2021	ANIONS	2108040947C	Alkalinity, Total as CaCO3	230	mg/L	2	1.8		
8/4/2021	SM2540C	2108040948C	Total Dissolved Solids (TDS)	787	mg/L	10	9		
8/4/2021	6850	2108040949C	Perchlorate	0.48	ug/L	0.2	0.06		
8/4/2021	353.2	2108040950C	Nitrate+Nitrite as Nitrogen	0.774	mg/L	0.05	0.002		

Event Date	Analysis Method	Samula	Constituent	Dogult	IIn:ta	Quant	Det Limit	Xtrct	OA Flag
Date	Witthou	Sample	Constituent	Result	Units	Limit	Lillit	Effic	QA Flag
8/3/2021	8260	2108041435C	Trichloroethene (TCE)	2.1	ug/L	1	0.2		
8/3/2021	8260	2108041435C	Trichlorofluoromethane (CFC 11)	3	ug/L	1	0.24		
8/3/2021	8260	2108041435C	Chloromethane	0.32	ug/L	2	0.28		J RB A FB
8/3/2021	8260	2108041435C	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.1	ug/L	1	0.2		
8/3/2021	NDMA_LL	2108041438C	N-Nitrodimethylamine	0.74	ng/L	0.48	0.2		
8/3/2021	NDMA_LL	2108041438C	N-Nitrosodimethylamine	4.6	ng/L	0.48	0.33		FB
8/3/2021	METALS	2108041441C	Boron, Total	0.07	mg/L	0.2	0.02		J
8/3/2021	METALS	2108041441C	Potassium, Total	3.9	mg/L	2	0.4		
8/3/2021	METALS	2108041441C	Vanadium, Total	0.001	mg/L	0.05	0.0007		J
8/3/2021	METALS	2108041441C	Strontium, Total	2.56	mg/L	0.1	0.002		
8/3/2021	METALS	2108041441C	Sodium, Total	38.4	mg/L	1	0.2		
8/3/2021	METALS	2108041441C	Zinc, Total	0.024	mg/L	0.02	0.003		
8/3/2021	METALS	2108041441C	Nickel, Total	0.013	mg/L	0.04	0.003		J
8/3/2021	METALS	2108041441C	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
8/3/2021	METALS	2108041441C	Calcium, Total	111	mg/L	1	0.3		
8/3/2021	METALS	2108041441C	Barium, Total	0.028	mg/L	0.02	0.003		
8/3/2021	METALS	2108041441C	Arsenic, Total	0.001	mg/L	0.001	0.0004		
8/3/2021	METALS	2108041441C	Magnesium, Total	66.4	mg/L	1	0.03		
8/3/2021	ANIONS	2108041442C	Alkalinity, Total as CaCO3	232	mg/L	2	1.8		
8/3/2021	ANIONS	2108041442C	Chloride	38.1	mg/L	2	0.5		
8/3/2021	ANIONS	2108041442C	Fluoride, undistilled	1.17	mg/L	0.1	0.01		
8/3/2021	ANIONS	2108041442C	Sulfate	339	mg/L	8	1.6		
8/3/2021	SM2540C	2108041443C	Total Dissolved Solids (TDS)	787	mg/L	10	9		
8/3/2021	6850	2108041444C	Perchlorate	0.47	ug/L	0.2	0.06		
8/3/2021	353.2	2108041445C	Nitrate+Nitrite as Nitrogen	0.774	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag	
10/14/2021	8260_LL	2110141425C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.8	ug/L	0.5	0.2			
10/14/2021	8260 LL	2110141426C	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.8	ug/L	0.5	0.2			

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/14/2021	8260	2109140940A	Trichlorofluoromethane (CFC 11)	48	ug/L	1	0.24		
9/14/2021	8260	2109140940A	Trichloroethene (TCE)	72	ug/L	1	0.2		
9/14/2021	8260	2109140940A	Tetrachloroethene (PCE)	1.4	ug/L	1	0.21		
9/14/2021	8260	2109140940A	Dichlorofluoromethane (CFC 21)	1.9	ug/L	1	0.2		
9/14/2021	8260	2109140940A	1,1,2-Trichloro-1,2,2-Trifluoroethane	53	ug/L	1	0.2		
9/14/2021	8260	2109140940A	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.63	ug/L	1	0.2		J
9/14/2021	607	2109140942A	N-Nitrosodimethylamine	0.2	$\mu g/L$	0.0094	0.0047	58	QD
9/14/2021	607	2109140942A	N-Nitrodimethylamine	0.14	μg/L	0.0094	0.0047	102.6	QD
9/14/2021	607	2109140942A	Bromacil	0.12	μg/L	0.0094	0.0047	140	
9/14/2021	607	2109140943A	Bromacil	0.12	μg/L	0.0095	0.0048	140	
9/14/2021	607	2109140943A	N-Nitrosodimethylamine	0.26	μg/L	0.0095	0.0048	58	QD
9/14/2021	607	2109140943A	N-Nitrodimethylamine	0.19	μg/L	0.0095	0.0048	102.6	QD

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/14/2021	8260_LL	2109141510A	Trichlorofluoromethane (CFC 11)	0.46	ug/L	0.5	0.24		J
9/14/2021	8260_LL	2109141510A	Trichloroethene (TCE)	0.4	ug/L	0.5	0.2		J
9/14/2021	NDMA LL	2109141512A	N-Nitrosodimethylamine	0.78	ng/L	0.47	0.4		RB A * FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
10/13/2021	8260_LL	2110131015Y	Bromomethane	0.79	ug/L	1	0.7		J	
10/13/2021	NDMA LL	2110131016Y	N-Nitrosodimethylamine	0.57	ng/L	0.48	0.4			

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/12/2021	8260_LL	2110121110Y	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.26	ug/L	0.5	0.2		J EB
10/12/2021	NDMA_LL	2110121111Y	N-Nitrodimethylamine	0.31	ng/L	0.48	0.2		J EB
10/12/2021	NDMA LL	2110121111Y	N-Nitrosodimethylamine	0.93	ng/L	0.48	0.4		EB

Analyti	cal Results	for Sampling	Events at PL-7-480							
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
8/10/2021	NDMA_LL	2108101001Y	N-Nitrosodimethylamine	1.4	ng/L	0.49	0.45		EB	

Analyti	Analytical Results for Sampling Events at PL-7-560										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag		
8/5/2021	NDMA_LL	2108051451Y	N-Nitrosodimethylamine	1	ng/L	0.47	0.33		TB EB		

Analytic	Analytical Results for Sampling Events at PL-8-455										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
9/2/2021	NDMA_LL	2109021531Y	N-Nitrosodimethylamine	0.84	ng/L	0.48	0.4		RB EB		

Analytical Results for Sampling Events at PL-8-605										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
9/2/2021	NDMA_LL	2109021310Y	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		RB * EB	

Analyti	Analytical Results for Sampling Events at ST-4-481										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
9/2/2021	NDMA_LL	2109021002B	N-Nitrosodimethylamine	1.7	ng/L	0.48	0.4		RB * TB FB		

Event Date	Analysis Method	Samula	Constituent	Dogult	II:40	Quant Limit	Det Limit	Xtrct	OA Elag
Date	Method	Sample	Constituent	Result	Units	Lillit	Lillit	Effic	QA Flag
8/2/2021	8260_LL	2108020935B	2-Propanol	7	ug/L	40	3.4		J
8/2/2021	NDMA_LL	2108020939B	N-Nitrosodimethylamine	0.44	ng/L	0.48	0.33		J RB TB FB
8/2/2021	METALS	2108020941B	Vanadium, Total	0.014	mg/L	0.05	0.0007		J
8/2/2021	METALS	2108020941B	Boron, Total	0.17	mg/L	0.2	0.02		J
8/2/2021	METALS	2108020941B	Calcium, Total	48.3	mg/L	1	0.3		
8/2/2021	METALS	2108020941B	Magnesium, Total	28.4	mg/L	1	0.03		
8/2/2021	METALS	2108020941B	Molybdenum, Total	0.037	mg/L	0.025	0.003		
8/2/2021	METALS	2108020941B	Nickel, Total	0.016	mg/L	0.04	0.003		J
8/2/2021	METALS	2108020941B	Potassium, Total	7.7	mg/L	2	0.4		
8/2/2021	METALS	2108020941B	Strontium, Total	1.92	mg/L	0.1	0.002		
8/2/2021	METALS	2108020941B	Arsenic, Total	0.0039	mg/L	0.001	0.0004		
8/2/2021	METALS	2108020941B	Barium, Total	0.029	mg/L	0.02	0.003		
8/2/2021	METALS	2108020941B	Sodium, Total	84.2	mg/L	1	0.2		

Analytical Results for Sampling Events at ST-4-690										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
9/2/2021	NDMA_LL	2109021502B	N-Nitrosodimethylamine	1.7	ng/L	0.49	0.41		RB * FB	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
- Date		Sample	Constituent	Kesuit	Units			EIIIC	QATIAG
8/4/2021	$NDMA_LL$	2108050850Y	N-Nitrosodimethylamine	2.4	ng/L	0.48	0.33		EB
8/4/2021	METALS	2108050851Y	Potassium, Total	9.9	mg/L	2	0.4		
8/4/2021	METALS	2108050851Y	Sodium, Total	227	mg/L	10	2		
8/4/2021	METALS	2108050851Y	Arsenic, Total	0.0035	mg/L	0.001	0.0004		
8/4/2021	METALS	2108050851Y	Barium, Total	0.026	mg/L	0.02	0.003		
8/4/2021	METALS	2108050851Y	Boron, Total	0.32	mg/L	0.2	0.02		
8/4/2021	METALS	2108050851Y	Calcium, Total	98.7	mg/L	1	0.3		
8/4/2021	METALS	2108050851Y	Magnesium, Total	33.9	mg/L	1	0.03		
8/4/2021	METALS	2108050851Y	Strontium, Total	2.1	mg/L	0.1	0.002		
8/4/2021	METALS	2108050851Y	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
8/4/2021	METALS	2108050851Y	Vanadium, Total	0.012	mg/L	0.05	0.0007		J
8/4/2021	METALS	2108050851Y	Zinc, Total	0.011	mg/L	0.02	0.003		J
8/4/2021	METALS	2108050851Y	Manganese, Total	0.049	mg/L	0.01	0.004		
8/4/2021	ANIONS	2108050930Y	Alkalinity, Total as CaCO3	77.9	mg/L	2	1.8		
8/4/2021	ANIONS	2108050930Y	Chloride	83	mg/L	2	0.5		
8/4/2021	ANIONS	2108050930Y	Fluoride, undistilled	0.48	mg/L	0.1	0.01		
8/4/2021	ANIONS	2108050930Y	Sulfate	709	mg/L	20	4		
8/4/2021	SM2540C	2108050931Y	Total Dissolved Solids (TDS)	1260	mg/L	10	9		
8/4/2021	6850	2108050932Y	Perchlorate	0.99	ug/L	0.2	0.06		
8/4/2021	353.2	2108050933Y	Nitrate+Nitrite as Nitrogen	4.54	mg/L	0.25	0.008		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag	
8/4/2021	8260_LL	2108041115Y	Chloromethane	0.4	ug/L	0.5	0.28		J RB A	
8/4/2021	NDMA_LL	2108041116Y	N-Nitrosodimethylamine	0.64	ng/L	0.48	0.34		EB	

Analyti	Analytical Results for Sampling Events at ST-5-655										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
8/2/2021	NDMA_LL	2108021321Y	N-Nitrosodimethylamine	3.3	ng/L	0.49	0.34		EB		

Event Date	Analysis Method	Sampla	Constituent	Dogult	Units	Quant Limit	Det Limit	Xtrct	QA Flag
Date	- Trictiou	Sample	Constituent	Result	Units	Limit	Lillit	Effic	QA Flag
8/3/2021	8260_LL	2108031510Y	Chloromethane	0.32	ug/L	0.5	0.28		J RB A
8/3/2021	NDMA_LL	2108040825Y	N-Nitrosodimethylamine	1.3	ng/L	0.48	0.33		EB
8/3/2021	NDMA_LL	2108040825Y	N-Nitrodimethylamine	0.23	ng/L	0.48	0.2		J
8/3/2021	METALS	2108040826Y	Boron, Total	0.16	mg/L	0.2	0.02		J
8/3/2021	METALS	2108040826Y	Vanadium, Total	0.011	mg/L	0.05	0.0007		J
8/3/2021	METALS	2108040826Y	Barium, Total	0.024	mg/L	0.02	0.003		
8/3/2021	METALS	2108040826Y	Calcium, Total	50	mg/L	1	0.3		
8/3/2021	METALS	2108040826Y	Magnesium, Total	33.1	mg/L	1	0.03		
8/3/2021	METALS	2108040826Y	Molybdenum, Total	0.015	mg/L	0.025	0.003		J
8/3/2021	METALS	2108040826Y	Nickel, Total	0.016	mg/L	0.04	0.003		J
8/3/2021	METALS	2108040826Y	Potassium, Total	4.1	mg/L	2	0.4		
8/3/2021	METALS	2108040826Y	Sodium, Total	83.4	mg/L	1	0.2		
8/3/2021	METALS	2108040826Y	Strontium, Total	2.19	mg/L	0.1	0.002		
8/3/2021	METALS	2108040826Y	Arsenic, Total	0.0021	mg/L	0.001	0.0004		
8/3/2021	ANIONS	2108040850Y	Fluoride, undistilled	0.59	mg/L	0.1	0.01		
8/3/2021	ANIONS	2108040850Y	Sulfate	240	mg/L	8	1.6		
8/3/2021	ANIONS	2108040850Y	Chloride	37.4	mg/L	2	0.5		
8/3/2021	ANIONS	2108040850Y	Alkalinity, Total as CaCO3	159	mg/L	2	1.8		
8/3/2021	SM2540C	2108040851Y	Total Dissolved Solids (TDS)	573	mg/L	10	9		
8/3/2021	6850	2108040852Y	Perchlorate	0.41	ug/L	0.2	0.06		
8/3/2021	353.2	2108040853Y	Nitrate+Nitrite as Nitrogen	0.671	mg/L	0.05	0.002		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
Dute		затрте	Constituent	resure	Circs	Limit	Ziiiit	EIIIC	Q ¹ 11 mg
8/2/2021	NDMA_LL	2108030950Y	N-Nitrosodimethylamine	1.6	ng/L	0.47	0.33		EB
8/2/2021	METALS	2108030951Y	Barium, Total	0.019	mg/L	0.02	0.003		J
8/2/2021	METALS	2108030951Y	Vanadium, Total	0.012	mg/L	0.05	0.0007		J
8/2/2021	METALS	2108030951Y	Sodium, Total	149	mg/L	1	0.2		
8/2/2021	METALS	2108030951Y	Potassium, Total	5.5	mg/L	2	0.4		
8/2/2021	METALS	2108030951Y	Nickel, Total	0.018	mg/L	0.04	0.003		J
8/2/2021	METALS	2108030951Y	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
8/2/2021	METALS	2108030951Y	Magnesium, Total	52.1	mg/L	1	0.03		
8/2/2021	METALS	2108030951Y	Chromium, Total	0.004	mg/L	0.01	0.002		J
8/2/2021	METALS	2108030951Y	Boron, Total	0.22	mg/L	0.2	0.02		
8/2/2021	METALS	2108030951Y	Arsenic, Total	0.0025	mg/L	0.001	0.0004		
8/2/2021	METALS	2108030951Y	Strontium, Total	3.78	mg/L	0.1	0.002		
8/2/2021	METALS	2108030951Y	Calcium, Total	83.9	mg/L	1	0.3		
8/2/2021	METALS	2108030951Y	Zinc, Total	0.01	mg/L	0.02	0.003		J

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/15/2021	NDMA_LL	2109151258B	N-Nitrosodimethylamine	0.59	ng/L	0.47	0.4		RB A TB FB
9/15/2021	8270	2109151330B	Unknown	7.8	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	2-Thiopheneacetic acid, 4-tetradec	18	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Unknown Hydrocarbon	26	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Unknown	33	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Unknown Hydrocarbon	29	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Tridecanol, 2-ethyl-2-methyl-	21	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Unknown Hydrocarbon	14	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Unknown Hydrocarbon	7.1	ug/L	NA	NA		TIC RB
9/15/2021	8270	2109151330B	Benzenesulfonamide, N-butyl-	630	ug/L	NA	NA		TIC
9/15/2021	8270	2109151400B	1,4-Dioxane	1.3	ug/L	0.04	0.027		
9/15/2021	METALS	2109151405B	Boron, Total	0.06	mg/L	0.2	0.02		J
9/15/2021	METALS	2109151405B	Magnesium, Total	64	mg/L	1	0.03		
9/15/2021	METALS	2109151405B	Calcium, Total	119	mg/L	1	0.3		
9/15/2021	METALS	2109151405B	Cobalt, Total	0.005	mg/L	0.05	0.0009		J
9/15/2021	METALS	2109151405B	Iron, Total	0.17	mg/L	0.1	0.07		
9/15/2021	METALS	2109151405B	Manganese, Total	0.236	mg/L	0.01	0.004		
9/15/2021	METALS	2109151405B	Nickel, Total	0.832	mg/L	0.04	0.003		
9/15/2021	METALS	2109151405B	Potassium, Total	3.2	mg/L	2	0.4		
9/15/2021	METALS	2109151405B	Sodium, Total	37.2	mg/L	1	0.2		
9/15/2021	METALS	2109151405B	Strontium, Total	2.44	mg/L	0.1	0.002		
9/15/2021	METALS	2109151405B	Zinc, Total	0.01	mg/L	0.02	0.003		J
9/15/2021	METALS	2109151405B	Barium, Total	0.029	mg/L	0.02	0.003		
9/15/2021	METALS	2109151405B	Molybdenum, Total	0.006	mg/L	0.025	0.003		J

DateMethodSampleConstituentResultUnitsLimitLimitEfficQA Flag9/15/20218260_LL2109151105BTrichlorofluoromethane (CFC 11)0.25ug/L0.50.24J	
	_
9/15/2021 8260_LL 2109151105B Trichloroethene (TCE) 0.39 ug/L 0.5 0.2 J	
9/15/2021 8260_LL 2109151105B Toluene 0.23 ug/L 0.5 0.2 J	
9/15/2021 8260_LL 2109151105B Bromomethane 0.7 ug/L 1 0.7 J	
9/15/2021 NDMA_LL 2109151311B N-Nitrosodimethylamine 0.73 ng/L 0.48 0.4 RB A FB QI	Q
9/15/2021 NDMA_LL 2109151311B N-Nitrodimethylamine 0.38 ng/L 0.48 0.2 J	
9/15/2021 NDMA_LL 2109151345B N-Nitrosodimethylamine 1.5 ng/L 0.48 0.4 RB A FB QI	Q
9/15/2021 NDMA_LL 2109151345B N-Nitrodimethylamine 0.25 ng/L 0.48 0.2 J	
9/15/2021 8270 2109151355B Bis(2-ethylhexyl) Phthalate 4.8 ug/L 4.7 3.9	
9/15/2021 8270 2109151355B Unknown 6.5 ug/L NA NA TIC	
9/15/2021 8270 2109151355B Unknown 9 ug/L NA NA TIC	
9/15/2021 8270 2109151355B Benzenesulfonamide, N-butyl- 2400 ug/L NA NA TIC	
9/15/2021 8270 2109151425B 1,4-Dioxane 1.1 ug/L 0.04 0.027	
9/15/2021 METALS 2109151426B Potassium, Total 3.2 mg/L 2 0.4	
9/15/2021 METALS 2109151426B Sodium, Total 38.6 mg/L 1 0.2	
9/15/2021 METALS 2109151426B Strontium, Total 2.55 mg/L 0.1 0.002	
9/15/2021 METALS 2109151426B Vanadium, Total 0.002 mg/L 0.05 0.0007 J	
9/15/2021 METALS 2109151426B Zinc, Total 0.005 mg/L 0.02 0.003 J	
9/15/2021 METALS 2109151426B Barium, Total 0.026 mg/L 0.02 0.003	
9/15/2021 METALS 2109151426B Boron, Total 0.06 mg/L 0.2 0.02 J	
9/15/2021 METALS 2109151426B Cobalt, Total 0.002 mg/L 0.05 0.0009 J	
9/15/2021 METALS 2109151426B Iron, Total 0.58 mg/L 0.1 0.07	
9/15/2021 METALS 2109151426B Magnesium, Total 67.3 mg/L 1 0.03	
9/15/2021 METALS 2109151426B Manganese, Total 0.085 mg/L 0.01 0.004	
9/15/2021 METALS 2109151426B Molybdenum, Total 0.007 mg/L 0.025 0.003 J	
9/15/2021 METALS 2109151426B Nickel, Total 0.151 mg/L 0.04 0.003	
9/15/2021 METALS 2109151426B Calcium, Total 104 mg/L 1 0.3	

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/16/2021	8260_LL	2109161310B	Toluene	0.31	ug/L	0.5	0.2		J
9/16/2021	607	2109161312B	Bromacil	0.038	μg/L	0.0095	0.0048	130.4	
9/16/2021	8270	2109161345B	Unknown	180	ug/L	NA	NA		TIC
9/16/2021	8270	2109161345B	Unknown Hydrocarbon	6.5	ug/L	NA	NA		TIC
9/16/2021	8270	2109161345B	Unknown Hydrocarbon	5.4	ug/L	NA	NA		TIC
9/16/2021	8270	2109161345B	Unknown Hydrocarbon	7	ug/L	NA	NA		TIC
9/16/2021	8270	2109161345B	Unknown Hydrocarbon	4.4	ug/L	NA	NA		TIC
9/16/2021	8270	2109161345B	Benzenesulfonamide, N-butyl-	260	ug/L	NA	NA		TIC
9/16/2021	8270	2109161510B	1,4-Dioxane	1	ug/L	0.04	0.027		QD
9/16/2021	8270	2109161511B	1,4-Dioxane	1.3	ug/L	0.04	0.027		QD
9/16/2021	METALS	2109161512B	Cobalt, Total	0.009	mg/L	0.05	0.0009		J
9/16/2021	METALS	2109161512B	Potassium, Total	4	mg/L	2	0.4		
9/16/2021	METALS	2109161512B	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
9/16/2021	METALS	2109161512B	Barium, Total	0.031	mg/L	0.02	0.003		
9/16/2021	METALS	2109161512B	Boron, Total	0.07	mg/L	0.2	0.02		J
9/16/2021	METALS	2109161512B	Calcium, Total	86.1	mg/L	1	0.3		
9/16/2021	METALS	2109161512B	Copper, Total	0.014	mg/L	0.02	0.004		J
9/16/2021	METALS	2109161512B	Lead, Total	0.013	mg/L	0.05	0.003		J
9/16/2021	METALS	2109161512B	Zinc, Total	0.149	mg/L	0.02	0.003		
9/16/2021	METALS	2109161512B	Vanadium, Total	0.004	mg/L	0.05	0.0007		J
9/16/2021	METALS	2109161512B	Strontium, Total	2.65	mg/L	0.1	0.002		
9/16/2021	METALS	2109161512B	Sodium, Total	53.7	mg/L	1	0.2		
9/16/2021	METALS	2109161512B	Mercury, Total	0.0001	mg/L	0.0002	0.00008		J
9/16/2021	METALS	2109161512B	Magnesium, Total	51.5	mg/L	1	0.03		
9/16/2021	METALS	2109161512B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
9/16/2021	METALS	2109161512B	Nickel, Total	0.411	mg/L	0.04	0.003		
9/16/2021	METALS	2109161512B	Manganese, Total	0.265	mg/L	0.01	0.004		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/16/2021	8260_LL	2109161325B	Toluene	0.49	ug/L	0.5	0.2		J
9/16/2021	NDMA_LL	2109161328B	N-Nitrosodimethylamine	1.3	ng/L	0.47	0.4		RB * FB
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	5.2	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	19	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	25	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown	16	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	17	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	8.9	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	4.2	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Benzenesulfonamide, N-butyl-	81	ug/L	NA	NA		TIC
9/16/2021	8270	2109161405B	Unknown Hydrocarbon	22	ug/L	NA	NA		TIC
9/16/2021	METALS	2109161445B	Strontium, Total	2.38	mg/L	0.1	0.002		
9/16/2021	METALS	2109161445B	Nickel, Total	0.286	mg/L	0.04	0.003		
9/16/2021	METALS	2109161445B	Calcium, Total	62	mg/L	1	0.3		
9/16/2021	METALS	2109161445B	Boron, Total	0.12	mg/L	0.2	0.02		J
9/16/2021	METALS	2109161445B	Barium, Total	0.016	mg/L	0.02	0.003		J
9/16/2021	METALS	2109161445B	Arsenic, Total	0.002	mg/L	0.001	0.0004		
9/16/2021	METALS	2109161445B	Magnesium, Total	39	mg/L	1	0.03		
9/16/2021	METALS	2109161445B	Vanadium, Total	0.013	mg/L	0.05	0.0007		J
9/16/2021	METALS	2109161445B	Molybdenum, Total	0.01	mg/L	0.025	0.003		J
9/16/2021	METALS	2109161445B	Potassium, Total	4.7	mg/L	2	0.4		
9/16/2021	METALS	2109161445B	Sodium, Total	80.8	mg/L	1	0.2		
9/16/2021	METALS	2109161445B	Chromium, Total	0.003	mg/L	0.01	0.002		J
9/16/2021	METALS	2109161445B	Zinc, Total	0.1	mg/L	0.02	0.003		
9/16/2021	METALS	2109161445B	Manganese, Total	0.019	mg/L	0.01	0.004		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
9/16/2021	8260_LL	2109161335B	Toluene	0.27	ug/L	0.5	0.2		J
9/16/2021	NDMA_LL	2109161338B	N-Nitrosodimethylamine	0.83	ng/L	0.48	0.4		RB * FB
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	5.2	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Benzene, 1-chloro-4-(trifluorometh	4.3	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	8.6	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	12	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	14	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	11	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Unknown Hydrocarbon	7.7	ug/L	NA	NA		TIC
9/16/2021	8270	2109161420B	Benzenesulfonamide, N-butyl-	220	ug/L	NA	NA		TIC
9/16/2021	METALS	2109161500B	Nickel, Total	0.039	mg/L	0.04	0.003		J
9/16/2021	METALS	2109161500B	Strontium, Total	1.82	mg/L	0.1	0.002		
9/16/2021	METALS	2109161500B	Zinc, Total	0.066	mg/L	0.02	0.003		
9/16/2021	METALS	2109161500B	Thallium, Total	0.00007	mg/L	0.001	0.00004		J
9/16/2021	METALS	2109161500B	Potassium, Total	5.3	mg/L	2	0.4		
9/16/2021	METALS	2109161500B	Vanadium, Total	0.016	mg/L	0.05	0.0007		J
9/16/2021	METALS	2109161500B	Lead, Total	0.004	mg/L	0.05	0.003		J
9/16/2021	METALS	2109161500B	Magnesium, Total	28.4	mg/L	1	0.03		
9/16/2021	METALS	2109161500B	Chromium, Total	0.003	mg/L	0.01	0.002		J
9/16/2021	METALS	2109161500B	Manganese, Total	0.018	mg/L	0.01	0.004		
9/16/2021	METALS	2109161500B	Molybdenum, Total	0.012	mg/L	0.025	0.003		J
9/16/2021	METALS	2109161500B	Calcium, Total	58.5	mg/L	1	0.3		
9/16/2021	METALS	2109161500B	Arsenic, Total	0.0037	mg/L	0.001	0.0004		
9/16/2021	METALS	2109161500B	Barium, Total	0.02	mg/L	0.02	0.003		J
9/16/2021	METALS	2109161500B	Boron, Total	0.19	mg/L	0.2	0.02		J
9/16/2021	METALS	2109161500B	Mercury, Total	0.00009	mg/L	0.0002	0.00008		J
9/16/2021	METALS	2109161500B	Sodium, Total	120	mg/L	1	0.2		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
10/4/2021	8260_LL	2110041415B	Benzene	0.24	ug/L	0.5	0.2		J
10/4/2021	8270	2110041515B	Benzenesulfonamide, N-butyl-	540	ug/L	NA	NA		TIC
10/4/2021	METALS	2110041535B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
10/4/2021	METALS	2110041535B	Arsenic, Total	0.0008	mg/L	0.001	0.0004		J
10/4/2021	METALS	2110041535B	Barium, Total	0.043	mg/L	0.02	0.003		
10/4/2021	METALS	2110041535B	Boron, Total	0.06	mg/L	0.2	0.02		J
10/4/2021	METALS	2110041535B	Calcium, Total	106	mg/L	1	0.3		
10/4/2021	METALS	2110041535B	Cobalt, Total	0.003	mg/L	0.05	0.0009		J
10/4/2021	METALS	2110041535B	Iron, Total	0.17	mg/L	0.1	0.07		
10/4/2021	METALS	2110041535B	Manganese, Total	0.402	mg/L	0.01	0.004		
10/4/2021	METALS	2110041535B	Nickel, Total	0.121	mg/L	0.04	0.003		
10/4/2021	METALS	2110041535B	Sodium, Total	42.2	mg/L	1	0.2		
10/4/2021	METALS	2110041535B	Strontium, Total	2.41	mg/L	0.1	0.002		
10/4/2021	METALS	2110041535B	Zinc, Total	0.005	mg/L	0.02	0.003		J
10/4/2021	METALS	2110041535B	Magnesium, Total	66.9	mg/L	1	0.03		
10/4/2021	METALS	2110041535B	Potassium, Total	3.5	mg/L	2	0.4		

104/2021 8260 LL 2110041430B Calcomethane 0.31 ugl 0.5 0.28 J	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
104-201	10/4/2021	8260_LL	2110041430B	Chloromethane	0.31	ug/L	0.5	0.28		J
1042021 820 LL 2110041430B Tolurne 0.24 ugL 0.5 0.2 0.2 0.4 0.5 0.2 0.4 0.5 0.2 0.4 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.2 0.5	10/4/2021	8260_LL	2110041430B	Unknown	7.4	ug/L	NA	NA		TIC RB FB
104-201 104-	10/4/2021	8260_LL	2110041430B	Trichlorofluoromethane (CFC 11)	0.81	ug/L	0.5	0.24		
1042021 NBA	10/4/2021	8260_LL	2110041430B	Toluene	0.24	ug/L	0.5	0.2		J
10442021 NDMA_LL 21100415458	10/4/2021	8260_LL	2110041430B	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.56	ug/L	0.5	0.2		
104/2021 8270 21100415458 Unknown 15 Ug/L NA NA TIC 104/2021 8270 21100415459 Ticknown 20 Ug/L NA NA TIC 104/2021 METALS 21100416108 Calcium, Total 106 mg/L 1 0.3 104/2021 METALS 21100416108 Sodium, Total 41.1 mg/L 1 0.2 104/2021 METALS 21100416108 Boron, Total 41.1 mg/L 0.02 0.003 104/2021 METALS 21100416108 Boron, Total 0.04 mg/L 0.02 0.003 104/2021 METALS 21100416108 Boron, Total 0.04 mg/L 0.02 0.003 104/2021 METALS 21100416108 Boron, Total 0.06 mg/L 0.02 0.003 104/2021 METALS 21100416108 Boron, Total 0.06 mg/L 0.02 0.003 104/2021 METALS 21100416108 Boron, Total 0.07 mg/L 0.02 0.003 104/2021 METALS 21100416108 Nonthium, Total 0.07 mg/L 0.02 0.003 104/2021 METALS 21100416108 Nonthium, Total 0.07 mg/L 0.02 0.003 104/2021 METALS 21100416108 Nonthium, Total 0.07 mg/L 0.02 0.003 104/2021 METALS 21100416108 Nonthium, Total 0.07 mg/L 0.02 0.003 104/2021 METALS 21100416108 Mangamese, Total 0.011 mg/L 0.01 0.002 104/2021 METALS 21100416108 Mangamese, Total 0.011 mg/L 0.01 0.003 104/2021 METALS 21100416108 Non. Total 0.03 mg/L 0.01 0.00 104/2021 METALS 21100416108 Non. Total 0.03 mg/L 0.01 0.00 104/2021 METALS 21100416108 Non. Total 0.003 mg/L 0.01 0.00 104/2021 METALS 21100416108 Scontium, Total 0.003 mg/L 0.01 0.00 104/2021 METALS 21100416108 Scontium, Total 0.004 mg/L 0.0 0.00 104/2021 METALS 21100416108 Scontium, Total 0.004 mg/L 0.00 0.000 104/2021 METALS 21100416108 Scontium, Total 0.004 mg/L 0.00 0.000 104/2021 METALS 21100416108 Non. Total 0.004 mg/L 0.00 0.000 104/2021 METALS 21100416108 Non. Total 0.004 mg/L 0.000 0.000 104/2021 METALS 21100416108 Non. To	10/4/2021	8260_LL	2110041430B	Trichloroethene (TCE)	0.76	ug/L	0.5	0.2		
104/2021 8270 21100415458 Unknown 20	10/4/2021	NDMA_LL	2110041520B	N-Nitrosodimethylamine	0.45	ng/L	0.51	0.42		J FB
104/2021 8270	10/4/2021	8270	2110041545B	Unknown	15	ug/L	NA	NA		TIC
104/2021 METALS 2110041610B Sodium, Total 106 mg/L 1 0.2 0.03 1 104/2021 METALS 2110041610B Barium, Total 0.024 mg/L 0.02 0.003 1 104/2021 METALS 2110041610B Barium, Total 0.06 mg/L 0.2 0.02 0.003 1 104/2021 METALS 2110041610B Barium, Total 0.024 mg/L 0.02 0.003 1 104/2021 METALS 2110041610B Sron, Total 0.024 mg/L 0.02 0.003 1 104/2021 METALS 2110041610B Srontium, Total 0.024 mg/L 0.1 0.002 1 104/2021 METALS 2110041610B Potassium, Total 3.4 mg/L 2.0 0.4 0.003 1 104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 1 104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 1 1 1 1 1 1 1 1 1	10/4/2021	8270	2110041545B	Unknown	20	ug/L	NA	NA		TIC
104/2021 METALS 2110041610B Sodium, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041610B Barium, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041610B Siron, Total 0.06 mg/L 0.02 0.003 104/2021 METALS 2110041610B Siron, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041610B Siron, Total 0.024 mg/L 0.1 0.002 0.003 104/2021 METALS 2110041610B Siron, Total 0.071 mg/L 0.04 0.003 104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 104/2021 METALS 2110041610B Magnesium, Total 0.005 mg/L 0.025 0.003 J 0.004 0.004 0.005 mg/L 0.025 0.003 J 0.004 0.005 mg/L 0.025 0.003 J 0.004 0.005 mg/L 0.025 0.003 J 0.004 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 0.003 J 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 0.003 J 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 0.0007 J 0.005 0.0007 0.005 0.0007 J 0.005 0.0	10/4/2021	8270	2110041545B	Benzenesulfonamide, N-butyl-	5100	ug/L	NA	NA		TIC
104/2021 METALS 21100416108 Barium, Total 0.024 mg/L 0.02 0.003 0.04704/2021 METALS 21100416108 Boron, Total 0.024 mg/L 0.02 0.003 0.04704/2021 METALS 21100416108 Strontium, Total 2.72 mg/L 0.1 0.002 0.003 0.044/2021 METALS 21100416108 Strontium, Total 2.72 mg/L 0.1 0.002 0.003 0	10/4/2021	METALS	2110041610B	Calcium, Total	106	mg/L	1	0.3		
104/2021 METALS 2110041610B Boron, Total 0.06 mg/L 0.2 0.003 0.004 0.004 0.004 0.004 0.005 0.003 0.004 0.004 0.005 0.005 0.005 0.004 0.005	10/4/2021	METALS	2110041610B	Sodium, Total	41.1	mg/L	1	0.2		
104/2021 METALS 2110041610B Zinc, Total 0.024 mg/L 0.02 0.003 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004	10/4/2021	METALS	2110041610B	Barium, Total	0.024	mg/L	0.02	0.003		
104/2021 METALS 2110041610B Strontium, Total 2.72 mg/L 0.1 0.002 104/2021 METALS 2110041610B Potassium, Total 3.4 mg/L 2 0.4 104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 104/2021 METALS 2110041610B Molybdenum, Total 0.005 mg/L 0.025 0.003 J 104/2021 METALS 2110041610B Manganese, Total 0.011 mg/L 0.01 0.004 104/2021 METALS 2110041610B Manganese, Total 0.011 mg/L 0.01 0.004 104/2021 METALS 2110041610B Iron, Total 0.03 mg/L 0.1 0.07 104/2021 METALS 2110041610B Iron, Total 0.014 mg/L 0.1 0.07 104/2021 METALS 2110041610B Iron, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041610B Iron, Total 0.002 mg/L 0.1 0.07 104/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 104/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.002 104/2021 METALS 2110041611B Bron, Total 0.06 mg/L 0.1 0.002 104/2021 METALS 2110041611B Bron, Total 0.06 mg/L 0.1 0.002 104/2021 METALS 2110041611B Bron, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041611B Bron, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041611B Zaicium, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.02 0.003 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.003 J 104/2021 METALS 2110041611B Vanadium, Total 0.007 mg/L 0.04 0.003 J 104/2021 METALS 2110041611B Magnesium, Total	10/4/2021	METALS	2110041610B	Boron, Total	0.06	mg/L	0.2	0.02		J
104/2021 METALS 2110041610B Potassium, Total 0.071 mg/L 0.04 0.003 0.003 0.04/2021 METALS 2110041610B Molybdenum, Total 0.005 mg/L 0.025 0.003 J 0.04/2021 METALS 2110041610B Maganese, Total 0.011 mg/L 0.01 0.004 0.005 0.007 0.004 0.004 0.005 0.007 0.004 0.005 0.007 0.004 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.007 0.005 0.00	10/4/2021	METALS	2110041610B	Zinc, Total	0.024	mg/L	0.02	0.003		
104/2021 METALS 2110041610B Nickel, Total 0.071 mg/L 0.04 0.003 0.003 0.004 0.004 0.005 0.003 0.005 0.003 0.005 0.005 0.003 0.005 0.00	10/4/2021	METALS	2110041610B	Strontium, Total	2.72	mg/L	0.1	0.002		
104/2021 METALS 2110041610B Molybdenum, Total 0.005 mg/L 0.025 0.003 J 104/2021 METALS 2110041610B Manganese, Total 0.011 mg/L 0.01 0.004 104/2021 METALS 2110041610B Manganese, Total 0.11 mg/L 0.1 0.03 104/2021 METALS 2110041610B Iron, Total 0.14 mg/L 0.1 0.07 104/2021 METALS 2110041610B Chromium, Total 0.003 mg/L 0.01 0.002 J 104/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 104/2021 METALS 2110041611B Strontium, Total 0.14 mg/L 0.1 0.07 104/2021 METALS 2110041611B Strontium, Total 0.14 mg/L 0.1 0.002 J 104/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 104/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.003 J 104/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 104/2021 METALS 2110041611B Sinc, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Sodium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Sodium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Sodium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Potassium, Total 0.07 mg/L 0.04 0.003 104/2021 METALS 2110041611B Magnesium, Total 0.07 mg/L 0.04 0.003 104/2021 METALS 2110041611B Magnesium, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Magnesium, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Magnesium, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Magnesium, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Magnesium, Total 0.006 mg/L 0.016 0.002	10/4/2021	METALS	2110041610B	Potassium, Total	3.4	mg/L	2	0.4		
104/2021 METALS 2110041610B Magnese, Total 0.011 mg/L 0.01 0.004 104/2021 METALS 2110041610B Magnesium, Total 0.14 mg/L 0.1 0.03 104/2021 METALS 2110041610B Iron, Total 0.14 mg/L 0.01 0.002 J 104/2021 METALS 2110041610B Chromium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 104/2021 METALS 2110041611B Strontium, Total 2.73 mg/L 0.1 0.002 J 104/2021 METALS 2110041611B Strontium, Total 0.06 mg/L 0.2 0.02 J 104/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 104/2021 METALS 2110041611B Calcium, Total 0.06 mg/L 0.2 0.003 J 104/2021 METALS 2110041611B Sarium, Total 0.024 mg/L 0.02 0.003 J 104/2021 METALS 2110041611B Sarium, Total 0.024 mg/L 0.02 0.003 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Sodium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Sodium, Total 0.002 mg/L 0.05 0.0007 J 104/2021 METALS 2110041611B Nickel, Total 0.002 mg/L 0.05 0.0003 J 104/2021 METALS 2110041611B Nickel, Total 0.007 mg/L 0.04 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.006 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.007 mg/L 0.025 0.003 J 104/2021 METALS 2110041611B Nickel, Total 0.007 mg/L 0.005 0.003 J 104/2021 METALS 2110041611	10/4/2021	METALS	2110041610B	Nickel, Total	0.071	mg/L	0.04	0.003		
10/4/2021 METALS 2110041610B Magnesium, Total 69.3 mg/L 1 0.03 10/4/2021 METALS 2110041610B Iron, Total 0.003 mg/L 0.01 0.002 J 10/4/2021 METALS 2110041610B Chromium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.002	10/4/2021	METALS	2110041610B	Molybdenum, Total	0.005	mg/L	0.025	0.003		J
10/4/2021 METALS 2110041610B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041610B Chromium, Total 0.003 mg/L 0.01 0.002 J 10/4/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041611B Strontium, Total 0.06 mg/L 0.1 0.002 10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Barium, Total 1.06 mg/L 0.02 0.003	10/4/2021	METALS	2110041610B	Manganese, Total	0.011	mg/L	0.01	0.004		
10/4/2021 METALS 2110041610B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041610B Chromium, Total 0.003 mg/L 0.01 0.002 J 10/4/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041611B Strontium, Total 0.06 mg/L 0.1 0.002 10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Barium, Total 1.06 mg/L 0.02 0.003	10/4/2021	METALS	2110041610B	Magnesium, Total	69.3	mg/L	1	0.03		
10/4/2021 METALS 2110041610B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041611B Strontium, Total 2.73 mg/L 0.1 0.002 10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Calcium, Total 106 mg/L 1 0.3 10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.0024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003	10/4/2021	METALS	2110041610B	Iron, Total	0.14	mg/L	0.1	0.07		
10/4/2021 METALS 2110041611B Iron, Total 0.14 mg/L 0.1 0.07 10/4/2021 METALS 2110041611B Strontium, Total 2.73 mg/L 0.1 0.002 10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Barium, Total 106 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.02 0.003 1	10/4/2021	METALS	2110041610B	Chromium, Total	0.003	mg/L	0.01	0.002		J
10/4/2021 METALS 2110041611B Strontium, Total 2.73 mg/L 0.1 0.002 10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Calcium, Total 106 mg/L 1 0.3 10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021	10/4/2021	METALS	2110041610B	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
10/4/2021 METALS 2110041611B Boron, Total 0.06 mg/L 0.2 0.02 J 10/4/2021 METALS 2110041611B Calcium, Total 106 mg/L 1 0.3 10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Zinc, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Nickel, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4	10/4/2021	METALS	2110041611B	Iron, Total	0.14	mg/L	0.1	0.07		
10/4/2021 METALS 2110041611B Calcium, Total 106 mg/L 1 0.3 10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Zinc, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01	10/4/2021	METALS	2110041611B	Strontium, Total	2.73	mg/L	0.1	0.002		
10/4/2021 METALS 2110041611B Barium, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Zinc, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Boron, Total	0.06	mg/L	0.2	0.02		J
10/4/2021 METALS 2110041611B Zinc, Total 0.024 mg/L 0.02 0.003 10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Calcium, Total	106	mg/L	1	0.3		
10/4/2021 METALS 2110041611B Vanadium, Total 0.002 mg/L 0.05 0.0007 J 10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Barium, Total	0.024	mg/L	0.02	0.003		
10/4/2021 METALS 2110041611B Sodium, Total 41.2 mg/L 1 0.2 10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Zinc, Total	0.024	mg/L	0.02	0.003		
10/4/2021 METALS 2110041611B Potassium, Total 3.4 mg/L 2 0.4 10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
10/4/2021 METALS 2110041611B Nickel, Total 0.07 mg/L 0.04 0.003 10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Sodium, Total	41.2	mg/L	1	0.2		
10/4/2021 METALS 2110041611B Molybdenum, Total 0.006 mg/L 0.025 0.003 J 10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Potassium, Total	3.4		2	0.4		
10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Nickel, Total	0.07	mg/L	0.04	0.003		
10/4/2021 METALS 2110041611B Magnesium, Total 69.7 mg/L 1 0.03 10/4/2021 METALS 2110041611B Chromium, Total 0.003 mg/L 0.01 0.002 J	10/4/2021	METALS	2110041611B	Molybdenum, Total	0.006	mg/L	0.025	0.003		J
	10/4/2021	METALS	2110041611B	Magnesium, Total	69.7		1	0.03		
	10/4/2021	METALS	2110041611B	Chromium, Total	0.003	mg/L	0.01	0.002		J
	10/4/2021	METALS	2110041611B	Manganese, Total	0.011		0.01	0.004		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/6/2021	8260_LL	2110061326B	Unknown	7.8	ug/L	NA	NA		TIC RB FB
10/6/2021	8270	2110061445B	Unknown	4.7	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Unknown Hydrocarbon	14	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Unknown Hydrocarbon	18	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Unknown Hydrocarbon	15	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Sulfurous acid, dodecyl 2-propyl e	11	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Unknown	7	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061445B	Benzenesulfonamide, N-butyl-	23	ug/L	NA	NA		TIC
10/6/2021	8270	2110061445B	n-Hexadecanoic acid	4.5	ug/L	NA	NA		TIC
10/6/2021	8270	2110061445B	Unknown Hydrocarbon	9.8	ug/L	NA	NA		TIC RB
10/6/2021	METALS	2110061515B	Lead, Total	0.006	mg/L	0.05	0.003		J
10/6/2021	METALS	2110061515B	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
10/6/2021	METALS	2110061515B	Barium, Total	0.044	mg/L	0.02	0.003		
10/6/2021	METALS	2110061515B	Boron, Total	0.11	mg/L	0.2	0.02		J
10/6/2021	METALS	2110061515B	Calcium, Total	61.1	mg/L	1	0.3		
10/6/2021	METALS	2110061515B	Copper, Total	0.022	mg/L	0.02	0.004		
10/6/2021	METALS	2110061515B	Magnesium, Total	37.5	mg/L	1	0.03		
10/6/2021	METALS	2110061515B	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
10/6/2021	METALS	2110061515B	Potassium, Total	4.8	mg/L	2	0.4		
10/6/2021	METALS	2110061515B	Sodium, Total	85.1	mg/L	1	0.2		
10/6/2021	METALS	2110061515B	Strontium, Total	2.65	mg/L	0.1	0.002		
10/6/2021	METALS	2110061515B	Vanadium, Total	0.012	mg/L	0.05	0.0007		J
10/6/2021	METALS	2110061515B	Zinc, Total	0.262	mg/L	0.02	0.003		
10/6/2021	METALS	2110061515B	Chromium, Total	0.002	mg/L	0.01	0.002		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
-								Line	
10/6/2021	8260_LL	2110061341B	Unknown	7.1	ug/L	NA	NA		TIC RB FB
10/6/2021	8270	2110061500B	Unknown Hydrocarbon	7.4	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061500B	Unknown	4.5	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061500B	Unknown	5.8	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061500B	Unknown Hydrocarbon	6.4	ug/L	NA	NA		TIC RB
10/6/2021	8270	2110061500B	Unknown	4.5	ug/L	NA	NA		TIC RB
10/6/2021	METALS	2110061525B	Strontium, Total	1.43	mg/L	0.1	0.002		
10/6/2021	METALS	2110061525B	Zinc, Total	0.166	mg/L	0.02	0.003		
10/6/2021	METALS	2110061525B	Thallium, Total	0.00008	mg/L	0.001	0.00004		J
10/6/2021	METALS	2110061525B	Sodium, Total	105	mg/L	1	0.2		
10/6/2021	METALS	2110061525B	Potassium, Total	3.9	mg/L	2	0.4		
10/6/2021	METALS	2110061525B	Nickel, Total	0.01	mg/L	0.04	0.003		J
10/6/2021	METALS	2110061525B	Molybdenum, Total	0.024	mg/L	0.025	0.003		J
10/6/2021	METALS	2110061525B	Magnesium, Total	23.5	mg/L	1	0.03		
10/6/2021	METALS	2110061525B	Lead, Total	0.01	mg/L	0.05	0.003		J
10/6/2021	METALS	2110061525B	Chromium, Total	0.003	mg/L	0.01	0.002		J
10/6/2021	METALS	2110061525B	Calcium, Total	40.1	mg/L	1	0.3		
10/6/2021	METALS	2110061525B	Boron, Total	0.22	mg/L	0.2	0.02		
10/6/2021	METALS	2110061525B	Barium, Total	0.015	mg/L	0.02	0.003		J
10/6/2021	METALS	2110061525B	Arsenic, Total	0.003	mg/L	0.001	0.0004		
10/6/2021	METALS	2110061525B	Vanadium, Total	0.017	mg/L	0.05	0.0007		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/23/2021	8260_LL	2108231025Y	Trichloroethene (TCE)	0.26	ug/L	0.5	0.2		J
8/23/2021	8260_LL	2108231025Y	Vinyl Chloride	0.29	ug/L	0.5	0.2		J
8/23/2021	8260_LL	2108231025Y	Tetrahydrofuran (THF)	9.9	ug/L	5	1.7		
8/23/2021	8260_LL	2108231025Y	Chloromethane	0.34	ug/L	0.5	0.28		J A TB
8/23/2021	8260_LL	2108231025Y	2-Propanol	11	ug/L	40	3.4		J ТВ
8/23/2021	METALS	2108231105Y	Barium, Total	0.004	mg/L	0.02	0.003		J
8/23/2021	METALS	2108231105Y	Zinc, Total	0.006	mg/L	0.02	0.003		J
8/23/2021	METALS	2108231105Y	Vanadium, Total	0.011	mg/L	0.05	0.0007		J
8/23/2021	METALS	2108231105Y	Strontium, Total	0.51	mg/L	0.1	0.002		
8/23/2021	METALS	2108231105Y	Sodium, Total	96.6	mg/L	1	0.2		
8/23/2021	METALS	2108231105Y	Potassium, Total	1.9	mg/L	2	0.4		J
8/23/2021	METALS	2108231105Y	Molybdenum, Total	0.019	mg/L	0.025	0.003		J
8/23/2021	METALS	2108231105Y	Magnesium, Total	12	mg/L	1	0.03		
8/23/2021	METALS	2108231105Y	Arsenic, Total	0.0013	mg/L	0.001	0.0004		
8/23/2021	METALS	2108231105Y	Boron, Total	0.17	mg/L	0.2	0.02		J
8/23/2021	METALS	2108231105Y	Calcium, Total	33.2	mg/L	1	0.3		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/19/2021	8260	2108191500Y	Unknown	44	ug/L	NA	NA		TIC
8/19/2021	8260	2108191500Y	Carbon Disulfide	24	ug/L	1	0.42		
8/19/2021	8260	2108191500Y	Ethylbenzene	0.66	ug/L	1	0.2		J
8/19/2021	8260	2108191500Y	Styrene	0.3	ug/L	1	0.2		J
8/19/2021	8260	2108191500Y	Unknown	11	ug/L	NA	NA		TIC
8/19/2021	8260	2108191500Y	Sulfur Dioxide	150	ug/L	NA	NA		TIC EB
8/19/2021	METALS	2108191525Y	Manganese, Total	0.037	mg/L	0.01	0.004		
8/19/2021	METALS	2108191525Y	Arsenic, Total	0.0006	mg/L	0.001	0.0004		J
8/19/2021	METALS	2108191525Y	Barium, Total	0.08	mg/L	0.02	0.003		
8/19/2021	METALS	2108191525Y	Boron, Total	0.13	mg/L	0.2	0.02		J
8/19/2021	METALS	2108191525Y	Calcium, Total	111	mg/L	1	0.3		
8/19/2021	METALS	2108191525Y	Chromium, Total	0.01	mg/L	0.01	0.002		
8/19/2021	METALS	2108191525Y	Magnesium, Total	70	mg/L	1	0.03		
8/19/2021	METALS	2108191525Y	Potassium, Total	3.2	mg/L	2	0.4		
8/19/2021	METALS	2108191525Y	Sodium, Total	46.9	mg/L	1	0.2		
8/19/2021	METALS	2108191525Y	Strontium, Total	9.49	mg/L	0.1	0.002		
8/19/2021	METALS	2108191525Y	Vanadium, Total	0.002	mg/L	0.05	0.0007		J
8/19/2021	METALS	2108191525Y	Zinc, Total	0.03	mg/L	0.02	0.003		
8/19/2021	METALS	2108191525Y	Iron, Total	0.14	mg/L	0.1	0.07		
8/19/2021	ANIONS	2108191526Y	Alkalinity, Total as CaCO3	619	mg/L	2	1.8		
8/19/2021	ANIONS	2108191526Y	Chloride	38.2	mg/L	2	0.5		
8/19/2021	ANIONS	2108191526Y	Fluoride, undistilled	0.82	mg/L	0.1	0.01		
8/19/2021	ANIONS	2108191526Y	Sulfate	2.4	mg/L	0.2	0.04		
8/19/2021	SM2540C	2108191548Y	Total Dissolved Solids (TDS)	706	mg/L	11	10		
8/19/2021	353.2	2108191550Y	Nitrate+Nitrite as Nitrogen	0.007	mg/L	0.05	0.002		J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
		Sample	Constituent	Result	Cints			EIIIC	Q/11 mg
8/18/2021	8260	2108191305Y	Carbon Disulfide	17	ug/L	1	0.42		
8/18/2021	8260	2108191305Y	Unknown	20	ug/L	NA	NA		TIC
8/18/2021	8260	2108191305Y	Ethylbenzene	0.59	ug/L	1	0.2		J
8/18/2021	8260	2108191305Y	Sulfur Dioxide	77	ug/L	NA	NA		TIC
8/18/2021	METALS	2108191330Y	Barium, Total	0.028	mg/L	0.02	0.003		
8/18/2021	METALS	2108191330Y	Magnesium, Total	74.3	mg/L	1	0.03		
8/18/2021	METALS	2108191330Y	Boron, Total	0.13	mg/L	0.2	0.02		J
8/18/2021	METALS	2108191330Y	Potassium, Total	3.3	mg/L	2	0.4		
8/18/2021	METALS	2108191330Y	Sodium, Total	48.3	mg/L	1	0.2		
8/18/2021	METALS	2108191330Y	Strontium, Total	13.5	mg/L	0.5	0.009		
8/18/2021	METALS	2108191330Y	Zinc, Total	0.015	mg/L	0.02	0.003		J
8/18/2021	METALS	2108191330Y	Calcium, Total	126	mg/L	1	0.3		
8/18/2021	METALS	2108191330Y	Manganese, Total	0.009	mg/L	0.01	0.004		J
8/18/2021	METALS	2108191330Y	Chromium, Total	0.002	mg/L	0.01	0.002		J
8/18/2021	METALS	2108191330Y	Iron, Total	0.23	mg/L	0.1	0.07		

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/17/2021	8260	2108180845Y	Sulfur Dioxide	35	ug/L	NA	NA		TIC
8/17/2021	8260	2108180845Y	Unknown	110	ug/L	NA	NA		TIC
8/17/2021	8260	2108180845Y	Ethylbenzene	0.29	ug/L	1	0.2		J
8/17/2021	8260	2108180845Y	Carbon Disulfide	20	ug/L	1	0.42		
8/17/2021	607	2108180846Y	N-Nitrosodimethylamine	0.0078	μg/L	0.0097	0.0049	44	J
8/17/2021	METALS	2108180920Y	Arsenic, Total	0.0005	mg/L	0.001	0.0004		J
8/17/2021	METALS	2108180920Y	Sodium, Total	50.1	mg/L	1	0.2		
8/17/2021	METALS	2108180920Y	Zinc, Total	0.054	mg/L	0.02	0.003		
8/17/2021	METALS	2108180920Y	Strontium, Total	14	mg/L	1	0.02		
8/17/2021	METALS	2108180920Y	Nickel, Total	0.004	mg/L	0.04	0.003		J
8/17/2021	METALS	2108180920Y	Manganese, Total	0.013	mg/L	0.01	0.004		
8/17/2021	METALS	2108180920Y	Magnesium, Total	76.9	mg/L	1	0.03		
8/17/2021	METALS	2108180920Y	Boron, Total	0.14	mg/L	0.2	0.02		J
8/17/2021	METALS	2108180920Y	Potassium, Total	3.5	mg/L	2	0.4		
8/17/2021	METALS	2108180920Y	Barium, Total	0.028	mg/L	0.02	0.003		
8/17/2021	METALS	2108180920Y	Calcium, Total	131	mg/L	1	0.3		
8/17/2021	METALS	2108180920Y	Iron, Total	0.38	mg/L	0.1	0.07		
8/17/2021	ANIONS	2108180921Y	Alkalinity, Total as CaCO3	400	mg/L	2	1.8		
8/17/2021	ANIONS	2108180921Y	Chloride	37.2	mg/L	2	0.5		
8/17/2021	ANIONS	2108180921Y	Fluoride, undistilled	1.8	mg/L	0.1	0.01		
8/17/2021	ANIONS	2108180921Y	Sulfate	282	mg/L	8	1.6		
8/17/2021	SM2540C	2108180922Y	Total Dissolved Solids (TDS)	898	mg/L	17	15		
8/17/2021	353.2	2108180924Y	Nitrate+Nitrite as Nitrogen	0.019	mg/L	0.05	0.002		J

Analyti	Analytical Results for Sampling Events at WW-1-452										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
9/1/2021	NDMA LL	2109091420B	N-Nitrosodimethylamine	0.55	ng/L	0.47	0.4		RB * FB		

Analyti	Analytical Results for Sampling Events at WW-2-489											
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag			
9/8/2021	8260_LL	2109080955B	Chloromethane	0.28	ug/L	0.5	0.28		J RB A			

Analyti	Analytical Results for Sampling Events at WW-2-664										
Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag		
9/8/2021	NDMA_LL	2109081427B	N-Nitrosodimethylamine	1.8	ng/L	0.47	0.4		RB * FB		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/1/2021	NDMA_LL	2109091500Y	N-Nitrodimethylamine	0.34	ng/L	0.49	0.2		J
9/1/2021	NDMA_LL	2109091500Y	N-Nitrosodimethylamine	2.3	ng/L	0.49	0.41		RB EB *

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/1/2021	NDMA_LL	2109071555Y	N-Nitrosodimethylamine	7.1	ng/L	0.48	0.4		QD
9/1/2021	NDMA_LL	2109071555Y	N-Nitrodimethylamine	1.1	ng/L	0.48	0.2		
9/1/2021	NDMA LL	2109071556Y	N-Nitrosodimethylamine	0.69	ng/L	0.48	0.4		RB EB QD

Analysis					Quant	Det	Xtrct	
Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8260_LL	2110191046B	Toluene	0.86	ug/L	0.5	0.2		
NDMA_LL	2110191310B	N-Nitrodimethylamine	0.35	ng/L	0.49	0.2		J
NDMA_LL	2110191310B	N-Nitrosodimethylamine	4.5	ng/L	0.49	0.41		
8270	2110191315B	Bis(2-ethylhexyl) Phthalate	56	ug/L	25	20		D
8270	2110191315B	Unknown	180	ug/L	NA	NA		TIC
8270	2110191315B	Unknown	4.4	ug/L	NA	NA		TIC RB
METALS	2110191350B	Zinc, Total	0.656	mg/L	0.02	0.003		
METALS	2110191350B	Boron, Total	0.1	mg/L	0.2	0.02		J
METALS	2110191350B	Sodium, Total	59.6	mg/L	1	0.2		
METALS	2110191350B	Vanadium, Total	0.007	mg/L	0.05	0.0007		J
METALS	2110191350B	Antimony, Total	0.0002	mg/L	0.001	0.0002		J
METALS	2110191350B	Thallium, Total	0.00007	mg/L	0.001	0.00004		J
METALS	2110191350B	Calcium, Total	82.4	mg/L	1	0.3		
METALS	2110191350B	Arsenic, Total	0.0017	mg/L	0.001	0.0004		
METALS	2110191350B	Magnesium, Total	64.2	mg/L	1	0.03		
METALS	2110191350B	Lead, Total	0.025	mg/L	0.05	0.003		J
METALS	2110191350B	Strontium, Total	2.92	mg/L	0.1	0.002		
METALS	2110191350B	Potassium, Total	3.5	mg/L	2	0.4		
METALS	2110191350B	Barium, Total	0.026	mg/L	0.02	0.003		
METALS	2110191350B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
353.2	2110191351B	Nitrate+Nitrite as Nitrogen	1.05	mg/L	0.05	0.002		
	Method 8260_LL NDMA_LL 8270 8270 8270 METALS METALS	Method Sample 8260_LL 2110191046B NDMA_LL 2110191310B NDMA_LL 2110191310B 8270 2110191315B 8270 2110191315B METALS 2110191350B METALS 2110191350B	Method Sample Constituent 8260_LL 2110191046B Toluene NDMA_LL 2110191310B N-Nitrodimethylamine NDMA_LL 2110191310B N-Nitrosodimethylamine 8270 2110191315B Bis(2-ethylhexyl) Phthalate 8270 2110191315B Unknown METALS 2110191350B Zinc, Total METALS 2110191350B Boron, Total METALS 2110191350B Sodium, Total METALS 2110191350B Vanadium, Total METALS 2110191350B Antimony, Total METALS 2110191350B Calcium, Total METALS 2110191350B Arsenic, Total METALS 2110191350B Magnesium, Total METALS 2110191350B Strontium, Total METALS 2110191350B Strontium, Total METALS 2110191350B Barium, Total METALS 2110191350B Barium, Total METALS 2110191350B Molybdenum, Total	Method Sample Constituent Result 8260_LL 2110191046B Toluene 0.86 NDMA_LL 2110191310B N-Nitrodimethylamine 0.35 NDMA_LL 2110191310B N-Nitrosodimethylamine 4.5 8270 2110191315B Bis(2-ethylhexyl) Phthalate 56 8270 2110191315B Unknown 180 8270 2110191350B Zinc, Total 0.656 METALS 2110191350B Zinc, Total 0.656 METALS 2110191350B Boron, Total 0.1 METALS 2110191350B Vanadium, Total 0.007 METALS 2110191350B Antimony, Total 0.0002 METALS 2110191350B Thallium, Total 0.00007 METALS 2110191350B Arsenic, Total 0.0017 METALS 2110191350B Arsenic, Total 0.0017 METALS 2110191350B Strontium, Total 0.025 METALS 2110191350B Strontium, Total 2.92	Method Sample Constituent Result Units 8260_LL 2110191046B Toluene 0.86 ug/L NDMA_LL 2110191310B N-Nitrosdimethylamine 0.35 ng/L NDMA_LL 2110191310B N-Nitrosodimethylamine 4.5 ng/L 8270 2110191315B Bis(2-ethylhexyl) Phthalate 56 ug/L 8270 2110191315B Unknown 180 ug/L 8270 211019135B Zinc, Total 0.656 mg/L METALS 2110191350B Zinc, Total 0.656 mg/L METALS 2110191350B Sodium, Total 0.1 mg/L METALS 2110191350B Vanadium, Total 0.007 mg/L METALS 2110191350B Antimony, Total 0.0002 mg/L METALS 2110191350B Calcium, Total 82.4 mg/L METALS 2110191350B Arsenic, Total 0.0017 mg/L METALS 2110191350B Magnesium, Total 64.2	Method Sample Constituent Result Units Limit 8260_LL 2110191046B Toluene 0.86 ug/L 0.5 NDMA_LL 2110191310B N-Nitrodimethylamine 0.35 ng/L 0.49 NDMA_LL 2110191310B N-Nitrosodimethylamine 4.5 ng/L 0.49 8270 2110191315B Bis(2-ethylhexyl) Phthalate 56 ug/L NA 8270 2110191315B Unknown 180 ug/L NA 8270 211019135B Unknown 4.4 ug/L NA METALS 2110191350B Zinc, Total 0.656 mg/L 0.02 METALS 2110191350B Boron, Total 0.1 mg/L 0.02 METALS 2110191350B Vanadium, Total 0.007 mg/L 0.05 METALS 2110191350B Antimony, Total 0.0002 mg/L 0.001 METALS 2110191350B Arsenic, Total 0.00007 mg/L 0.001	Method Sample Constituent Result Units Limit Limit 8260_LL 2110191046B Toluene 0.86 ug/L 0.5 0.2 NDMA_LL 2110191310B N-Nitrosodimethylamine 0.35 ng/L 0.49 0.2 NDMA_LL 2110191315B N-Nitrosodimethylamine 4.5 ng/L 0.49 0.41 8270 2110191315B Unknown 180 ug/L NA NA 8270 2110191315B Unknown 4.4 ug/L NA NA 8270 2110191350B Zinc, Total 0.656 mg/L 0.02 0.003 METALS 2110191350B Boron, Total 0.1 mg/L 0.2 0.02 METALS 2110191350B Sodium, Total 59.6 mg/L 0.02 0.002 METALS 2110191350B Antimony, Total 0.0007 mg/L 0.001 0.0002 METALS 2110191350B Arsenic, Total 0.0017 mg/L	Method Sample Constituent Result Units Limit Limit Effic 8260_LL 2110191046B Toluene 0.86 ug/L 0.5 0.2 NDMA_LL 2110191310B N-Nitrodimethylamine 0.35 ng/L 0.49 0.2 NDMA_LL 2110191315B Bis(2-ethylhexyl) Phthalate 56 ug/L 25 20 8270 2110191315B Unknown 180 ug/L NA NA 8270 2110191350B Unknown 4.4 ug/L NA NA 8270 2110191350B Zinc, Total 0.656 mg/L 0.02 0.003 METALS 2110191350B Boron, Total 0.1 mg/L 0.02 0.02 METALS 2110191350B Sodium, Total 59.6 mg/L 1 0.2 METALS 2110191350B Antimony, Total 0.0007 mg/L 0.001 0.0002 METALS 2110191350B Antimony, Total 82.4 mg

Analysis					Quant	Det	Xtrct	
Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8260_LL	2110191101B	Toluene	1.3	ug/L	0.5	0.2		
607	2110191103B	Bromacil	0.0057	μg/L	0.0095	0.0048	111	J
NDMA_LL	2110191325B	N-Nitrosodimethylamine	4.1	ng/L	0.49	0.41		
METALS	2110191410B	Sodium, Total	70.9	mg/L	1	0.2		
METALS	2110191410B	Lead, Total	0.016	mg/L	0.05	0.003		J
METALS	2110191410B	Potassium, Total	3.4	mg/L	2	0.4		
METALS	2110191410B	Magnesium, Total	55.2	mg/L	1	0.03		
METALS	2110191410B	Strontium, Total	3.17	mg/L	0.1	0.002		
METALS	2110191410B	Vanadium, Total	0.011	mg/L	0.05	0.0007		J
METALS	2110191410B	Arsenic, Total	0.0013	mg/L	0.001	0.0004		
METALS	2110191410B	Barium, Total	0.023	mg/L	0.02	0.003		
METALS	2110191410B	Boron, Total	0.12	mg/L	0.2	0.02		J
METALS	2110191410B	Calcium, Total	76.9	mg/L	1	0.3		
METALS	2110191410B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
METALS	2110191410B	Zinc, Total	0.409	mg/L	0.02	0.003		QD
METALS	2110191411B	Boron, Total	0.12	mg/L	0.2	0.02		J
METALS	2110191411B	Molybdenum, Total	0.008	mg/L	0.025	0.003		J
METALS	2110191411B	Lead, Total	0.008	mg/L	0.05	0.003		J
METALS	2110191411B	Magnesium, Total	53.4	mg/L	1	0.03		
METALS	2110191411B	Calcium, Total	74.6	mg/L	1	0.3		
METALS	2110191411B	Potassium, Total	3.3	mg/L	2	0.4		
METALS	2110191411B	Sodium, Total	68.8	mg/L	1	0.2		
METALS	2110191411B	Strontium, Total	3.09	mg/L	0.1	0.002		
METALS	2110191411B	Vanadium, Total	0.011	mg/L	0.05	0.0007		J
METALS	2110191411B	Zinc, Total	0.179	mg/L	0.02	0.003		QD
METALS	2110191411B	Arsenic, Total	0.0014	mg/L	0.001	0.0004		
METALS	2110191411B	Barium, Total	0.022	mg/L	0.02	0.003		
	Method 8260_LL 607 NDMA_LL METALS	Method Sample 8260_LL 2110191101B 607 2110191103B NDMA_LL 2110191325B METALS 2110191410B METALS 2110191411B METALS 2110191411B	Method Sample Constituent 8260_LL 2110191101B Toluene 607 2110191103B Bromacil NDMA_LL 2110191410B Sodium, Total METALS 2110191410B Lead, Total METALS 2110191410B Potassium, Total METALS 2110191410B Magnesium, Total METALS 2110191410B Strontium, Total METALS 2110191410B Vanadium, Total METALS 2110191410B Arsenic, Total METALS 2110191410B Barium, Total METALS 2110191410B Boron, Total METALS 2110191410B Molybdenum, Total METALS 2110191410B Zinc, Total METALS 2110191410B Molybdenum, Total METALS 2110191410B Molybdenum, Total METALS 2110191411B Molybdenum, Total METALS 2110191411B Molybdenum, Total METALS 2110191411B Calcium, Total METALS 2110191411B Sodi	Method Sample Constituent Result 8260_LL 2110191101B Toluene 1.3 607 2110191103B Bromacil 0.0057 NDMA_LL 2110191325B N-Nitrosodimethylamine 4.1 METALS 2110191410B Sodium, Total 70.9 METALS 2110191410B Lead, Total 0.016 METALS 2110191410B Potassium, Total 3.4 METALS 2110191410B Magnesium, Total 3.17 METALS 2110191410B Strontium, Total 0.011 METALS 2110191410B Vanadium, Total 0.011 METALS 2110191410B Arsenic, Total 0.0013 METALS 2110191410B Barium, Total 0.12 METALS 2110191410B Boron, Total 0.12 METALS 2110191410B Moron, Total 0.008 METALS 2110191410B Molybdenum, Total 0.12 METALS 2110191411B Molybdenum, Total 0.008 METALS <td>Method Sample Constituent Result Units 8260_LL 2110191101B Toluene 1.3 ug/L 607 2110191103B Bromacil 0.0057 µg/L NDMA_LL 2110191325B N-Nitrosodimethylamine 4.1 ng/L METALS 2110191410B Sodium, Total 70.9 mg/L METALS 2110191410B Lead, Total 0.016 mg/L METALS 2110191410B Potassium, Total 3.4 mg/L METALS 2110191410B Magnesium, Total 3.17 mg/L METALS 2110191410B Strontium, Total 0.011 mg/L METALS 2110191410B Arsenic, Total 0.0013 mg/L METALS 2110191410B Barium, Total 0.023 mg/L METALS 2110191410B Barium, Total 0.12 mg/L METALS 2110191410B Calcium, Total 0.008 mg/L METALS 211019141B Molybdenum, Total 0.008</td> <td>Method Sample Constituent Result Units Limit 8260_LL 2110191101B Toluene 1.3 ug/L 0.5 607 2110191103B Bromacil 0.0057 µg/L 0.0095 NDMA_LL 2110191325B N-Nitrosodimethylamine 4.1 ng/L 0.49 METALS 2110191410B Sodium, Total 70.9 mg/L 1 METALS 2110191410B Lead, Total 0.016 mg/L 0.05 METALS 2110191410B Lead, Total 3.4 mg/L 2 METALS 2110191410B Magnesium, Total 3.17 mg/L 0.1 METALS 2110191410B Strontium, Total 0.011 mg/L 0.05 METALS 2110191410B Arsenic, Total 0.0013 mg/L 0.05 METALS 2110191410B Barium, Total 0.023 mg/L 0.2 METALS 2110191410B Calcium, Total 0.008 mg/L 0.02 <td< td=""><td>Method Sample Constituent Result Units Limit Limit 826 LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 2110191103B Bromacil 0.0057 μg/L 0.0095 0.048 NDMA_LL 211019142B N-Nitrosodimethylamine 4.1 ng/L 0.49 0.41 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 METALS 2110191410B Potassium, Total 3.4 mg/L 0.0 0.03 METALS 2110191410B Magnesium, Total 3.17 mg/L 0.1 0.02 METALS 2110191410B Strontium, Total 0.011 mg/L 0.01 0.003 METALS 2110191410B Arsenic, Total 0.013 mg/L 0.00 0.000 METALS 2110191410B Barium, Total 0.12 mg/L 0.02 0.02 METALS 2110191410B Moro, Total 0.02 m</td><td>Method Sample Constituent Result Units Limit Limit Effic 826_LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 211019103B Bromacil 0.0057 µg/L 0.0095 0.0048 111 NDMA_LL 211019140B Nolitrosdimethylamine 4.1 ng/L 0.49 0.41 110 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 110 METALS 2110191410B Deassium, Total 3.4 mg/L 2 0.4 110 0.02 110 0.002 110 0.002 110 0.002 110 0.002 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003</td></td<></td>	Method Sample Constituent Result Units 8260_LL 2110191101B Toluene 1.3 ug/L 607 2110191103B Bromacil 0.0057 µg/L NDMA_LL 2110191325B N-Nitrosodimethylamine 4.1 ng/L METALS 2110191410B Sodium, Total 70.9 mg/L METALS 2110191410B Lead, Total 0.016 mg/L METALS 2110191410B Potassium, Total 3.4 mg/L METALS 2110191410B Magnesium, Total 3.17 mg/L METALS 2110191410B Strontium, Total 0.011 mg/L METALS 2110191410B Arsenic, Total 0.0013 mg/L METALS 2110191410B Barium, Total 0.023 mg/L METALS 2110191410B Barium, Total 0.12 mg/L METALS 2110191410B Calcium, Total 0.008 mg/L METALS 211019141B Molybdenum, Total 0.008	Method Sample Constituent Result Units Limit 8260_LL 2110191101B Toluene 1.3 ug/L 0.5 607 2110191103B Bromacil 0.0057 µg/L 0.0095 NDMA_LL 2110191325B N-Nitrosodimethylamine 4.1 ng/L 0.49 METALS 2110191410B Sodium, Total 70.9 mg/L 1 METALS 2110191410B Lead, Total 0.016 mg/L 0.05 METALS 2110191410B Lead, Total 3.4 mg/L 2 METALS 2110191410B Magnesium, Total 3.17 mg/L 0.1 METALS 2110191410B Strontium, Total 0.011 mg/L 0.05 METALS 2110191410B Arsenic, Total 0.0013 mg/L 0.05 METALS 2110191410B Barium, Total 0.023 mg/L 0.2 METALS 2110191410B Calcium, Total 0.008 mg/L 0.02 <td< td=""><td>Method Sample Constituent Result Units Limit Limit 826 LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 2110191103B Bromacil 0.0057 μg/L 0.0095 0.048 NDMA_LL 211019142B N-Nitrosodimethylamine 4.1 ng/L 0.49 0.41 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 METALS 2110191410B Potassium, Total 3.4 mg/L 0.0 0.03 METALS 2110191410B Magnesium, Total 3.17 mg/L 0.1 0.02 METALS 2110191410B Strontium, Total 0.011 mg/L 0.01 0.003 METALS 2110191410B Arsenic, Total 0.013 mg/L 0.00 0.000 METALS 2110191410B Barium, Total 0.12 mg/L 0.02 0.02 METALS 2110191410B Moro, Total 0.02 m</td><td>Method Sample Constituent Result Units Limit Limit Effic 826_LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 211019103B Bromacil 0.0057 µg/L 0.0095 0.0048 111 NDMA_LL 211019140B Nolitrosdimethylamine 4.1 ng/L 0.49 0.41 110 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 110 METALS 2110191410B Deassium, Total 3.4 mg/L 2 0.4 110 0.02 110 0.002 110 0.002 110 0.002 110 0.002 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003</td></td<>	Method Sample Constituent Result Units Limit Limit 826 LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 2110191103B Bromacil 0.0057 μg/L 0.0095 0.048 NDMA_LL 211019142B N-Nitrosodimethylamine 4.1 ng/L 0.49 0.41 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 METALS 2110191410B Potassium, Total 3.4 mg/L 0.0 0.03 METALS 2110191410B Magnesium, Total 3.17 mg/L 0.1 0.02 METALS 2110191410B Strontium, Total 0.011 mg/L 0.01 0.003 METALS 2110191410B Arsenic, Total 0.013 mg/L 0.00 0.000 METALS 2110191410B Barium, Total 0.12 mg/L 0.02 0.02 METALS 2110191410B Moro, Total 0.02 m	Method Sample Constituent Result Units Limit Limit Effic 826_LL 2110191101B Toluene 1.3 ug/L 0.5 0.2 607 211019103B Bromacil 0.0057 µg/L 0.0095 0.0048 111 NDMA_LL 211019140B Nolitrosdimethylamine 4.1 ng/L 0.49 0.41 110 METALS 2110191410B Sodium, Total 0.016 mg/L 0.05 0.003 110 METALS 2110191410B Deassium, Total 3.4 mg/L 2 0.4 110 0.02 110 0.002 110 0.002 110 0.002 110 0.002 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003 110 0.002 0.003

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/20/2021	8260_LL	2110201051B	Silane, methoxytrimethyl-	5.7	ug/L	NA	NA		TIC FB
10/20/2021	8260_LL	2110201051B	Toluene	1.8	ug/L	0.5	0.2		
10/20/2021	NDMA_LL	2110201054B	N-Nitrosodimethylamine	1.3	ng/L	0.47	0.4		QD
10/20/2021	NDMA_LL	2110201055B	N-Nitrosodimethylamine	4.5	ng/L	0.49	0.41		QD
10/20/2021	NDMA_LL	2110201055B	N-Nitrodimethylamine	0.38	ng/L	0.49	0.2		J
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	12	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201303B	Unknown	71	ug/L	NA	NA		TIC
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	5.8	ug/L	NA	NA		TIC
10/20/2021	8270	2110201303B	Bis(2-ethylhexyl) Phthalate	14	ug/L	4.9	3.9		
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	10	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	7.2	ug/L	NA	NA		TIC
10/20/2021	8270	2110201303B	Unknown Hydrocarbon	9	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201303B	Unknown	7.1	ug/L	NA	NA		TIC RB
10/20/2021	METALS	2110201352B	Molybdenum, Total	0.011	mg/L	0.025	0.003		J
10/20/2021	METALS	2110201352B	Zinc, Total	0.105	mg/L	0.02	0.003		
10/20/2021	METALS	2110201352B	Vanadium, Total	0.017	mg/L	0.05	0.0007		J
10/20/2021	METALS	2110201352B	Strontium, Total	2.05	mg/L	0.1	0.002		
10/20/2021	METALS	2110201352B	Potassium, Total	3.8	mg/L	2	0.4		
10/20/2021	METALS	2110201352B	Magnesium, Total	35.3	mg/L	1	0.03		
10/20/2021	METALS	2110201352B	Arsenic, Total	0.0027	mg/L	0.001	0.0004		
10/20/2021	METALS	2110201352B	Chromium, Total	0.004	mg/L	0.01	0.002		J
10/20/2021	METALS	2110201352B	Sodium, Total	90.5	mg/L	1	0.2		
10/20/2021	METALS	2110201352B	Calcium, Total	61.3	mg/L	1	0.3		
10/20/2021	METALS	2110201352B	Boron, Total	0.22	mg/L	0.2	0.02		
10/20/2021	METALS	2110201352B	Barium, Total	0.022	mg/L	0.02	0.003		
10/20/2021	METALS	2110201352B	Lead, Total	0.006	mg/L	0.05	0.003		J

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/20/2021	8260_LL	2110201032B	Toluene	1.5	ug/L	0.5	0.2		
10/20/2021	NDMA_LL	2110201104B	N-Nitrosodimethylamine	1.7	ng/L	0.48	0.4		
10/20/2021	NDMA_LL	2110201104B	N-Nitrodimethylamine	0.25	ng/L	0.48	0.2		J
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	11	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Benzenesulfonamide, N-butyl-	1100	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	9.2	ug/L	NA	NA		TIC
10/20/2021	8270	2110201328B	Unknown	6.4	ug/L	NA	NA		TIC
10/20/2021	8270	2110201328B	Unknown	6.9	ug/L	NA	NA		TIC
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	7	ug/L	NA	NA		TIC
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	14	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	17	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	13	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Unknown Hydrocarbon	4.2	ug/L	NA	NA		TIC
10/20/2021	8270	2110201328B	Unknown	5.9	ug/L	NA	NA		TIC RB
10/20/2021	8270	2110201328B	Unknown	15	ug/L	NA	NA		TIC
10/20/2021	METALS	2110201400B	Magnesium, Total	38.7	mg/L	1	0.03		
10/20/2021	METALS	2110201400B	Vanadium, Total	0.013	mg/L	0.05	0.0007		J
10/20/2021	METALS	2110201400B	Strontium, Total	2.4	mg/L	0.1	0.002		
10/20/2021	METALS	2110201400B	Sodium, Total	137	mg/L	1	0.2		
10/20/2021	METALS	2110201400B	Boron, Total	0.25	mg/L	0.2	0.02		
10/20/2021	METALS	2110201400B	Barium, Total	0.018	mg/L	0.02	0.003		J
10/20/2021	METALS	2110201400B	Arsenic, Total	0.0032	mg/L	0.001	0.0004		
10/20/2021	METALS	2110201400B	Potassium, Total	5.3	mg/L	2	0.4		
10/20/2021	METALS	2110201400B	Manganese, Total	0.036	mg/L	0.01	0.004		
10/20/2021	METALS	2110201400B	Chromium, Total	0.002	mg/L	0.01	0.002		J
10/20/2021	METALS	2110201400B	Calcium, Total	85.1	mg/L	1	0.3		
10/20/2021	METALS	2110201400B	Zinc, Total	0.013	mg/L	0.02	0.003		J
10/20/2021	METALS	2110201400B	Molybdenum, Total	0.009	mg/L	0.025	0.003		J

Appendix A.3
PFTS Indicator Parameters

Summary of Water Quality Parameters for the Plume Front Sampling Events in this Reporting Period

Well ID	B650-EFF-1	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108120915	Conductivity		1123	μS/cm	
2108120915	5 pH		7.56	NA	
2108120915	5 Temperature		24.9	°C	
2108120915	5 Turbidity		0.34	NTU	
2108161330) Conductivity		1142	μS/cm	
2108161330) pH		7.54	NA	
2108161330) Temperature		25.3	°C	
2108161330) Turbidity		0.29	NTU	
Well ID	B650-EFF-1	Event Date	9/27/2021		
Sample	Parameter		Result	Units	
2109270915	Conductivity		1116	μS/cm	
2109270915	5 pH		8.52	NA	
2109270915	5 Temperature		24.2	°C	
2109270915	5 Turbidity		0.75	NTU	
Well ID	B650-EFF-1	Event Date	10/13/2021		
Sample	Parameter		Result	Units	
			1110	μS/cm	
2110131300) Conductivity		1110	μS/CIII	
2110131300 2110131300	,		8.40	NA	
	рН			·	

Well ID	B650-INF-1	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108120935	Conductivity		1198	μS/cm	
2108120935	pН		7.30	NA	
2108120935	Temperature		24.6	°C	
2108120935	Turbidity		0.55	NTU	
Well ID	B650-INF-1	Event Date	9/27/2021		
Sample	Parameter		Result	Units	
2109270945	Conductivity		1122	μS/cm	
2109270945	pН		7.92	NA	
2109270945	Temperature		22.8	$^{\circ}\mathrm{C}$	
2109270945	Turbidity		1.22	NTU	
Well ID	B650-INF-1	Event Date	10/13/2021		
Sample	Parameter		Result	Units	
2110131306	Conductivity		1118	μS/cm	
2110131306	pН		7.88	NA	
2110131306	Temperature		22.4	°C	
2110131306	Turbidity		1.28	NTU	
Well ID	PFE-1	Event Date	9/30/2021		
Sample	Parameter		Result	Units	
2109301525	Conductivity		1225	μS/cm	
2109301525	pН		8.55	NA	
2109301525	Temperature		23.5	°C	
2109301525	Turbidity		2.49	NTU	
Well ID	PFE-1	Event Date	10/18/2021		
Sample	Parameter		Result	Units	
2110180901	Conductivity		1052	μS/cm	
2110180901	1		7.33	NA	
2110180901	Temperature		24.6	°C	
2110100701	Turbidity		3.72	NTU	
2110180901					
2110180901	PFE-2	Event Date	10/18/2021		
2110180901		Event Date	10/18/2021 Result	Units	
2110180901 Well ID	PFE-2 Parameter	Event Date		Units μS/cm	
2110180901 Well ID Sample	PFE-2 Parameter Conductivity	Event Date	Result		
2110180901 Well ID Sample 2110180935	PFE-2 Parameter Conductivity pH	Event Date	Result	μS/cm	

Well ID	PFE-4A	Event Date	10/20/2021		
Sample	Parameter	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Result	Units	
2110200822	2 Conductivity		1093	μS/cm	
2110200822	2 pH		7.40	NA	
2110200822	2 Temperature		23.2	°C	
2110200822	2 Turbidity		1.37	NTU	
Well ID	PFE-5	Event Date	10/20/2021		
Sample	Parameter		Result	Units	
2110200757	7 Conductivity		1052	μS/cm	
2110200757	7 pH		7.42	NA	
2110200757	7 Temperature		24.5	°C	
2110200757	7 Turbidity		1.39	NTU	
Well ID	PFE-7	Event Date	10/20/2021		
Sample	Parameter		Result	Units	
2110200859	Onductivity		1112	μS/cm	
2110200859	р Н		7.14	NA	
2110200859) Temperature		23.2	°C	
2110200859	Turbidity		0.32	NTU	

Appendix A.4 PFTS Analytical Data

Detections for Plume Front Treatment System Sampling Events in this Reporting Period

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/12/2021	607	2108120922	Bromacil	0.0058	$\mu g/L$	0.0096	0.0048	109	J
8/12/2021	NDMA_LL	2108120923	N-Nitrosodimethylamine	0.71	ng/L	0.48	0.44		RB * A FB
8/12/2021	NDMA_LL	2108120924	N-Nitrosodimethylamine	0.54	ng/L	0.49	0.45		RB * A FB
9/27/2021	8260_LL	2109270916	Chloromethane	0.42	ug/L	0.5	0.28		J RB FB
9/27/2021	607	2109270918	Bromacil	0.037	$\mu g/L$	0.0096	0.0048	136	
9/27/2021	NDMA_LL	2109270919	N-Nitrosodimethylamine	0.69	ng/L	0.48	0.4		RB * TB FB
10/13/2021	607	2110131303	Bromacil	0.018	μg/L	0.0094	0.0047	132	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/12/2021	8260	2108120940	Trichloroethene (TCE)	35	ug/L	1	0.2		
8/12/2021	8260	2108120940	1,1,2-Trichloro-1,2,2-Trifluoroethane	72	ug/L	1	0.2		
8/12/2021	8260	2108120940	Tetrachloroethene (PCE)	1.6	ug/L	1	0.21		
8/12/2021	8260	2108120940	Trichlorofluoromethane (CFC 11)	36	ug/L	1	0.24		
8/12/2021	8260	2108120940	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.25	ug/L	1	0.2		J
8/12/2021	607	2108120942	N-Nitrodimethylamine	0.061	μg/L	0.0097	0.0049	93	
8/12/2021	607	2108120942	Bromacil	0.032	$\mu g/L$	0.0097	0.0049	109	
8/12/2021	607	2108120942	N-Nitrosodimethylamine	0.087	$\mu g/L$	0.0097	0.0049	43	
9/27/2021	8260	2109270946	Trichloroethene (TCE)	13	ug/L	1	0.2		
9/27/2021	8260	2109270946	Tetrachloroethene (PCE)	0.57	ug/L	1	0.21		J
9/27/2021	8260	2109270946	1,1,2-Trichloro-1,2,2-Trifluoroethane	14	ug/L	1	0.2		
9/27/2021	8260	2109270946	Trichlorofluoromethane (CFC 11)	8.3	ug/L	1	0.24		
9/27/2021	607	2109270948	N-Nitrosodimethylamine	0.068	μg/L	0.0099	0.005	61	
9/27/2021	607	2109270948	N-Nitrodimethylamine	0.053	μg/L	0.0099	0.005	110	
9/27/2021	607	2109270948	Bromacil	0.05	$\mu g/L$	0.0099	0.005	136	
10/13/2021	8260	2110131307	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	ug/L	1	0.2		
10/13/2021	8260	2110131307	2-Propanol	3.4	ug/L	50	3.4		J
10/13/2021	8260	2110131307	Trichloroethene (TCE)	2.7	ug/L	1	0.2		
10/13/2021	8260	2110131307	Trichlorofluoromethane (CFC 11)	1.7	ug/L	1	0.24		
10/13/2021	607	2110131309	N-Nitrodimethylamine	0.017	μg/L	0.0097	0.0049	101	
10/13/2021	607	2110131309	N-Nitrosodimethylamine	0.033	$\mu g/L$	0.0097	0.0049	58	
10/13/2021	607	2110131309	Bromacil	0.0087	$\mu g/L$	0.0097	0.0049	132	J
10/13/2021	607	2110131310	N-Nitrosodimethylamine	0.03	μg/L	0.0098	0.0049	58	
10/13/2021	607	2110131310	N-Nitrodimethylamine	0.017	$\mu g/L$	0.0098	0.0049	101	
10/13/2021	607	2110131310	Bromacil	0.0069	μg/L	0.0098	0.0049	132	J

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
9/30/2021	8260	2109301530	Trichloroethene (TCE)	4	ug/L	1	0.2		
9/30/2021	8260	2109301530	Chloromethane	0.28	ug/L	2	0.28		J RB
9/30/2021	8260	2109301530	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.9	ug/L	1	0.2		
9/30/2021	8260	2109301530	Unknown	5.3	ug/L	NA	NA		TIC
9/30/2021	8260	2109301530	Unknown	5.5	ug/L	NA	NA		TIC
9/30/2021	8260	2109301530	Trichlorofluoromethane (CFC 11)	2.5	ug/L	1	0.24		
9/30/2021	607	2109301532	Bromacil	0.0048	μg/L	0.0095	0.0048	131	J
9/30/2021	607	2109301532	N-Nitrodimethylamine	0.03	$\mu g/L$	0.0095	0.0048	99	
9/30/2021	607	2109301532	N-Nitrosodimethylamine	0.055	$\mu g/L$	0.0095	0.0048	55	
0/18/2021	8260	2110180907	2-Propanol	5.8	ug/L	50	3.4		J
0/18/2021	8260	2110180907	Tetrachloroethene (PCE)	0.32	ug/L	1	0.21		J
0/18/2021	8260	2110180907	Trichloroethene (TCE)	5.9	ug/L	1	0.2		
0/18/2021	8260	2110180907	Trichlorofluoromethane (CFC 11)	3.8	ug/L	1	0.24		
0/18/2021	8260	2110180907	Silane, fluorotrimethyl-	5.7	ug/L	NA	NA		TIC
0/18/2021	8260	2110180907	Silane, methoxytrimethyl-	5.9	ug/L	NA	NA		TIC
0/18/2021	8260	2110180907	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.5	ug/L	1	0.2		
0/18/2021	8260	2110180908	Trichloroethene (TCE)	5.2	ug/L	1	0.2		
0/18/2021	8260	2110180908	Trichlorofluoromethane (CFC 11)	3.5	ug/L	1	0.24		
0/18/2021	8260	2110180908	Tetrachloroethene (PCE)	0.25	ug/L	1	0.21		J
0/18/2021	8260	2110180908	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.3	ug/L	1	0.2		
0/18/2021	607	2110180911	Bromacil	0.026	$\mu g/L$	0.0096	0.0048	120	
0/18/2021	607	2110180911	N-Nitrodimethylamine	0.031	$\mu g/L$	0.0096	0.0048	89	
0/18/2021	607	2110180911	N-Nitrosodimethylamine	0.063	$\mu g/L$	0.0096	0.0048	53	
0/18/2021	METALS	2110180912	Zinc, Total	0.04	mg/L	0.02	0.003		
0/18/2021	METALS	2110180912	Molybdenum, Total	0.009	mg/L	0.025	0.003		J
0/18/2021	METALS	2110180912	Potassium, Total	4.3	mg/L	2	0.4		
0/18/2021	METALS	2110180912	Sodium, Total	57.6	mg/L	1	0.2		
0/18/2021	METALS	2110180912	Strontium, Total	2.42	mg/L	0.1	0.002		
0/18/2021	METALS	2110180912	Vanadium, Total	0.006	mg/L	0.05	0.0007		J
0/18/2021	METALS	2110180912	Iron, Total	0.08	mg/L	0.1	0.07		J
0/18/2021	METALS	2110180912	Copper, Total	0.006	mg/L	0.02	0.004		J
0/18/2021	METALS	2110180912	Calcium, Total	88.6	mg/L	1	0.3		
0/18/2021	METALS	2110180912	Boron, Total	0.09	mg/L	0.2	0.02		J
0/18/2021	METALS	2110180912	Magnesium, Total	54.5	mg/L	1	0.03		
0/18/2021	METALS	2110180912	Arsenic, Total	0.0011	mg/L	0.001	0.0004		
0/18/2021	METALS	2110180912	Barium, Total	0.03	mg/L	0.02	0.003		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
10/18/2021	ANIONS	2110180913	Sulfate	353	mg/L	8	1.6		
10/18/2021	ANIONS	2110180913	Alkalinity, Total as CaCO3	193	mg/L	2	1.8		
10/18/2021	ANIONS	2110180913	Chloride	45.3	mg/L	2	0.5		
10/18/2021	ANIONS	2110180913	Fluoride, undistilled	0.53	mg/L	0.1	0.01		
10/18/2021	SM2540C	2110180914	Total Dissolved Solids (TDS)	719	mg/L	10	9		
10/18/2021	6850	2110180915	Perchlorate	0.33	ug/L	0.2	0.06		
10/18/2021	353.2	2110180916	Nitrate+Nitrite as Nitrogen	0.999	mg/L	0.05	0.002		

Event	Analysis					Quant	Det	Xtrct	_
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/18/2021	8260	2110180941	Tetrachloroethene (PCE)	3.1	ug/L	1	0.21		
10/18/2021	8260	2110180941	Trichloroethene (TCE)	67	ug/L	1	0.2		
10/18/2021	8260	2110180941	Trichlorofluoromethane (CFC 11)	62	ug/L	1	0.24		
10/18/2021	8260	2110180941	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.41	ug/L	1	0.2		J
10/18/2021	8260	2110180941	1,1,2-Trichloro-1,2,2-Trifluoroethane	120	ug/L	1	0.2		
10/18/2021	8260	2110180941	Dichlorofluoromethane (CFC 21)	0.23	ug/L	1	0.2		J
10/18/2021	607	2110180943	N-Nitrosodimethylamine	0.2	μg/L	0.0095	0.0048	53	
10/18/2021	607	2110180943	N-Nitrodimethylamine	0.11	$\mu g/L$	0.0095	0.0048	89	
10/18/2021	607	2110180943	Bromacil	0.027	$\mu g/L$	0.0095	0.0048	120	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/20/2021	8260	2110200827	Trichlorofluoromethane (CFC 11)	1.1	ug/L	1	0.24		
			,		•	1			
10/20/2021	8260	2110200827	Trichloroethene (TCE)	1.2	ug/L	1	0.2		
10/20/2021	8260	2110200827	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.5	ug/L	1	0.2		
10/20/2021	607	2110200829	N-Nitrodimethylamine	0.007	μg/L	0.01	0.005	91	J
10/20/2021	607	2110200829	N-Nitrosodimethylamine	0.009	$\mu g/L$	0.01	0.005	50	J
10/20/2021	607	2110200829	Bromacil	0.021	μg/L	0.01	0.005	111	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
10/20/2021	8260	2110200804	Dichlorofluoromethane (CFC 21)	0.51	ug/L	1	0.2		J
10/20/2021	8260	2110200804	Trichlorofluoromethane (CFC 11)	38	ug/L	1	0.24		
10/20/2021	8260	2110200804	Tetrachloroethene (PCE)	3.3	ug/L	1	0.21		
10/20/2021	8260	2110200804	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.66	ug/L	1	0.2		J
10/20/2021	8260	2110200804	Chloromethane	0.28	ug/L	2	0.28		J RB
10/20/2021	8260	2110200804	2-Propanol	5.3	ug/L	50	3.4		J FB
10/20/2021	8260	2110200804	1,1,2-Trichloro-1,2,2-Trifluoroethane	28	ug/L	1	0.2		
10/20/2021	8260	2110200804	Trichloroethene (TCE)	74	ug/L	1	0.2		
10/20/2021	607	2110200806	Bromacil	0.09	μg/L	0.0095	0.0048	111	
10/20/2021	607	2110200806	N-Nitrosodimethylamine	0.53	μg/L	0.0095	0.0048	50	
10/20/2021	607	2110200806	N-Nitrodimethylamine	0.29	μg/L	0.0095	0.0048	91	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
10/20/2021	8260	2110200907	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.5	ug/L	1	0.2		
10/20/2021	8260	2110200907	Trichloroethene (TCE)	4.9	ug/L	1	0.2		
10/20/2021	8260	2110200907	Trichlorofluoromethane (CFC 11)	4.6	ug/L	1	0.24		
10/20/2021	NDMA_LL	2110200910	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.4		FB
10/20/2021	NDMA_LL	2110200910	N-Nitrodimethylamine	0.61	ng/L	0.48	0.2		
10/20/2021	NDMA LL	2110200911	N-Nitrosodimethylamine	1.5	ng/L	0.5	0.42		FB

Appendix A.5
MPITS Indicator Parameters

Summary of Water Quality Parameters for the Mid-plume Sampling Events in this Reporting Period

Well ID	B655-EFF-2	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108121000	Conductivity		1122	μS/cm	
2108121000	pH		7.71	NA	
2108121000) Temperature		24.7	$^{\circ}\mathrm{C}$	
2108121000	Turbidity		0.49	NTU	
Well ID	B655-EFF-2	Event Date	9/13/2021		
Sample	Parameter		Result	Units	
2109130940) Conductivity		1140	μS/cm	
2109130940) pH		7.48	NA	
2109130940	1		25.6	°C	
2109130940) Turbidity		0.11	NTU	
Well ID	B655-EFF-2	Event Date	10/19/2021		
Sample	Parameter		Result	Units	
2110191006	Conductivity		1436	μS/cm	
2110191006	рН		8.22	NA	
2110191006	1		23.0	°C	
2110191006	Turbidity		0.74	NTU	
Well ID	B655-INF-2	Event Date	8/12/2021		
Sample	Parameter		Result	Units	
2108121020) Conductivity		1218	μS/cm	
2108121020	•		7.75	NA	
2108121020	1		25.7	°C	
2108121020) Turbidity		2.35	NTU	
Well ID	B655-INF-2	Event Date	9/13/2021		
Sample	Parameter		Result	Units	
2109130934	Conductivity		1148	μS/cm	
2109130934	ł pH		7.88	NA	
2109130934	Temperature		25.8	°C	
2109130934	Turbidity		0.48	NTU	
Well ID	B655-INF-2	Event Date	10/19/2021		
			Result	Units	
Sample	Parameter				
			1064	μS/cm	
Sample) Conductivity		7.18	μS/cm NA	
Sample 2110191020	Conductivity pH Temperature				

Well ID M	PE-1	Event Date	8/16/2021		
Sample	Parameter	Lyone Date	Result	Units	
2108160920	Conductivity		1248	μS/cm	
2108160920	pH		7.31	NA	
2108160920	Temperature		25.1	°C	
2108160920	Turbidity		0.65	NTU	
Well ID M	PE-10	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108161215	Conductivity		1202	μS/cm	
2108161215	pH		8.13	NA	
2108161215	Temperature		28.3	°C	
2108161215	Turbidity		1.03	NTU	
Well ID M	PE-11	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108161235	Conductivity		930	μS/cm	
2108161235	pH		8.10	NA	
2108161235	Temperature		28.7	°C	
2108161235	Turbidity		2.92	NTU	
Well ID M	PE-8	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108160940	Conductivity		1214	μS/cm	
2108160940	pН		8.01	NA	
2108160940	Temperature		25.7	°C	
2108160940	Turbidity		1.40	NTU	
Well ID M	PE-9	Event Date	8/16/2021		
Sample	Parameter		Result	Units	
2108160950	Conductivity		1191	μS/cm	
2108160950	pH		8.16	NA	
	Tomanomotivas		26.1	0.0	
2108160950	Temperature		26.1	$^{\circ}\mathrm{C}$	

Appendix A.6 MPITS Analytical Data

Detections for MPITS Sampling Events in this Reporting Period

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
		Sample	Constituent	Kesuit	Cints	Limit	Limit	EIIIC	QATIag
8/12/2021	8260_LL	2108121005	Bromomethane	0.87	ug/L	1	0.7		J
8/12/2021	8260_LL	2108121005	Chloromethane	0.56	ug/L	0.5	0.28		RB A FB
8/12/2021	8260_LL	2108121005	Trichloroethene (TCE)	2.2	ug/L	0.5	0.2		
8/12/2021	8260_LL	2108121005	Trichlorofluoromethane (CFC 11)	7.5	ug/L	0.5	0.24		
8/12/2021	8260_LL	2108121005	1,1,2-Trichloro-1,2,2-Trifluoroethane	9.7	ug/L	0.5	0.2		
8/12/2021	NDMA_LL	2108121009	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.44		RB * A FB
9/13/2021	8260_LL	2109130941	Chloromethane	0.33	ug/L	0.5	0.28		J A
9/13/2021	607	2109130943	Bromacil	0.016	$\mu g/L$	0.0096	0.0048	140	
9/13/2021	NDMA_LL	2109130944	N-Nitrosodimethylamine	0.51	ng/L	0.49	0.41		RB FB
10/19/2021	607	2110191011	Bromacil	0.42	$\mu g/L$	0.0096	0.0048	111	
10/19/2021	NDMA_LL	2110191012	N-Nitrosodimethylamine	0.66	ng/L	0.48	0.4		

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/12/2021	8260	2108121025	Trichloroethene (TCE)	72	ug/L	1	0.2		
8/12/2021	8260	2108121025	1,1,2-Trichloro-1,2,2-Trifluoroethane	240	ug/L	2.5	0.5		
8/12/2021	8260	2108121025	Trichlorofluoromethane (CFC 11)	140	ug/L	1	0.24		
8/12/2021	8260	2108121025	Tetrachloroethene (PCE)	3.4	ug/L	1	0.21		
8/12/2021	8260	2108121025	Dichlorofluoromethane (CFC 21)	1.4	ug/L	1	0.2		
8/12/2021	8260	2108121025	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.2	ug/L	1	0.2		
8/12/2021	607	2108121027	N-Nitrosodimethylamine	2.6	μg/L	0.0099	0.005	43	
8/12/2021	607	2108121027	N-Nitrodimethylamine	1.3	μ g/L	0.0099	0.005	93	
8/12/2021	607	2108121027	Bromacil	0.42	$\mu g/L$	0.0099	0.005	109	
9/13/2021	8260	2109130935	Chloromethane	0.28	ug/L	2	0.28		J A
9/13/2021	8260	2109130935	Dichlorofluoromethane (CFC 21)	1.2	ug/L	1	0.2		
9/13/2021	8260	2109130935	Tetrachloroethene (PCE)	2	ug/L	1	0.21		
9/13/2021	8260	2109130935	Trichloroethene (TCE)	40	ug/L	1	0.2		
9/13/2021	8260	2109130935	Trichlorofluoromethane (CFC 11)	89	ug/L	1	0.24		
9/13/2021	8260	2109130935	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
9/13/2021	8260	2109130935	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		
9/13/2021	607	2109130937	N-Nitrosodimethylamine	1.6	μg/L	0.0094	0.0047	58	
9/13/2021	607	2109130937	N-Nitrodimethylamine	0.82	μg/L	0.0094	0.0047	102.6	
9/13/2021	607	2109130937	Bromacil	0.3	$\mu g/L$	0.0094	0.0047	140	
10/19/2021	8260	2110191025	1,1,2-Trichloro-1,2,2-Trifluoroethane	190	ug/L	1	0.2		
10/19/2021	8260	2110191025	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.3	ug/L	1	0.2		
10/19/2021	8260	2110191025	Dichlorofluoromethane (CFC 21)	1.1	ug/L	1	0.2		
10/19/2021	8260	2110191025	Tetrachloroethene (PCE)	2.2	ug/L	1	0.21		
10/19/2021	8260	2110191025	Trichloroethene (TCE)	39	ug/L	1	0.2		
10/19/2021	8260	2110191025	Trichlorofluoromethane (CFC 11)	79	ug/L	1	0.24		
10/19/2021	607	2110191027	N-Nitrosodimethylamine	1.3	$\mu g/L$	0.0095	0.0048	50	
10/19/2021	607	2110191027	N-Nitrodimethylamine	0.67	$\mu g/L$	0.0095	0.0048	91	
10/19/2021	607	2110191027	Bromacil	0.22	$\mu g/L$	0.0095	0.0048	111	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
						1		Eme	Q.1.1.mg
8/16/2021	8260	2108160925	Dichlorofluoromethane (CFC 21)	1.6	ug/L	1	0.2		
8/16/2021	8260	2108160925	1,1,2-Trichloro-1,2,2-Trifluoroethane	350	ug/L	2.5	0.5		
8/16/2021	8260	2108160925	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.6	ug/L	1	0.2		
8/16/2021	8260	2108160925	Trichlorofluoromethane (CFC 11)	150	ug/L	1	0.24		
8/16/2021	8260	2108160925	Tetrachloroethene (PCE)	3.3	ug/L	1	0.21		
8/16/2021	8260	2108160925	Dichlorodifluoromethane (CFC 12)	0.37	ug/L	1	0.21		J
8/16/2021	8260	2108160925	Chloromethane	0.38	ug/L	2	0.28		J RB A FB
8/16/2021	8260	2108160925	Trichloroethene (TCE)	75	ug/L	1	0.2		
8/16/2021	8260	2108160926	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.4	ug/L	1	0.2		
8/16/2021	8260	2108160926	1,1,2-Trichloro-1,2,2-Trifluoroethane	360	ug/L	2.5	0.5		
8/16/2021	8260	2108160926	2-Propanol	8.3	ug/L	50	3.4		J
8/16/2021	8260	2108160926	Chloromethane	0.46	ug/L	2	0.28		J RB A FB
8/16/2021	8260	2108160926	Dichlorofluoromethane (CFC 21)	1.4	ug/L	1	0.2		
8/16/2021	8260	2108160926	Tetrachloroethene (PCE)	3	ug/L	1	0.21		
8/16/2021	8260	2108160926	Trichloroethene (TCE)	70	ug/L	1	0.2		
8/16/2021	8260	2108160926	Trichlorofluoromethane (CFC 11)	140	ug/L	1	0.24		
8/16/2021	8260	2108160926	Unknown	9.7	ug/L	NA	NA		TIC
8/16/2021	8260	2108160926	Silane, methoxytrimethyl-	6.2	ug/L	NA	NA		TIC
8/16/2021	8260	2108160926	cis-1,2-Dichloroethene	0.34	ug/L	1	0.23		J
8/16/2021	607	2108160928	N-Nitrosodimethylamine	3.2	μg/L	0.0095	0.0048	44	
8/16/2021	607	2108160928	N-Nitrodimethylamine	1.8	μg/L	0.0095	0.0048	100	
8/16/2021	607	2108160928	Bromacil	0.62	μg/L	0.0095	0.0048	109	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
8/16/2021	8260	2108161220	1,1,2-Trichloro-1,2,2-Trifluoroethane	160	ug/L	1	0.2		
8/16/2021	8260	2108161220	Chloromethane	0.32	ug/L	2	0.28		J RB A
8/16/2021	8260	2108161220	Dichlorofluoromethane (CFC 21)	1.8	ug/L	1	0.2		
8/16/2021	8260	2108161220	Tetrachloroethene (PCE)	2.6	ug/L	1	0.21		
8/16/2021	8260	2108161220	Trichloroethene (TCE)	61	ug/L	1	0.2		
8/16/2021	8260	2108161220	Trichlorofluoromethane (CFC 11)	81	ug/L	1	0.24		
8/16/2021	8260	2108161220	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
8/16/2021	607	2108161222	N-Nitrosodimethylamine	3	μg/L	0.0095	0.0048	44	
8/16/2021	607	2108161222	N-Nitrodimethylamine	1.5	μg/L	0.0095	0.0048	100	
8/16/2021	607	2108161222	Bromacil	0.37	$\mu g\!/L$	0.0095	0.0048	109	
8/16/2021	607	2108161223	N-Nitrosodimethylamine	2.9	$\mu g/L$	0.0095	0.0048	44	
8/16/2021	607	2108161223	N-Nitrodimethylamine	1.5	μg/L	0.0095	0.0048	100	
8/16/2021	607	2108161223	Bromacil	0.36	$\mu g \! / L$	0.0095	0.0048	109	

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
8/16/2021	8260	2108161240	1,1,2-Trichloro-1,2,2-Trifluoroethane	12	ug/L	1	0.2		
8/16/2021	8260	2108161240	Chloromethane	0.3	ug/L	2	0.28		J RB A FB
8/16/2021	8260	2108161240	Dichlorofluoromethane (CFC 21)	0.67	ug/L	1	0.2		J
8/16/2021	8260	2108161240	Trichloroethene (TCE)	4.3	ug/L	1	0.2		
8/16/2021	8260	2108161240	Trichlorofluoromethane (CFC 11)	8	ug/L	1	0.24		
8/16/2021	8260	2108161240	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.83	ug/L	1	0.2		J
8/16/2021	8260	2108161241	Trichloroethene (TCE)	4	ug/L	1	0.2		
8/16/2021	8260	2108161241	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	0.83	ug/L	1	0.2		J
8/16/2021	8260	2108161241	Tetrachloroethene (PCE)	0.27	ug/L	1	0.21		J
8/16/2021	8260	2108161241	Dichlorofluoromethane (CFC 21)	0.65	ug/L	1	0.2		J
8/16/2021	8260	2108161241	Chloromethane	0.4	ug/L	2	0.28		J RB A FB
8/16/2021	8260	2108161241	1,1,2-Trichloro-1,2,2-Trifluoroethane	10	ug/L	1	0.2		
8/16/2021	8260	2108161241	Trichlorofluoromethane (CFC 11)	7	ug/L	1	0.24		
8/16/2021	607	2108161243	N-Nitrosodimethylamine	0.13	μg/L	0.0095	0.0048	44	
8/16/2021	607	2108161243	N-Nitrodimethylamine	0.062	μg/L	0.0095	0.0048	100	
8/16/2021	607	2108161243	Bromacil	0.0076	$\mu g/L$	0.0095	0.0048	109	J
8/16/2021	607	2108161244	N-Nitrosodimethylamine	0.13	μg/L	0.0095	0.0048	44	
8/16/2021	607	2108161244	N-Nitrodimethylamine	0.065	μg/L	0.0095	0.0048	100	
8/16/2021	607	2108161244	Bromacil	0.0067	μg/L	0.0095	0.0048	109	J

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/16/2021	8260	2108160945	Trichloroethene (TCE)	71	ug/L	1	0.2		
8/16/2021	8260	2108160945	Trichlorofluoromethane (CFC 11)	150	ug/L	1	0.24		
8/16/2021	8260	2108160945	Dichlorofluoromethane (CFC 21)	1.4	ug/L	1	0.2		
8/16/2021	8260	2108160945	1,1,2-Trichloro-1,2,2-Trifluoroethane	350	ug/L	2.5	0.5		
8/16/2021	8260	2108160945	Tetrachloroethene (PCE)	3.4	ug/L	1	0.21		
8/16/2021	8260	2108160945	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	2.3	ug/L	1	0.2		
8/16/2021	607	2108160947	N-Nitrosodimethylamine	2.3	μg/L	0.0096	0.0048	44	
8/16/2021	607	2108160947	N-Nitrodimethylamine	1.2	μg/L	0.0096	0.0048	100	
8/16/2021	607	2108160947	Bromacil	0.37	μg/L	0.0096	0.0048	109	

Event	Analysis					Quant	Det	Xtrct	
Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
8/16/2021	8260	2108160955	1,1,2-Trichloro-1,2,2-Trifluoroethane	52	ug/L	1	0.2		
8/16/2021	8260	2108160955	1,2-Dichloro-1,1,2-trifluoroethane (CFC 123a)	1.7	ug/L	1	0.2		
8/16/2021	8260	2108160955	Trichlorofluoromethane (CFC 11)	54	ug/L	1	0.24		
8/16/2021	8260	2108160955	Trichloroethene (TCE)	87	ug/L	1	0.2		
8/16/2021	8260	2108160955	Tetrachloroethene (PCE)	3.2	ug/L	1	0.21		
8/16/2021	8260	2108160955	Chloromethane	0.38	ug/L	2	0.28		J RB A FB
8/16/2021	8260	2108160955	Dichlorofluoromethane (CFC 21)	1.7	ug/L	1	0.2		
8/16/2021	607	2108160957	Bromacil	0.51	μg/L	0.0097	0.0049	109	
8/16/2021	607	2108160957	N-Nitrosodimethylamine	4.2	μg/L	0.0097	0.0049	44	
8/16/2021	607	2108160957	N-Nitrodimethylamine	2.2	μg/L	0.0097	0.0049	100	

Appendix A.7
Drinking Water Sampling Events

Summary of Water Quality Parameters for the Drinking Water Well Sampling Events in this Reporting Period

Well ID	WELL K	Event Date	11/13/2020		
Sample	Parameter		Result	Units	
2011130930) Conductivity		1005	μS/cm	
2011130930) pH		7.64	NA	
2011130930) Temperature		23.3	°C	
2011130930) Turbidity		0.79	NTU	
Well ID	WELL K	Event Date	12/3/2020		
Sample	Parameter		Result	Units	
2012031315	5 Conductivity		996	μS/cm	
2012031315	5 pH		7.67	NA	
2012031315	5 Temperature		19.6	°C	
2012031315	5 Turbidity		1.77	NTU	
Well ID	WELL K	Event Date	1/8/2021		
Sample	Parameter		Result	Units	
2101080910) Conductivity		1108	μS/cm	
2101080910) pH		8.27	NA	
2101080910) Temperature		22.5	°C	
2101080910) Turbidity		0.52	NTU	
Well ID	WELL K	Event Date	2/5/2021		
Sample	Parameter		Result	Units	
2102050800) Conductivity		1092	μS/cm	
2102050800) Temperature		19.8	°C	
2102050800) Turbidity		0.56	NTU	
Well ID	WELL K	Event Date	3/1/2021		
Sample	Parameter		Result	Units	
2103011000) Conductivity		1288	μS/cm	
2103011000) pH		7.64	NA	
2103011000) Temperature		22.7	°C	
2103011000) Turbidity		0.16	NTU	
Well ID	WELL K	Event Date	4/2/2021		
Sample	Parameter		Result	Units	
2104020740) Conductivity		1348	μS/cm	
2104020740	•		8.27	NA	
2104020740	•		19.2	°C	
2104020740) Turbidity		0.98	NTU	
Well ID	WELL K	Event Date	5/3/2021		
	Parameter		Result	Units	

2105030705	5 Conductivity		1062	μS/cm	
2105030705			7.99	NA	
2105030705	=		22.6	°C	
2105030705			1.34	NTU	
Well ID	WELL K	Event Date	6/2/2021		
Sample	Parameter		Result	Units	
2106020715	5 Conductivity		1260	μS/cm	
2106020715	5 рН		7.82	NA	
2106020715	5 Temperature		23.5	°C	
2106020715	Turbidity		1.52	NTU	
Well ID	WELL K	Event Date	7/6/2021		
Sample	Parameter		Result	Units	
2107061250) Conductivity		1052	μS/cm	
2107061250) pH		7.84	NA	
2107061250) Temperature		30.3	°C	
2107061250	Turbidity		0.44	NTU	
Well ID	WELL K	Event Date	8/9/2021		
Sample	Parameter		Result	Units	
2108090715	5 Conductivity		1118	μS/cm	
2108090715 2108090715			1118 7.42	μS/cm NA	
	5 рН			•	
2108090715	pH Temperature		7.42	NA	
2108090715 2108090715 2108090715	pH Temperature	Event Date	7.42 24.2	NA °C	
2108090715 2108090715 2108090715	pH Temperature Turbidity	Event Date	7.42 24.2 1.53	NA °C	
2108090715 2108090715 2108090715 Well ID	pH Temperature Turbidity WELL K Parameter	Event Date	7.42 24.2 1.53 9/13/2021	NA °C NTU	
2108090715 2108090715 2108090715 Well ID Sample	Temperature Turbidity WELL K Parameter Conductivity	Event Date	7.42 24.2 1.53 9/13/2021 Result	NA °C NTU Units	
2108090715 2108090715 2108090715 Well ID Sample 2109131315	Temperature Turbidity WELL K Parameter Conductivity pH	Event Date	7.42 24.2 1.53 9/13/2021 Result	NA °C NTU Units μS/cm	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315	Temperature Turbidity WELL K Parameter Conductivity pH Temperature	Event Date	7.42 24.2 1.53 9/13/2021 Result	NA °C NTU Units μS/cm NA	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315 2109131315	Temperature Turbidity WELL K Parameter Conductivity pH Temperature	Event Date Event Date	7.42 24.2 1.53 9/13/2021 Result 1045 8 29.6	NA °C NTU Units μS/cm NA °C	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315 2109131315	Temperature Turbidity WELL K Parameter Conductivity pH Temperature Turbidity		7.42 24.2 1.53 9/13/2021 Result 1045 8 29.6 0.27	NA °C NTU Units μS/cm NA °C	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315 2109131315 2109131315	Temperature Turbidity WELL K Parameter Conductivity pH Temperature Turbidity WELL K Parameter		7.42 24.2 1.53 9/13/2021 Result 1045 8 29.6 0.27 10/12/2021	NA °C NTU Units μS/cm NA °C NTU	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315 2109131315 Well ID Sample	Temperature Turbidity WELL K Parameter Conductivity pH Temperature Turbidity WELL K Parameter Conductivity pH Conductivity		7.42 24.2 1.53 9/13/2021 Result 1045 8 29.6 0.27 10/12/2021 Result 1021 7.05	NA °C NTU Units μS/cm NA °C NTU Units μS/cm NA	
2108090715 2108090715 2108090715 Well ID Sample 2109131315 2109131315 2109131315 Well ID Sample 2110120825	Temperature Turbidity WELL K Parameter Conductivity pH Temperature Turbidity WELL K Parameter Conductivity pH Conductivity		7.42 24.2 1.53 9/13/2021 Result 1045 8 29.6 0.27 10/12/2021 Result 1021	NA °C NTU Units μS/cm NA °C NTU Units μS/cm	

Well ID	WELL M	Event Date	11/10/2020		
Sample	Parameter	Lvent Date	Result	Units	
2011100730	Conductivity		890	μS/cm	
2011100730	•		7.35	NA	
2011100730	Temperature		23.1	°C	
2011100730	Turbidity		1.18	NTU	
Well ID	WELL M	Event Date	12/1/2020		
Sample	Parameter		Result	Units	
2012010850	Conductivity		1054	μS/cm	
2012010850	рH		7.87	NA	
2012010850	Temperature		21	°C	
2012010850	Turbidity		2.6	NTU	
Well ID	WELL M	Event Date	1/13/2021		
Sample	Parameter		Result	Units	
2101130725	Conductivity		1043	μS/cm	
2101130725	pН		7.75	NA	
2101130725	Temperature		23.7	°C	
2101130725	Turbidity		1.84	NTU	
Well ID	WELL M	Event Date	2/23/2021		
Sample	Parameter		Result	Units	
2102230950	Conductivity		1072	μS/cm	
2102230950	рH		7.48	NA	
2102230950	Temperature		23.5	°C	
2102230950	Turbidity		0.51	NTU	
Well ID	WELL M	Event Date	3/2/2021		
Sample	Parameter		Result	Units	
2103020715	Conductivity		1280	μS/cm	
2103020715	pН		7.72	NA	
2103020715	Temperature		22.5	°C	
2103020715	Turbidity		2.66	NTU	
Well ID	WELL M	Event Date	4/6/2021		
Sample	Parameter		Result	Units	
2104060745	Conductivity		1074	μS/cm	
2104060745	pН		7.9	NA	
2104060745	Temperature		23.8	°C	
2104060745	Turbidity		0.86	NTU	
Well ID	WELL M	Event Date	5/4/2021		
Sample	Parameter		Result	Units	
2105040710	Conductivity		1071	μS/cm	
2105040710	pH		7.89	NA	

2105040710	1		23.2	°C	
2105040710	Turbidity		2.34	NTU	
Well ID	WELL M	Event Date	6/1/2021		
Sample	Parameter		Result	Units	
2106010710	Conductivity		1105	μS/cm	
2106010710	pН		7.9	NA	
2106010710	Temperature		23.9	°C	
2106010710	Turbidity		1.53	NTU	
Well ID	WELL M	Event Date	7/7/2021		
Sample	Parameter		Result	Units	
2107070710	Conductivity		1136	μS/cm	
2107070710	pН		8.19	NA	
2107070710	Temperature		23.7	°C	
2107070710	Turbidity		1.57	NTU	
Well ID	WELL M	Event Date	8/10/2021		
Sample	Parameter		Result	Units	
2108100725	Conductivity		1073	μS/cm	
2108100725	pН		7.24	NA	
2108100725	Temperature		24.3	°C	
2108100725	Turbidity		0.38	NTU	
Well ID	WELL M	Event Date	9/14/2021		
Sample	Parameter		Result	Units	
2109140710	Conductivity		1040	μS/cm	
2109140710	pН		8.61	NA	
2109140710	Temperature		22.9	°C	
2109140710	Turbidity		0.64	NTU	
Well ID	WELL M	Event Date	10/19/2021		
Sample	Parameter		Result	Units	
2110190920	Conductivity		1175	μS/cm	
2110190920	pН		7.68	NA	
2110190920	Temperature		23.5	°C	
2110190920	Turbidity		0.39	NTU	

Appendix A.8
Detections for Drinking Water Sampling Events

Detections for Drinking Water Well Sampling Events in this Reporting Period

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
11/13/2020	NDMA LL	2011130947	N-Nitrosodimethylamine	0.23	ng/L	0.47	0.22	Line	J FB
2/5/2021	NDMA_LL	2102050807	N-Nitrosodimethylamine	0.54	ng/L	0.48	0.33		FB
5/3/2021	8260_LL	2105030710	Unknown	5.2	ug/L				TIC RB FB
5/3/2021	8270	2105030715	Unknown	12	ug/L				TIC RB
5/3/2021	8270	2105030715	Unknown	160	ug/L				TIC RB
5/3/2021	8270	2105030715	Cyclohexane	51	ug/L				TIC RB
6/2/2021	8260_LL	2106020725	Chloromethane	0.31	ug/L	0.5	0.28		J
9/13/2021	8260_LL	2109131320	Chloromethane	0.29	ug/L	0.5	0.28		J A
9/13/2021	8260_LL	2109131320	2-Propanol	3.6	ug/L	40	3.4		J
10/12/2021	8260_LL	2110120830	Unknown	6	ug/L				TIC RB FB
10/12/2021	NDMA_LL	2110120832	N-Nitrosodimethylamine	0.74	ng/L	0.47	0.4		FB

Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtrct Effic	QA Flag
5/4/2021	8260_LL	2105040715	2-Propanol	5.8	ug/L	40	3.4		J
5/4/2021	8270	2105040720	Unknown	160	ug/L				TIC RB
5/4/2021	8270	2105040720	Cyclohexane	41	ug/L				TIC RB

Appendix B
Sampling Event Logbook Entries and Internal CoC Forms

Continued from page

Ĺ	IJĖ	CI.	_X	<i>io</i> .	14.	r.2			CA	<u> </u>	<u>uo e</u>										00,11			p;					<u> </u>			
	40	vs	A	مامر	5.	4	120	se.	7	Bu	ונס	ws	4	0.ZA	7	V	Jea	بلل	ζ.	15,	c/a	509	4 4	'n	امروه	Λ.	1	MΣ	70	N		
	11		-		i i	2	٠ ٧٠	٠, ٨٩		5	79	las	.e `	5	رجو		<i>></i> √دہ	1	رد:	2	ee		Sam	917	,	- 164	۲,	3	1	ب		
Ţ	J.	٧	-	2	m,	7	00	,	2		#	2.21:	2	٨٠٠٥		3	KGAA	مئاه		Car	604	٠.	- 1	, v)							
		-2	bar	TO	NO	LU	011	•	A OR		,	-	•	*	•) M V U	,)													
+																			 												1	7
-						-							2.	ļ.				1	[2]	1/	<u> </u>									-	-	\dashv
		- 1	11			ļ							50.	M:	<u> </u>	جهر	pn	eat	36	ريارج		-	_			-	1	1		_	1	
9	M	u.	#					An	1/13	is.					6	627	CV.	•				1	اخدم				_/4	1		\\\	ub_	_
		105		Y			YON	16	84	عالوا	b						\mathcal{I}				(3)40	/ m (110	5		25	94		//	413	
~]		1	51					14	·M	ŤΙ	•				Ц	al	1/2				(1) /2	۲.	1 0	0/1		ol 0	354	16		`.	
1			, ,				10	14 1		13.	-					,,,,,										1						
	- 1.	1	0		+		-				<u></u>	معرا											W		τ							
	iti	>			rela			-									1	-	+	 	 -				ياد و	7		_		-		\neg
	w	<u> </u>	7	108	15 C	१९३	54	-		2	108	1	1	2 Y	-			-	-	-		44	l *.	bus	+	117		<u> </u>		-+	+	\dashv
اِ		-		J_	.01		ļ			!		. 5					ļ	-	-	-		Ti	ap		- 1	*		-				
ú	40	•		1	2.9	g - c					2	7,6	76	(ع				-	<u> </u>	ļ		;	\	172		49						
	7,-	-	ļ	1	1	1					12	7 8	1	ers/c	(m									ROG	-	46	4	TU	<u> </u>			
3	4	١.	1	1	361		1				1	1		rus	4 -								1	50	-	910	וו		,			
			1	1	1	1		23	2.4			1	1		28.	6.6	i						1	44	1	8/3	Ι.	,				
-	pre	•		1	01.			152	- ,	-	1	1		ļ	,		_	+	-		+			111		,	,	-				
-	βæ.	<u> </u>			3/1		05	+		-	1	7/	1 /	7	<u> </u>		-	+-	+	+-		15	LL.	 	1				(
•	W	<u> </u>	_	1,	9.1	J.	-	-		<u> </u>		30		-	+	-	-	-	-	+	+	1 2	1	1	11	10.	T	-	1 9	×φ 2 /2 (,	
				<u> </u>		ļ			ļ	\	101	り.	1	TAL	1_		-	-	 	_	-	-	7	+		079	T		+73	, /21	+	
																				<u> </u>			10		14	101	t+(•	7	/12		
-				1									<	A M	PLE	5.																
,			IF	 	+		+	N	1	•		+	10	7	100	À		1	†			1	1.	•				of			lab	,
	am,	ple	-	1.	-		1101	He	مام	51.	+	 	+	-	 		Serv		+	+		77	40	((1,1	_	Τ	596			V.(
2)	<i>08</i> /	121	1	1		-		b	١,	1	1	 	+	-	+-	Heli		<u>ه</u>	-	+-	+ , '	19,	70			>	T	ł	1		25x	١
•		= 1	001	7	-	-	60	1/	Bro	mac			-		+		ب	_	-	+	+	11	1	An		1-	1		5016			
		+ 1	380	1	1		10	iki!	Me	اما	5		-	-	-	HNO	3/1	u	-	-	\perp	5)	125	\ ~\	10/	4	1	121	-		AV	<u>, </u>
	_	+ 1	PSI	Y				lons					_			ta	12	e 16	42					2	ļ		N	Æ			5	
		1	03					thlo			850	اد				לנ	1	k 1	15	-	(1)	125	10	/04			+	١.		4	
•				1			1-1	V- 3/19	1,13	- 4	T						7				1	1				1						
		1,1	+				1	1	11.	+	ا ر	ارب	6 2	a			1	+	1	-			-	1			-					
:	ΨΛ	41		9			2)		1 41		3)	1	9.3	- 1	+	+-	+	+	+	+	+	-	+	+	+-	+	+	-	+			
	-	-	1		77	-	-		179	_	-		. 7		-		-	-	-	+-	-	+	-	+-	+	-	-	+-	+-	+		
	-	_		**	17				ירו		-		17		-	-	-	-	_		_	-	-	-	+	-	-	+-	+	-		
			7	9.0	17_			7	9.4	2		74	i. 3	4				\perp					_	_	_	-	 	4—	-	-		
•																																
	+	+-	+	-		-		+	1			1							+						Co	ontinu	ued f	rom	page			_
	1		1																		tood											

W Signed

8/12/21

Read and Understood By

Signed

8-16-21 Date

WSTF INTERNAL SAMPLE CHAIN OF CUSTODY RECORD

Date: 8/11/21]	Page	of							
Sample Location: 200 - H · 225		!		A	nalytic	al Req	uiremen	ıt										
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8ಬ್ಬಂ	697	T. Makals	Arions HIX	lar dissafe			Ch	arge Number							
21081208507 (EB)	3	A	Х							XCI	Du							
0851Y (EB)	2				X					, /								
10004	3		×															
10017	1			X														
0357	2			<u> </u>	X													
10361	2					X				1								
17501		+		**			X			1								
Sample Location: Pertinent Notes (if any)		1		<u> </u>	Analyti		-											
Sample Number	# of Containers	Sample Matrix*								Ch	arge Number							
						ļ	_											
					_													
					<u></u>					_	/ Tr:							
Relinquished by:	Date / Tim				M	Actept	, ,	-d	8-	Date	e / Time:							
, 0										<u>.</u>								
					,													

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sign

8-11-2021

Read and Understood By

-dr 8-12-21

Continued from page

Date: 8-11.202)					-				P	Page of
Sample Location: 200.4-33)				Α	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	500	८०१	5/24mvs					X Gmp Charge Number
2108110820Y EB	3	A	Q							
- 0821Y EB	a	(X		,			
0936Y	3		Q							
09364	1			R			_			
1006Y	2			,	y				-	
1006Y (D)	a				4					
10001	•									
Sample Location:				F	Analytic	al Requ	iremer	nt	1	
Pertinent Notes (if any)	of Containers	Sample Matrix*								
Sample Number	7#	Š								Charge Number
		_								
					<u> </u>					
	/ Tim			+	_	ccepte	$\overline{}$			Date / Time:
1) 8-(1-Ze3)		1035			Ou)	$\overline{}$	/ Yen	-d.	- y -	12-21 /0910

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

a song Tarrez Present, Weather is chard and hern Lone will be sampled using 5 tright (nosed Stainless Stee) Sampling to be surface checks performed on probe 2213 prior to sampling enioment blanks (Coron 62 LAB 217 (8) 40 m vie 2543 108114154 Bush (1) & POJ DIL omber 10860) 14-176 set. in: Lial Paramulars = 2108111450 PN COND = 12 TURB 570 -419.3 205 : 49. D 3 2.33 us cm Lat = 91017 = 0. les 224is EP : 8 2 XT = 7.09.10.10 = 7.10.10.11(33.9°C) mas = 12.56 SAMPIES Continer Preserve SAMORE ひは 2145 Ice Ho 10811/5/0 y (3)40 ml U: a) 2483 (1) 11 Most 108501 15114 Broma Cill by 385 (3)124 m 60% TER HANGS 21-01-21 1535 Runs - 1) 170, 12 3) 170 04 2)170.06 187 06 187.05 187.06 187,06 187.05 187.03 170.11 170.06 170.04 Continued from page

2-11-3031

Read and Understood By

Date: 8-11-2021									H	Page) of
Sample Location: 200- ++ 433				Α	nalytic	al Requ	iiremen	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	\ 08	607	matels					X 6 m 0 Charge Number
	3	D	S							
	1	1		>						
1416y EB	3	1	4							· · · · · · · · · · · · · · · · · · ·
1510 y 1511 y 1535 y	1			Y						
1511 y	-	-		/_	>					
15354	2				X					
										<u> </u>
Sample Location:					Analytic	al Requ	uireme	nt		
Pertinent Notes (if any)										
	φ.	*.								
	of Containers	Sample Matrix*								
	Con	ple N								
Sample Number	- # #	Sam			Ŀ					Charge Number
<u> </u>										
				<u> </u>						
				<u> </u>						
Relinquished by: Da	te / Tim	ie.		 	\	Agcepte	d by:	<u> </u>		Date / Time;
8-11-2-2		 600		1	on		Tu	-dr	Q-	
, , , , , , , , , , , , , , , , , , ,	·/	LP 00	_	+	v ·	<u> </u>			"	
				$-\!\!\!\perp\!\!\!\!\perp\!\!\!\!\perp$					Ļ	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT 400 . D . 195 W 5 ENO . CO20

Continued from page _

7	οπ	υŞ	A	valor	5 &	8	مله	\forall	Bu	tro)	ΝS	Di.	مدک	A,	W	eali	٠,	į,	s. (love	3	4 1	nar	M.	7	λis	70	w.	wil	()	e
54	mpl	لععا	U:	Sing	2	1	Ja.	3	رم< <u>م</u>	6	2/0	in)	\$22	2	(ee)	_ 3	aun	le	to	كعة		Suc	کور	•	Ja	ركد	S (201	ocw.	لمر	
שנו		rop	e	#	221	3	Dri	0-	to	Sa	am/	ing		Ca	100	4 (20 · 6	<u> </u>	هی	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ (3									
												ر				'										٠, ,	3				
																3															
												30	. <i>p</i>	lin	Eg	UPA	ren-	- 3	lank	5											
/)	mil	r#					40	445	5				Pre	ser	e	_				Can	Hair	er				10-				ام	6
210	316	152	φY						rco	L			4	a)	tu			((3)	yο	w.	wigh	5		3	283				A	5
	•							, -		4																					
In	lia	_ 1	919	me	ecs								ゼ	مر										Ne	ور	II	5_				
	ne	1	- /	108	16	155	UY	ļ				21	180	7/1	50	4							PH	0	J.	#	12				
胜			<u> </u>	7.	7		<u>'</u>					4	ا. ا	4		•								مح		Ħ					
Te	Mρ		-	24	۹٠	¢						2	5.	3 ^{. ι}												ب ر	٩.	N	Ü		
محال			_	41	L	5/4	•						ļ		ادس													N			
10	-h		1	0.9								1	. 6	ч	77	J										•					
14	pre		1	1.05	1		1	30.	ပ္ပ. င)		7	.02	1	0.09	ક (26	. 3. '	(EX9	1	1	30/	. (
14	162 f			۲٥,۱								٦.	०५	/ 18	3.0														•		
41	MO		- 1	12.	52	03,	en.					1		1	Sia							1	<i>2</i> 2	لوح	1	\	40		١	Ex	0
B	Th		+) US	. છ	o'							05											7				47		15.	1 1
	` •														1 4	1								lu	1			\$Ç		7 (2	
															7	•									,			•			
				ļ																											
				ļ									S	am	h	5															
5	gm	u	#				A	aul.	1515				1	res	سرما					Con	لحزر	ur				(4				\	di
21	180	70	६८	4		U	y A	48	لره	ll			I,	tci.	Z	e.			(3)	40.	ml.	vials			5.	583				A	1
_		ે	80	17		6	07/	B	DAG	al				I	u				(1)		Au	ber			01	350	14			5	RI
_		-1	०५२	۲,		-	Tota		refe				4	No	3/1	u		(2	17	51	م ام	1		211	121				A	(5
		ļ	-																				Ľ								
70,	51	17	.40	i	2	11'	5	O		3)	11	42		4)	12	لعا															
		31	-11	-		3	. 2	0			29	40	k		1	. 23	1														
			107				٠, ١ر				اح.	૫%			17	مال															
		12	.59	i		17	. 6	3			12.	62			12.	شما	}														
			<u> </u>	-							•																				
			<u> </u>																												
			<u> </u>																								1				
																									Cor	ntinue	ed fr	om pa	age		
																	Read	d and	Und	lersto	ood E	 Зу									

Date: 216 8/16/21										Page / of /
Sample Location: 400 . D . 195				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)			CO							
	iers	rix*	8260 LL		i.					
	# of Containers	Sample Matrix*	2							
Sample Number	# of C	Samp	'							Charge Number
	3	1	X							
15/08161250A (FB)	3	A	X	,				8		Xend
					.,,					
								·		
Sample Location:				A	nalytic	al Requ	uiremei	nt		
Pertinent Notes (if any)										
	lers	rix*								
	# of Containers	Sample Matrix*								
Complex V	d of C	Sampl								
Sample Number										Charge Number
					_					
					<u> </u>					
	e / Time		-			ccepte	d\by:		Λ 1:	Date / Time:
Mg 08/10/21	(W) 16	00	-	-	10r	VV	Ju	-Ch	4-1	7-21/0920
	.			+0						,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8/16/11									F	Page/ of
Sample Location: 400 · D · 195				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 LL	607/Bro	T. Mahls					Charge Number
21081708501	3	А	X							YGND
08514	1	1		X						
10434	2	7			X					
						_	_			
					i					
Sample Location:	1	1		A A	nalytic	al Requ	uiremen	ıt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*		•						
Sample Number	#	Sa					:			Charge Number
Relinquished by: Date	: / Tim	e:		1) A	Accepte	d by:			Date / Time:
11/11/8	@	115			ru l		lu	de	8-19	8-21 /0900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

8/16/21 Date Or Wound

8-[7-2]
Date

Date: 8/16/21										Page	of <u>/</u>
Sample Location: 400.0.175				1	Analyti	cal Req	uireme	nt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Belon 11	607	T. Malals	Asion / A//	S			Chars	ge Number
	3	Δ	X					1			o i vaino or
21081608004 (TB) 	3	1	Ý								
10201	3		X								
10211	1			×							
13254	2				X						
13264	2					×					
- 13274	1					/	X				
Sample Location:					A nalvti	cal Req	<u> </u>	nt			
Pertinent Notes (if any)				1	Tilalyti	Car Req					
Sample Number	# of Containers	Sample Matrix*	Re-chlorate	N02 N03						Charg	e Number
21081613281	1	Α	X								
1329	1	T		V							
								·			
									-		
	-										
					 			-			
Relinquished by: Da	ate / Time	e:			1	ccente	d by:			Date / T	ime:
W W 8/16/21	016	00		\	m \	M	uu-	d	8-1	7-21	10920
									1		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

23

PROJECT 400.0.335 ENU.0010

Continued from page

ムだる	01 101	40	A	cho	wi wi	P:	20! 20! 20!	20 20	o rivot	3 uc 14 d	6 Lov	s sin	5	# 8	55 +	19 3	pr	ri	to	i 5	sta mp	امرا	e22	Ca	los Ster	y-bi	50. (2.		to.	F)	uş.
		le 121	#	1		V		lady by		.			lin	l (cuiq rese	n.	_	3/av		(Cant 40	م مرا ر	بأواح			12	0 				9b A(5
万田にいてあれ	with the second		- 1	1.09 2.09 1.09	3121 30 1.4. 40 40 4/	500 US/ N7 10. (U)2	(31	.9.			1	108 24 164 164 .09	9 9 7 1	125 c s)(v lv.(w 0 0 0 0		33.	, (')				200	M PIH		25 25	- 1 0 m	1 12 1 12 1 10 1 1 10 1 1 10 1	7 /2 1	اتر	P
70	180	1	244 25-	777			Vol	Ana Ab	181 B	5	ر (دا	191	65	_	Pre:	(en	u -			(1	Co;) ((0)) ((1)	: Am	be-	,	- 1	10 15	1	20		- 1	96 A(s SEE A(s
<u> </u>	AS \	•	81. 96. 95. 81.	72		2)	9	1.0 5.9 5.4 1.1	ر و د		3	9	5 5 5. 12	14											Con	tinue	ed fro	om pag	Je Je		

Signed

8/12/21

21 Signed

8-16-21

Date: 8/12/21									Pag	ge/	of <u>/</u>
Sample Location: 400.0.335				A	nalytica	l Requ	irement				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	9160 LL	103	T. Metals					Charge	Number
HOBIS14304 (EB)	3	Α	X						7	(GUD	
1252 Å	3	1	X								
15764 (MS)	3		X								
15274	١			X						 	
12121	2	<u> </u>	<u> </u>		>					<u></u>	
Sample Location: Pertinent Notes (if any)	1	1	-	<u> </u>	Analytic	al Requ	uremen	it			
	# of Containers	Sample Matrix*								Charge	Number
Sample Number	#	02	<u> </u>	+-						Cnarge	Number
· · · · · · · · · · · · · · · · · · ·				+ -							
			╁								
	<u> </u>										
					h_			,			
Relinquished by: Date Date	e / Tin)		foul	ccepte	ed by:	h	8-16	Date / T	10930
					θ						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

8-5-5051

for Wounds

8-3-21

Date: 8.2.2021									l	Page of
Sample Location: 400- Ev-13/			`	A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
	iners	Sample Matrix*			7	BA:005 AIK				
	# of Containers	ple M	U09	ره)	ma/a/5	500	705			16m0
Sample Number	Jo#	Sam	ン)	٤	7	Ē			Charge Number
2108221000 c	3	A	7							
1001 6	3		4							
)002 < FB	3		7							
10036	1			7						
13040	2				9					
1006 2	2					7				
1006 c	1	,					4			
Sample Location:				A	nalytic	al Requ	iremer	nt		
Pertinent Notes (if any)										
	ners	trix*	ر پور	No= 1003						
	of Containers	Sample Matrix*	Parchiene ka	1	•					
Sample Number) Jo #	Samp	722	2						Charge Number
		A	B							Charge Number
540805100) c	,	7		70						
1000										
					\					
Relinquished by: Date	e / Tim			\blacksquare		ccepte				Date / Time:
8.5.3051	;	115		+	m	W	\lu	-dr	8-	3-21 /0930
				-+1						. 1

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

8-3-2021

mah 8-4-

1

Date: 8.3.202)										Page of
Sample Location: 400-6v-125				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	UOG	(09	er exects	1/0/500:00	TOS	Perzhlorato		X GMD Charge Number
21080304000	3	\mathcal{A}	9							
ogpic (FB)	3		7							
09026)			\$						
	ર				Y					
- 090HC	2				-	9				
09050)						٦			
0906C	1							9		
Sample Location:				A	nalytic	al Requ	iremer	nt ·		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	NO2/103							Charge Number
21080309076	1	D	9							
				/	$r_{\downarrow I}$	1				
Relinquished by: Date 8-3-202)	/ Tim	e: >55	0	4	on	dcepte	d by:	L	8-	Date / Time: 4.21 / 0920
					V		•			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

5	34	42	1/26	-Se	~	4	Z0/2	۱ ۲۰۰۱		246	col	x	٩r.	શ્ક	4	し	کوی	مملا	٠.	3	C /a	لماد	۹ ۵	br	1	<i>to</i> ,	7	۲:	5 1	عوا	7	
2	11.	1		M	رو	8 6	2~	A	52,0	न्दीव	d	us	50	<u>, </u>	9	موك	(س	ليعا	. ') a	77	96	Pu	mę.	_5	And	کلوع	نا	11:0	b	_	
<u>'ه'</u>	hec) Les	,	10:	× 9	. d.	ديدا:	ممه	wh	-77	33	~	3.	ايح	×n	ζĽ	10	se	. k	ولم مه (~ (برب	4:11	<u> </u>)A. (pu	erks	a	W	11:	pe	
<u>n</u>	٥٥,	40	لره		45.	3	۵	0	હા	•	wi	3	0	Ç	lor	اندو′	<i>\\</i>	×~	۱ د	f.A.	••	Ar	ah;	241	•. (بمد	bo	∫ e	,≰	12	use	
																																_
	<i>i: \</i>																						Ŧ		1					50		
					I																			F:						2. 1	0	
4	5	2٨5	05	: 1	45:	3	م	7	५ ९	۲.	(4	٢,١	10	7.	x,f	ڪور	m	the	ha							Ω¢	W	5 J	۹۹	7.		
20	du	٠ ، ح	بلجز	=	us	: 4	5	~	14.	73	U S,	CN		sto) . :	رامح	4 ∤:•	20		v	حد											
<u>ت</u>	:B:	1:4	n	nk	~ ~ .	4	٤2	0	5	10	= L ,	.ગા		ደና	<i>Se</i> .	بل ج	١ ()	LS	7	ξ.	311	21 <u>)</u>		€7	Pz	8	31				\dashv
		_																														
<i>چ</i>	Ø/A	my	283	G	m			i i	ĺ		07			\mathcal{O}				74		_		2)	-		1000			0	W	(4)	<u>-</u>
<u>21</u>	⊃ %'	1	į	ļ				ل ى			2 <	1		<u>o.</u>				26				9			ΙΑ,	S. 9.	2					_
		_	14	0	C	3	.4.	3ما			20			3.1				;. ユ				1)				3						_
_			14	12	c	ユ	4).	<i>ا</i> ما	-	ュ	عرد			3.1	0		8	.2	જ			17				3.8	0					_
											_				_																	_
		74								-	5	4	~6		_					`	,									$- \downarrow$		\dashv
<u> </u>	₽ 1 €	<u> </u>		-				4,5				_	4		567			_		nt-					5				_ 4	VG		
	805					00	<u>حر</u> ک	_	€ ⊋		-0>			て	دا /	kc1		(30	40.	4) (ازوا			35	8)				1	ַ ל-	
								100			(B)								1		,				100					- 0	-4-	
			Q 0			7.	MAR C	21 '		7				য	حو ا،				(1)	L	1	46			, 10,	, \$۩	·1			SR		
_			21	1					l	1	رو				١.,١							D \			_	ا ر						
	I		23 23	1				m		12					•	J03			رده	135	ev)	oly				۱۲. ۲۰ ۲۰	٩			Dr	~3	
_	Ī		24		1] N S	1					, T	ce				D	,						1,				25		
_			25					رمع						,	,				כני	,,						1,				1		
			عد عد		1		١.	Σοί		1				امرد	7-	Sou				so 4	, Q					ŧ.				1		
		, 1	-v	-		~~	~ <i>j</i> . ^	LU	حر	7.3	<i>,</i> .•	*			-14				, ,,,,	(*		3										
																																\exists
_																																
																-			-													
																									Con	tinu	ed fro	om pa	age			

self.

8-5-505)

Read and Understood By

8-3-21

Date: を. ユ · ユ > ス > ス > ス > ス > ス				,						Page	of <u>}</u>
Sample Location: 400-54-150				A	Analytic	al Requ	uiremen	nt			
Pertinent Notes (if any)											
Sample Number	# of Containers	Sample Matrix*	200	رهم	makels	Drions DIK	T05			Char	ge Number
2108021418 C	3	A	>							!	
1419 c	3		8								
14120 c)			8							
14121 C)			8							
14220	Q				9						
1423 C	2					9					
1424 6	١)					8				
Sample Location:				A	nalytic	al Requ	iremer	nt			
Sample Number	# of Containers	Sample Matrix*	Perchlorale	No 2/103						Charg	ge Number
3108021425)	4	8								
1424 c	\			>							
								:			
Relinquished by: Date	/ Time				\ h	dcepte	Abv			Date / 1	Cime:
8.3.303)		15⊋c	<u> </u>		on 1		1	-dh	9,-		10930
											/ /

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

∮	EC1	г_7	00)-	E-	-4	15	8	w	II	5	N	<u> </u>	00	53	<u>.</u>			(No 1 Con	tebo tinue	ook d fro	No m pa	age _	23:	<u>3</u> ₩	<u> 12</u>	4	c)		
ab	To	F	\$ 1	C	rai	9	De	E	256	σvc	P	re	æy	4.	u	مول	the	05	is							16	_ }_		,,	•	
م إ: ا	ura	jed	u	sin	9	d c	lec	110	at	ed_	61	ad c	ter	ρ	40	ሳይ	S	am	ole	S	ωi	\mathcal{U}	bo	Co	.lle	cf.		45	امنرا		
Ho	M	dis	ch	ara	e:	po.	se	1	() a	ter	a	ua	lit	21	DO	100	زم مد	ton	- 4	sil	/	0	~	nz;	tor	ea	1	sci	19	<i>_</i> 0	
EC	M	1P-	20	F	pu	C	ell	ar	d (va-	er	a	na	y	er	(ar	boy	G	3	in	us	e.		-	-	-			<u> </u>	
11:	pra	1:				_			-	-						-		<u> </u>	-						ļ. 		-				
X)	C	ali	x a	100	;	~ <	4	ira	tod		`	a	63	R		1	Ha										-				<u> </u>
and	uct	iyi-	4.	- c	ali	br a	tec		151	na	14	H3	us	Con	M	sta	5	اه	atic	n .		· · · · · · · · · · · · · · · · · · ·				ļ					
<u>H-</u>	cal	br	ăt.	ed.	U.	sin	q	00	K	ton	þ	uf:	er	5_([7	-1	6)														
10	dif	9.	ne	ter	#.	21_	2	td:	- 5	7.	3		50	19-	5	8.	b	-	101		2/0	17		EX	<i>p</i> -	81	3//	21			
+			<u> </u>			-	. ,	-	b /	1		,	-	,	3		C.	1.	٠	-	1				-						
200			-				- 1		11	16 V8		- 0			Y			10	• \$				_			2		1		_	
2108	_	_	730	c			'oA			260	_				HO		<u></u>	(3)40	1.79	un		-	_	-67 598	₹	-	4	. q s 11	2	_
			31	1 :						N					e	/		_	1/14	•	- 4			1	50	ľ		4	52	<i>t.</i>	
-	ļ .		11															_													
200			. –		-			_	<u>,c</u>	- 4			ws		_		00		DR P			4	I	w	W	705		可	Te	4	1
12	0	81	l			ſ	1	.41	1		1		8.0			L	51	1	88		1.3			1,3	0			_3	11	7	1
			ĺ	918 9a	i 1			.4 .4	•	-	- 1		16 19			T. 2	4		10 10		1.4:				6				11	8	- 1
				[O	10		يمر	∽	-		O	۰.٥	17			1. 2	1	+	10	+	1.7	5		LL	9	· ·		- 3	311	- 6	6
														Sa	m	les														1	\exists
) a w	ماو	_			-				<u>In</u>	aly	ठाडे			æ	ser	Vα	W	2	(S.	ata	ù	<u>r</u>		L	.t			<u>_a</u>	b	
2108	I i	ı				_\	10	1		82				io	e/	HC	レ			s)Ł	tan	J V	ria	7		59		/	41.	5	\dashv
		09	270				<u></u>	- /s		FB	<i>(</i> •				<u>u</u>						,]	u				u			4		\dashv
			2 10 140			1	60 AL			mac N		A			ICe				(I) [/	ſ		ur e	C	10	İ	אוכ)	SR	1	\dashv
			141						u	FR					u	•				ľ		u				u				-	7
-	_	0	î 5	2 C		+	To	ta l	N	eta	r			ice	ĨН	NC)3		(a	31.	25,	nl	69	پ' ^د	2		1-8		A	15	
+	_		95.				Λ			FB					u				\bot	_		u	1			u			_	u	$ \bot $
			<u>`</u> S4					ion		llk.				_	ice					1		u	_			N	A	4	_	4	-
		· I	05	- 1	-	7				125	• 1				ec.				4)15	\5m	4	Poli	}		y			\dashv	u.	\dashv
-			- 1	C		Let Vic	ch	1700	ate	by 43	60 53	วบ ว)	ia	. / J	125	ŝo.		li	11	50,	4		١		4	~ =	^\$	Q	u	\dashv
						101	161	<i>, V V</i>	3 4	y				10	e (1	12	~4		- 00	100	راد	M.	Po	4	9	1 -	04.	- 3C	5	4	7
aiti	u	DT	W	_	3	0,	73	FH.						To	ta	q	all	ons	pu	ra e	ed -		2								
																-3			-	7		-	1	Con	tinue	d fro	m pa	ge			1
<i>(</i>)	•		_	_								,			F	Read	and	Unde	rstoo	d By					n						
Ca	щ)el	1	ر د و	عدرا	O			8	118	sla	1				K	yre/	11		/ `	,	11.		h	-	Q	-18	1-9]	
	t		Sign	ned							• • •	Date			=		X	, .		Sign	ed	1	<i></i>	~			0		Date	•	

Date: 8 18 21									Page of
Sample Location: 700-E-H	58			A	nalytic	al Requiren	ent		
Pertinent Notes (if any)					Ø				1
	<u>S</u>	**		,	Man 7				
	of Containers	Sample Matrix*	8260	607	201				
	f Con	nple]	32	9	7				
Sample Number	(O #	San	3		7				Charge Number
2108180730C(TB)	3	A	1						XGMD
0731C (TB)	1	A			~				(*
09250	3	A	~						u
0926C (FB)	3	A							u
09270	1	A							4
0940C	1	A							· · ·
0941C (FB)	1	A							u
Sample Location:				A	nalytic	al Requirem	ent	•	
Pertinent Notes (if any)			y	7	•	7			
	şo.	*	101			<u> </u>			
	# of Containers	Sample Matrix*	4	180	, 2 2		}		
	Con	ple N	19	nions	1	2 2	> 2		
Sample Number	# of	San	7	A		00			Charge Number
2108180952C	a	A		. = 1					XGMD
0953C (FB)	2	A							ų
0954C	2	A		/					6
1005C	1	A			-				
1006C	1	A							10
1007C	1	A				V	+		
	•				-\				4
Relinquished by: Date	/ Time): :) (4	ccepted by:	-		Date / Time:
traig betterno 8/18/21	_11	20 hr	5	10	n V	V/hu	-d	8-1	9-21/0900
0	·			$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$					
				V	<u> </u>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. PROJECT 8650 - EFF-1 Continued from page 210812 09/5 ID 400 100 5 0.34 2188120900 82002K (TB) 40 M Vial LLNDAA (TB) UPAA/PMI/Bromacil/GOT (1) 1 47 Anter (Dyd) (FB) 1. CANCELLED BOTH #2108120920 /2108120921 BECAUSE AN GAMPLES FOR 8240 IL WERE LABELED WITH THE SAME PRESIMPLE FOR THOSE SAMPLES ONLY Continued from page Read and Understood By

Signed

8-12-2021

for Wound

8-16-21

PROJECT B650 - EFF-1

	.01															-					umue			3 -							
			1	111	1 7	10	Wī	1/	7	A	2	v	100	17	<u>-5</u>	10	16	50	2	4		50	z an	06	5	87	//	6.	o		
colle	24	o)	7	5	-	, a		le	PK	a¥	2	,			04		OF.	4	0	n	t	F F	5	id	0	54	م م	5 V.	1/2	1	
Sa	ms	le	p	الارو		251	21	62	P	UNG	اره	7	(J)		1	h	η	6	110	2	Y	, د	01	lec	fu	5	0.		nex		
and			p4			<u></u>	ar	60	ć		: 	3						0							/		/				
								/																							
																												,			
Paral	4	eh e											M	1		I	≯						B	»F	~	1.	p 2	(FU	
100 01	•			21	08,	1/ 1	Ž 3,					- 3	OH	00	u		73						7			sod	10	/	\$	}. }	2
1//			5	0	4	0/) ^						1	PR	<u>-</u>) (10		ינו	01	~ (-			3- 2	
77.		رج		.)	_	5. 3							11 6	341	9 -	-	7 3						10		7	0,	<i>ω</i> ,		ľ	,	
12 1			kn	\ -		42							1(DI	_	5	6.5	-													-
Con					1	1	29						1(13	* .			-													
TUR "			1		1	•	•						N	67 Est	0-	9	101 31-	/_												-	\dashv
	D/ &			1.0	5		0./							X		8.	71.			-											
p 4 p	57	_		7.0	/_	- /	16,	75									•														
																													\vdash		
-											1		/																		
	/	7				1				,	a					<u> </u>					,				/	*			, ,		
Sam	06	مب ۱۷۱		-			ek					1	Pre	5e,	rv	1-			(on	٧	lia	<u> </u>		07	*			4	<u>-e</u>	2
3108	46	133	(5			8	26						K	11	CZ	-		(3) 4		ul b	la							_/	-	3
+		133	6				//	7	B				'1	(1										11	
											<u> </u>											ļ									
			ļ																										*		
																							,								
																														_]	
																					-										\dashv
														<u> </u>										-							\neg
				-																									\dashv		\neg
											L				-									Cor	tinu	ed fro	om na	age			\dashv
	<u> </u>			L	<u> </u>	l	İ	i	<u>L</u>	l			<u> </u>	L	L	L				ood E	L	L	1	<u> </u>				- 3~			لــــا

Figured

8-16-2021

Date

Read and Officerstood By

Signed

Signed

Date

	Date: 8-12-2021]	Page	of	
	Sample Location: BG50-FFF	1	Т			Analytic	al Requ	uireme	nt	T			
	Pertinent Notes (if any)					Dr			:				
		iners	atrix*	3	2	7			:				
		of Containers	Sample Matrix*	0988	609	2N27							Ė
-	Sample Number	Jo#	Sam			27					Cha	rge Number	
$\sqrt{}$	2108120900	3	A	Χ									
$ \downarrow$	- 0901	1	1			X							
ŀ	0920	3	17	У							۸۷۸	because abeveo w/s	-
	0921 (FB)	3		X			75	MM	HES VEV	JUC V	0 5 10	heien w/s	AME
7	0922	1			X				7	00,20	W VI	1	ME
\downarrow	0923	(又							
$\sqrt{}$	0924 (001)	(1			X							
Ī	Sample Location: B650-EFF	•				Analytic	cal Req	uireme	nt				
	Pertinent Notes (if any)												
		ers	*XI	KNANT			:						
		# of Containers	Sample Matrix*	7					. =				
		of Co		7									
	Sample Number	#	S _S	7							Cha	rge Number	
\rightarrow	210812 0925	1	17	X									
-													
	· · · · · · · · · · · · · · · · · · ·												
F		e / Tim	ie:			I	Accepte	d by:			Date /	Time:	
-	Tulon 8-12-3	ર(<u></u>		-
-			*										-

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 8-16-2021											Page	of
	Sample Location: 8650 -E	FF-I				A	nalytic	al Req	uiremei	nt			
	Pertinent Notes (if any)												
			S	*									
			# of Containers	Matri	8260 82	ı							
			Con	ple l	1200								
	Sample Number	:	# of	San	6							Charg	ge Number
\	2108/6/1335	-	3	A	χ								
\	210816 1335 1336 (FE	3) 3	>	A	X								
				- 1									
					-								
	Sample Location: Pertinent Notes (if any)	····	T			<i>P</i>	analytic	al Req	uiremei T	nt I	1		
	retinent Hotes (if any)												
			Jers	trix*									
		•	ontai	e Ma									
			# of Containers	Sample Matrix*									
	Sample Number		#	Š			:-					Charg	e Number
													 -
							_						
							\mathcal{L}						
	Relinquished by:	Date / T		:) (A	ccepte	d by:		^	Date / T	imez
	1, Longy 8.	-16.20	2			<u> </u> `	re V	\bigcup	hn-	.dr	8-1	7-21	10920
			·			$- \downarrow \lambda$)				/ '
									_				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed 8-12-2021

Read and Understood By Junda 8-16-21

Continued from page

Date: 8-12-2021									F	age	of
Sample Location: 3650 - INF	-/			A	nalytic	al Requ	iiremen	ıt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*	oses	607							
Sample Number		1	1/							Charg	e Number
210812-0940 - 0941 - 0942	3	<i>X</i> +	X								
- 0991	3	 	×	V					_		
- 0942	1	مد		X							
Sample Location:				A	nalytic	al Requ	uiremer	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*			****		-				-
Sample Number	#	Š								Charg	e Number
			<u></u>								
						-					
							-			···	
											** ***
					h						
	/ Tim	e:) (Accepte	aby:	n		Date / 7	
12 8-12.	٦(1	Dre 1	\mathcal{M}	\m	-h	8-	16-21	10930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

8-12-2021 Signed Date

Read and Inderstood By

Continued from page

	Date: 8-12. 2021										Page	of
	Sample Location: B655 FF	F			1	Analytic	cal Req	uireme	nt			
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	8360	607	4man 77						
	Sample Number	<u> </u>	4							-	Charg	e Number
	2108/2 1005	3	4	X								
	1006 (58)	3		X								
	1007				X'					ļ		
	(008 (FB)				X							
	1009	(X						
	- 1010 (FB)	1	1			X						
	Sample Location: B655- In	JF			A	Analytic	al Req	uiremei	nt			
	Pertinent Notes (if any)											
	Sample Number	# of Containers	Sample Matrix*	0958	607						Charo	e Number
	210812-1025	3	\mathcal{A}	X	with the						- Charg	J 1 (4111001
1		3		X								
4	~ 1026 - 1027	1	مل		X							
ļ												
ŀ												
-												
	Relinquished by: Date	/ Time				A	cpepte	by:			Date / T	ime:
	Reunquished by: Date 8-12-6	<u>}</u> 02(L		K	re l	χ	1	-h	8-11	0-21	10930
	'									-		
	/				U							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

8-12.3021

or Signad unde

8-16-21

	Date: 8-12. 2021								_		Page	of
	Sample Location: B655 FF	F			1	Analyti	cal Req	uireme	nt			
	Pertinent Notes (if any)					7					-	
		SIS	**	90	607	than 7						
		# of Containers	Sample Matrix*	8	ě	4						
		f Col	mple			77						
	Sample Number		Sar					,			Charge	e Number
	2108/2 1005	3	A	X								
/	1006 (38)	3		Y								
	1007	1			V							
	(008 (FB)	(X	,						
\forall	1009	(/ \$	X						
\neg	- 1010 (FB)	1	Z			X						
	(14)	1	4									
	Sample Location: B655 - In	JF	-			nalytic	al Reg	uireme:	nt			
	Pertinent Notes (if any)						war reeq					
			*									
		# of Containers	Sample Matrix*	25	500							
		Cont	ple M	\mathcal{Z}	6							
ŀ	Sample Number	# of	Samj		•						Charge	Number
	210812-1025	3	1	X							Charge	Number
4	1026	3	1	X								
1	- 1027	1	مل		X							
	~ ~/											
-							-					
ļ												
}												
-	Relinquished by: Date	/ Time	_ e:			ı A	cepte	d bv:			Date / Ti	me:
	/ 8-12-2	3021			6	' I	X7	u	L	8-11		10930
					1	<u>₩_</u>		1		- v - 1	y UI	/ - -
					10			 				
					1			<u> </u>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

-						Ι			-	Ι	T		1			• /			,		(<i>,</i>						П	
30	6	Tu	H:	ξ	Co	cuiq	De	11	ern	ero	Pl	ese	nt	l	Jea	the		is	cle	ar	٤μ	ar	m.	71	NS	w	ell	w	111	be	pu	94
																														ar		
																														ح.		
<u></u>	7	1.)	. Fo	_	20	1	ورا	05	4	hi	5 6	7.7	1	w	ill	بط	2 4	w	ام	iĥ	ed	50	·WE	Jin	\C ₄	D.C.	۸C-4	du		W	hic	L
T	u	:			:		1	_				7	4	- ;		2.0	1:	اما		-1	100	tion		7 .	1		£	Oa	ra.	ma	tev	~ [
e	2	ur	52		LIC	110	\ Q X	P	ur	9 11	9	. μ	41		711	120	219	ie.	9	61	-1		9	<u> </u>			/	- 41	40	rie	100	٠,
7		1	- 1	1																	ar	DOL		NO.	In	u	ςe.				$\overline{}$	-
		bo							1	,							ļ	4 -													\vdash	
D	0 -		ali	ρc	ite	d_	'n	Sq	tu	rat	ed	aj	v (9 (639	ب ٦	m	14	19.							<u> </u>					\vdash	
20	ndi	ict	ivi	4-	- c	ali	pra	te	d	usi	ng	8	0)	14	34	s	m	S-	-d.		olu	10	۸,									
Ή,	- 0		br	Jt.	ed	us	in	a (Dal	l ctr) Dn	6	11	25	- (٦-	- 10	δ .														
	1:	٦:١		0-	-00	#	2		_	1	_	(06	`	•		10	- (-	1	2			1.+	-91	17	, 8	×0	- 5	2/2	12	,	
Ш	10 C	2111) '	חאל.	-4	- TA	2		-	10		<u>.</u>	<u> </u>			•	J		1				l Di		JĮ [7		7 31	ia		
<u></u>		-		(1		7			<i>(</i> .			1	1	7 -		<u>~</u>			2.0	_	וס		~	٠ ,	1	ر.	<u> </u>	7		<u></u>	1	\dashv
_		et:		_					6	l			(m		,		0	_	RP	-	Pt	l .	_			<u>ાં જે</u>	ļ			(FI		
I)	21	08		1			7 .		7	1		.1	33		i	F	1		26	,	_	40	1 :	ໄ.ລ				1		.16		_
2)				C	85	13		21	.8	5			48	3	-	7.9	3	-	20	.	8.	44		2.0	6			3:	39	. [9	1	
3				-0	85	26	•	21	.9	8	1	. 1	5	1	ı	ı	29	1	1	3	8.	45		1.7	5			3	39	.2	7	
7											•					_			•													
						-							•	<u> </u>		ء د																
7		1.				-			Λ	1	.,		\mathcal{D}	<u>Ja</u>	mp 2001	<u>د م</u>			-	7	1	\m						1				
-		<u>le</u>	!	_					m	aly	ડાંડ									Con					ُه_			-	- 4	_		-
77	08	05		Γ			V	OA			326			1 Ce	1	10	<u> </u>		(3	3)4	0m	l V	19	<u>S</u>	25	596	<u> </u>		AL	S		
		_	0	B 51	tΒ	ļ			ľ	(FB				u							u_	1			u			4		-	
			0	851	5 B			6	70	131	om	aci			ic	e			1			m	ber		10	35	010		S	RI		
			-0	85	GB					u (Du	1)			u							74				14				4		
											- 7	10/																				
	ļ —										<u> </u>																					
																												 			\vdash	
																															\vdash	
T) T	~	,)		77	0	/ 1	را. ا			<u> </u>	1		11	-			1		1/										
<u>+</u>	ממ	19		μ	ω		33	Ø.	64	77	 -		Tol	al	90	llo	NS	Pu	rg.	ed	_	/4			ļ			<u> </u>			\vdash	-
	-									-												_				ļ!		ļ	$\vdash \vdash$		\vdash	
_											<u> </u>						ļ														\sqcup	
																						Ī										
				İ																†					Cor	ntinue	ed fro	om p	age			-
_	1		<u> </u>		L	Ь			L	<u> </u>	L	<u> </u>	L		L	Ĺ	l	L	<u> </u>	L	L	1	L		L							

Date: 8/5/21	_						,	-	-	Page of
Sample Location: BLM-21-400)			A	nalytic	al Req	uiremer	ıt		
Pertinent Notes (if any)									_	
Sample Number	# of Containers	Sample Matrix*	8260	607						Charge Number
2108050853B	3	A	~		-					XGMD
	3	A	~		-					u
	1	Α		~	-					ч
	Į	A								u
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	uiremen	ıt		
retilient (voies (ir any)	# of Containers	Sample Matrix*								
Sample Number	#	Sai								Charge Number
	_							-		
	-		*							
		-			`					
Relinquished by: Date Page 101 Ferro 8 5 21	/ Time		rs		er (deepte		-d	9-	Date / Time:
				70			-/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

C020

138)

1380

1382

SAMPLES

Blind Controls

Po

153

157

154

Presurve

I Ce

Preservo

I GE / HC)

I ae

Ece/HU03

zce HNO3

TGE HU

8.3.3031

Read and Understood

WILL AMBOR

(2) LAS A) POL

Continued from page

B

50ZI

224

in rong G 5 : , use.

introlions:

Paramulars (Time)

- 1412 c

- 1414 c

2108031410 C

SAMPIG

210803 1420C

- 144) d

-1172

- 12723

- 1424

SAMPLE

210803 H 26 E

1427 6

-14128 c

TEMP

22.76

22.42

22.43

Angles: 5

Total metals

V 02 12 8260

Browell & (FB)

west 2: 2

Now By 83 PO

Broma cil by 60)

Total metels

((245)

Date: な・3 - 202)					_				P	age _ \ _ of _
Sample Location: 3, m. 23-43) Pertinent Notes (if any)				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)									·	
Sample Number	# of Containers	Sample Matrix*	Voc	(09)	mek)s					XGMO Charge Number
27090314206	3	4	4							
14210	3		7							
1422C FB	3		ح							
14123 c	3			4						
1424 c	N				۴					
								_		
Sample Location:	į	=		A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	ક ≯	60)	mate/5					Charge Number
2108031426 C BC	3	A	8							
1427 c BC	7			9						
141286 30	2				4					
Relinquished by: Date 8-3-2021	e / Tim	e: J l ooc)) 1	cepte	١.	_d	8-1	Date / Time:
	. <u>-</u>			- 0						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

into Tuffs & Craig Del Ferraro present weather is clear & worm. This well will be upged using a dedicated blockler pump. Samples will be callected using a testous ischarge hose. Perameters will be monitored using a standard PHI (and meter.) Q & OBP will not be monitored during this event. Carboy 62 in use. PH pre - 7.03/10.06(281) Turbidity meter # 21 Hooting 122 Trip Blanty-wife Purbidity meter # 21 Hooting 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21 Monitor 122 Trip Blanty-wife Purbidity meter # 21	305	Tu	#:	5 8	C	rai	a T	Del	F.	erc	avo	D.C		+1.	14	2000	LL.	<u>ا</u> نام					Ţ	T-			T -			Τ.	
C & Oile will not be monitored during this event. Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 24 Carboy G2 in use. 25 Carboy G2 in use. 26 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 28 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 29 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 21 Carboy G2 in use. 22 Carboy G2 in use. 23 Carboy G2 in use. 24 Carboy G2 in use. 25 Carboy G2 in use. 26 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 28 Carboy G2 in use. 29 Carboy G2 in use. 20 Carboy G2 in use. 20 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 22 Carboy G2 in use. 23 Carboy G2 in use. 24 Carboy G2 in use. 25 Carboy G2 in use. 26 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 27 Carboy G2 in use. 28 Carboy G2 in use. 29 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use. 21 Carboy G2 in use	~~-	470		→	14	ч	ULX	α_{\perp}	Ca		1 20	120	OI D	- 1	711	de C	•	٧	. _		1	: //	100	1 -	<i>y ,</i>	1.	10	١ ١	1	1 1	1 ~
He Cond. mater # 13 10 10 10 10 10 10 10	isc	hai	re	h) se	. [ar	ame	ete	2 5	w		00	M			أرج	امر	m 7	es	w	ļ.,	1	Col	lea	Tec	χ <u>ι</u>	LSI	ng	a	tetlos
Trip Blanks - Web PH Dre - 7.03/10.06(201) Turbidity meter # 21 4001947 12121 PH post - 6.97(10.03) Std - 5.7.3 10 HOLE 56 1/22 Trip Blanks - Web Phost - 6.97(10.03) Trip	0 8	ç o	RP	wi	lln	of	be	m	100	<u>i</u>	red	1	7		h.	0	10	1	3/1	9 9	ļ.,	an.	3 2	·	/ 1	46	one	1.	Me	ten	-
Inflores Let Exp PH pre -7.03/10.06(20,1) Turbidity meter # 21 Theory 1 1201 PH post - 687/10.03 10 HOLE 56 122 Trip Blants Later Burileation System Exp - 8/31/21 Resple Holy S. Preservative Container Lot Lab 10803 07408 Von by 8260 ice (HCL 3/40mlvials 2596 ALS 07418 Low Level Nome Ice (NIL Amber 01035016 SR # Vaneters Hime) temp(c) cond (uslem) PH Turb (NIV) 210003 09508 23.1 1028 7.49 0.73 339.45 0953 B 23.5 1020 7.53 0.65 339.51 0956 B 23.6 1017 7.5 0.62 339.58 Vanie Analysis Preservative Container Lot Lab 10018 u (B) 10028 GRO by 8015D 10028 GRO by 8015D 10028 SVOA by 8270D 10028 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4 210088 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4 210088 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4			1	ĺ	- 1			1					4	J	TI M	1	VEI			u	300	U	NOC	I n	us	e.					
Inflores Let Exp PH pre -7.03/10.06(20,1) Turbidity meter # 21 Theory 1 1201 PH post - 687/10.03 10 HOLE 56 122 Trip Blants Later Burileation System Exp - 8/31/21 Resple Holy S. Preservative Container Lot Lab 10803 07408 Von by 8260 ice (HCL 3/40mlvials 2596 ALS 07418 Low Level Nome Ice (NIL Amber 01035016 SR # Vaneters Hime) temp(c) cond (uslem) PH Turb (NIV) 210003 09508 23.1 1028 7.49 0.73 339.45 0953 B 23.5 1020 7.53 0.65 339.51 0956 B 23.6 1017 7.5 0.62 339.58 Vanie Analysis Preservative Container Lot Lab 10018 u (B) 10028 GRO by 8015D 10028 GRO by 8015D 10028 SVOA by 8270D 10028 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4 210088 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4 210088 Tatal Metals ice/HNO3 (2) 125ml polys 21-01-21 4	'出	Co	nd.	N	efe	2	# 1	13														-	_								
Hongy Islan Phost - Graficos State 57.3 10 Hole 56 122 Trip Blanks - Water Puritation System St. G. G. G. G. G. G. G. G. G. G. G. G. G.					<u> </u>												-		†			-									
4607947 122	just	Jev	5	L	-0+		ع	X	2		PH	pr	e -	7	.03	1.0	06	12	ه زم	T	احرا	ړ.	٦.				ш.	n	•		
10 HOLE 56 122 101 56.6 101 9/01/7		1	4	loo	79	47		عاد	21		PH	D (Z	+-	- (-	87	710		1 -	,,,		ul 1	rca	171	J "			71			_	
Trip Blanks - Water Purification System Trip Blanks - Water Purification System Trip Blanks - Water Purification System Trip Blanks - Water Purification System Top - 8 31 21 D803 0 1408	1	0	4	101	E:	6	1	•	1-			t		-	**-*		. U.	3							1					1	
Trip Blanks- Under Purification System Amalysis Preservative (Container Cof Cof	_		1	<u> </u>																<u> </u>						U					
Prople	_																-	-							7	-T				1	_
Ample Amalysis Ceseronine Container Cat Cat													T	r'i.D	B	hak	c_	1. 1.	fac	2.	.D	٨.			7	AS.	_	RIS	311	21	
10803 0740B	Dan	200	2	ļ					A	ر لهد	51/5		T	وي (COS		ive	wa		70	L	710	n 3)	#Ita	"	7			/	7	
Vameters (time) temp(10) cond (us/cm) PH Turb (UTU) DTW (Ft) 210803 09508 23.1 1028 7.49 0.73 339.45 0953 B 23.5 1020 7.53 0.65 339.51 0956 B 23.6 1017 7.57 0.62 339.58 Samples Samples Samples Container Lot ab 18803 1000 B VOA by \$260 ice HCL (3)40m vials 2596 ALS 10028 GRO by 8015D 10028 GRO by 8015D 10048 SVOA by 8270D 10048 SVOA by 8270D 10048 Total Metals 1008B Total Metals	. !			14	OB			Vo	A	b4 .	9260		-	ic	e /	40	1								<u> </u>	1					
Vameters (time) temp('c) cond (us/cm) PH Turb (NTU') DTW (Ft). 210803 0950B 23.1 1028 7.49 0.73 339.45 0953 B 23.5 1020 7.53 0.65 339.51 0956 B 23.6 1017 7.57 0.62 339.58 Samples Analysis Preservative Container Lot ab 8803 1000 B VOA SU \$260 ice HCL (3)40m vials 2576 ALS 1002B GRO by 8015D 1003B G07 /Bromacil ice (1)1L Amber 0103501G SRT 1004B Low Level NOMA 1004B SVOA by 8270D 1004B SVOA by 8270D 1004B Total Metals ice/HNO3 (2)125mlpolys 21-01-21 4 nitial DTW - 339.00 Ft. Total gallons purged - 2	+	+	ł	1						10	L	1 1	d		Í	0			/\/	11	A	14	را ح								
210803 0950B 23.1 102B 7.49 0.73 339.45 - 0953 B 23.5 1020 7.53 0.65 339.51 - 0956 B 23.6 1017 7.57 0.62 339.58 Samples Samples Samples Samples Samples Container Lot ab About 1001B (B) 1002B GRO by 8015D 1003B GOT Browned 1005B (FB) 1006B SVOA by 8270D 1006B SVOA by 8270D 1006B SVOA by 8270D 1008B Total Metals ice/HNO3 (2)125mlpplys 21-01-21 4 nitial DTW - 339.00 Ft. Total gallons purged - 2	-																		u	*	ZIM	ar,		OI	0.3	50	S		7 K	- 1	
210803 0950B 23.1 [O28 7.49 0.73 339.45 0953 B 23.5 1020 7.53 0.65 339.5] 0956 B 23.6 1017 7.57 0.62 339.58 2005 B 23.6 1017 7.57 0.62 339.58 2006 B 23.6 1017 7.57 0.62 339.58 2006 B 23.6 1017 7.57 0.62 339.58 2006 B 23.6 1017 7.57 0.62 339.58 2007 B 200 B 200 100 B 200 100 B 200 100 B 100 B 200 B 200 B 100 B 100 B 200 B 100 B 100 B 200 B 100 B 100 B 200 war	باجا	ers	4	me		•	len	101	(c)		G	on	16	ısl	cm	١	Į	14		7.	1/	A 17	(2',	\dashv	7	\\	.)(27		
0956 B 23.5 1020 7.53 0.65 339.51 0956 B 23.6 1017 7.57 0.62 339.58 Samples Samples Samples Container Lot ab 1001 B	21	80	03	09	50	В	·										~							4	-	- 4	_				
O956 B 23.6 OIT 7.57 0.62 339 58 Samples	-	 	<u> </u>	٥٩	53	В		23	5,5	5		-1		- [i) •				- 1			+	- 1	1	1		
Samples Samples Container Lot ab 08 03 1000 B	-	+-		09	56	В		23	. 6	>			i	1	1				1 1	- 1	1		- 1			\top					+
Smale	-					· 													•								Ť	<u> </u>	•	30	ˈ ++
Smale		ļ. <u>.</u>													\$)a w	2	0.5				1						1	+	_	+
1002B COT Bromaci Ce HCL (3) 40ml vials 2596 ALS	ar	ple						A	gal	45	ς		P	re	sex	\sa	MIL	2	-		`	1	· 00			1 =	1	1	1		+
10028 GRO by 8015D	108	د'ه	00	o B			Vol	d P	4	826	0				ce	H	a			(3)	40	ml	V	1					=	41 4	2
10038 GRO by 8015D 10038 607 Bromacil ice (1) Amber 0103501G SRT 1004B Low level NDMA 1005B (FB) 1004B SYOA by 8270D 1004B DRO by 8015D 1008B Total Metals ice/HNO3 (2)125ml polys 21-01-21 4 nitial DTW - 339.00 ft. Total gallons purged - 2	+	-	100	18						(B)					- 1									417				1	1	14-	•
1004B Low level NDMA 1005B (FB) 1006B SVOA by 8270D 1007B DRO by 8015D 1008B Total Metals (ce/HNO3 (a) 125ml polys 21-01-21 4 nitial DTW - 339.00 ft. Total gallons purged - 2	=	-	100	28			hR	> L	48	01:	5D					4									$\neg \uparrow$					4	11
1005B (FB) 1006B SVOR by 8270D 1007B DRO by 8015D 1008B Total Metals			100	3B		_	60	$\pi/\!\!/$	Βcc	ma	cil					ce				(11)	1	4				V 3	501		1	SD	-
10068 SVOA by 8270D 1007B DRO by 8015D 1008B Total Metals	 		100	48		Lo	w [ese	1	NΩ	MA				FI					-	_	4					501			7	+
1007B DRO by 8015D (1) IL Amber 121420-1DK ALS 1008B Total Metals ice/HNO3 (2) 125ml polys 21-01-21 4 nitial DTW - 339.00 ft. Total gallons purged - 2	=		100	5 8	-	_			\mathcal{L}	FB)															\top		,.				
1007B DRO by 8015D (1) IL Amber 4 4 4 1008B Total Metals ice/HNO3 (2) 125ml polys 21-01-21 4 nitial DTW - 339.00 Ft. Total gallons purged - 2	-		100	6B		51	PO	4	8	Qή	σD								(<u>ع) ا</u>		A	box	_{	121	42	n_	171			, ,
nitial DTW - 339.00 ft. Total gallons purged - 2	-		100	78		D	20	by	_8	ols	$\int D$				u				-	- 1				1	1001	- CA					
nitial DTW - 339.00 Ft. Total gallons purged - 2	=		100	88	_	To	tal	M	et	al	5			1	ce/	HA	Jo.						201			21-	- 01	- 2	1		11
Total gattors purgea	$\left - \right $					_												•					7	7		-		- a	-	4	
	nit	ial		TY	<u>ا</u> ا	-	33	9.0	20	FH.			1	at	al	40	Ш	ons	Ø1	urû.	ed	_	2								
Continued from page				\dashv												7		Ī	-+-	7		7	~								
																		\prod						C.	ontin	ued 1	from	page			

Read and Understood By

Date: 8321										Page of
	Sample Location: BLM - 25 - 455 Pertinent Notes (if any)				A	nalytic				
Pertinent Notes (if any)							¥			·
·		ers	rix*	O	0	7	DMA			
		# of Containers	Sample Matrix*	8260	GRO	607	\$			
		of Cc	ample	$\hat{\omega}$	9	9	7			
Sample Number		#					7			Charge Number
\		3	A	√						XGMD
-0741B (T	[B)	1	A							и
1000 B		3	Α	~						ų
1001B (FB)	3	A	/						ų
1002B		3	Α							ч
1003B			A							<u> </u>
1004B		1	A				V			u
Sample Location:					A	nalytic	al Require	ment		
Pertinent Notes (if any)		•		D			S			
		ers	*xi	Ma	4	0	Meta			•
		ntain	Matı	ZN	SVOA	DRO	8			
		# of Containers	Sample Matrix*	4	Ś	7	ofa			
Sample Number		#		7	,		<u> </u>			Charge Number
2108031005B(1	A							XamD
10068		2	A						-	ц
1007B			A							u
1008B		2	A							4
						_				
Relinquished by:	Date /		1		+	ノ	cepted b	- //	8-6	Date / Time: / 0920
Mary Mikeuno 8	3/21	119	oh	3.	+	M	/// \n	nd	8-6	1-2 /0920
						1	•			
							-0			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

my Torrez, Pan Halvorsen, Bob Tufts, & Craig Del Ferraro present. will be purged and sampled us zone will be purged 4 6 times every 15-30 minutes prior to sampling amples will be collected using a dedicated texton discharge have Purg essure set @281 psi and sample pressure set @252 psi. Bubbler set psi and stable @ Besi. The first 350 ml collected just prior to samp! nitial Parameters Final Meter ime - 2108091300B Time + 2108091659B HICONO 8,27 - 26 2 c 1009 us/cm 1021 us cm - 0.47 NTU'S - 0.60 NTU'S pre 6.92/9.94 (30.7°) pre-6.94 /9.92 (32.8°) 1post -690/993 Hpost -6.92/9.96 - 7 jals 4007947 4101E56 Samples Preservative Container Analysis ample 210809 1435B ice/HCL - 1436B 1437B 607/Bromacil 01035016 ice 1505B Low Level NDMA 1550B a (Dupl.) 1506B 5VOA by 8270D -1630B (2) IL Ambers 110920-10H Anions/Alk (a) 125ml polys 16558 TDS by SM2540C (1) 125ml poly 16568 Perchlorate by 6850 1657B 1658B NO. / NO. 64 353,2 (1)250ml poly ice/H2504 Continued from page

Lain Del Ferro

8/9/21

Read and Understood By

Signed

8-10-21

Date

Date: 8-9-21			_							Page of
Sample Location: Blm -37.543				A	Analytic					
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	phyo	(170xA	(307	5004			/	X 6M) Charge Number
710809:1435B	3	4	X							
1436B (F3)	3	1	×							
14378	1				X					
15058	1			×						
1506B (f3)	<u> </u>			×						
1550B (Dug)	1			X		:				
1630B	7	力			-	X				
Sample Location:					analytic		uiremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	x - D 420- 2D	Tos	Purch orate	20x 20x				X6 m0 Charge Number
-2108091655B	2	4	入							
165GB	1	İ		χ						
- 1657B	1			•	×					
- <u>1658</u> B	l	<u></u>				X				
Relinquished by: Date Cay De Leuro 8 921	/ Time	shrs	COLUMN TO THE PARTY OF THE PART		/ \	ccepte		1	6 1	Date / Time: 0 - 21 / 1000 Hr
mg sections of (12)	(a)				M \)	on	2-1	און טעטן און

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT BLM-32-571 WJI ENV-0020

ony Torrez, Dan Halvorsen, Bob Tufts and Craig Del Ferraro present Weather is loudy & werm. This well will be purged and sampled using a Flute system. his zone will be purged 4-6 times every 15-30 minuter prior to sampling Samples will be collected using a dedicated teflon discharge hase. Pan pressure set@ 281 psi and sample premire set@ 252 psi. Bubbler set@ 3051 and stable @ 8psi. the first 350ml collected Just prior to sampling will be discarded. Carbon 62 in use. Tritial Parameters ime-2108091559B 210809 13068 8.11 25.80 -947 us/cm - 959 uslcm rdo-48.7 - 0.53 NTU -0.54NTU'S 104-91017 Hore-6.98/9.93(32.00) pre - 6.91/9.95 (30.9°c) Ex= 8/3/21 Hoast - 6.88/9.94 dost-6.95/9.93 4007947 4101E56 Dample s Sample Container VOA by 8260 (3) 40ml vials ice/HCL 21080914458 14468 ice -14478 01035016 1510B Low Level NDMA u (FB) -1511B ce HNO3 (2) 25m poly 21-07-21 Total Metals 15358 Anions/Alk 15558 TDS by SMZ540C 1556B Perchlorate by 6850 15578 (1) 250ml poly NO2/NO3 by 3532 155 8B Continued from page

Clay Del Ferro

8921 Date Read and Understood By

Signed

8-10-21

Date

	Date: 8-9-71									I	Page of 1
	Sample Location: Blm. 32. 571				Α	nalytic	al Requ	uiremen	t		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	80~90	607	43021	FOTA- 54-05	x-24 4x			太られう Charge Number
	210809 1445B	3	A	×			(3	,,		***	Charge I vamoer
	1446B (FB)	3	1	× ×		-					
	- 1447 B	<u> </u>	1		×						
		1			~	×					
	1510B 1511B (F3)	}				<u> </u>					
		7					X				
	535B 1555B	2	1					×			
	Sample Location:				<u> </u>	nalytic	al Reg	uiremer	nt		
	Pertinent Notes (if any)				l		The Roq				
	Sample Number	# of Containers	Sample Matrix*	705	0 4 0 4 1-6"	202/200					X6mb Charge Number
$ \downarrow $	210809 15568	1	4	λ							
	1557B	1	İ		×						
	558B	1	1			χ				- "	
	(3)00	-									
•											
İ											
-	4	/ Time	e:				Accepte		1		Date / Time:
	Cray Del Ferro 8/9/21	172	Lohi	rs,	_\W	n V	<u> </u>	um	ch	8-1	0-21/1000
	U				A						/

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Tony Torrez, Dan Halvorsen, Bob Tufts, and Craig Del Ferrar a present. Warther is loudy & warm. This well will be purged & sampled using a FLUTE system, this some will be purged at least 4-6 times every 15-30 minutes prior to sampling.

Samples will be collected using a dedicated tetlon discharge hose. Purge preciure set 281 psi and sample premere set @ 252051 Bubbler set & Basi and stable 8 psi he first 350ml collected just prior to sampling will be discarded. Carbay G2 in we -nitial Parameters Meter ID me - 2108091315B ime-210809/620B PHI cond 8.04 7.58 25.5 (emp - 25.1'C + 976 uslam - 989 us/cm 48.7 0.45,NT U'S CD -0.5/NTU'S - 9/0/7 pre - 6.87/9.95(31.5°) pt pre - 6.95/9.96 (33.80) -8/3//21 -698/9.95 Host-6.93/9.97 10W - 1 Burters علهه 4007947 4101E56 Samples Analysis Container Pample 2108091455B VOA 64 B260 ice / HCL 1456B 1457B 607 Bromacil ice 01035016 1515B ow level NDMA -1516B Total Metals ice/HNOz (2) 125 m 20 1/2 21-01-21 -1542B - 1616B Anions/A/K TOS by SMZS40C - 1617B (1) 125ml poly 1618B Perchlorate by 6850 NDz/NDz by 353.2 -1619B (1)250ml poly ice/H_SO4 21-04-30 Total Metals - 1615B ice HNO3 (2) 125ml polys 21-01-21 (Dupl.) Continued from page

Craix Ill Leuro

8/9/21

Read and Understood By

Signed

Signed

umch 8-10-21

Date: 8-9-21			ı						Page of
Sample Location: $B/m \cdot 37 - 632$				A	nalytic	al Requ	uirement		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8730	407	23021	METALS			X6m1 Charge Number
2108091455B	3		χ						
14568 (F3)	3		$\frac{\lambda}{\infty}$						
14578	1		 	×					
15158	,				8				
1516B (FB)	1				X				
1542B	2					\bowtie			
1615B (Dp)	7					X			
Sample Location:				A	Analytic	al Req	uirement	<u> </u>	
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	日本 のか ムレム	705	サーシャーナーかんす	202/202		į	XG MD Charge Number
1616B	2	4	×						
- 1617B	1	1		X					
[618B	1				X				
1619B	1_	سله				*			
					\				
Relinquished by: Date	: / Time): :		Ir) [/	Adcepte	d by:		Date / Time:
Cray Del Ferro 8/9/21	17	Zohr	·\$,		m (\mathcal{N}	\lu-	d 8	-10-21 /1000
				1					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 7 75 29
Continued from page NONE DAN Bronzol/607 Continued from page 95 Read and Understood By

Signed

8-16-20

for Wund

8-17-21

Date: 8-16 - 21										Page	of
Sample Location: WPE-(A	Analytic	al Requ	uireme	nt			
Pertinent Notes (if any)										1	
	, s	*.									
	# of Containers	Sample Matrix*	8260	2							
	Conta	le M	7	000							
	tof(amp	\sim				;				
Sample Number		1	メ		<u> </u>				<u> </u>	Charg	e Number
208160925	3	X +									
0926 (apl)	3		8								
2108160925 0926 (apl) - 0927 (FB)	3	}	بر								
0928		1		入							
0.20	+ -			/							
Sample Location:				A	Analytic	al Requ	uiremei	nt			
Pertinent Notes (if any)										1	
		*									
	iner	atrix									
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	le M									
	# of Containers	Sample Matrix*									
Sample Number	1 ++=	01								Charg	e Number
	-										
					-						
	 										
					1						<u> </u>
	/ Time	e:		\Box	1	crepte	by:	ı	A	Date / T	-1
To Kow 8-16-2	? ($\bot \bot$	on	\mathcal{N}	Jun	~ch	Ι -	17-21	10920
				X		-					1 1
)						
<u> </u>									ļ		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

[Lon/]

8-16-2021

for Wunde

Read and Understood By

8-17-21

	Date: 8-16-2021 Sample Location: NFE-	au a										Page	of
	Sample Location:	8				A	Analytic	al Req	uireme	nt			
	Pertinent Notes (if any)											1	
			2	**									
			# of Containers	Sample Matrix*	10	$\left \begin{array}{c} 1 \\ 1 \end{array} \right $							
			.Con	ple l	P.260	6					8		
	Sample Number		# of	San	CP.							Charge 1	Number
			3	A	<u></u>								
\	21084 0945	FB)	3	1	X								
	> _ 0947		l	4									
ŀ	0/11			9		<u> </u>							
. }													
}						-				-			
													
	Sample Location:					A	nalytic	al Req	uireme	nt			
	Pertinent Notes (if any)												
			STS	* .×									
			ıtaine	Matr									
			# of Containers	Sample Matrix*			=						
	Sample Number		#	Saı								Charge 1	Number
													-
								.				<u>L</u>	
+								-					
-			-										
-	Relinquished by:	Date /	/ Tri		i			1 -	11			D (70)	
f		-16-21				1		ckepte			1	Date / Tim	e: 10920
+	1	V 01	<u> </u>		-	+V	Mi_	W	Jun	-d	70	11-01	06/01
-					_	$+ \emptyset$	<u> </u>)_				
L													

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Sample Analysis Present dent. Lat	Sample Anolysis Preser work Lat a cooper of sale of sa	96 PROJ	JECT_	/	1/	P		7		Sa	M	4	5_	 					No Cor	teb itinu	ook ed fr	om p	o. <u>L</u>	P	15 •		7	
Time = 2108/60950 PH	108/6 0950 0 H	3(0	2mp	000	99	567			P	26	FI	<i>'</i> 5			9	10	H	CCC	,	(3)	40	M	(UI			1 / 1	a.	
Model Notes on Page 94			Cera in s in s in s in s in s in s in s in s			() () () () () () () () () ()		11	910,5	96	16,	10							46=	· y	-6	S	3					
			M	de	<	A	07	œ;		OA		Pay	(a	9	<i>y</i>													

Signed 8-6, 2021 Vir Wunch 8-17-2

Date: 8-16-2021 Sample Location: MPE-9										Page	of
					Analy	tical Re	quirem	ent			
Sample Number 2 (0816 0955 0956 (FR)	+ C & # of Containers	Sample Matrix*	XX	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						Char	ge Number
075 7											
Sample Location: Pertinent Notes (if any)				A	analyt	ical Rec	quireme	ent			
Sample Number	# of Containers	Sample Matrix*								Charg	e Number
Polingviche 11					<u> </u>						
Relinquished by: Date 9-16-7	e / Time	:		\(\frac{1}{2}\)	ri	coepte		-d	8-1	Date / T	ime: / 092

WSTF 381C (05/2016)

Date: 8-16-2021										Page\	of	/
Sample Location: MCE 1/0					Analyti	ical Rec	quireme	ent				
Pertinent Notes (if any)												
	Jers	*xiri	0									
	# of Containers	Sample Matrix*	2000	800								
Sample Number	# of C	Samp	0	0								
21 m8//_ 1220	3	1	X						1	Charg	e Numb	er
>21	3		X					<u> </u>				
- 1222	(<u> </u>	X				 				
2108/6/270 1222 1223	+	4		X				-			· · · · · · · · · · · · · · · · · · ·	
Sample Location:				F	nalyti	cal Req	uireme	nt			_	
Pertinent Notes (if any)										1		
	ers	*xin										
	ontain	e Mat										
0. 1.27.1	# of Containers	Sample Matrix*										
Sample Number	+									Charge	Numb	er
					_							
										<u> </u>	<u> </u>	-,
		-										-
										,		
	ate / Time) Y	ccepte	by:	1	4	Date / Ti	me:	
1-Kor 8-lle.	202	<u> </u>		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	u (\mathcal{N}	Ju	-ch	8-	17-21	109	20
				+0	<u> </u>				_			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 8.16.21										Page (of\
	Sample Location: MPE. 1				. 1	Analyt	ical Rec	uireme	nt			
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	90 N N O N O A	307 7026 3						Charge 1	Number
\	210816 1240	3	A	×					!		Charge	<u>vamoer</u>
\	= 1241 (OUP)	3	A	×					i			
\	- 1242 (FB)	3	A	×				<u> </u>				
`	1243	1	Q		X							
	- 1244 (DP)	1	A		×							
	Sample Location:				F	Analyt	ical Req	uireme	nt		_	
	Pertinent Notes (if any)											
	Somale Niverker	# of Containers	Sample Matrix*									
	Sample Number		<u> </u>								Charge N	lumber
ŀ										İ	:	
}											-	
						$\overline{\ \ }$		_				
	Relinquished by: B-76-2	Time	:			h	Accepte	1	-ch	B-1	Date / Time	» D920
					1						- ·	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

8/9/21

or Signed umch

9-10-21

Date

Signed

8/1/21

for Wound

8-10-21

Date

Date: $8/9/21$									•	Page of _ Z
Sample Location: MASA 3		-		1	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any)										
	l s	* *	77 0028	60)	LC NOWA					
	# of Containers	Sample Matrix*	٥١	ر	20					
	f Cor	nple			37					
Sample Number	#	San								Charge Number
2108090700c (TB)	3	D	X							XGMD
0701C (TB)	1	1			X					
09501	3		X							
0921((ZB)	3		X							
09520	1			X						
09530	1				X					
09546 (FB)	1	Ţ			X					
Sample Location:	L -1			ŀ	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any)			\ \ \	0	<u> </u>	0.	8	2	1 -2	-
	şo	*,	SNOR 8276	Resticida	Herbicida	Dioxia	S	Pharalics	Aviors HX	
	tainer		တ္	0	0			S	3	-
	# of Containers	Sample Matrix*	70		,	Fusas			崇	
Sample Number	fo#	San							'	Charge Number
2108090955 (2	Α	X							XGND
6126 (i			X						(
0957 (X					
09580	١					X				
0959(1						X			
1000 C	1							X		
10010	2	Ţ							X	1
	/ Time				A	Accepte	d by:			Date / Time:
MS S 8/9/210	<u>م ال</u>	100				-			ļ	
	<u> </u>									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: $8/9/21$				·						-	Page 7 of 7
Sample Location: NASA	3				I	Analyti	cal Req	uireme	nt		
Pertinent Notes (if a	any)	# of Containers	Sample Matrix*	705	Perchologie	NO2 NOS	Cyanide	Sulfide	LC NOMA		Charge Number
	<u> </u>		Α	. /	<u> </u>						
21080910020		1	1	X	. ,			_			XCHO
10030		1			X	, ,			<u> </u>		
10040		1				X	. ,				
10020		1	+				X	,			
1006	\	1	1					7			1
- 1550c (BC	-)					-			X		
G								<u> </u>			
Sample Location: Pertinent Notes (if a	ınv)		1		<i>F</i>	Analytic	cal Req	uireme	nt 		-
		# of Containers	Sample Matrix*								
Sample Number		#	Sa								Charge Number
Relinquished by:	Date 8/9/2\ (2)	/ Time				A	Accepte	d by:			Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D 6471284 19 ROJECT_ 11-7-480 Continued from page _ Dan Halvonsen ot our Torrer present. The weather is overcast of cool. This were will be sampled with 5 mp. 38 sample Tubes. Probe #2218 was E. And System Checked prior To sample Geninuse Carba 6-2. TRIP BLANKS Sample# Anjahosis 46 PRESERV COT# (3)80m/was 2108100700y 8760U 10= 641 - 07014 UNOMA 01035016 (1)1 JAMES 30 min E.B's U07# 444 ANALYSIS PRESEN CONT SAMPLE # CuE 1HD (3) Youl vials 425 21081008304 8260 11 7583 083/4 LLNSMA (1) let anson 01035016 SAT JAITIAL FINA METERIOS P4/com # 12 21081009301 21081014104 8.23 8.05 Tuns #7 7Emp 23.6 c 11 5T 1 = 49.3 NTGS 23.8°c 11 Rdy = 45.8 NTGS 103845/0 1048 hs/cm Sores 11617 = 9/017 1.16 Trus 11 Exp = \$08/70/21 4 pue 7.05 /10.07 (2,583) 7.03/10.07 (24.6.0) PUPOST 7.07/1005 7.05/10.07 Armos 12.63 JAW O. SAMONS SAMPLES PNESERV ANALysu 65T# Lah SAMPLE # 824041 (3) Your was 1cz 14h/ 415 21081010004 0/0350K(1)117gmaca SAT 16 NDma 10014 Run 1) 16.83 4) 1677 5) 16 70 6) 1671 3) 16.79 2) 16.79 14.32 14.34 14.31 14.35 14.36 14.30 14.36 14.36 14.35 14.35 14.35 14.36 16.82 16.84 16.83 16.77 16.75 16.80

Charles

3-10-21

Read and Understood By

8-11-21

Continued from page

Date: 8-10-21	-]	Pageof
Sample Location: Pl-7-4/80			,	A	nalytic	al Requi	irement		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	87601	->205 A					XGMD Charge Number
			\times						
210810 07004 (TB)				X					
DX331 (FB)			X						
- 083/4 (EB)				×					
10004			×						
- 0831y (EB) - 10004 - 10014				\times					
Sample Location:					Analyti	cal Requ	irement		
Pertinent Notes (if any)									
	# of Containers	Sample Matrix*							
Sample Number	+=	01			l l			 	Charge Number
		-							
		<u> </u>							
		-							-
					1				
Relinquished by: Date	e / Tim	ie:		\mathbb{H}		Accepte	1		Date / Time:
7. S/W/	15/	//60	90	-+	Ori	VV	lunc	1-1	1-21 /0845
		<u> </u>			 				
					J				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 564# 178(4) OJECT PC-7.560 ENU. 9070 Continued from page ROSENT BURROWS & TONY TONEZ PRESENT THE WEATHER IS This zonE will be 54mpled using 5 decored AND Triple Right SAmple TubEs Ponde # 2213 System cherked @ Surface prop 45E. CARSON 6-3 Trip Blanks (Narspuns) PRESERV (3) You vials 210805/030y 8260 LL 2583 1c=/Hc1 1) XF 1CT Ambre 10314 ((NOma 01035016 SNI 30 min E.B's Anple # Avalysis PRESER! Cour. COTH Cah 210805 1330y 8260CL (3) Konturas 1ce 1 Hel 2583 AUS (1) 14 TAMSOR 13714 CLYOMA 0/035016 SNI INITAL METER IN'S 210805 1415 y 210805 14584 PH/000=17 7.46 Juno# 7 15 d 11514 = 49. 3 25.86 25.56 960 holes 107645/cm Rols = 49.1 1. 61 2145 607# = 91017 24pno 6.97/9.93 (34.3)c 6.93/9.95/36.30 FR = 8-30.21 7HPOST 7.07/9.95 7-04/9.98 12.80 ATMOS Drw 480.60 480.71FT TDW SAMPLES 260805 14504 Antalysis PRESERV 8260(1 1 cel Hel 13 Homburas 14514 11 NOMA 0/035016 (1)/LTAMBOR Run 1) 51.57 2 51.58 3)51.57 48.56 48.48 48.54 48.56 48.57 46.12 51.61 51.61 51.61 Continued from page

8-2-51

Read and Understood By

Date: 8-5-71										Page of
Sample Location: P1-7-560 Pertinent Notes (if any)				A	nalytic	al Req	uireme	nt	,	
Sample Number	# of Containers	Sample Matrix*	826011	1149K 4						X らっし Charge Number
210805 10304 (TB)	ì		X							
210805 1030y (TB)				×						
13304 (83)			×							
1331 4 (63)				×						
.										
14504										
Sample Location:				A	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*								Charge Number
Sample Number						-		- 1		Charge Number
Relinquished by: Date 8-5-21	/ Time	600			on	dcepte	d by:	l	8-	Date / Time;

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Mo

8-4-2021

Read and Understood By

Signed

9-5-21

Continued from page

Date

Date: 8.4 - 2021]	Page of
Sample Location: PL-12-570			A	nalytic	al Requ	iremer	it			
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	Voa	رمم	NDWA 46	500g	mutel 5			X6M0 Charge Number
210804 0940	3	A	4							
ORHIC FB	3	1	۶							
0442 c				8		-				
OR43 C					4					
DON'T C FB					9					
- 0945 c	3					8				
0946 c	2	1					3			
Sample Location:				P	Analytic	al Requ	uireme	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	Do sons Dik	25	Rec Norak	No.2 1003				Charge Number
2) ०८०५ ०८५) ८	2	A	1							
- 0948 c)	1_		4						
0949	1				y					
09500	1					Y				
					<u> </u>	/				
Relinquished by: Date	/ Tim	ie:		\blacksquare	1	Accepte	1	1	A	Date / Time:
8.4-3031		110	Ó		on!	\mathcal{N}	Jun-	-di	8-1	5-21 / 0936
				()					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

: alibrations!

Notebook No. ユミュ * 1ス) C 61 Continued from page ___ ENV-00 53 Dan Holosesen a Robert Purrous present Weather is Partly Cloudy This well will be project and sampled using a dedicated blader pane, 5 amples v: 11 be collected us: of a new Toslow hose, Water quality parameters will be montoned using a DED mp to fourely and water analyzer. Carbo G5 in use IN: 4: 01 DTW = 484.10 64 Final " = 3.484.21 Do sensor: In solutated a: (@ C42 ma) Hg TOW= 2.5 gg/. "A Sensor: Using a \$pt (4,7,10) Buccon muthad nostrois as a les EIFI a mien : protesona LT = 91017 6p = 8 21 intidity mutar = 20 STD= 6.06 = 6.10 CAD WAS #9 ORP TUEB TEAP Cono Da 9.35 - 41 08. 22,27 1104 848

Commuters (Time) 2080314250 - 14127 d 9.26 1.73 8.39 22.24 10() 1.79 -14127 0 9.17 - **₹**5 22.26 8.42 1105 SAMPLES

container LAR Preserve Analysis sample. 2583 (3) 40 ml Viel VOR BY 82,00 21080 \$1435 C IGIHC 1 1436 C Umalama 10850) 5 RJ (D) L amber -14137 c Broma C:1 De LOD 1-138 C Noma 4C " (FB) 1439 c (2) A) 1 A 3000 pg 8260 1-)40 d @) 125 ml Pox Fee! 4 No3 Total mutals 1441 C Anions / AIK 14173 G tce TOS by SMDT 100 1443 ¢ C1 Perchlorate & LEGO 1444 (1)250 m) Poly No = /No > 5 393.2 Tre Hason 1445 c

2 Packer pressure Start = 42 psi F: mal H2 psi)

Read and Understood By

ダ・r/・J o J /

Junch 8-9-21

Continued from page

Date: 8-4)-202)									P	age of
Sample Location: PL.12-800				A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	00°	(29)	LOMA LL	50 OS	Metc/5			X 6MD Charge Number
21080414350	3	A	4							
1436C FB	3	1	4							
1437C	1			9						
1438C	1				8					
1439C FB)				<i>y</i>					
1440 C	2					4				
14410	2						X			
Sample Location:				Α	nalytic	"				
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	Ax:00x 10.1K	7DS	Rechlorated	Nos/203	-			Charge Number
2108011442C	2	2	X							
1443C	,		'	9						
1444 C				,	٧					
1446C		1				7				
						·				
	·									
					\	,				
	e / Tim	e:			ノヿ	ccepte		0	Λ	Date / Time:
RX 8.4.3031	<u> </u>	160	<u>ခ</u>	+	oul	/ /	Ihm	-th	8-	5-21 /0930

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Continued from page _

Bob Tuffs & Cray Del Ferraro pres	ent. Weather is cloudy & warm. This well will be ladder pump. Samples will be collected using a
tetion discharge hose. Taxameter	s will be monitored using a standard PH/Cond. nonitored during this event Carboy Ql in use.
>H(Cond meter # 13	Turbidity meter #21
	stol - 57.3 rdg - 57.0
Buffers Lot Exp 7 4007947 12/21 10 4101856 7/22	lot - 91017 Exp - 8/31/21
H pre - 7.05/10.03 (24.0°c)	
Trip Blanks	- Water Puritisation System
2108020750B VOA by 8760 LL 0751B Low Level NDMA	Preservative Container Lot Lab ice/HCL (3)40ml vials 2583 ALS ice (1)11 Amber 0103501G SRI
arameters (time) temp ('c)	cond (us cm) PH Turb (NTÚ) DTW/77.)
)2108020925B 217)	997 6.95 1.25 456.99 990 6.98 1.16 456.99
9931B 22.2	983 7.03 1.07 456.99
5 ample Analysis 2108020935B VOA by 8260 L	Preservative Container Lot Lab
0936B u (FB)	ice/HCL (3)40 ml vials 2583 ACS
09378 607/Bromacil 09388 *u(MS)*	u (1) 11 Ander 01035016 571
O9398 Low Level NDM/ O9408 u (FB) O9418 Total Metals	u u u u
- 09418 Total Metals	ice/HNO3 (a) 125ml polys 21-01-21 ALS
Enifial DTW -456,95ft.	Total gallons purged - 2
	Continued from page Read and Understood By

Craig leftens

8/2/21

for Wunch

9-3-21

	Date: 8	2/21										F	Page	of_	1
	Sample Location	on: ST-1	t-589				A	nalytic	al Requ	iremen	t				
		nent Notes (if a	ny)	# of Containers	Sample Matrix*	77 0988	607	LL NDMA					Cha	rge Numb	er
\	~21080		B (TB)	3	Α									mD	
\	4000		B (TB))	A			1						a a	
\		-0935F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	A									u	
_		- 0936F		M	A									u	
		-0937	В	1	A									4	
)	-09381	3 (MS)		A		V							u	
\)	-0939	· ,	1	A			V						ч	_
	Sample Location	on:					A	nalytic	al Requ	iremer	ıt				
		nent Notes (if a	ny)	# of Containers	Sample Matrix*	LL NOMA	Total Metals						Cha	rge Numb	er
\	21080	209406	3 (FB)	1	A								X	SMD	
\		- 0941	_	2	A		~							и	

	Relinqui	shed by:		/ Time	e:			\[A	ccepted	by:	- 1	0 0		Time:	
	Chang De	Hermo	8221		1151	irs,	₩.	4u \	\mathcal{N}_{-}	hun	-ch	8-3	1-21	1093	0
							θ								
			<u> </u>												

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 842					. "]	Page	of
	Sample Location: 5T-5-485	5			A	nalytic	al Requ	airemer	nt			
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0988	LL NOMA						Charg	e Number
\dashv	2108040940y (EB)	3	A	~							XGr	
\dashv	09414 (EB)	1	A			•					a	
\neg	11154	3	A	~							4	
1			A				,				4	
	•											
										_	,-	
,				_								
	Sample Location: Pertinent Notes (if any)		l · · ·		A	nalytic						
		# of Containers	Sample Matrix*									
ŀ	Sample Number	#	S								Charg	e Number
-												
ŀ												
ļ												
	Relinquished by: Date Pay Ill Ferri 8/4/21	/ Time	:: 45 k	LZ,		ru (ccepte		_ch	8-1	Date / T J - 2	ime: /0930
							,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Marcus Auglos o Tony Torresposent. The weather is alean & warm. This ZONE WILL DE SAMPIEL USING 5 DECONED + TAIPLE RINGS TAMPLE TUBES. PROBEH 2213 System checked prion To sampling. Gen wast. Canbon 6-7 30 min EB'S GOWT Anay 115 Preserv 45T FF SAMPLE# A (5 21080209004 826011 7583 (3) Youlvials 1 El Hol 01035016 (1) 11TAMBER - Oraly 5n+ HE & (Lyong METER IN'S FINAL JNITIAL 21080214034 210802 0950, PH/KOND = Juns #. 8.09 7.79 PH 25.03 25.3°C 11 511 = 49.3 24.6c TEMP Cond 87245/cm 877 1425 0571 att.; 0.69 Mus 1.407# = 91017 PHPNE 7.00/9.93 (278) 11 exp = 8:30 7/ 7.07/9.90 (29.10) pHpost 7.06/991 7.06/9.94 471.550-DTW 47190Ft SumplEs 450# ConeT Samplet PNESEW ANALYSIS (3) You Was 10=1HV Als 824011 210802 13704 2583 102 :01035016 11)11TAMLEN -- 13214 3 RI Ulwoma Rin 1) 94.87 2) 96.85 3) 96.84 114.46 114.47 114.43 14.40 114.47 114.48 · 96-83 96,86 96.84 NOTE: GENERATOR d'El ON our The Run. WE HAD TO Find over & SWAP ITOUT WITH GOT BACK TO WELL AFTER LINCH TO FROSS THE CONE. Will go Fill up The generation after This Zore 15 done. Continued from page

8-2-21

Read And Understood By You Wumch 8-3-21

Date: 8-7-21									Pa	age 1	of					
Sample Location: 57.5.655				A	nalytica	al Requ	irement	;								
Pertinent Notes (if any)			8	(
	ers	*xi	2000 L	と かしく へ												
	ntain	Matr	5	2												
	# of Containers	Sample Matrix*	ر	4						26.						
Sample Number										Charge	: Number_					
210802 09004 (EB)	3	4	λ													
210802 09004 (EB) 				\nearrow												
210802 1320y	3		x													
13214	1	1		X												
/																
									-							
Sample Location:	Sample Location:						Analytical Requirement									
Pertinent Notes (if any)																
	ers	*xi														
	ntain	Mat					,									
	# of Containers	Sample Matrix*														
Sample Number	#	Š					<u> </u>			Charg	e Number					
		_														
	_	ļ														
	-			<u> </u>												
					<u> </u>											
	-	-	-			_										
			<u> </u>													
											<u> </u>					
Relinquished by: Dat	e / Tim					Accepte	/ 1	\overline{I}	0	Date / 7	10930					
1.3	. (/	1600	2 +		on	$\vee \bigvee$	- Ju	nd	D	<u>)</u>	10 100					
				_	1		-									

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _ MARCUS AUAGO & TONE TOREZ PRESENT. THE WEATHER IS CHEAR O HA This Zone will be sampled using 5 Triple Ringsel MP-38 Sample Tabes. Probe # 2213 545700 cherel @ surface prior to sampling GEN IN USE. Carbon 6.3. 30 min E.B's PRESEAU LOT # 4 210803 13404 Avalysis (3) Youlvials 8260LL rielHel COMA (1) KTAMbon 13416 1 cz 010 35019 345 I VITIAL FINA(METERIA 210807 1430y 21080408544 PH/coms 7 8.23 ' 24.4°C Jun6# 12 26.8 DTW-472.36Ft. 11 std = 49.3 810 uslcm " ps, = 45.1 79945/cm CONS PHPM 7.11/10.09(31.1) 7.09/10.13(21.11c) 11614 91017 11500= 8-30-21 Samples PRESERV 445 407# Samplest ANALIS 1c= 1Hel 2596 (3) 40mlus/s 8260LL 210803 15104 11) 1ct anton 407 01035016 SAI 21080408254 UNDMA 08264 ICE/HNO, 21-01-21 TOTAL METALS (2) 125 M/poly -08504 ANONS/AKK 145 11) - 0851 Y' TOS 11 PERchiparto (1) - 0 B 52 Y - 0853 y (4= /45ay 21-04-30 NorlAG (1) ZTompoly * Bob Tuffs & Craig Run 1) 166.18 3) 166.14 4) 166.11 2) 166.17 Del Ferraro resumed 183. 48 183.53 183.57 183.53 183.56 Sampling event on BIH. 183.47 183.55 183.51 166.13 166.05 166.17 166.18

Pay Del Zermo

8/4/21

Read and Understood By for Wunch 8-5-21
Date

Continued from page

Date: 8-3-71]	Page of
Sample Location: 57-5-815				A	nalytic	al Requ	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	XX400 (してからな み	NOMA 507					Charge Number
210803 13404 (FB)			入							
210803 1340y (FB) 1341y (EB) 1510y 1511y				\mathcal{X}						
1510 V			と							
1511y				18x1	X				•	
/										
,										
Sample Location:	Sample Location:				Analytic					
Pertinent Notes (if any)							,			
	# of Containers	Sample Matrix*								
Sample Number	#	Sar								Charge Number
	_									
					\ .					,
Relinquished by: Date	Time			V	m	Accepte	1	uch	8-1	Date / Time: 121 0920
				Ι Λ]			,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8 4 21									I	Page of
Sample Location: ST-5-815				A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)			PH.	as	1K		4	2		
	ers	rix*	m c	lot	7	S	0/6	2		
	of Containers	Sample Matrix*	N		γ		chl	7	•	
	# of C	ampl	7	10	An	ı	Per	00		Charge Number
Sample Number	#			<u> </u>						Charge Number
21080408254	1	A	V							$\lambda 0 10 D$
08264	2	A		V		<u> </u>				CA
08504	2	A								4
08314		A								1.
08524	+ +	A								
	-									
Sample Location:		<u> </u>		Α	nalytic	al Req	uiremer	ıt		
Pertinent Notes (if any)										
	STS	* X								
	ntaine	Matr		į.						
	# of Containers	Sample Matrix*		!						
Sample Number	#	Š		<u> </u>						Charge Number
		!							<u> </u>	
	+ -									
	_	1								
Relinquished by: Dat	e / Tim	ie:) Y	Adcepte	ed by:	1		Date / Time:
thang Del Ferro 8/4/21		20ha	-5,		oul	\mathcal{M}	hu	L_	8-	9-21 /0930
V				_						
								<u>-</u>		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

8-3-21/

Read and Understood By

8-4-21

Continued from page

Date: 8-2-7 (Page of
Sample Location: 57-5-65-98	?5			A	nalytic	al Requ	iremer	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	87601	かるしゃな						Charge Number
710802 1530 y (EB)	3	7	λ							
710802 1530 y (EB)	1	4		ル	404.101					
Sample Location:				A	nalytic	al Req	uiremer	nt		
Pertinent Notes (if any)								· ·		
	# of Containers	Sample Matrix*				—				 .
Sample Number	#	Saı				***				Charge Number
					-					
Relinquished by: Date 8-2-2	e / Time		٥		on (ccepte	by:	ch	9.1	Date / Time: 3-21 / 0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8 -3-2!			_						1	Page of
Sample Location: 57-5-585				A	nalytic	al Requ	iiremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8760	La YORA	700	10140 MAIS				KGMB Charge Number
0900y 0900y 0950y			X							
0801					\times				<u> </u>	
09504				X						
09511						X				
/										
									<u> </u>	
	<u> </u>									
Sample Location: Pertinent Notes (if any)	1			<i>F</i>	Analytic	al Requ	uiremei	nt 	T	
	# of Containers	Sample Matrix*								
Sample Number	#	Saı		1						Charge Number
					,				-	
Relinquished by: Date	 e / Tim	e:)[]	ccepte	d by:			Date / Time:
Relinquished by: Date 8-3-2/	///	100		1	m		ju-	ch	8-4	.21 0920
90				(_	\)			' '
								<u> </u>		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Bob Tuffs & Craig Del Ferraro present, weather is clear & hot. this zone will be sampled using 5 triple rinsed, stainless steel sample tutes. Aen. in use. robe # 2213. Surface checks performed on probe prior to sampling, Robert Burrows o Tony Tocker present on 8-5-21
30 Min. Equipment Blanks - Carboy G2 Analysis Container Preservativo VOA 648260 4L ice/HCL (3)40m vials A45 2596 2108041400 y (1) IL Amber Low Level NDMA ice 14014 01035016 Final Parameters (initial) Meter ID ime - 2108050945y ime - 2108041440 y PH Cond -- 8.27 7.82 enp - 26.0'c 265 - 1549 us/cm 1743 Aslam Turb - 1.18 NTU'S 1.55 NT45 91017 Hore + 6.93/9.98 (32.7 c) Exp-8/31/21 pH pre - 7.09 /1003 (2312) Hoost - 6,93/9.96 offpost - 7.04/9.98 Buffers Dtw - 472,45 ft. - 472.56FT Atmas - 12.69 Atmos - 12,64 psia 4007947 .4101E56 IDW - 1.0901 Samples Sample Container Analysis Preservative 210864 15104 VOA by 8260 LL ice/HCL (3) 40ml vials 2596 (1) 11 Amber 0103501G 601 Bromacil 15114 ice 21080508504 Low Level NDMA 2)125ml poly5 21-01-21 Total Metals ce HNO 08514 Anions Alk 09304 ice TDS by SM2540C 09314 09324 Perchlorate by 6850 (1) 250 ml poly 21-04-30 ice/H2504 NO2/NO3 by 353.2 09334 Runs 1) 322.65 339,36 2) 322.62 4) 322.51 3) 322.51 339.40 339.35 339.39 339.36 339.37 339,36 339.34 322.63 322.54 Continued from page

J. Signed

8.5.21

Read and Understood By
Signed

8-9-21

Date: 8 4 21						•			P	age of
Sample Location: ST-5-1175	5			A	nalytica	al Requ	irement			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0988	607	LL NDMA					Charge Number
2108041400y (EB)	3	A								XGMD
1401V (EB)	١	A			/					u
15104	3	A	~							ч
15114	1	A								U
l .								_		
										ı
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	irement			
Terment Total (I any)	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
Relinquished by: Date Thay M Leur 8 421	7 Tim 1 5	e: 145 h	rs.	4	on (deepte	by:	L	8-9	Date / Time:
				'	,		,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8-5-21]	Page 1	of
Sample Location: 57.5-11	75				A	nalytic	al Requ	uiremen	t			
Pertinent Notes (if any) Sample Number		# of Containers	Sample Matrix*	total NETALS	R-D LLOKE	204	المعدد مراس	707/705	トラクストト		XGN Charge	
76885 08504		1	A	¥					×			
08514		2	1	×	TT X				_			
09304		2			\times	*						
0851y 0851y 0930y 0931y		ı				\times	X					
		1					`%					
09324		}	1					×				
Sample Location:					A	Analytic	al Req	uiremer	ıt			
Pertinent Notes (if any)												
		of Containers	Sample Matrix*									
Sample Number		#	Ss								Charge	Number
D.P. 24 11		/ T:			<u> </u>	<u> </u>					Dec /E	
Relinquished by:	Date /				m	Acdepte	a by:	uch	8-1	Date / Tir	0910	
					- 10							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. $064 \pm (28 (\gamma))$ ROJECT WB. 5. 250 WI ENV. 0020 Continued from page _ Worker is clear & not. This sone will be steel sample thes. Justice checks partained Usin # 1215 prior to Sampling. Carbon Co. 2. Gen in use. Mr. Fairment Preserve Rlanks (3) 40 m vins Sample # Analysis 21081914101 HC1 Ide 1583 UDA 6,8260 Parameters Final 210819 15854 110819 14354 7.05 7.87 35 7.4 28.2 (50 - 49.3 m 1238 ws)cm = 20c - 48.2 NTU 1142 wolca = 107 - 91017 31.9 200 67.5 170 7,09/10.04 (33.50) Exp - 8/30/21 7.10/10.00 (321.0) 7.08 10.09 7.04/10.03 EXD 12.52 psic + 12.50 psik 4007997 12/21 219.50 219.63 10, .. 4101656 Sample # Presuva (3) 40 m vids 21081915004 NOA 6 8760 1591 607/Bromail (1) IL Amber SRI 01035016 15014 Total Metals (2) 155 ml poly HN03/Iu 1510151 1528 Y Anione AK In/ZeroHS 15267 1D\$ 3MZ8400 5484 Ie/3H5 H2SO4/Ie Perchlorate 6850 15494 (1) 250m/po/1 NO2. NO3 353.2 210436 220. 19 80 2) 29.86 3)24,78 41 29.79 31 28 31.49 29.86 79.89 Continued from page

Was

8/19/21

In Wumah

Read and Understood By

8-13-21

Date

Date: 8/14/2\									P	Page of
Sample Location: WB. 5.250				F	Analytic	al Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	୫୯%	607	T. Mohal	Anon/AN	OS.	Hercho who		Charge Number
	3	Λ								KOHD
		A	.1							N. S. S. S. S. S. S. S. S. S. S. S. S. S.
1500	3	A	メ	1/						
15011	5			1 ×					_	•
15284		-			*	. /				
15767	7	-				<u> </u>				
15487	1						X			
15494	1	ٺ						X		
Sample Location:					Analytic	cal Rec	uireme	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	NDS NUS							Charge Number
21081915504	1	A	Y				<u>.</u>			Xams
`					-					
Relinquished by: Da	ite / Tin	ne:) 1	Adcept	ed by:			Date / Time:
W C 8/19/	210	1610)	\	for !	W	\ <u>u</u>	meh	8-	23-21 /0910
					J					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page ____

Marci Nill I	us.	Au	105	9	0	<u>an</u>	49	001-	يعر	Pa	دحو	7.	\ <i>\</i>	اوم	He	<i>(</i> ;	, ,	Pa	4,	1.	lou	91	+	rkr	W		his	ę.	30n	
will 1	e.	San	<u>rple</u>	6	, <i>i</i> Z c	-	5	Je:	ela	9	~Se):	Stai	n/e	55	5	u	59	Mal	<u> </u>	بالمار	s	Su	fac	e_	che	cks	δø	Sta	med
m p	do	#	J,	713	- p c	10C	1	2	imp	line		Ca	راه	1	ري. ا	1	Cya	s i	٠, ٧	v								'		
'									,)			<u>'</u>																
									-	RN	. N	in	Fu	Ui p	nen	+ 1	موالح	K5												
Samp	l #						An	ulys	5				Ί	Pre	Secu					\mathcal{C}^{ϵ}	v fo	(h				6	+			de
21081								48	V(°C				#	(z)	Į,	Q.	3190		(3		mc					128	3			Als
									-													•								
			,																											
Initia	16	٠(م	w	ک ج							Fi	na										Me	Lec	I	6					
Time		. 🛉	110	યાદ	15	25.	4			21			335	Y								7	J-							
Time	-		7 . '	38						ll i	. 42	1									7	-b		#	i					
Tomp	-	-	۸ <	38	. ر					2	4.7	٠ ر									:	«	U -	49.	3 J	ŧυ				
LUNU		-	125	8.	USI	CUZ				1)	18		ļ								•	120	٠	48	٠,٤	NTU	,			
Tub		-	30	/	てし	•					41		i									: 10	τ.	910	110					
SH or						l	3v.	ر. ر`						67	(3	1.2	\cdot $()$				1) <u>-</u>							
Hoos	1	- 1		11		i					.07											~~		,						
H pos		- 1		58		•				1	2.	1	1								Bus	Se/	<		0	H	1	٦	ďρ	
NTA											219											7		1	1	1947			21	
					٠.					!	w	l	Į.								(0				54		1 1	122	
										_) L	1													•	,	
										7)GM	ديا								,										
Simp	le H	-					Α.	موارا	ei S					150	(N)				C.	, to	M	-				lot				196
21081	413	\ S \	\ \			1/0	1 4	V1 8	5(%	5				KI	I,	ì		(3)4		(1	E3				Als
	1	১৫১				(70	Br	nw.	ci (,	رو			1)		l				1	1 -	الح			SUI
-	1- 1	301	•			7	ملوا	Br	مركوا	<			ţ	T	3/1	(9		(1) '	25/	امم	Col	ı		1	012	1 1			AS
			-										,		, ,						***	1 "								
Runs'	1) 4	ο, ε	Ч		2)	43	.10		3) u	ð, 6	١																		
	1 1	۶. ۲				1	-ری.	1			14.																			
	1 1	١. (،					97)			١. ١٩																			
		s . c					09				W																			
			_			,,,	· · · · · ·	Ī																						
,															1		1							Cor	ntinu	ed fr	om pa	age		
							·	1			L						d and				<u> </u>			1						

W Signed

8 | 1 \ 1 \ Date

oru Usigned uuch

8-23-21

Date

Date: 1/8/21										Page	_ of _
Sample Location: WB · 5 · 280				P	Analytic	cal Req	uireme	nt	-		
Pertinent Notes (if any)										1	
	l s	*.	81Le6								
	# of Containers	Sample Matrix*	6								
	Cont	ole M									
Sample Number		Samp							-		
	3					<u> </u>					ge Number
21081813404	2	A								Xam	<i>D</i>
Sample Location:	<u></u>					1.5					
Pertinent Notes (if any)	T			A	nalytic	cal Req	uiremer	nt 			
Texture Tieres (11 mi)											
	ers	rix*									
	ntair	Mat							,	:	
	# of Containers	Sample Matrix*									
Sample Number	#	Sa								Charg	ge Number
					!						
									-		
	/ Time	: 52	$\frac{1}{2}$	+	/ 1	dcepte			<u> </u>	Date / T	
8/13/2	1 (0)	120		$+\lambda$	Or 1	\mathcal{N}	Ju	uch	-8-1	9-21	10900
				$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			\mathcal{L}				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8/14/21]	Page of
Sample Location: WB. 5. 286				P	Analytic	al Requ	uiremer	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8760	607	T. Netals					
Sample Number			(/							Charge Number
210819 13054	3_	A	1							Samo
13067				X						
13301	7	<u> </u>			X					
Sample Location:				A	Analytic	al Requ	uiremer	nt		
Pertinent Notes (if any)										
	Pertinent Notes (if any) Outside Courts Outs									
Sample Number	#	01								Charge Number
				~						
	Date / Time	e:) 1	ccepte	d by:			Date / Time:
Ws W 8/19/	210	1610		1	Sr. 1		Ju	-d	8-2	23-21/0910
				J						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

73.60

71.51

73.50 5

2)71,44

73.58

73.3

71 44

ens 1) 71 48

8/18/21

3)71,41

73.34

73 12

71 43

4)7139

13.05

72.93

71 46

Read and Understood By

Signed

8-23-21

* High Took . J. t.

Continued from page

Date: 8/17/11									F	age	of
Sample Location: WB . 5 : 345				Aı	nalytic	al Requ	iiremen	t			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8290							Char	ge Number
21081714501 (EB)	3	A	X							XGMI)
Sample Location:				A	nalytic	al Requ	iiremer	ıt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*			į						
Sample Number	0 #	San								Char	ge Number
					`					,	
Relinquished by: 8/1	Date / Time				nl	ccepte	d by:	di	8-1	Date /	Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 8/18/21										Page of
Sample Location: WB. 5.345					Analyti	cal Rec	uireme	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	८२७०	607/Bro.	T. Metals	Anions AIK	D'S	Perchlorate	NO2 NO3	Charge Number
21081868457	3	Α	1							XGMD
08467	(1		X						1
0920 4	2			1,0	X					
69217	7					×		_		
69227	1						X			
6913	1							X		
69247	(1							X	
Sample Location:	· · · · · · · · · · · · · · · · · · ·			•	Analyti	ical Re	quirem	ent		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*								Charge Number
						+				
					_		-			
Relinquished by:	Date / Time): :			(1)	Accep	ted by:			Date / Time:
	21 0		S		on	\mathcal{N}	Im	,	8-	19-21/0900
					7		<i>)</i>			'

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Als

500 - 49.8 NEV

89 UTU

107

EXP -

2583

21012

01035016

Continued from page

B-22281

4004

4101656

8/30/21

4007947 12/20

7/22

AX<

2 KZ

215

sample files.

3) 40 ml vials

(3)40m/ pia/5

Remire

HC In

Prosuve ACI I ce

30. Min Exigened Bloglet

210873/108/

781 us/cm The work

7.09/10.04

IDW- 1991

12.58 pin

307.25

Samples

7.67/10.05 (35.2.1)

gresare

HC) I ce

HUB/Ic

24ns/) 109,40 109.41 3) 109.30 109.00 108.67 10876 108 49 107.52 167.90 109 40 109 38 109.31

ROJECT WB.14. 520 WIT ENV. 6020

probe # 1213 orior to sampling

Sample #

2108230730-1

11082309151

largonilers

21082309554

- 726 us/cm

7.01/10.02

- 12.5 6 psic

306,72

Sample #

2/08/3/0257

10200

1/054

7.00/10.03 (28.11)

Analysis

NOT PJ 8560 L1

607 Bromacil

Total Melals

sampled using 5 to be timed stainless steel

Rosey Bricoms fres

VOA by 8200 L

VAA 678260 LL

Read and Understood By

(3) 40m vials

(1) 1 Ander

(D) 175 M poly

Date: 8/23/21									Pa	ge	of
Sample Location: WB.14.520				1	Analytic	al Requ	iiremen	t			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260 LC	607	T. Melyls					Charg	ge Number
2108236730Y (TB)	3	Δ	X							Xqm)
LOGISY (EB)	3	-	X								
10521	(<u> </u>	7							
11054	2				X					1	
Sample Location:					Analytic	al Requ	uiremen	it			
Pertinent Notes (if any)	mple Location: Pertinent Notes (if any) Country Samuels Number #										
Sample Number	0 #	Sample Matrix*								Char	ge Number
										_	
Relinquished by: Date 5/23/2	e / Tim				Oru	Accepte	Aby:	_l	8-2	Date / '	Time;
							}				,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page Bob Tuffs & Craig Del Ferraro present. Weather is clear & warm. This well will be purged using a dedicated bladder pump. Samples will be collected using a teston discharge hose. Parameters will be collected using a standard pHI cond. meter. Do and ORP will not be available. Carroy 6.5 PH/Cond meter # 11 Turp. meter # 6 24/ pre - 7.08/10.03(20.6'c) 3,27 lof 91017 2H post - 7.06/10.04 - 9/30/21 temp (c Parameters (time) cond (us/cm) DTW/FT. 2109200845A ລ ຊ່າ, ລ 304 0848A 22.1 309 -0851A 22.4 1311 8.18 1.03 121,18 Samples Preservative Sample Container 210920 0855A VOA 648260 3)40 ml vials u (Dup) 0856A 6857A 607/Bromaci (1) 11 Amber 01035016 0858A 0859A stal Metals ice/HND, 0900A 0901A Anions Alk. TDS by SM2540C Perchlorate by 6850 NOz/NO3 by 3532 0902A 09034 (1)250mlpoly 21-04-30 0904A ice/H2504 Initial DTW - 120,97ft Total gallons purged Continued from page

Cray Il Ferris

Read and Understood By Junch 9-20-21

Date: 9 20 21			- · · · ·						Page	of	
Sample Location: 200-JG-11	O			A	nalytical Re	equireme	nt				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	607	Total Metals	Hnjons/AIK,			Char	ge Numbe	er.
2109200855A	3	A	~							mD	
0856A (Dupl.)	3	A							/(U)	<u> </u>	
0857A (FB)	3	A							, ,		
0858A	1	A							4		
		A							·u	,	
99004	2	A							и		
0901A	2	A			V	1			4		
Sample Location: Pertinent Notes (if any)				A	nalytical Re	quiremen	nt		,		
Sample Number	# of Containers	Sample Matrix*	705	Perchlorate	Noz/NO3				Charg	ge Numbe	er .
2109200902A		A	~						XG	mo	
		4								4	
09 04 A		A							4	·	
	_										
						+			<u> </u>		
Relinquished by: Date	/ Time	<u> </u>			Accept	ted by:			Date / 7	ime;	
trang Del Ferra 9/20/21	091	15h	rs.	O.		' \	_d	9-6	21-21	1	30
				U						-	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT 200-KV-150 WJI ENV-00/3

bb Turts & Crong De Fercaro Present Weather is clear & worm. This well will surged using a delicated bladder pump. Samples will be collected using a floor discharge hose. Approx. purge valume ~ 2 gallons. Initial and trial rameters will be collected using a standard philosoph mater. Carboy G. 5 in we that death - 17500th. Meter ID. Butters lot Cop initial DTW - 158,86ft. ph/brd - 63 7 40074917 12/21 acr purge - 0800 hrs. "Std - 5.17 to 410/656 7/22 cop purge - 0800 hrs. "Std - 5.17 a Supple - 2109/1409/152 DIW - 162,315th. "Std - 5.25 mal DTW - 162,315th. "Std - 5.25 mal DTW - 162,315th. "Std - 5.25 mal DTW - 162,315th. "Sop -9/30/21 DIW - 162,315th. "Sop -9/30/21 DIW - 162,315th. "Sample S. Cond - 1738 uslom. "Turb 3.87 200'5 pest - 7.01/0.05(22.2'c) pest - 7.01/0.05(22.2'c) pest - 7.05/10.05 "Sample S. Container Lot Lot Lot Lot Lot Lot Lot Lot Lot Lot			_100 u	744 E104-	0073	Continu	ed from page		
purped using a dedicated bladder pump. Samples will be collected using a floor discharge hose. Approx pumpe valuable ~ 2 gallons. Thirthal and trial cameters will be collected using a standard ptiloned mater. Carbon G5 in we that death - 17500ft. Meter ID Buffors Lot Cop nitrol DIW-158.86.ft. PH/Ord 63 7 4007947 12/21 12/	ob Tufts	& Craig	Del Feri	aro Presei	nt. Weath	er is closer	E warm.	This well w	://
ton discharge hose Approx parge valume ~ 2 gallons Taithal and field frameters will be collected using a standard pti/and mater Carboy GS in we stall depth - 17500ft. Moter ID Buffers Lot Cxp initial UTW-158.86ft. 24/cond - 63 7 4007947 12/41 Tart parge - 0850 hrs. Tarb - 7 10 4101856 7/22 cop purge - 0850 hrs. " std 5.17 tal gallons purged 2 " rdg 5.25 tal DTW-162.39 ft. " lot 9/0/7 a Exp-9/3/2/ DTW-162.39 ft. " lot 9/0/7 a Exp-9/3/2/ DTW-162.39 ft. " lot 9/0/7 a Exp-9/3/2/ DTW-180.48 com 1780 uslam wh 4.78 arm's lore - 7.04/10.05 (22.2°) post 7.10/10.04 TW-161.18 ft. Dank-oapoc Von by 8760 copyle orose Conference popula orose Conference copyle orose Conference copyle orose Amarxis ice/HVO3 (3)45m/poly 20-11-27 " orose Percholde by 6850 Oroge Noe/No. by 383.2 (ap.H. Soy (1)25m/poly 20-11-27 " oroge Noe/No. by 383.2 (ap.H. Soy (1)25m/poly 20-11-27 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM25400 " oroge Noe/No. by SM353.2 (ap.H. Soy (1)25m/poly 20-11-27 "	surged	usinaa	dedicated	bladder	DUM D.	Samples	111 bo coll	erted usin	
He depth - 17500Ft. aital DTW - 158, B6ft. pH/cond - 65 7 4007947 12/21 2007 Purge - 0800hrs. 7 5H 5.177 tal gallons purged 2 "rdg 5.25 mal DTW - 162.39Ft. a Exp - 9/3/21 aital Parameters ime - 2109140855C H - 8.36 PH - 8.16 DD - 4.78 DTW'S Turb - 7.05/19.005(22.26) post - 710610.05(22.26) post - 710610.04 TW - 161.18Ft. Samples Amalysis reservative Consider to be post of the consider to cons	Floodisc	barre	100				1000 7 1	1 1 19	9-1
He depth - 17500Ft. aital DTW - 158, B6ft. pH/cond - 65 7 4007947 12/21 2007 Purge - 0800hrs. 7 5H 5.177 tal gallons purged 2 "rdg 5.25 mal DTW - 162.39Ft. a Exp - 9/3/21 aital Parameters ime - 2109140855C H - 8.36 PH - 8.16 DD - 4.78 DTW'S Turb - 7.05/19.005(22.26) post - 710610.05(22.26) post - 710610.04 TW - 161.18Ft. Samples Amalysis reservative Consider to be post of the consider to cons	1000	1,41		prox. purg	e volume	, a gal	10113. L nit	al and times	-1
He depth - 17500Ft. aital DTW - 158, B6ft. pH/cond - 65 7 4007947 12/21 2007 Purge - 0800hrs. 7 5H 5.177 tal gallons purged 2 "rdg 5.25 mal DTW - 162.39Ft. a Exp - 9/3/21 aital Parameters ime - 2109140855C H - 8.36 PH - 8.16 DD - 4.78 DTW'S Turb - 7.05/19.005(22.26) post - 710610.05(22.26) post - 710610.04 TW - 161.18Ft. Samples Amalysis reservative Consider to be post of the consider to cons	vameters	will be	collecte	d using a	standag	d PH/Cor	d meter.	Carboy G5 N	we
nitial tru- 158,86ft. pH/cord - 63 7 4007947 12/21 Text purge - 0800hcs. 74ch - 7 10 4101856 7/22 Exp purge - 0850 hcs. 4 5td - 5.17 tal gallons purged - 2 4 rdg - 5.25 tal gallons purged - 2 4 rdg - 5.25 mal DTW - 162,39 ft. 4 5xq - 9/3/21 nitial Parqueters									
nitial tru- 158,86ft. pH/cord - 63 7 4007947 12/21 Text purge - 0800hcs. 74ch - 7 10 4101856 7/22 Exp purge - 0850 hcs. 4 5td - 5.17 tal gallons purged - 2 4 rdg - 5.25 tal gallons purged - 2 4 rdg - 5.25 mal DTW - 162,39 ft. 4 5xq - 9/3/21 nitial Parqueters	sta depti	1-1750	054.	Me	ter ID	Bu	thers 20	A Exp	
tert purge - 0800 hcs. 12	hitial Dr	W- 158	B6ft				7 400791		
Std = 5.17 Std = 5.17 Std = 5.17 Std = 5.17 Std = 5.25 St					/ 1	4			\dashv
Tall DTW - 162.395+. " 107-9/0/7 nitial Parameters ime - 2109140855C H - 8,36 MP - 32.0°C IND - 1780 WILLIAM WE - 7.01/10.05(22.2°C) PARTY'S IND - 161.185+. Samples PH past - 7.05/9.99 TW - 161.185+. Samples OPORC COTBROMANI CO (1) IL Amber D1035016 SRT OPORC Hoist Hill OPORC Hoist Hill OPORC Hoist Hill OPORC Hoist Hill OPORC Hoist Hill OPORC Percharde by 6850 OPORC NO.2/NO.3 by 353.2 (2) H.SOW (1) 250ml poly 20-11-27 u OPORC NO.2/NO.3 by 353.2 (2) H.SOW (1) 250ml poly 20-11-27 u OPORC NO.2/NO.3 by 353.2 (2) H.SOW (1) 250ml poly 20-11-27 u		0051		1 a	P - / /	4 . 4	FO FIUIE	36 1122	-
aithel Parameters Time	of purg	e - 083	0 11L2	,	1 1 1 1				
aithel Parameters Time	tal gallo	ns purged	1-2	и	1 7				
aithel Parameters Time	hal DTL	U - 166	2.395+	a	10+-91	017			
Ample Analysis Preservative Consider to Laborate Analysis Preservative Consider Sets ALS - 0902c - 607/Bromani Ce (1) L Amber Dio35016 SPET O 0905c Anions/Alk ice a N/A a o 0909c NOz/NOz by 353.2 ce/HzSOz (1) 250m/poly 20-11-27 a					Exp -9/=	2/2/			
me = 2109/40855C					77 4				
me = 2109/40855C	Line Pa	constars				2: 0			\dashv
H - 8,36 mp - 22.0°C mnd -1780 uslum urb - 4.78 nrv's lore - 7.09/10.05(22.2°C) post - 7.10/10.04 Tw - 161.18Ft. Samples preservative Container to Lab payle opoc vod by 8760 ice/HCL (3)40m/viels 2596 - 0901c - 0902c - 0903c - 0904c									
mp - 22.0°C 2000 - 1780 uslam 1780 uslam 180 - 4.78 urv's 180 - 4.78 urv's 180 - 4.78 urv's 180 - 4.78 urv's 180 - 4.78 urv's 180 - 7.09/10.05(22.2°C) 180 - 7.09/10.05(22.2°C) 180 - 7.09/10.01(25.7°C) 180 - 7.09/10.	4. 1 1	, , ,	5C			*) 1	1 1 1 1	<u>e</u>	
1780 uslem Conol - 1738 uslem 186 uslem 1738 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 u	1 1 1 1	1 1 1			P				
1780 uslem Conol - 1738 uslem 186 uslem 1738 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 uslem 186 uslem 187 u	mp - 22	.0,¢			To	mD - 22	.5°		
10		60 uslam				nd -173	8 185/500		
	- L	78.001	5				1 1 1 1		
Dest - 7.05 / 9.99 Tw - 161.18 Ft. Samples Container Lab Samples Container Lab Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 Dest - 7.05 / 9.99 D									
Samples Samples Container of Late Day 14 0900 c VOA by 8760 ice/HCL (3)40m/viels 2596 ALS Day 14 0900 c VOA by 8760 ice/HCL (3)40m/viels 2596 ALS Day 16 of Coal of Co	1pre - 1.0	7/10.05	22.2 6)		Pt	pre + 7.0	4/10.01 (Z	5.7°c)	
Jample Jample					pt	1 post - 7.0	5/9.99		
Amole	TW - 16	1.18Ft.				1			1
Amole									
Amole				50.	200				
D914 0900 c VOA by 8760 ice/HC1 (3)40ml viels 2596 ALS - 0901 c	1222		Δ.,		District			1 1 1 1	
	1 1 2 1 1					ve Cov	vicu nev		\dashv
	· 1		VOA by	7.4.1	ICE/HC	4 (3)4	oml vials	2596 AL	
0903C 607/Bromacil (ce (1) 11 Amber 01035016 SRI 0904C Total Hetals ice/HNO3 (2)125mlpoly 21-01-21 ALS 0905C (FB) 0907C TDS by SM2540C a (1)125mlpoly a a 0908C Perchlorate by 6850 a (1)25mlpoly a a 0909C NO2/NO3 by 353.2 ice/H2SO4 (1)250mlpoly 20-11-27 a	090	14	0 , u	(rb)	a a		u	0 4	
0903C 607/Bromacil (ce (1) 11 Amber 01035016 SRI 0904C Total Hetals ice/HNO3 (2)125mlpoly 21-01-21 ALS 0905C (FB) 0907C TDS by SM2540C a (1)125mlpoly a a 0908C Perchlorate by 6850 a (1)25mlpoly a a 0909C NO2/NO3 by 353.2 ice/H2SO4 (1)250mlpoly 20-11-27 a	090	ac .	607/Bu	(Dup.)	a		14	4	
	090	3C	607/8-	omaci	ice	CNII	Am har a	ASSOLE CR	
0905c (FB) a u a n/A a a constant of the const									
			TOTAL M		Well Was		company a	1-01-21	2
0907c TDS by SM2540C a (1) [25m] poly a a 0908c Perchlorate by 6850 a (1) 250ml poly a a a 0909c NOz/NO3 by 353.2 ice/HzSon (1) 250ml poly 20-11-27 u			1 4,6	7	a		4	a a	_
0909C Perchlorate by 6850 a 11 17 u u u u u opoge NOz/NO3 by 353.2 ice/HzSon (1)250m poly 20-11-27 u			1 1 1 1		Ice		a	N/A as	
0909C Perchlorate by 6850 a 11 17 u u u u u opoge NOz/NO3 by 353.2 ice/HzSon (1)250m poly 20-11-27 u	090		TDS by	SM25HOC	a	1012	Sm poli	4	
0909C NO2/NO3 by 353.2 ice/H2So4 (1)250m poly 20-11-27 u	090	8c F	prchlore	by 6850			1 7		
		ac N	10 /10	1 353 7	in IU Ca	(1)00			
Continued from page		1 1	A S (NO3	y 333.0	ref rizot	4 142	um poly 2	0-11-27 4	\dashv
Continued from page									\dashv
							Continu	ed from page	

Cray De Jemo

9 1421 Date

Date: 9 14 21									•	Page	of
Sample Location: 200 - KV-	150	>		A	nalytic	al Requi	rement				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	936b	209	Total Metals	Anions/ MIK				Chai	rge Number
2109140900C	3	A	1								mb
0901C (FB)	3	A	/						-		4.
09020 (Dupl.)	3	A									1.
0903C	1	A									14
0904C	2	A									u
	2	A				•					u
0906C	2	A				-			·		4
Sample Location:				A	nalytic	al Requi	rement				
Sample Number	# of Containers	Sample Matrix*	705	Perchlorat	NOz/NO2					Char	ge Number
2109140907C		A	~						·	XG	MD
0908C	1_	A		_						ι	
0909c	1	A								4	
Relinquished by: Date Cray Del Ferro 9/14/21	/ Time	oh,	7 5.	0	ru (cept e ti l		d	9.1	Date / '	Time: 0920

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT 200-5G-1 WJI ENV-0013

Weather is clear Ewarm. This well Craig Del Ferraro bladder pump. Samples will be collected will be purged using a dedicated bladder positions a dedicated tygon discharge have Carboy GI in use Buffers depth - 138.29 ft. (42.15m) Meter ID 400 7947 Initial Dow - 133.75H. (40.77m) SH cond-61 10 4101E56 start purge - 0945 hrs. 21 std-10.1 stop purge+1045 hrs. 3 casing volumes - 2.4 gabs, Durae vale who system 0.04 gpm 10.3 504 107-91017 Total gallons purged - 2.5 Fonal DTW-134.60ft. Ex2 + 9 30/21 Final Inital Parameters Secondary 2109071330B ime - 210907 1025B ime-2109071045B 7.40 -736 Temp - 23.7'c - 229'c 23.2'C Cord - 1233 us/cm -1243 us cm - 1248 us/cm 100 - 3.02 NTU'S Turb - 1.89 NTUS 1mb - 2.47 Novs pHpre - 7.04/10.06 (26.80) pH pre - 6.99/997 (32.34) ,40e-7.04/10.07 (263'E) ptpost - 7.01/9,94 ptpost -7.02/10.07 H fost - 7.03/10.07 DTW + 134 25F+ DTW + 134.09 Ft. Samples Preservative Analysis Sample Continer VOA by 8260 ice / HCI 3)40ml vials 210907 1050B (FB) 1051 B (1) 14 Amber SRI 607 Bromacil ice 01035016 10 52 B SVOA by 82 70D (2) 11 Ambers 110920-10K 1100B _ Amber Pesticides by 8081B 1255R Herbicides by 8151A -1300B PCB' 5 by 8082A 1305B Dioxins/ Furans by 8290 01035016 5RI -1310B (1)250ml autor 080320-13MC Phenolics by 9066 ice/4, SOH 1315B ice/HNO3 (2) 125 m poly's 21-01-21 13188 Total Metals -1319B Anions Alk. Continued from page 96

Graig Del Ferro

9/7/21

Read and Understood By

Signed

9-8-21

_	1	<u></u> -	-	-	-	-	+	+			y —	+	$\stackrel{\text{P}}{=}$	in	4	es		cor var	150	<u>_</u>	-	+	7	4	ارد.		1		Lö	4		(6	+
\	290	<u> </u>	-	+-	-	+	+	+	냅	ma	¥8	15	+	+	4	es	e	var	w	=	+7	*	9	1	25	1	poly	4	4)/	14	+	4	5	+
C	29107	11	32	OB	•	+	#	70	<u>,</u>	by'	<u> S</u>	42	٤٢	10	<u>C</u>		IC	e			1	11	Tak	J.K	5,	Mt	Diy			7	30 85 2AA	/10	-	1
<u>_</u>		+ 1'	321	1B		_	Pe	10	Νr	rat	e	bu	16	8	50]	[_W	+	<u></u>		+	4.1	_	-	u	/	/	-	4	 	+	-	1	+
_	7	1	327				1	10	2	NO	<u>'</u>	by	<u>3</u> 5	33	,2	1	ice	/H	12 S (24	1	4)	12	50	M	20	leg	12	1-0	4-	30	1	4	4
#	1	+1,	32	3B	>		1	CV	BO	de	, }	ر مال	90) 12	B	<u> </u>	ce	ΪŅ	DO	H	$\perp \ell$, 16	15	al	sq	ly_	-5	DOF	338	35	1	-	1
士		Li	32	,4	B	1	1	5.1	Ž.	J.	b	J.	ad.	3 0		ic	e/2	ALI	Val	ÌΗ			\$0	00	ml	PD	ly	12	64	17-	ZAV	HW	u	
-		-	Do			+		ہمار_	174	هدو	-	7			$\neg \neg$,		-]			ı'	L	•							
+	+-	+	+-	+	+	+	+	-+		+-	+	+	+	1	1						1							Ī	Ī_]			1
+	+-	+	+-	+	+	+	+		-	+	+	+	+	\rightarrow			+	+	†	+	+	+	1	_						+	1	T	1	7
+	-	1-		+	+	+	-+		+	+-	+	+	+	-			+-	-	+	+	+	+	+	\rightarrow		-	-	+	+	+	+	1	1	7
1					_	_		·	 	+	+	-	+			+	+-	+	+	+	+	+	+		<u> </u>	+	+	+	+	+	+	+	+	+
								· · ·			_	+	_		ļ!	<u> </u>	-	-	+-	4-	+	+	+		+	+	+	+-	+	+	+-	+	+	
T								1							<u> </u>						-	+	_		 	-	-		+	+	+-	+-	-	
+				1						T												_				1			\perp			4-		ا
+	_	+		+	_					1	+]_														ادار <u>مج</u> د
+		+-	+	+	+	+			+	+-	+	+	+			-	+	+		1	\top					T		1_		·				
+		+	+-	+	+	+		 	+	+	+	+	+			+-	+-	+	+-	+	-						1	T					T	5 . 63
+		+	-	+	+	+		-	+-	+	+	+	\rightarrow		+-	+	+	+-	+	+-	+	+			+	+	+-	+	+	+	1	1	1	
_		_	_		_	+]	1	+	+	+	+	\rightarrow	_	+-	+-	+	-	+-	+	+	+	\rightarrow	<u> </u>	+	+	-	+	+	+	+		+	
			\perp		-		!	1_			4	_		+	-		-	+	+	_	+	+	-+		+-	+-	+-	+	+	+	+	+	+	
											1	_					_	1				4		 	4-	+	4	+	+	-	+	+	4	
														_								_		<u> </u>				_	_	+	+	1	+	À
1		+	+						+							T										1				_		1	4	
+		+	+	+	+	+	(+	+	+	+				+		1								T_									
+	-	+	+	+	+	\rightarrow		+	+	+	+	+				+-	+	+		1	_				T		T							
+		+	+	+	-	\rightarrow		+-	+	+	+	\rightarrow		-	+	+	+	+	+	+	1	+			+	+-	_			T				-
_		+		-+	_			+-	+	+	+	-+	<u> </u>	-	+	+	+	+	+-	+	+	+			+-	+	+	+	+	1		1		-
				_			<u> </u>	1	+	+	+		<u> </u>	-	+			-	+-	+	+	-		\vdash	+	+	+	+	+	-	+	+	+	
									_								_	-	_	_	+			-	+	+	+	+	+	+	+	+	+	
						- I							ĺ								_			1			+	_	+	+	+	+	+	1). 11
												_									\perp		<u></u>				_		_	+		+	+	
-+		+	1	-				+								T															_	_	+	نیم
	+	+	+	+			-	+	+	+	+		†		+										\top					1	1	1		
	+	+	+	\rightarrow	-+		+	+	+	+	+			+	+	+	-	+	+	+	+	+		+			\top	T						<u>.</u>
}		+	-		\vdash	 	-	+	+	+	+	!	-	+	-	+	+	-	+	-	+		-	+	+	+	+	1	1	\top				Ĉ
		_	_		\vdash	 			+	+	\rightarrow		-	+	+	+	+	+	+	+	-		+	+	+	+	+	+	+	+	1			៊
										_					_		-	+	+	\rightarrow	-+			+	+	+	+	+	+	+	+	-	+	
												(_	_			1	+	+	+	+	+	+	-+	-+	+	+	(
												i _							1			<u></u>		1		_	_							: تبير :
i	+	-+	-				+	+	1				1	+													1	Cont	inue	d fro	om pag	ge		بيسم

Chaig Del Ferro 9/7

Date: 9 1 2									Pa	ige	of _ 2 _
Sample Location: 200 - SG-1	·			A	nalytica	ıl Requ	irement		,		
Pertinent Notes (if any)											
	ainers	fatrix*	Q		8270						
	# of Containers	Sample Matrix*	8266	L 09	82					CI.	
Sample Number										Charge 1	
2109071050B	3	A								XGn	1D
1051B (FB)	3	A								u	
1052B		A				_				u	
1100B	2	A		_						u	•
	ļ										
Sample Location: Pertinent Notes (if any)	T	<u> </u>			Analytic	al Requ	uiremen	ıt			
Pertinent Notes (II any)							:				
	ners	*xirti									
	ontai	le Ma									
	# of Containers	Sample Matrix*								Charge	Number
Sample Number										Charge	Number
				_							
				-							
								-			
		+	-			_					
		-			 					-	
Relinquished by: Date	e / Tim	ie:				ccepte	by:			Date / Ti	me:
Prairy 100/ Ferro 9/7/21		- 1	15,		m	\mathcal{N}	1th	-d	9-1	8-21	0900
						*			'		•
				V			V				

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Date: 9/7/21				CHAI						Page 2 of 2
Sample Location: 200 - 56-1				Aı	nalytica	ıl Requi	irement			
Pertinent Notes (if any)		*	les	es		Turans	ics	Metals	/AIK	
	# of Containers	Sample Matrix*	Pesticides	Herbicides	PCBS	Dioxins/7	Phenol	otal M	Anions	
Sample Number	0#	Sar	(%)	H		Ã		-	_	Charge Number
21090712558		A	~							XGMO
-1256 <u>8</u> 13008		A		~						ų
13058	_1_	A			V					ч
13108	1	A				✓				<u> </u>
13158	1	A					~			<u> </u>
- 1318B	2	A								u
13198	ð	A								
Sample Location:				Α	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)				٦	ر م					
	SIS	* ! <u>*</u>		orat	00	Cyanide	ام			
	ntaine	Matr	20	hlo	//	/an	لم لم			
	# of Containers	Sample Matrix*	-	Perchl	NO2/NO3	\mathcal{C}	Sulfide			
Sample Number	#	Sa		2	_					Charge Number
21090713208	1	A	V					. <u> </u>		XGMD
13a1B	١	A								ч
1322 B	1	A			/					4
1323B		A				V				4
13248	1	A								ч
	/ Tim			1	1	Adcepte	d by:	1	_	Date / Time:
Chang Ill terme 9/7/21	140	o hu	رح,		Ou	W	Jun	-ch	4.	8-21/0900
V					}	<u> </u>	}			
		<u>.</u>			U					

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

(20(A) Notebook No. <u>182</u> ROJECT 300.4.120 WIJ ENU. 0053 Continued from page Halubran Dan dedicated bladle pump. & sampled using Samples will be monitored . Water quality parameters will be sisday se USTAC M. 20 Flow cell & winder adapted. Carbon Ca-Initial 676. 127.95 saturated dir @ 642 mm He - WOL 15991 1413 ws/cm usin 570 Ogkton Buffers (47.10) Turbildity Meler Lot 9/017 20G. 2.86 NEW 50 3.17 WW # (Exp. 9/30/21 and (Volum PH Temp(1°) Turb (NO) OTW/H) 00 ORT 1 2109130950A 21.43 8.47 128.25 2.69 800 05 69 0952h 816 11.8 3.25 803 8.27 2.84 0.94 10 0754 A Samples # Sample 46 Analysis 10 Ha/I (3) 40 ml vials 21091310004 VOA by 8260 1583 (Orb) 1001 A (FB) 10021 607 Bromai (1)1L Amb 4500l 5127 \$103501G = (00) 1004 A 500A 6782700 1214/20101 1005A Posticide 80813 1000 \$ terbicide 8151A 1007 4 PCR, 8081A 43001 Hoson I a (1) 250 ml Amb Phanolies FOCE 1009 A 1)154 1 m/4 Molals 10/04 HUD3 / Ide Amons Alk Ica Beroffs 1011 A IIA -TOS 64 542540C 1012A (1) Perchlorate 6850 Ice/1/3 #5 1003A 1) 250 1/ 10/4 AM101 NOz, NO3 353.2 H2504/10 11125 m poly Cyaride 9012B ے Nack I I de A 2101 5/14ida 9030 Bine Acada NapH 1016 (1) 250 m poly PeroHS/ IL Continued from page Read and Understood By 9/13/21

Da	ate: 30000A	9/13/21											Page _	of	
Sa	mple Location:	300 · A ·	120					Analyti	ical Red	quireme	ent				
		Notes (if any)		# of Containers	Sample Matrix*	8260	(607)	SUDA STO	Pedicide				Ch	arge Numbe	
15/	09131000A		· · · · · · · · · · · · · · · · · · ·	3	A	Х							XG	MD	
	- 1001A - 1002A - 1003A	(p.p) (57)		3		X	\ \/								
$\sqrt{}$	- 1004 A	(909)		i i			X								
	1005A	11-06.7		2			,	X							
1	- 100GA			1	1				X				-		
San	mple Location:						F	Analytic	cal Req	uireme	nt	•			
	Pertinent N	lotes (if any)				5	8	72	1	→	1	50	1		
	. • .			# of Containers	Sample Matrix*	Herbicide	(50	Phenolics	T. Mehls	ions/AllK	705	archio ate			
\downarrow	Sample	Number		#	Sa								Cha	arge Numbe	r
31	09131007A			1	A	X							XGI	an	
<u> </u>	- 1008A			1			X						1		
	1009 A			1				X			_				
	LOJOA			2				,,	X						٠.
1	1011 A			2						X					
\ <u></u>	ASIU			١				-			X				
<u>/_</u>	- 1013A			1	<i>,</i>	-						X			
	Relinquished by			/ Time			-) [ocepte	by:			Date /	Time:	
	W) 5}	9,	/13/21	0	1110			ûn 1)m	nd	9-1	4-21	1090	0

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9/13/21			-		_					Page	2_of_2
Sample Location: 300 · A · 120					Analyti	ical Rec	uireme	ent	_		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	NO2 NO3	Garide	ろんなりょ	DX5/FURANS				Chai	rge Number
2109131014A	1	A	X							Va	
1015A	(1		X						× ~ ,	<u> </u>
1016A	1	1		,	X						
-1017A					/	X					
						_					
					,						
										-	
Sample Location:				I	Analytic	cal Req	uireme	nt	<u>, </u>		
Pertinent Notes (if any)	S.	*								:	
	# of Containers	Sample Matrix*					<u>.</u>				general No. 2
Sample Number	- # #	San								Char	ge Number
											-
					N						
Relinquished by: Date 9/13/21	e / Time) A	ccepted	by:	-dr	9.	Date / 7 14 - ノ 1	Time: 0900
							 				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 300-D-153 WIT ENV-0013

Bob Tufts & Craig Del Ferraro present. Weather is clear & warm. This well will be surged using a dedicated bladder pump. Samples will be collected using a terion discharge hose. Carboy 65 in use. Buffers Lot Total depth - 181.59 Ft. (55.85m) Meter ID 4007947 Initial DTW - 160,70.7. (48.98.) pH/cond - 11 Turb - 6 10 4101 56 start purge - 0800 hrs. Stop purge - 1100 hrs * -3,17 u 107 - 91017 3 casing volumes - 48 gallons ourge rate - 0.167 gpm Total gallons purged - 48 u std -3.17 u Exp -9/30/21 timal DTW - 162,70ft. Initial Parameters Secondary Final Time - 2109161450C Time - 21091614400 Time - 2109161330C PH - 7.38 PH | - 7.53 PH - 7.42 Temp - 22.8°C Temp - 22.9°C Cond - 1254 uslam Temp - 23,4°C Cond - 1271 us/cm Cond - 1268 45/cm Turb - 1.35 ptv'5 Turb - 1.68 NTU'S Turk - 1.21 NTU'S pt pre - 7.01/9.94(29.6'c) 24 pre -7.03/10.06 (27.8c) 24 post -7.04/10.06 pH pre - 7.01/10.03 (29.0°C) pHpast -6.98/10.04 pt/post-6.98/9.93 DTW - 162.41 Ft. Dtw +162,635+ Samples Maysis Container Preservative Sample 2109161441C VOA by 8260 (3)40m vials ice/HCL ALS 2596 -----1442C u 1ce (1) IL Amber 01035016 -1443C SRI 607/Bromacil (2)125 al polys ALS ice/HNO3 -14440 Total Metals 21-01-21 -14456 u (Dupl.) * 30 gallons was purged between 8 & 11 before crew broke off for lunch.
Purging resumed @ 1755 hrs. and continued on until the remaining 18 gallons
was collected prior to sampling. Purging concluded @ 1440 hrs.

Cray let Ferri

9/16/21

Read and Understood By for 1 Jund 9-20-21

Date: 9/16/21								Page	of
Sample Location: 300 - D - \53	3			Α	nalytical Re	equirement			
Pertinent Notes (if any)					S			-	
Sample Number	# of Containers	Sample Matrix*	8260	L09	Total Meta			Charge N	umber
21091614410	3	A	~					XGm	D
1442C (FB)	3	A	~					u	
1443C	1	A		~				ų	
14440	2	A						4	
1445C (Dupl.)	2	A						Y	
Sample Location:				A	nalytical Re	equirement			•
Pertinent Notes (if any)									
	# of Containers	Sample Matrix*							
Sample Number	#							Charge N	umber
			_						
				,					
Relinquished by: Date	/ Time	<u>.</u>		1	Accep	ted by:		Date / Time	··
Prain Pel Euro 9/16/21		ohr	<u> </u>	14	ru \	Numel	1 a-	. 1	0915
The second of the second	, , ,	<u>.V/\I</u>	y.	1 1	·w\		7 1	/ /	- 1.7
				74					
									

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

ROJECT 700-A-753 Continued from page _______. CANDEIL SAMPLES CONT. Ample SH LAb 09/10 Phenols 9067 (c3/4, say 10/17 Ambor 17541 " (F3) 0912c Cyanida 335.4 (05/1004 11) Brown 500m/pay METALS 200.7, 200.8 1 cel Hola (1) 25 and page 0915c 11(F3) 09/60 11 0917e Rad 276/228/9001./7000 (c= Hara 12) 14 poly 09185 "(FB) 34 10E/HU 09194 (2) YOW UINS Toc 9060 11 09200 11 11 (FB) 11 11
09210 015 300.0/90 10/50 2720 500 2720 (1) 50000 11 09772 11 (F15) 0973c 5m 4500 1300.0 09720 11 (DJoanl pay 11 0924c 11 (F.3) 11 17 HEAL TRIP BLANKS ANALSIS PRESEN 0529 0925 8060 VOANTISE 17) 40 MULAIS co=/Hc/ 10=/NG 2503 OFTGE EDO! DEEB 5041 (1) 40 m/ vial

9.29-21

Read and Understood By

Continued from page

Date: 9-29-21					-				Page 1 of 3
Sample Location: 7004-753				1	Analyti	cal Requ	irement		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	COA	60)	Penchlo LATES	8260 UDA MTBE			X-PCC_ Charge Number
71829 0900C	3	A	X						YGMO
71679 0900 C 0901c (FB	3		∞						11
Oforc Office	1			λ					u
0963c	1				X				10
0904c	4					X			XPCC
0905c (FB)	4					>			
1		1							
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	irement		
Sample Number	# of Containers	Sample Matrix*	Moor Drave North	OG ATRIPERIPAH B. BEHL, 8270,830 BOBZ	herals 8067				Charge Number
210929 09660	2		λ						
- 0907c (PB)	3		×						
OSOBC (Dup)	3		λ						
09090	4			×					
Gioc (FB)	4			×	-				
- 0911c	1				∞				
OSIZC (FB)					∞				\ \ \
Relinquished by: 7-29	Date / Time:			To	'	ccepted	by: Und	- 9-1	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9-24	3-21										Page 2 of \$3
Sample Location	n: 760 · A - 253 ent Notes (if any)					Analyti	cal Re	quirem	ent		
	ent Notes (if any) mple Number	# of Containers	Sample Matrix*	Syamile 335:4	2008, 245.1	CAR 726/228 9031/9040					XPCC
		1	A	X							Charge Number
	1913 c (F3)	1	Ï	N				-	1	-	
•	2915c	1		/ -	X						
·	0916c (f3) 0917c 0918c (f3)	1			X						
<	0917c	2	t			∞					
,	518c (F3)	2	7			×					
my											
Sample Location:	:				F	Analytic	al Reo	uireme	nt	_ <u></u> _	
San	nt Notes (if any) uple Number	# of Containers	Sample Matrix*	Tac 9060	CLIF, 504, 76TAL FALO NOW, 705, ALK 300.0 THE 90405 A 2320, 5 276	744 49 42 TK TOTAL 454 100/300.0					Charge Number
09,		2	A	\times			·				
09	roc (FB)	7		8		_					
	21 ((64)		_		×						
`	27C (FB)	1	-		8	-	_				
05.	73 c 74 c (f3)	1	\dashv			<u>×</u> <u>></u>		_			
	0/6 (43)										
Relinquishe	d by: Date	/ Time	<u> </u> :			\A	cepte	lbv:			Date / Time:
7.3	9-29-					u V		1	-dr	9 -	30-21 /0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

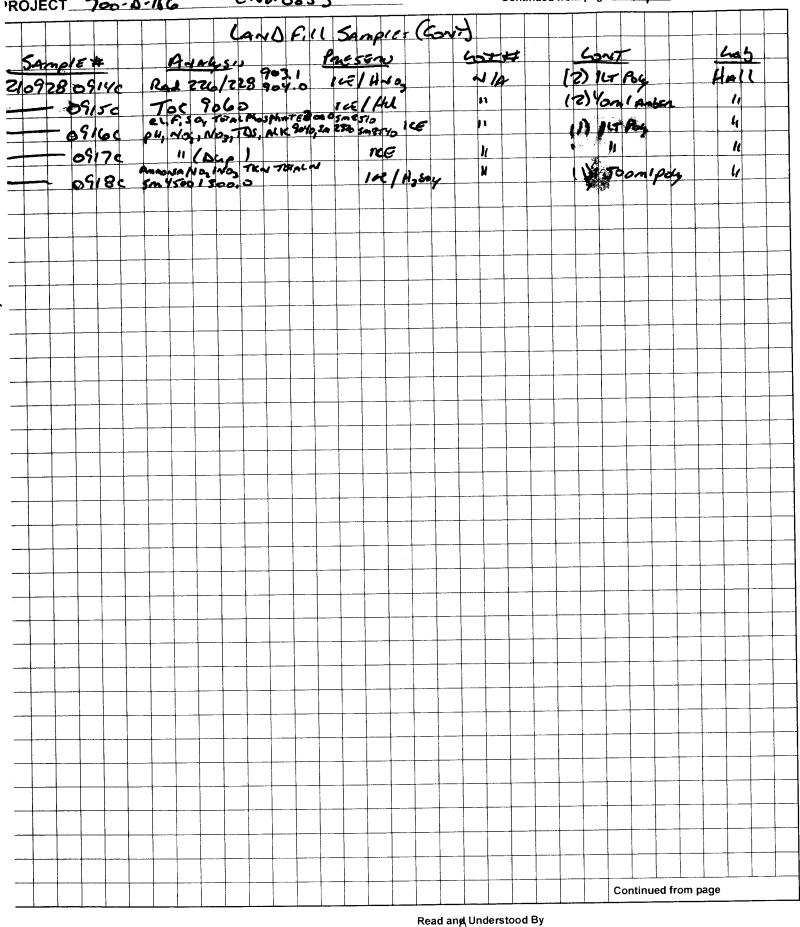
	te: 9-29-21									, -		Page 3 of 3	
San	nple Location: 700 · A Pertinent Notes (if an	.253				. ,	Analyt	ical Re	equireme	ent			7
	·	<u>1y)</u>	# of Containers	Sample Matrix*	124TCB	000,000						XPec	
12	Sample Number 210929 0700c (7	-?\ -?\	7	A	X		£	 	 	<u> </u>		Charge Number	7
\\ -	0761c ft		1	1	 ~	×			-		+	WETF TB WIF	
*-	` <u>`</u>	<i>(3)</i>	7		\sim	-			 .			WSTF TB O/FB	ser
×		i 3)	1	I		∞		_	+		+		-
	(+	3							-		 		
_		3						<u> </u>	+		+		7
						1							
Sam	ple Location: Pertinent Notes (if any	7	 -	·		A	nalytic	cal Req	quiremen	ıt			
	retiment notes (ii an	<u>A)</u>											
			of Containers	Sample Matrix*									
	Sample Number		#	Sar								Charge Number	+
													7
			-		<u> </u>	$\overline{}$							
					-								
			\rightarrow	_									
<u> </u>				_									
													1
	Relinquished by:	Date /	Time				} 		1 1			- :	
		9-29-21				O		ccepte	by:	rh	9-2	Date / Time:	
					+	1			<u> </u>		. 		
									,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. り32年171亿分 ROJECT 700-D-186 ENU. 0053 Continued from page _ Day Halvonsen & Tony Torres prosent Thew outlier is Parp Samples will be collected from a TEP/or discharge Tube. Carboy FireAL INITIAL Meron ID's 210928 0855c 21097809900 04/ cons # 7. 43 14 Tun 6# 7.50 19.8% 19.7 c 11572 = 10.1 1384 Ms/cm 91017 1167# 1377 Asken "Epp= 0.23~76 ; 0.18 10-30-71 7.07/10.14(178.4) 1 Rds Hpm5 7.06/10.11(16.7) 9.89 13 post 7.08/10,14 7.07 1/0.11 SAMPLE TAID BLANKS Preson. ANDLISIS 5AMPIEH 6T# Cont UOA 124, TES HEAL 1 we b Hel 10988 09000 NO (2) /m/wals 100/1/92500 0901c EDB/DBCP SAMPLES 46 AMEGE A Aralesis PRESEND STH COMT 13) Youlurals 210928 09020 82800 A Ls CUEIHU 2596 '(FB) 0903c 0904c 100 (00) SRI 01035016 1) 1cr Amber 0905c PEnchronate 11)12501 004 11 Als NA CANDFILL SAMPLES Preson SAmela # ANAGES ST# CONT 21 09 28 05060 UDA MTBG, 12,4-TES (4) Com vines 1021.4cl NIA HAU (Dup) 0907c (3) 11 H 0908c EDB/DBCD GOY. 1/E/N4.5203 0909C PENTACHIER OPHONOL PER SENTER! CE (2) (4) ICTAMBER ŋ 09/0C P HENOIS 100/11.50 1 6 l l 11) 500m/poly 0911C Cyanida 385.4 11 li 105/MAOH 0912 c metals 200.7, 2008, 245.1 100/Halas

0913c

9-28-21


11 (Oup)

Read and Understood By

1) 250mlpay

11 dohtinued from page 7 5

PROJECT 700-1-186 END. 0053

J. 9-28.21

Sample Location: 700.0.186				Α	nalytica	ıl Requ	iremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	MTISE 8260	ENG/Deck Dari	82200	700	こしゃしゃ のです			XPCC Charge Number
210928 0500c (TB)	2	A	X							
0901c (13)	1	7		X						
0102c	3	1			×					
	3				×	T				
05040	1					ж	**			
05050	. 1						×			
- 0906c	4	1	X							
Sample Location:		<u> </u>		P	Analytic	al Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	1,2,4, Tes	edg/obef	Pep, Be HP 8773, 130	PHEwols	CYANIDE 375.4	metals		Charge Number
210928 0507c (Aug)	3	A	X							
- 808c	Z			×						
0909e	4				×					
-0910e	1					X				\$
0911 e)	\prod					X			
09120	1							×		
- 0913c (Dup)	1		\cdot					X		
	e / Tim	ie:			eul	Accept	ed by:	_dr	9.	Date / Time: 29-21 / 090

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9-78-71			T							ge 2 of 2
ample Location: 700- A- 196				A	nalytic	al Requ	irement			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Past 226/228	Tac 2060	ecif, 30y i Total P Nos, wa Tos Alk 300 o foubsan 2770	21 Hz, NG MQ TRN				X/cc Charge Number
21092809140	2	A	×			-				
09156	2	1		X						
- 291 (ac	ı				×					
09.17c (Dus)	1				X	,				
- 0916c - 0918c	1	上				X				
Sample Location:					Analytic	al Requ	iremen	t		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	San								Charge Number
Relinquished by: Da 9-28	te / Tim	e:		-	en	Accepte	d by:	-d	9-9	Date / Time:
					1				•	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Cray Del Ferra

9/28/21

9-29-21

*ROJECT 700-H-350 WIT ENV-0020

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			· · · · · ·							J _	/\/	· · · ·			1	1	1				T	1	111	- J		1	•			. 1
_							<u> </u>	L	an	āБ	1		am								,				_					
am	لم	<u>e</u>	ļ							sis			7.4	se.	~	arfi	re			00	la	ne	<u></u>		Li	土			-a	>
09 <i>a</i>	81	O Z	5y		NF	14/	NO	./٨	10,	TK	N	ļ.,	ce	lμ	_ <	0			(1)	51	10	N/P			<u> </u>	1.		\mathcal{H}	EA	7
						1	ota	4	1		-	'	LE	/ "	20	74	ļ		٢٠/		JU W	717	014	-	N	A				
	<u> </u>	02	6y				a C	Du	۱. ام)				u			ļ				L				L	Ĺ			u	
		10:	551	,	5	V	A/	Atr	12/	he	PA	H's		ia	e_		ļ		(4)	11	A	ndo	rs		<u> </u>	ļ	<u></u>		u	
		10-		7		P	CB	1/1	BE	HP]	ļ				ļ				-							ļ			
		13	55	, _V	-	he	no	5/	90	671	W	ļ	i	e	H2	So	Ц	(1	11	A	mb	21		-(_	ļ		ч	-
		'		1			ļ			1	_						Ľ			<u> </u>		<u> </u>			-		-			
		14	20	Y	(ya	nd	ine	b)	43	35,	4	i	ce	/ N	aD	H	L	1)5	00,	N	Pt.	90	ly_		4	ļ		ų	_
		14	45	V	Me	ta	s/:	200	ר[Zoo	.8/	245	1_	ic	e	HN	03	\mathcal{L}	ءَ (١	250	m	P	ols			e_			4	
				ļ 7							1													7	_					
		-14	46	y k	AI	C	M!	Ra	-2	26	/22	8			U	-		6)1	L '	Pal	1 S			(•	ļ		ч	
-					9	03	11/	90	۲4.	0	ļ	ļ 								-	ļ	[-	ļ			
												-		1	1.								,			-				
		158	201	_	10	C	19	06	01	W				10	2/{	10	<u>L</u> _		2)4	t0,	nl	vi	al	ς	59	0	2		u	
		ļ				-	 			-												ļ						-		
							 					ļ								-	ļ									
					-					-											ļ	-			-					-
							-			ļ		ļ					-			-	-									
-						-	-	-		ļ	ļ																			
						_				-		-	\					_			-		_	ļ	<u> </u>					
un	2	I)	1	l	25	1	- 6			5 .;		'	3)	i	1	4	L		55	1	1	1	5)	5:	1	2	1			
			1	4.					64	}. { }. [-			1	58			64					6 ¹		61	<u> </u>			
			6	4,	53	5	-		6.	† .(2				t .:				64 55	.6	4	-		6 ^L 53	1. 6	р О				
-			5	٥,	21		-		55	ا. (9			5	5,	18	-		55	, 1	(_e _			25	P. <i>I</i>	2				\dashv
	·				<u> </u>		ļ	-				ļ. <u></u>															<u> </u>			
		7					-7				ļ	ļ													_			-		
-		6)		5,1			7	11	5.0	1	ļ	8					a	<u> </u>	55	.0		1	0)		4.					\dashv
			64	t. 5	8		-	1	4.5	ı		<u> </u>		4			ļ		64	.5	5			6	4.	5	6			
	~		l	ł	1	-	-		4.6					4					64						,4,					_
+-			55	5. C	8	<u> </u>		5	5,0	97			5	5.	0	7			55	.01	+			5	55	.10)			
ļ		7	ه و مسو		,			_		~ ~	-					-					<u> </u>	<u> </u>								
		(1) :	54 111	91	<u></u>	-	12) 5	11	.88 55		ļ																\vdash		
			4.			-		6	7.	55		 -													-		-			
			4.					6	4.	59		ļ			-	ļ				ļ	<u> </u>				<u>L</u>					
			54.	95	`			15	4.	13		1			1	1		1	1	1				Cor	ntinu	ed fr	om p	age		

Craig Del Fermo

9 28 21

Or Signed umch

9-29-21

Date

	Date: 9 28 21								-	Page _ 1 _ of _ 2
	Sample Location: 700 - H - 35	0			A	nalytic	al Requ	irement		
	Pertinent Notes (if any)					144	a_	50.9		
		2	*×			8260/MT	EDB/DBCP	t, T	ļ	
		# of Containers	Sample Matrix*	0	7	/82	م /	Sou		
		fCor	nple	928	607	Teb,	DB	1/2		
	Sample Number	0#	Sar			7	Ш	<u>5 6</u>		Charge Number
/	2109280810y (EB)	3	A	~	_					XGMD
>	0811y (EB)	1	A		~					4
<i>`</i>	0950y (TB)	ત	A				, 			XPCC
/	- 09514 (TB)	١	A				~			u
<u>\</u>	0952y	4	A			/				u
1	0953Y	2	A				/			ч
/ -	09544	1	A							ч
	Sample Location:	, \			A	nalytic	al Requ	uirement		
	Pertinent Notes (if any)			2						
		<u>8</u>	*×	 - -	47					
		ıtaine	Matri	NH4	(REHP					
		# of Containers	Sample Matrix*	Anon Noz/A	SVOA					
	Sample Number	#	Saı	4,3	3	ii.				Charge Number
1	21092810254	l	A	V						XPCC
<u>\</u>	1026y (Dupl.)	1	A	/						4
	1055y	4	A		/					и
	· ·		:							
	a note to	/ Time	1		C) (Accepte	1.	La	Date / Time:
	May 10/ Feno 9/28/21	11	15h	<u>rs. </u>		m l	\mathcal{N}	Ilmi	4 4	29-21 /0940
	-									•
										100 100 100 100 100 100 100 100 100 100

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9 28 21]	Page 2 of 2
Sample Location: 700 - H-350				A	nalytica	al Requ	iiremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	SVOA/REHP	Phenols	Cyanide	Metals	Ra-226/228	Toc	8260	Charge Number
21092810554	3	Α								XPCC
13554	1	A								u
14204	1	A			-					4
14454	1	A					-			v
14464	2	A								(4
15204	2	A						/		ч
15214	3	A							V	XGMD
Sample Location:				A	nalytic	al Requ	iiremen	it		
Sample Number	# of Containers	Sample Matrix*	209	Perchlorata						Charge Number
21092815224	1	A	_	•						XGMD
1545Ÿ	1	A								u
	/ Time	55 h	rs.	(b)	u /	ccepte	d by:	d	9-2	Date / Time: 9-21 /0940

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#128(y) 41
Continued from page 40. ROJECT 700-H-535 WJI ENV-0020 Runs 1) 142.07 150.83 142.10 2) 142.05 150.83 150.75 141.92 4) 141.57 3) 142.02 18.02 120 82 150.67 150 69 50.76 142.01 7) 141.81 150.48 141.82 6) 141.86 150.81 150.67 141.90 Continued from page

Read and Understood By

Ou Signed

Read and Understood By

Date

Read and Understood By

Date

Date: 9 29 2									3	Page
Sample Location: 700 - H - 535	-			A	nalytic	al Requ	airemer	nt		
Pertinent Notes (if any)				5						·
	<u></u>	*×	ຸ	44						·
	# of Containers	Sample Matrix*	8260	M						
	f Cor	nple		5461						
Sample Number	#	San		7						Charge Number
2109291510y (EB)	3	A	~							XGMD
1511 (EB)	2	A								и
				·						
Sample Location:				A	nalytic	al Requ	uiremei	nt		
Pertinent Notes (if any)										
	ø	*.								
	tainer	Aatri y								
	# of Containers	Sample Matrix*								
Sample Number	io #	San								Charge Number
	-									
Relinquished by: Date	/ Time	e:			A	ccepte				Date / Time:
Craig Oll Ferro 9/28/21	16	15hi	\(\alpha\)	10	u/	<u>\\</u>	lun	·d	9.5	30-21/0930
<i>f</i>									, ,	
				U						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

	Date: 9/30/11									I	Page of
	Sample Location: 700 · H · 535				A	nalytic	al Requ	iiremei	nt		
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	926615	P(B, BELLP						x Pcc
	Sample Number	0#	Sar		差						Charge Number
	2109300700 y (TB)	2	A	X							
	D 860 Y	4	V	X							
	× 08014	γ	H		X						
					:						
	Sample Location: 700 · fl · 535				A	nalytic	al Requ	uireme	nt		
	Pertinent Notes (if any) WSTF Sample Number	# of Containers	Sample Matrix*	१५६०	607/Bro	T. Mufals	Avion Alk	2	Perchante	NO2 NO3	XGMD Charge Number
1	2109306935Y	3	A	X							
	0936 \	1	(X						
	1020 1	2				X					
	10214	2					X				
	10501	(X			
	> 10514	1							X		
\forall	10524	1	1			\sim				人	
		/ Time	:) A	ccepte	7 X	1		Date / Time:
	9/30/21	<u>@</u> \	(110			on	V	<u> </u>	len-d	h 9	1-30-21/1114

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT TOO-H-GTO WIT ENV	-0026	Notebook No. Ψ64 # /28(γ) Continued from page
Bob Tufts & Craig De Ferraro pr will be sampled using 5 triple rii	200 + 1111	
Will be sampled using 5 triple ris Probe # 2167. Surface checks perso	sen weather is	clear, cool, E breezy. This zon
Probe # 2167. Surface checks perso	stainless ste	el sample tubes Gen. in uso
Jerso Perso	rmed on probe pri	ior to sampling
BOMES	12	4 7
Sample Andreis	+ Blanks - Carboy	63
21092907454 VOA by 8760	reservative ?	ortainer 1st /1
TSY VOA by 8260	ice/HCL (3)	40ml vials 2596 ALS
Initial Parameters		TO ALS
Time 2100 00 00	Final	Meter ID
Time-21092908234 -	Time - 210929112	
PH - 8.50	PH - 8.62	
lemp - 18.0°c	Temp - 18.5 C	1 urb - 20
Cond - 635 us/cm	Cond - 627 us/cm	" Sd - 5.56
Turb + 1.92 NTU'S	Turb - 0.41 NTV	\$ 1,09 = 3.00
pt pre -7.12/10.10 (1740)	pt pre - 7.05/10.0	101 - 110//
PH post - 7.13/10 08	PH 2051-704/10.0	$7(22.3^{\circ}c)$ 4 $E_{10} - 9/30/21$
Dtw - 261.07 ft.	DW - 261 33 F	
Atmos - 12.36 psia	Atmos-12.38psia	
	IDW - 1/2 gal	7 400 7947 12/01
	7/2 ga/.	10 4101 E56 7/02
	50.00	
Sample Analysis	Samples Preservative	2
		ontainer Lot Lab
209290850 y VOA by 8260 -0851y GOT/Bromecil	ice HCL (3)	40m via 5 2596 A15
0852y Total Motals		11 Amber 01035016 Sport
915y (Dual)	1ce/MNO3 (2)	125 1 poly 21-01-21 ALS
09/64 Perchlorate by 6850	u	u u
1	100 (1)1	25ml poly N/H u
S Land		
sample Analysis P		
11-20/03/3		tainer Lot I ah
(P)	ce/HCL (2)40	Inlyials 2596 HEAT
	(4) AC	Inl vials 60358
D919y SVOA/Atrazine/PAH/PCB'S BEHP	ice (4) [L	- Ambers ala
YEAR P		MIK 4
*Trip blanks collected are "WST		
A ITIP blanks collected are "WST	F" sets.	
		Continue d from page 39
Pais D.12	Read and Understood E	
1 Aqua Nall X	1) .	

Praig Del Zemo

9/29/21 Date

or Wunch

umch 9-30-21

39

'ROJECT 700-H-670 WJI ENV-0020

'ROJECT_				<u> </u>	- 6	1	_	w	<u> </u>	<u>ن</u> ما	> N	V									d froi					•				
Runs		I	16	13	,ዓ :	5		2		93	3.9	3		3)	19	3.	90		4)	1	93 03 03 93	. 4	6	:				\perp		-
		J	2	02	. G	0			_ {	२०	2.4	58			20	2.	57			a	04	٤. ٤	57							
			20	2	. 5	B				20	a .:	58 54			20	Σ 2.	58			á	202	2. 5	3							
			1	93	9	0 8 4				19	ვ.	90			1	93	8-	1		1	93	3.4	18							
				, _	•										•							•								
		~		93	2	2		6		a 2	D	2		_	7	ıa	3,7	a		9)	10	3	75							
		رد	1	12	, <u>O</u>	<u> </u>		رط). D	2			y	.		- 1		0)	7	5	<u>ر،</u>	7						
			ع	02	, <u>)</u>	<u> </u>					. 0	5 5					a.5				200) \	<u>د .</u>	<u> </u>						
			<u> 2</u>	53						O		2				0.2	a.4	16			ä	D A	.3	<u> </u>						
				93	<u>. 8</u>	0				93	5,	19				17	3, -	18			1.9	13.]	1						
																														_
				•																	-			<u> </u>						_
																														_
																														İ
	-																								-					
												 																		
																						-	-							
												-										-	-			-				
						-						-	-				ļ					<u> </u>								
			`		-						-						-			<u> </u>	-	ļ		-						
		· · · · · · · · · · · · · · · · · · ·				ļ								-	ļ	ļ					-	ļ	-					$\vdash \vdash$		
							ļ						<u> </u>							ļ		<u></u>								
																					1									
																<u></u>							<u> </u>							
	, ,																												L	
								1		-	-	 		 			<u> </u>	1												
													-		-			<u> </u>		-		1	-	-	+	-	-			
						-	-			-			-	 		ļ	-			 		-	-		+	-				
				-	-	-	 			<u> </u>	-	-	-			-	-		-	-	-		\vdash	-				-		
_ •					-	 	-	<u> </u>				-		-		-		ļ		-	-		-		-	-				
				-		-	-		-	-			-	-	<u> </u>	ļ					-			-		-				
			ļ.,	-				ļ		-	ļ	ļ			ļ		<u> </u>	ļ	ļ		1		-		<u></u>	1	<u> </u>			
							<u></u>		ъ.							<u> </u>		ļ					Со	ntinu	ed fr	om p	age			

Gay Del Ferro

9 29 21

Read and Understood By

Or Signed

9-30-21

Date

	Date: 9/29/21										Page of
	Sample Location: 700-H-670				A	Analytic	al Req	uiremen	ıt		
	Pertinent Notes (if any)					5/	,				
		# of Containers	Sample Matrix*	8260	607	rotal Meta	_ ~	VOA/MTRE TCB			
	Sample Number	<u> </u> 									Charge Number
1	2109290745y (EB)	3	A								XGMD
1	0850Y	3	A	/							u
•	0851Y	1	A		/						ч
•	0852y	a	A			~					ч
•]	0915y (Dupl.)	2	A			-					ų
`^	0916y	1	A				~	-			ų
1	0917y (TB)	a	A					~			XPCC
	Sample Location:				A	malytic	al Requ	uiremen	t		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	VOA+MTBE TCB	SVOR / Atrazine PCB's / PMH						
,		4	A	~						!	Charge Number
•	2109290918Y 0919V	4	A		V						XPCC
ļ	Olity	7	П		V						u
	·										
-		 									
	Relinquished by: Date	/ Time	: :		/I	^ A	ccepte	d bv:			Date / Time:
	Craig Del Fermo 9/29/21		shr	\$		yu (I = I	lu-a	ch	9-7	30-21/0930

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT 700. J. 200

Burrows cloudy This a dedicated bladder pape. will be purged using Samples will collect 1 Water quality parameters will be tefor dischare how montored using 9 OFD anizar. Carbay G. 5 dibrations Initial OTW - 16 40 ed cit a 637 mm/Hz Oakle Buffers (4,7,10) 1413 us/con 5TD solu Lot 91017 ROG - 46. 8UTL Exp. 9/30/21 50-5,17 NTU Cond (ms/cm) em =1.() Emeless (time) H9 Tub (und) DTW 124 00 450 21 66 .54 181 . (leo 2109280900 A We. 88 5.81 21.65 23 0902 A .159 18 21/65 .158 .13 181 0904 A ታ. (ኪ NISTF Samples Condiner ample # Analysis Preserve 2109280910 3140 ml vinds Als 0218 pd 40U Halze 2586 : (48) 0911 A (1) IL ANDE SRI 607/ Brome 01035016 0912 A Perchasabe 6850 p/10/125 1/1) Ice/1/3/45 0913 A ALS Landfill Trip Blanks imple # Presente Analysis JOA, MTBE, 1214, 8260 12)40ml vials HLI/tu 2109280700A EDB DBCP SOH ! Ia/SOT 1) your viets AVOTO and Sill Samples emple # Analysis Preserve UON, MTBE 128 8160 #U/Zu 4)40 ml vials 210928 0914 A 09/5A (and) EDB/DBCP 504.1 Ice SOTh 09/6A SUDA, ATR, PCP, PAH, PCB, BEHP 6917 A Heal 8270/8310/8082 A8180 SUDA, ATR PCP, PAH, PCB BEHP 14 8270/8310/8082 (Dup) Continued from page Read and Understood By

9/28/21

on U umch

7-19-11 Date 'ROJECT 700 · 3 · 100

Continued from page _

					<u> </u>	<u> </u>	\perp	<u> </u>	<u> </u>		<u> </u>	<u> </u>	100)	<u> </u>	70	wor	رح.	Co	4					└		1	· · ·			إلبا	4-
aug	K e				Ī		An	પ્ય <u>ક</u> ા	5						155	دري					2	artice.	مد	ا_م			lot	'		La	0
091			A _			br	lose	5	906	1				<u> </u>	250	~ []	2 م				1)]	VL A	der							Her	J
	1	920	1 1			C41	ani d	e	339	\$.4				\	J90#	. 1				(<u>,) <</u>	100	1	brow	ام مو	γ <i>Ā</i> _				, -	
	1 1	921	1 1			Mel	als	300	7.0	, la	8.0	244	.1		HV						<u>) (</u>	150	اس	pol			_			- ~	
	, ,	125	1 1		-	Rad	- 22	الم	<u> 228</u>	_ a	<u>u3.</u>	1/9	<u>, </u>	<u></u>	3 1	i i	i 1	l i				16									
	! 1	ે			_	700		9060	Ø						770	7\Z	_ ر		_	(1	۲) ر	40~	A A	Me	Vi.	Ĺ				,	_
		124	1 1		•	<u>د</u> ۱ با	4,5	504	, To	tal 1	2,1	103	No.	2.		I	u		_	(<u> </u>	LI	408E								-
					7	DS,	N/A	مانمن	۴.	350	0.0	904	0/5	M 25	20/	5,14	2510	/54	254	0	! 										
	09	15	A		N	143	, N	102/	No:	3 ,-	TKN	Į, 1	Cota	N		Hz	50 4	[7	ب		<u>, </u>	500	<u>~</u> /	P0/~							=
					4	M	450	\o /	30	0,0		Ù									ا			, ,		<u> </u>					Ĺ
								'		ļ!								Ш			ļ										_
	Ш							ļ!													·	'									L
Na	۱ -	2	2	٩				<u> </u>		ļ!					\longrightarrow						ļ					· 	ļ	ļ!			1
	\square	\square							-						 						ļ		ļ				ļ				1
			\square						ļ	<u> </u>		Щ			 			 		_	<u> </u>					 	_				L
	<u> </u>				\sqcup			!				1			\vdash			 	\rightarrow		<u> </u>	<u> </u>			h	+	-				-
Ç	44	<i>(10</i> 4	M	<u> 71</u>	<u>092</u>	% 0¢	925	A	W45	-	ccid	14	1	put	01	<u></u>	109	<i>18</i> 0	ę 2 4	A	w	Nich	_	CON	tari	ud	14:	280,	1-61	6200	V.
Cd	45	W	८१९	<u>.</u> 5	tim	2/4	J.	<u> </u>	ļ	<u> </u>	<u> </u>										<u> </u>	<u> </u>	<u></u>				<u> </u>			\vdash	+
	. 1	1	. I	ì	' i	1 1	1 1	١.,	١.,	١.	· 1	` 1	'	1	'		1	'		1	٠.	١.,	١.,	· 1	' 1			1 .	í.	1 1	1
			 				\vdash																								+
																	-														_
											The state of the s						•														
																	•														
																	-														
																	•														

Mas

9/28/21

Jon Signed

9-29-21

Read and Understood By

9 | 29 | 21 | Signed

Signed

Signed

9-29-21

Continued from page

Sample Location: 700 - 3 · 100					Analytic		iremer	nt	1	
Pertinent Notes (if any) Landfill Samples Sample Number	# of Containers	Sample Matrix*	TUS 8260	ED13/100c2 504,1	SUGA, ATE, R.P., PAH, PCB, BHP & BZ70 PAH, PCB, BEH & BZ70					Charge Number
2109280700 A (TB)	2	Α	X							Xamb XPCC
OTOLA (TB)	1	1		X				_		
- 0914 A	Ч		X							
6912 A	3		X	*						
0916 A	2			×			_			
- 0417 A	4				X	-				
- 0918A	4	L			X					*
Sample Location:				1	Analytic	al Requ	iireme	nt		,
Sample Number	# of Containers	Sample Matrix*	Pherols	Junid R	Mehals	Rad 124/128	Toc	NO3, NO2, TOS, AIK, 1	JUH3, NOZNOS/TKN, Tolul N SMY800/3000	
7109280919 A	(A	X							XAM XPCC
- 0920 A	1	1		×						
0921 A	1				X					
> 0922 A	2					X				
- 0913 A	2						X			
- 0924 A	1							X		
_ 0915 A	'	1							X	<u>-</u>
Relinquished by: 9/18/9	ate / Time				on (Accepte		-ch	9-:	Date / Time: 29-21 / 094

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 4/28/21									F	Page of
Sample Location: 700. J. 200				A	nalytic	al Requ	uiremen	it		
Pertinent Notes (if any) WSTF Samples	# of Containers	Sample Matrix*	9166	607/B-0	Perdobiale 6850					Charge Number
	3	Α	/							XGMD
1	3	1	×							\\ \lambda_{\text{orig}}
	1			X						
	1	L			X					
	,									
						 .		,		
Sample Location:		r		- A	Analytic	al Req	uiremer	ıt		
retellent Notes (ir ally)	of Containers	mple Matrix*				-				
Sample Number	#	Sar								Charge Number
		-								
							-			
))		on 1	Accepte		ud	9-,	Date / Time: 29-21 /0940
	Sample Location: 700. J. 200 Pertinent Notes (if any) WSTF Sample Number Sample Number O911A (Fis) O912A O913A Sample Location: Pertinent Notes (if any) Sample Number	Sample Location: 700 . J . 200 Pertiment Notes (if any) WSTF Sample S Sample Number The 110928 0910 A O911A (FB) O912A O913A Sample Location: Pertinent Notes (if any) Sample Number Pertinent Notes (if any) Relinquished by: Date / Time	Sample Location: 7b0 . J . 200 Pertinent Notes (if any) WSTF Sample S Sample Number Sample Number O9(1A (FB) 3 1 1 1 1 1 1 1 1 1	Sample Location: 700. J. 200 Pertinent Notes (if any) WSTF Samples Sample Number Sample Number OGILA (FB) 3 V OGISA OGISA Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any)	Sample Location: 700. J. 200 Pertinent Notes (if any) WSTF Sample S Sample Number Sample Number O911A (F8) 3 X O912A X O913A X Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Relinquished by: Date / Time:	Sample Location: 700 · J · 200 Pertinent Notes (if any) WSTF Sample S Sample Number Sample Number Oqua Oqua Oqua Oqua Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Analytic Relinquished by: Date / Time:	Sample Location: 700. J. 200 Pertinent Notes (if any) WSTF Sample S Sample Number Sample Number OGILA (FB) 3 X X OGILA (FB) 3 X OGILA (FB) 3 X OGILA (FB) 3 X OGILA (FB) 3 X OGILA (FB) 3 X OGILA (FB) 4 OGILA (FB) 4 X OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4 OGILA (FB) 4	Sample Location: 700 . J . 200 Pertinent Notes (if any) WSTF Sample Number Sample Number Sample Number Pertinent Notes (if any) Oqt(A (FB) 3 X X X X X X X X X	Sample Location: 7h0 . J . 200 Pertinent Notes (if any) WSTF Samples Sample Number Sample Number Pertinent Notes (if any) Sample Location: Sample Location: Sample Location: Sample Location: Pertinent Notes (if any) Sample Number Analytical Requirement Relinquished by: Date / Time: Accepted by:	Sample Location: 780 . J. 200 Pertinent Notes (if any) WSTF Sample Number Sample Number Sample Number Policy Sample Number Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number Pertinent Notes (if any) Sample Number Relinquished by: Date / Time: Analytical Requirement Analytical Requirement Analytical Requirement

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9/29/21				_		_			P	age of
Sample Location: 700 · 5 · 200				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	NO3/NO2, TOS, AIK							Charge Number
2109296830A	1.	A	X							
2101210BSOF1										
Sample Location:	•	1		ı A	Analytic	al Req	uiremer	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
		\vdash					<u> </u>			
Polingwighed by:	/ Ti	<u> </u>	1	1	\	Abcento	d by:			Date / Time;
Relinquished by: Date \(\frac{\gamma_1}{2} \frac{\gamma_1}{2} \frac{\gamma_2}{2} \frac{\gamma_1}{2} \frac{\gamma_2}{2} \frac\	e / Tim	e: 9\0			Jul	Accepte	ed by:	_dr	9-	29-21 /1000

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

6 PROJECT B 650-EFF	3-1	Notebook No. Continued from pag	PFTS > 10
Frank Gall	egasi (4.44	Presen	J 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10
POCTONEF	Side of 51	Stem Scarp	re Pols will
			1 pot ins
Peremeters a			077
Ph. 8.52	Ph/rond-12	7 40026	5-2-0 10-2-0 10-2-0
TEMP-24.20c	1.17 1.1806-52.17		0.08
Pupe 75 2745	1. CO. AT		
Phipast			
Sanglett Agell	Semples		
2107270716 40264	515 Pro 0 5760(()) CE 5 Hel	- COTT CAR - 2596 AC	5 (3)40mlval
008	(TB) , ,		
	NOMA :	01033016 5 m	1 W Ctember
2102270970	(FB)		•••
	À 5	Co	ntinued from page W/A
	i	d\Understood By	
Signed	9-27-2()	Oh Signed unc	h 9-27-21

Signed

Date: 9-27-2 (Page of
Sample Location: \$ 650 - EFF.	-1			A	nalytic	al Requi	iremen	t	
Pertinent Notes (if any)			()	グイ	4				
	SIS	ix*	2)6	57.00 60	74				
	ıtaine	Matr	200	52	7 5		·		
	# of Containers	Sample Matrix*	80/	40	7				× GMD
Sample Number	#	Sai	2	577	7				Charge Number
2109770916	3	4	X						. ,
- 0917(FB)	3	À	У						, ,
- 0818 (TB)	3	A	X						
0918	l	A		X					
0919	1	A			X				1.
0820 (TB)	1	4			X				,,
	1	1			Х				′,
Sample Location:	l/	<u> </u>		<i>I</i>	Analytic	al Requ	iremen	t	
Pertinent Notes (if any)									-
	, , , , , , , , , , , , , , , , , , ,	*							
	ainer	fatrix							
	of Containers	Sample Matrix*							
Sample Number	Jo#	Sam							Charge Number
									
		 							
			-		-				
		i	II .	1		1			
Relinguished bw. Date	/ Tim	e:			,	Accepted	i by:		Date / Time:
Relinquished by Date 9-27-71	Tim	e:			A	Accepted	i by:		Date / Time:
Relinquished by Date 9-27-71	/ Tim	e: 030	>		A	Accepted	i by:		Date / Time:

WSTF 381C (05/2016)

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. PFTS #10 7 Continued from page *ROJECT B 650-/NF-1 11 esos Fyrans Avalos Buffers 4002691 8-27 1- 2109270845 Ph/and -12 4001005 Cond-112245 m RDG-52.17 Th(b-1.22 N723'20,#91017 Phpe-7.101,0.12 (71.62) Exp 9/30/21 Ph Post-7.08/10-10 765 Her 7596 4810A 2109270946 8260 (EB) 0948 NONA DINA BONGO 10 E 010350165WRI 11 (+ = n be) Continued from page N/A Read and Understood By

J/All

9-27-21

for Wund

9-27-21

Date

Date: 9-22-7 Sample Location: \$650-/NP									P	ageof	
Sample Location: \$ 650-/WF	-1			A	nalytic	al Requ	iiremen	t			
Pertinent Notes (if any)				100							
	STS	ix*	60%	14 / 29 O							
	# of Containers	Sample Matrix*		9 2 X							
	oJ Jo	mple	8	30)						X Gu	20
Sample Number	#	Sa	٦							Charge Number	er
2109270946	3	A	X							/ 1	
- 0947(FB)	3	A	メ							••	
- 0948	1	A		X						- 1	
							. !				
					i						
Sample Location:		.l.		A	nalytic	al Req	uiremer	nt			
Pertinent Notes (if any)											
	şo.	*									
	tainer										
	of Containers	Sample Matrix*					:				
Sample Number	, fo #	San								Charge Numb	er
	-			/							
Relinquished by: Date	/ Tim	ie:) 1	Ccepte	d by:	<u> </u>		Date / Time:	
27.7.2	16	103	9)		In 1		Jun	mil	9-	28-21/09	910
			ı	1 1			1			/	
				-10					ļ		

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

4 PROJECT 3 655 - EFF-Z Notebook No. PFTS #100
Continued from page V/A 16 Galleros & Tim Ko. Be collected from a oft On EFFSide of system, sample Pois De Pulsed for I minute Prior to collecting Pe and samples. Carboy III Palone 1015 METERIA Buffels L-0 T 77 44 Time 2109130940 Ph/cord-11 4002691 Ph -7.48

Tulb-6

Tong-25.6°C

"5:0-3.17

Cond-11 40 03/Con ... ROG-3.24

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-6

Tulb-7

Tulb-6

Tulb-7

Tulb-6

Tulb-7

Tulb-6

Tulb-7

Tulb-6

Tulb-7

Tulb-6

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-6

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb-7

Tulb 4001005 Ph Post -7.08/10.08 2109130941 VOA by 5760(11) ICE 5'HOL 2017 cont A (5 (3) 40 mlvis 8942 · (FB) 0943 ENDMA DONNIED , CE 50A(() (tember 0/0350/6 0944 C(NDMA) Continued from page / /A Read and Understood By

Date: 9-13-21										Page of
Sample Location: Blob-655	·EF	で-て		F	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any)				\ \ \						
	ainers	[atrix*	7 8 7 7 8 9 7	100%	X 2 4 X					
Count N. 1	# of Containers	Sample Matrix*	928 400	Brobyees	در لا					×cmo
Sample Number 707130941		I.	-	~						Charge Number
	3	A	X X							
0945 (FB)	1	Λ		X						
0944	1	A		*	X				,	
8945 CFS	3) 1	A			X					
								·		
Sample Location:				A	Analytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	lers	*xir								
	# of Containers	Sample Matrix*			٠					ŕ
	d of C	ampl								
Sample Number	##									Charge Number
	ļ								_	
	+				-					
Relinquished by: Date 9-13-	e / Tim	e:		10) 1 f	ccepte	_	0	0	Date / Time:
9-13-	7/(~XX	5/	-\\ 0	n U	/ \!	w-	d	9-14	1-21 /0900
					···			·		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT BLSS-INF-Z Be collected from a dedicated sompling

ON, INFSIDE of 3 stem, sample port will

alged for Iminute Print to collecting Personage

Dies. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to collecting Personage

Ones. "Collecting & Print to LOTA Buffels pre tel ID 55-8 me-2109130934 ph/cond-11 4002691 186 Tull-6 25.8°C 'STA-3.17 11484700 'RDG-3.24 4 901005 S=m018A 2109130935 VOAYERGO 0936 AJUNA DINA BIODY CON A LOND BY CON THE STREET 010350165~R1(1)(40 Mear Read and Understood By 9-15-61

Date: 9-13-21									F	Page of
Sample Location: 3 655-1NF	- ر			A	nalytica	al Requ	irement			,
Pertinent Notes (if any)			26	(4/Dny by607						
Sample Number	# of Containers	Sample Matrix*	200	10/B				-		Charge Number
2109130935	3	4	X							N
0936 (FB)	3	A	X							~ 1
	1	A		X						L,
Sample Location:				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	N N								Charge Number
· .										·
				,	-					
Relinquished by: Date	/ Time	e:	<u> </u>		1	ccepte				Date / Time:
Relinculished by: Date	Z] (10)	(12	-	on 1	\mathcal{N}	Jun	_d_	9-14	-21 /0900
					J					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 # /2/ (c) 72 PROJECT BIM. 5. 527 MJI ENU.0053 Continued from page Burrows Weathe is clour & warm Sampled deficated glader pump Samples will be Water quality parameters will be monitored wing colled 9 0ED MP. TO Carbon G using Ogleron Biles (47,10) psing 1413 45/m STD Solution 4 570 - 51 ,11 170G - 48. NOTE (d)-المعراد Ep. 9/30/21 91017 Blanks Sample # 0750c Arelisis 210920000 Ha Ice 00213 rd AOU (3) 40 m v als Parameters (time) (2 langer (and [ms) **PO** ORP Turb (Now) M)M(M 1) 210 426 0 955 22.16 8.79 105 .48 0.98 09576 22.00 8.17 091 8.80 1.00 01590 21.96 11.106 8.81 0.68 Samples Sample # Analysis Preserve 21092010050 HU ITE 10A 548260 3)40 M viale 2596 Als 10000 = (7B) 607/Bramak 1007 C 1) 111 01035016 50-I Total Mutals 10080 HNO3/ta 2) 175 m(s 210121 Ms - WOT 5 Continued from page

Signed

9/21/20

Read and Understood By

Signed

9-21-21

	Date: 9 /20/21			_		-					Page of
	Sample Location: 81M.5.527				A	Analytic	al Req	uireme	nt		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8160	607/1300	T. Metals					Charge Number
4	\$109200750c (TB)	3	A	Y							χ _G MD
4	1005 C	3	1								Xeve
1	1006 (F3)	3		X							
-	10076	1			7						
4	10080	2	1			*		-			1
	Sample Location:				Ā	Analytic	al Req	uiremei	nt		
	Pertinent Notes (if any)										·
		# of Containers	Sample Matrix*		-						
	Sample Number	#	Š		<u> </u>						Charge Number
-							-				
-		_									
-											-
-					· ·						
ŀ								•			
		/ Time) 11	ccepte	d by:	/	_	Date / Time
-	9/20/21	Q	01/0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	In V	V)	un_	ch_	9-	21-21/0930
L											· .

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 #122 (B) PROJECT BLM-7-509 Resample WII ENV-0053 Continued from page Bob Tuffs & Crain Del Ferraro present. Weather is clear & warm. This well will be purged using a dedicated bladder pump. Samples will be collected using a testion discharge hope. Water quality parameters will be monitored using a OED MP-20 flow cell and water analyzer. Carboy GI in use. Resample event. alibrations DD-calibrated in saturated air @ 638 mm/Hg.

Conductivity-calibrated using 1413 us/cm std. solution.

PH-calibrated using Oakton buffers (7-10).

Turbidity meter #21 std-10.1 rdg-10.5 10t-91017 Exp-9/30/21 Trip Blanks - Water Purification System Sample Container Preservative 21090907158 Low Love NOMA ice 01035016 Parameters (time) temp (c) cond (ms/cm) PH Turb (vrv's) Do ORP DTW(F 210909 0955B 5.17 - 52 20.65 1.129 8.61 0.54 495,44 4.99 -50 8.63 09588 20.72 1.133 495.44 1001 B 26.82 1.136 8.68 4.75 -48 495 44 0.40 * Resample Event * Samples Preservative Sample Container Low Level NDMA 21090910058 01035016 - 1006 B a (FB) Initial DTW - 495,30ft Total rallons purged -Continued from page Read and Understood By Gaig Ill Tenno 992

Date: 9/9/21]	Pageof
Sample Location: BLM-7-509				Ar	nalytic	al Requ	iremer	ıt		
Pertinent Notes (if any)			U (
Resumple Event	2	* *	200							
Event	# of Containers	Sample Matrix*	FU NDMA							
	f Con	nple	7:						:	
Sample Number	- ° #	Sar	7							Charge Number
21090907158 (78)	1	Α	~							XGMD
100 5 B	1	Α								ч
1006B (FB)	1	A								ч
,										
Sample Location:			1	Aı	nalytic	al Requ	uiremen	nt		
Pertinent Notes (if any)							,			
	E	 * 								
	ntaine	Matri								
	# of Containers	Sample Matrix*								
Sample Number	#	San								Charge Number
										-
								-		
				/	$\overline{}$		·			
Relinquished by: Date	e / Time	e:) 4	ccepte			^	Date / Time:
Chary Del Terro 9921	112	ohr	5.		Oul	V/	\ m	-d-	9-	13-21 /0900
							1			
				1			J			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT BIM. 9. 419 Continued from page ther is partly cloudy & worm Burrows Varius Audos dedicated bodder pung Sompler will be this well will be pure el using water positif parameters will be Casba, C. 2 & water analyzer 2 0'11 @ (40 mm/Ha Using 1413 Using 5to Solution - Cal oxing oaklen--da . 49.7 www lot. 9017 Cxx. 9/30/21 Std- SLITURU Toblino Drulfa) (and (" %) PH groundacs (time) 520 temps: () 00 371.20 -73 8.15 4.72 3.47 210902 10250 .028 21.61 379.20 8.12 3.42 4.65 16276 21.63 026 3.34 4.34 21.59 .029 1029 C Samples Container Preserve Analysis angle Als HCIIIca (3)40 ml viels 2596 NOT ph &JCO 21090210300 (Dep) 10315 (FB) 16326 607 Bromacil (1) 14 Amber 01035016 185 1033(10396 (Dab) 12) 135 m/ps/4 Hlostu 210121 10350 Inited DTW - 378.72. Total Gallons Pursed . 3 gal

Read and Understood By

9/2/21

Du

9-7-21

Continued from page

	Date: BM.9,419 3					···]	Page	of
	Sample Location: 9/2/21				A	nalytica	al Requ	iiremen	t			
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260	607/Bro	T. Melals						
	Sample Number	to#	San								Cha	arge Number
/	21090210301	3	Α	X							XGN	ND
/	- 1031c (Dup)	3	1	K							1	
\	- 1032c (FB)	3		X								
_	10336	١			X							· · · · · · · · · · · · · · · · · · ·
	1034c (Dup)	1			X							
\	10350	2	-			X						-
										<u>. </u>		
	Sample Location:	T				Analytic	al Req	uiremer	nt ———	<u>. </u>	1	
	Pertinent Notes (if any)	# of Containers	Sample Matrix*									
	Sample Number	#	Saı								Ch	arge Number
									<u></u>			
				<u> </u>	<u> </u>						 	
				-						1	_	
				-							_	
		<u></u>								-		/ T:
	Relinquished by: Date	e / Tim			\(\frac{1}{2}\)	ere!	Accepte	ed by: W	d	9-		/ Time:
	11212		1110			- [~ 0	·)		1	- -	
			·)						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

\mathcal{D}	<i>>~</i>	ابهو	mo.	-Se-	٠.4	- R	do	1	G	برو	con	25	pr	e Se	af.	W	دما	Ne		· 5	c)	ميد	Ď	ત્	ζ.			71		.	Year to	
W	<i>ι</i> ν,	w	11.	Pe	p	A.	W		7.	541	<i>49.</i>	ارد	43	نہد	0	d	حدا	ىن	رب	1) a	بليلا	٠٠:	Pw	mp		54.	, lg	دع	·w	کد:	<u>k</u>
	1				_	_		1	i		1 -	1	1		~	i	l	1	l .		!!			. "	, "i	i .	424			1 1	44,000	18.72
					!	l	1 -	1	ł		1	}	1		_			1	1	1		1		7	5 1		201				A	1000
												ļ											•						<u> </u>			
Ce	1:1	100	4: و	<u> </u>	<u>'.</u>							-				ļ														81.5	ا ما	2
D	o =	1	~	5	Ha	ra)	te.	1	2	- 4	D 1	64	2	w		4		,	,		<u> </u>			/ h ~	., •		<u>, </u>	A . #2	7.0		•	2
80	2	ens	> <	= 1	us	: ~			3 P	4 (٤),	٦,	0	S	u E	GAC	n	- Ψ	10.	1			,		•	_			. 4 6.	y	. 2.25	C
Cor	سا،	الم	: 0:	لام:		53	~	۹	141	3	لاحه	w	5	10.	5.	11	: 0		ļ <u>:</u>	٠.,		,		,	, .	. 18	٠,		•	•5		
20	منط	1:4	, rc	الميا	er	=	づ		.₹	70	=	5.1	<u>ر دا</u>		05	6:	ζ,	2	b .	Lo	7	-=	مر	91-	_	€	٠٤.	91	3		٠.,،	
													-			<u> </u>											ļ.,					L
									7.	:0	ß	12	۲.	-		<u> </u>	-		-	ļ	ļ	ļ 					<u> </u>		ļ			
₹V.	·01	<u>يو.</u>	;				<u>C</u> ~	-	53	.	•	ļ		_	R	-د د	2,01	21_	<u></u>			er.	منع	كبدح		_	1	S	<u>V ;</u>		عيل	C
370	90	3 6	7 0	o C		<u>\</u>	oe'	by	83	0	L	4		•		1	e	1		(37;	'nó	1	٥:٥	1		32	26	* *	• . •	4	4
	-	` 6	201	د	•		No	~!	. 2	4				· -	_	Ic	e		-		(C)	<u>)</u>	An	m	-)€	85	8)		S	2
	<u> </u>				-			*.		ļ .	-	ļ					-		-	-		.*	, ,				<u> </u>	€ .	•	3	·w	
Br	ru	yar	sC	Τ.	m	<u> </u>	Tr	200	}	2	ro	0	-	ļ <u>.</u> .	0	\$_			6+1	ļ	-		0	<u>e</u> 4		ļ	حر	B	_	1	11	
3	09	07	09	00	ς	-	2	۲.۱	3	-	: ما	38	-		4.	72	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8 . <	12				74	-	ļ	0:	96		7,	7/1	\ _
	<u> </u>	_	٥٩	63	C	<u>_</u> _	2	ما. با	a	-	L .:	27		1.	4	67			8.	2.2		ļ		5		<u> -</u>	8	.3	B _		3 2	
		-	09	95	۷	-	2(فا. ب	41		: ن	19	٧,	*:	40	72			8.5	\$3	-			4			8	.9	D =		•	4
ļ							_		-			<u> </u>	-					-		ļ	-	-	<u>, , , , , , , , , , , , , , , , , , , </u>			<u> </u>	<u> </u>	ļ	15			i ex
	ļ	4	•				ļ	<u> :</u>	-	-	ļ.,	15	20		1	1	ļ			-		ļ	•		<u> </u>	ļ	<u> </u>	-		*		
30	we	he		_					<u> </u>	T-	1:3	-	<u> </u>	<u> </u>	٩٩	ويوا	w	-	-		<u>C.o.</u>	4	, LA	5			-				La	<u>3</u>
572	20	Σœ	/50	C			300	: b	8.	عه		1 -			=	roc	140	4	<u> </u>	3	۱۹	"	7 1	ن:		. 6	259	16	19.5		4	کا
 	ļ <u></u>					-), 401	* b	0"	6	,,(Ł	B)	<u> </u>			<u> </u>	ļ		1	-				<u> </u>		1,		•			Ł
	-	00	25	د		Ī	300		150	B	Lo)	-			20	·		 	1	\mathcal{D} 1		mi	שיר	-	-	10	820	,	<u> </u>	_S	23
+-		39	23	С		-	10.	22	L			-	-	-	-	١,	1		ļ		-	1,			ļ	-	4			-	H	<u> </u>
		00	25)	ے	-		15		/,	F	3)	-	-	-		- '	1			-	-	>					<u> </u>		-	 	-	
		Da	22	c		ı				200		-	-	ļ	-	1,	┼		-	,	3	,			ļ'	<u> </u>		19)	1	-	<u>A.</u>	<u>성</u>
		1	a 6		-	-	1 of	1 6	hur	1/2				ļ.,	‡q(14	20	3_		-	(2)	172		PO1	b	-		-0		1	'	1
\vdash	-		רב		-	1	1	1 '	711		-		-	-	-	ta	-	-	-	(<u>ئ</u>	1)	 	-		-	-	1/0	} _	-	1)	
			58		-	•	L	-	1	w 3					-			-	-	-4	9	"	<u> </u>			<u> </u>	+	"	1.00	1 20		*
			2 9		-	-	1	1	1	* *	1			-	-		'				B	1	· .	_	_	-	-	 	-	+		
-		5	30	٤	-	-	1/10	4)	No:	3 7	3	\$3.	2	-	La	1/2	35	10 L		-	ഗ	35 6	•	16	7	_	-	-	-	+-		+
-	-		-		-		-	-					-		-	-		-		-	<u> </u>	ļ .	-				 	 	-	-	-	-
-	+-	-		-	-		-	+-	-	-		-			-		-	-		-	-	-	-		Car	ntin	led fro		ane	1	<u> </u>	<u></u>
L		1					<u> </u>		1	-							<u> </u>								COI	Turiu		2111 P				

Read and Understood By Signed

Date: 9-7-2021									P	age of
Sample Location: RLM-42-565				A	nalytica	al Requ	irement			
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	700	(09)	NOWO LL	5/100				X GNO Charge Number
2109070900 TB	3	A	4			,				•
04300	8	1	7							
0921C FB	3		4							
	ì			4						
-0701c T3	1				L					
O923c	1				Ø					
- 0924 C FB	1	\ \			N					
Sample Location:				Α	nalytic	al Requ	ıiremen	t		
Sample Number	# of Containers	Sample Matrix*	24. XX	Anions (A)K	TDS	Rechlorate	No2/103	SUR		Charge Number
21090 0926 C	Q.	A	P							
-09276	2			4						
09280)				P					
ठ ९३५८	1					Q			,	
09300							α	- \ 1		
09250	2	}						4		
Palimonished by	/ Tim				<u> </u>	(ccepte	d by:			Date / Time:
Relinquished by: Date	; / 11m	1)00	>	1	ru (CCEPC) Jun	d	9-	8-21 J0900
				V						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Exp = 9/21

TURB

0.83

0.79

08.0

2596

108501

Plu

21-01-21

N/V

Continued from page

Orw

NU

aB.

045

SQI

AL S

1,

٠,

4

= 0101)

ORP

Container

(3) 40 ml Wial

(DIL AMBER

(2) 125 m) Poh

١,

(2)250 m/ Pol

1,

41)

 $C_{\mathbf{0}}$

(3)

(2)

C

h

4 Robert Burrows present. Weather is cheer and hot. -

using a Tellon diskings hose haber quality parameters will be monitored using

206:5.20

41.86

41.83

4.84

Preserve

Tal

Ice HNO 9

Iq 42 504

TC

Icel Hel

persed and sampled using a dedicated bladder fling, samples will be collected

water analyzer. Carbon GZ in use.

44

8.4)

8.38

8.45

ROJECT BLM- 42- 709

alibrations:

annelurs (Time)

-1447 <

14149

2109071445 C

in move

21090714530

1454 C

1455 K

14156 d

1457 c

1458 C

1459

1500 C

1501 C

1502 c

1503 c

1504 d

GED MA JO Flowell and

Do sensor . In saturated 0:10 642 ml/ by "H Sensor Using a 3pt (4,7,10) Buster method

onductivity = 4500 a 1413 uskm 500 50/which

Tiene

23.32

23.B)

23 33

Analysis

CANGI AMON

AMOU

8360

5000 Pr 8370D

TOS DEM 2540C

Perchonale by 6850

NO2/03 by 353.2

Total metals

mions) AIK

510: 5.17

Cono

625

626

623

(FB)

(6/2)

(EB)

5AMPIES

Read and Understood By

Lunch

Date: 9-7-2021]	Page of
Sample Location: RLm-42-709				A	nalytic	al Requ	iiremei	nt		
Pertinent Notes (if any)										
	l si	* X:			コ					
	# of Containers	Sample Matrix*	78	\mathcal{C}	0					
	f Cor	nple	Uða	(09)	NOWA	500g				XGMB
Sample Number	- #	Saı			2	Ŋ				Charge Number
21090714536	3	\mathcal{A}	%							
1454 6	3		4							
)455 C	1			7		·				
14562	1			9						
14576)			,	9					
14580					9					
14590	२				,	8				
Sample Location:		L		A	nalytic		ıiremei	nt	l	
Pertinent Notes (if any)										
,		*		×		¥			!	
	# of Containers	Sample Matrix*	13	DA:005 BIX		Perchloral	003			
	Cont	ple M	Mrehals	540	705	1/3	NO2/NO3			
Sample Number	fo#	Sam	ζ.	j.	۲	Ser.	00		:	Charge Number
210907/5006	२	\mathcal{D}	9					· · · · · · · · · · · · · · · · · · ·		
15016	2	1		2	_					~
/502 C)			1	2					- "
15030	,					P				-
	1						Q			
)5046	† ·						<u> </u>			
Relinquished by: Date	e / Tim	e:			(A)	ccepte	d by:			Date / Time:
12.2.3031) (550		K	\mathbb{U}	\bigcup	u-	de	9-9	1-21 /0900
	<u>*</u>			1		~				,
				10						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

								,												_	T		
Bob Tufts & Crais	Dol	For	caro	ום	rec	2n7	4	W	out	ha	الم	5 6	10	2	E	v a	m	. 7	h	15	we	u d	Will
be purged using a																							
discharge hose u																							
clischarge nose u	aler	944	1179	10	rq	me	T-C C	, ,	w	ш		1	_ _	1 101	11	L	3//	9	<u>a</u>	UC.		17-	24
Flow cell and mate	rano	uyz	er.	Co	r b	oy	<u>(</u>		n t	LSY	• /	in,	``	W	u	pe	a /	m	o a	1	eel		,
sampling event - 3	sets	ot	para	me	ter	5 L	ונט	l bu	2 6	2//	ect.	ed	.ln	M M	edi	`q†1	ely	\mathcal{J}	us	+ ;	VIC	2/_	to
sample collection	_		`																	<u> </u>			
																		<u> </u>					
Calibrations																							
DO - calibrated	: ~ ~	1,0	atad		1-	a l	63	R		14	1.												
													-							†	<u> </u>		
Conductivity - calib										0/4	17L0	n								-			
PH - calibrated usi	ng O	a Kto	n Di	177-1	rs		7-	10,		•			_					1	1	+			
Turbidity meter #	21 5	td -	10.	!	rd o	-	10.	5		٥t	- 9	Llo	7		۲×	r -	9/	30	12	4_	-		
															<u>'</u>				ļ				A = 15
Parameters (time)	ten	pl	'c)	C	nd	(m	s/cv	\sim	D	0	_ (R	2	P	H	T	ur	W	יטיי	5)	D	w	(ff.)
1) 210909 08103		.75			2				7.1	6	Ā	t 6	•	7.	96	1		49			16	9.6	3
4	1 1	,79	i		2.			1	6.8	- {		45			01		1"	54	1			9.	
3) - 0811 8		8.	1	1 -	21		1	1	6.			13			.03		1	46	7		▶	9.	
3) 36125	- X C	1.00	_	┼-╂ -	d	6 O			6 , 5	, 3		בו		٥	.03		0	14			1 4	1.	0-1
		-		-		_		1												-	1		
		1	- .				$\overline{}$	le;	_		}	, ,	_				1	1	-	+-	1	7	
	1																						
Sample		-	alys	1	$\mid T$	æç					<u> </u>	on	a_{l}	rex.			_	ot	-		- 7	16	
Sample. 2109090815B	VO	-		1				an HC			(3)	on 40	ml	rest Vi	a/s		_	6/ 596	,		- 7	15	
	Voj	t bu		0							(3)	<u>on</u> 140	ml	Vi u	a) s		_	1	2		- 7	-	
21090908158		t bu	820 (FB)	b		ic	e [. a	HC			(3)	001 40 IL	ml	Vi u	a/s		2	596 a			A	-	
210909 0815B 	607	Bro	(FB)	انا		ico	e [u içe	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 a 50	اھ		A	[S RI	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	HC			(3) (1) (2) [140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [u içe	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 a 50	اھ		A	[S RI	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	2:	596 u 50	اھ		A	rs RI Li	
210909 0815B 	607	Bro	(FB)	ils		ico	e [ice [H	НС			(3) (1)	140 IL	ml An	Vi u	als	0	103	596 u 50 u	اھ		A	rs RI Li	
2109090815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	103	596 u 50 u	اھ		A	rs RI Li	
210909 0815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	e [ice [H	WO			(3) (1) (2)	140 IL 25,	An	u upe	als s	0	2:	596 u 50 u	اھ		A	rs RI Li	
2109090815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	103	596 u 50 u	اھ		A	rs RI Li	
2109090815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	103	596 u 50 u	اھ		A	rs RI Li	
2109090815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	103	596 u 50 u	اھ		A	rs RI Li	
2109090815B 	607 Tol	Broal	(FB) mai Dupl	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	2: 103 1-0	596 a 50)	21		A. S. A.	rs RI Li	
2109090815B 	607 Tol	Broal	(FB)	ils		ice	ice H	WO	3		(3) (1) (2)	140 IL 25,	An	u upe	als s	0	2: 103 1-0	596 a 50)	21	rom	A	rs RI Li	

Craig Del Ferro

9 9 21 Date Ou Usigned rumch

9-13-21

Date

Date: 9 9/21								RECC	Page of
Sample Location: BW-1-268				Α	nalytic	al Requi	rement	-	
Pertinent Notes (if any)					9/5				
	iners	atrix*	09		Met				
	of Containers	Sample Matrix*	8260	607	10/				
Sample Number	fo#	Sam			19				Charge Number
210909 0815B	3	A	~						Xamo
0816B (FB)	3	A	/						u
0817B	1_	A		/	_				<u> </u>
08188	2	A							<u>u</u>
0819B (Dupl.)	2	A							Le .
Sample Location:				A	nalytic	al Requi	rement	-	
Pertinent Notes (if any)									
	ners	ıtrix*							
	# of Containers	Sample Matrix*							
Sample Number	Jo#	Sam							Charge Number
	_								
Relinquished by: Date Cray M. Luce 9/9/21	/ Time	e: •) 1	ccepted			Date / Time:
Cray De Euro 9/9/21	08:	50 hi	cs .	+	on!	/ /_	um	49	-9-21/0900
<u> </u>				+(-				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

9/20/21

for Munch

9-21-21

Date

Date: 9/20/21										Page of
Sample Location: BW. 4.355				1	Analytic	al Requ	uiremer	nt		
Pertinent Notes (if any)				6	7					
	JLS	* .×	0248	1	T. Malals					
	# of Containers	Sample Matrix*	6	Brow	3					
	of Cor	mple		3.	~					
Sample Number	#	Sa							I	Charge Number
21092014500	3	A	X							XGND
1451C (MS)	3		4							
1452c (FB)	3		K							
14530	<u> </u>			X						
14546	2	1			X					1
	<u> </u>									
Sample Location:				1	Analytic	al Requ	uiremer	nt		• • • • • • • • • • • • • • • • • • • •
Pertinent Notes (if any)										
	SIS	* .×								
	# of Containers	Sample Matrix*								
	oJ Jo	mple	:							
Sample Number	#	Sa								Charge Number
o ²					$\sqrt{}$					
	e / Time) ^	ccepte		٨	0.0	Date / Time:
1/20/2	10	1549	5		ml	\bigvee	hu	de	9-2	1-21/0930
				X						
				U						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

MOSEC						<i>*</i>	12.			<u> </u>	1		-				- I	1	pc				- '			
	Tuffs &																									
will	be pur	g ed	_us	inc	a	de	dicc	xt-ea	1	5 0	dd	er	P	um	P	4	500	npl	es_	w	111	be	Cc	1/10	cte	'd_
using	a teflo	n di	iscl	nař	ge	ho	se.	Co	10	oy	G	5 i	'n	us	è.					ļ		ļ	ļ			
			<u> </u>		Ĺ.,			-	<u> </u>	<u> </u>	ļ		<u> </u>						<u> </u>		<u> </u>		<u> </u>			
Total	depth-	_ 3:	ے.د ح	1+	<u>t· (</u>	41.	22,	1	ļ	M	e+	er	Ļſ	<u> </u>	,			Bu	f-f.	ucs		4	土		₹.	×2
Init	e vin	-#	4.	71	11.	19 FH	- (3	3'.89	m)	P	#/	(on	d -	- 11					7		40	207	94	7		121
	purge-						<u> </u>			上	ur	•	-	-6	•				10		410	OIE	56	,	7/	
Stop	purge-	- 09	lao	1	s.		\perp			u		st	d·	_ 3	3.1	1										
	ing volu						<u>. </u>			u		rd	q.	_ 3	.2	3										
	rate -									u		10	4	_ 0	110	17										
Total	gallons	Pu	rge	1-	13					u		ع.	XQ	_ 0	130	2										
Final	gallons DTW-	- 11	1.8	36 F	H.								1		•-											
Initio	I Paran	net	ers					5	ec	on.	dar	y								7	نمو					
	-2109						T				2100		0	720	ر				7					15	022	90
PH	- 8.13	3					P	H			8.									PH						
Temp	- 22	a .c	-				İ	em			22			د					_	L	1	1	1	ر .c		
Cond				m			$\Box C$	ON		1	to	1 1	1 1		m				1	1 '	1 .		1	1 1	sla	n
Turb	- 3.	15,	NTI). s				Tur	L	_	- 3	, c)]	NTI	5										τυ 3	
	- 7.11	110	. 07	(2	1.1	c)			Dre	_	7.	10/	10	. 05	12	0,4	3 'c)								22.3
	t -7.09										٦.								1 1	, ,		1			10.0	.
1 8	- 111	•					1 1	u i		1	- 1			1 .1	1									7,		
								5	emi	ole	5.			·				_								
Samp	0_			1	ma	lysis	s	7	eg	501	rati	ve			7	rta	ne	r		1	<i>-</i>			2	ϕ	
_	09210		Vo	_		826	- r	-			H					0m			•	_	590	1		1	LS	
	- ७ १ ३३८					FB)				L							1				и				u	
	0923C		6	07/		oma	cil			ic	e			(1	11	A	mbe	4	0	103	50	16		9	RI	-
	-09240		i i	Ha	1	Neta			ice		NO)5		(3	2/13	າວໄ	10	راه الإ	\$	ŽI-	1 1			1 1	316	
	-0925c				1 1	AIK	•			100	1 1	3		~	7.	u	,,	7			NIM	1			и	
	-0926C	_	1	1 . 1	1 • [MZS	1			u				(i)I3	5m	1 25	1							u	
	-09270	1 4	\sim		<i>9</i> . (2 24	1	1 1									1	"Υ			u				и	
	-0928C					y 3:			16	a l	H2!	ς,		1	\ 2	50	_1	Pol	• •	-20	-11		7			
	15200					2601					HC		1	Č:	_	tO _w		/ia			١. ا		Z81	4	a	
	- 1521 C					nacil					ce			7	711		Imb		-	1	!		128	R	SR	7
	-15220			tal		letal			100	1.1	NO		,	/a	71	25,	-1		`\$				289		AL	<u>.</u> ک
	13000			194	P	ie iui-	· (L)	+	we	121	IVV	3		L	-/(~ (2010	r	i			om pa			
				<u> </u>	<u> </u>				لـــــــا		لـــــــــــــــــــــــــــــــــــــ		لــــــــــــــــــــــــــــــــــــ	Unde												

Read and Understood By

Date: 9/15/21										Page of
Sample Location: NASA 5			_	A	nalytica	al Requ	iremen	t		·
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	209	Total Metals	Anions / Alk	705	Perchlorate		Charge Number
21091509210	3	A	/							XGMD
0922C (FB)	3	A								ч
09230	-1	A		/						и
09240	2	A			V					и
0925C	2	A				/				и
0926C	1	A								Ų
0927C	l	A							-	и
Sample Location:				A	nalytic	al Requ	iremer	ıt		
Pertinent Notes (if any)			~			,				
Sample Number	# of Containers	Sample Matrix*	No_{z}/No							Charge Number
2109150928C		A		•						XGMD
•										
				ŧ						
Relinquished by: Date Chary Del Terro 9/15/21	/ Tim	e: ohr:	5		on f	Accepte 1	d by:	d	9.	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 9 15 21									P	age 2 of 2
Sample Location: NASA 5				A	nalytica	al Requ	iremen	t		
Pertinent Notes (if any)				_	5/0					
	ers	ix*			Jet 1					
	# of Containers	Sample Matrix*	8260	7	9	!				
	of Co	ample	82	607	10	!				
Sample Number	<u> </u>	<u> </u>								Charge Number
2109151520c (BC)	3	A	<u> </u>							XGMD
1521c (BC)		A		~			_			4(
1522c (BC)	2	A								24
									_	
	ļ									
Sample Location:	<u></u>	1			Analytic	al Requ	iremer	nt		
Pertinent Notes (if any)										
	lers	*xir								
	ontain	e Mat								
	# of Containers	Sample Matrix*								
Sample Number	#	S	<u> </u>							Charge Number
		<u> </u>							<u> </u>	
		<u> </u>	<u> </u>							
		-								
		-								
Date and the second	- / T'					\	d by:			Date / Time:
Relinquished by: Date Oraig Rel Ferre 9/15/21	te / Tim					Accepte		1.	a.	16-21 J0900
May My Jew 7115121	127	J M	13.		for 1	/ / _	In	~~~		1401 10-10-
)		1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page Bob Tufts & Craig Del Ferroro present. Weather is clear & hot. This well will be purged using a dedicated bladder pump. Samples will be collected using a testion discharge hose. Carboy GS in use Total depth- 133.56 Ft. (40.71m) Meter ID Buffers [nitial Dtw-110.58ft. (33.70m) PHI cond - 11 7 . 4007947 start purge - 1250 hrs. Turb 10 4101E56 Stop purge - 1410 hrs. 3 casing volumes - 12 gallons std - 3.17 rdg - 3.23 purge rate - 0.167 gpm lot - 91017 Total gallons purged- 12 Final DTW - 111,50ft. Exp -9/30/21 Initial Parameters Secondary Final Ime - 2109151340C ime-2109151415C Time-21091514270 'H - 7.88 - 7.92 PH - 8.01 emp - 24.9 c - 251' emp - 25.8 °C and -678 us/cm Cond - 671 45/cm Cond - 684 us/con Turb - 1.300,70's urb - 1.90 NTU'S Turb - 1.66 NTU'S Hore - 7.01/9.98 (30.5°C) PH pre - 7.02/9.96 (31,4.6) Hore - 6.97/9 93/3/3 Haost-6.99/995 offpost-7.01/9.94 pHpost-6.95/9.93 Dtw -111. 86ft. Samples. Preservative Samole Container Haly sis 10915 1420C VOA by 8260 ice/HCL (3)40m viels 1421C u (Dupl.) - 1422 C 4 (FB) 607 Bromacil 1423C (1) IL Amber 0103501G 1ce SRIT - 1424C u (Dupl.) 1425C Total Metals ice/HNO. (a) 125ml polys 21-01-21 ALS 1426C NO2/NO3 by 353,2 Li)250 al poly ice/4_504 20-11-27

Nary Del Ferra 9/15/21 Signed

Read And Understood By

Continued from page

	Date: 9 15 21									I	Page	of
	Sample Location: NASA 10				Α	nalytic	al Requ	irement	:			
	Pertinent Notes (if any)					5						
	Sample Number	# of Containers	Sample Matrix*	8260	607	Total Meta	NO2/1003	>			Charg	e Number
	2109151420C	3	A	V							XG	MD
	1421c (Dupl.)	3	A									u
	1422C (FB)	3	A	V							·	ч
	> 1423C		A		~							ч
	- 1424C (Dupl.)	1_	A		V							4
	1425C	2	A									ч
	- 1426C		A									ч
	Sample Location:				A	nalytic	al Requ	irement				
	Pertinent Notes (if any)											
-		# of Containers	Sample Matrix*			3						
-	Sample Number	#	6 2								Charge	e Number
										+		
		-	-					-				·
}												
ŀ												
f												
ŀ												
	Relinquished by: Date	/ Time	<u> </u>			A	ccepted	by:			Date / Ti	iṃe:
-	Crang Del Termo 9/15/21	15	100	\r\S,		eul		um	-d	9-1	6-21	10900
					1							

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

Notebook No. 4FT5 4 10 OJECT PFE. 1 WZI ENV. 0082 Continued from page Avalos à Robert Burrows present well will he purged at least prior to parquenters à sample collection. Samples will be collect sample part. Carboy G. 3 2109301525 9002691 2.49 7.01/10.03(19.4.c) 6/22 #21 4001005 10.1 Ntu 10.8 LOT - 91017 10.8 NTU = Gxp - 9/30/21 ample # Analysis (3) 40 m viols 2109301500 1\$30 1531 607/Bromacil (1) LL Amber 1235 01035016 set Continued from page Read and Understood By

Signed

9/30/21 Date Signed

10-4-21

Date

									Page of	
			1	Analyti	cal Rec	quireme	ent			
# of Containers	Sample Matrix*	8260	607/Bco			5 5 5			Charge Nu	mber
3	Α	X								
3		X								
3		X					,			
l	-		X							
		_	A	nalytic	al Req	uireme	nt			
							<u> </u>		<u>.</u>	
≠ of Containers	sample Matrix*									
#	-			-				1	Charge Nur	ıber
/ Time	555			1 1	ccepte	l by:	-d	910	Date / Time:)00
	# of Containers	# of Containers Sample Matrix* A V V V V V V V V V V V V V V V V V V	# of Containers Sample Matrix* A	# of Containers # of Containers # of Containers # of Containers # of Containers A X X X X X X X X X X X X X X X X X X	# of Containers # of Containers # of Containers Analytic Analytic Time:	Analytical Req Analytical Req Time:	Analytical Requireme Analytical Requireme Time: Accepted by:	Analytical Requirement Analytical Requirement Analytical Requirement	Analytical Requirement Analytical Requirement Analytical Recepted by:	Charge Nur Analytical Requirement Sumular Su

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

PROJECT \$1.2.504 WJI EW. 0053

Jalvaren Water quality parameters Samples will U a dedical discharge hoze OCB UP 20 How all + water analyzer Carbon Co. alibrations Tribal OTW - 477.40' totated air @ 638 aun /Ho Vsing 1413 when 500 solution Klyn Ruffers (4,7,10) Gallons Purged. 1 Oakto sidity Neter + to 6-91017 Gp. 9/30/21 500- 3.17 NTU 70G · 3. 11No Torb (NW) DTW (# Parameters (fine) HF 00 OPP Temp(c) 2109140930A 5.24 .35 199 6.69 477.50 A LEAO + 0 95 199 134 0934A 0.88 125 Samples Sample # lot Analysis reserve 96 Her/In 3) 40 ml viels 2109140940A VOA by 8260 2585 A(} = (FB) A1473 607/Bromacil (1) IL Am SRI 0945 W 01035016 AEMPO = (Pup) Continued from page

Read and Understood By

ande 9-19-21

Date: 9/14/21										Page	_ of _
Sample Location: \$1.2.504				A	Analyti	cal Req	uireme	ent			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	607/Bro						Charge	e Number
2109140940A	3	А	X							XGMO	<u> </u>
0941 A (FB) 	3	1	✓	× ×							
CAMP (DOD)	1			7							
Sample Location:				A	nalytic	cal Requ	ireme	nt			
Pertinent Notes (if any)	# of Containers	Sample Matrix*									
Sample Number	#									Charge	Number
	Time:) 1	ccepte	i i			Date / Ti	
M 9/14/21	<u>@ /</u>	<u> </u>			Ma !		Ju	-d	4-	19-21	/0920

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

6 R	OJE	ECT		۷.۱۷	ų · પ	હ પ		MZ	ゴ	EM	J.	005	3				-					tebo tinue						20(A)			
$\overline{\gamma}$	an	وبرا	A	valo	\$	ر د	00	1,	ta ve	573	es.	00	250	1	V	اوم	لمد	i	3	r\e	25	1	Į,	_	تها	S V	۱/ مد	in,	1 1			
	ارد	Ι.	. S	am	elu.	1	1		• •	sed	٠ (د	الور	ν.		d	1	1	T	1	gen			11	1		1/2	ch	7	U5.	-(
Ĺ	<i>v</i>	~	7	17	~	dis	cho) (1.2		2	۵,	W	Le	G	أها					12				w.	for	J	US	١٨٤	۷			
C	er	1	13.7	0	2	w	رولا	3	w	he.	g	ral-	20	۲	C.	(2)	40	. 1)				
_																	<u> </u>															
_		1			,							<u> </u>									7	tril	نسا	70	ω·	4	ક	90	,			
) _	alil	scat	ان،	5_	ļ <u>.</u>		1																									
		Cal			sa/	ref-	ed.	air	G		38	M	m/	He																		
ع	M	cti	4:0	4 ·	C &	\	51,	<	1413		25/0	m	5	1 1	So	uti	Λ.															
1/	- ([a]	USì		Dal	70	15	$\Sigma \mathcal{U}$	ورح	(1	74	1,10																				
Ī	ماءما	19:1	1	M	es-	. }	(7 1	HU		200	n -	3.1	1 2	τυ		(0)	- 9	017		Εţ	۱.	9/3	0/2	1	
_		_	Ľ																									7	•			
_0	saw.	ملعا	15	Hi.	W		1.	emp	(.c))		, <u>av</u> c	(45/	4)		PH			20			01	28		-	Tub	(NO		0	W	(4)
r)_	210	114 1	500	A	ļ			12.				Δ.	128	\$		_{_{8}}	81.8			2.5			1	1				43		44		
2)		1	502	A				22.	69			1	121			8	۰۷		i	7.07			_11	1				30			- ت	
3)_			200	1A				22	५१			1.	118	_		શ	.23			1.2	1][0.	44			ات	
_		ļ	<u> </u>				<u></u>																									
		ļ.,														Squ	nole:	<u>_</u>										,				
5	emp	e #						+	naly:	sis						Mesa	nu				C	onta	in				16	+			40	
2	091	415	101					400	4	87	وم				f	a.	Z	٩			3) '	40 M	اريز	4/5			252	3		l I.	415	
_		15	1()						٤	(FF	3)						;					=					,^				-	
		15	12 A	<u> </u>				لس	بارم	يعل	NO	A				Į,	بد			(1	7 1	LA	w	\		Ó	03	ان ر			512	Z
_		15	3 A	ļ		<u> </u>			t	(2	<u>B</u>)					:						z					ĭ					
					ļ	ļ																										
			_	ļ																												
_	,	ļ	1.		<u> </u>																											
	OFE	Ga	llo.	· P	viçe	J .	1	ga															_									
_			-		ļ.,			7																								
		ļ	ļ		ļ			ļ				ļ																				
				ļ			<u> </u>					ļ			ļ			٠														
_		_	-	-							3.																					
			-			-																										
_			-	-																												
	_											-																			\dashv	
******				-								<u> </u>																				
			-	<u> </u>	-																											
_		<u> </u>	<u> </u>	<u> </u>		<u> </u>								<u> </u>											Cor	tinue	d fro	om pa	ge			
				ľ.													Read	and	Und	ersto	od B	у										
	1	111		C							9	1/14	111					4	/ nl	•			$ \setminus $	lle		1	_	a) ,1	6-5	11	
	<u>-</u>	₩.	4	Sig	ned	•	-					.111	Date					_	Ph	U	Sig	ned	-	w	سيا	N			<u> </u>	Date	4	

Date: 9/14/21										Page	/_of_/
Sample Location: 41.4.464			-E	F	Analytic	cal Req	uireme	nt			
Pertinent Notes (if any)				_							
Sample Number	# of Containers	Sample Matrix*	8260	Lowlevel						Cha	arge Number
Qlogivisio A	3	A	×								MD
1511A (FB)	3	(X							Ì	·
1512 A	1			V							-
1513A (FB)	(1		X						1	-
Sample Location:				A	Analytic	cal Req	uireme	nt			
Pertinent Notes (if any)							i.				
	# of Containers	Sample Matrix*									-
Sample Number	#	S								Cha	arge Number
										!	
						-					
										<u></u>	
Relinquished by: Date	/ Time	: :) A	4 cepte	d by:	<u></u>		Date /	Time:
11/21	ه (٤	00			ou !		un	-ch	9-19		104/20
	***)		•			<u> </u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#128(y) 33
Continued from page

B	40	Tu	H	5 E	C	ray	y Z	el	Fer	~	vo	pre	ese	nt.	4	معال	the	ri	5 7	ar	//y	clo	ude	ξ,	of	4	his		342	w	14	ko
59	MP	ed	U	<u> 2 (Y</u>	١٩.) 1		ple	r	'n.	red	١	x fa	in.	ה כו	7.5	رو 4	4.1	k a	ma	، زا	Hu.	De 3		2	1	h	11.00				
2	بعاه	Q pr	22	3	S	ur	+a	<u> </u>	ch	ec	C S	Per	fo	cm	ec	0	^	Pr	06	2	pr	l'o		10	5	in	P	i'n	5-	_		
	-			1	-	20	11	-					,	01	ļ.,			2	1	1	2 -						<i>'</i>				_	
<u>_</u>					-	30	M	ln.	Eg	ш	PM	en	† 1 D.	D/a	AK	۲ -		ar	Soy	74	3			\rightarrow					-	,	_	
		ple			• • • • • • • • • • • • • • • • • • • •		-	Ľ	nel	481	\$		le.	<u>ser</u>	197	ive		(or	ta	ine.	5		4	57			4	ab 5	+		
71	0	0.3		416			V	DA 1	by	82	60	1		ICE	/ <i>t</i>	CL		(3)40	m	V 1/4	215		25	96							
			l	TIVE	7		Lou	U L	eve	1 K	אטנ	M			100	-		(1,) I L	pΛ	mbe	1	0	1035	101	4		5/	2	\dashv	_	-
Ī	oi:	his	Q	Par	(n	ret	er	5						7:	Λα	2								44	با م	05	I	D		+	1	
		e –		1	1	1	1	1									0	9.0	a	15	57	V						- (, D			
		_						I					P	H	_	٦	٩	1				1		1	u	- /		-6		-		
e	MP	_	2	2.	۱. د	1							- 1				ıa.		C						1			_ 5		6		
2	nd	_	۶	<u>80</u>	6	us	cm						Ċ	01		- 8	321	us	le	m				u			da	_ <	5.4	9		
L	4		- 5	. 3	6	NT	۸, ۶						1	ur	6	- 6	ን . ዩ	37	N7	'ں-	\$						to	-	9101	17		
2	lp	re.	-4	.9	41	9.9	96	3	ι.η	.c)							6.90					.a`	(ع			_	- X) - 9	?/3c	·/a		
얻	ρι	s t	- (1.9	7 1	19.	93									1	6.8			L	. 1		<u> </u>						!		l	
光) u		- 1	+3	8.1	1 4	tt.										4.							He		Т				\$	ΧŖ	
41	m	5	-	12.	58	PS(æ							41	mos	-	-12	.6	29	sia	,			1	- 1	- 1	194			12/		-
														I C	W		_`Ÿ	2	j el	•				10	4	10	15	56		7/	02	-
														5 ₀ ,	Nρ	٥٢												+		+	-	
5	ar	ple						A	nal	v ci	<		Pa	250		2/1	1.0			$\bigcap_{\mathbf{A}}$, ta	ine	r			4			7	da		
21	09	93	15	30	У	1	VO	4 6	y 8	76	0/	1_			e/				6				19	7	2	59	4		7	25	-	
			15	31	<u>'</u>	L	ow	Le	vel	N	DM	A			ice	1			(l) [[A	me		l i		- 1	16		\$	R1	-	
_			15	55	<u>'</u>	1,	4 [Dio	xar ı (1e	by	32	OD		u				()2	D,,	La	Me			- 1	06		Ä	R1	2	
=			15	56	7				u ((3))]				ų					-		u				u				u		
						-																								_		
																									_	_	_	_				
																				-						-			+	-		_
\dashv																												+				
P	un	_	7	22	2 0	1		2)		, ,	_		15	7	G	9									-	-				+		\dashv
77	~11	2	1)		},9 },9	-		م)	1		1		_ A	- 1	9.0	- 1				+					+		-	+	-	+		\dashv
					(,7				2			-	г		.0 .00	- 1			\dashv						+	\dashv		+		-	+	
			7.	23					2				1		.9	- 1									+	-				-	+	\dashv
						1			•	• • •	- 1			L.X	. 18	2								C	onti	nued	d from	m pag	 je			

Read and Understood By

Date: 9/2/2/]	Pageof
Sample Location: PL-8-455				A	nalytic	al Requireme	nt	·	
Pertinent Notes (if any)				A					
	23	**	77	LLNOMA	Dioxane				
·	# of Containers	Sample Matrix*	0	NC	o.				
·	Con	ıple l	8260	7	à				
Sample Number	ю#	San	00	7					Charge Number
2109021415y (EB)	3	A		•					XGMD
1416y (EB)	l	A		✓					ч
1530y	3	A		-	_			***	ار
15314	1	A			-				и
1555y	Ī	A							
1556y (FB)	1	A				·			
1 009 (10)									ч
Sample Location:					nalytic	al Requireme	nt.		
Pertinent Notes (if any)						1			
		*							
	ainers	[atrix							
	ont								
	\mathcal{O}	ble							
Sample Number	# of Containers	Sample Matrix*							Charge Number
Sample Number	# of C	Sample			:				Charge Number
Sample Number	# of C	Sample							Charge Number
Sample Number) # of C	Sample							Charge Number
Sample Number	J Jo#	Sample							Charge Number
Sample Number) Jo#	Sample							Charge Number
Sample Number	O Jo#	Sample							Charge Number
Sample Number) # OF C	Sample							Charge Number
						ccepted by:			
Relinquished by: Date	/ Time	e:			' \	ccopted by:	d	01 -	Date / Time:
Relinquished by: Date	/ Time				' \	accepted by:	d	9-	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

11100201_1				ນູ	+	∑.N.V	-0	0 &	0		_				Co	ntinu	ed fro	om pa	ige _			_•		' '	
Bob Tuffs &	Crai	c D	el	Fer	cai	0	res	ent	-	الما	ath	er	is	cle	ar	- 2	wa	rm	7	his	7,	ne	cui	le L	
sampled using	5	ste	20 M	ح	ear	ed	2 +	امار	a v		لمماء	[] ,	La	1/2	00	6	400	Ι.				1.1	1	0	
in use. Probe	# 26	213	. S	uc	face	ال ج	or h	= 1	205		and		A 0			20		1	2	7	/,	, u e	3.	u	en.
					, L						nee		7	V ON		TI.	01	70	20	im	DL /M	9.	 	-	
	30	W	: ^	5			1 7	K/	رسا		1	7		9 3	 	-	-	+-			-	+	 -		
Sample	90	1	<u></u>		7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M F	P	<u> </u>		lar	Pa						-		_	2	 	1	<u> </u>	_
210 902 1000 Y		1.1		na	X	(2)	_ 4	re.	sec	Vq.	nve	-	(On	14	ine	(-		07	1	-		ab	
		V O	R	5 4	84	.60	4	10	9/	H C	4_	+-	(3)4	ton	4	via	15	-	25	96	-	<u> </u>	ł	25	
10014	-	6	·w	Lev	iel	NON	uA		10	e		-	(1)	IL.	A	nees	<u> </u>		10	35	316	-	<u>S</u>	R.I	<u> </u>
	-		-				-	-		\perp		-	-	ļ		<u> </u>									
Initial Param	ete.	15						Bi	10	<u>U</u> _								M	e e		I	<u> </u>			
Time-2109	02	10	35	/				Cin	e-	2	109	102	13	35	54				1		79	_	60		
PH - 7.93								PH			.91				1					6	1	1	20		
Temp - 20.9	٠ٍ ح						1	en			21.3		-					'	u	1		1	5.5		
Cond - 901 u	sla	20						000	1.	ç	389		sk							1	1	1			
urb - 6.19	NTU	7.5					-				37	0	OTI	'S					<u>u_</u>				5,4		
H pre - 7.10	1	1 1	. /		2 9	7	1									5.	7		4				lιρ		
Hpost - 7.11	/10	.0	11	~	3.1	シー	+-									5.	り		u_		-*4) –	9/3	?O/	21
Diw - 438	7 10	, C	T			-	-						19.				7	, N	N		,	1			
Hmos - 12.60	.00												1.			-	₹	wh			_	<u>+</u>		ے	¥
1111165 - 10.60	PS	1a		_		-	-	H7	MOS	7 -	- 1	2.0	21	PSid	<u>\</u>	 				400	79	47		12/	2/
	+						+-	I_{l}	\mathcal{W}	<u>' </u>	1/2	2 9	al.					1	0 4	7 10	IE	56		7/	22
	+		-+				-			ļ.,	-					<u> </u>									
	-				_			کے	am	p/.	25														
Sample						<u>y 812</u>		19/	عد	ecy	ah	ve			1	nta	drei			<u>/</u> 5	f			al	/
21090211004			OA	bu	18	260	11		ì	e /	HC	U				10m				2<	90				
11014			60	7/3	Bro	maci	1				e			_	i)		me			_	501	1	-	P	-
1310	1	101				NDM				ı					*/ +	_ /			<u> </u>		-01	٠,	-		-
13114	1					by		N N						1	1	150	4	1		2-	-			41	_
						N		.0.0		-				- U	·/•	250	M. I	S.W.S	W.	101	2/-	-00	-	AL	3
							+	†-												_					
	+	+	+					+-	-	-					•	\vdash		- +							-
	++	-+	\dashv	-	-		-	+-		-						-		_							_
	+-+		\dashv		-		+	+																	
			+		_									_											
	57	_	2)		9 .	1	-	3)	89		8		4)	89	4	3									
	4 4 1	- 1	1	8	7.	13_	-	-	8-	1.9	4		/	87	. 8	6									
87.	84		-		1			1	1 -	L _		- 1		_			1	T	Т		-1.				
87.	85			T.	37.	93			8	1.9	3			81	١, ١	811	- 1					.			
87.	85			8	37,	· T			8	-	3 ;4			89			_					•			-

Cray let Leur

9/2/21

Read and Understood By

Signed

9-7-21

Date

Date: 9221		·						Page _	of
Sample Location: PL-8-605				A	nalytica	al Requires	nent		
Pertinent Notes (if any)			7		B				
	ers	ix*	7		UDMA	Dioxane			
	ntain	Matr	8260	607	20	5X6			
	# of Containers	Sample Matrix*	83	•	77	6			
Sample Number		<u> </u>			7				Charge Number
21090210004 (EB)	3	A	V					X	GMD
10014 (EB)		A							_ц
- 1100y	3	A							4
HOLY	 	A		V		_			<u>u</u>
13104	1	A			~				
13114	-	A							_ ц
					nalvetia	al Require	ment		
Sample Location: Pertinent Notes (if any)					maryne	ar Require			
		*							
	ainers	[atrix							
	# of Containers	Sample Matrix*							
Sample Number	# of	San							Charge Number
Relinquished by: Date	e / Tim	ie:				Accepted b	V:	- 9-7	ate / Time:
Cray Il Fue 9/2/21	16	ZOh	rs,		Mu	VV	1 mil	7-1-1	1000
							<i>J</i>		
					· · · · ·			<u> </u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 032# 122 (8) Continued from page __

OJECT PC-11.470 FLATE WSI INTREWERS ROBERT BUTTONS + TONY TOTER PRESENT. THE WEATHER IS CLEAR & WARM This zove will be purged of sampled as my a Phite samplines system. Ygallows will be pursed prior To sampling. The Bubblen was ser @ 3ps, & STUBLE @ SPET PEN JR WE ARE ONLY down ? ZONES SINCE TRENT IS TRAINING gors on for TRESE FIRST 2 7 mes 15 min REFORETH GETWEEN PURGES. Trip Blanks (carboylo-2) LAS ANALISO PATSENN SAMPLE# ALS 210913 07008 82404 14E1 Hel 0/035016 11) IT AMBER 3A5 1Œ 0701B CUNDMA Final 157 3500 15 Will SE descanded & paran's Takes From INITIAL 7109/3/40B Them. 210913 1100B METERIAS 7.95 °C 8.76 PH PH/GOND < 12 23.8°C 28.4.5 Emp 14x5# 7 1159 As/cm 115345/cm 000 11 570 = 51.17 1.33 2145 1.00 NTU'S 11/20 = 35.57 50.1 7.10/9.90 (389) Hpm= 7.11 (10.01 (78.8's) " 65TH = 91017 7.17/9.93 7.15/9.99 240051 "Exp = 9/30/21 INW SAMPLES PRESERUS CONT 6014 SAMPLE # ANA 450 2783 10E1/fl 3) Youluss Q/K 2109/7 130013 826011 " (f3) 301B 01035016 (1) 1 CTAMBER 512 14 13023 607 11 130313 LKNOMA "(F.B) (2) 11 8270 133513 (1) 250ml Amber 1405 B 500A 51m 1 cel Holo. (2) 125m/poly 14063 TOTAL METALS Continued from page Read and Understood By

9-13-21

on Wunch 9-14-21

Date: 9-13-71								Page	e of
Sample Location: PL-11-470 Pertinent Notes (if any)				1	Analytica	ıl Requirem	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8200	607	43020			2	くられか Charge Number
-210913 0700B(TB)	3	A	X						
- 0701B (TB)	ı				X				
- 1300 B	3		X						
- (301B (FB)	3		X						
- 1302B	1			×					
13038	1				×				
130413 FB	I	十			カ				<u> </u>
Sample Location:				A	Analytica	l Requirem	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8770	50045-5	10141261415				X GMD Charge Number
210913 133513	2	A	X						-
	1			X					
1405B	2		•		x				<u> </u>
Relinquished by: Date	/ Time	: ::		$\overline{\parallel}$	1 1	cepted by:			Pate / Time:
T. 3 9/13/21				J.	n V			9-14-2	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT PC-11-530 Flute WII 15 INTA & WORKS

Continued from page ___

ROVERT BUTTOWS & TONY TOKEN PRESENT. THE WENTER IS CLEAR & WARD. This ZONE WILL BE PURSUED & SAMPLED USING A FLUTE SAMPLING SYSTEM. YGALLONG WILL BE PURSUED PRIMA TO SAMPLING. THE CLESS 350MIS OF THE SAMPLED WILL BE RUBBLED SET & SPECIAL THE CLESS 350MIS OF THE SAMPLED WILL BE RUBBLED SET & SPECIAL STADLE & SPS. PEN SA WE ARE downed 2 ZONES TRADE DUE TO TRAINING. 15 MINS OF REQUERY TIME. CARBOY 6.2 TRAINING. 15 MINS OF REQUERY TIME. CARBOY 6.2 TRAINING. 15 MINS OF REQUERY TIME. CARBOY 6.2 TO 99 3 1105 B 210913 1455 B PH (CON) \$1/2 THE P 27.5 24.5 C 1168 LISCON 1168 LISCON 1167 E 91017 OND THE P 37 MINS ON 19.3 (39.0) 1167 = 91017 PHASE T.IV/938 (ALL) 7.05 / 9.3 (39.0) 1167 = 91017 TOWN SAMPLES SAMPLES
Publical Prior to Sampling The First 3 tomis of public Snaple purge will be discondish Bubbien set & 3ps, e strasie & 8ps, Pen 5n we are doing 2 zones Teday due to Transvirg. 15 mins of recovery Trave. Carboy (5.2 I with a final meter ID's 210913 110518 210913145518 pH (2001 1/2 pH 8.77 7.79 Temp 27.50 Covid 1117 42/cm 1168 45/cm 11498 50.1 Trans Co. 79 ata Co. 85 ata Co. 85 ata Co. 1167 1167 1167 1167 1167 1167 1167 116
Bubbles SET & 3ps, of Stable & 8ps, Pen Sh we are doing 2 zones Teday due To Tahining, 15 mins of Recovery Time. Carboy (5.2 I with a final meter ID's PH 8.77 TEMP 27.5. COND 111245/cm 116845/cm 1147=50.1 TIMB CO 79 MTS. O B SNTU'S PHOST 7.15/988 (AL) 7:05/9.35 (39.02) TOUL SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES 10 10356/b 10 1045/cm 114 115 116 116 116 116 116 116 116 116 116
Talial Final METER IDS 210913 1105 13 210913 1455 15 pt / (mx) = 12 pt 8.77 7.79 Tenp 275 2 24.5 15 Cord 111245 (m 116845 (m 1167) = 50.1 Tenb 0.79 at is 0.85 at is 1167 = 9/3017 pt pest 7.15/938 (AL) 7.05/9.35 (39.05) 116 pt = 9/30/21 pt pest 7.15/938 (AL) 7.05/9.35 (39.05) 116 pt = 9/30/21 Sample # 135 Analysis Presence for the 12 st = 12
Taital Final Meter ID's 210913 1105 B 2109131455B pH/conf = 12 pH 8.77 Tenp 27.5: 24.5: 1108 dis/cm 1108 dis/cm 1104 = 501 Tinb C.79 at a C.85 at a 1107 pH par 7.14/598 (AL) 7.05 / 9.3 = (39.00) 110 cp = 9/30/21 pH par 7.14/598 (AL) 7.05 / 9.3 = (39.00) 110 cp = 9/30/21 pH post 7.15 / 9.98 Total SAMPLES SAMPLES SAMPLES SAMPLES 1013 1540 B 826011 (LEIHA) 2583 (DYOMUNIS ALS 1115 111 111 111
210913 1105 13 210913145513 pH (con 1 = 12) PH 8.77 7.79 7.46 # 7 TEMP 275. 24.5cm 1108 45/cm 11 271 = 51.17 CON 1112 45/cm 1108 45/cm 11 40 = 50.1 TON 0.79 ATC; 0.85 ATC; 11 LOTE = 9/30/21 PH POST 7.15/998 (AL) 7.05/9.35 (39.06) 11 exp = 9/30/21 PH POST 7.15/998 7.17/999 7.17/9.90 TON 5Amples SAMPLES SAMPLES 107# 1001 11 11 11 11 11
210913 1105 13 210913145513 pH (con 1 = 12) PH 8.77 7.79 7.46 # 7 TEMP 275. 24.5cm 1108 45/cm 11 271 = 51.17 CON 1112 45/cm 1108 45/cm 11 40 = 50.1 TON 0.79 ATC; 0.85 ATC; 11 LOTE = 9/30/21 PH POST 7.15/998 (AL) 7.05/9.35 (39.06) 11 exp = 9/30/21 PH POST 7.15/998 7.17/999 7.17/9.90 TON 5Amples SAMPLES SAMPLES 107# 1001 11 11 11 11 11
7.79 7.79 7.79 7.71 7.75 7.77
TEMP 27.5. 24.5. 1108 dis/cm 11 dis = 51.17 CONS 1117 dis/cm 1168 dis/cm 11 dis = 50.1 TUMB CD. 79 atti; 0.85 atti; 11 dis = 9/30/21 PHPME 7.14/998 (ALL) 7.05/9.3 at (39.00) 11 cmp = 9/30/21 PHPME 7.15/998 (ALL) 7.05/9.3 at (39.00) 11 cmp = 9/30/21 DAMPLE # 135 ANALysis PMESEMI CONT CAS 21.0917 1340 B 826011 (CETHOL 2583 (D)/onlysis Als 1317 13578 (007) 165 (D10358/C) 11/107 and 51025 - 1318 13378 (007) 165 (D10358/C) 11/107 and 51025
Covid 1/17 45/cm 1/68 45/cm 1/0/5 50.1 Trush CD. 79 476; CD. 85 476; D. 85 476; D. 1/676 = 9/30/7 p 4 post 7.14/998 (712) 7.05 / 9.35 (39.02) 1/0/2 = 9/30/2; p 4 post 7.15/998 7.17 / 9.90 TDG SAMPLES SAMPLES 2/0.917 1340 B 8240(1 (CECHE) 2583 (3)/0/1/1/1/1 11
Tunh C. 79 4 This C. 85 x This
0 H par 7.14/598 (AL) 7.05/9.85 (39.00) 1/6xp = 9/30/21 D 4 post 7.15/9.95 7.17/9.90 TDU SAMPLES SAMPLES SAMPLES 107#1 (cont
0 H par = 7.14/598 (AL) 7.05/9.8 = (39.00) 11 exp = 9/30/21 0 H pas = 7.14/598 (AL) 7.05/9.8 = (39.00) 11 exp = 9/30/21 Thu SAMPLES SAMPLES PRESEMU LOTH CONIT LAS 21.5913 1340 B 8240 U
D4post 7.15/998 7.17/9.90 TDW SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES LOT# CONIT LAS 210917 1360 B 8260 C
5Ample 5 5Ample 5 5Ample 5 607# (245) 21,317 1348 B 8240(((244) 2583 (3)/onlys/s Als 1319 1358 (00) (45 010358/6 (1)/transper 3105 1318 137 1358 (10) 11 11 11 11
5Amples 5Amples 607#1 Conit Lab 210917 1340 B 8260 C CEIHO 2583 (3) Contunts ACS 13101340 B 11(65) 11 11 11 11 11 11 11 11 11
54m 018 # 1315 ANALISIS PRESEND GOT# CONIT LAS 210917 1340 B 8240 CC CCE 1461 2583 (3) Youlvials A CS 1314 348 B 11 (F15) 11 U II U 11 11 11 11 11
54m 018 # 1315 ANALISIS PRESEND 607#1 CONT LAS 210917 1340 B 8240 CC CCE 1461 2583 (3) Youlvials ALS 131434 B 11(F15) 11 U II III -1317 1357 B (po) 1/6 010350/6 11) LCAMBER SITE -1318427 B C(NIMA II II II III
210917 1340 B 8240 (
1317 1357 B (107) 11 U U II U II U II U II U II U II U I
13184273 B (N) MA 11 11 11 11 11
13181373 B C(NAMA 11 11 11
13/8/3/8 C(NAMA // // // // // // // // // // // // //
1 43648 1 (48) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1350B 1 (Sup) 11 11 11 11
1415B 8270 11 N/4 (2) 11 Als
1/503 5/ms 500A (1) 2500/motor 7 11 (2725 Chipply mbon 1)
145213 Total METALS 10514 Alas 11 (2) 125 migay 11
- 1453B 11(ms) " " " " " " " " " " " " " " " " " " "
- 1553 5 VOA 5, m (Dup) (G 1) 25001 Ambre ALS
14513
Continued from page
Read and Understood By

	Date: 9-13-21									Page of
	Sample Location: PL-11-530				A	nalytic	al Requ	irement		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8760 ()	707	426200	おてつの			K GMA Charge Number
	210913 131513	3	7	X						
	- 131613 (FB)	3		X						
	131713	l			X					
/	13/8/3	l				\propto				
	1319B (FB)	1				χ				
	1319B (FB)	1				\times				
	- 1415B	7	A				X			
	Sample Location: Pertinent Notes (if any)	I			A	nalytic	al Req	uirement		<u> </u>
	Sample Number	# of Containers	Sample Matrix*	5004 514	1074UNETAS					Charge Number
\	-210913 1450B)	Ą	X						
	145TB (Dup))		X						
\	14528	7			X					
	1423 (M.S)	2	W		X				· —	<u> </u>
							-			
	Relinquished by: Date	/ Time	2:			1	Accepte	nd by:		Date / Time:
	Reiniquished by: Date 9/13/			0	X	ont		um d	q	-14-21 /0900
					10					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>り3さ井 /ででしま</u> Continued from page

i	1				i		1 1			•	1	i	- 10		ł		1 1)		- 4	- 1	- 1	- 1					ı 1	1 1			
																														Se.		
																														JEN		
i		- 1		l	l	i					Į.		ح -																			
											-																				\dashv	_
				, «				[A	L			-			~,			20							n :		T 1				+	
		эH		ļ.		13.	50	<i>ک</i> ا				1	75										,				12					
-		- m		1	9. Y	4							3 1		7 5 °C	1	//								ab STc		7 51.	,-	,			
		<i>≫\</i> }	1	1	14	1							12		I											,	5					
1		unl	I	-	1	2							0	ب.	3									11	40 T1	4 =	9,	01	>			
_	p	Hρ	Æ	1 '		1	1			8	દ)	7	7.14	1	9.9	۵	(3	g.	9 c)				l	Ex	n =	G	30	/ح	,	_	
_	P	4 pi	37	7	.19	1	9.	98																							\dashv	
+																				Ĺ	e· S	54	1104	VS	IX	W					$\overline{}$	
	4		-					1				>	44	_						L07	- 				nst.					4 5		
2			-	7	D 1	3			VAY 2Cco		'				1	itu	-		-	5 g	ĺ		/3	_	ml		,			1/5	-	
			1	-	1 (1		1	11						1/					11				J	1			,		11		
+		_			215				e0-						10	E			01	03	Sol	હ	11	ler	Anl	En				SRI	-	
+				3:	31	3		1	NΔ						10					11				2.						11	\dashv	
+		_	-	1	74	1		ļ	" (1)	-			le				-	11	-		/ >	n);		
\mp		-			35				POP	!	-				11				12	147	١.	×	•				_		<u> </u>	ALS		
				1	451				64		1				11	HN					A				on					11	_	
				/ 7	46	S		T67	AL	me	TAL				1 ac	7/20	3			7 4	A		رکی	123	MI,	porg		<u> </u>				-
								Pa	ra	2. 3		Pru	- 4	6	5	en	4	25														
PI	ł			8	5	s -			. 17	1		8.9	46																			
75	^p	,	-	20	∤ ∙o	<u> </u>	-	2	4.5	+	-	24			-			ļ									_		<u> </u>			
4	_				30		ļ		16	1	-	113	4		-		-												-			
44	L			0	74	'		(2.7	2		0,	74														-				\dashv	
												-					-					-						-	-			
				1	-				ļ																							
			<u> </u>				<u></u>																		Co	ntinu	ed fr	om p	age			

T- Kinned

9.14.21

Read and Understood By

Signed

9-15-21

Date

Date: 9-14-71 Sample Location: P(-11-710										· · · · · ·
Pertinent Notes (if any)	1		 		Analytic	cal Req	uireme	nt		
Sample Number	# of Containers	Sample Matrix*	82000	607	1180m4	5004	SUOA 5-8			「くっと) harge Number
210914 1350 B	3	A	入							
- 1351B (FB		1	×			:				
1325B	1			×						
13538	,				×					
13548 (18)	1				X					
143513	2	1/				አ				
- 1445B	1	V					X			V
Sample Location:	- '			A	nalytic	al Regi	iremer	ıt		
Sample Number	# of Containers	Sample Matrix*	Lota Jewhan							6m0 harge Number
710914 1446B	2	4								X
					\					
Relinquished by: 7-/Y-	/Time): :) A	ccepte	l by:	d	Date 9-19-2	e / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

ROJECT		-//	.04	0			4/6	4) 2 1	. /	~ /	7=	wor	1/<1					Con	inue	a tro	m pa	ge _ 			_ '	,		
ROSER	- 1	34A	noc	ور	+-	To~	7 يو	on	Ez	ρ	a=s	EN	T:	7	Z .	ع ال	+74	Ē٦	′ 3	c (a	91	· d	₩ <i>A.</i>	r.		73.	-	ZOO!	5
211 60	FPL	290	عا	+	5A.	mp!	Ed	us	/m/ 5	A	FA	uT č	- 5.	nap	Zin	, 5 ,	45 T	Em	P	ang	e 1	, 2E:	Sag	Æ:	50-1	@ ?	27	2 مر	· o
SAAple	P	و ت	w		E7	Q 2	105	. B	236	bl E		7 ع	-æ	دمر3	,, d	- 5	T4:	سي د	Q	80	51-	7	3€	F	NS.	7	35	on	/s
FSAM	PLE	P	ur	E	41	11 6	6€	ط, ح	64	rdi	દા		5	m,	n/	RE	w	ξny	T	1 m t	- 4	É	D'AL	Be	ر. ن	En	P	ins	-s.
anboy	1 1	- 1															_												
	!!	TN		41					Fi	VA	}								U€	EX	I	<u>D, t</u>							-
	210											50	50						ρH	14	ر م	1 -	# /	2					
	4	8.	51						7	8	3									14	26	#	7						
70	mp	7	4	<u>ه</u>	c				2	4.	1]						//	57.J	=	51	./-)	-	<u> </u>		
1 1	4	1				m				ر ا	16	As	le.	•							es,								
To	125	/	٥,	7	<u> </u>				C	2.5	8										45T-					-	-		
0.	4 pm		7.1	4/	9.9	8/3	89)	7.1	2	1	9.9	2	(4	3. E	'c`					1/	ξ×	p =	9/	301	21				
ρ	h p	57	7.	16	19.	96		7														ļ							1
	′					<u> </u>													6	.5	Su	1/1	~.	J	Ŋ۷	<u>.</u>			
							-	347	Pl	-5										ļ	<u> </u>			ļ					
Sample	7-/			4	NA	450					PRE	SEA	w_		ļ	4	77	•		40	νT	<u> </u>				ļ.,	10	6	
40914		0										1#			2	5	33		(3) 9	04	WA	"	<u> </u>			A	3	
	14	- 1		l	1	(a)					ı	_				4	<u> </u>				ı.					_	11	ļ	
	18	07	ß_	1	0	1 -		ļ			10	E			0	10	350	16	•	(1)	UZ	10	en			_	5/	<u>-</u>	
	14	63	\mathcal{B}	U	40	m4					1				ļ	1	2			-	11	<u> </u>				_	1	<u> </u>	
	14	04	3		"C	F13	<u>\</u>				- (ļ	1	/		ļ	<u> </u>	1,		ļ				4	ļ	
	14	55	ß		10	,4					7		1	_	12	14	Zo	~1	DK	(2)	10			<u> </u>		-	AL	5	
	15	00/	3	7	TA	, m	ETA	1/5			10	E1 }	INO.				14			(2)	12	141	اه م	_			11		
										<u> </u>			<u></u>		-					<u> </u>				ļ			-		
				_													ļ		ļ		ļ		-	-		-		<u> </u>	
						P	424	m'	-	201	41	To	, <u>Sa</u>	ا مرسد	وسرا		-		-	ļ		ļ	ļ				ļ		
p#		م.(0		2	531	1				46			ļ			<u> </u>			ļ		ļ	ļ	-	_	ļ			
Emp	•	2 3 .	<u>۳</u>		2	23.0	•	ļ		23	9	\$	1	-			ļ	ļ	<u> </u>	_		ļ		-	-		-	<u> </u>	
ows	/	2/1	_	-	1	02	ه_			10	21			ļ			-			1	-	-	ļ	_	<u> </u>		-	 	
EMP DND GLB	(7. ذ	ı		(9.7	,5	<u> </u>		0.	¢ 3	-		<u> </u>		<u> </u>	ļ	-	ļ	<u> </u>	ļ			-	_	-	-	ļ	
	-					-	-	-	ļ	-		<u> </u>	-	<u> </u>		<u> </u>	-	-	<u> </u>			-			-	-			
	-			-	1	_	-			ļ		<u> </u>	-	_	-	-	-	-	-	-	-	-	-		<u> </u>	_		-	
	-					1	-	-					-				-	-		-	-			-	-	_	-	-	
	ļ			-	_	-	-		ļ		-	<u> </u>	<u> </u>			-	-	-	-	<u> </u>	-		ļ			-		-	
						1	-	-				<u> </u>	\perp	-		-	ļ	ļ	-	-				ntinu	<u></u>				

T

9-14-21

for Signed winds

9-15-21

Date

Date: 9-14-71								·		Page of
Sample Location: PL-11-870				A	nalytic	al Req	uiremen	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8000 J	407	~~ 202 4	5004	FOF AN EWANN			X6 m D Charge Number
710914 1400B	3		×							
- 1401B (B)	3		X	·						
1402B	l			×						
14.3 B	1				X					
- 1464B (FB)	l				\aleph					
1455B	2					X				
- 1500B	2						X			¥.
Sample Location:				A	nalytic	al Requ	uiremer	nt		
Pertinent Notes (if any) .	# of Containers	Sample Matrix*								
Sample Number	+	3 1								Charge Number
Relinquished by: Date 9-14-	/ Time	:: /60x	0		ru V	ccente	d by:	d	9-1	Date / Time: 19-21 0420

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

2.14.21 Jon Jumb 9-15-21

Date: 9-14-31									I	Page
Sample Location: Pl-11-980				A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	870000	407	しし かりゃる	5004	4-12-1404			X 6 M D Charge Number
210914 1345B	3	A	X							
1346B (FB)	3		$\stackrel{\wedge}{\gg}$							
1415B	1		,	>						
14168	1				入					
1417B (FB)	١			,	χ					
14253	7					×				
1510B	1	レ					X			¥
Sample Location:				F	Analytic	cal Req	uiremei	nt	,	
Pertinent Notes (if any)				!				:		
Sample Number	# of Containers	Sample Matrix*								Charge Number
				_						
				_						
					_					
Relinquished by: Date	/ Tim	e:	<u> </u>) 1	Accepte	d by:	^		Date / Timq:
T. 3 9-14.	21/1	1600	>	10	m	\bigcup	hm	d	9-	15-21 /09 2 0
)					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Carpoy (61) # Cal, Snations Dosamon cal'd in 639 mm/4 pH, com Dap cal'd using insite Allin on calibration standard. Roly 10.2NT 15 hoT#9/017 Exp 9-30-21 Tyes # 21 57d 10.0 INSTER THAS CALID WITT ZONTH STANDARD. TRIP BLANKS 60T# SAMPLETT ANALISO factory. 13) You 1 was . 145 HD 826066 2583 210902 CTOBB 07018 (LNDMA 01025016 11)1 ct and an Param's PH Do TEMP CONS **۸**7٤) Spaplett 405 400,5 mu 0.36 74×15 210902 08553 21.27 938. 59 4 5/cm 7.18 6.18 7.20 21.31 938.65 095613 6.18 409.7mu 21.33 938.61 408.5 08578 C.15 7,15 0.39 Samples SAMPLE X grayes Presero 45T# CONT 45 102141 210902 100013 826011 2583 (3) Youldals 11 (FB 10018 li 1002B LLNDMA 11)1ct An bin 14 01035016 SMI 11 (F3) 100313

DAN HALVORSEN & TONG TORES PRESENT. THE WEATHER IS CLEMENT COUL THIS WELL

WILL BE PURSENT SAMPLED USING A DEDICATED TEFLON BLADER PUMP SAMPLES COLLECTED

FROM A TEFLON DISCHMARE TABE WATER QUALITY PARAM'S COLLECTED FROM A INSTITUTED.

T. Signed

9-2-21

Jon Jones Jund

Read and Understood By

9-7-21

Continued from page

Date: 9.2-71									P	Page of
Sample Location: 57- 4- 48				A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)			8	7					_	
	2	**	8200		i					
	# of Containers	Sample Matrix*	00	XXX 4		:				
	f Con	aple]	{	4						X6mD
Sample Number	fo #	San	Ĺ	+						Charge Number
210902 0700B (TB)	7	A	χ							
- 0701 B (TB)	l	١		≫				,		
1000 B	3		λ							
10013 (FB)	7		×				-			
/002 B	1			×						
1003B (FB	ı			×						
108313 6173						_				
Sample Location:					Analytic	al Req	uiremei	nt		
Pertinent Notes (if any)										
	S	*.								
	ainer	fatrix							į	
	# of Containers	Sample Matrix*								
Sample Number	- Jo#	Sam								Charge Number
		1			 					
Relinquished by: Date	/ Tim	e:) (4	Accepte	d by:			Date / Time:
1 9-2-2					$\sqrt{2}$	\prod	\u-	h	9-	7-21 /0900
				$- \lambda $	_ ••	7		•		- /
				$- _{A}$,			•

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>り37 世//タ (B)</u> ROJECT 57.4.690 ENU.0053 Continued from page Dan Halvonsen & Tony Torren present. The weather is client zone will be purged a sampled using A TEFfine bladden pump. Jamples will be FallEcted From A Tygor dischange Tabe. Panamerens will be collected from Agua Troll 500, Carbon (6-1) Calibrations Do cal'd @11 12 639 mm/H THAD METER # 21 5Td=10.0 Rdy=10.7 601# 91017 Exp. 9/30/21 Tunk SENSON CAK'd IN ZONTA buffine Param's Do Dru 1415 7.99 808.16 TEMP orp imple # 2.64 300e 20 25.92 ?10902 1855B 3.68 300mg 76.03 1.94 7.97 868.17 3.62 1456B 7.97 1-87 306.7 26.10 3.70 808.17 14573 SAMPLES 40×1 PRÉSERV 401# 54mplet ANALIS 2583 (3) Yomlurals 1421He1 826011 2/0802/500B 11 (FB) - 15013 (1) ICT Amber 5NH 11 (F.3) 01035816 150213 1503 Continued from page Read and Understood By

9-2-21

10h Munch 9-7-21

								P	age of
Sample Location: 57. 4-690 Pertinent Notes (if any)									
# of Containers	Sample Matrix*	C 08 NOS	1256C)						K Gm A Charge Number
3	A								
3									
1	1								
			F						
of Containers	mple Matrix*								
#	Sa		<u> </u>	<u> </u>					Charge Number
ļ		l l			1			1	
_	ļ	╂			_				
				n.					
ate / Tim	e:				Accept	d by:		0 1	Date / Time:
ate / Tim	e:			ou	Accept	d by:	-ch	9	Date / Time:
	3 1 3	3 A 1 3 1	3 A 3 1 3 1 1 1 1 1 1 1	# of Containers # of Containers # of Containers # of Containers # of Containers	Analytic A A A A A A A A A A A A A A A A A A A	# of Containers # of Containers # A A A A A A A A A A A A A A A A A A	Analytical Requirement	Analytical Requirement	Analytical Requirement Sample Watrix * A

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 532# 122B 11
Continued from page

PROJECT 57: 6.578 Flute WSIIS INTHEWOMES
ROSEAT BUTTONS & TONY TONER PRESENT. THE W

	0							-			_							_					Ī							7		
	<u> </u>	DE L	1 1	<u>)41</u>	Zœ	_ کر	4	/ •	24	1	0/	rE.	z /	NÉ	361	17.	\mathcal{I}	15	w	F#7	30	1 1	3 C	(E	n	- 4	201	m	14	7/3	200	KE
W	11	55	ρι	196	يل ر	- 5	AM	ρlċ	ı	430	Ng	A	Fu	TE	54	576	7.	Pa	RE	04	UES:	54 A	E.	5E 7	-e	22	18	251	J	54 2	ء د	
0	LESS	un	· <		0	20	5.	A	m		oF	4	- 4 /	/0.A			. = . [_		77		20	A 4-	1	مرسر	6.X	125	2	441		Se 7	-
																										<u> </u>	-	יע	1,500	276	<u> </u>	
9	1	,, .	9) / 4	DIE	8	193	7.	73	m	·N	· · o	<i>f</i>	RE	Col	1	7 '	(M	2 8	E14	ve E	~	URS	1~	•							-
_										-																		ļļ				
				IJ	Vill	4 L					Fin	46										ME	TE	. =	FS'	5						
	2	106	115	- 1	05	5	B		7	711				(5.1	3								41									
					97					1				U								- (i .									
	8			1 1					-	1 1	5								,					145		J i			_			
	78	mp		. 2	6.	1		\dashv		۲۷,	1.0	C											1	150	9 =	51.	(7			\longrightarrow		
	40	40		11	4-	4,	/ca	,		11	48	4	s/c	A									,	" Kd	"	50.	9					
	Tu	15		灰	5 . (.34	5				.7			,									1	-	Ī.	101	1 1					
					/9.			اء د	(.9	s /	99	ď	1	77	Q	. \										0/					
	•	, I		1				٠. د ر							2	. /	5)							رع .	7	7.5	0/3	21			\rightarrow	_
	ρн	ρο	57	7.0	ዓ/	/0.	သ		_/	0	Z,	<u> </u>	78										ļ. 									
	工	S h)														•															
										ج	S4	+		G. 0	Rt.	byk:																
											7,1-7	- 1			1	י אזע	'	_												_		
- 1	ı	plē:	_				~ A	_					¥.s			-		<u>4</u>	721				27/						4			
2	109	15	670	∞ [3		820	roll				_/	£/:	41								15	16	N v	14/5				41	5		
_		_	070	13			LN	برميره	۲				14	4								(1)	115	AM	りらへ				5/2	-		
1	***	-									5,	4 00	0/0	<																		
4	•	-	_				_					1	.						,	8 -				7						,		\exists
	_10	7/\ 			50		Aγ	_				Т	ne		_				15 TS			_	60						14		\rightarrow	\dashv
\dashv			ナ フラ	6	53	ग							16	14	<u>:1</u>		3	5	83			(3)	You	UIA	15				A/	5	\rightarrow	
-		_ '	`#	70	8	π	"	(F	5)					41				l	l_				1/						1,			
		_	12	5	2.5		40	γ 7						الث			0	10	350	510		(1)	10	926	En		. }		5/4			
_		_			3 R	9	((~		A](1,		_				11	1		
		_			B			(Fi						lı					И				11					-		-		\dashv
																						· \							11		\dashv	\dashv
			1.5) 5 0	S		100	- 1						17						3 / #	216	(2)	11						A (5		
_		_	_/	100	> [3		30	OA -	5,20					u				^	1/4	•		11)	22	mla	mbl	'n			4			
		_		%	50	7	OTA	1(1	2714	15			14	E	Hn	_			11			(2)	125	nla	٠/٠٠				ų			.
																3						/			7						\exists	\exists
										0																	-			+	+	-
-										Py a	- 1	- 1	- 1	4m															\dashv			
				Pt	+		1	En	10			50	۲۵	-		Tu	25														\perp	
1				7.7	7		2	2.4	1			115	3			2.0	3															
2			ł	7.8	6			7.3	t			1/9	17	, _		1.4	2															
3				7.9	- 1			? ? o				114	-			1.3												_	+	\dashv	+	\dashv
د				/-	/		4	ى بر ر				• •	.			, ,	_											-	\rightarrow	-	\dashv	\dashv
\dashv																																\dashv
]	Con	tinue	d fro	m pa	ge			

1.

9-15-21

Read and Understood By

Un U uu d

	Date: 9-15-21					_]	Page	<u></u> of _	
	Sample Location: ST. 6. 578		A	Analytic									
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	DOLUM	607	((>)						M Δ ge Numi	ber
	\$10915 0700 B (TB)	3	Ą	X								/	
	0701B(t0)	1	1			×						1	
	1522B	3		X									
_	1256B (FB)	3		\nearrow									
	1257 B	1	+		X							 	
	12583					X						۷	<u> </u>
	12590 (FB)	ĺ				\bowtie			.,			<u> </u>	
	Sample Location: 57-6-528 Pertinent Notes (if any)				Analytic								
	Sample Number	# of Containers	Sample Matrix*	5004	340 FOCK	totanzwann					-	-m <u>n</u> ge Numl	
/	~210915 1330B	24	A	\times								1	
	- 1400B	18			X								
/	- 1405 B	a	<u> </u>			X						<u>V</u>	
											-		
	Relinquished by: Date	/ Time			-	1	1	1	-		D + /	T:	
	7-15-	. 7	loc	0		M	dcepted	uu Juu	-d	<u> </u>	Date /		900

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

12 PROJECT_	ST. (· 5	-69	8				FL W	ate SI	/ <u>/</u>	. 10	J14	Eu	yon	k5		Not Conti						2#	12	z ((B)		
ROSERT	- Bui	100	دں	x 7	3~	× 7	0/	EZ	\perp_{ρ}	LE:	En	7.	-	he		E4	The.	1	ء د	· (E	41	o	ملا	nn	• •	7	his	
ZONE	w.11	b ₹	pa	Sal	(d	31	mp	Ed	451	~/>	A F	1ú	TE .	Sys	T =-	ŋ.	Par	29€	P	स्s	SU A	۶	رسحے	e	222	305	-	_
2 Jano	EPAE	Ssu	u.	527	@	20	705	,	A	712	04	,	مري	110	V5 (> A	57	46,	L.7	4770	ימ	U F	PA	ZA.	7 5	1-5	4	
TAKE	IMEE	pa	104	10	54	np	lesse	3. 7	Bus	NE.	2 5	c7.	23,	051	ð	5	4	5/E	@	عم7		85	એ	Sy	01	/ /		
MINDS.	Betu	IEE.	~	pur	5 <i>E</i> 3	۲.			-	-																		
	-									-		 								-							+	
				TIA				/	ince	q (E7	_								_
	210				> <u>∲</u>)	-	1		15		30	B					P	H /	409	B	*/	7					
P	4	8.	- 1		-	-	}			3	1		ļ						7	un		Ĩ					- -	
7.5	mp	2					-			才 它										1	.		1.					
	1 1	111		- 1		•	-			74	1	1								- 1	-		Ò. S	l 1				
7	ins	0.	90	<u>~</u>	٠.					8~											- 1		101°	1 1				
	IPAE						4)	- 1	1	19.			(.)	C .						11	Eγ	7	/ 3 c	,/ z				
P	4 post	7-	07	79.	94	• .	\dashv	Cr.	47	-/	9.9	0																
_	34						_	_	+	-	-	-																_
									+		-																	
						- 1	54	mp	1 -		1										_					-		_
DAMPLE				WAG		,				1236			-			7#		,		~ 7						45	-	_
215915		1 1	T		- 1				10	z 1 }	TEV			()	83		(3) K	s Mi	U/4 F				Į.	*1 s		
		613		4		3)		-		<i>p</i>	-	-	-			/				<i>(1</i>					<u>-</u>			
	13/	OB		60	7				1	4=		-		C	7/0	357	5 <i>/G</i>	-	1) / (TA	ubs	7				5V2		
	13/1		1	LNI	. [- 1	•			h	 	 			l					1						7(
	,	B		110	- 1	, ,				1	-	+	1		1	,				14						11		
	134	1 1	- 1		ī	ره				1	+	+		/ 7	1	1			7	li u							_	
	ţ	55								1,				1 2	142	14		< (ļ.—			419		
	1	5B		- 1					+		, ,				/V	77		1	(1) z			1	1			14		
	142	OB	7	6TAL	M	214			- 1	41عل سر	1 3	7 L		-		,			2)12	.) 4	Ipo	77			·	7		_
Samplett					, ,		8	ling		>V /	And S	+	١,		,,,									<u>_</u>	la .			
210915		72		~A		_		- 1	nes ce	Eng		0	W (57					TAI				\vdash	1	27			
2167/3	כשכן	6	L	rvg.	M H	<u>-</u>				+-•						Y(L)		7,0	1 771	700	1			100				_
	P.					Emp	, 6	Dure	E .	0	2	.1 ⊂ 6 •}	2m 1	127			 	1	un	_				-	-			_
,		15				3.3	_ !		-	7.5	77	1	1 .	12.				0	.99	3				<u> </u>				
2	8.9					2.5			-					111	1				37									
3		42				y.Z		_				1		1116				†	>,7	4								

T->

9-15-21 Date Read and Understood By

Signed

9-14-21

Continued from page

Date: 9-15-71									Page	lof	<u>/</u>
Sample Location: \$7-6 - 568				A	nalytic	al Requ	uirement				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	5000U	900	U-8089	5 0 4				Gm A	lber
210915 110513	3	4	X							į	
- 1106B (F8)	3		<u>م</u>								
131013	1			ぬ							
131113	1				X						
1312B (FB)	1				×					\perp	
1345B (Dup)	1				×						
142513135513	2	بل				×				<u> </u>	
Sample Location: 57-6-548	,				nalytic	al Requ	uirement				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	かかからん	10-4- EN+ 4-17	·	المحجم			4	(GM)	
21091514253	1	4	X								
142613	2	1		と							
21091515553 (B.C)	1	A				X				<u> </u>	
Relinguished by: Date	7 / Time			To to	m (ccepto		di	Da 9-16-2	te / Time:	900
				V			•				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 57.6.678

time Between # Punges

106045/cm

105345/c

INITIAL

8.48

1070 hs/cm

24.2

0.99

PHP057 701/994

210916 12500

PH

8.50

8.55

PH

TEMP

Tuns

2

Notebook No. D32 #122(5) Continued from page ROSEAT BUTTOWS & Tony TOTTE PRESENT. THE WEATHER IS CHANG WARM. This ZONE WILL 6 punged & SAMPIEL USING A FLOTE SYTEM. Pung = 44 - 5 Pressuat was set @228 post Sumple pressure SoTE 207 psi 4 gallows on until Param's STABELIZE TOBE punged prior 6-2. 15 min RECOVERY To sampling. Bubbler set & Bor, & stable & 7ps, Canbon Cons. PRE Sample PARAM'S TEMP Tunb 23.9 1.03 74.0 c 0.98 METER IN'S final 210916 1515B PH/6000 #12 8.56 Tuns# > 23.12 " srd= 51.17 1089 48 cm 128, 50.4 2.78 Notus 445#= 91017 pH pre Ca96/984/39.4 7.04 19.79 (36.7%) "EXP= 9/30/21 7.67/9-01

			++		
		amples			
3Ample #	ANALISIS	Presen	GoTFF	CONT	405
		1 1 2 4			
210914 190	13/03 826011	(c) He	4583	(3) You vals	415
/3	1188 11(FB)	11	11	11	11
/3	12 B C07	145	0/035016	(1)KTANbox	sat
134313	GR (LNAMA	1	11	h l	
13448	4B 11(FB)	t)	1.	1)	11
343 3	55 SUCA	10	121420114	- BILTAMBER	ALS
1510			MA	(1) 250mlamber	10
				(1) 2 500000000000000000000000000000000000	1.
151	13 11 (Dup)	11	1 11 11	P	l1
37	2B TOTALMETALS	1c=1HN6),	12) 125ml por	11
	TA	IP BLANKS			
SAMPLE #	ANALOS	Presen	COTA	CONTT	eal
210914 07		1414		(3) 40 m/v/4/s	415
	OIB (LNOMA	100		11)1 crambon	SVE
1.1 1 1 .1				(1)1 (1)1 (1)1	
X Somethe	ING FLOATINGIN SA	mpres From W			

9-16-21

A MOTE Check Ball doesn't seem to be working RIGHT

Read and Understood By

Continued from page

Date: 9-16-71								Page of
Sample Location: 5T- 4-678		:	-	A	nalytical l	Requirement		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	みてものし	607	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			X6mA Charge Number
210916 0700B(tb)	3	A	χ					
070/75	1	1			\sim			
13103	3	\Box	X					
1311B (FB)	3		X					
1312	l			X				
1343	. [×			
1344 (Fi3)	1	4			×			业
Sample Location: 57-6-678 Pertinent Notes (if any)				A	nalytical	Requirement		
Sample Number	# of Containers	Sample Matrix*	5004	5004514	10-9-Mul-9-5			X & MA Charge Number
216916134513	2	A	X					
1510	-	1		×				
1511 (Dup)	1			>				
1512	2	1			×			<u> </u>
Relinquished by: Date	/ Tim		0		Oru	depted by:	u-d	Date / Time:

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

		, , , , , , , , , , , , , , , , , , , 																		om pa				_				
Rosen wrll h	TBI	000		-7	2	-		م	Γ			-				T	\Box		T-	T	Τ	T		Τ_	<u> </u>	Т		_
1 5 // L	_		ر ا د ا			9 1	C/	(=	- 1	NE	35-	٧٠.	1-4	15	w	F47	45	4/	> C	4E-1	1	tw.	M	-	4,	\$ 2	ovê	
		7	- 4	277	MO(151	2	l pa	1 r	16	10	5.4 .	المما	-	5.00	معتوتا	1 6	վ∟ ո	_	ρ_{-}	-		1	ر حالم	\vdash		1
on on	FA SAA	PLE	pur	554	NE S	57	Q 2	ر د د	05.7	4	00	110	15	01	F	an		5 -	***	1.				1				for
enion	0 500	200	ne	1	-		0-	. "			7	_	i	-	_	1.0	-	<u> </u>	19	DICI	ZA	100/	h	411	סכ	pens	55l	
prior		10		43	1	<i>'''</i>	14	حصر			11	DE	05	14	EE,	Vρ	409	Es	. C	act	ريق	6-	6	13 u	554	A 5	<u> </u>	2
3051 7	5 TAE	,ce		100	-						1		ļ															
						Pa	ES	AP	w le	D	un.	E	PA	na	m'													
	p#		72	ر معاد			,	νΔ	_	-					-	1		-	_	—					 			
	8-00		2.	2 //			2/	. 17	1	Tur.	F		 												<u> </u>			
	1 1 1			2.4	1		76			<u> </u>	89	ļ	<u> </u>															
2	8-08		77	Z. 7		4	4	5		1.5	\$	ე. 9	0															
3							ļ																	-				
				+	1	1 1																<u> </u>						
		-+	-		 			$-\downarrow$				<u></u>																
					T	NIT.						_	,						-	20				-				
		-	2/2	3//			70				Ť,	VA	• • • •	-			-			rie	7€	n =	<u> </u>		_			
			210				15		<u>`</u>	210	591	6	14	50	3				ρ	4/	Son	Δ	#	12				ı
		-18	,4	1 8	0	3				8.	10								•	- 1	1	5 #	ł					
		7.	Emp	7	3. 8	3 'c		- 1	7	- 1	<i>(</i> 'd										- 1		- 1		_		-+	\dashv
			200				1-	1	T	•		$\neg \neg$			_					1	- 1	- 1	21	.17	-	_	_	
			243	-							- 1		sl c	1							11/	2ds						
			un5			84			_ (٥.	6	9									11	-7#	- 9	101	7	T		
			4 pre	7.	04/	199	139	16					41	141	7	1.					11		E	101		\neg	\dashv	
			t pos					1							.) (_				-+		exp		30	1/2		_	
	\dashv	-17	1 pos	-	15	7.7	- 1	_}			- 1	9	85	_	_													-
+++								54	mp	LES	•				1	İ				Ì			j					
Sample	t		A	VAL	دري					1	- 1	,		T	/_	-			_				_	\rightarrow				\dashv
210816	-	<u></u>	- 5	26							En	-			1	H		-	. 	7	=+			-	LA		_	_
3.0776						-+		_		E1+	<i>f</i> U				.)	83	_	_{	3) (lon	אט	1/5	_		A	15		
	1350	013		"(FB)					11					l 1	'				11	-				b			
	13283	713	6	67						4	Ì	ĺ		0		357	11.		N	CTA					_		_	一
+	13283	2	1	1	ma					,							<i>51</i> G	-	1 /6	. 1	m ac	sr.	-+	+	-2 1	RI	\dashv	\dashv
/	32 9 5				ا ما	. 1	-+		-+	-	-	\dashv		+	_[-	-+		_	11	_		\dashv	\bot	_1	,		_
	3298	20	>	' 4	FIS	5/	-			1	_				1	1				1/	_				7,			
	170	3/5		UO	A					lı				12	14	20 1	N	. 1	2)	1/			1.	.	A	1.	_	\exists
	144	JR	- 1	574	(ni	ETAL	, [T.	/.	2 1 4	1No		7			1/4		7.	<u> </u>	25,		_	\dashv			7	+	\dashv
						E1#1)	+	+	11	<i>ر ا ر</i>	1710	>	\dashv	+-	-7	14	-	-	الإع	C3/	n/p	4			1	1		\dashv
++++			 			_		+		_				_									\perp					
													1			ĺ												
																\top	+	1	\top	\top	+	+-	$\neg \vdash$	+	+	+	+	\dashv
									+	+	+	+	_	+-	+		-+	+	-			-+-	+	-	-		+	\dashv
	++		+				+-	-		-+		_	_						\perp									
	+-+						_								_													
				_										T						\top	\top	+	\top	+	+	\neg		1
							+-	+	+	+	\dashv	+			+	+	+-	+-	-	- -		-		+	+	\dashv		-
	++				-+	-+-	-	+			$- \!$	+		-			-	1	_		\perp			\perp	\perp			
			$\perp \perp$												_					С	onti	nued	from	n page	е			
														$\overline{}$														

9.16.21 Date

Read and Understood By

Date: 9-16-21				-	-			-		Page
Sample Location: 57-6-874				P	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	87V0-0	407	くしょうでも	500A	4014-2014-8			X GMJ Charge Number
2109/6132513	3	A	X							
1376B (PB)	3		×	-				-		
1327 B	ŧ			X						
13283	t				X					
1329B (FB)	1				\aleph			-		
140513 (+3)4	2			_		×	•			
144513	2	1					κ	e ē		<u>¥</u>
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	uiremer	nt	T	
	# of Containers	Sample Matrix*								
Sample Number		- 01							,	Charge Number
								-		
										· .
Relinquished by: Date	Time)		11	ccented	l by:	d	9-3	Date / Time: 30-21 / 0915

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Flute PROJECT ST-6-970 WST IN PROCESS Continued from page _

				4000																											
u	11	50	Pe	irs E	- 1 8	- 5,	an	PIE	el .	45	ne.	A	F	Cut	<u>-</u> 5	A	20	1149	: 54	57E	m.	Pe	RS	= 1	ni	ssee	25	SE.	@	Z 78,	-51
				pre																											
				AM																											
				7													3			•	.رچ.نا								-		
3/	240 .	<u> </u>	•	P	2/-		1000	2																							
			_																										-		
+		+-	_	.,	0		Pré	5.	ادمه	! .		L.	an	3															-		
+			1	<i>H</i>		.23	ì		-	_	29														-	ļi					
-			i	Emp	1						۶.۲																				
_		-	4	$\Delta \chi \Lambda$	/	64	8.4	s/c	!	l	/p ^c	l																			<u> </u>
			Ti	da		1.	31	ļ		1.6	\$																				ļ
						ļ												ļ													
		_=	W	I TIA	16			P	~	1									/	ME	TE	ı	I.	٧,							
	•			116		51	3	7	210	91	6	150	1	B							OH	10	54	13 4	12						
ρ	4		8	31						90										•	ļ.	1	els ±		1 1						
TE	MO		2	4.1					2	3.	1 6	•										Ī]		רו.י	•					
0	NS		/ c	25	45	Ker	,		10	91	4	5/0	M									1	Rd,								
	115		- 1	87	- 1	1				23												i .	. •	#7	910	17					
04	an	= 7	13	198	8 (41.	o:)		7.8	>7	19	.8	9 (32	140.	1:0									9/3						
06	1001	77	7	17/	991	,				7														12							
1										•	•																	-			
			****		1																										
	1							4	<u> </u>	ple																					
5.	4-11	7/= 7				1	, ,	1	,				•				, 70 ⁷	-99-			<u></u>	77	-					LA	,		
21	9/	,	1-2.	35 <i>[</i> 3		82	ا د کوپا	<u>s</u>		_	rne	SE	1					3				√ [1 1	, .					5		
		-	. 5	36I	7	1	CF) 			14	1#	u				ll				7	- A	مان ا	115					5		
		+	- 1	i i				رد				, 													\vdash			11	, _		
		+	- 1	371	- 1	Cec	, ,				10						/.	055	OIC	> (1)/[40	60-	1				51			-
			1	38			12					1					"					'					-	- / [-		
_	-			39			(Fi	5)				1					11					1			-			- 1/	_		-
	干	-	- 1	120.			DA								12	14		IB	K	(2)	11			\vdash			Al	5		
+	+	-	15	00/	3 -	TOTA	i M	etal	5		lu	Ē/H	nb			√ ⁄	A			Ľ	<u>2</u>)/	95	<i>ه</i> ۱	dy	-			11			
-		-	+																								ļ				
	_						ļ																								
			1				_																								
																														_]	_]
																								Cor	ntinue	d frc	m pa	ıge			
													·								·	٠	-								

Read and Understood By

Date: 9-16-21										Page of
Sample Location: 57-6-970				A	nalytic	al Requ	uiremei	nt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	50000 J	407	ししないか	5000	5004			
Sample Number	# of C	Sampl			4		5 12			Charge Number
210916133513	3	A	入							/
1336B (FB)	ß		R							
13378				X						
13388	1				入					
1339B (Fis)	l				×					
142013	2					\otimes				
1500B	て	ム					\varkappa			Y
Sample Location:			- · · · · ·	A	nalytic	al Requ	iremer	nt	Г	
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*	-			·				
Sample Number	#	Sa								Charge Number
			`							
	:	,								
					\					
Relinquished by: Date 7.16.2	Time	600		10) ^	ecepted		uch	9-	Date / Time: 20-21 /0915
				70						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Clay Ill Leuro

Read and Understood By You Junch 9-13-21

Date: 9/9/21]	Page	of
Sample Location: WW-1-453	_			A	nalytic	al Req	uiremer	nt			
Pertinent Notes (if any) Resample event Sample Number	# of Containers	Sample Matrix*	LL NOMA							Charge 1	Number
	1	Α	~			<u> </u>				XGmi	
2109091420B [421 B (FB)	1	A	/							u	
Sample Location:	•			A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)								-			
	# of Containers	Sample Matrix*									
Sample Number	#	Se		- 113119						Charge 1	Number
								<u> </u>		:	
									-		
					-						
				\mathcal{C}							
Praig Del Terriso 9/9/21	/ Time	ohr	S,	10		ccepto		_d	9-1	Date / Tim 3-21	0900
		-		V			1				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

9/8/21

Final packer pressure - 37psi

Craig Del Terrio

(3)40 mlvias 2593 415 (1) 11 Amber SRI 010 35010 DTW/FD PH ORP Do 4.96 5.97 8.85 26 474 26 8.87 4.46 28 Container (3)40ml vials (1) IL Amber SRI 01035016 * packer inflated prior to sampling. Continued from page Read and Understood By Jumah 9-9-21 for U

Bob Tuffs & Craig Del Ferraro present. Worther is clear & warm. This well will be purged using a dedicated bladder pump. Samples will be collected into a using a teffon discharge hose. Water quality parameters will be monitored using a QED MP-20 flow cell and water analyzer. Carboy G/ in use. Worther is clear & warm. This well will be DO - calibrated in saturated air @ 639 mm /Hg. Conductivity - calibrated using 1413 us (cm std. solution PH- calibrated using fisher buffers (7-10). Cakton Turbidity meter #21 std-10.1 rdg-10.4 lot-91017 Exp- 9/30/21 Trip Blanks - Water Purification System Sample Analysis Preservative NOA by 8260 LI ice/HCL 21090807208 --- 0721B Low Level NDMA Parameters (time) Temp ('c) cond (ms/cm) 22,33 0.944 21090809458 09488 0.955 22,30 -0951B 0.962 22.36 Samples Preservative Sample Analysis VOA by 8260 L4 ice/HCL 21090809558 0956B a (FB) ice Low Level NDMA 0957B u (FB) 0958B * u (M.5.)* + 0959B * (MSD)* -1000B Initial pacter reading - Spsi Total gallons purged - 2

Date: 9 8 2									P	Page of
Sample Location: WW-2-4	89			A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)				A						
	ers	*xi	17	NDM						
	# of Containers	Sample Matrix*	9	3						
	ofCc	ample	82	77						
Sample Number										Charge Number
@109080720B (TB)	3	A	~	-						XGMD
6721B (TB)	1	A				-				ч
0955B	3	A								Ų
0956B (FB)	3	Α								ч
0957B		A								<u>u</u>
0958B (FB)	1	A								<u> </u>
09 59 B (MS)		A								ч
Sample Location:				A	nalytic	al Requ	iremer	nt ,		
Pertinent Notes (if any)		,	4							
	ners	trix*	MQ							
	ontai	le Ma	3							
	# of Containers	Sample Matrix*	77							
Sample Number	++								,	Charge Number
210908 1000B (MSb)	+1-	A								XGMD
				-						
		•								
Relinquished by: Date	e / Tim	e:		\mathcal{A}	1/	Acepte	d bv:			Date / Time
Prair Del Tenno 9/8/21		oo hi	rs.	Th	ru	X /	\w	_d_	9-	9-21/0900
The state of the s		1				<i>,</i>				
				70			/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>D32#122(B)</u> PROJECT WW-2-664 WJI ENV-0053 Continued from page _ Bob Tufts & Craig Del Ferraro present. Weather is clear & not. This well will be purged using a dedicated bladder pump. Samples will be collected using a tetlon discharge hose. Water quality parameters will be manifored using a DED MP-20 flow cell and water analyzer. Carboy G1 in ase. DO-calibrated in saturated air @ 639 mm/Hg. Conductivity-calibrated using 1413 uslcm std. solution PH-calibrated using Oakton buffers (7-10). Turbidity meter #21 std-10.1 rdg-10.4 lot-91017 Exp-9/30/21 Turn (NTUS) DTW(#) temp(c) cond(ms/cm) ORP Parameters (time) -28 2295 0.927 1) 210908 14158 5.13 23.07 0.926 494 -29 1418B 1421 B 4.72 23.15 Analysis Preservative Container Sample VOA by 8260 LL ice/ HCL (3)40ml vials 21090814258 n (FB) 1426B SPIL () IL Amber ice Low Level NDMA 01035016 1427B u (FB) + 1428B * Packer pressure prior to sampling ~ 37 psi.

X Final packer pressure ~ 37psi

Total gallons purged - 2.5

Graig Ill Temo

Read and Understood By

Junde 9-9-21

Continued from page

Date: 9/8/21					_				Page of
Sample Location: WW-2-664	ŀ			A	Analyti	cal Req	uirement		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	770928	HWQN 77					Charge Number
21090814258	3	A	V						XGMD
1426B (FB)	3	A	✓						4
14278	L	A			_				ų
1428B(FB)	1	Α		~	_				ч
C 1 7					_	<u>.</u>			
Sample Location: Pertinent Notes (if any)				A	nalytic	cal Requ	uirement		_
Sample Number	# of Containers	Sample Matrix*							Charge Number
Sample Number									Charge Number
Relinquished by: Date Crang III Fermo 9821	/ Time	: 10 h	rs,	+	On.	ccepted	1/6): 	19	Date / Time: -9 -21 / 0900
•				+0			_}		,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Resample PROJECT WW. 3.564469 ENV.0020 Notebook No. D&4 128(4) 35 Continued from page Marcus Avalus & Tony Torrez gresent. The menther is cle Sampled using 2 Steam Cleaned Hipe rinced Stainless use Probe # 4951. Surface checks performed on prob gior to samplin 30. Min Equipment Blanks Sample H Analysis 1) IL Amber Low level NOMA 21090918451 01035016 SIZI Parymeters Final Merc ID 210909 15277 PH/Cond-210909 1425 V #20 #5 7.55 21.0.0 5.54 NTV 1084 us/cm 1062 us/cm 5.56 200 297 20 2.10 NTU 91017 107-7.04/10.06 (27.5") 7.06/10.08(28.20) = exp -9/30/21 7.01/10.04 07/10.05 409 35 Buffers 409.50 Exp 12.58 psia 4007947 12-49 psic 12/21 IDW- 0.25 gal 7/22 4101656 Samuls Sample # Analysis Presure Continu 21090915004 Low Level NOMA 01435016 SRI 40.67 2/40.46 3)40.50 39.34 40.40 40.2 Continued from page Read and Understood By Jumen 9-13-21 9/9/21

Date: 9/9/21										Page	
Sample Location: WW . 3 · 56+ 460 Pertinent Notes (if any)	7			A	nalytic	al Req	uireme	nt	-		
Pertinent Notes (if any)			1								
		*									
	taine	Matri	0								
	# of Containers	Sample Matrix*	2022								
Sample Number	# of	San								Charg	e Number
2109091345 y (EB)	1	A	乂							Xami) [.]
- 1500 Y	(Ţ	/							J.	
			-								
Sample Location:				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)					_					1	
	I.S	**									
	rtaine	Matri									
	# of Containers	Sample Matrix*									
Sample Number	0 #	Sar								Charg	e Number
			_								
									-		
	/ Time) (ccepte	\	1.	^	Date / T	
1/9/21 @	2 15	53		_/¤	r U	\bigcup	Jun-	-d	4.	13-21	10900
			-	-							,
				U		J	•				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

RESAMPLE
PROJECT_WW.3.569 ENU.COSTO

Notebook No. 5644/78(y)
Continued from page

		T									·ce		-						Con	tinued	l fron	i pag	ge _						
MARCH	s 4	Jal.	5	700	y To	reg	عمر	38.	4 7	-	73	ε,	ناب	1	35~	. 13	9	And	Ho	-].	72		2	- 4 4	<u> </u>		11	6.	T
																							#	22	7/7	₩/ •		٥٤	-
GEN	201	4	35	5,	in	ace.	<u>- </u>	_ 4	6	KE	d 1	ne	27	To	SA				4	3.	4	26	-	ہے	<u>-1</u>		V	455	-
		_	1														1	5	42	محود	6-	-				-			+-
		I	1,+,	مر							Ein	AL			1	1		1			-		\dashv				ļ		├-
2109	0	7	15	30	V			T	2	7	3	7	, 🗼	58		\top				-	ME				- 1				_
PH	-	7.0	71		7	1.,		1			9		-	סכ	7	+	+	-			PH		. 1	- 1	-	. !			
TEMP		4.	3. 5					T			7. 3		_		-			-			7	200	15	#	_(٥			
900D	J			54	1		1	T	-+4					-+-								<i>'</i>	570	<u> </u>	5	ر ج	۵		
Turb	1	0	2	182	171	1	-	\dagger	+		2:	- 1	+		-		+					11	Rd	ادر	3	<u>: s</u>	4		
PHP.								+		1	41		-		-	-	-					"	6 7	Æ	9	101	7		
OH	205	, -	<u>ي . د</u>	0/	10	0	/	-	-	40	04	41	φ.	٥4	+-	-	 									-3			
DIN	4	09.1	70	7//	0.	o4	+-	+		2 4	23	11	0 -	8	3	-												-	
7	+		9/	341	0	*	-	+	4	<u>ی</u>). 3	5	_	_ .	-	<u> </u>	ļ									1		1	
ID	<u>ر</u>	+0	2.1	524	-	+-	+-	-	+	-		+				_									1	7		_	
+	+-	+-	+	-	 	-	-		+																-			+	
+	+-	-	+	-	ļ	-	<u> </u>	-		30	ne	ŒS	-									7		1	\top		_		
541	rec	E A	t	-	4	NA	45	S				Pas		20)			67	ar				.+-	+	+	\top		\pm	\dashv	
2109	Φ7	/ :	553	y	7	82	((1	100	·A			la							10	15	300		+	+	+	-44	15	+	#1.50
++	+-	15	56	•		1	′ ′					6,					11		<i>,</i> G	11)	TA	a _m	box	1	+	4	3	22	
-	ļ	-	ļ	1															+		1	+-	+	+	+	5,	rt.	-	
	ļ							7		n.		E.	R.	_				_	_		+	+-	+-	+	+	-	+	_	
AMPLE	#				A.	aly						ne	_	~							+-	+-	-	-	+-	-	_	_	-
21090	77	150	0 1		-(1	~!	n c				- 1	E	1	-	_		>7 *	-			2 riz	Т	+-	+	╡.		24		
	1.		1					-		+	1	e c	+	-	_0	10	35	ن/رن	S	رُدر لا لــــــــــــــــــــــــــــــــــ	ار	an	60	S 2_	-	5	RI	=	
										+-	+			+					_		-	ļ	·	_				v	
		1						· ·	-	-	-	-	 				_				ļ	ļ			\perp		\perp		
Run		RV	65			2		0 4		-	+		 	-				_		4_		<u> </u>							
7544	ı-		48			_ <)	04	6,9	7	+		-			_													
	ĺ)	1 1		\dashv																								
			51			+		82		9	-																	T	1
		o 7.	44	-				89	1.4	9	-																T	T	1
	-							_										_							1	1		\top	+
					-	_													1						1	1	+	+	+
- 1 !			-		_															1					-	-	+-	+	\dagger
	- 1				_							_ [,			1					-		+	+	+	- 1
						,	- 1	ł	ļ		1				-		-+-	-+-		+			<u>i</u>	1	1	1	1	1	+
												- 1	1	}													1		ı
																	-	1.											-

Signed

9-7.21

Read and Understood By

Ou Signed

9-8-21

	Date: 9-7-21										I	Page of
	Sample Location: WW. 3	-569				A	nalytic	al Requ	iiremen	t		
	Pertinent Notes (if an		# of Containers	Sample Matrix*	43050							X6mD
\setminus	Sample Number		#									Charge Number
	71090) 15004 (15554 —————————————————————————————————	(EB)	(A								
	1555 y		١	\perp	X							
	155641	FB		+	1					_		

								-				
	Sample Location:					A	Analytic	al Requ	uiremer	ıt		
	Pertinent Notes (if an	у)			<u>-</u>							
		:	# of Containers	Sample Matrix*								
	Sample Number		#	Sa						-		Charge Number
												-
	Relinquished by:	Date	/ Time	e:				Accepte		Λ	^.	Date / Time;
	7.53	9-7-21		lla	<u></u>	-	Du 1		\u	mel	-9	-8-21/090
						$+\!\!\!\!/$	-					•
						U	/					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 100. W. 150 Continued from page Weals Burning Robert dodrated bladder pump Samples will pored OCD MY 20 quality parameters will Water water analyzer. Carbon (a.2 in us librations ed at () (391 mm/Ha 1413 usun 570 Cal vina Ocklos buffe (4.7.10) Riss. 60.8 m Lat. 91017 Exp- 10/31/21 570. 62.2 NO 8# Thorn Oth (4) Cord (myin 01 9570 Parameters (time) temp(C) **P**O 3.55 157.60 -160 7.54 1.65 319 20.77 319 1) 211020 0920 A -157 7.56 3.04 1.67 337 20.83 + 0922 A 71.47 3 63 - 156 1.70 321 20.80 A 1200 3) Samples ab Sample # Analysis (3)40 m vists J283 ALS UDA by 8260 21/02b0930A = (43) 0931 A edry All (1) 502 02004016 A CEPO 607/ Browni 0933A 12)1250 ALS 210121 HNO3/In 0934A 0935 A = (FB) Anions/Alx ZeroHS A 25 PO (1) TOS SINSTYO 0937 A Perchlorate 6850 0938 A (1) 250 m/soly NO2, NO3 353,2 H2504 Iu 0939A 110303 DW - 156.83 Continued from page

10/20/21

Read and Understood By Junch 10-21-21

Date: 0/20/2									Pa	age of
Sample Location: 200 W 150				A	nalytic	al Requ	rement			·
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	6266	607/Bro	T. Maka's	Prior AK				Charge Number
2110200930A	3	Α	X							XGMD
- 0931 A (FB)	3	1	Ý,							
0932A	1			X						
0938 N (FB)	1			X						
- 0934 A	2				X					
0935 A (FB)	2				X					
0936 A	2	<u> </u>				X				
Sample Location:			ļ		Analyti	cal Requ	iremer	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	705	Perdorate	NO2, NO3					Charge Number
2110200937 A	١	A	X							Vamo
0938 A	1	1		X						
0939A	1_	7			X					1
			<u> </u>							
				-	-					
			<u> </u>		4	A				Date / Time:
Relinquished by: Date	Time		10		Or	Accept	lun		10	-21-21 /090c
1011						<u> </u>				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

1	lan	ري	A	alos		t	6 by	1	13,	مرع	کما	þæ	Ser	7	W	yes	• (1.	1	524	2	q'	ده		76	is	we	Il	ıa) î		<u>L</u> e	
	دور	g	ندن	74	<u> </u>	de	مازر	Jed	7	ladi	u	00	M.D.	_ <	GM	ملاح	w	IIi	be	6	والأف	کری	v	Sin		C.	dodi.	٦		dis	cha	40
1/1	125		Mº	اعد	91	أعا	7	00	(aw	عأء	کد	יעו	11	be	NVO	nito	red	V3	414	4	Q	ED	MP	.20	} .	Ploi	n C	ĬĹ	J-)
w	aler	C	neo/	120	r.	C	ado	40	(2 ·	1	ند	0 4	e.			<u></u>																
0	1.6	re/	100	<u> </u>																											-	
0		رمًا	ľ	, ,	7	res .	1	,	6	Ī.	24	•	ا مم	11.	-																	
	vgn				C							/cn				٧,	١													\exists		
PH	. (al	04	1 ~<	0	į	200	60	12	~	(1	7, ا						·														
1	de de	N	10	٤٢.	n.	0	,	1	arc		1	'	25	İ	1	20%		61.	لو ۱	J7 L		١	7 -	910	77	(έxρ	- 10	121	12		
																								•			Y			7	•	
60	caw	وكم	15	<i>(†</i> :	me)		ten	4	(o·			Con	19(msy)		DC)		0	951			PH		Tu	<i>b(1</i>	J~)	D	W	(tt.
17	211	019	141	A OC				2	۷,٬	12			1.	03	6			٦. ما	0		1	19		٦	90			.39		142		
3)			140	2 4				7	2.	لول			1	. 04	2			6.2	4		_1	18		7	03	\$	Q	.91			``	<u> </u>
3)		_	Jďο	MA				-	17.	18			1	05	6			ک.ها	2		1	18		7	.05			11			-	
_	1	,	L					Λ							1 4	nple	1				1		-			1	1			_	_	
•	ampl		i						alys								erve				onto					, ·	+				dp	
_J.	1101	ł	1		ļ		101	4 6	7 8		1				140	71.	e Z		(3	८) प	UM	l Uj	43			259	3				AΙ	<u>5</u>
		1	111	T			1		13	F13)					-	-	-	()	1 1	5	- I						,			•	
			1121	1	-		1	7/	,							Tc)]		nbe					10701			ľ	SB.	
			1131	1		_	i	otal	1 -								Tu	1	1	į .	75,		٠.,			1	121				A	.5
		1	11-1	A .			NO	2,1	JU 3	33	<u>کلا. ک</u> لا			-	1+:	2 20	·/I	u) ;	150	n!	bq'	1		2/0	303					;
							-	-													-											
																															•	
I	ifin	ما	0	W	-	14.	۲	12,											Fine		OTh	J-	14	2.	ઇર્ર '							
_																	-															_
						_										-			10	W	-	0.	5	99								<u> </u>
<u> </u>		-					ļ												_	-									•			
		-				_	-	-										-														_
		-												-					-		-											<u> </u>
					 	-		-								-		1		-												-
		-							-					-													-					
					-									-													-					
											-														Cor	ntinu	ed fro	om pa	age	1		
	1	1			1	1	,	1	L		<u> </u>	L	i	J			Rea	d and	∕Vnd	lerste	ood F	l	L	J	I							

10/19/21

Date: 10/19/21										Page(of	7
Sample Location: 300 · C · 128					Analyti	ical Re	quirem	ent			
Pertinent Notes (if any)						$\overline{}$					
	iers	*xir	0,128	607	2	12					
	# of Containers	Sample Matrix*	0	180	T. Markels	NO2, NO3		,			
Sample Number	# of C	Samp			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \mathcal{U}				Cl. N. I	
2110191410	3	A	\/				 	 		Charge Numb	er
1411A (FB)	3		X				-	-	 	Xamo	_
1412 A	١			X							
1413 A	7				X						
1414 A	1	1				X				T	
Sample Location: Pertinent Notes (if any)				A	nalytic	al Req	uireme	ent			
======================================	ļ										
	iners	atrix*	į	i							
	# of Containers	Sample Matrix*									
Sample Number	# of	Sarr								Charge Numbe	
:										Service Servic	
	-	_									
Relinquished by: Date /	Times			-							
W 4 10/19/21					1 1	cepte	\ .		10.	Date / Time: 1093	76
	- (0		+	100	nV	4	Ille	~0~	100	ru-21 /093	
				10							

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

PROJECT 400. FU. 131 WIT ENV. 0053

KOJECI (00	1 -			ر ب	Len	•		, S ,								Com	linue	u (10	m pa	ge							
Marcus Avalos	8	Ros	4	B	יהנים	کامہ	000	34 6	7	V	اود	4		ìs	ر/	ومہ	g	C	160		Thi	< 1	رو	$(\)$	بزلا	6	
purged using		deg:	1 1	1								ولوح		انس	- 1		اای	•	1	مزي	-		Je S				
Clackers have	9 (ale.	(4)	ناء.	4	() (~		<u> </u>		: []	7]			,	ميور	50		NP.				
Flow cell +			J	7	- +	~	رم		C	\ \ \	117	2			مما	<u> </u>	U 31	^	~	S	_=_			-			
1000 COV 4	WALK	-\ u	124	.22	•	741	. 🕶	7	(S)				יערנ	•													
Calibrations																											
	1	1			1.			1	1																-		\dashv
DO- Calin s	around				6					,	١.																
Carductisty.	اما ر	31	5 / '	113	W S	S) Ch	<u>~</u>	<u>.</u>	a D	20/	<i>chi</i>	Λ.										\vdash					
PH. Cal usin	1	ak ti	^	13,	4/	45	\rightarrow	Ч.	\mathcal{L}	10	1						-									+	
		1		(+				^							_			D.,			_ (\		- 1	~ \
Paramelers (ti	1 1	++	ew	,)	9	ەخد	٠ ۱	Kir	7		DC				28			84		i	1	(N1		10		14)
1) 21/01809501		-	22:				-4	34				2.3	6		1 -	(e	-		7.5		1	2.			129.	20	
1) 0952		-	22.	19			1	33	3			2.3	2		41				7.5	6		2.	T			`	
3) 0954	A	-	21.	१७			4	34	Ģ	<u> </u>		ጊ . አ	S		٩:	<u> </u>			7.5	7_		2.	84				_
														_							<u> </u>				<u> </u>		
								\leq	ima	ععا				<u> </u>		1-											
Sample #			A	ral	sis					fre.	1	ع			(0	Jai	ne				104	<u> </u>			امحا		
21/01/8/0009	7	V AC	319	$\mathfrak{I}^{\mathbf{c}}$	6					(c)				(3) Y	0 ~	ښدلا	1/5		l	83	1			14	5	
1001 A				F-13												<u>-</u> :					_ `				į į	-	
- 1002 A	(ر ۲٥،	.l	1						I	œ			()) <i> </i> L	-A	nle	_		02	00	401	h		51	IJ	
1003 A				0																	-					:	
1004 A	-	Tota		1	13				1	/No:	3)7	(e		()) /7	, 5,	10	١.,		21	012	1			(24	
LOSA	1 1	200	1. 1.	_	1 - 1					u			<				1, 1	0.1.3			N#	`T				2	
100G A		021	7 4	177	sun (Z	1	3 11	3_	(1)	-					-					:	
1007A		sich/			280			-	7	+	1.1	1-1	5	-	-		†		İ		:					٠	
1068 A		02.								Z ca	,	57		11	1) 2	50	1.	1		2	1030	0.3				-	
(0087)	10	٥٤,	100		33,					2 ده	11	150	- (1		, ^	30.	W/ {	19/ r		2	103			-			
							1				ļ			-			-					<u> </u>				\rightarrow	
		-	-			-+						-		<u> -</u>								+	-	 		-+	
Turb Meler-	# 8	*	+				11-			ļ		-		,	1	GI	017		1		1,	//9	6 /4 :				
urb Meter-	8 #		-	510	- 4	2.2	M	,	TOU	n -	(¢2	.\	VτV	' L	ot-	711	71 1	-	٠	ro	1 (/ 3	1/21		-		
		-	_			-				<u> </u>	<u> </u>			<u> </u>	.س	1	۸.		 	100						-	
Initial DTW-	178	ک ما	1		-						<u> </u>	_		ļ		٨٩١		11	1.			0					-
			-		-									-	I	0ν	ν	-	-	0.	(<u>a</u>	49	1				
		-	-																		ļ						
		-					_									-				ļ	<u></u>						
														<u></u>						Coi	ntinu	ed fr	om p	age			
												Read	d and	d Und	dersto	ood I	Зу										

Date: 10/18/21										Page of
Sample Location: 400 · FU · 131				F	Analytic	al Req	uiremer	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260	607/1300	T. Melals	Anions/AlK	TDS			Charge Number
2/10/8/000A	3	Α	\checkmark							XGMD
1001A (FB)	3	1	X					-		
1002A	1			X						
(Dup)	١			X	*	:				
1004 A	5				X	*				
1 LOS A	2					X				
100 te A	١	1					X			
Sample Location:				A	Analytic	al Req	uiremer	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Perchlorate	NO2, NU3						Charge Number
2110181007A	\	Д	X							Xamo
A8001	١	1		X						7
									-	
							-			
										,
Relinquished by: Date	/ Time	<u> </u>	<u> </u>		\ iA	cept	d by:			Date / Time:
M (10/18/21)				1	on l		un	t	10-1	9-21/0900
	-						1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Final 07 W 139 10 Tribial 177W - 138,50° 10w-05 46

Read and Understood By

10/18/21

\umbar

10-19-21

Continued from page

Date: 0/18/21					Page/_ of _/
Sample Location: 400 · HV · 147			Analytical Requ	irement	
Pertinent Notes (if any) Sample Number	# of Containers Sample Matrix*	8260	Agricus AIK	105	Charge Number
2110181410 V	3 A	X			XOMD
1411A (FB)	3 ,	X			
1412A (Dp)	3	X			
1413A	1	X			
1414 A	2		X		
1415 A	2		X		
1414A	1 1			Х	
Sample Location:			Analytical Requ	irement	
Pertinent Notes (if any)	# of Containers	Noz. No3			
Sample Number					Charge Number
2110181417A 1418A	A L	× ×			Xamo
A A	Pate / Time:		Acdepted	by:	Date / Time;
M N N N 10/18	210 1515	Shrs V	Su W	Jund	10-19-21 /0900

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

PROJECT - 100 . IV . 123 WZZ ENV . 0023

Continued from page _____

N	191	بع	4	nal	os.	8	B	obe	4.	Bur	tón	3 1	res	u.		We	the	~ (15	c	6 cr L	*	رمها	-	Wi	1	we	7/	uil		þı,	
40	<u> </u>	9	บร	100	,	<u> </u>	Se9	امعا	red	7/	add	25	Su.	ND.	_ <	9~	ولد	<u>.</u>	wil	16	٩	φl	lee	red	ب	2,		ų	l	وکاز	نديكو	9
<u>01</u>	<u>sc</u>	Val	30								ity									non	for	ed.	7 4	برمو	a	C	EL	1	16.	10		
7	σW	دو	7/	4	W	لاكمع	·F	ara	143	er	(_95	100/		<u>η·</u>	J	12	VS	١.													
\overline{C}	مازاه))) ()	Lio	15		-																										
						Le	٥ (شر	۵	63	٩	w	14	9.																	-	
Ca	Non	eti.	<i>ز ک</i> ر	١.	Cal	1	2000 '		413	W:	s/in	\	571	<u>ل</u> ا	Solu	Ho.	۷.															
		r	١.	, 9	1	1	3× 7	B	2	٠5.	1		, 10																			
Z	<u> 216</u>	M	مره	ر	# 6	الم	-	57	p -	(J	٦.	ンへ	v		150	٠.	(g	۱. (و	ν̈́τ	U_	لما	΄. (110	7		CX	- 1	013	7/3	7		
6		\.	<u></u>	(1:				1		(·c)		۲.	ard bre	(M)	<u> </u>		2	α			~	RP			PI	7		7)(vk	7 6	M	(m)
()	211	019	09	20	A			7	2.		,		- 3°	1 *	im j			17				01			72			1.2		1	1.8	
<i>T)</i>				23	1				22	20			. 39					. 3 0				19			7.	!		1.4		_,,,	. 0	,
3)	_	_	७१	54	A				12.	ાં			. 39				Ú	.21				44			٦.:	33		1.3	5		•	,
				-			ļ							•																		
<	(e H						1 1	,				Sin		A				^	1						1 1				1		
- 1		L 11		a			AOL	H1	82 82	(0)				170	125a \}-	rue T. o		(3-5		,		۸,	283 104				\ <u>a</u>		\dashv
	-		100	1				1	14	1 .									37	ν.	-	n(a)	.		d.	; 302					2	
\exists) (2	1.			60	1	Br	T				-	てて	L		(1)	1	w.A	M C			02	001	101	A		_{	25	
\exists		- \0	EOC	A			To	te/	M	Jal.	<u>.</u>				103	1 1	· I		(\mathfrak{I})	15:	z ~/	100	Υ		J	10	121				<i>}/</i> ≤	
			04	1			l		/A (!				I,			Hs				٠		•			2			•		-:	
			002	1		7	7 1	12.	5M	24	יכ				\mathcal{I}_{ϵ}	<u>د</u>	رار		(1))	ţ)					-`	_
				A A	1		Nos	NOI	4	₹	20 20			<u> </u>	Sou Sou	17	yts u		(1)) 1 <		(Ţ			103	۲.				-	
			00				1402	4,14	05	J3.). r			//5	200	1 3	G.		(1.	<i>(</i>	, O	7 6	6/4			10 3	<u>د</u> ب				-	\dashv
_	_	•				uə																										
In	ilia		ודנ	V-	13	4.	10	12	9.	90								Fi	na	01	W	• /	31	90	/							
	-			-															-	1	7)			1*						\dashv		-
																		1	Dh) -	0	. ۲	g.							\rightarrow		
																												`				
								L	<u> </u>								Read								Con	tinue	ed fro	m pa	ige			

Date: 10/14/21					•					Pagel of _l
Sample Location: 400. IV . 123	•			1	Analyti	cal Req	uireme	ent		
Pertinent Notes (if any)					1		Ι,	10		
Sample Number	# of Containers	Sample Matrix*	8240	lear/Bro	T. Muhals	Asiss AK	5	Perchlorghe		Charge Number
211019 10000	3	Α	Y							XGMD
1001A (FB)	3		X							
1002 A	1			X						
100SA	2				×					
Ayou	2					X				
1008A	1			, i		<u> </u>	X			
100GA	1	2						X		
Sample Location:				F	Analytic	cal Req	uireme	nt	•	
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	NO2 NO3							Charge Number
2/1019/007A	1	Α	X							Xamp
										XUIND
					\					
Relinquished by: Date \(\) \(\	/ Time			8	n	ccepte	d by:	h	10-2	Date / Time:)0-21 0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Raig Ill Leans

10/21/21

Date: 10 21 21			•]	Page of
Sample Location: 600 - G-139	3			A	nalytic	al Řeqi	uiremen	ıt		
Pertinent Notes (if any)					۸	٠				
	ers	ix*	٥	Chloride	20					
	# of Containers	Sample Matrix*	8260	יאס	/ 2	•				
	oJ to	mple	$\overset{\circ}{\infty}$	14/	V0					
Sample Number	#	Sa							F	Charge Number
2110211105A	3	A	~							XGMD
1106A (F8)	3	A								ų
1107A	1	A		~						и
(108A	1	A								и
Sample Location:				A	nalytic	al Requ	uiremen	ıt		
Pertinent Notes (if any)										
	STS	* X								
	ntaine	Matr								
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
	ļ									
		-								
								,		
					_					
	<u> </u>									
1) 10 10	/ Time					ccepte		0	In	Date / Time:
Trang Oll Temo 10/21/2		25	1/5,		in C	<u>/\</u>	Jun-	· U	10-	29-21 /0900
U			-	+0			1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 10-13-21									I	Pageof
Sample Location: B 650- 8	EFF-	ţ		A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any)			(2)	12/	A					
	ers	*xir	γ_{δ}^{\prime}	10m	NONA					
	# of Containers	Sample Matrix*	0 A 2 8 26	47	3					
	of Cc	ample	OW	KO Ero	77					X G mD
Sample Number		Š		/ 32	7					Charge Number
2110131301	3	A	X							a 1
1302 (FB	3) 3	A	<u>x</u>							, ,
1303	1	A		X						, 1
1304	Į Į	A			X					٠,
1305 CFB	;)	A			X					
									·	
									•	
Sample Location:				A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any)							·		,	
	s.	*.								
	ainer	fatrix								
	# of Containers	Sample Matrix*								
Sample Number	# of	Sam								Charge Number
										<u> </u>
Relinquished by:	Date / Time	L e:			() A	ccepte	Nby:			Date / Time
	13-21 ((0)		Ton	W^{\prime}	1	_d	10.	14-21 /0900
						V -			Į.	1 /
					V					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

																					Not					P	ĽΣ	اد ع	¥,	7)			
10 ROJE	:ct	BZ	50	~ 1	T.N.	£	1														Not Conf	eb tinu	OOI ed fr	k N om	O page	<i></i>							
KOJE	- CI_) <u> </u>			\top	_ <u>'</u>]	T	T		1				1	<u> </u>	<u> </u>	1/	/ 4			./		1			\neg
FY	^-	· K	(ء و	$= \nu$	ره	2	-	•		,		-	/	14	52	M		5	an	0/2. C	<u>-</u>	4	·//	0	./	6	// 5	L L	R	1	20	
The	14	lic	47,	0	-5	ta	le		POR	7_	60	CA	74		-	/ /	7	70	/		15				,	71			7				_
Sys	120	1.	14.	۲	مرجر		ok		DOR	T		v./	/	,6.	ح	P	-1	' '	/	TOA	<u> </u>	On			220	1/6		a	on	se.		rea —	# Z 1
AND	2	tup	4	6	lec	7;0	N	7	A	19	5 4	1	T K		A.	4		*Le		7	-	1	S	97	oy	7				10	- 1	-02	
Fie		3/	pa !	45	. ₹	-0	/	1 20	py	<u> </u>	5 - S	-	-		+	-		-			-	-			\dashv	+							\exists
	-	_	-		-		_								+				-		-	-		+		-							
1	-		-								-		+-	-	+	-		~	_		 	-	,	+				-		Ex	0		9 7
LAM	MY	-		_	_		_	me		-	<u> </u>		 		$\frac{1}{\rho}$		_	<u> </u>		-		_	102	9,	-					8	5,		
line				31	36	6		10	4/0	ردوه	R	V	m	L	7	ر ر	; [Z		<u> </u>			001	,						5	20		
PH	- 7	. 7	5 0	٠, ح	>_	-		7.	LE		1	a.	ب کو ج		-/(<u> </u>		-	\dagger	70	101	7	+					/			
real	7- 3	1	<u> </u>	1	25	1		,	5	75	1	٩. ٩.	1	l l	\dashv				-	-	+	\dagger		+									
Carl	/ _	/		8	- 1	(-	K	9	-	+3	+	40	<u>.</u>	·a)			-	+-		+	+		-								4.4
Tun to	+	1-	2	8			<u>い。</u>		1	• 7			\neg	7		2)			-	+-		+											
Suc					7./0			,60	لے (ا	TP.	7			, 4		•		-	+-			+-		\uparrow	\exists								
for	-	1-0	90	-	10		0	 		\vdash	+-	-	+	+	- †										1					1			
	-						-		 		+	+	1	An		مار	_				+		_	+									
	1	de							1				7	170		1	CTE	,,,					زمم	7.	in	_			10	7	. [1	as
24	1//0		30	n 7			. /	A A	4	_		-	-	\top			e/	1			(2	_	$\overline{}$		V	•		7	5 9) (0		A	25
211	01.	7	13	,	 		ye	4 2		رتر	- 1							1														1	<u>/</u>
		13	1	0	\$			4/ L				40.	1	10.	Z		Te.	2			(i))	1 2	27-4	for:	3	C	0	05	95	-	54	12
		13	13	10	1	~.	<i>)</i>	7/.5/			23	0.	5		_														, }				
			1	70					_	'			9		_													_					
		1	1																								<u> </u>					_	_
		1																										ļ					-
																												_	_			-	+
																								,			_	-	-			+-	-
																					_	_				_	-	ــــــــــــــــــــــــــــــــــــــ	_		-	-	+-
																		_			_	_					-	-	-	-	_	-	+-
							_									_	1_		_	_	_	_					-	-	-	-	-	+	+
											_			_		-	_	_	-		_	_				-	-		+	-	_		+
							_									-	_		-	_	-	_				-	_	-	_		+	+	+-
											\perp					1_	-	-	-		_	_			_	-		-			\dashv	-	+
							\perp			_								-	+	_	_	_				-	+	-	+	_	+	+	+
			_			_	1		1	-	_	_	_			_		-		_	$-\downarrow$	_				-		+-	-	-	+	+	+
						ļ	<u> </u>		_	_	-	_ -					-	_	_		_	_			-	-				2 020		w/	1
								ļ																L		Co	ontin	ued	iron	n pag		2/1	<u> </u>
		1				[[]											Re	ad a	ind (Jnde	rstoc	d B	A								,	1 .	
_		1		人	\mathcal{A}	V					10	9-	1.	3-,	>)			1	m			1	\ ,				/		18	-14	(-)	
			<i>ر</i> ج s	igne	d	_	<u>·</u>			-			Date		_	1			10	N		Sig	ned	1	,,,,,,,		, <u> </u>		-	••	[Date	- 1

Date: 10-13-21									Page of \
Sample Location: B 650-1WF-1			Analytical Requirement						
Pertinent Notes (if any)]
	rs	* .×	8	Hangland Brobycos		'			
	# of Containers	Sample Matrix*	7260	4/4					
	f Cor	mple	₹ %	200					XGMD
Sample Number	#	Sa	<u> </u>	5,00					Charge Number
2110131307	3	Α	x						71
1308 (FB)	3	A	X						
1309	1	A		X					
1308 (FB) 1309 1310 (Dup)	1	a		X					٠,
	•								
Sample Location:	l			A	nalytic	al Requ	uirement		
Pertinent Notes (if any)]					1
	S	 *,							
	ainer	 Aatrix							
·	of Containers	Sample Matrix*							
Sample Number	# of	San							Charge Number
									1.00
	-								
Relingvished by Date	/ Time	e:) (A	ccepto	d by:		Date / Time:
=1 SW 10-13-2	21 (133	(D)	to	ru \	$\lambda \mathcal{T}$	Jund	- 10 -	14-21 /0900
				TX.				1	' /
				10					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 18/19/21									J	Page of
		_	()	A	nalytic	al Requ	uiremer	it		
	# of Containers	Sample Matrix*	NOA 9260/d	LL-VOA 8260LL	MOMA/DWW/b07	low lever	tom Werms	ANIONS/ALL	105 SN2shoc	XGMD Charge Number
	~	Λ	X				,			, -
	3	\mathcal{A}			-					
1011	1	A			X	•				٠,
1012	1	A		\times						
1013(FR	, 1	A		X						
Sample Location:			Analytical Requirement							
Sample Number	# of Containers	Sample Matrix*	PERCHUPCIATE 1	NO2/NO3 853.2						XCMD Charge Number
			2)		In t	Cepte		d	[0-	Date / Time: 30-21 0930
	Sample Location: FF-B 655 Pertinent Notes (if any) Sample Number 7 1017 100 7 1017 1017 1013 FR Sample Location: Pertinent Notes (if any) Sample Number Relinquished by: A Date	Sample Location: FF-B 655 Pertinent Notes (if any) Sample Number T 10 7 00 9 3 10 0 1 10 2 1 10 3 (FB 1) Sample Location: Pertinent Notes (if any) Sample Number Relinguished by: 9 Date / Time	Sample Location: FF-Bb55-Z Pertinent Notes (if any) Sample Number JOJO FB A JOJO I A JOJO I A JOJO I A Sample Location: Pertinent Notes (if any) Sample Number Rallingtished by: A Date / Time:	Sample Location: Sample Number	Sample Location: FF - B 655 - Z Pertinent Notes (if any) Sample Number # 87,000 A A X 1010 A A X 1013 (FB - A A X 1013 (FB - A A X 1013 (FB - A A A X 1013 (FB - A A A X 1013 (FB - A A A X 1013 (FB - A A A A X 1013 (FB - A A A A X 1013 (FB - A A A A X 1013 (FB - A A A A A X 1013 (FB - A A A A A A A A A A A A A A A A A A	Sample Location: Pertinent Notes (if any) Sample Number Sample Number Analytic Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number Analytic	Sample Location: FF B 655 P Pertinent Notes (if any) Sample Number Sample Number Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number Pertinent Notes (if any) Pertinent No	Sample Location: FF - B 655 Z	Sample Location: FF-B 655-Z Pertinent Notes (if any) Sample Number Z 10 7 60 0 7 4 X X X X X X X X X	Sample Location: FF B 655 Z Sample Notes (if any) Sample Number Sample Number Pertinent Notes (if any) Sample Number Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Location: Pertinent Notes (if any) Sample Number Pertinent Notes (if any) Pertinent Notes (if any) Pertinent Notes (if any) Pertinent Notes (if any) Pertinent Notes (if any)

* Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

WSTF 381C (05/2016)

2 ROJECT BISS- INF 2		Notebook No. AFTS # 10
Pron 16 60 16 cgos, Tin Moore	Parsent Samp	es will be collected by
The Device Ted Sande Pont	LOCATE ON Re Zat	Tuent Side of The Same
The Sample Pour Will b.	punged For one p	houte paide to para fine
Art San ple Collection. Canto	AFZ" Used For	Fill Blanks
	(
Parameters meter	Is bothe	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ine 2110/9/020 14/00	X	400291
PH 7.18 Tunk	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	400115
Ter 8 22.9'e "57		
Con/ 1064 "R/	9-32NTU	
	7	
The 7.03 - 10.00 (22.4c) " E)	10/30	
1/pst 7-01-100		
<u> </u>		
	gangk &	
Sangle # Analysis	Taxseers /	3) 40 on Wiels 25 96 ALS
2110191025 104 14 8260	I cey ACC (S) TO MIC VIEWS
1026 11 FB		1) 127 And OZOCHONO SWEE
1027 Nanapanu/Bur	1407 by 607 Ice	
		Continued from page V
	Read angl Under	rstood By
	$\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$.	Wunde 10-19-21
No	19.000 Du	W/unde 10-19-21

Date: 10/19/21]	Page/ of/_
Sample Location: JNF-B655-7	ح .			A	nalytic	al Requ	uiremer	nt .		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	OA 8260	17-VOA 8260LL	ROMACIL 607	low lever	ora Werris	JIONS/ALL	105 SNISOPOC	XGMD
Sample Number	#	Š	2		50	3	15	=	产	Charge Number
7110191075	3	9	X							11
1026 (FB)	3	Ą	X							• •
1027	2	A		,	X					1 •
·										
		ļ								
Sample Location:					\ \nalvtic	al Req	uiremer	nt	L	
							,			
Pertinent Notes (if any)				7						
Pertinent Notes (if any)	sua	ix*	THE SALE	353.2						
Pertinent Notes (if any)	ntainers	Matrix*	WORTE 19850	No. 353.2						
Pertinent Notes (if any)	of Containers	ımple Matrix*	PCH WRATE 6850	12/NO3 353.2						XGMD
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	PERCHUPANTE 1850	NO2/NO3 853.2						XCMD Charge Number
	# of Containers	Sample Matrix*	PERCHURATE (0850	NOz/NO3 853.2						
	# of Containers	Sample Matrix*	PERCHAPATE (9850	NO2/NO3 353.2						
	# of Containers	Sample Matrix*	PERCHAPATE	NO2/NO3 353.2						
	# of Containers	Sample Matrix*	as a production of the second	NO2/NO3 353.2						
	# of Containers	Sample Matrix*	aska)	NO2/NO3 353.2						
	# of Containers	Sample Matrix*	PERCHIARATE	NO2/NO3 353.2						
	# of Containers	Sample Matrix*	PERCHIAPATE	NO2/NO3 853.2						
Sample Number Relinquished by: Date	# / Tim	e:		# NO2/NO3 853.2		ccepte	d by:	ı		Charge Number Date / Time:
Sample Number	# / Tim	e:				ccepte	d by:	d	10 -	Charge Number
Sample Number Relinquished by: Date	# / Tim	e:				ccepte		d	10-	Charge Number Date / Time:

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

Bo	b	Tu	75	ε	$C_{\mathcal{C}}$	ai a	Γ :	el	Fe	rra	10	Pí	esi	en	-	We	a	rec	is	cl	ear	. 6	co	0	, H	۱į:	<u> </u>	vel	با	nil	1 6	0
ρl	ıra	ed	us	ľŅ	3 C	d	ed	i ca	ted	f	موا	ld	er	P	lms	P	54	mp	es_	ωì	ll	ke	Co	lle	çte	d	USI	ng	Q	te	FT	n
di	SC	ha	rg.	1	Los	e,	W	ate		que	lit	4	ρα	ca	me	ter	5	wï	[[be.	Mo	ni-	for	ed	u	s į	ng	a	Q	EZ	<u> </u>	
M	P-	20	\$	ou	Ce	11	an	d	w a	te	r a	j LDA	ly	2e	r.	C	ar	ool	1 0	î l	ìn	oı	se.				,					
													/						,													
				on		ļ																				_						
D	p -	Ca	lit	ra	tec	1 ;	n:	saf	ure	ite	d	си	r	a	648	سرح	m	<i>!H</i>	9.													
<u> Co</u>	hd	uct	ìvi	4		Ca	lib	ra	ل م	_u	اکا	n c	l	41	Bu	5/4	M	sta	Y	50	ut	ion	e									
21	1-	ca	<i>i b</i>	rat	ed	U	Siv	a	0	ic	Tor		buf	Fe	rs	(7-	10).													
Tu	rb	di	fy	m	ete	r	#1	8	st	d -	6	۵.٤	2		da	۔ نــ	63	٥.			ot	- 9	10)	ח	ع	:χρ	-	١٥١	31	ગ		
															1											1						
Pa	ſα	me	tei	<u> </u>	(tì	me		1	MP	(·c)	L	on	1(ms	cm		D	0	<u> </u>	DR'	P	P	H	Tu	irt	N	7U'S)	D	W	别
J)	21	10	15	0	90	oc		19	1	6			,4	05	5		6	0.	 2	12	+6		6.5	50		.1				360		
2			_	0	90	3C		10	1.5	7		1	.4	20	<u> </u>		~	8,3	D	1	11		, S	3		5.9	4			360	- 1	
a) 3)	_		_	0	90	6C		10	1.7	1			.4	a `	1		5	.5	, o	İ	37		.5	5		5.	16			360	>.3	5
																											_					
														_ <	an	Q.	es														_,	
5	an	12/	<u>e</u>							Am	aly	SIS		Ī	re	en	rat	'ne			Co	nte	un	r			st			La	6	
21				910	ەد		\	10f						_	IC.	e/	H (CL		(:	3)4	Om	Ly	ial	5	25	83	3		AL	کہ	
	-		0	911	c						FF					٠,						ı				ι	e			4		
		 	٥	9112	C		L	-0 u)	eve	IN	101	MA			i	æ) <i>IL</i>	A	me	es	0	00	3/3	83		5	et	
			- ე	91	3 C					a	(F	හි)			ļ	u							u.				L				n	
					-																											
						ļ																										
		ļ											<u> </u>																			
			_																													
工	ni	ha	L	DI	W	_	- 3	360	2.2	5,	7.			T	ta	1	Ial	or	١٢	PU	v q	ed			. 5	5						
						ļ														ı	7		_									
																																\Box
																										.]						\Box
		<u> </u>																														
																									Con	tinue	ed fro	om pa	ge			
																	Read	l and	Und	oreto	od B	Bv.										

Cray Del Fermo 10/15/21
Signed Date

Date: 10 15 21									Page of
Sample Location: BLM-6-486)			A	nalytic	al Requ	irement		
Pertinent Notes (if any)			7	A					
	ners	trrix*	7	UDMA					
	# of Containers	Sample Matrix*	399	3				ŀ	
Sample Number) Jo #	Samp	826	77					Charge Number
2110150910C	3	Α							XGMD
0911C (FB)	3	A	~						ų
09120	1	A		V					ų
0913C (FB)	1	A							u
Sample Location: Pertinent Notes (if any)	·	Τ		A	nalytic	al Requ	uirement		
	ainers	fatrix*							
	# of Containers	Sample Matrix*							
Sample Number	# o!	San							Charge Number
		-							
		-							
Relinquished by: Date	/ Tim	l e:))	ccepte	of by:		Date / Time
Crany let Ferro 10/14/2	1 /	0151	hrs,		on	VV	Jun	ch !	10-18-21/0900
C				+()				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other: _____

s R	OJE	СТ	_[:	SL	W	- 10	۰ ح	5	17		w <u>:</u>	II	٤١	٥v	- 0	005	3				No Cor	teb ntinue	ook ed fro	No om p	age _	33	ζ#	12	3 (A)	-	
3	9	7	u.Fl	3	٤	Cra	rig	\mathcal{D})el	Fe	rra	ro	Pr.	250	nt		W.	aff	کیما	i	\$ 0	le	2	٤ (νa	rin.		th	is	w	ولما	
21	u '	<u>0e</u>	P	rg	*ed	u	sic	9	a	de	dic	ate	d	6/	J.	رمان	<i>\</i> 1	bu.	NP		Sa.	ma	25	1	111	ha	1	llec	tec	1 0	SZV	40
_	120	701		αu	<u> </u>	VKY '	14	\mathbf{p}_{\prime}	300	9 .	· I C A .	/IΛT.	00	01	וםו	4-12	16	30.0	d	. .			III	$\perp I$.	nî.	tor	'ec	(0	150	Da
_	Ø	ED	1	1P.	12	d I	lou	C	ell	an	di	va.	ter	a	na	lyi	er	4.	C	25	poy	G	1	in	us	٤.	·					J
	1 1					-	<u> </u>	ļ	<u> </u>			ļ				(ļ			1						_					
_	.li	bc	at	vor	5	<u> </u>	ļ																									
D	D -	c	نام	br	4+4	ed .	in	Sa	tu	at	ed	a	1	0	64	40	~~	. /,	Ha													
1	nd	uc	h	nte	-	Ca	lib	ca-	Fe,	1	151	na	12	1/2		1/0	<	Li	J.		ahi									-		
)	1_	C	ام	bri	4	ed	115	30	0	7	_ k	以		1	1	70	/-	31 U			917 1	D.ZI	-	 					-			
	chi	1:1	u	~	F	er d	£ 7	ر س	٦,	LJ.	1	^	3	D4(2	1-	3	1	-		1			_				7	7	-+	\dashv		
-	. 61	4	7	11.72	7.5		~		3	ч.	9	.0	2		79	- 4	p.l	-	╁	oT	-91	01			P	_/	0/3	3//<	21	\dashv	-	
)	\sim		1	-1	上	me		+	-	1.				\ \ /	-	-		_		-							,	_	\dashv	_		
- 1	1		1	1 -	•	_	T 7		m		9		or			t/cn		D			RP		앤		lu	rl/	υTu	<u>S)</u>	D	Th	<u>) د</u>	孔)
/	α I	LO	0.	1	1	DA	1 1		-	2) . '	19	6			6.1	ì	1	19	1	.68		0	. 3:	3		1	19:	5.\$	35
					•	3A				80	1 :		L.	00	3		(6.4	D	12	18	6	73	<u> </u>	0	24	t		!	19	5.	55
4					43	6 A		₽.	٦.	83				00	9		(6.6	2	14	15	6	74	t	0	.2\$	5		_	49	5.	5\$
-		_				-																					ļ					
		_				<u> </u>								5	am	Q	e 5															
2	m	اھ	و							A	nal	V	15		Pro		~	tiv	0		C	mt	au r	20			5	-	-	T		\exists
1	10	Ь	5 1	44	o P	L		Vo	A	by		7						CL		1	3)		_	_	c	25	0	-		47	ab	
\pm	\Rightarrow	_	-	44	LA			_		1 1 <u>1</u>	(#	_ `\					7 · •				9	Į V	ru v		_ د	~	, O	-		74		-
\downarrow			- 1	44	21	1		-01		ev				Α			ce				(1)		$\stackrel{\alpha}{\Lambda}$	La			a		-+	Šķ	> -+	\dashv
+		_	- 1	44	3/					u		B					u				• • •	!!		, Re		200	24	<u>.</u>	-	<u>ع د</u>	-4	\dashv
										n	- \		-		_		^						u		_		u			_4	\dashv	_
														+												\dashv		\dashv	_	\rightarrow	\dashv	
+													-+												_		\dashv		-		_	<u></u>
†	_	+					-+				-+													_				_	\perp		\perp	_
\dagger	-+							\dashv			-					_						_				_	_	\perp	_	_		
+	_	+						\dashv					\dashv											\perp								
+		+		\dashv										_		_																
+	-	-						\dashv																								
╁	-	+					_			`					-																	
1	110	la.	<u> </u>	D	ω		40	15	.5	5	- †,				To	ta		aa	10,	<i>ر</i> د	PL	150	ر م	-	. 1	. 5	•					
\perp		_				_												7			T		J									一
\perp																														1	+	7
																								\dashv			-		+	+	+	\dashv
				T								1	1	+	+	_	\dashv	_	+	-	-	+	\dashv	-	-	-	-	-	+	+	+	\dashv
								\top				_	\dashv	+	+	+	+	-			_	-		-	\dashv	+		-	+	+	+	
		\top		+		+	_		_	+	-+	-	-		+		-	+			-	-	+	-+								_
1																							·	'	Conti	nued	fron	n page				
a	,				_							,				R	ead	and l	Jnde	rsto	od By				A							
Ì	aio	L	10	01	7	,	. ^				In	<		1				V				1			V	4		10	1	.1	ነ /	
	(μc	∨ (Sign	ed	*~	~			-	, 0) • Date	1				1	M	Ų	Qian Sian		W	سسل	~N		-	IV	-4) 0	<u> </u>	
																		,			Jiuii	Ju	,						ט	ale		

	Date: 10 5 2				-		-				Page of	
	Sample Location: BLM - 10 - 51	٦			A	nalytica	al Req	uireme	nt			
	Pertinent Notes (if any)				A						1	
		ers	* XI	77	L NOMA							
		# of Containers	Sample Matrix*	8260	5							
		of Co	ımple	8	7						·	
	Sample Number	#	Ss		7						Charge Nun	ıber
	2110051440A	3	A	V							XGMI)
	1441 A (FB)	3	A	~					-		u	
	1442A	1	A		~						ч	
	1443A (FB)		A				_				и	
	Sample Location:				A	nalytica	ıl Requ	iiremer	ıt			
	Pertinent Notes (if any)											
		rs	* .×									
		ntaine	Matr									
		of Containers	Sample Matrix*									
-	Sample Number	#	Sa						<u> </u>		Charge Num	ber
}												
					7	\$.						
-		/ Time				Ac	cepted	l by:			Date / Time:	
-	Craig letterno 10/5/21	. 15	20	nrs.	10	n W	/	um,	ch	0-	6-21/090	00
-	U	 .	,		14						,	
					V							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32#121(c) 2 ROJECT BLM-14-327 WII ENV-0053 Continued from page 30b Tuft's & Craig Del Ferraro present. Weather is clear, warm, & breezy. This sell will be purged using a dedicated bladder pump. Samples will be slected using a teflon discharge hose. Parameters will be monitored using a temporal PH Cond. meter. Do and ORP will not be collected Carpoy G5 in use. 'H/Cord meter - 60 Buffers Lot Turb. meter 2108656 - 2.97 4103681 rdg - 3.08 lot - 91017 PH pre-7.03/10.06 (23.8°c) pt post-7.01/10.07 Exp - 10/31/21 temp (') grameters (time cond (uslcm) Turb (NTUS) DTW (Ft.)2110181400C 20.13 1301 7.45 1.5a 278.6 1403C 1293 20 278.61 1406C 20.0 1290 278.61 Container (3)40ml vials 101814100 by 82.60 1411C Amber 02004016 1412C 607/Bromacil ice u (Dup) -1413C itial DTW - 278,435+ total gallons purged-Continued from page Read and Understood By

Grang Del Ferro

10 18 21

Junch 10-19-21

Date: 10 18 2									,	Page	of
Sample Location: BLM - 14-32				Α	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)											
	iers	rix*									
	# of Containers	Sample Matrix*	8260	07	•						
0 127	# of C	Sampl	8	Ŏ	•						
Sample Number		1			N N 1 1 10 1						Number
21101814100	3	A							-	XGr	n O
1411C (FB)	3	A	~		-					ц	
14120	-	A		V						Lt.	
1413C (Dupl.)	1	A								ų	
Sample Location:					nolvtio	al Dag	uireme				
Pertinent Notes (if any)					alaly lic	ai Keq		11			
		*									
	ainers	[atrix									
	of Containers	Sample Matrix*									
Sample Number	# of	Sam								Charge	Number
					\						
	/ Time					ccept#	by:	1		Date / Ti	T
Crary Oll Ferri 10/18/21	15	70 h	<u>rs.</u>	1	m 1	$\Delta \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Jhm	-d-	10-1	9-21	10900
, V				+0							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Charge Del Ferro 10/12/21

Read and Understood By Jon Wunch 10-13-21

Dan Hawarsen a Robert Burrows present Weather is Partly Cloudy and hot. This Zana with be samphed using 5-triple timed stainless stail sampling tubes. Surface sheets performed on from \$ 2213 prior to sampling Generalor in 450, 30 minute equipment blanks (carbo GD) 4.7 2594 (3)40 m) vial Wed & 8260 IRIHE) 2110071420 Final Parameters co: + a) Parameters PH1 (= 00 = 60 - 2110071454 y 21101209054 TV6B = 6 = 8.40 832 19.0.0 576= 2.97 E 1 20.19C = 1148 uslam 1130 us/cm 205 = 2.89 WEB = 1.50 Ais 1.12 NTU'S LaT = 9(01) = 7.15-10.09 (30.20) 7.13/10.08(17.40) C1P = 10/21 12 POST = 7.10 -10.09 7.14/10.08 1 24 Bycar Tras = 12.54 PSig 4007947 12.50 PSia 4101E56 7/22 369.27ft. YW = NA SAMPLES Preserve L LAB innelle 2110011520 y 2110012 0835y VOR 6 9260 Nome 10mm Brown C1 607 ALS (3) 40 ml vig) 2596 Tel Ha) (1) IL Amber SAI Tac 103501 3) 23.71 4) 23.72 2) 23, 82 Roms- 123.82 25.41 25.42 25.40 25. 52 25.40 25.38 25.40 25.47 23.39 23.81 23.87 XIDW - 1/4 gallons * Bob Tusts & Craig Del Ferraro completed this zone on 10/12 Continued from page

Date: 10-7-2021									P	age of
Sample Location:			-	A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	801	607						X G MO Charge Number
	The same of the sa	/			·					
	A									
4	TO									
	-			_	<u> </u>					
					1	1.0	•	<u> </u>		
Sample Location: (34 m 35 38 T Pertinent Notes (if any)	T	1		T	Analytic	cal Requ	ııremei	nı		
retunent Notes (11 any)										
	# of Containers	Sample Matrix*	5							
Sample Number		+		<u> </u>	<u> </u>					Charge Number
21100714204 EB	3	A	7					-	-	
15204	3		<u>~</u>							
	++-	 	.	_						
Relinquished by: Dan	te / Tim	ne:)	Accepte	by:	n	10	Date / Time:
10-7-300	1	154	0		on	W	/w	udr	1 10	-12-21 /0900
					J		,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 1012 21									P	age2_ of	2
Sample Location: BLM-39-38	35			A	nalytic	al Requ	irement	:			
Pertinent Notes (if any)											
	ners	ıtrix*	7					-			
	# of Containers	Sample Matrix*	607								
Sample Number	Jo#	Samı					-		-	Charge Numb	er
21101208354		A								XGMO	
(011012000)										•	
	-							_			
Sample Location: Pertinent Notes (if any)	<u> </u>			<u> </u>	Analytic	al Requ	iremen	nt 			
1 Offinent Proces (II diry)				!							
	ainers	fatrix"									
·	# of Containers	Sample Matrix*									
Sample Number	# 0	San								Charge Num	ber
	ļ	ļ									
			-								
									l		
Relinquished by: Dat	e / Tim	l ie:		1	1	Ccepte	d by:	<u> </u>		Date / Time:	
Craig Del Temo volvala	11	30 h	rs.		onl	\mathcal{N}	Ju	uch	10	-13-21/1	0930
U				_	\		1				
				_ \)		,				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Jund 10-12-24

WSTF INTERNAL	SAMPLE CHAIN (OF CUSTODY	RECORD
		Jr CUBIUDI	NECOND

Date: 10-7-2021]	Page Of _
Sample Location: BLM-39-560				A	nalytic	al Requ	iremei	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	708	(00)						X6 MO Charge Number
	3		×							Charge Number
211007 09204 EB		1								
1258	2		9							
1259, DIP	3		≫							,
1300,	١	1		X						
1										
Sample Location:		1			nalseid	al Requ	irem c	\t		
Pertinent Notes (if any)		Ī			marytic	ai Keyi	incine	11	<u> </u>	
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
								•		
D.I.	<u> </u>				\ .					
Relinquished by: Date	·/ Time) 5 Å	α _t	1		dcepte	١.	-dr	10-	Date / Time: 12-21 / 0900
				+	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
					,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

																									ा ४११,८कुम्बुस	T P ST ST ST ST ST ST ST ST ST ST ST ST ST	75.00	Qui.		
6 POJ	EC ⁻	т_[3L	M-	. 40	<u> </u>	<u>51</u> .	7_	w	JI	Ξ	N 1	/-(<u> 205</u>	(3	_				Not Cont	ebo	ok N	lo	_ 	१२ १	#1:	<u>23</u>	A)	
Вов	Tu	4	\$	٤	Cro	aig	D	el	Fe	rra	uCo	80	وده	H		(1)	- 4	100		Pa					1.			TZ	T.	T
vell	u	2111	1 7	e.	Pu	cre	d	usi	ih	a c	م ا ط	1	ica	A.] L	حالح	14.	a - -	-	الما	C	- 11		14			i 8 1	f t		45
1sir	19 0	ch_	tted	Ho	'n	di.	sch	101	ce	h	o ce	_	مرلما	to.	~ a	7t i /	7117	T ()	~ · · ·	np.	اسلام			'I/ I		1 -	- 1	ect	ed	<u>L</u>
ASIA	90	1	E	D.	M	P-:	20	\$10	J.	de	il a	2	1	10	to.				par	am.	Te	1	w		20	MZ	oni	to	rec	‡_
7	1	1		\perp										NI	12			3141	ee,	1	ar	DO.	#	দা	_lin	⊥u:	se.	+	-	_
Cali	Pr	at	رملا	n S									1		\top	+	-	+	+		-		+	+-	+	+-	+	-	-	+
DO	ځړ	ali	by	cat	ed	ji		Sa	ur	ate	d	ai	, (a	64	1		14.		+		+	+	+	+-	-	+-	-		┼
Zord.	uct	ìVi	ta	+ 1	ch\	ul b	1	-b d		ن بيا و		L	払る	۔ ل	٠١		11	#	ا جم	luf	٠, ١		+	+	+	-	-	-		+
<u> </u>	C	ali	by	at.	ed	u	\$iv	19	\	Kic	1)ak	Ho	N	Du	.FJ	For	<u>-</u> (1-	141	ton	•	+	+	+-	<u> </u>	-			-
urbi	di-	4	M	et.	er:	#2	0	2	td	-10	0.0	3_	r	dg	16		, 2	1 1	1	910	17	+	FV	<i>p</i> -	10	/.	1/			-
		,												J		2 -		 -	0		1	-	7	#	10	10	112	1		
aran							ter	42	(·c)	Co	nd	ms	clan		7	00	1	SRP	F	'Η	7	-	b (vr	- 15		NT	W	C.C.	
<u>()</u> 21	10	04	1				7	.8				, 8:	_	-	_	9.		-	18		.89	-	2	2 I	\'	-		24		
1		_	1		3 A		عا	110	<u> </u>		1	85			1	.6			46		90		o .:		+-	 		24		
s)				41	16A	\	al	.10	1		1	.81		i	1	29			46	T	93	1	0.:		+			24		
\dashv			<u> </u>	<u> </u>	-			ļ											***		1	+	<u> </u>		+-		U	d t	- 1	U
_		— —		_		-			<u>_</u>			<u> </u>		<u>_;</u>	Say	S	les.	:			1	1	+		-					
Sam	_		<u> </u>	<u> </u>	 	-		-		tha	445	यं		Pr	Te Si		rati	ve.			70.	ain	05		1	4		I		_
2110	64	+ 19		1		-	V	OA			826	1			ic	e	HCI					m		15	194	6 <u>1</u> 58.3	2	7	17	<u>s</u> S
-				A		-				4	FB)				L						1	¥		1	100)	1	11	<u>ر</u>
##	1			2 A	-	1					15					u						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1				1	ч	
+=	\exists		123		 	1				rel	Ņ		4			ic	e_			(1)	14	Aml	201	0	11/3	501	c	1:	SR.	—
##	7	- 1		†A		1				1(1	(B)					u						u			100	. J.	5		<u>ي.</u>	ىك
##	\dashv	- 1		5A							3a7					u				(a)	ll_	Amb	or s	la	145	-ענ	104		AL	5
+-	\exists	14	tai	6A			D	Ro	7	y 8	015	5D				u				(1)	IL	Aml	11	1 1	u		-	1	Tip	الد
-	+					-		_												•									7	
++	+					\vdash				-																				
+	+	+										_	_		_															\neg
+-+	-	+	-					-+																						
++	+	+	-				-	-							_	,														
nit	-	0			_	$- \downarrow$		+		~1		_	_	-	-	_			_											
- nit	١٩	*	DI	Ψ	<u>'-</u> †	- \$	3	3,	67	Ft	-	_		1	ofa	<u> </u>	Jal	ons	Pu	rge	الم	+ 4	2							
+-+	+	-	+			+	-	-					\dashv						- L	1										
+	+	-	-				+	+			_		_				_													
+++	+	+	+	-+			-	_					_		_															

Praig Del Fermo

10/4/21

Read and Understood By

10-6-21

Continued from page

_	Date: 10 4 21						·				Page _	of_	i
	Sample Location: BLM - 46 - 5	17			A	Analytic	al Req	uireme	nt				
	Pertinent Notes (if any)					Ø					-		
		ers	*xi	77		LL NOM,							
		# of Containers	Sample Matrix*	Baco	RC	Νį	SVOA	RC					
		of Co	mple	32	S	7	SI	7					
\	Sample Number	#	Sa	~		7					Cha	arge Num	ber
,	2110041420A	3	A	~							XG	mD	
	1421A (FB)	3	A									ч	
	-1422A	3	A		~							u	
	1423A	1	A			~			•		-7	11	
1	1424A (FB)	1	A										
1	1425A	2	A				V	-				ч	_
	1426A		A									u	
	Sample Location:				A	nalytic	al Requ	iremen	ıt			_ч	
	Pertinent Notes (if any)										i		
		Š	*.										
		tainer	/atri										
		# of Containers	Sample Matrix*						٠				
	Sample Number	to#	San								Cha	rge Numl	er
											<u> </u>		
		_											
-		_					_						
	Relinquished by: Date /	/ Time	L 		$\perp f$	Ac	cepted	by:			Date /	Time:	
	Grang Del Termo 10 4/21	_15	30 h	vrs,	K			um	de	10-		-r	100
					1					+-	/	/	
					1					<u></u>			
	A. Dolf		: 30 h	NS,			pepted	-	d	10-	Date /	-r	700

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT BLM-40-595 WJI ENV-0053 Continued from page Bob Tufts & Gray Del Ferraro present. Weather is clear & warm. This well will repurged using a dedicated bladder pump. Samples will be collected using a effor discharge hose. Water quality parameters will be monitored using a DED MP-20 flow cell and water analyzer. Carboy GI in use Calibrations DO - calibrated in saturated air @ 641 mm/Hg anductivity calibrated using 14/3 us/cm std. solu H-calibrated using Oakton buffers (7-10) solution. Turbidity meter # 20 std - 6.03 ot- 91017 rdg-6.06 rip Blanks - Water Parification System Analysis Preservative Container ample 211004 9800A ice/HCL (3) 40ml vials VOA by 8260 LL 2583 (1) LL Amber Low Level NDMA -0801 A ice 01035016 Temo (c) arameters (time) cond (ms/cm) ORP Do THOU 20.78 0.572 5,87 2110040150A 153 632 0.21 523.18 20,83 5.98 6.31 +0953A 0.574 153 523.18 0.20 20.88 -0956A 0.577 6.03 6.28 523.18 152 0114 regivenive Halysis 2110-211004 1000 A VOA by 8760 LL ice/HCL * u (MS)* 1001A " (FB) 1002A 607/Bromacil SRI 1003A 01035016 Low Level NDMA 1004A * (M.S.)* 100.5A * (MSD)* 1006A Total Motals (2) 125 ml polas ice/HNO. 1007A 21-01-21 1008A Low Level NOMA (FB) SRI 81035016 Initial DTW - 522, 50 Ft gallons purged

Charg lef Lemo

Readand Understood By

10-9-21

Continued from page

	Date: 10 4 2									Page of
	Sample Location: BLM-40-59	5			A	nalytica	ıl Requiren	nent		
	Pertinent Notes (if any)					8				1
		SIS	ix.	77	7	m				
		# of Containers	Sample Matrix*	Š	00	NDM				
		ofCc	ample	8260	9	77				
\	Sample Number							-	1	Charge Number
_	2110040800A (TB)	3	A	~					_	XGMD
	0801A (TB)	1	A							4
_		3	A	~						и
	1001A (MS)	3	A			-				<u> </u>
	1002A (FB)	3	A	/					ļ.,	u
	2 1003 A		A	_	V					ч
	loo4A	1	A							и.
	Sample Location:				A	nalytical	l Requirem	ent		
	Pertinent Notes (if any)			6	5/2	Ē				
	·	iers	rix*	NomA	Net					
		of Containers	e Mat	77						
		ofC	Sample Matrix*	77	ota					
	Sample Number	#								Charge Number
	2110041005A (MS)	1	A							XGMD
	1006A (MSD)		A		_					ч
,	1007A	2	A					-		ч
	1008A (FB)	_	A			_		ļ. <u></u>		ч
-								ļ		
-										
-	Relinquished by: Date	Time					2 11			
	Gara Del Ferra 10/4/21	-	120h		1	\ V	epted by:	./	10-0	Date / Time: / 0900
	Or Jest Some Latitle		12011	1 4	or	· (/_	Jun		10-0	טטןיט ן ובינ
					· 					
L									<u> </u>	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

Read and Understood By

Signed

		— т	- 1		1	1									_	·	T	J		T			1					•				
B	9	T,	17	s	€ (zig	D	6	er	Car	^ ^	9 4	25	en.	t.	l.	اموا	the		2	مارع	ac	È	υa	VM		Thi	`<	1110	$M \mid$	
וע	Щ	e	Py	<u>rg.</u>	ed	us	: ix	9 (ac	100	ICO	it-e	d	Ы	ad	der	P	im	ρ.	5	am	₽ / €	2	ωı	u	60	Co	lle	CT	eq		•
15	ind		+	17.	200	٦	i s	:ha	256	0	hos	P	ł.)	400		140	11:4	4 7	ar	مد ه	to	0r c	u	sil.	i k	0 _	M	กท	ito.	rel	4
7.3	•		•			. 13			, J		1/		ı	- 4	1			1	11			7	1		1			-	<i></i>			4
A.S	in	iq		X C	V 1	MI	- 21) t	101	V	cell	Q.	nd	w	ate	1	ũn	aly	20	.	_(ar	por	\	11	in	u Ş4	2 -				
		J																'				l	'	,							İ	
Λ	7.1		٦,																													
	للد	bre	力	$\sigma \sigma$	S _																											
7	\cap		1:1	رسر ا	ميل		in	_	ملدا		4.1			6	5 6	40			VЦ	2						Ì				.		
																					1	1.	-									
٥	Ndy	ich	vit	-y ·	- C	ali	bra	te	d	us	in	9	14	13	us	./c	n	sta	١.	So	lu	H'0	n.					1				
Ď۱	1	ام	1:	1	L	t	LSì		\wedge	را	L		L	. D		\ ` /-	7_		1		` •	•										٠,
	1	<u>ca</u>	UP	Y Q	120	U	1211	ng	7	RN	LDI	1 1	u,	72	7.5	μ.	<i>i</i> –	10											1			
[u	chid	lite	ı M	nes	41	#	20	> ا	kto	 	6.	03			a	-6	.11		1,	<u>st-</u>	91	01	7	3	K2	- 1	0/:	3//	21			
						_	-			•					J		***			2.1			•		7		D 2	-,,				
					ļ										-		,		-													
		-			•	1	<u> </u>	Ŧ		ak	c -	- \ a	1	١.	ļ '	₽.	rit	rì ,	H		<	t.,,	+0	ha								
-		1	,		-		1		7	110	-	<u></u>				14	<u> </u>			7	+	/\`	112	77	/				7	7		
2	an	4	e						Hm	aly	ડો્ડ			res	KC	vat	14	2_		$C_{\mathbf{o}}$	$\lambda + \epsilon$	air	er			_ot	· .		1	26		
			_	74	0/	1					260		, 7			/H	11)40	1 1	•		ا ، ــ	1	0	2		7	5		
× 1	10			ı	1	l .	l • }	-			1 1		. 1		1 :	1	1		7.	170	m	Y	a		مرة	58.	<u>ر</u>	40	Дι	-	\dashv	
-			- D	74	LA			ow	Le	vel	N	MA			1	ce		*	()	IL	A	MO	-	-0	103	356	76	-	51	ZI		
																	-		(,					(200	56	25					
$\overline{}$			t		115	1	-				<u> </u>				1	_							-		-	,	· \	$\overline{}$		\rightarrow		$\overline{}$
Ya	ca	me	tex	5/	Hìv	ne)		To.	MΦ	('<	1)	C_{\sim}	1	1/ n	acle	m)	ר	50	. (DR'	Ρ,	P	H	7		/45	τυ'ς)	D	TU	5 / f	4.)
$\overline{}$					1	_	Lì		_		_	-				_	_	_								-						
•		10	0;	5 C	9:	50 /	1	عرا	ク .ゴ	R^-			١.	1		1	7.	22	-	16,	1	6.	13	\perp	\mathcal{O}	.2	1			v/ /	1	
2)		-		0	93	3 A		20	5.5	RL.	1	(> 7	14	0	1	4	09	/	16	R (6.1	45	-U	0	ຸລ	9			a/f	ı l	
2) 3					1				1		;				1	\Box			' '	1 -				1 1						· · · }	1	
<u></u>	_			· U	93	6 A		<u>20</u>	5	98			٠.٦	13			3.	97	1)	16.	21	6.	4 ध		D	.a	2			N/	k	
																, ,					•			-	•							
					<u> </u>									_		1														-+	-	
													S)a	m	e	5						•									
\leq	m	1_							1	١		-1			ĺ	en)		La	+		II	1	
≌	M	D16	_				-		ī	m	aly	21	>]	ce	yer\	<u> 797</u>	ĮŲš			7	ON	a	ne	T					4	90	_
21	10	b .5	0	94	6A		1	VO	Α	Ьu	8	760	ЬЦ	L		ice	/	HC	I _		(3)	40.		via	15		258	33		A	1_S	5
								-			10	7					-				,	1		• • •								
					ΙA		ļl				(r					-	ņ				<i>.</i>		. a				•				u	
			O	94	2A			60	רל	Rr	Ow	ገ <i>ል</i> ሶ	:				ice			1	(0)		A	مط			23			} ¢	je	r
_				•	1 -			~	X												/		# J.T			0	005	25	-	-	2	
					3A					h (M.) (, c			<u> </u>	ļ	u						Ĺ	١			<u> </u>				a	
			· 0	94	4A		1	_01		آهر]	101	11/	SM	Δ										.						1		_
				-	"			دين	· '		_	. •	V/- \	1	<u> </u>		u			 								ц			4	
==			0	44	5A	ļ				<u>u_</u>	(4	B)			ļ		u				_	L		۸							a	
		∤	Ð	a4	6A			T	+	١	πy	et.	ا ا		'	ce	\frac{1}{L}	N	h _	1	(a)	124	5m	ا م	1.	S	21-	ارم	ر د .	1	ÂL	ا ح
				-	-	l .		- 1	υţ	4			~ L			ردو	1	HA	3		~~	امد	~ IV	4	' 1%	-	~ (7	017	or (+ +	74	Y_
_			0	44	1A					α	(P	B					'n							u	. •			t L			4	
					•						,																			T		
-					 	-					\vdash				-	-						-										
							<u> </u>																							- 1		
7		ا ،ا	0	7	Tu	\ _			,	1/					1		١١					\		2								
_	إبط	hia	<u> </u>	1	س		N	0	dex	347	 			10	tal	9	allo	ns	P	ur	geo	1		2			ļ				\downarrow	
Co	uld	W	,	, Li	منه	0)ep			\	_							-		J											
	ļ	1			1	1	r 1	T L		1	0 b	.			†						ļ											
M	as	Na	191	29	nb	0	ne	or	~	52	7+	t.				ļ																
	- 1		-	١ -) 1		Hi.		to		6			١											Con	tinue	ed fro	m pa	ige			
۲,	<i></i> .	للند	"	لللا			m	19	, U	4 6	21	M	n p	/•	L		L		Щ.	I J	L	<u> </u>										

Date: 10521							- IODI N		Page of
Sample Location: BLM_40-	688			A	nalytica	ıl Requir	ement		
Pertinent Notes (if any)			7		4				
	ners	trix*	0		NDW				
	of Containers	Sample Matrix*	8260	607	3				
Sample Number	Jo#	Samı	Φ		17				Charge Number
211005 0740A (TB)) 3	A							XGMD
0741A (TB		A							ά
	3	A	ـــ		-	-			u
0941A (FB)	3	A							и
0942A		A		<u></u>	,				ч
0943A (MS	>) <u> </u>	A							4
Sample Location:		/ (A	nalytica	al Requir	rement		ч
Pertinent Notes (if any)			4	S					1
	ers	rix*	NOMA	eta					
	of Containers	e Matı	N	N					
Sample Number	# of C	Sample Matrix*	77	10/4					Charge Number
2110050945A (FE	3 1	A		- 1				1	XGMD
- 0946A	2	A		~					и
- 0947A (FB) 2	A			-				и
,									
	-								
Relinquished by:	Date / Time	e:			A	coepted l	oy:		Date / Time:
Craig Del Temo 1015	slal 1	115	hrs.	1	on!	\mathcal{N}	Jund	9	10-6-21/0900
U				\	\			''	
				1	J				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

Bob Tusts & Craig Del Ferraro present. Weather is clear & cool This well will be purged using a dedicated bladder pump. Samples will be collected using a teffon discharge hose. Parameters will be collected using a standard pH/cond. neter. Do and ORP will not be collected. Carboy G5 in use. PH (and meter - 60 Buffers 4007947 12/21 4101E56 7/22 3.08 PH pre - 7.10/10.08(19.10) PH post - 7.11/10.06 91017 Trip Blanks-Water Purification System Preservative Confewner 2110 18 07500 VOA by 8260 LL Low Level NDMA ice/HCL (1) 11 Amber 02004016 -0751C ice Parameters (time) temp (ic) PH cond (Ms/cm) 8.6.c 2110181005C 7.72 354.05 8.8 1008C 70 **\$54**. + Iduc 354.05 Continer (3)40ml vials VOA by 8760 LI 10181015C 1016C (1) 11 Amorer 02004016 607/Bromaci 10176 ow Level NDMA 1018C 10190 1020C ice/HNO3 (2)125ml poly 5 21 Metals 10210 -01-21 nitial DTW-353.13Ft. Total gallons purged -Continued from page Read and Understood By

Graig Del Ferra

10/18/21

Date: 10/18/21									F	Page of
Sample Location: BLM-41-46	∑ O			A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)										
	ıs	*	77		HMQN					
·	# of Containers	Sample Matrix*	0	70	O D					
	f Cor	nple	8260	Ŏ	7					
Sample Number	#	Sar	33		7				·	Charge Number
2110180750C (TB)	3	A	~							XGMD
0751C (TB)	1	A			/					и
1015C	3	A	<u> </u>							u
1016C (FB)	3	A	/							ų
10170	1	A		~						u
10180		A			V					ч
1019 C (Dupli)	i	A								ч
Sample Location:	•			A	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any)			1	5						
	မွ	**	MM	eta						
	taine	Matri	Qn	Z						
	of Containers	Sample Matrix*	7	fa						
Sample Number	#	Sar	7	19						Charge Number
2110181020C (FB)	1	A								XGMD
10210	2	A							1	4
					$\overline{\ }$					
Relinquished by: Date	e / Time	e:			À	dcepte	d by:			Date / Time:
Grang Del Fermo 10/18/2	-1 1	115	rs.		Or !	M	un	-ch	10-1	19-21/0900
0					<u></u>	1841				
					J					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

01		F1	1		•						-											00	iitiiitu	ęu II	om p	aye _							
Bol	<u> </u>	19 + 5	٤	$C \mid C$	Ka	ig '	De	IF	err	ar	0	DY	4 .0	~	#	1	1	1		:	_	1					1	L	T	\top	100	1.	Т
wel	d w	\mathbf{i}	be	D	ur	ار ماری		< 1	۸		1	18				LI		1		_ \		u pe	ar	· u	Jav	(A)	+	DV.	eci	*	17	NS	_
114		+	0.51	I	1	7			IJ		ae	or ye	Call)	ec	7	910	acu	obe		Py	m	P .	12	4m	ple	ţι	414	k	2 (56ll	ect	ed	
		-		_				-uv	' 1	i NV:		- 11	C 2 1/	T 18 14	^~		~	<i>f</i> :-		, ,		! -					• l		1	5+	an	100	
PH/	(one	1 1	net	er	-	DO	an	4	OR	Ρ.	uil		Δ0 ⁻	} ↓	æ	M	on	:4			0	2	-b.		65		.,	7				Ju	1
<u> </u>			1	1	Į.	1	i	İ												•		-	1	1	<i>0</i> 10	//	1 4	36	+-	+-	+		-
PH	Co	J		1		- 11	. / /		+	+-	\dashv	-	>	00	╁╌	+		•	-	-+		_	-	-			<u> </u>	ļ	_				
7	I COI	Ta.	I VV	ver	er	F	6 (<u> </u>	+-	+)M:	14	er	۷.		ملا	#			3	×f										
luv	b	me	er	1_	_	#	6							7			21	n B	G:	54		2	23							1	1	\vdash	
u				1	-d	_	2.9	7						10											 		-		-	+-	 		
ч				1					\dagger	+-	+	\dashv		10	+-	+-	71	03	G	01		4	22	4	ļ			ļ					
	+-	+-	-	10	25	-	5.1	_	+-	-	+-				<u> </u>	_	٠.																
u		ļ	ļ	lo	t ₂	<u> - '</u>	210	17					Í			1					İ									†	1-1		
u				13		-1	٠١,	11:	21				DI			1-	L,	. 1	_				 		 				-	+	/		
					1		VIS	111	1	-	+	+	T	1 PV	e·	7_/	.0	\mathcal{L}	0.	05	4	26.	0, 0)	P	Hρ	ost		1.0	3 /	10	.0	4
	+	-		-		┼	ļ		ــ	-	<u> </u>	\bot	_			_									'	ı			•				
		 			<u> </u>																									1	1		
							_	~		RI		L		,	1	1	1			\top	1.		_	-,						┿			
San						1		T.C	18	101	an	T	<u>></u> +	<u></u>	و ا	es	\Box	ur	14	Ca	120	N	<u>S</u> ,	ist	em			_					
						ļ		.H	14	WS	15			Yre	se		oh	ve	_		$C_{\mathbf{c}}$	n	au	10	^		<u>L</u> 0	$+ \mid$, 1	
2110	19	12	50	C		V	οA	by	ß	26	51	1			110	, 7	HC	1							5	_	-0			5		-	
		12	51	C			w									1.		4	+	4	3/4	7 () I		ria	احا	~	59 6	2		H	-2		
	1						<u> </u>	L-L	ve	41	10	IN	H			Ìc	e	-	-	-41	!) [L ,	Pre	vbei	- ¢	20	040	216	L	_S	RI	-	
<u> </u>	 	•	_	7.	_					_	ļ	\perp																1					
Para	me	ter	ر ا	En	ne)		t	^^	6	(c)		-	م		4/	110	C	Λ		1	PH			7	-1	1.	Tu's					7	<u> </u>
1) 21	101	9	4	150	4			19				\top	_				10	77	+-	_	_	-		14	_		LU			210	U (]	1) _
		- 1	T								+-	-	- 1	- 1	6		ـ		-	\mathcal{I}	.6	5			1.4	4				3	92	15	5
2) — 5) —	-	- 1	- 1	28				19	4	<u> </u>		L	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	0	<u>5</u>	1_				7	6	2			3	2					93		
5) —		_	14	310		_		19	6				1	0	5:	<				- 1	5						_	+	-				
												1	+		<u> </u>		-	+	+-	+1	- 7	-		_	1-1	6		\dashv	\dashv	3	92	.15	
			_							-	-	-	+	$-\downarrow$			-	<u> </u>	-	\perp										1			
										_	<u> </u>		_		Sd	2 m	واع	25															
San	0	e			_	1		A	va.	45	ì						Va		10				1	1	$\neg +$	\dashv	-	1	1	-	-		\dashv
2110	ia	14:	351				۸.۸					1.		110	_	_		7.	Ve		\dashv	+	00	a	nov		-4	<u>L</u> 6	1		<u> </u>	9b	_
3110					\dashv	_ Y	OA	Ð	4	826	0	1-1	_		Įς	e l	H	سال	<u> </u>	1_	_	(\$)4	Sm	vic	2		25	16		1	LS	
		17	360	-		.		_	ŭ	(FI	3)					и																	٦
		14	37	C			60	∕ור			,	1									7	/ N	11	۸.	4	_	\dashv			-		u	\exists
		14	38	c				- 1.	•				A	_		_ 10	e	-	+	+	-	L I	114	<u>.</u>	mb	26	090	704	101	4	S	PI	_
						-+	<u> </u>	W	-21	el		y M	4_	-	_	Ų	<u> </u>	ļ	<u> </u>		_			_4				u				u	4
		171	390			_			u	(F	3)					ı																1	٦
		141	400	$c \mid$		ĺ	+	4	1	Йe	,,	1			•	. 1	110	10		†-		71		<u>-</u>		1		_u	+		+	4	\exists
		í	410					217					+	+-	_10	e [HN	103	-	 	+-	La	<u>) [[2</u>	6 _m	1 po	14	<u>د</u> 2	11-0	01 -	-a		AL	S
\dashv	+					A	_	-	- 1	(D			1			•	4					_			I I								
		111	40	چھ		ou	, L	eve	LN	DM	A'	BO	d \		-	j	ce					(i)	11	1			7.			,	\top	ŚR	7
		15	ap	C							-	-	7	7	_	-4	ب		-	+	\dashv	L 1/	-	7	nke	4	المخ	MM	بلاء	BOA		3K	4
			1	_	-	+	+	+	\dashv				+-	+	-					 								\perp		\perp			
- 1	0	~		-+-				+					_		_					L		s											
niti	al	UT	ψ		39	1.4:	3 [·	t!				•	╁.	fa			11_		Pu				h		1		\top	+	+			\top	1
						•		T					# 6	-14	-] 1	MDI		Yu	4	e a	=	2	-+	+							<u> </u>	4
														Ц_											C	ontir	nued 1	from	pag	je			

Charg Dol Ferro

10 19 21

Read and Understood By

Signed

10-20-21

Date

WSTF INTE	KNAL	SAIV	IPLE	CHA	IN OF	CUSI	ODI			1 6 1
Date: 10 19 2									Pag	ge of
Sample Location: BLM-41-670	O			A	nalytica	l Require	ment			
Pertinent Notes (if any)										
	ars	* ×	77		NDMA					
	ntaine	Matr	29	607	9					
	of Containers	Sample Matrix*	7 0988	Ö	7					
Sample Number	3#	Saı			7			_		Charge Number
2110191250C (TB)	3	A	~							XGMD
1251C (TB)		A			~					ч
1435C	3	A	/							ц
1436C (FB)	3	A	~							u
1437C	1	A		V						4
1438C	1	A			V					4
1439 C (FB)		A								4
Sample Location:				1	Analytic	al Requir	ement			
Pertinent Notes (if any)	T	-	7							
			12/2	3						
	of Containers	Sample Matrix*	1	Am all						
	Conta	ole M	12							
Camala Number		Samp	16						}	Charge Number
Sample Number	1	TA		+						XGMD
211019 14400	2	1	1	-						4
1441C (Dupl.)	2	A	-V		-					
1520C (BC)	+	H		-	 					4
			-	<u> </u>	-					
			-	-	-	-				
		-		-						
	-1- /T:				A-	Accepted	by:			Date / Time;
	ate / Ti		5 hrs	_	an	The Property	lle-		10-	20-21 /09%
Thougall tens 10/19	<u>₩</u>	10d	<u>קוח כ</u>	•	\ww_	<u> </u>)		-* -	
		<u></u>			+		<u></u>		· · · · · ·	

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

b Tuffs & Crowg Del Ferraro present Weather is clear & cool. This purged using a dedicated bladder pump. Samples will be collected Weather is clear E cool. This well tetion discharge hose. Parameters will be monitored using a meter. DO and ORP will not be monitored. Carboy G5 in HI Gord meter Buffers #60 Turb meter 2108656 2.97 4103681 3.11 -91017 PH pre - 7.13/10.10 (16.5°) pH post-7.11/10.06 temp PH Turb (NTUS) 211019 1040c 4.8 8.11 1043C B.09 2 1046C 30 809 12.2 Samples Preservative onteriner VOA by 8260 3) 40 ml vial 5 1019 1050c ce / HCL 1051C 1052C 1053C GOT/Bromaci 02004016 Total Metals -10540 21-01-21 Initial DTW-170.91Ft. Total gallons purgea Blind Contra Preservative Container ice/Hol VOA by 8260 21101911150 11160 607/Bromaci SRI ice/HNO, Total Motals lund 21 MM 129B 2) 25 ml polis ALS 21 MM 129C Continued from page

Craig Del Leuno

10/19/21

Read and Understood By

Signed

10-20-21

Date: 0 9 2									Page	c	f
Sample Location: BW-3-180				A	nalytical	l Requir	ement				
Pertinent Notes (if any)					5						
	ည	*			279						
	# of Containers	Sample Matrix*	8260	Ĭ,	M						
	f Con	aple l	32	607	tal						
Sample Number	# 0	San	ω		100					Charge N	umber
2110191050C	3	A	~						X	GMI	>
1051C (Dupl)	3	A	-							u	
1052C (FB)	3	Ā								41	
1053 C		A		~						u	
1054C	2	A			-					u	
1115C (BC)	3	A								u	
1116C (BC)	1	A	-	/						u	
Sample Location:		11		A	nalytica	ıl Reguii	rement				
Pertinent Notes (if any)			2								
	, ,	*	940								
	ainer	fatrix	\$								
	# of Containers	Sample Matrix*	40	-							
Sample Number	Jo#	Sam	l lo							Charge N	lumber
2110191117C (BC)	2	A								XGM	
210111111111111111111111111111111111111		, , ,						-		, , , , , ,	
											<u>-</u>
	-										
			1								
	-										
Relinquished by: Date	 e / Time	e:		1	1 (4)	ccepted	by:		I	Date / Tim	e:
Prais Del turio Inhala		75	hr	1	m		1 um	d	10-20		0930
The state of the s	<u>-1 [</u>]	<u> </u>	1		ψ V~	- V -	1				
											

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Pulcand = 61

TURE = 21

" 5TO = 1). 6

23

123°

a Tony Torrez present Wealur: > clear and

823

229°C

minute recovery 1: me textures parges. 4 gallons or promoter stabilization will

Sampled using a FLATE system. Purge pressure set at 218 por an set at 227 ps. Broker set at 3ps; and stable at 5 psi.

7.50

7.74

21.84 27.76

D. purged. Carbon G. 5.

Preliminary Parameters

577 = 5 11

FE NO = 18.7°C

0-19-21

10-14.2021

Read and Understood By

"ROS = 11.1 2000 - 1311 45/CM 1112 1101 1106 "A = 91017 TURB = 0.59 0.70 Mgs 0.59 Mgs 1.36 7.06/10.09 "= 10/31/21 04KTON POSTERTA 3T OAKTON PETS 50 WOVI CALBRATEN ANGED TO 7.10/10.10(2850) 7.02/1003 Final Parameters Intial Paramulars T. m. 2110141340B 2110141455 B 7.72 7.75 20.12 71.5 IDN: local TEND 1116 105049/cm TUTB 0.48 0.35 7.01-10.03 (227'2) RUPRE 7.03/10.04(24.00) 24POX 7.02/10.05 7.03/10.05 SAMPLES Container SAMOR Analys: 5 Preserve (3)40 m) U:21 12 00/58 pd 20 LL 211014 134118 2795 4 1 Ece (HC) 1342B Nowalows (EB) 1343B \$RT Bromacil & 607 Ice (1) IL Amber 103501 1415 B NOMA LL " (FB) 14163 (D250 m) Ander ALL 1428B ALS 500a-51m 540 K 4270 D (2) IL AMBOT ٠, 41 1446 B (2)125 m) Poly 1447B TOTAL MUTALS ICO H NO3 Continued from page

Date: 10-14-202)										Page of
Sample Location: SER-1-483 Pertinent Notes (if any)				A	nalytic	al Requ	uireme	nt		·
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	U06	رما	77 6220	500g. 51m	S U 0 &			X6MD Charge Number
211014 1341 B	3	A	メ							
1342 B FB	3	1	7							
13433	,			X						
1415 B)			·	4					
1416B F13	,				9					
141283	1					7		-		
14463	a						X			
Sample Location:				A	nalytic	al Requ	uiremen	nt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	mutals							Charge Number
30211014147B	2	A	×							
					Δ					
Relinquished by: Date	/ Time	, 25 ,	5		m	ccepra	d by:	di	10-1	Date / Time: 9-21/0900
					J		<i>)</i>			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

15 c	3.5	N.	٠ (حدو	ON	ren	_=	1	4	<u> </u>	104	70			40	, 2	٦.	-		7				-									Ì
[/s]	4	Ka S	l B	F*.«	> T	to		42	~¢	:/	٠5.	-	er	pas	E	5		-			-			\dashv	_			-					
Pael	+			P.	4.	4	~5		_														1	m	<u>a.}</u>	2	Τ.			<u> </u>			
PH						1	3.5	- 4	/													_			P	11	91	φ.	= L	e /	-		
Tens						l																				-	10	20	‡ a	1_	<u> </u>		
Cons	- 1		1		1		1/4																					1	F 11	1		-	
10 B			V 6	P			٦.	1	1																	<u> </u>	Q	De ²	ا ا	1.1	-		-
1010	ر		<u></u>	U																	ļ								79	1	1	-	_
																_				 						-	E	14	† / ·	•Ja	-		_
					-	-	-					-	-	+	-	-				<u> </u>			_		_	-	-	-	-	-			
TO:	۲:۰	7 8	مرد	cr	<u> </u>	*62	_	-			+	+-	+	- 1	- 1		٠ ۱		1	Ae e	- 5					-	+-	†	+-	+-	 		
13 m	ع		3)/6	215	10	33	B	\dashv		-	+-	-	+-		- 1	- 1	15	11	40	35_	-				-	+-			+-	+-			
64		=			9		-	\dashv		-	-	-	\perp		4-		Ω.									+	+-	+-	+-	+	1		
Ten		-4	1		-8		+-	\dashv		ļ	-	-		+-	Zi				,	-	-				+-	-	\		117 -	10	5	1	
Cor	<i>'</i> 6'	5	-	119	19	45	lan			-	+	-	+	-	1	1		4 5	10	3	-				+-	+	7		<u> </u>	- 0		11.	
704	2	-		1.3	35	-	+			\vdash	\perp	-	-		0	. 3	11		72	1,0	(4)	-			+-	-	\top	+-	_				
576	الو	-	7	0.	3 / 1	100	1	14	. 5	i)	+-	-		1	1	I.		1		LIT	7)		-	-	+-	+	+	+					
646	6-इ	-	<u>D.</u>	کو	1/1	0 6	3	-		-	+	+	-	_ 7.	07	7 /	10	0	<u>د</u>	-	+-	-				+-							
		-	+	+	-	+							Sı	744	<i>ا</i> د	:5													-		_		-
SAN	210	*					0	× co			s			1	Pa		wu	<u>.</u>	_	1.	C	to	· ne	<u> </u>	_	+	4	1		_	-		AB
2110			023	13		V		ŀ	•	. 1	- 1	Ц.				1		41	ļ_		B	40,	y n	. ~) _	-	<u> </u>	4	70	Į.		-	DL5
		1	024				,	ļ		Į	1	(F)	3)				,		1			,	<u> </u>	<u> </u>	-	_	-	_		>			
	_	L	021	1		3	100	~ A	ربر م	10	2	60	7				حو			<u> </u>	(D)	1	N/c	4	-)<	<u> </u>	(63	_	-	SRI
-	_	1	එද	L	•	- 1	0~			- !						1)			-		<u> </u>	•	\perp	+	- -		_	- }		-	+	1)
	-	-1	101	1			,		-		(B)					۱,	_		_	<u> </u>	,	>	-	\perp	-	+	-	,	_	-		13
	1-		12,		- · · ·	5	VO	~ ~	5	12						١	,			_			10	- 1		-		1	V۱	4			UCZ
_			25			5	0	٠٠ــ	R	9	\$2.	10	>			. 1	•		-		(5)	14	Don	.Xe.	4	+),	-	-		l,
			اعز	- (- 1	1	- 1			4					<u> </u>	١ل	40	03	_	-	æ>	125	1	60.	7	-	-	+	- 2,		-		1)
															_				_	_ _	-	4-	-	+	-	+	+		-		-	-	+-+
																		-	_	-		-	-	+		-	-	-		-			+-+
			_	_	_	-	_	i	-								-	+				-		+		_	+	Cont	inue	d froi	n pag	 e	
		\bot											Ì.				<u></u>				ıŋd U												

I	Date: 10-15- 2021										Page of
	Pertinent Notes (if any)				A	nalytic	al Requ	iremer	ıt		
	Pertinent Notes (if any)										
		<u>8</u>	*			77	SIM	5			
		# of Containers	Sample Matrix*	U 08	109	NOWA	1	5000/8270			
		Con	ıple l	2	ڡٚ	0	5005	0			X6MD
	Sample Number	# 	San			V	30	5			Charge Number
\sqrt{s}	11101210533	3	A	4							
Ţ	1024B FB	3		4							
\downarrow)022B	 , 			7						
	1100 B	 ', 				9					
		1				9					
	1101B FB	'				J	9		· · ·		
	11273	1					4				
	11283	2	,					×			
[Sample Location: Pertinent Notes (if any)	T	1		<i>P</i>	nalytic	al Requ	iremer	ıt	T	
	retulient Notes (11 any)										
		ıers	rix*								
		ntair	e Mai	\(\frac{1}{2} \)							
		# of Containers	Sample Matrix*	metals		-					
L	Sample Number		Š	<u> </u>							Charge Number
	1110151129B	2	A	×							
						_					
	·										
						\ .					
	Relinquished by: Date	e / Time	e:) A	ccepte	d by:			Date / Time:
	10-15-20	21	121	5		m L	λL	hu	-dr	10-	18-21 /0900
							V —				/ " " "
					T			1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT 162-1-683 ENV-0020

Notebook No. ひる ではこと

	_			1											-				Con	tinue	d fro	m p	age _			_ •			
Dan	Ac	m an	se.	4 4	7.	301	. 7	9-1	ez	و در	411.2		رموا			. /							L.			Т	<u> </u>	Τ.	
Samo	<u>e1</u>	92	١.	5~,	Ohe	a l	. 5	76 0	EI	UT	_	۷-		C		3 (- 16	cr	NV.	λ (<u> </u>	٤).	7	1	2	one	<u> </u>	.11	pa
Sang	ha c) وتو چو	wo	۽ ا	· +	A	22	3	احاً	3.		131	-	,	45	<i>و</i> و	he	L 35	un	₽ \$	492	34	¥ =	49	ρ.	s: c	2		
Sano	عدد	- A			در			Dead		7.3	700	,,		2+	4	_ 5	Ps	. 0	29	5	tal	sk	at-	5	63		15	w;u	whee
pri.	3 -	40	À	10	~ .		-1/-	Pu	503	•	20	ndl.	15	01	- P	216	· hear	rker	- 5	4-4	<u>., </u>	, 2	7;	7	مے	البرر	7.00	(
			27.	V	.2,		400	2 6	20·	-		-+																	
Preli	1.		D					-	-	+		-	-							_									
6#	1				Mes	475	_	-		+-											refe	7.6	I	>					
	$oldsymbol{\mathbb{T}}$	8				-		45		-	_	-	_							- 1			9,0		61				
The most							20	م. ه	<u>`</u>														U10						1
C0 10	-	1	0	3		-	11	15	45/	CM													S1D	ſ	İ				
7003	=	0	· 7	21	114	'5	Φ	-74	/													1	205					+	
	-	203	//0	ر م.	r															_	1	- 1	- !	- 1		- [\dashv
	-																					- 1	Let	- 1		i i	_	$-\downarrow$	
																				-	-		343	=	10	3)		\dashv	-
Emit	اد	Pari	3 100	edu	-3						+		+	<u>n</u>		\dashv		-		-		\dashv							_
T' me	3	21	10	15	10	3~10	,		1		1	F	- 1		1		- 1	+		+	$- \downarrow$	-		\dashv	-		\perp	_	
P-4	=					<i>7</i> 0.5	\top	+	+-			3/1			12	2 1	S		_		-			\dashv	_		_	_	
Femp			7.	7:	_		+	_	+-		_	₹.	- 1		$- \downarrow$	-	\dashv			_	_		\perp	_					
20 00	5					/	+	+-			-	30	7	2	\dashv	_					#	-0	w	=	6	59	1		
TU 10	=			2	43	cu	-				-	1))	9	\perp												3			
	-			7 /	-11	T4 5	+	+	+-		-	Φ.	١-) (a	_		_												
Aufre						414	.g <u>c</u>)	-		-	ه . (<u> </u>	10	:٥.	١.							1.						1
248-20	3	7.0	D (10.0	03		-	_			_ 7	0.1	1+	10	.0	3												\top	-
_			-		-	_		-					\perp			_	-									+		\top	
	Mari		4							_5	nA	V BT	ŧ.	5							1	1		$\neg \vdash$	_		+		-
id war			_		140	aly.	<u>s: s</u>				- 1	ve. S o		Т					4-2		+		-		\Rightarrow	-	<u> </u>	+	-
111015	/6	313	>	Ų.	39	6	820	o L	د			T.C.	- 1				1	- 1	, 47	,	_	+		4.5				40	
	/¢	375	3	1:	- i	1		• .	FB)			1	1		\top	7	C 5-	1	- 1	070	7)	+			35	-	\dashv	AL	
	_/[>371	3			C/1		607						_	-	+		+	-	-	+	-	+	,				/,	-
	10	OB		- 1	3 44 6				7	+	+	OF C	1	+-	+-		U		1)	- KOON	-	+	1		50	1	-	5 @	
	105	·) B		,,		n	Æ	0			+-	()	+-		+	-	+			-	+	\dashv	-	1)	<u> </u>	4_	1	·
1 1	1110			5	-	51	1	رح		-	+-	+	+-	+-	-	-	+-				-	+	_ _	1)	4_		,	•
1 1	111)			,	- 1	1		5		_	-	7)	+-	-	-	+-	(I)	1	100 0	No	pre	-	-	1	1			Q.	.5
1 1	114)		+-	_	1	!	0	1)			+-	10	+-	+-	-	+-	-	1	' •	-	-				4			1,	
) B	-	- 1	- 1	82	1		\dashv		+-	3 1	-	+-	-	1	(\mathfrak{d})	11	de la	-	_				1				
			+		461	T					1	تعر ا	44	70	-		32	120	. "	601					*			,	
+	14)	<u>३</u> ह	+	()	+-	12	CW	5)			-	12		1	1_			43							1			/,	
+-+	+		+-	+-			ļ																		,	1	1	+	
	\perp																					Co	ontinu	Jed f	rom	page	1		
														Rea	d an	d/Unc	derst	hood	Bv		<u> </u>								
																1 1 "			-,										

Signed

Date

hu Juman

10-15-21

Date: 18-15-2021					,					Page of
Sample Location: 3 E R - 1 - 683				A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	50 C	L07	NOW 46	SUGGESIM				Y G M D Charge Number
2110151031 B	3	4	7							
1032 B FB	3		9							
1033 B)			9						
1050B	J				7					
1051B FB)				4					
11103	,			-		¥			1.02	
11113 Ous	1	\				Y				
Sample Location:				A	malytic	al Requ	iiremen	t		
Pertinent Notes (if any)						:				
Sample Number	# of Containers	Sample Matrix*	8270	5/strang						Charge Number
2110151140B	2	A	4							
11413	٦			9						
1142B MS	2			7						
					١.					
Relinquished by: Date	/ Time) 2)·	5		orul	dcepte	1	-d	10-	Date / Time:
				V	ı		-			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. 272 #177 (8) ROJECT JER-2-504 Continued from page ___ AL. MONTES & Tony TOREZ PRESENT. THE WEATER 13 cloudy & GREEN TILE SAMPLING SYSTEM. PURSE PRESSURE SET @ 244051. Bubblen SET @ 3psi and the pressure stable @ 7ps. 15 min RECOURTY Time BETWEEN punges. Ysallonsmin on Panam STASILIZATION WILL BE punged. Canbox 6-3 PAR PARAM'S 8.32 8.29 Tune# 21 24.0 747 TEMP 11 STU 10.0 1124 diste 1136 1 PHS 10.5 042 107# 91017 FINAL THITIAL 211007157013 211007 1400B 8.30 8.40 22-9 c 25.1 c 113745/cm 1130 Tunb 0.72 0.66 preprio 6.95/995 (3\$2) 7.07/9.96 32.9) Phpost 6 98/993 7.04/9.98 IDW 4. 55 mily SAMPLES 43 COUT PRESERV 60T# Samples Analysis Als 10E1HJ 211007 1401B 824041 14023 "(63) SKI 01035016 11)14TAMBER 1403136007 11 1425B (CUDAA 11 1426B "(FB) 11 1445 8 82700 11 11)2500/4000 11 1515B SUDASIM 151613 "(Dip) 12)(25ml pour 210121 (wil Horton 1517B TOVAL METER Continued from page Read and Understood By Junch 10-12-21

Date: 10-7-71										Page of
Sample Location: JEN-7-504				A	Analyti	cal Rec	quiremen	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	826011	100	UNDMA	SWA 82% D	SUDA SIM			X6mb Charge Number
211007 14013	3	А	×							
1402B	3		مد							,
140313	,			×						
14258	1				ス					
14268	1		_		×					
1445B	2					×				
- 1515B	<u> </u>	上					ン			
Sample Location:				A	Analyti	cal Rec	quireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	5000 Sim	METALS				·		Charge Number
1516B (Dup	1	A	入						<u> </u>	Charge Number
1517B	2	7		8						
79:12										
					\cap					
Relinquished by: Dat	e/Time		5		Yer	Accepto A	ed by:	md	10-	Date / Time: 12-21 / 0900
					V .					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page ___

KOJEC	<u> </u>															r 1					 [.									_
Dan	Hac	VO	nse	34	۲	Ta	24	7		æ	P	iés	EN	7.	7	تحا	ارب	sa i	30	1	's c	~~	dy	۲	فحها	C.	74.	3 2	-	5
4.41	6E	Pu	25	لر=	} -	5~	m	Pla	·J	h	5 126	<u> </u>	4	fo	LTE	5/	9m	p lu	14	54	.57	Em	. 1	Pun	ςĒ		ne.	5541	28	
SET	Q 2	م		T 1	ત	- \$	A	Pla	ء :	NE	Sse	S NE	5	£7	0	7	:44	P51	. ī	Zu.	66	En	Se	=—	@	300	, 4	- 51.	4600	=
@ 70	C	15	- /	אימ	i en s	Es		25	ר אב	سع	24	7,	n		Re	74	JE.	=~	P	nR	Es	,	45	al.	0	S	3A	PA	242	ء
STAGE		770	-/			,	- 4		4	a.E	_	<u>C</u>	77		ant	04	6	-ر .	'	٠.			J							
JIMAS	-1	1.0			•																	n.c.	En	I	7.7					
Pa	na			pn						In	-13	. 7	,									1 1				= C	01	,		
ρ4	8	51			R	5	3	1	7	3.4				8.	8									l		- 1	1 1	,		
-	71				2	.9					5,C		1	1	2.0	T '										1				
témp Cons						O	1			1	9	1	1	15-												_/				
1 1	1	1 1			i	ľĺ	- 1				(es	Į.		1 1	43		 						и				91	0/7	,	
TURS	ψ.	0	_		0	. 7	,)			-	Q3				د۱				ļ				1/	7	74	_	(0)	31)	17	
		-			-									\vdash	+		-		-			-			م	_	0/	11/1		\dashv
*			_		-		\sim		,					-	-			-	-	-									+	ᅴ
	IN!				-		<i>r,</i>	NA	<u>ں</u>		11				 	 			-	+-		-				-		+ +	-	\dashv
2110								01			60	کا		-	-	 			-	<u> </u>	 									\dashv
PH	8.	70				-	_	٠,5	ı	į.			-	-	-								ļ	 						\dashv
TEMP	121	.3					i	1.	1	c	-		-	-	-	-				-	-		-	-		-	-			\dashv
Cons	11	15			1			6	ŀ	_			-		+			-	-	-	-									-
Tune					\	\ _	1). (1					1	-	-	-		-		-	-		-	-	-		+	-	\dashv
PAPME	7.0	9/10	·/o	(Z)	.3)		1	ο <i>[</i> .	ł	1		7. Y)	-	-	-			-	<u> </u>	-	-		+	-	-	-			
phposi		1	1			├	7.0	99	110	·/	z	-	<u> </u>	-	-	-				-	1		-	-	1	-	-	+		
700	Dw		1.)	_	-	_			-	-	-	-		+		-	-	-	ļ ·	-	-		-	-	-	+-	-	+		
		ļ	ļ 								-	-	-	-	_	ļ			-					-	-	┼	 	-		
		ļ						5	AN	γl	E S.	-			-		-		ļ	-	-		-			┼—	 		_	
Samp	104	:			NA	451	_ د	ļ			Paé	56	v		_			TH	-	-	-		01/		-	ऻ	<u> </u>	LA		
21101	3 /	301	13	-		rol(-	w.	He	4_	-	-	ļ- <u>-</u>	27	१८	<u> </u>	-	(3	140	m	val	5	-	-	Al	1	
+	1	300	13		11 (FS)_			ļ	h	_	-	-	-		-	11		-	-		•			-	 -	1,		
+++	- 1	30	313	3 ((00	7				-	10	E	_	-		\ C	>10	3:	501	4	11	110	TA	mt	er		-	51	2	
	- 1	32:	13	1	LN	Om	4			ļ <u>.</u>	11		1	_	-	-		11		ļ		-	1 1	<u> </u>	-	-	<u> </u>	1	_	
++	- 1	320	B		u	FB	\				À							u	1_		-	1.	11	-	-	-		h		
	!	34	50	2	_	. [1				1,						ļ .	~/,	4	1	(ર્		' }	1	-	-	1	AL	5	
	- 1	415	1			951					11							1/		1.	(1)	2	50	1 1	me	on	_	(1		
		116	i	[rel.		AK			1	E1	Ho	4			1	210	121		1)	12	51	IP	H.	<u> </u>		11		
														J											/					
																							Со	ntin	ued fr	rom p	age			
							-l	<u> </u>		1					1		<u> </u>							*						

T. Sinned

10.13.21

Read and Understood By

Signed

10-14-21

Date

Date: 10.13.71]	Page of
Sample Location: JEn. 7. 584				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	826011	(60)	CLUDMA	きてつのり	5,000 s-5			Charge Number
711017 1301 B			X							
1307 B(FB)			χ			_				
1303B			, -	x						
1325R					×					
1325B 1326B(FB)					≫				<u> </u>	
134513						8				
14158							X			
Sample Location:				A	Analytic	al Requ	ireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	TOTAL 8-491 5							X6m) Charge Number
- 1416B			X							
T. D 10.13	e / Tim - フ /	e: '//5	30	d	on (Accepte	d by:	d	10-	Date / Time;

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Dan Halvonsen of Tong Torrez present. The weather is wright wol This ZONE WILL DE PURSEU USING A FINTE JAMPING SUSTEM. PURSE PRESSURE SET Q ZUSES, BUBBLER SET Q FOR & STABLE @ Post. 15 mors REGUERY DETWEEN purges. M. n of Ygallows on Stabilization OF Panan's Carbon 6-3+. WATER DOESN'T STAY IN TUBE, CHECK BALL 13 407 PRE SAMPLE PARAM'S 10-13-21 METER IDS 8.18 8.11 PH 8.15 835 61 PH/LONA Temp 21.5 71.0 c 19.5°c tun 5# 71 CONS 1154 1198 1169 45/0 11.6 Turl 1.32 4143 0.92 1.18 RIL 10.2 91017 WITH Exp 10/3/121 Final JAN JA 211013/3308 211013151013 8.24 8.16 011 7.9 c 1164 0-91 709/1007(27.4) 7.05/10.07 (254:1) Phpost 7.07/10.09 7.05/10-09 4. SAMPLES SAMPLE # PRESERV AVALSIS 45T# 211013133113 626011 (3) You luia's 10E141 1332R 11 (F.3) 600 135513 013035016 11) It Ambor 105 ((Noma 14203 4 14513 17 (8.3) 144513 82701 (3) 11 1/1 Als 15053 SUDA SIM (1) 750mi 424cm 37 n 1506B Totalmeray 12 125m/poy LielHora Continued from page

10-13-21

Jumbe 10-14-21

Read and Understood By

Date: 10.13-71]	Page / of /
Sample Location: Jen-2-684				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	876066	(00)	8mcm)	82700	SUDA SIM			KGmD Charge Number
2/10/3 133/13	3	A	X							
13323 (Fb)	3	1	×							
	1			X						
1355 B 1420 B	1				X					
14213 (86)	1				κ					
1445B	7					X				
1505R	1						X			
Sample Location:				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	METALS			,				Charge Number
150GB	2	A	\times							
	/ Time	÷:) r	aqcepte	1	-d	10-	Date / Time:
0)			. 1

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Craig Ilel Ferrio 10/6/21
Signed

01-	- 5	1	-	0		4	1	=						Ł	, ,	1/			1	· ·			1					, ,		,,	7
30b	lu;	75	7	Cr	ang		ei	le	ra	7	P	es.	en!	•	We	aff	er	15	CH	ear	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	CO	01.	11	nis		vel	4	וזע		ee
>urg	ed n	di	sch	g	a c	hec	OS	e.	ed W	ate	ad	de eu	ali	tu	np	ra	Dar Wa	2	es	u		P 4	$\frac{1}{2}$	pll	eci i-ti	ed	d	Sir	9	a	
XED	M	P_	2 0	C	Ou		e li	20	1	1)0.	ر م	C 0	na	Ŕ.	معع	~.	C	arl	hae		21	ìv		So				- L G (7		-
										Na			119	7		-			000)	<u> </u>	LT.	"	3	-						
Cali	b	a	ìo	V 2																											
Do	- (a	lik	*	tec		in	Sq.	fur	ate	ed	a	ir	a	6:	39	M	m/	H	9.											
Con	du	dì	vi-	4	- (al	br	at.	ed	u	ก'ก	g	14	13	us	/cm	n S	td	1.	50/	at	01	1.								
PH-																															
arb	idi	fy	W	et.	er	#	20		sta	1-	6.	03	•	ro	ام	-6	.10)	10	f-	91	01:	7	بح.	×ρ	_	10	/3/	2	/	
		J				ļ			L.						J										1						
						T,	cij	I	Bla	nte	5 -	ما_)at	4	- 1	ucl	Fil	at	Lon		عود	te	n								
Sam	ple						A	al	Vsi	5		Pr.	254	rv	af	ive			Cor	ta	in	er		1	-07	4	-0		-al	<u>/</u>	
2110	6	0.	13	ρĄ		L				N				ice				(1)	IL	An	npe		ھـ	10-3	50	16	CQ —	3	-al RI	-	_
5		ļ ,		71		\	1		7	\			1		,	1			,				ļ	1				7			
Para		T	!	_	1					, c)					 	m,			1	OR			_				$\pi \dot{\mathcal{C}}$		D	W	(f_{ij})
1) 21	10	06	t	l	1 .	r	_	1.	-				01	1	1			2		13			81			35		1	73.	- 1	
3) -			-		3A	1	1	١.	-	3			0	D		6	. (:	2_		44	1	1	ы	1), 6	22		, ,	113	- 1	
<u> </u>			- 7	35	6f	 	6	1.	98	}			.0	00)	6	0.	1	11	14		6.	83		٥,	19			t13	. 8	0
														1		\															_
											,	<u>S</u>	tm	P	es		,													•	
San									1	na	/y:	15		4	PSe	CY	ati	ve_		C	nto	un	er		L	ot			La	<u>d</u>	
2110								/oA	b	n 8	ટેલ	5 L	L		ic	e/	HC	1		3/2	10m	1	Vi	9 5		25	83		A	25	
		- 1	40	16	1					(PB					1	ı					u_				प्र			4		
_		1	40	2	A		La	w		ve	<u> </u>	DI	nA			ì	i Ce				lL	Au	hba	er .	01	03.	5	91	\$	2	_
		- 1	40							u	19	B)				ı	۸					u			Ö	00	525	;		4	
											· ·	/														ı					
																	-														
							•				O																1				
Ini	1:4	l	D	TU	J .	1	115	} , q	4	=1	.	_	T.	ta		al	امر	·c	рu	<u>~</u> a	اره		1	5							
						,	11:	2	0	<u>C</u> †		-	10	1 50	H	71	VI.		T	7	(1)		7 .						\dashv		\neg
		-					T -	٠, د	o O	\ 					<u> </u>															+	\dashv
																														+	
																														+	\dashv
																								Con	tinu	ed fra	om pa	age			\dashv
		L		<u> </u>	<u> </u>	L	<u> </u>	<u> </u>		<u> </u>					1				ereto							ou iii	Þ	.90			

Date:									P	age	of	1
Sample Location: 17-1-424				A	nalytic	al Requ	iiremen	t				
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0928	LL NOMA						Cha	arge Nu	mber
2110060730A (TB)	1	A		~						X	GM	D
	3	A	~								u	
- 1401A (FB)	3	A	~								и	·
1402A		A		V			_				u	
1403A (FB)	1	A					-				u	
											•••	
Sample Location: Pertinent Notes (if any)		I		A	malytic	al Requ	uiremer	nt 				
Sample Number	# of Containers	Sample Matrix*								Ch	arge Ni	ımber
Relinquished by:	/ Tim					coertic	d hv			Date	/ Time	
Relinquished by: Date Trang M Jermo 10 6 21	/ Tim		rs.	0	ru (1	ccepte	d by:	d	10-	1-1		: 0920

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Signed

\0]1\]2\

Read and Understood By

Signed

0-25-21

Continued from page

Date: \0 2\ 2\							·			Page of
Sample Location: $5p.2.447$				A	Analytic	al Req	uiremei	nt		
Pertinent Notes (if any)			CC	(-						
	ners	trix*	भा ०७१८	L NOWA						
	# of Containers	Sample Matrix*	F	NA A						
Sample Number	Jo #	Sam								Charge Number
2110210730C (TB)	3	A	X							XGMD
0731C (TB)	1			X						
0935(3		\times					<u> </u>		
0936C (FB)	3		X							·
09371	1			X						
0938C (FB)	1	1		*						1
Sample Location: Pertinent Notes (if any)	1			A	\nalytic	al Requ	uiremer	nt		
retinent rvoies (if any)										
·	iners	atrix*								
	# of Containers	Sample Matrix*								
Sample Number	Jo#	Sam								Charge Number
					_					
									*	
Dollar michael I	/ Tr:					1	N 1			7
Relinquished by: Date	/ Time			16	Du A	ccepte	d by:	, l	10-	Date / Time: 26-21 0900
1012121	·ω ·	1113		+	<u>vu (</u>	/ \	Jun		10-4	
				1			/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32 # 123 (A)
Continued from page

unch 10-12-21

Continued from page	
Bob Tufts & Craig Del Ferraro present. Weather is clear & cool. This well	
purged using a dedicated bladder pump. Samples will be collected	will be
tefon discharge hose. Water quality parameters will be monitore	using o
a QED MP-20 flow call I I I far ameters will be monitore	dusin
a RED MP-20 flow cell and water analyzer. Carboy Bl in use.	
Calibrations	
DO	
DO-calibrated in saturated @ 641 mm/Hg. Conductivity - calibrated using Oaklon buffers (7-10). 1413 us/cm PH-calibrated using Oaklon buffers (7-10). 1413 us/cm	
Conductivity - calibrated asing Dalston buffers (7-10). 1413 uslow	std solu
Turbidity meter #20 sta-6.03 rdg-6.10 lot-91017 Exp-10/3	1
Trip Blanks - Water Paritisation System	
Sample Analysis Preservative Container Lot	1111
	1 ab
07514	ALS
10 10 LOW LEVEL NOMA 10e (1) 11 Amber 00081383	SRI
Parameters (time) temp (i) cond (ms/cm) DO ORP PH TILLATIS)	100
1) 211007 09504 2007	DTWGFF.
20574	
8.01 6 (6.35 0.74	
3) - 0956A 21.12 1.006 6.53 66 6.58 0.67	
S I Samples	
Jample Analysis Preservative Container 1st	Lab
	ALS
1001A (FB)	
1000A 101 1000A	CPT
1003A a (FR)	SRI
	<u> </u>
* Packer pressure reading at time of arrival	
in the state of arrival was p	
I I I I I I I I I I I I I I I I I I I	2d
rapidly within 10+15 minutes until bottoming out at 0 ago	wn.
Crew will continue to inflate the packer throughout the	
sampling event facter pressure was kept study between	40 and
28 psi throughout entire sampling event.	
Initial DTW - 14.01ft (transducer reading). Total gallonscopingles impage	- 2
Read and Understood By	

	Date: 10/7/21									P	ageo	f
ļ	Sample Location: $\mathcal{J}P-3-689$				A	nalytic	al Requ	iremen	t			
	Pertinent Notes (if any)			7	HU							
		ers	ix*	7	-L NOMA							
		# of Containers	Sample Matrix*	8260	3							
		of Cc	ample	87	77							
	Sample Number	l									Charge N	
	2110070750A (TB)	3	A	V	_						XGMi)
	0751A (TB)		A		V						u_	
	1000A	3	A								<u>u</u>	
_	1001 A (FB)	3	A	~						_	u	
	1002 A		A		V						ч	
	1003A (FB)		A								u	
	Sample Location:		T	ļ.,	A	nalytic	al Requ	iremer	ıt			
	Pertinent Notes (if any)											!
		ers	rix*					·				
		# of Containers	Sample Matrix*									
		of Cc	ample				,					
	Sample Number	#	N N								Charge N	umber
	Relinquished by: Date Plana Del Jeno 10 721	e / Tim 11	e: 20h	5	1	on 1	Accepte	1	-d	10	Date / Time - 2 - 21 /	n900
	Many person 10/1/21		20K	J, J,	+	yw I	V \	1		10	 	V -
					10			- /				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

18 Oct 200

Signed hunde

10-19-21

	Date: 10/18/2021										Page	t _{of}	T
	Sample Location: PFE-1				1	Analyti	cal Rec	uireme	nt				
	Pertinent Notes (if any)				7/		Z		#		1		
		ırs	*×	67	Son Son	25	N		M ²				
		# of Containers	Sample Matrix*	1A - A	32	1/2	Sroint	N	4				
	•	f Cor	nple	0	30	for	4	1	t		V	me	\
	Sample Number	#	San	<u> </u>	580			1				e Number	
	2110180907	3	A	X							, ,		
	0908 (Dup)	3	A	Х							, ,		
	0909 (FB)	3	A	Х							, ,		
\setminus	0911	1	A		Χ						l,		
1	0912	2	A			χ					/ 1		
	0913	2	A				X				1.1		
	0914)	A					X			1 \		
	Sample Location:				A	nalytic	al Regi	uiremen	nt				
-	Pertinent Notes (if any)			6			-				!		
		şo	*.)(e-t	3								
		tainer	fatrix	ગુમૃ	3	į							
		# of Containers	Sample Matrix*	Perchlotere	Noc/2005						V /	SMD)
	Sample Number	# 0	San		~							Number	
+	21/0180915	1	A	X							1		
1	0916	1	A		X				-		, ,		
		-											_
											·		\dashv
F	Relinquished by: Date		:			A	depted	by:			Date / Ti	me:	\dashv
4	2/18/2 MM 10/18/2	7//	100	5)	$\bot \lor 0$	u	XI	\u-	.du	10-1		10900	,
											i	-	\neg
					10			,					

* Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

WSTF 381C (05/2016)

Notebook No. PFS #/Q
Continued from page N/A ROJECT PFE-Z Fink orlegs Tinnoupres 527, 5a Be willb G-Plinelient mater used for field blanks Buffes 2110180935 10000 4000 206 9.30 NTU 0.34 NTV LOT# Phpost - 7.02/00(23.52) " Exp 1/3/21 ec ; Hel (3) Honey of Numa 10000/8000000 1/E 020010165001 (1) 1+0- 1001 Continued from page \(\sqrt{/} \) Read and Understood By

Signe

Dàte

Dru Wy um on

10-19-21

	Date: $\frac{10-18-7}{FE-7}$										Page	of	1
	Sample Location: \FE-Z				A	nalytic	al Req	uireme	nt				
	Pertinent Notes (if any)			~	31						1		
		Jr.s	*x	20	1271				i				
		# of Containers	Sample Matrix*	\Z	4-3								
		of Cor	mple	70	0 3						X	SMX	D
	Sample Number	#	Sai		500						Charg	e Numbe	er
	7/10/80941	3	A	X							11		
	~ - 0942(PB)	3	A	X	*						L _X		
	0943				X						/ (
												,	
									0.00	<u> </u>			
	Sample Location:				A	nalytic	al Regi	uiremer	nt	1			
-	Pertinent Notes (if any)												
		so	*.								!		
i		ainer	fatrix										
		# of Containers	Sample Matrix*										
ŀ	Sample Number	# of	Sam								Charg	e Numbe	r
											.		
Ī													
				-									
-													
-	Relinquished by: Date	/ Time	<u> </u> :			A	cepte	i by:			Date / T	me:	
	Relinquished by: Date	1(1	919	5)	K		XX	hu	d	0-1	9-21	10900	0
				1	11		· V				- 1 - 1		
ľ					10								
Ĺ					1								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. PFTS FT/0015 varit of system. The sample part will be collected in the REE-year minute prior to Role rejets and samples collection.

References Continued from page M/A. PROJECT PFE-4A 400091 2110200822 10 40015 23,20 9.30NO G 9.28NTV 1093 us/cm 1.37 WY 4017 7.00-10.00 (17.9 c) EXP Phrost 7.00-10.00 Sompres Analysis Sen 118# 100 = Hel NONALDANIBro byco7 1CE 21/0200827 02004016 SWRI () 1 tanko 0828 NIA Continued from page Read and Understood By 15-05-08

	Date: 10-20-21									P	age of
ľ	Date: 10-20-21 Sample Location: PFT-4A				A	nalytica	al Requ	iremen	t		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UOA 8260	LL-VOA 8260LL	NOMA/DUNY/607	low level	Torn WETRIS	ANIONS/ALL	105 SNISHOR	XGMD Charge Number
	211020 0827	3	A	X							ι ~
	0828(FB)	3	A	X		·					٠.
	0829	1	À			X					
	Sample Location:	·				Analytic	cal Requ	uireme	nt	T	
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	PERCHIARATE	NO2/NO3 353.2						XGMD
	Sample Number	#	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2						Charge Number
			-								
									<u> </u>		
									 		
		e / Tim		1	-H	7 1	Accepte		0	١٥	Date / Time:
	St Dl 10-10.	71(100	20)	+	on 1	<u> </u>	Jun	<u>h</u>	10	-21-21/0900
		,				· · · · · · · · · · · · · · · · · · ·				+	
									.,		

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

6 ROJECT RFE-5	10-20-21	Notebook No. PFT5#/@ Continued from page N/A.
Parene 16 Sylvano 20075	present. Semple Stem, The semple He prior to pareme used for field METERID Rules	port will be pulse ters and sompres collect blanks
21/0200804	50 15.6.0) ED 1820 Scarples 10 1 515 Presente 10 A by 8760 1 CE 5 NC 25	07# CAB CONIT 596 ALS (3) 40m VVIOI 11 0040165WN (1) (4 am ber
7806		
		Continued from page N/M
X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Read and Unio	Signed Date

Date: 10-20-2									I	Page of
Sample Location: PFE-5				A	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UOA 9260	LL-VOA 8260LL	NOMA/DUM/ 607 BROMACIL 607	loui Leviel Noma	Tom WETRIS	ALLIANS/ALL	105 Suzabe	XGMD Charge Number
2110200804	3	A	×							• (
0805(FB)	3	A	X							• •
0805(48)	1	A			X					٤.
Sample Location: Pertinent Notes (if any)	T .	T			· · · · · ·	al Requ	uireme	nt	T	
r Criment rotes (ir any)	ners	ıtrix*	24 20 20 20 20 20 20 20 20 20 20 20 20 20	3 353.2						
	# of Containers	Sample Ma	ERCHIOR	JO2/NO						XCMD Charge Number
Sample Number	# of Contai	Sample Matrix*	PERCHURATE	NO2/NO3						XGMD Charge Number
Sample Number	# of Contai	Sample Ma	PERCHUA	N02/N0						
Sample Number	# of Contai	Sample Ma	Perchian	N02/N0						
Sample Number	# of Contai	Sample Ma	Perchiag	N02/N0						
Sample Number	# of Contai	Sample Ma	PERCHIPA	NO2/100						
Sample Number	# of Contai	Sample Ma	Verching	N02/N0						
Sample Number	# of Contai	Sample Ma	VERCHIAR	0N/20N						
	##	e:) (Accepte	1	-d	10	

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

PFT5#1017 Notebook No. __ PROJECT PFE-San Bullers 40029 400115 9.30 NO 9.36 NO 32 NTV 7.00-10.00 (14.7; 5 Exp SEMD10 LOT# CONT AB Somplett (3) 40 mlura 145 VOA 6 18760 10E/HC1 4/0200907 0908 02004016 5NP1 (1) (+ - 1) Lee 114 MOMALDMN/BIOLYGO? 1 11 09/1 0912 Continued from page Read and Understood By 20 Oct 2021

	Date: 10-20-21									F	Pageof
ŀ	Date: 10-20-21 Sample Location: PFE-7				Α	nalytic	al Requ	iremen	t		
	Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	UOA 8260	LL-10A 8260LL	NOMA/DMN/b07	LOUÌ LEVEL Noma	Tom WETRIS	ALLIANS/ALL	105 SNOSHOC	XGMD Charge Number
_	2110200907	3	A	X							7 '
-		3	A	X							٤.
	0909	l	A			X				·	′,
	0909	1	A		X						, ,
_	0911(Dup)	١	A		X			·			′ 1
	0712 (FB)	1	A		X						/ ,
	Sample Location:				A	Analytic	al Requ	uiremer	nt		
	Pertinent Notes (if any)			م ا	353.1						· .
	Sample Number	# of Containers	Sample Matrix*	PERCHIMENTE	NO2/NO3 36						XCMD Charge Number
	Relinquished by: Date	7/C		(6	V	m	Accepte	d by:	L	10-	Date / Time:
	,	-			\0						
		,									

^{*} Sample Matrix Types: G - Gaseous; A - Aqueous; S - Solid; O - Other:

	Date: 10/14/21									I	Page	of _	1_
	Sample Location: PL-1-486				A	nalytic	al Requ	iremer	ıt				
Ī	Pertinent Notes (if any)				HI								
		S.	*	7	NDM								
		# of Containers	Sample Matrix*	9	3								
	·	f Cor	nple	82	7								
ļ	Sample Number	o#	Sai		7						Cha	rge Nun	nber
\neg	-2110140805C (TB)	3	A	~					_		X	SMI)
\sim	- 0806C (TB)		A		V							и	
	1425C	Ŋ	Ð	W								и	
	1426C (Dual)	3	A									t.	
7	1427C (FB)	3	A									u	
\neg	1428C	1	A		~	-						и	
_		1	A		V							u	
	Sample Location:	P			A	nalytic	al Requ	uiremei	nt	-			
	Pertinent Notes (if any)												
		50	*.										
		ainer	fatrix										
		# of Containers	Sample Matrix*										
	Sample Number	Jo#	Sam								Cha	rge Nur	nber
					***							<u> </u>	
		_										_	
,						_							
								-				<u>-</u>	
	Relinquished by: Date	/ Time) :		7	\ IA	Acepte	d by:	A		Date	/ Time:	
	A 117 - 11			shrs		ent	V	lum	-d	10-	16-21		900
				- 11 -		<u> </u>				•	·	/	
					1			,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D64#128(y) 47 PROJECT PL-6-545 WJI ENV-00a0 Continued from page Bob Tufts & Craig Del Ferraro present Weather is clear & cool. This zone will be sampled using 5 triple rinsed, stainless steel sample tubes. Then in use. Probe # 2213. Surface checks performed on probe prior to sampling. 30 Min Escipment Blanks + Carboy GI Analysis Presentative Sample Container 2/10/3 09004 VOA by 8760 LL ice/HC4 (3)40m/via/s (3)40mlvials 2596 (1)12 Amber 0400081383 Low Level NOMA -09014 ice Initial Parameters Meter ID Time - 21101309404 -ime-21101310404 pH/cond-60 - 8,35 - 8.50 Turb Temp - 218 C - 217 c - 1026 us/cm - 1031 us/cm -ond rda + 2.88 + 2.40 NTU 5 Turb - 1.93 NTUS 10+ - 91017 Hport 7.13/10.19 (13.3.d) ptport - 7.07/10.14 E-10-10/3/1 21 DTW-N/A-probe sticks to casing. Buffers Atmos - 12.54 psia 7 4007947 12/21 Atmos - 12.51 psia

IDW - 1/2 gals. 4101 E 56 Samples Sample Container Lot 21101310154 VOA by 8260 LL (3)40 mlvials 2596 ice/HCL ALS Law Level NDMA -1016Y (1) 11 Amber 000 81383 ice 3)49.42 Runs 1) 49.49 49 46 56.26 56.24 56.26 49 47 49 48 49 43

Read and Understood By

Charg Del Ferrico

10/13/21

Jon W umch 10-14-21

Continued from page

Date: 0 13 2				_ _				MECO.	
Sample Location: PL-6-545					Analytica	l Dogwi			Page of
Pertinent Notes (if any)	,	T	7	0	Inalytica		rement	Т-	-
	, s	*	7	ž					
	# of Containers	Sample Matrix*	0,0	16 No m.		. •			
	f Con	nple l	8261	ļ					
Sample Number	*	Sar		7					Charge Number
2110130900y (EB)	3	A	~						XGMD
090/y (EB)	1	A		~					4
1015y	3	A	~						и
1016y		A		سسا					4
Sample Location:				A	nalytical	Require	ement		
Pertinent Notes (if any)									
	ers	*xi							
	# of Containers	Sample Matrix*							
	of Cc	ample							
Sample Number	#	Š							Charge Number
				_		_			
				_					
	-			-					
	-			_	-				
<u> </u>				_		_	_		
Relinquished by: Date	/ Time:			A	1 41				
traig Del Terro 10/13/21		ohrs	_	10	11/	pted by	-dr	10-11	Date / Time:
1 10110	118	o nr	2	Jor		Im	-vn	יו־ען	1-21 / 0900
				10					
				<u> </u>					1

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF 381C (05/2016)

OJEC	т_Р	<u>L</u> -	6.	-7.	25	5	W	<u>J</u>	τ_	ξN	V -	0	රද	0	-				Not Cont	ebo inue	ook d fro	No. m pa	. D	64	£ #	12	86	\(\hat{\gamma}\)	•	
ь Т	uSt	S								0							er							dy			m]
indy	7	his	7	on	e.	wi	U	be		σν	امم	ed	L	151	nc	_5	S	te	am	·c	lea	ne	d	Ę	fr.	ìρ	le	ri	n Se	d
tain	less.	5-	ee	(5	an	hal	e -	tul	es	. 4	ien.	in	u	se.	P	01	se ;	42	2/	3 .	5	u f	fai	e c	cho	ech	5	per	Foo	more
Pro	obe	٩٢	ior		0 5	5àu	م ۸	lin	9.								-					-					1			
	1				1	ت				c s								'nn	<u> </u>	· y .	te	m			-,			•		
amp	le_							aly				Pr	es	er	rat	ìve	-	. (<u>u'n</u>		-		5	-		6	b	
1101:	20	80	b y	!	V	OA	٩	4	B21	60	LL		ic	e	H	CL		(3)4	mc	L	ial	5	2	58	3	.0	AL	S	
	-0	80	ly		L	οw	Le	ve	(N)Dn	1A			ì	e			Cı) [[4	mi		 	010		Oth	€0 5- 3	Sk	27	_
					7	30	1	۸i,	۸.	Εq	u) i	2 m.	est.	R	410	Ls		0	rb	λU	િ	1				-				\dashv
amp	le							na		, t	/	F	re.	ser	va	iv	e.		C	,4	air	Ì				+		7	ab	
11015	2 10	05	Y		,	V 01				60	4	_	i	Le	l H	CL		1	3)				7.0			_	co		ति	
		06	I €		1	ou				NI					e			$-\ell$	(1) [7	A,	no e	1	010	3.00	501	64 83	Ž	RI	
pine	0 1	200	2	a D	200	•							7	in	0	P	·ca		1						. 1			-+-	+	\dashv
ime-		10											7				21	7 W	12	<u> </u>	10			_	le:				-	
4	- 7	8			1	7							1	14 14	ne		21 7			11	1%	7		Ш	4/0		u		00	\exists
mp -	- a	b :		c									-	em	0		at			-				9		t d		- 2	9-	7
ond		οı		15	Cw								_	00	I.L.	_	1 1		2 (- 1	Can			u		da	1		.90	7
wb		.7												ur		_			אל	1	וי			ن	1	2	i I		017	
ore		1.0	9/	10	.0	5 (2	1.8	3 °C				\$	Ha	re	_			/11			22	id			-	0 —		31/5	21
lpos	<u> </u>	7.1	0 /	15	٠. ٥	>4							(Ha	1	-			//	i]									
TW	-1	N/A	- p	rob	es	stic	ites	+	C	sii	19.		4	Di	U	_	N	lA					Bu	J.F.	<u>. C</u>		0		٤,	X
tmos	-	13	.4	Hρ	sìa								1	Hn	105	-	13	١.4	2 p	sid	i			7	4	400	79	47	/2	141
												-		ED!	W	_	-1/2	g	વી.					ID	4	10	IE	56	_7)	22
												<	Sa	mE	10	5						-		-		-			\dashv	
)amo	le							An	a v	1515	;	_	P	es	en	sar	ìv	e			71/5	lai	nes	1	L	6	-		La	$\boldsymbol{\lambda}$
1101:	_ -	10	Y			V	οA			82		LL	_	i	ce	ĮΉ	CL	_			40			1. 1	<u>.</u>		583		A	己
	+11	11	Ý							N						æ				Ĵ	IL	An	mÐ	er	40		50 813	Q	_\$	RE
														-																1
uns	1	1:	רג	. B	7		3)	12	7	79	1										-									1
]	34	.4:			~}	-	4.	43	3							-											1	
				.4					4	44																			1	

Jag III Ferra

10/12/21

Read and Understood By

Signed

10-13-21

Continued from page

Date: 10 12 21									P	age of
Sample Location: PL-6-725				A	nalytica	al Requ	iiremen	t		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0928	LL NOMA						Charge Number
2110120800y (TB)	3	A								XGMO
0801y (TB)	Ī	A								()
100 SY (EB)	3	A	~							ن. د
1006y (EB)	ı	À		سا						(1
11104	3	A	~							ч
	1	A		-	-					<u> </u>
Sample Location:	т —			Α	nalytic	al Requ	uiremen	ıt		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*								Charge Number
Relinguished by Data	/ Tim	9.			17	ccepte	d by:			Date / Time:
Relinquished by: Date Cracy M. Termo 10/12/21		301	îvs.		u (1	uch	0-	13.21 /0930
				10			/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. DC4 129(y) PROJECT PL. 10-484 ENV-0020 Continued from page Dan Howerson & Robert Burrows present. Weather: s portly Chardy an Zone will be sampled using 2 triple rinsed (Stainless Steel Sample Bottles Surface Creck Renformed on Probe 4951 prior to sampline, Germanon in 110 prior to sampling, Germanon in use. equipment 5 lanks (carbon Preserve EDAL 1006 081 7 8240 ((2596 IGINU (3) 400 ml vie 915 amaus DIL ANDE 103201 262 In Lial Peranely Final Perennelis rime = 21100609054 PH COLD = 60 2110061045y \$ 8.80 8.78 TUB = 6 TENP = 18.4°C 18.490 510 = 29° Como = 1107 usica 1109 RDG = 3.11 TUTB = 2. LO WHIS et , 8101) 2.27 PUPER = 7.06-10.09 (13.20) 7.01-10.02 (17.9%) E40 = 1012) P4805 = 7.05-10.07 7.00-10.02 BACKLE 92 NY1005 = 12.59 05 9 12.58 4007947 2121 01W . 4101E56 10 SAMPKS JUMP K Container AB Presun 4.1 211005 0934 NO-104 00 ES PO ET 945 Ice 144 2596 8935 y Brown sil by bo DIL UMBER 103501 25 Nona LL 3 7 10404 SIM 1250 N Ambr 500c _ eurs-1) 24 38 4) 241.35 2)24.38 3)2435 21.96 2).96 21.96 21.96 21,96 21.96 21.96 21.96 24.38 24.38 24.35 24.36 Continued from page

Signed

10-6-30つ) Date Signed www.

Read and Understood By

10-1-21 Date

Date: 10-6-202)]	Page	of <u>/</u>
Sample Location: PL-10- 484				A	nalytic	al Req	uiremen	t			
Pertinent Notes (if any)											
, Sample Number	# of Containers	Sample Matrix*	807	Lon	NOWA LL	M15 - 2015					Number
21100L08114 CB	3	7	8								
-0812y <0	/	1			Y						
09344	3		X	F							
09354)			X	*						
10404 — 10164	1					7					
- 1016Y	L	A			X						
Sample Location:				A	nalytic	al Requ	uiremen	t		•	
Pertinent Notes (if any)											
Samula N. J.	# of Containers	Sample Matrix*									
Sample Number	1									Charge	Number
										-	
Relinquished by: Date	/ Time	: :			A	qcep#&	l by:			Date / Ti	me:
10-6-202)		1/25		1	ru\	\ <u> </u>	lu-	d	10-	1-21	10920

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

70 W

100

A25

SRIC

(3)410 m) U: 2)

WILL Amber

401

2596

103501

Bromacil by

MAMOUR

4 Robert Brown present Weather 15 Clear and warm. This

Sampled using 2 Imply mosel stainless steel sampling tubes. Surface

ucks precomed on Probe & 216) prior to Sampling. Generalor: in use

eausoment blooks (carbo

Preserve

Ige / Hc/

001/1250

1251

:n: tial Parameters

5ما .7

= 21/3 C

0 = 1121 45km

0 = 1.73 Aus

4POST - 7.03- 10.04

J-105 = 12.58 P5.A

SISMO!

1100614204

1421

1422

14/504

Zuns - 1271.21

68.98

68.87 71.21

Fine) Parameters ar ID 3 211006/351 y 21100614574 PHICOND = 60 3.58 TURB = STD = 2.97 ₽).|3 206 = 3.11 1125 L 5T = 91017 0.44 HPre = 7.04-10.05 (28.7°C) E 10 = 10 |21 703-10.02 7.01 - 1 8.02 Bullion Lat e e 12.57 4007947 12/21 4/0/€56 7/22 SAMPLES LAB Breh3: 3 Container Presecus -1) 00 0 50 60 LL Noma 10 MN Broma (i) by 60) I ce / 1701 2/p: 1 /m of(E) ZJA U) IL Amber z ce 5 R.L NOW & LL 5005- 51M 2) 7). 19 3) 71,16 68.98 68.98 68.97 18.98 71.19 71.16 Continued from page Read and Understood By 10-6-2021

Date: (0 - (_								Page _ l _ of _	
Sample Locat	ion:PL- 10-	592				A	nalytic	al Req	uiremer	ıt			
Per	tinent Notes (if	any)											
	Sample Numbe		# of Containers	Sample Matrix*	00%	८०१	TOWN TT	5008-51M				XGMD Charge Numbe	
2110061	2501,	EB	3		Ø								
1	•	GB	}			9							
	1321 321	GB	1				4						
	420		3		9		,						
	1421.		1			A							
	1422 0)				4						
1.	450 y		1					9					
Sample Locat	r	, "				A	nalytic	al Regu	iremen	t			
Per	inent Notes (if	any)		Г	·		1			-			
	Sample Number		/# of Containers	Sample Matrix*								Charge Numbe	
												Charge Tvumbe	
			-										
Relinqu	ished by:	Date .	/ Time	<u> </u>			A	ccepte	l by:			Date / Time:	
N		10-6-302)		25	5	10	r V	<u></u>	hu-	l	10-r	1-21/092	v

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. <u>032</u> # 122 (B) PROJECT_\$T.7.453 MIT ENV. DOTO Continued from page Wenther Is clear & god This zone Sem Purse pressure se @ 178 psia & sample At least 4 min Travery Curbay C. 5 Borgmore, 5 PH · 8.30 864 # (4) Temp - 24.9. #21 J- 1273 mm 1258 uscan W. W WEL ate 0.54 m Tury- 0.39mg 10.7 NTC ROG 107 RIGHT Cxp 10/31/21 larganete is Fina Time - 211004 +3783 1410B 2110041540B 7.\$3 7.20 25 3. (Leuro -1247 us/cm 1272 vs/cm V. 68 NTU 0.77 WY 14 pre- 6 95/9 94(32c.1) 7.02/9.98 (33.71) H post 7.04/9.99 6.94/ 10.01 Tow . 4. 5 gal Samples Sample # Analysis Condina 96 4 8260 LL 71/004/14/23 3)40 ml vigls Ms 141613 = (FB) 141713 607/Brouncil 01035016 SRI 1450 B Low Love NAMA 1421B (F3) 5UDA 67 8270D 1515 3 (2)123213 Total Melals HN03/Ic (2) 125 m/ poly Continued from page Read and Understood By

Junch 10-6-21

Date: $10/4/21$									F	Page of
Sample Location: 51.7.453				F	nalytic	al Requ	iremen	ıt		
Pertinent Notes (if any)	# of Containers	Sample Matrix*	8260 11	607/Bro	Tr NAWX	OLTS HONS	T. Metals			
Sample Number] #	Sa			<u> </u>					Charge Number
2/1064/41513	3	A	X							Xano
1416B (FB)	3		X							
1417B	1			X						
1450B	1			<u> </u>	X					
1451B (FB)	1				×					
1515B	2					<u>X</u>				
535 B	2	1					X			1
Sample Location:				1	Analytic	cal Req	uiremer	nt		
Pertinent Notes (if any)							-			
	# of Containers	Sample Matrix*								
Sample Number	1 4-	02								Charge Number
	1									
,		<u>.</u>								
			ļ	 -	-					
						_		-		
Relinquished by: Dat	e / Tim	e:		 		Agcepte	d by:			Date / Time:
10/4/21	و/ر	31		4	out		1	-d	10-	5-21 /0900
)		 			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT ST. 7. 544 M2I ENN.0050 Continued from page empled using a Fluke system. Purge pressure set @ 128 poi & sample en @ 107 ps. . It least 4 gallons will be purged prior to sampling or stabulization 15 min secones | between purges Bubbles set @ 3 ps. psi. Carboy 6.5 Parambers 7.80 I Q LE Temp - 23.6 (23.4. (#21 S-125045/an 1235 45/cm 11.61 NO Toto 0.58 mm 0.83 NAV - 10.7 NO BOC 41017 Lot exp - 10/31/21 Parameter Final 21004142513 211004162013 PH 1.51 22 2. 12, C-C 12241 us/cm 1261 NS/cm Turb U.54NTU Mu 30. PH pre 7.05/9.48 (32.2) 7.04/10.03 (33.9.4) 7.04/10.01 PHPOST 7.02/10.01 4.5 941 IOW-Samples Sample # Preserve Analysis ab 21/06414303 (3)40 ml vials Hdy /Is 11 0258 rd AOL 27195 14313 = (FB) 607/Brougeil 1482 B T (1) / (1) 01035016 50 I 1500 B Low level NOMA 152017 (Dub) 150113 (F13) 1545B 500A by 82700 (2) 14 Amber 60081383 Total Melals HNO3/Ic 1603 (2) 125 ml poly 21012 = (Dug) 161113 Continued from page

Read and Understood By

Date: 10/4/21										Page of(
Sample Location: 57.7.544				F	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8760 LL	607/Bro	IL NOWA	SVOR 8070				Charge Number
2110041430B	3	A	X							XGMD
1431 B	3		X							1 XGMB
1432B	1			4						
150613	1				\times					
1501B (FB)	1				X					
1520B (Qe)	١				メ					
1545B	5	1				>				1
Sample Location:				A	nalytic	al Requ	ireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	T. Matals							
2/1004/61013	2		\prec				-			Charge Number
1611B (Dup)	5	A	<u> </u>							Xamb
(100ρ)										7
		-								
Relinquished by: Date	/ Time			To the second	n	ccepted	l by:	d	10-	Date / Time: 6-21 /0900
				10						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 90-6-21	·]	Page of
Sample Location: St. 7-779				A	Analytic	al Req	uiremen	t ·		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8260L	607	LLNOMA	82700	TOTAL METALS			X6m1 Charge Number
211006 132613	3	A	X							
- 1327B (FB)	3	1	×							
132813	1			×						
14108	1				X					
14113 (FB)	1				κ					
14458	7					7~				
151513	2	1					\sim			
Sample Location:			:	Ā	Analytic	al Req	_l uiremen	t		
Pertinent Notes (if any)										
	of Containers	Sample Matrix*				,				
Sample Number	#	Ss		1						Charge Number
								-		<u> </u>
		-		P				*		
		:								
Relinquished by: Date	/ Time		1	1 /	1 1	acepte	Abv			Date / Time:
10.6.2			15		m	A Copie	1 1	-ch	10-	
-0)		4	1 1 .1 .

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page _____

ROJECI 3 (- 1 - 7 10			Continued from pag	,e	
Marus Avalos & Tony Torr	N Jones 59	reality is cla	ur + cool. This	Zone will he	
purged & sampled using	a Flute, 545	Lem Pure pr	essure 50 + 0 128	ssi & Sample	
pursed & sampled using pressure set @ 207 psi	Parameter	Stabali Zation	or at least	y gallers wil	(hu)
purged prior to sampling	12.50 min	recovery bet	van purges But	bler eet a 3	psid
Stuble @ 7 psi. Carboy	(5 - 5 7 4 4 Pe	FA JA VE punga	LAIL day To Allow	Param's To STAbi	Lize.
***			R SINCE ONIS, WAL		
Pre Sample Parameters/ 1000			Me of I	2	
14- 8.13 /8.56	1 1 1			F Co 1	
Temp - 21.0 /21.9	7217			121	
	1 1 1 1 1 1	04 sten 984 9	728 = 50-	1. G/ NTU	
Turb 1.46 10.7	8 1 0.4	6 10.34 6		0.6	
-2- 1 1			- 701 =		
* Volume punged me TO 1/1	5 But paran's	NOT STABLE	= 6xp - 1	3/3/12/	
Intia Parameter 1340B	Final				
Time - 211000 1325 8"	71/00615	2613			
1 - 8.76	8.70				
Temp - 253's	24.4.c	1			
109-13/	10074	\$62			
Turb - 5.90~72.062 PHyra - 7.01/10-02(37.2)	0.31	84 (34.9)			
2Hpost - 7.04/9.88	6.99 / 9.				
117903 7.97 1.10	IDW.	70			
		mples			
Sample # Anal	42, 2	Preserve	Container	10+	lab
	826011	Halle	(3) 40.ml vials	2745	Als
134213	(FB)			8	
	Bromacil	Te	(1) (Amber	010350164	ISIZ
- 1421B Low L	evel NOMA	"	3		
142213	- (FB)		;	3	,
- 1500B SUDA			(2) -		Als
- 1525B Total		4xoz/za	(2) 125 m/ poly	210121	
PH 8-38 / B	388528.41	 		8.17	
<u> </u>	75 45/cm 07 1 A] 	7'c 23.0'c 2	7.3	
	1.3'c 24.3'c		3 862. 9		
	0.40 2 MET	en 0.3		Cantinued from page	
•	() ETCI FI	Read and	d Understood By	_	

7.

10-6.21

Or Usiomed umch

10-7-21

Date: 10-6-21										Page of	
Sample Location: 57.7.970				1	Analytic	al Req	uiremer	nt			
Pertinent Notes (if any)					2	~	24			1	
	2	*	1109/28	607	anonn	.28	METALS				
	# of Containers	Sample Matrix*	9.	~	3	705	7/7 7/4				
	Con	nple]			4					Y Con A	
Sample Number	# 0	San								Charge Nun	nber
21100C 13268 1341B	3	4	λ								
13428 (F13)	3		X								
+3088 1343B	1			x							
- 491013 1421B	T				x						
14226	1				X						
1445 13 1500 8	7					x					
- 74 1545 1525B		上				-×	- ×	,		<u> </u>	
Sample Location:				<u> </u>	Analytic	al Reg	uiremer	nt		<u> </u>	
Pertinent Notes (if any)							<u> </u>				
	100	*									
	ainer	fatrix									
	# of Containers	Sample Matrix*		:							
Sample Number	Jo#	Sam								Charge Nun	nber
								<u> </u>			
Relinquished by: Date	/ Time):) ₍ A	ccepte	d by:			Date / Time:	-
T. 7 10.6.2	1/1	154	y	K	ru ($\lambda \mathcal{T}$	\m	d	10-	7-21 /09	20
0										· / · · /	
				V	· •)				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. D32#122 (B) 27
Continued from page

	9~	+	4(Vo	250	~	J	70	~4	.7	5/			on	=s	E~	:7:	7	7	F	(1)	20	73	رستر	,	,	-16	4	1 4	Con	 -(
-73	15	2		=	L,	11	5E	رم	ins	مہ	ď	54	n	01.	=1	us	12	ς <i>μ</i>	,	Clu	τŒ	5.	.57.6	Em	. <i>f</i>	41	KĒ.	on	=55ca	4.5	-
5E7	-	7	24	51		٠.	54n	PL	عر ع	nê	550	Re	- @	2	23	. 4	9 n) 1/~	, 6	F	4.	41	100	<u> </u>	Pu	RS	s.l	ON	in	776	
PAI	Ja.	n'	5 5	TA	bie	ļ 	15	<u></u>	~	P4	A	En	n.	FCO	UE.	rej	5€	Tu	160	~	pur	215	ς.	Bu	, .56	16	1	5 [7	ie 3	05/	
+ 5	74	6(e e	5	251	_	م	15	8y	<u>۵-</u>	5																				
			_						,																						
F	41	A	2	P	në																										
14			90					7	90																						
Temp				1				2	ر ه	ع 7																					
Const)		101	\$1-	451	m		10	85	4,	un																				
Tan	6		0	44	ļ 			1	, 1 \$																						
		-	-																												
	_	<u></u>	1	VIT	مر					f,	71	2(n	157	En	Ŧ	Ľ					
_	1	1	>19	10	4	_			7	21μ	519	130	20/5							٠.			,4	/6	~	/ +	م +	1			
f	4	ļ	7.8	, -	1					7.9	D													Ty	16	#	21			_	
/e	mf	,	<u> 21.</u>	2 8					•	72	. 7													u	57] =	1	l. (a	,	\perp	
- 1	,	i i	10						_/	0	00.	45.	cm											1	no	ع دا			_	\downarrow	
1			0.	1 .	1	· .				٧.٧		,							_					l	160	TA	= 7	91	017		
			7.0					3			-	l	l .		(2:	5.9)	-							"E	م	=	10.	3/1	21	
P	PC	55	7.	>3/	9.9	8.				ン.	oZ	//	<i>ع</i> ٠٠	3															\rightarrow	_	
	<u> </u>	-	-						5	40	Pl	Es																	\dashv	\perp	
	-	1	#				45						Pa							TI				<u> </u>					4	<u>'</u>	_
211	0/		1				1 1	1					lű	=16	لوا				27	_			(3)	14/0	u/u	als.			41	5	
			94	B			CF	3)						u						U									11	\dashv	
1		1	04	l		(ec	7							الم				0	,	1	<u>551</u>	હ	(1)	- 1		50	4	-	51	<u> </u> =	
			310	1 .	(: L r	VO	ma						1/					- 4	11					1)				11	\dashv	_
-			1/1				(P	-	•					"						11					!				17		
		1	315	-			AO							11	,				i	1/1	1		7		4				41	<u>'</u>	
-		1	350	l			TA	1	1 E 7	A	7		le	Æ/H	12	43			1	71 c	2/2		13) /	254	10	4	-	_/	+	\dashv
			351			N	/ ح	~{a,		_		<i>t.</i>	le	Σ/	Æ:	۲۵۱			4	67	Z	~/4	(۱)	125	OM	Ιρι	7		- U		_
		1	357	נו							4	/j						-+	-										_	+	=
		-	-							-									\dashv										+	+	-
			 														-	_	\dashv				-							+	\dashv
		-																-										\rightarrow	+	+	-
	<u> </u>											-				_	_												_	\perp	
	-		 														\dashv		-					Con	tinuc	d fro	m pa	ne		L	
	<u></u>	1	1				Ll																1	CON	unue	u irc	an pa	ye ——			

10:15-21

Read and Understood By

Date: 10-19-71										Page of
Sample Location: Ww. 5. 459				1	Analyti	cal Req	uireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	110928	607	((NOm))	8776	TOTALMETALS			X6m1
211019 104613	3	A	と							Charge Ivamoer
1047B (FB)	3		\sim							
104813	l			×						
131013	/				×					
- 1311B (FB)	1				λ	×				
1315B	2					x	发			
13508	2						∞			
Sample Location:				A	Analytic	cal Req	uiremei	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	Total Justing							Charge Number
135113 (00)	2	4	X							
					\					
Relinquished by: Date	71/	: //3 3	70		Ma A	ccepto		-d	10-8	Date / Time: 20 - 21 / 0930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

unch 10-20-21

	Date: 10-19-21										Page of
	Sample Location: WW. 5-57	5	_			Analyti	cal Req	uiremer	nt		
	Pertinent Notes (if any)					_	()	F.			
		ers	*xi	228	60	2	00	METALS			
		# of Containers	Matr	o C	Š	5	4	74/			
		of Cc	ample			2		5			X6mD
	Sample Number			T .	1						Charge Number
	211019 11018	3	A	\mathcal{X}							
	1102 B (FB)	3		b							
	1107B)			x						
\forall	-1325B	1				X					
\downarrow	- 1326B (FB)	_ /				x					
7	132773	7					×				
\setminus	1410/3	7	1					$ \mathcal{X} $			
	Sample Location:				I	Analytic	al Req	uiremen	ıt		
	Pertinent Notes (if any)			1							
		g	κ*	metals							
		taine	Matri	7 7							
		# of Containers	Sample Matrix*	13							
Ĺ	Sample Number	[o #	San								Charge Number
	- 1411B (Dup)	2	A	χ							
			,,	-							
ľ											
l											
f							-				
-											
-	Relinquished by: Date	/ Time	l :	<u> </u>		\ \	dcepte	nd by:			Date / Time;
	T-) 10-18-2	413	30			(Ora)	1		-di	10-	20-21 /0930
	78				/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>√ </u>	1		- ` -	
ľ						/ 		-}			
L											

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

_____ Continued from page

		1	T .	_	т	Г.						г					_				1						····				
\overline{c}	~~	17	~~	25	0	4	10	m.	10	رمز	~_	Pr	وج	en?	k	W-	للم	wr	د، َ		ابعد	~ (~~	١. ٩	-02	١	Th	: 3	7	20,	
w	:11	B	•	Pur	ربو	ام	~	3	0 14	کلو	d 1	12	~	۹	¢	14	7-2	Sy	ste	N.	Pen	بلأم	ρ	حو	<u>ssu</u>	ہو	54	} a	4	224) 62.
																			S P :												
			1 '	1	l .	1	1	1	ł			!	1	1	١.	1			م ا				ļ				_	!			、 1 1
		1		bet	1	1	1	1	ļ	1 1		١.	3	1	1	1	٠,	3 -0								3					
1.5			3				25.	2	3.			3																			
6	١		þ.,	an	٠.	~ <															_	-0	1	- (,	~6	\				
						8.5	3																			1.0					
	۶.				1	19																							,		
	-0					96																									
	O]		2.3	1													-11.21											
Ť				1			Φ	İ																							
70	۷:,		Per	ene	200	*							C.	~`	1 6		~~	ركير	~ 5					\sim	٧. ١	برر	J.	0			
	1		1	20			ア										0 7									1	_	a	5 /	اه	
l	-	t t	T.												5											1		B		1	
Ks.	4.8	= :	₽0.	٩° (1	. ه	1												İ			11.6	,
				1 4		N								00																<u>ا</u> ی	
l	æ,	1	i											۰, و														1		310	-
				. 10	01	(2.	3.8	ဗင					T		10	.04	-1											1 '		10/	1
	1	1	1	3.1		1							I		-10													"		1	
l .	-	1																													
											<i>i:</i>	, (3/1	N/	2																
20	ns	\& \&				0,)al	S :	7					1	301	w			Ce	4	nin.	44 V			L	0 T	_			. 1	AB
	22		10 7	\$	1	90		•	1	LL				1	el H		1		3)4				_			ገዓ		_			ASS
			11 6	_		١.,		9 1	١.					l	حو				DI							03	1				501
																				•					·						
										_	5,	m	ME	3																	
Sa	MAIC	11				C	\r<	15	3					1	وحر	2 M				Co	4.	:0	4.5			L	a 1				LNB
_	020		51	R				ø, 6		0	ل ر			1	درو		!				n c						ገኅ				NU
			5 2					'		12	ር ና የ	1			h	1 *					1,						١,		, 3	8	,
		1	53	1				C;)		1					7	حو			C) I	_ 0	200	Der	_		ر	~3.	501			50स
		t	54	T		1		L,	1	•					1)						,						,,]),
	<u> </u>			3	!	,,		`	_	ع بدر	7										1)						1,				*
		1		B		Suz	30	6	1	"						,			(3)	1	,				-	()				FILS
		1		B		Tot	į	,	1						e 1	147	2				25	m	A			21	01	21			l,
<u> </u>		1	SLe"		1	nc.		,	1	(F	3				L	1	-		}		アジ		1	ר		ì		(0)			I 9 2
		1									اردة	1								•	"		,		Cor			om pa	age		1 2
L	1			ــــــــــــــــــــــــــــــــــــــ	1			Ц		L		1	1		1	1								L	L						

Read and Understood By

10-50-5051

for Wunch

10-21-21

Data

Date: 10-20.2021									•	Page of
Sample Location: WW-5-809				1	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any)										-
Sample Number	# of Containers	Sample Matrix*	507	(09)	UDWA 44					X 6 M P Charge Number
21102007108 TB	3	A	Y							
10513	3		9							
1052B FB	3		7							
10538	1			8						
- OTIB TB]				4					
10543	1				٦					
1055B FB	1				7					
Sample Location:				A	nalytic	al Requ	iremen	t		
Pertinent Notes (if any)										
Sample Number	# of Containers	Sample Matrix*	500s	metals	KIDMA-LL					Charge Number
2710201303B	2	A	×							
13523	\mathcal{A}			\otimes						
10568		A			X					
								,		
Relinquished by: Date	/ Time))	. (0	n Ac	epted	by:	d	10-	Date / Time: 21-21 /0900
				10			· · · ·		·	

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continued from page

Dan	14	M	ac 2	22	+-	Το	ny	To	179	رح	٥٢	ષ્ક	eH	. \	باعد	بحد	45.		c/	les r	مد	~d	ರಾ	٥١.	т,	: 5	72.8	•~~	W	11:	
- 0	٠٠٤-	A	م	~	5	U 94	22	1	u	5:0	, ,		Eri	47	٠.	Sus	La	۹.	₽s c	سرو	Ď	<u>.</u> د ک	ţ	ر	440	4	5:	24	25		
2000	<u>.</u>	20	عد	754	ج	4	40	a	٥ ع	ę.	• ` ·	B	46	bh	٢_	50	× •	7	3.	p5'	, ,	<u>ک</u> ۲۰۰)	5 1 a	bk	a/	- 4	5 .c	ic		
, m	<u>.ن.</u>	mu	n	20	<u> </u>	۸ د	2)	100	2	05	Pa	·CC+	mi	40	<	بعدا	1:0	ik	u		b		کان د	رس) r:	96	14			
1gm r	.∕~		5	2	0 1	٠,٠	ur}	<u>. </u>	re	رەر	ury	\	عد۲	W	u.	, p,	v 2.6	بدح		Ce,	-b.	_	<u>ح</u>	,		u.	و.	ļ			
																						,									
res:	<u>w.</u>	Pa	C.	1	1			-																							
,77	8	19			۶	3.2	7	-								ļ															
500	۲ ۱	۹,۰)		20	. c	ļ							_		ļ						T(عما	= (9	22	7				_
0110	= 1	29	D	ļ	12	395	2																			,					_
200	• 6), 4	4	<u> </u>	ο. ⁻	74																								_	_
				-												<u></u>										•			\dashv	_	_
= 4:7	<u>i a</u>)	_6	17	nes	215	S	_						Ç:	2	7	Pa	حصا	mer	ers				_~	Mk	3.	¥	0_			_	
ima		į .	ľ	216	30	B							3)	10.	50	141	8.	B						PA	اد	2,4 6	> =	6		\perp	_
44													8	6	<u> </u>										Τ,	- C G	3 =	٦١		_	_
4113			1	1									_	o . '			_									570	=	11.	لم	_	\dashv
010.			l	f	1									310													5			-	_
LB								• 1					O	. হ	16		-									70	7 =	91	017	-	
HPre			1	1	1		3. L	کر)					4-1		1										è y (10	13)	
4600	-	7.6	>4 -	10.	40								?. <u>C</u>	73	-16	0.0)_														
																														-	_
lama:	<u> 13</u>				_			• _				<u> </u>		16.							\								_	_	-
			-	-			45		!		-			امو			_	-		<u>Co</u>			Ī	_		· ō				<u>ag</u>	
7110 20			1		70		~ {	9-51	30	- (a)	\			1	٠,	*4			_(3	μC) 0 W	ν	<u>, e)</u>			رن ا	2			AL	긤
		23 22	_		70	Α. Α	ای دنه/	100			J									۲ / د		_					_		-	<u> </u>	
		ر د ' (4د			0D			<i>a</i>	1 4	(0)					دحو ا,	-				2 J.C	1)	W.S.	-71			<i>7</i> 03	1		-	5R	ᅱ
		7 Z	1) / OD		1	\ \	6	1					2)						١,)				1	\dashv
			1	•	500	e \	٩		3						١,				(-	<i>2)</i>	þ					١,				DL	5
	书		B B	-	161		<i>m</i> :	اما	· Y					T-C-0	الما	100			٦	<i>ن</i> ار ة	ر ا	, 'C	۵۱.) \@	13)			1	
)4	00	B			•									,							•	~ ⊃		Ī	. , _				1	
																															\Box
																								Con	tinue	d fro	om pa	ıge			

Date

Signed

Read and Understood By

Date: 10-20-2021										Page _ \ _ of _ \
Sample Location: UW- 5-909				F	Analytic	cal Req	uireme	nt		
Pertinent Notes (if any)										-
Sample Number	# of Containers	Sample Matrix*	700	(09)	Noma LL	SUR	metals			XGMD Charge Number
21/0201032]	3	4	9							
1033B FB	3	()	9							
)			Q						
11043)				9					
= 1105B FB	1				\$					
13283	2					Q				
14003	2						X			
Sample Location:	•			A	nalytic	al Requ	uiremen	nt		
Pertinent Notes (if any)										
	of Containers	Sample Matrix*								
Sample Number	#	s	-							Charge Number
					_					
	_									
Relinquished by: Date	/5:									
Non-20-20:	/ Time	! 5 30	5	Vo	ri (crepted	by:	-d	10-	Date / Time: 11-21 / 0900
				1			1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

M. GARCIA R. MINAZUL PARESENT, WEATHER IS CLEAR of COCK. CARBOY G-5 IN USE PARAMETERS METER ID BUFFERS 7 4007691 921 TIME = 0930 HAS PH/COMS = 12 ± 7.64 10 4001005 6/21 7EMP = 23.3'c COMD = 1005 ug/cm = 5.07 zorus = 3.08 NMS TURIS = ,79 ams 24 PRE = 7.07 - 10.21 (14.4°) 24 POST = 7.06 - 10.21 11 COT = 9/017 11 EXP = 11-30-20 - 11-30-20 SAMPLES SAMPLE # ANALY 515 VOA-by 8260 LL (3) 40 m Vins PRESERVE 2011 13 0945 ICE/HCL - 0946 (1) / AMBER SWR1 LOW LEVEL NAMA 2011 13 0917 105 0948 11 CEB Continued on Page

Read and Understood By

Signed

Date

Read and Understood By

Signed

Date

Read and Understood By

Signed

Date

WSITINIER											of
Date: 13 Nov 20		<u> </u>		$\overline{}$		<u>A</u>				age	_01/
Sample Location: Wall				GoA.	nalytica	al Recou	irement	; - 			
Pertinent Notes (if any)			,	V		$\langle \cdot $					
	2	* *	$ \mathcal{J} $	7	3	3					
	taine	Matr		0	1	2					
	# of Containers	Sample Matrix*	29,	26	7	nwa					
Sample Number	# of	San	0260	C923	$\stackrel{\sim}{\sim}$	Ž			[Charge	e Number
20111309115	3		X								
11 1094 b	7			$ \sqrt{} $							
V 17 72	1				7						
" 0947	(/ \	- 🗸					
0948						\triangle			-		
										_	
Sample Location:	<u> </u>	l			nalytic	al Requ	iremen	 t			
Pertinent Notes (if any)			-								
							1				
	ners	*xirit								ı	
	ontai	e Ma									
	# of Containers	Sample Matrix*						:			
Sample Number	#	Š								Charg	e Number
								,			
										!	
	-								:		
	/ T			<u> </u>	\	h.a42	vi 1			Deta / T	ime:
Relinquished by: Date MULLISH 13 NOV	e/Im	e: /	_	+	ノー	ccepte	by:		11 1	Date / T	10915
MUNISITE 15 NOT	<u> </u>	1/00	v +	$- \mid \! \! \mid \! \! \mid \! \! \mid \! \! \mid \! \! \mid \! \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid \! \mid$	ml		Im	-v^-	- 11-1	10-20	10113

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

WSTF INTERNA	L SA	MPL	E CH	AIN (OF C	USTO	DY	REC	ORD				,_
Date: 10 Nov 20								<u></u>		Page		_ of _/	_
Sample Location: WEW M Pertinent Notes (if any)				\ \ \ -	` ,	N. Comment	nalytic	al Req	uireme	ent			
Pertinent Notes (if any)	# of Containers	Sample Matrix*	77 0922	820 LCG	c NOMA	L NORACK							
Sample Number	#	Saı	02	Ŋ	7	7			ļ				
2011/00735	3		X	\									
0736 11 0737	1				X								
r 0738	1					X		<u>-</u>					
							····						_
		_	<u> </u>										
·													L
	+												
													 -
						:							l
, Relinquished by: Date	e / Time		<u> </u>	1	A 4 a	epted b	17*			Day	te / Tir	ne:	
MIKEBUL ONON		00	20	for	I V	Ju	v. ~ 0	h	11-1	0 - 20		090	D
	ί			-									
											<u> </u>		

WSTF 381C (03/09)

M. GA	RC	A	R		Ji	NS	BF	1	1	PKI	ESE.	N	一.	6	lei	477	+€.	r	15	CL	LEAR	#	CO	04			
Cans	94	G	5		M	l	K		-																		
	+									-		-											-	-			
							-					\dashv	\dashv						-	-							·
																							-				
	-																										
D	<u> </u>			•								-		1 1		-			_		as As						
PARA TIME THI	ME	TE	7LS '2 /c		ام د							-	4	U_{i}	5/2	4	12						Bu	FF	ER 21 E 1065	5	-2
TH		- / - :	3); 7. L	7	۳>							-	1		CO	M) =	/	/_ 20				+ '	1 00	28.8		6/
EMP		= /	9.	6	•								,	10	17)		=	- 1		240	46	/5) }	400/	065		L
cono	:	= 9	796	us	lea	1							d	R	DL		\$	6	. 2.	1	15						
rurs		= /	.7	7,	N	15			_			_	N	4	7	-	ء_	- 9	10	17							
COND TURB + HIG	<u>.</u>		7.0	5-	16). <u>C</u>	7		4, 4	(c)		-	1)	E	89		=	1	?- 3	7-2	0		-				
H POST	-		<i>'U'</i>	7 †	10	<u>). </u>	/				-	-	\dashv						-							-	
												-	+			_	-			-		_				\dashv	
		41									5A.	~1,	PL	.0	5			1									
AMA 01203	E			1	W	M	Ϋ́	5) <				1	PA	بي	SEL	NE			_(20n	1						
01203	•	- 1	Ţ	Y	OA		'E	SPC	u	(†	8	-	1			CL	-	_	-								
	12	56		U	X.	4	VEC	N	My	1(1	B)	+-	+	_/(烂		-										
01203	13	40		IJ0	A	4	2	60	u				/	10	111	r		+								-	
++-	1 1	41		-	! 1	1	11	C	FB)				1												-	
			_	,							_		_	-	_												
01203	130 130	12	+	LE	W	L	VEL	- 1	DN F	14		-		10		-	-										
	135	/3			//				ודע	5)		-	+	(1		-			-	-	-						-
												+	+	-					+								\dashv
		_	_		-																						
			_	-	-							-	-			_			-								_
			-	+						-		+-		-	-	-						- -			-	-	-
						\dashv		-					+	+	+				-	+				+	-	+	\dashv
				1		\dashv	-	-	\rightarrow			+	+								+						

Signed

12/3/20 Date Read and Understood By

Signed

12-7-20

Date

Date: 3 PEC ZU										Page	of	1
Sample Location: Wew K			(;	A	matynjo	al Requ	iremer		\		"	
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	8200 17 (18	2000	R)		NPMA LL	NIMA LL (F		XG1 Charg	<u>VD</u> e Numb	 per
20/203/255	3		X									
11 1256	1					X						
20/203/255 11 1256 11 1340	3			X								
" 1341	3				X							
1 1342	1						X					
11 1343	$oxedsymbol{\perp}$							X				
								:				
Sample Location: Pertinent Notes (if any)	<u> </u>		1	A	nalytic	al Requ	iremen	t				
	# of Containers	Sample Matrix*										
Sample Number	#	01								Charge	Numb	er
									-			
												
Relinquished by: Date NIRABNL 3 DEC 2	Time	142	5	To to	11	coepted	by: — d	V	2-7	Date / Ti	_{рве:} 0900	
				J								

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Read and Understood By

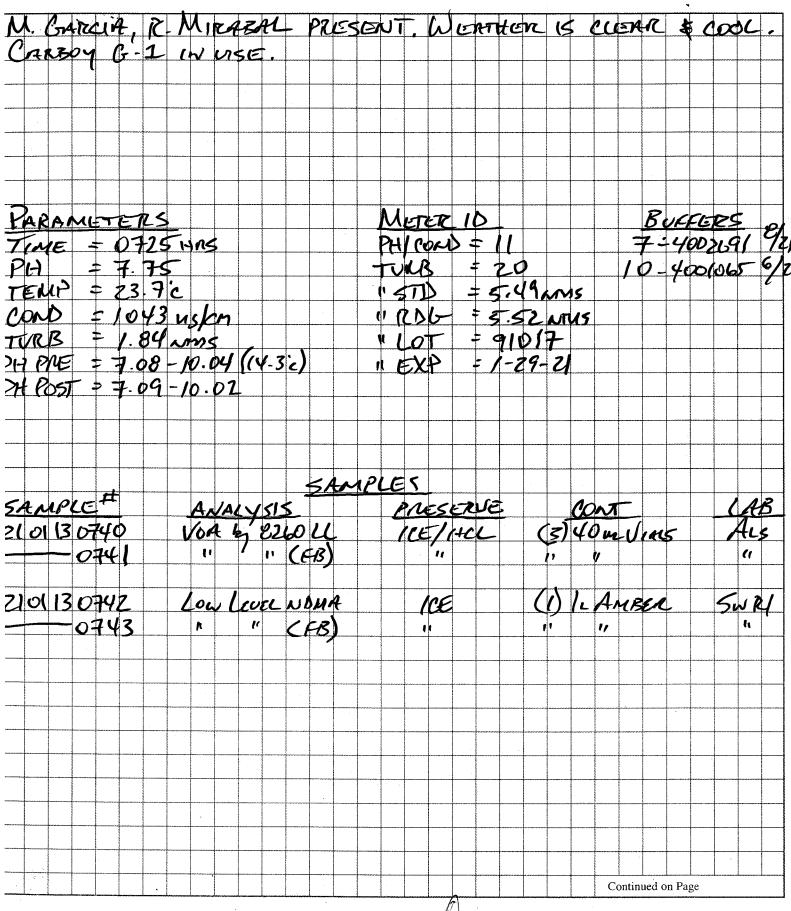
Signed

Date

Read and Understood By

Line | 12-1-20

Continued on Page


Date: 1 DEC 20										Page of
Sample Location: Well M				A	nalytic	al R eq	iremen	ıt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	2260 CL	8560 U(PR)	Norua LL	KINA U CKB				X GMD Charge Number
20120/0900	3		χ							
" 0901	3		XM.	X	,			_		
" 09UZ " 0903	1			XLL	X					
0903	igsqcut					X				
	-									
Sample Location:				Δ	nalytic	al Regu	uiremen	ıt.		
Pertinent Notes (if any)			-		marytic	ai requ				
	of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
										
Relinquished by: Date	/ Time				Ā	.qcepte	d bro			Date / Time:
Minary / Dec 2		1020)	M	u f	У	1	-sh	12	-2-20 /0900
	/			-10						,

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Read and Understood By under 1-11-21

Date: 8 JAN 21											Page of
Sample Location: WEC	LK					nalytic	al Req	nireme:	nt		
Pertinent Notes (if a	any)	# of Containers	Sample Matrix*	n onla	310 CC (F)	JY AMOLL	WOMA LUCA				X G MD Charge Number
2101080915		3		X							
11 0916		3		,	X						
11 09/6		1				X	···				
11 0918		<u>/</u>				-	X				
										i	
Sample Location: Pertinent Notes (if a	my)				A	nalytic	al Requ	uiremei	nt		
		# of Containers	Sample Matrix*			·					
Sample Number		#	Ss								Charge Number
D-11:					\triangle						
Relinquished by: MIRABM	B TAN 21	1 ime	1953		O	/	ocepted	by:	-dh	-1	Date / Time: -2 (000

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Read and Understood By
Signed

Read and Understood By

Signed

Date

Read and Understood By

Signed

Date

Date: /3 JAN 21					_					Page	
Sample Location: Well M				A	nalytic	al Req	uireme	nt			
Pertinent Notes (if any)				B.		Ĩ					
	∞	*,	١		Á	$\bigcup{\mathbf{v}}$					
	ainer		Ľ	7	701	JOMA					
•	# of Containers	Sample Matrix*	200	המפים רר	Ž	N					
Sample Number	- # of	Sam	\mathcal{Z}	\mathcal{Z}	77	7	i			Cha	rge Number
2/01/30740	3		X								
" 074/	3	.,	/-	X							
11 0742	1			(\ 	X						
0 0743	+				/ _	X					
1 0 1 73	1						<u> </u>				
Sample Location: Pertinent Notes (if any)	1	Ι		A	nalytic	al Req	uiremei 	nt	<u> </u>		
						÷					
	ners	ıtrix*									
	onta	le Ma									
	# of Containers	Sample Matrix*									
Sample Number	++	01			-					Cha	rge Number
	_					***					
	-										
	-										
	_										
					\	_					- · · · · ·
Relinquished by: Date MIRASSAL /3 TAN	e / Time		_		/ 1	dcepte	d by:	-de	1 10		Time:
MIRASAL 181AN	4	021	2	+	Or !	VV_	Jhr-	-ch	1-13) - ノ	10910
				10							
						,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

1	P	ARC	CIA	. /	7.1	U	KA	BM	_ /	PA	556	W	+. /	Ve	M	748	n	15	- /	PAR	200	4	2	0	D	1	ŧ	Cel	0
1	1 2	01	6	-1	141	115	E.																		1				
					7																		-						
	1	-		+																									
+-	+			_	_	 	 				_	\dashv																	
+-	+	-	-	+	-	+				_			1																
+		-			-		 				-	-	+																
-				_		-					_																		
						<u> </u>	ļ				_		-																
A	K	PM.	0	R	<u>S</u>									\mathcal{M}	CTI	A	12	<u> </u>							Bu	K	LA	5	a
7,	/	_	=	0.	900	LIAK							'	PIH	1/1	² 04	מי	ے	1	7				=	1 9	100	76 ⁰	1	8/
2	l		1	h	onc)								TU						0				3					6/
	4	D	1	10	00			 						10	/U /Y	>		1		. 63	- 1	مد،		,		007			
	70		\pm	17	02	1					+		-	11 -	77 T	1				47									
<u>U</u> ^	1	,	7	10	761	AS/C	4				-	-	-	11	ĮΨ	7			3	77	יער	U >							
V		>	=		56,	KITU	5						-			T				(D)									
4	PN	三	#	6	.98	-/1	2/1	7 (8.1	(c)			-	11 6	EX	2		-	2-	zl	-2,								
1	PO.	57	=	6.	99	- /1	0-//							-									·						
																Ľ.													
												5	AN	PI	rs														
	4 / 1	ZE	-#	_			1	VA	11	< }	5					7	15			ഹ	X	-				LA	UB		
2/1	2	25 E	Or			1	. (4	12		22/	211		-			Juc.			7	40	2.0	1,00	, ,		_	12	2		
10	120	>		7 11 / 1			יו	A	7	Ud	14		 	/ '	E/	ع بدر	-		יו	70	4		->	-		171	7		
			08	06	-		- "	+		. (FB)		-			-		/		-					-	-	+	
+	+		$-\frac{1}{2}$		_	_	┥.	╽	-				-		-	 	<u> </u>			1	1				-			-	
110	20	05 C	080	77		-	Lo	wl	EVI	LI	VOV	UB.		-	1	LE		(()	1/2	/+/4	CKE	~			Sw.	K J	-	-
_	_	_(280	8		-	1	1	-	l	16	8)		-	'		ļ	-	n	ļ	li .		-	-	ļ	١.	-	-	-
														-	ļ		ļ						ļ	-	-	-	-		-
_																										ļ	<u> </u>		ļ
A. C. C. C. C. C. C. C. C. C. C. C. C. C.												***************************************																	
				1	1		mofermen	1																					
									1					+	1									T		1	1	1	
									†				1	1	1							1	1	1	1		1	1	į
														-	-	1				†				-	-		-		
																								Contin					

Read and Understood By

Signed

Signed

Signed

Signed

Date: 2/5/2									Pa	age_ of_
Sample Location: WELL K Pertinent Notes (if any)				A-	nalytica	al Requ	iremen	t T		
Sample Number	# of Containers	Sample Matrix*	70177	rwan m						Charge Number
210205 0865	3	A	X		,					XCMD
0806	3		\times							
0807	\\			X						
0908		e		X						
			-		i					·
Sample Location: Pertinent Notes (if any)	·	1		<i>I</i>	Analytic	cal Req	uireme	nt 		
	# of Containers	Sample Matrix*								
Sample Number		Sau	<u> </u>							Charge Number
	ata / Ti-				Α_	Adcept	Al by:			Date / Time:
Relinquished by: D. Mar 2/5/2	ate / Tin				on		1	-ch	2-	8-21 /0910
45/2		900	- 		1	VV)			
	<u></u> .				1			-		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Zowald 23 FCa 21
Date

Read and Uniters ood By

Www. Letters 2-23-21

Date

Continued on Page

Date: 23 FCB 21			******	E,	_					Page of
Sample Location: WELL M			\odot	\$ A	nalytic	al Requ	iremei	t B		
Pertinent Notes (if any)			(38)				7	4		·
		*	77	Low Level ND	_ 1	MUM	Ų	X		
	# of Containers	Sample Matrix*		737	n (()Z	0 6	N		
	f Con	nple]	0728	י איס	8260	7	3220	7		XOMD
Sample Number	#	Saı	<i>A</i> 2	7	B	7	W	7		Charge Number
2102230915	3		X							
11 0916	1			X						
11 1000	3				X					
1001	1						X			
" 1002	3					X				
4 /103	1							χ		
Sample Location:				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)										
	ırs	* .×		÷						
	ntaine	Matr	÷							
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
	/ Time	/	\top		/ \	dcepted	Nby:		0 /	Date / Time:
MIRARM 23 FEBZ	1/1	1040	_		m !	<u>/\</u>	Ju	nd	1-2	24-21 /0915
	l		-	- -						

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Continues from Page___

M. GARCIA, R. M. RABIM. PRESCRIT. WEATHER IS ELECAL & COCO. CARBUT G. Z. IN LIGHT. PRESCRIT. WEELS BUFFER BY TURB = 13 7 4007561 92 THE 7. LLY TURB = 21 10 4001000 94 TIME = 7. LLY TURB = 21 10 4001000 94 TIME = 7. LL AND = 10 10 4001000 94 TIME = 7. LL AND = 10 10 10 10 10 10 10 10 10 10 10 10 10		A à c	I A	1	7	H	12	12	111		2	1 -	-,-	. 7		1	(-		_ 1			·	1.	-		1			<u></u>		
PAPAMETERS Merea 10 3 FECTAS 7 1000 13 7 1000 15 17 1000 17 17 1000 18 17 1000 18 17 1000 18 1000 18 1000	1002	#/(1	17		M		V D	VYC		<i>Y 1</i>	ت	ع	~	1	· u		A)	46	2/4		>_	CL	٨ع	1	-4	0	X	<u>.</u> ر		
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c	CHICA	7	J	- 2		~	MS	ے	•					 	-								 		-	-	-				
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c			 			-		-			<u> </u>		-	 											ļ	-					
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c			-		-	 							ļ	ļ	-					-											ļ
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c			 			 	-			-	<u> </u>		ļ		ļ											-	ļ				·
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c						ļ		ļ							ļ										-						ļ
Tight = 1000 ms PH/cox0 = 13 7 400181 92 PH = 7.64 TISHP = 20.3 c			ļ	ļ		<u> </u>			ļ				ļ			<u> </u>										ļ					ļ
Time = 1000 ms PH/coad = 13 7 400281 8/2 PH = 7.64 TUNB = 21 10 4001045 9/3 TISHP = 22.3 c	1424	MET	(2)	5										M	ES	EN	1	D	•							Bu	H	C)	رح	_	
PH = 7.64 TISHP = 26.3 c COLD = 1288 usless 1	TIME		+ /	100	20	111	5							PH	10	0~	O	1	1	3				-						8	1/2
TISHP = 22.3 c	PH	1	+	7.	69	f							,	1	,	1.			- 5	2/						į.	1	1 1			
COLD = 1288 us/cm ROL = 65 ms TULS = 16 ms LOT = 91017 PLANE = 7.10 - 9.99 LEXT = 3-31-21 PLANE = 7.10 - 9.99 LEXT = 3-31-21 PLANE = 7.10 - 9.99 LEXT = 3-31-21 SAMPLES SAMPLES PRESERVE DEAT CAS 21 0301 1005 UDAL E210 U CELHUL (S) HOM/CU ALS 1008 N		>	ł	i	1 .								1	1	1	1 _				1 1		ma	•	 	1		1				£
TURB = (Carris 1 COT = 91017 PH PRE = 7.10 - 9.99 1 EXP = 3-31-21 PH PRE = 7.10 - 9.99 1 EXP = 3-31-21 PH PRE = 7.10 - 9.99 1 EXP = 3-31-21 PH PRE = 7.10 - 9.99 1 EXP = 3-31-21 PH PRE = 7.10 - 9.99 1 EXP = 3-31-21 PH PRE = 7.10 - 9.99 1 EXP = 7.10 - 9.99 1 E															1			2						<u> </u>	<u> </u>	 					:
PH POST 7 7.10 - 9.99 SAMPLES	4 - 1	1							 					1	ſ				_	1 1		1					 				
PHPDST 7.10-9.39 SAMPLE ANALYSIS PRESERVE DONT LAS 210301 1065 1004 100 (COCC NOTE) 1 11 11 11 11 210801 1009 1000 (COCC NOTE) 1 11 11 11 11 210801 1008 11 11 (FB) 11 11 11 11 Continued on Page	_ 1 1								10		. 1			3	1	_	1			1 1							-				
SAMPLES SAMPLES SAMPLES PRESERVE CONT. CAB JOSOI 1005 JORLY 8200 U /CE/HUL (3) HOMINU ALS 1001 1 " (FB) " " " 1008 1 " (FB) " " " 11 " " Continued on Page			1	1	ı	1	5	1	i	.ν	c)			11	ك	2 r			3	- 5	<u> </u>	L					-				
SAUPLE ANALYSIS PRESERVE CONT. CAB 21 03 01 1005 UDAL BELO U (EC/HILL (3) 40 m/1111 ALS 103 01 1007 LOW LEVEL NOMA (CE (1) LL ANBEL SMP) 1008 " " (FB) " " " " " " " " " " " " " " " " " " "	PHYDE	7	-	7.	10	- 4	7.	79	ļ					-													-				
SAUPLE ANALYSIS PRESERVE CONT. CAB 21 03 01 1005 UDAL BELO U (EC/HILL (3) 40 m/1111 ALS 103 01 1007 LOW LEVEL NOMA (CE (1) LL ANBEL SMP) 1008 " " (FB) " " " " " " " " " " " " " " " " " " "			-		-	-	 								· ·											-	ļ				
SAUPLE ANALYSIS PRESERVE CONT. CAB 21 03 01 1005 UDAL BELO U (EC/HILL (3) 40 m/1111 ALS 103 01 1007 LOW LEVEL NOMA (CE (1) LL ANBEL SMP) 1008 " " (FB) " " " " " " " " " " " " " " " " " " "			ļ	-	ļ	-									ļ																
SAUPLE ANALYSIS PRESERVE CONT. CAB 21 03 01 1005 UDAL BELO U (EC/HILL (3) 40 m/1111 ALS 103 01 1007 LOW LEVEL NOMA (CE (1) LL ANBEL SMP) 1008 " " (FB) " " " " " " " " " " " " " " " " " " "									<u> </u>						ļ																
SAUPLE ANALYSIS PRESERVE CONT. CAB 21 03 01 1005 UDAL BELO U (EC/HILL (3) 40 m/1111 ALS 103 01 1007 LOW LEVEL NOMA (CE (1) LL ANBEL SMP) 1008 " " (FB) " " " " " " " " " " " " " " " " " " "												5	AI	40	u	-3															
21 03 01 1005 10 A-Ly 12 Poly 1 1 1 1 1 1 1 1 1	SAMP	LE '					An	JA	4	K1.	S					1	i i	ER	VE	Ł			PS	2						K	
210301 1007				5			SD	9-1	7	2,2	w	()									(_				, ,		_		_	_
210301 1007		1 .	1	1_	Ì		1	t	1	11		E	2\	İ		1	7	77	1			i			7.4				,		
TODS II II II II II II II II II II II II II												_										•									
TODS II II II II II II II II II II II II II	71070	1 /	on:	1	 	 	10		-							-						· \	1,		3	- 1				21	
Continued on Page Read and Uniterstood By	21030	_		ģ			1 -	1	1 -	<u> </u>	_		L		ļ								LL	i	<u>us</u>	ta			- 1	1	
Read and Understood By		10	ש ענ	?					1		_(M)	-	ļ		L	•	·			/("					U		
Read and Understood By		-	-	ļ										ļ												-					
Read and Understood By				ļ					-						<u> </u>	ļ										ļ					
Read and Understood By				-			-								ļ										ļ	ļ					
Read and Understood By		-	-	-			ļ	-																							
Read and Understood By				<u> </u>		-																									
Read and Understood By			-																										-		
Read and Understood By																															
Read and Understood By																									ļ —	1					
Read and Understood By																								 							
Read and Understood By							<u> </u>																								
Read and Understood By		+					<u> </u>															J				+	 				
Read and Understood By		-				-	 								 										onti-	lad -	n De				
Read and Understood By Signed Date Read and Understood By Signed Date Signed Date			<u></u>	l		<u> </u>	L	L	L					L		L	L			<u> </u>			L		OHLIII	iucu (nı Pal	50	******		
Signed Date Signed Date Date	\bigcirc		/	1			1			. 1	1		_ ,		Read	d and	Und	stoc	od By	y •	\wedge			1			^				
Signed Date Signed Date	/(cc	ly	1	1/2	h	1		_	1	N	br	<u> </u>	<u>以</u>					d v	_ \	\mathcal{N}]	\ u	<u></u>	de	v		3	- -	21		
	/ \	S	igne	ď								Date	•							Sign	ed	T				-		J	Date		

Date: /Man 21										Pageof
Sample Location: Well K Pertinent Notes (if any)				A	nalytic	al Requ	gireme	nt		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	mon3	EZLOCC (FR)	NOMA LL	NOM UCA				Charge Number
2103011005	3	4	X							
11 1006	3	A		X		,				
	1	A			X					
" 1007	1	1				X	•			
						,				
·										
			,							
Sample Location:				A	nalytic	al Requ	ıiremei	nt		
Pertinent Notes (if any)										
	# of Containers	Sample Matrix*								
Sample Number	#	S								Charge Number
,										
	<u> </u>									
					-					
Relinquished by: Date	/ Time	:./		- H) (A	ccepte	d bv:			Date / Time;
MINABAR / Man 2		103	D		m		1	-ch	3-	2-21 /0930
				1			,			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 2 Mar 2(F	age	of
Sample Location: Write M				~^^	nalytic	al Kequ	iremen	ıt		-	"
Pertinent Notes (if any)	# of Containers	Sample Matrix*	2000	SOUL CE	LLABRIA	L COMACE					
Sample Number		<i>O</i> ₂	90	υν	7	7				Char	ge Number
2103020725 " 0726 " 0727 " 0728	3		X	X	V						
4 0727	(X						
" 0728	-				•	X .					
Sample Location:				A	nalytic	al Requ	ireme	nt			
Pertinent Notes (if any)											
	# of Containers	Sample Matrix*					·				
Sample Number	#	Sa								Char	ge Number
	·		-								
										1	
					\					-	
Relinquished by: Date MINABIN 2 Ma 2	e / Tim	9 52 f	5	Į o		ccepte	d by:	L	3-2	Date /	Time: // // // // // // // // // // // // //

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. W # 7

-	וואידע	ACI	#,	X	10	111	ABK	H	21	LES	EVIT	- L	VE.	977	ten	15	C	LEA	K	4	co	OL		On	RB	یاه
9-	3/	W	US	E	1					1			ļ													1
+		-			1				-	1					<u></u>									\bot		I
		ļ	1							1									Ī_'							T_
-		ļ'														1	-		_ '						\top	\top
-		<u> </u>				-		1		1_1		1													\top	+
	-				-				T	†			1_1			1						\top		+	+	+
												T				1									+	+
PAI	RAM	<u>e7</u>	er.s									M	675	n	10							f	5, 10	50	RS.	+-
TIME	4	=	- 0	074	40	HR	5		T			DH	100	1) =	13						7	<u> </u>	ベカカ	700	+
°4		الح	F	2.7	7								KB			20			, 1			M	7 0	100	109	1
EN	1P	٤	P	9.	7 'c				+			1	57D	1 1		5,71		716	,		1	-	47	-U V,	107	>
'DN	1		F /	1 34	10 4	-6,	-		+	+		1	1 1	1 1	1	1 1	1 1	1	1 1		1		-	+	-	+
IR	13		F	CA		>/-	.04	-	+	++		11	ILV.	-	+	5.7	2/2	7/2		\Box	+	-		+	-	+-
4 7	ME	+ _		70	12-	10	nu.	111	1.5.1	1	+	11	~	5	-	910	17	-,		1	+	+	-	+	+-	+
1 Pi	OST	FJ	-	7	12-	-10	24	110	De	++	_	-	21	\vdash		7-7	U- 6	4		1	-	-	-	+-	-	+
-	,		7		-	10.	0,		+	+		-	+	1	_	-	+	-		-+	-	-	-	+	+	+
-	+			+	+		+	-	+			1	 	,—	-	-	-	-+	-	-+	+	_	-	+	+	+-
+	+	\Box	1	+	+	+	-	+	-	-	+	+	-			-	-+			-		-	-	+	+	+
			+	+	+	+	-	-	-	+		-		-		+++	+					-	+	-	-	+
- had	ار د. ا	أحا	H	+	+		- 11	+	-,,-	+++	≶ A,	, ,	1	1 (+++	+	-			-	-	+	+-		+-
Kenn	// -	F					No	4	<u>\$</u>	++	1	1 -	PAR	SEN	WE	-	(3)	CH	A	-		_	+-		48	+
1/20	1		711	-		1	` À	ح ا ا	~ • • •			-4	790	1		_ ! la	- 3	- · h	1		-	,	1	IL	LS	+
109	102	0	745			V	DA	4 8	266	U			/CE	://	tec	-		46)ac	Via	2	-	+	413	ı	
109	102	0	745 741	- 6		V	OA .	4 8	266	(FB)			/CE	://	tcl		(3) "	46)er "	Vie	2			"	+	+
		0	741	6		V	OA N	l ((L FB)			/CE	:/x	+CL		**		(1					"		
		0	741	6		V	OA N	l ((L FB)			/CE	ile "	tel.		(1)	le	" Au				5	" Twice	2/	
		0	741	6		V	OA N	l (U			/CE	ile "	+CL		**	le	(1				1	"	7	
		0	741	3		V	OA N	l ((L FB)			/CE	ile "	tec	((1)	le	" Au				1	n Tw(?	\5	
		0	741	6		V	OA N	l ((L FB)			/CE	ile "	tec	((1)	le	" Au				1	n Tw(?	2/	
		0	741	3		V	OA N	l ((L FB)			/CE	ile "	+cl	((1)	12 /	" Au		e		1	n Tw(?	2/	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	tec.	((1)	12 /	" Ans		e		1	n Tw(?	2/	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	+cc	((1)	12 /	" Ans		e		1	n Tw(?	72	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	+cc	((1)	12 /	" Ans		e		1	n Tw(?	2/	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	tec_	((1)	12 /	" Ans		e		1	n Tw(?	2/	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	+cl_	((1)	12 /	" Ans		e		1	n Tw(?	72	
104		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	+24	((1)	12 /	" Ans		e		1	n Tw(?	\2	
		0	741	3		V	OA N	l ((L FB)			/CE	:/x "" 'LE	+c(_	((1)	12 /	" Ans		e		1	n Tw(?	7.5	

Righed Ma-W 2An 21
Signed Date

Read and Understood By

Date: 4/2/21										Page of
Sample Location: Well K				F	nalyti	cal Req	uireme	ent		
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	VOA 82666C	LL NDMA						XGM1) Charge Number
210402 6745	3	A	7							
0746	3	1	<u> </u>			ļ				
0747	1	$\vdash \vdash$		X						
0748	1	ar .		X						
									:	
•		_								
Sample Location:				A	nalytic	cal Req	uireme	nt		
Pertinent Notes (if any)										·
Sample Number	# of Containers	Sample Matrix*								Charge Number
										Charge Number
					-					·
Relinquished by: Date	/ Time			/) . A	¢cepte	hv.		1	Date / Time:
Mat S 4/2/21		3800			on (1	_d	4.	G-21 / 0900
			L							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Date: 6 APR 21						<u> </u>			Page _ (of/
					\ nalvtical	1 Dogwinom	out.		
Sample Location: WELL M Pertinent Notes (if any)	T	T			Marytica	l Requiren	ient	Τ –	4
				3	, '				
	iners	Sample Matrix*	3	8240 LL	4	LL KDM4			
	# of Containers	e Ma	77 0928) c	C NOW	3			
	ofC	ldun	92	3	4				
Sample Number	#	Š	a c	ω	7	7			Charge Number
2104060750	3		X						
10 751	3			χ					
0752	1				X				
" 0463	T						-		
073	- '				/	\rightarrow			
		-							
Sample Location:				A	nalytical]	Requireme	ent		
Pertinent Notes (if any)									
	s	*							
	ainer	atrix	ļ						
	of Containers	Sample Matrix*		1				' 	
Sample Number	# of (Samp	ļ	ľ					
Sample Number			-				<u> </u>		Charge Number
		ł							
			-+						
				_	_				
Relinquished by: Date /	Tima			+					
MIRABAL GAAR 21	11116:		_	14	17/	pted by:	- , 	1 1	Date / Time:
(PARE)	10	255		+-10	u //	V Im	-dy	4-1	0-21 /0430
	<u>'</u>		 	+-)		/			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Notebook No. DW # 8 41804 G-5 WUSE. METER LD 3 RAMETERS 7 400269/ 8/2) 94/com = #6/ TURG = #21 = 0705 THE = 7.99

FILE = 7.08 - 10.08 (17.8°C)

1857 = 7.05 - 10.08 10 4001065 TURES = 55.5 m 11 500 = 53.5 ms 11 1206 + 9/027 " EXP - 5-31-21 SAMPLES 2MPCE 2105 63 6710 LAB AMUSIS VOA G EZGO U " " (FB) PRESCRUE COMPINERS (5) 40 m Vins ICEKINCL -0716 SUR1 (1) / Ausel LOW LEVEL NDMA WE 2/05 03 0712 " " (EB) -0713 (2) 14 AMBER ALS GRO 4 8015D SUOM 4 8270D 2105030714 ICE -0915 DRO 4 8015D 0716 Continued from page Read and Understood By

Cacha Mare 6 C 3 May 21 John Wound 6-3-21

	Date: 3 Mm 21									I	Page of
	Sample Location: Wew K				A	nalytic	al Requ	iiremer	nt		
	Pertinent Notes (if any)	# of Containers	Sample Matrix*	77 09	EZOU CE	NOMA LL	IDMA LLGGS	20	NOB	na	VCAA
ì	Comple Novel) jo#	Samp	0778	23	\$	181	9	N	0	XGMD
\	Sample Number	3	,	\/					•		Charge Number
\	2105030710 " n 211	3	A	X	>		-	****			
\	<u> </u>	1	A A		Δ	$\overline{}$					
\	0712	1	<i>/</i> ት			A	X			:	
	" D714	3	Æ				/ \	V			
\	" 0215	2	1						∇		
\	1 0716	1	K		-					Y	
	Sample Location:				A	nalytic	al Requ	iremer	nt	₹	
	Pertinent Notes (if any)										
		of Containers	Sample Matrix*						<u> </u>		
	Sample Number	#_	Sa								Charge Number

					;						
		_					**				
								-			
	Relinquished by: Date	/ Time					Δ	J h	-		Date / Time:
	Minuser 3 My 21	/ Time	275 275	0	Ø	$\angle \setminus \setminus$	ccepte		-d	6.1	

* Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

M. GARCIA, R. MIRARAL PRESENT. WEATHER IS PLEAR & WAREN Carry 65 (a) CASE. MARAMETERS METER 1D BUFFENS 7 4002691 0710 HRS Truce = #21 = 55.5 ans 10 400 1065 7.89 PH TEMP 23.2c RDG = 55.7 ms 1071 us/cm COND 2.34 mus " LOT + 91027 TURB 7,03-10.05 (16.86) 11 EXP = 5-31-21 74 me = 7.05 10.07 PH POST SAMPLES SAMPLE # ANALYSIS VOALY EZLOUC PRESERVE CONTAINER (3) 40 m VIM 21 05 04 0 75 104/1156 " " (FB) 0716 2105040717 (1) 12 AMBER SwRI LOW LEVEL NDMA 100 " " (RB) 8150 2105640719 GRO 4 8015D 105 (3) 40m Vins 5UUA 4 8270D (Z) LAMBER 10770 DRO 4,8015D 1570-(1) /LAMBER

Richard Minchel 4 May 21 Jon Jumb 6-4-21

Read and Understood By

Continued from page

Date: 4 Mm 21]	Page of
Sample Location: Well M				A A	nalytic	al Requ	iremer	ıt		
Pertinent Notes (if any)				7	,	(Fi				
	ners	ıtrix*	77	7	3	77		at		
	# of Containers	Sample Matrix*	6260	2260	NOWA LL	MOM	Bro	SVOA	DRO	
Sample Number	Jo#	Samp	62	93	(N)	C/Z	\mathcal{Z}	\mathcal{N}	Q	Charge Number
2105040715	3	A	X		-					3
11 0716	3	A		X						
" 0717	l	A			X					
" 07/8	1	A				X				
" 0719	3	A				,	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
11 0720	2	A						X		
0721		A					j		X	
Sample Location: Pertinent Notes (if any)				A	nalytic	al Requ	iremer	ıt		
2 Stement Notes (11 day)	Ė									
	iners	atrix*								
	of Containers	Sample Matrix*								
Sample Number	# of	Sam								Charge Number
								·		
									·	A A STATE OF THE S
Relinquished by: Date	/ Time				\	ccepted	by:			Date / Time:
MINARAL 4/leg 2		090	0	<u> </u>	m	V	Im	-d	54	
	1								,	
							/ -			-

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

6 PR	OJE	CT_	a	Izi	l	K	, 	C	NZ	5((5N	V	00	12							Not e					W"		· .				
											Ese						./	10	.	1/	cn	1	d	1.7	st	· kA	· -	0,	A Z	ne	Ŧ	
M	2	AAR C	14	1 (- 1	МЦ		<i>1</i> >/۲		7 00	600	3 /V	*	VV	149	ne.		//>		بر	70	2	U	W			•		7(2)	7	\dashv	
6	ر ج	14	<u>. </u>	150	<u> </u>						_	+			+	+														\dashv	-1	
																	\rightarrow	+		\dashv									-	-+	\dashv	
												-	-		-	-		+		\dashv				-						\dashv		
	-									_	-	-				+	-	-	-											\dashv		100
	<u> </u>											-			_	\perp														\dashv		
Ľ	AR	41	18	EA	25	ļ							_	M	<u>cn</u>	ER.	_//	0	_						-				EC		-0	1
7	11	10		- 6	7	151	405							7	7/0	'or	1)	- 1		- 1				_		=	7	40	026	7/	6/2	2/
P	H			-	7.	ez	ļ 							To	5 n	B		+	2							_/	0	40	3/20	5	4	21
7	1511	18		- 2	23	5	م								5		>	+	52	3	M	5						ļ				
P	7	D						M	'						C	,		=	5	ે.	22	MS										
0	RA		:	- (4	7	- //	20:	2/	15	0'c)			4						17											
t .	- 1	!						. 04		19							٦															
		1	1	1	1	i	1																									
	VI	B	-		.5	2	n/a	(5_				+	\dashv			+		+	+													
-		-				-	-								+	+		-	\dashv								,					
-	-			-	ļ									-+		+	_										 					
_		-		-			-					-	-			+			\dashv								-					<u> </u>
_		-	-	-	-			-							_	$\frac{1}{2}$	-	+	\dashv								-	+	-	\vdash		-
	1	-	H		<u> </u>	-	-		-				51	tw	<u> PU</u>		>	+	-		2	15	-	-			-	.2				\vdash
5	An	PU	12		_	ļ	A	WA	4	572	D K			P	24.5	Έ/	613			لب	CU	11	•		-	_4	AI .	B	+		·	-
2	106	202	10	725	*		Vo	4 4	4'	26	U	-		100	5/1	4 C	4	_		3)	ڼ).	1	in				12	\$	-			\vdash
-	+-	-	0	72	6		/1		' ((CB))			11					/c	4	-					P.	-				-
																											ļ	-	_		<u> </u>	<u> </u>
5	106	02	0	72:	7		100	ي ر	EUZC	1	DM EB	4			10	سح			(1) /	A	MIS	ER			54	JR	ᆀ_				_
		1		326	7		,			"	68	1			,				A		1	•		,			4.			ļ		
		1										7																				
		1																														
-			-	1	+-		1	1																								
		-		+	+-	+		+								1																Π
-	-		-	+-	+	+		-		 				-	_											†	 	1				T
\vdash		-	+	+	+-	+	-	-	+	-				-	+						-		1	+-	1			-			<u> </u>	T
-	\perp	-	-	-	-	-	-	-	+-												-	-	-	+	 	+-	-	-		+		+
-	-	-		+-	-	-	-	-		-											+	-	+-	+-	+-	+	+	+	-	+	 	十
				-	-			+-	-	-								_			-		-	-	-	+-	+	-	-	+	-	+
		1	-		_		+		-	-											-	-	-	+-	-	-	+	-	+	+-	 	+
									-													-	-	-	-	-	- -		-	-	+-	+
																							-	-	-	<u> </u>						\perp
																							1		Co	ntin	ued	from	page			
							^		- 	-							Read	and	Und	lers	tood	Ву										
<	_	> ch	/	1		/)			_			_	1		,		•	ì									le	ŋ	/)	ſ
		ch	را		1	L_	X				2	J	υN	2				W	₩	\perp	\mathcal{N}	$\int_{-}^{}$	1	w	- <i>u</i>	Λ		_	Q			"
	/\ '	- •		ັ	iano	ч _	,						Date	;				/\			S	gned	1							Dat	T.C.	

Date: 2 Jul 21						$\overline{}$			·	Page	_ of
Sample Location: Well C				Analytical Aquirement							
Pertinent Notes (if any)				17	, ,				·		
	ers	ix*	1	ر (7	77					
	# of Containers	Sample Matrix*	0	8220 LL	109.	10MA					
	of Cc	ample	BW	328	NOUM	101			,	·	
Sample Number		Š	8	3	⋖	<				Charg	e Number
2106020725	3		X								
0726	3			X							
" 0726 " 0727 " 0728				4	X						
0328	(X		·			
					· · · · ·						
Sample Location:			Analytical Requirement								
Pertinent Notes (if any)										_	
		*	,								
	ainers	atrix			·						
	of Containers	Sample Matrix*				-					•
Sample Number	# of	Sam								Charge	e Number
a marginal and a marg										Charge	. rumoei
									_		
						_					<u>-</u>
:											
	-										
A Relinguished by	/ Time		-		·		1 1			D-1- / T	
Relinquished by: Date	/	187.	+	1		ccepte				Date / Ti	
1 1 1 1 2 M	1/1	100.	+	10	u V	\vee	Jun	~~~	- Q	-22	10900
				+							

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

\umber 6-2-21

Date: / JUN 21										Page of
Sample Location: Wak M				A	naktic	al Requ	iireme	nt		
Pertinent Notes (if any)			3	•	3				_	-
		*	2	,	7	7				
	iners	atrix	7	77	77	, (
	Conta	le M	8	Q	MA	ИA				
C IN I	# of Containers	Sample Matrix*	85P0 TC	170923	VIDAMA U	MUMAM				
Sample Number	+	01		\ <u>/</u>		_ <		i		Charge Number
2106010715	3			Δ						
" 0716	3		X							
" 07/7						X				
" 07/8	1				X					
					,					
			. –							
Samuel I and an										
Sample Location: Pertinent Notes (if any)			Т	A	nalytic	al Requ	iiremei	nt		
2 Stement Tysics (12 thry)										
	ers	rix*				i				
	ntair	Mat								
	# of Containers	Sample Matrix*								
Sample Number	#	Sa								Charge Number
	-									
					-					
Polingwished by:	/ Tr:			A						
Relinquished by: Date Jin 2	/ Time	7	2	+		ccepted	1	1)	1	Date / Time: 21 /000
fullmasm / sin 2	1/1	190		10	ri V	\ <u></u>	un	-d	. 0	<u>-1-21 1000</u>
	/						-			/
				\			•			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Jula N. W.

Read and Understood By 6 Ju 21 Von Wauch 7-7-21
Signed

Continued from page

Date: 6 Ju 21	•									Page	
Sample Location: W/eu /C					nalytie	al Regi	nremen	ıt			
Pertinent Notes (if any) Sample Number	# of Containers	Sample Matrix*	77 0978	8260 LL (158	LL NOWA	U NOVAP)			Cha	arge Number
210706 1300	3		X								9
// /30/	3		- `	X					<u>.</u>	-	
1 1302	1				X						
4 1303	1					X					
Sample Location: Pertinent Notes (if any)	Γ	<u> </u>		A	malytic	al Requ	uiremen	ıt			
	of Containers	Sample Matrix*									
Sample Number	#	S								Cha	arge Number
				\mathcal{C}	\						
Relinquished by: Date MINDBM 6 Jul 2	Time	:: 13 Y		\r	n	ccepte	\	-di	7.	Date 7 - 21	/ Time: /0 \ 30
	'	- 20		1	, w ·)	-000	-	1 -1	/ 0,50
				1			/ 				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

)JE	CT_	W	ય	L	1	ا	151	E	W	00	17	_ر							Com	inue	u iroi	No n pag	–		1 t	8	•	<u>.</u>		
1,	1 700	nc(1	4	Z.	M	IR	A	3/	4	12	(x3	5	<i>5</i> 7	· //	Vs	A	74	ER	(.5	U	002	_ (4	C	201	IP	1		
198	281)Y	Ġ	3	12	U	SE	,																						
			_	-	-							_											_							
				-								_													_					
				-																				-						
<u> </u>			0.4	-							\dashv	1	,			. 2							-	<u> </u>	>					
		516	1		<u> </u>							1	15	TEN		P	- 1	7						7	A)	10	RS	-	3	2/
M		_=	\mathcal{O}^{\cdot}	1/0)						+	+	11/	/co	M) =		1						1	- 4	UD 8	?69 ! G-S	/	7	0)
4	3		8.	14	e											-	- 11	7,		_			-/	0	9	(V/	ζ)	ь	7	<u>//</u>
M		<u> </u>	23	2. 7 21	c -1					-				77		1	7	1. 5 0 (M	<i>y</i>										
NI	2	=	11.	2	17 K	M								DA	-	2	7	U. 7	17	ש			\dashv							_
7.	2	=	7.0	1	11	IV	CI	3 7)ز			K	L	07 XF)	-	1.	31-	17				+							
UR	-	=	7.0)K ~	10	13	11	. /	ر			1		7 1			I	,												
																					1									
			-		ļ							_									,									-
											ار	. /	21	<u>-</u>	•															-
2. 4	01,	,, #		-	1	10	145	-10						ES LVC			00	15/	1/ N	IR	5		\dashv		1 10	B				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01/2		·	VOX	O		1 						ICL		(3	-) c	10	e l	101	.5			_	Di	5				
	ン/ U	04	6		I C	CA	11	(6	\mathbb{R}			, ,	,			11	/		11	7.7.				-	11					
107	671	07/-	7	1	OW	(51)EL	NOW	NA			10	!E			(l)	1/4	1.	MA	GE/L	2		•	Sw	R	1				
107	-6	271	g		OW !	1	1	FB)			1				11		(٨.					
																														L
																			ļ											L
						-																					-			_
-				1				-	-										-	-	-									_
																			-								-	<u> </u>		-
					-		-							-				-	-		-	1	-				-		-	-
			_		-	-					_			-				-	-		-						<u> </u>		-	
-				-	-			-								-				-	-						-		-	-
-				-														1		-						_	-	_		-
-					-			-					-			-	-													-
																			-	-			Con	tinue	ed fro	om p	age	J	L	1
			l <u></u>			1	<u></u>	<u></u>	1					1	Res	d and	1 (<u>)</u>	deret	nod	⊥ Bv	1		2.,			•				
Que!		1	1	/)				_		,		rved	u aiil	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	,			$\overline{}$			A					۸ ،	
1/10	1	zd	$/\!\!/$	1	<i>[</i> -	V	'		7	Ju	L	21			_		W	W	1)			Jhn	_0	h]-	1-0	4	
T W	~~																•	-	Si	• /		- v	_							

Date: 7 Jul 21										Page of
Sample Location: Week M				\bigcirc^{A}	nalytic	al Re qi	ireme	nt		
Pertinent Notes (if any)				(K)		T				
	8	*.	7)	7	7]		
	# of Containers	Sample Matrix*	77 (n onz	D Met	NOM				
	Cont	ple N	072B	60	3	M				
Sample Number	# of	Sam	9	12	\mathcal{L}	\mathcal{I}				Charge Number
	3		X							
2107070715 " 0716	3		/ \	$\sqrt{}$						
	1				\					
<u> </u>	1			_		X				
11 0718	<u> </u>									
Sample Location:				A	nalytic	al Req	uireme	nt		
Pertinent Notes (if any)										
	- <u>8</u> 2	**								:
	taine	 Matri								
	# of Containers	Sample Matrix*								
Sample Number	fo #	San								Charge Number
Relinquished by: Date	. / Tim	e.		 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	eccepte	d by:			Date / Time:
Relinquished by: Date Property	///	<u>r.</u> 5740	/)		re	1 1 1		d	7-	7-21 /0830
1 JUCC	'/'	<u> </u>		1	vu (\vee	VV-		- '-	10, 10000
				#			1.11			
									I	

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Kichard March 9 Aub 21 for W much 8-10-21

Date: 9 AUG-21				<u></u>					$\overline{}$	ge of
Sample Location: Weu K	 .			A	nalytica	al Requi	rement		_	
Pertinent Notes (if any)				(68)		FB				
	Sie	*xi	77		MM()	X				
	ıtain	Matr	1	20		MUM				
	# of Containers	Sample Matrix*	8560	mon?	4	3				XOMD
Sample Number	# 0	Sar	B	2)	7	7				Charge Number
2102090720	3	A	X							
	3	A		\overline{V}						
<u> </u>	-	A			X					
0711	1					1				
~ " 0723		4				X				
<u> </u>				ļ					_	
Sample Location:				ŀ	nalytic	cal Requ	iiremer	ıt		
Pertinent Notes (if any)			1							
			ł		ļ					
	ners	trix*	ŀ							
	# of Containers	Sample Matrix*				i				
_	ofC	ldun				1				
Sample Number	#	Š	<u> </u>		<u> </u>		<u> </u>			Charge Number
								!		
			╂	1						
			-		 					
		-	<u> </u>		-			-		
					_	-				
_										
Relinquished by:	Date / Tim	ne:				Adcept	1			Date / Time:
Relinquished by: I	-21/	0 <i>8</i> 0	0		10m	\mathcal{W}	Jun	-d	4.0	21/0910
100	7			1/	1					/
							7			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

OJECT	- (\	SE	U		U		5	rJ(ع ر	Al	/	00	12	<u>, </u>									ge _		J -	<u> </u>	<u>3 </u>			
																			۷ ,	15	1	40	() (7 U	S	1	ها	· N	1	
1. G	74	C	5	-	W	11	CC		<u> </u>	-					V									1	_=(n	1/7		-	
	l																													
																													_	
																													_	
ARA	ME	2	25												M	eta	K	10							B	UF	FES	25		
INCE					HA	S									PH	1co	DM) _	- (61				-	7	4	10:	49/ St.	, \$	12
L/	±	; ~	7:	24										-	U	RP		3		20				,	D	U	201	17	7	Ţ,
EMP	#		24	3	C										11	RB ST	D		F /6	.0	611	w		1		71		محد	1	<u></u>
EMP DAN JAD JACE JACE	‡	_/	07	3	usta	M									"	RDI	, 	-	5	79	2 11	4 5							1	
SNO			,3	81	n	15									/1	6	T	1	9	10	17								1	
4 PRE	‡ ‡	` =	7.0	8	- /	Ø.	25	1	21.	90	.)				11	ZX	P	4	É	-31	17									
1 POST	1-5		7. i	5	-/	0.	22																							5.
•		_										5A	M	PLO	ک															
MYL	<u> </u>	-			A	IA	Ly	51.	\$			PR						Co	M	g/a	SER	2				A	B			
2/08/10	07	3	5		VO	4 8	226		s L					HZ			(3)4	100	2	w					AL	5			
	07	3	P		le		l'	(EB)			٠,	,				! •		,						11				
210810	OF	3	7		DL	,4	£/C	_ ^	NM	4			(1)					<u> </u>	LA	MA	KR.				Su	v.R	/			
	05	134	3		U		"	C	EB)				"/				1	•	1	,						"				
	-																													
	-																													
																													\dashv	
		\dashv							-																				\perp	
																								_					_	
																													_	_
-									-																					
																							Cont	inue	d fro	m pa	ige			١.
			د (\wedge							ا	Read	and	Und	ersto	od B	у			4							
Colpa	1			, _	6.	_ (1)	4.	- 2	/			U.	_	1 \		<i>(</i>	11.		h	_		Q	,-16	0 -2	1	
wyo	-/(/ // Sigi	ned	70	, •				/ -		Date	·	(-		TON	V	U.	√ Sia	ned	1							Date		()

Date: 10 Aug 21							· -]	Page	<u></u>	
Sample Location: Well M				A	nalytic	al Requ	uiremen	ıt				
Pertinent Notes (if any)				(8)		To						
	SIS	ix*	ار	ENOU CE	ار	\mathcal{O}						
	# of Containers	Sample Matrix*	2260 11	2	DAMA CA	2 CANON						
	oJ t	mple	122	977	7	Z						
Sample Number	#	Sa	90	01	3	<u></u>				Cha	rge Numb	er
2108100735	3	1	X									
" 0736	3	4		X								
0737	1	4			X							
v 0738	1	4				X						
					·							
Sample Location:				A	nalytic	al Req	uiremer	ıt				
Pertinent Notes (if any)												
	_S	 *,	:									
	tainer	Aatri y										
	# of Containers	Sample Matrix*										
Sample Number	fo#	San								Cha	irge Numl	oer
								_				
					_							
Relinquished by: Date	/ Time	e:) _I A	ccepte	d by:				/ Time:	
Relinquished by: Date MIRABOL OFWE 21	10	820		10	ru \	\mathcal{N}^{1}	lun	-d	6-	10-2	//0	00
	l											
				J			,					

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

ROJECT WELK WOLEN		Notebook No. DW #8
M. GANCIA R. MIRNERL CARBOY G-1 IN USE.	PALSONT WEATHER	15 CLEAR A WARM.
CARBOY G-1 IN MCE.		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ARAMETERS	Meren 1D	Burrens
TIME = 1315 HRS	PH/COND = #	21 7 4007947
94 = 8.00	TURB -2	61 10 4101613 3
TEMP = 29.6c	11570 = 1	10.1 unes
EUND = 1045 us/cm	9 RDG = 0	9.96 xms
TURB = .27 mis	1 107 =	91017
24 PRE = 7.05-10.15 (28.22) (EXP = c	9-30-21
TURB = .87.015 ?H PRE = 7.05-10.15 (28.22 ?H PDST = 7.05-10.12		
	5AMPLES	
SAMPLE # ANMYSIS	22-50010 00	100
	PRESERVE CO	War Visis As
2109 (3 1320 VOA 8260 LL	10E/12CL (3) (War Vials /15
1321 11 21 CEB)	
21 09 (3 1322 Cow Laver NIM 1323 " " (FB	(A) 10E (1) 1	chousen Sail
1323 N 4 CCB) 11 16	<u> </u>
		Continued from page
	Read and Underst	
\rightarrow , 11 , \wedge		
Richard Mu. Gel 1	3 5507 21 oru	Un h 9-14-2
Signed	Date	Signed Date

Date: 13 SOFT 21 Sample Location: WEU K				Page _	
Sample Location: Well K		A	nalytical Requirement		
Pertinent Notes (if any)		12	(1)		
	11. X	7	7 7		
	# of Containers	בריזרוב) שניז רך	MARALL		
	f Cor	797	3 3		
Sample Number	# o	0 2	MA)	C	Charge Number
2109131320	3 7	Ζ.			
11 1321	3 K				
" 1322	1 1		\checkmark		
1 /323	1 1				
[723	, ,,				_
Sample Location: Pertinent Notes (if any)		A	Analytical Requirement		
retiment Notes (if any)					
	ners trix*				
	ontai				
	# of Containers				
Sample Number	# N				Charge Number
			-		
<u> </u>					
Relinquished by: Da MARKAL 13 SERT	ite / Time/		Accepted by:	<i>n</i> 1	te / Time:
MINATUR 13 STATE	21/133	0	on Whin	-d 9-14.	21/090
					/
	,		7		

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT WELL M WILLOUIZ

Continued from page _____

JA C	. (A2	3A1	cei	a ,	7	N	lee u:	AB G	M	-	PN	ÉS	EN	Τ,		JE	pg	712	1	CS	- (24	A	R	#	WI	AL A	U.			
P	4 R	AM	rer	CN.	S										M	E []	ER	(1									Bu	161	EN	25	771
_	N	Γ.		l .		0	14	S						_		L	~0	,	i	21										794	2 /2
PI-	-			•											, ,	Rig			1	61						1				6/3	77 / 1
TE	M	9				9%	•									1		_	1	0.1	ur	ى						•			
\overline{co}	M	•				W 0		al								1				6		•									
TI	KB					la									l .	1	1	1	1	70		ì									
7H	PK	E		1	1.0	5 -,	10.	15/	/7.	O't					1			T	T	-36											
						\$-																									
																										ļ					
													A	M	U	≥۶															
5/	M	אנו	E	<u>+</u> +			_	An			_	т					T			2		<u></u>	VI.	Pla	11	5				13	_
2	o	أرد	10	65	٥٦			1		1	1	_	B)				100	1"		1	(3	?)(10,	21	M	5			1	1 5	
		_	0	65	71		1	OL	14	UE	LN	Dμ	a G	8)				120	=		(1) /	LA	11)	SEA	2			Su	1R1	'
																ļ		ļ ,											1	L	
21	06	14	0	71	5	ļ		/OP									CE	///	1		(3	10	Įυ,	ıV	w.	\$		ļ	14	LS	
		_	0	7	16			1.		11	W	(6	\mathcal{B}					**			r			"					1		
						ļ			,									ļ				. 1	ļ.,	•							
21	09	14	1	i			(pu	J C	EUS	L	W	MA FB	-			1	Œ			(1) (11	MB	ER	_			ĴΨ	P/	
			0	7	18			10		Cr	-	1	FB)			/	•			1	t .	-	• •				ļ!	l		
						-																		-						-	
						-				<u> </u>			-					-					1								
			-																							-				-	_
								-						-				ļ		-				-							
								-				-																			
			-			-	<u> </u>																	-			-				
		_																-	ļ						-						
						-																					-				
					-	-						-	-			<u> </u>		-						-		L					
		L	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		L		<u> </u>						<u> </u>			<u></u>	L		Cor	itinu	ed fro	ım pa	1ge		

Zulad M. C. 14 SEPT 21
Sinned

Pate

Read and Understood By

Date: 14 SEPT 21										Page of
Sample Location: Wall M				A	nalytic	al Requ	uiremei	nt		
Pertinent Notes (if any)			12	CTR	_	(\$		(523)		
	ırs	 *	77	ا ز ا		(KB)	_1	-		
	# of Containers	Sample Matrix*		NO MM CLO	226016	7770922	\$	NAMA U		
	f Cor	mple	826°	≥	260	566	Morral	20		
Sample Number	#	Sa		2	00	20	_ >	Z		Charge Number
2109140650	3	Λ	X							
11 0651	1	人		X						
" D715	3	*			χ					
" 0766	3	A				X				
· 0717	1	1				•	X			
0719		A.						X	·	
								•		
Sample Location:				A	nalytic	al Requ	iiremer	nt		
Pertinent Notes (if any)										
	ρ	*								
	tainer	Matrix								
	of Containers	Sample Matrix*								
Sample Number	#	Sar								Charge Number
				i						
	/ Time	7) 1	deepte	by:	n		Date / Timer
Mansal 14 SEPT	21/	080	0	\bigvee	ru 1	\bigvee	Jan	-d	9.	19-21 /0920
	/			$\bot \! \! \downarrow \! \! \Lambda$					•	
				U			1			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT WELL K WOI ENV-0012

M. Garcia & T. Kondy Present. Weather is windy & cool. Carboy -62 Meter TD

DH/Cond = #60 EXP Bu ffers Parameters 7 - 4002691 12/21 =2110120825 Time PH = 7.05

Temp = 20.4°

Cond = 1021 us/cm

Turb = 1.10 w.s.;

PH pe = 7.00 10.02 (15.5°c)

PH posT = 7.00 10.01 = # 6 = 2, 97 Ntus 10-4101613 7/22 TURB 4 5TD (1 RDS = 3.15 Nais ((Let = 91017 (1 Exp = 10/31/21 Samples
Presevative
ICE/HCL container Analyzis Sample (3)40mL vials ALS 2110120830 VOA 8260LC -- 0831 ((FB) (-0832 (1)12 Amber Low Level NDMA SWRI TCE -0833 ((FB) de 6 Continued from page

Read and Understood By one 20 10/12/21 bu June 10-12-21
Signed Date Signed

Date: 10/12/21									1	Page 1 of 5
Sample Location: Well K				Α	nalytic	al Requ	iiremer	ıt		
Pertinent Notes (if any)			J							
	l sis	*	700	74						
	# of Containers	Sample Matrix*	8260	NON						
	oJ tc	mple	707	4.6						XGMD
Sample Number	<u> </u>	 	7	7						Charge Number
2110120830	3	4	X							
0831 (FB)	3		X				,			
083Z 0833 (FB)	1			×			٠			
0833 (FB)	1	V		×						
		•								
Sample Location:	<u> </u>	<u>!</u>		A	nalytic	al Req	uiremer	nt	-	
Pertinent Notes (if any)										
	w w	*								
	ainer	fatrix								
	# of Containers	Sample Matrix*								
Sample Number	Jo#	Sam								Charge Number
	<u> </u>			_	-					
			<u> </u>							
Relinquished by: Date	 e / Tim	e:	1) /	 Adcepte	al bv:			Date / Time:
				 II .	/ f	1 7	\ ' '		 	
	-	21/5	<u>- </u>	11	N. \	λ/	1	_,,	10-	12-21 109 30
Matt 9 -2 10/12/21	C	2915	-		lu \	\mathcal{N}	Jun	_d	10-	12-21) 09 30

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

CARLIE TO MIXERAL EXESSIVE USETHER TO CLEAR & COOL. CORED S IN USE. REMITTERS. WE = 0970 MES PARTICLE EN TORB = 7 NO 4/0/8/3 772. 1 = 768 NP = 23.5; NP = 23.5; NP = 1750 MM	OJE	CT.	(1	EZ	L	М		W	JI	بح	W	0	012) 						Con	tinue	d fro	m pa	ge			_	•			
EAMOTERS WE = 0970 MES H = 768 TOURS = 7 NO 470 /6/3 7/2 WS TO 546 TOUR WS = 137 MMS PRE = 7.02 /044 (22.9) WE = 7.02 /0.15 WARE A MACYSIS POSSENT TOUR (3) WON UNIS ALS TOURS AND WE SHALL (3) WON UNIS ALS TO 9932 TO WORK AND WARE O 9333 TO TO CESS TO TO WARE Continued from page Continued from page	. 6	AI	w	A		7.1	M.	X A	رجيرا	41	نر	/ (4	E58)	V	14	15/	27	ER	_ /	15	00	EN	RA	٠, ١	7	co	2	. (7	RB	<u>—</u>
EAMOTERS WE = 0970 MES H = 768 TOURS = 7 NO 470 /6/3 7/2 WS TO 546 TOUR WS = 137 MMS PRE = 7.02 /044 (22.9) WE = 7.02 /0.15 WARE A MACYSIS POSSENT TOUR (3) WON UNIS ALS TOURS AND WE SHALL (3) WON UNIS ALS TO 9932 TO WORK AND WARE O 9333 TO TO CESS TO TO WARE Continued from page Continued from page	-3	1.4	/ \	15	,	•		-00																	L						-
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page		-17			-																										
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																															
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																					-										
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																															
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																															
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																						1									
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																															
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page																						-									<u> </u>
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	12	41	(57	EA	5									M	27	ER		7		ļ	-	-		ļ	<u>K</u>	14	1	<u> </u>	ļ	12	_
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	M	5	=	$-\mathcal{C}$	9	70	112	ς		ļ				PI	Ica	W	<u> </u>	6	1			-	-	=	7	400	79	YF		7	ય
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	H		-	= 7	1.6	B	ļ							TU	RB	:	=	-	7	<u> </u>	-			K	7 '	4/0	16	13	ļ -	7/2	22
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	M	0	:	2	3.5	ر ح								cı.	\$11	>	ء	4	6.7	M	8	<u> </u>	_		ļ	-	ļ		<u> </u>		ļ
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	2	2	=	1	17	SU	Ica	1						n	(CD)	6	د	49	1.6	M	15	ļ		-							<u> </u>
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	121	3	=	,	39	الع	45							91	107		٤	9	101	17					ļ						
EXPLE A DAMEYSIS PLESENE CONTAINEDS CAB 10190930 VAR EXOLL (CE/HCL (35 WALUMS ALS - 0931 """(CEB) "" 10 19 0932 (ON LEVEL ARMA (CE (1) [LAMBER SWE! - 0933 """(CEB) """ ASSIME! Continued from page	12/4	E	=	7	02	1	014	(Z	7.0	ic				11/	·XI	9	=	/ε	/3	1/	15	_			_	_					<u> </u>
PARCE TO ANALYSIS PRESENCE PONTANIONS CAR 1019 0930 VOA BUD LL 10 CAPULL (35 WON UMS ALS 	Pi	51	•	7	0	2-1	10.	15												1											_
PARCE TO ANALYSIS PRESENCE PONTANIONS CAR 1019 0930 VOA BUD LL 10 CAPULL (35 WON UMS ALS 						-										-					-								-	<u> </u>	ļ
PARCE TO ANALYSIS PRESENCE PONTANIONS CAR 1019 0930 VOA BUD LL 10 CAPULL (35 WON UMS ALS 													4	2 1/2	PL	E5								<u> </u>							-
10 19 0932 (DA (EVEL NOWA) (CLE (I) (LAMBER 5WE)	1 4	I PI	15	14			1	10	,,	ر سے	<		2	200	50	115	1		204	1A	/4/	19-1	<			1	A	R			
10 19 0932 (DA (EVEL NOWA) (CLE (I) (LAMBER 5WE)	10	19	00	21	•	 	104	4	51	1/	,			101-	Tuc	.,		13	((10			1 6								
10 19 0937 (ON (EVEL NOWA) (CE (I) (LAMBER SWE)	/ 0		0	121		'	•	C						, ,					٠ ر	701			1	ļ —			, ,		İ		
0933			3	121			 															1			1	+-			-		
0933	Δ\	19	20	27	,		1	, ,	0./		ไลเ	Δ		11	4	-	1	1	1,	D	11	REL	1			٥.	A	(
Continued from page		` \	ł	1	1		1.		11	7	CA	1			Ť	T		11		1	1.7		Ť-			A	ie	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12/	,	
				2						│		7								<u> </u>								1	1		
		.,					 	†		T								1		ļ					+-	\top	T	1			
							-					1				 						1	1			1	-	1	1		
	 					-		1	-	t				+	1		+			-	+	-	-		+	+	 	+	1	T	
							-		-	<u> </u>			-			 		+	 		+	-	-		+	+	-		1		
					<u> </u>	+		-	1								1						-	-		+-		1	1		
				-		-			-	1					+	+	-		1	-	+	+	+-			+		T	+		T
			+				-	 	-	+						+-	-		-		+	+-	+			-	+	-	1		
		-	-	-	-		-			-	-				-	+	-	-	-	+	+		+	+	+	-	+-	T		 	T
				 	-	-	-							-	+-		-	-		+-	+-		-	Co	ntin	ued fi	rom I	age	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	!
Read and Understood By	L					<u> </u>	1		<u> </u>	1							<u> </u>	J	J	1	D.:		Т								
		\supset		,		,	/)						ĸea	ia and	u una	uerst	.00a	оу 	\		,	1						

1 What M L 1900-21 Date Signed with 10-19

Date: 19 OCT 2/]	Page of	
Sample Location: Wau M				A	Analytic	al Requ	iremer	ıt			
Pertinent Notes (if any)				3		13	,				
	Sis	 * .≚	J	7	A	<i>y</i>					
	# of Containers	Sample Matrix*	2	07023	DMA	MAGN					
	f Cor	nple	9128	13	5						
Sample Number	#	Sar	\mathscr{D}	82	3	77				Charge Number	r
2(10190930	3	A	X								
~ 11 0931	3	A		X							
	1	A			X						
" 0932)	A				X					
		<u> </u>									
Sample Location:	<u> </u>	<u>.</u>		<u></u>	nalytic	al Requ	iremer	t l		<u> </u>	
Pertinent Notes (if any)				<u> </u>							
		*									
	ainers	latrix									
	# of Containers	Sample Matrix*									
Sample Number	# of	Sam								Charge Number	
										charge rumou	
	1	1									
Relinguished by:	e / Time					ccented	(by)			Date / Time:	
Relinquished by: Date MRABAL 1900 2	e / Time	/	υ		ノ し	coepted	- 1		10	Date / Time:	130
Relinquished by: Date MRABAL 1900 Z	e / Time	100	υ		Du A	coepted	- 1	u-a	_ \((Date / Time:	930

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

22 PR	OJE	ECT	U	JE	u		K		6	ゴ	1_	O	(V	Ð	٥١	2					Cont	inue	d fro	No. m pag	ge					Total Person		
1	L. (JA B	RI	ew (5-	RI	.).	VII	RS US	13. SE	AL -	,	PAG	3	EL	JT	. 0	Vε	AT	7.JE	R	. (S	C	' E)	41	(7 (300	50	,	
									·		-																					
シュンション	AF	AL	WE.	5 E	200	25	M	RS								M PH	1/c	01	0	=		10				10	<i>Bu</i> 7	40	E1071	25 147 13	, 7	12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
TOTO	EN UR	10 B		÷ /	22	5 25	C USI	ICA US	1 2 (15	7.4					1	1	21 121 121	かしていて	=	5	7. € 20	1/4	rus vrus 21								
26	P	OSI		=	(,,,	<i>"</i>						-0		PL																
S	<u>s</u>	O	E BC	# 2	3 C)		As	SAL	γ 21	S(*	5 L		> <u>^</u>	L	Els	15	140	NE V		ن	<u>Co</u>	M 40	A11	UE	ns us				HB LS	~	
								(41	_	KB,						•		-		•		t/					,			
2	111	ω ξ		8:				Lou "	JZ .	BOE (L 1	CCI	14 3)				<i>10</i>	E				()	les	fai	136	e		5	"	<u> </u>		<u> </u>
			10		1/	1	/21	\mathcal{L})		K		\/\(\alpha_1\)	(2	<u> </u>		Rea		ra Un				\bigvee	m	<u> </u>			rom p		<u> </u>	4	

Date

Signed

Date

Signed

Date: & Nov 21										Page of
Sample Location: WELL K				~	nalytic	al Requ	iiremen	ıt		
Pertinent Notes (if any)				2					·	
	ırs	* .×	7		7	3				
	# of Containers	Sample Matrix*	3 0	2260 LL	7 #	4				
	f Cor	nple	9260	261	N	DIMA				X6MD
Sample Number	#	Saı	00	3)	3	<i>[</i>]				Charge Number
2/1108 0830	3	A	X							
" 0831	3	A		\times						
" 0832	1	A			X					
1 0833	1	A				\times				
Sample Location:		•		A	nalytic	al Requ	iiremen	t		
Pertinent Notes (if any)										
	<u>8</u>	**								
	taine	Matri								·
	# of Containers	Sample Matrix*								
Sample Number	#	Sar								Charge Number
								-		
·										
			-		•					
Relinquished by: Date MINABAL PNOV 2	/ Time	3 %			/ 1	cepte	lby:	n		Date / Time:
MINABAL ENONZ	<u> </u>	900)	\bot	m		un	-dh	11-0	8-4/0915
										, .
				"		•				

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

PROJECT Well M WJI ENV-0012 Continued from page ____ M. Garcia & R. Mirabal Dresent, weather is clear & cool Buffers Parameters 7-4002691 12/21 Time = 0846hrs 10-4101413 7/22 φн : 7.65 = 23.5°C (15TD = 53.6 ATU) Temp Cond = 1224 us/cm 11 RDG +52.2 NTUS Turb = .21 nh's

PH Dre = 7.00.10.10(12.50)

PHPOST = 6.98-10.09 = 200445 11 60+ = 11-30-21 LEXP Samples resev. Confainer
Ice/HCL (3) 40 ML vials Analysis Vo A 8260LL C (FB) Lab Sample 425 2111020845 ---0846 ¢ c Low Level NOMA (1) 12 Amber -0847 Ice SRI ((FB) -0848 12

Read and Understood By Rudal M'62 2 Nov 21 Jan Januar 11-3-21

Date Date

Continued from page

Date: 2 Na Z									I	Page	
Sample Location:				Α	nalytic		iremen	t		-	
Pertinent Notes (if any)				ER	1	133	`				
	ers	ix*	1		7	\mathcal{Z}					
	# of Containers	Sample Matrix*	8260 L	8260LL	4	NOMA					
	oJ to	mple	2	281	NOWA	M					
Sample Number	#	Sa	95	ω		~				Charge	e Number
211/020845	3	A	X								· · · · · ·
- 11 0846	3	A		$ \prec $							
· 0247	1	A			\prec					_	
1, 0848	1	A				\sim					
	·					.,,					
-											***************************************
Sample Location:		1		Δ	nalytic	al Regu	uiremen	t			<u>-</u>
Pertinent Notes (if any)				<i>P</i> :	marytic	ar Requ					
	iners	atrrix*									
	onta	le Ma									
Committee Name	# of Containers	Sample Matrix*								CI.	- NT1
Sample Number		1								Charg	e Number
								**			
					-				-		
										<u> </u>	
					`\						
	: / Tim) A	ccepte			1.	Date / T	7
RMIRABON ZNWZ	2] /[1000		$+\Gamma$	ori	W	Jum	-dr	11-	3-21	10930
	/_			$\bot \! \! \downarrow \! \! \downarrow$			<u> </u>				
				U				_			

^{*} Sample Matrix Types: G – Gaseous; A – Aqueous; S – Solid; O – Other:

Appendix C Chemical Analytical Program (Internal QA reports)

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

August 2021

NM 8800019434

Report Submitted: January 25, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in August 2021.
- The quantity and type of quality control samples collected or prepared in August 2021.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the August 2021 QAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in August 2021. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for August 2021

Well ID	Event Date
400-EV-131	8/2/2021
400-JV-150	8/2/2021
ST-4-589	8/2/2021
ST-5-655	8/2/2021
ST-5-985	8/2/2021
400-GV-125	8/3/2021
BLM-23-431	8/3/2021

Well ID	Event Date
BLM-25-455	8/3/2021
PL-12-800	8/3/2021
ST-5-815	8/3/2021
PL-12-570	8/4/2021
ST-5-1175	8/4/2021
ST-5-485	8/4/2021
BLM-21-400	8/5/2021

Well ID	Event Date
PL-7-560	8/5/2021
BLM-32-543	8/9/2021
BLM-32-571	8/9/2021
BLM-32-632	8/9/2021
NASA 3	8/9/2021
PL-7-480	8/10/2021
200-Н-331	8/11/2021

Well ID	Event Date
200-H-433	8/11/2021
200-H-225	8/12/2021
400-D-355	8/12/2021
B650-EFF-1	8/12/2021
B650-INF-1	8/12/2021
B655-EFF-2	8/12/2021
B655-INF-2	8/12/2021

Well ID	Event Date
400-D-195	8/16/2021
400-D-275	8/16/2021
MPE-1	8/16/2021
MPE-10	8/16/2021
MPE-11	8/16/2021
MPE-8	8/16/2021
MPE-9	8/16/2021

Well ID	Event Date
WB-5-345	8/17/2021
700-E-458	8/18/2021
WB-5-280	8/18/2021
WB-5-250	8/19/2021
WB-14-520	8/23/2021

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicate	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	15	0	0	0	0	0	0
Nitrosamines by EPA Method 607	36	1	1	0	1	4	1
Perchlorate by SW-846 Method 6850	16	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	1	0	0	0	0	0	0
PCBs by SW-846 Method 8082	1	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	1	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	25	19	6	2	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	15	4	11	7	0	0	1
Semi-Volatile Organics by SW-846 Method 8270D	5	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	1	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	1	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0
Anions by Various EPA Methods	16	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	24	1	2	0	1	2	0
Nitrosamines by Low-Level Method	18	11	7	7	1	2	0
Total Dissolved Solids by Standard Method 2540C	15	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 9/1/2020	QC Qty. since 9/1/2020	QC % since 9/1/2020	Sample Quantity August 2021	QC Quantity August 2021	QC % August 2021
VOA Duplicates	10	527	56	11	40	4	10
VOA Matrix Spikes	2	527	12	2	40	1	2
607 Duplicates	10	330	34	10	36	4	11
607 Matrix Spikes	2	330	8	2	36	1	3
607 Equipment Blanks	2	330	10	3	36	1	3
607 Field Blanks	2	330	10	3	36	1	3
NDMA_LL Duplicates	10	311	36	12	18	2	11
NDMA_LL Matrix Spikes	2	311	9	3	18	0	0
Metals Duplicates	10	216	22	10	24	2	8
Metals Matrix Spikes	2	216	6	3	24	0	0
Metals Equipment Blanks	5	216	12	6	24	2	8
Metals Field Blanks	5	216	12	6	24	1	4

Quality Control Requirement	Requirement %	Sample Events since 9/1/2020	QC Qty. since 9/1/2020	QC % since 9/1/2020	Sample Events August 2021	QC Quantity August 2021	QC % August 2021
VOA Equipment Blanks and Field Blanks	Should approach 100%	527	527	100%	40	40	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	311	311	100%	18	18	100%

Quality Control Requirement	Requirement %	Shipments since 9/1/2020	TB Qty. since 9/1/2020	TB % since 9/1/2020	Shipments in August 2021	TB Quantity August 2021	QC % August 2021
VOA Trip Blank (per shipment)	Should approach 100%	101	101	100%	8	8	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	95	95	100%	7	7	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	15	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	120	0	0	0	0	0	0	0
Perchlorate by SW-846 Method 6850	16	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	21	0	0	0	0	0	0	0

Method	Total Result Records	"FB"	"EB"	"ТВ"	"Q"	"QD"	"SP"	"R"
PCBs by SW-846 Method 8082	7	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	6	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1900	11	0	0	8	0	0	0
Low Level Volatile Organics by SW-846 Method 8260C	975	1	2	2	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	611	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	25	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034	1	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0	0
Anions by Various EPA Methods	64	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	702	0	1	0	0	4	0	0
Nitrosamines by Low-Level Method	40	10	7	3	1	2	0	0
Total Dissolved Solids by Standard Method 2540C	15	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11411	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	15	0	0	0	0	0	0	0	0	3
Nitrosamines by EPA Method 607	120	0	0	0	0	0	0	0	0	4
Perchlorate by SW-846 Method 6850	16	0	0	0	0	0	0	0	0	1
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	21	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	7	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	6	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1900	0	10	0	0	10	0	0	0	41
Low Level Volatile Organics by SW-846 Method 8260C	975	0	8	0	0	5	0	0	0	16
Semi-Volatile Organics by SW-846 Method 8270D	611	0	6	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	25	0	0	0	0	3	0	0	0	3
Cyanide by SW-846 Method 9012B	1	0	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9034		0	0	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	1	0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	64	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	702	0	0	0	0	0	0	0	0	119
Nitrosamines by Low-Level Method	40	4	4	0	0	5	0	0	1	4
Total Dissolved Solids by Standard Method 2540C	15	0	0	0	0	0	0	0	0	0

Table 7 – Quality Assurance Narratives

Tubic / Qui	ancy resput and	
Well ID	Event Date	SW-846 Method 8260C QA Narratives
NASA 3	8/9/2021	For Low Level SW-846 Method 8260C, 2-butanone (MEK) (0.97 ug/L) was detected in the field blank (2108090951C) below the reporting limit. No groundwater data are affected by this field blank contamination.
B655-EFF-2	8/12/2021	For Low Level SW-846 Method 8260C, 2-propanol (3.7 ug/L) and chloromethane (0.42 ng/L) were detected in the field blank (2108121006) below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
WB-14-520	8/23/2021	For Low Level SW-846 Method 8260C, 2-propanol (3.8 ug/L) and chloromethane (0.29
		ug/L) were detected in the trip blank (2108230730Y) below the reporting limit.
		Affected data are appropriately qualified.
400-D-195	8/16/2021	For Low Level SW-846 Method 8260C, 2-propanol (5.1 ug/L) was detected below the
		reporting limit and two unknown compounds were tentatively identified by a GC.MS
		library search in the equipment blank (2108161520Y). Affected data are appropriately
		qualified.
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, 2-propanol (9.6 ug/L) and chloromethane (0.59
		ug/L) were detected in the equipment blank (2108121430Y) below the reporting limit
		for 2-propanol only. Affected data are appropriately qualified.
ST-5-1175	8/4/2021	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the
		method blank for analytical batch 734632 below the reporting limit. No groundwater data
		are affected by this method blank contamination.
ST-5-485	8/4/2021	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the
		method blank for analytical batch 734632 below the reporting limit. Affected data are
		appropriately qualified.
ST-5-815	8/3/2021	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the
		method blank for analytical batch 734632 below the reporting limit. Affected data are
~ ~ ~ ~ ~ ~	0 /0 /0 00 1	appropriately qualified.
ST-5-985	8/2/2021	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the
		method blank for analytical batch 734632 below the reporting limit. No groundwater data
100 D 277	0/1/2021	are affected by this method blank contamination.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the trip
		blank (2108160800Y) below the reporting limit. No groundwater data are affected by this
400 D 275	0/1//2021	trip blank contamination.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the
		equipment blank (2108160930Y) below the reporting limit. No groundwater data are
D(50 EEE 1	0/12/2021	affected by this equipment blank contamination.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.38 ug/L) was detected in the trip blank (2108120900) below the reporting limit. No groundwater data are affected by this trip
		blank contamination.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.43 ug/L) was detected in the
D030-EFT-1	0/12/2021	field blank (2108161336) below the reporting limit. No groundwater data are affected by
		this field blank contamination.
400-D-195	8/16/2021	For Low Level SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the
400-D-173	0/10/2021	method blank for analytical batch 736172 below the reporting limit. Affected data are
		appropriately qualified.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the
100 B 275	0/10/2021	method blank for analytical batch 736172 below the reporting limit. No groundwater data
		are affected by this method blank contamination.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the
	0	method blank for analytical batch 736172 below the reporting limit. No groundwater data
		are affected by this method blank contamination.
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.68 ug/L) was detected in the
		method blank for analytical batch 735951 below the reporting limit. Affected data are
		appropriately qualified.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.68 ug/L) was detected in the
		method blank for analytical batch 735951 below the reporting limit. No groundwater data
		are affected by this method blank contamination.
B655-EFF-2	8/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.68 ug/L) was detected in the
		method blank for analytical batch 735951 below the reporting limit. Affected data are
		appropriately qualified.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, due to a sample numbering error, the original
		effluent sample and field blank collected 8/12/2021 were discarded and a replacement
		sample and field blank were collected 8/16/2021.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, matrix spike recoveries for sample 2108121526Y
400 D 105	0/1//2021	were within laboratory control limits.
400-D-195	8/10/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no
		detections of the analyte in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was performed and is reported on another analytical run. The
		analyte affected is flagged in the LCS Summary. Affected data are appropriately
		qualified.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery
		of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no
		detections of the analyte in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples was performed and is reported on another analytical run. The
		analyte affected is flagged in the LCS Summary. Affected data are appropriately
		qualified.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery
		of the Laboratory Control Sample (LCS) was exceeded for one analyte. There were no
		detections of the analyte in the associated field samples. The discrepancy associated
		with reduced recovery equates to a potential low bias. Additional analysis of the
		associated field samples was performed and is reported on another analytical run. The
		analyte affected is flagged in the LCS Summary. Affected data are appropriately qualified.
400-D-195	8/16/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
400 D 333	0/12/2021	more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
B655-EFF-2	8/12/2021	The data quality was not significantly affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
DUJJ-EFF-Z	0/12/2021	more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-7-480	8/10/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
om 5 115-	0///	The data quality was not significantly affected and no further corrective action was taken.
ST-5-1175	8/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-5-485	8/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or
	S. 1. 2021	more analytes in the Continuing Calibration Verification (CCV). Since there were no
		detections of the analyte(s) in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-5-815	8/3/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-5-985	8/2/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
WB-14-520	8/23/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
400-D-195	8/16/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
400-D-275	8/16/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
B655-EFF-2	8/12/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-4-589	8/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-5-1175	8/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-5-485	8/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for
		one or more analytes in the Laboratory Control Sample (LCS). There were no
		detections of the analyte(s) in the associated field samples above the reporting limit.
		The error associated with elevated recovery equates to a high bias. The sample data is
		not significantly affected. No further corrective action was appropriate. Affected data
		below the reporting limit are appropriately qualified.
ST-5-655	8/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
ST-5-815	8/3/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for
		one or more analytes in the Laboratory Control Sample (LCS). There were no
		detections of the analyte(s) in the associated field samples above the reporting limit.
		The error associated with elevated recovery equates to a high bias. The sample data is
		not significantly affected. No further corrective action was appropriate. Affected data
		below the reporting limit are appropriately qualified.
ST-5-985	8/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
21 2 702	0,2,2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
WB-14-520	8/23/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for
W D-14-320	0/25/2021	one or more analytes in the Laboratory Control Sample (LCS). There were no
		detections of the analyte(s) above the MRL in the associated field samples. The error
		associated with elevated recovery equates to a high bias. The sample data is not
		significantly affected. No further corrective action was appropriate. Affected data
		below the reporting limit is appropriately qualified.
400-D-195	8/16/2021	
400-D-173	0/10/2021	more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
400 D 275	9/16/2021	
400-D-275	8/10/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
400 D 255	0/10/2021	quality was not significantly affected and no further corrective action was taken.
400-D-355	8/12/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	8/12/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
B655-EFF-2	8/12/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
PL-7-480	8/10/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
ST-4-589	8/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
ST-5-1175	8/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
CT 5 405	9/4/2021	quality was not significantly affected and no further corrective action was taken.
ST-5-485	8/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
ST-5-655	8/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
51-5-055	0/2/2021	more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
ST-5-815	8/3/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
		quality was not significantly affected and no further corrective action was taken.
ST-5-985	8/2/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data
	0/22/2021	quality was not significantly affected and no further corrective action was taken.
WB-14-520	8/23/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or
		more analytes in the Continuing Calibration Verification (CCV). The field samples
		analyzed in this sequence did not contain the analyte(s) in question above the Method
		Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
NASA 3	8/0/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-7-480		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-7-480		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-7-560		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-7-560		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-589		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-589		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-5-1175		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-5-485		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-5-655		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-5-815		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-5-985		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WB-14-520		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
BLM-23-431		For SW-846 Method 8260C in blind control sample (2108031426C), the percent
DDN1-43-431	0/3/2021	recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (184%), trichloroethene (152%), tetrachloroethene (138%), and trichlorofluoromethane (166%) were outside of the

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		standard limits (75-125%). Additionally, 1,1-dichloroethene (0.4 ug/L) and vinyl
		chloride (0.31 ug/L) were detected below the reporting limit but none was added.
		Affected data are appropriately qualified.
200-H-225	8/12/2021	For SW-846 Method 8260C, 2-propanol (11 ug/L), chloromethane (0.28 ug/L), and
		tetrachloroethene (PCE) (0.27 ug/L) were detected in the equipment blank (2108120850Y)
		below the reporting limit. No groundwater data are affected by this equipment blank
		contamination.
WB-5-280	8/18/2021	For SW-846 Method 8260C, 2-propanol (12 ug/L) was detected in the equipment blank
		(2108181340Y) below the reporting limit. No groundwater data are affected by this
		equipment blank contamination.
700-E-458	8/18/2021	For SW-846 Method 8260C, 2-propanol (14 ug/L) was detected in the field blank
, 00 2 .00	0/10/2021	(2108180926C) below the reporting limit. No groundwater data are affected by this field
		blank contamination.
MPE-10	8/16/2021	For SW-846 Method 8260C, 2-propanol (4.6 ug/L) was detected in the field blank
WIL TO	0/10/2021	(2108161221) below the reporting limit. No groundwater data are affected by this field
		blank contamination.
400-JV-150	8/2/2021	For SW-846 Method 8260C, 2-propanol (6.0 ug/L) and chloromethane (0.35 ug/L)
100-0 1-130	0/2/2021	were detected below the reporting limit and one unknown compound (7.2 ug/L) was
		tentatively identified by a GC/MS library search in the field blank (2108021419C).
		Affected data are appropriately qualified.
PL-12-570	8/4/2021	For SW-846 Method 8260C, 2-propanol (7.2 ug/L) and chloromethane (0.3 ug/L) were
1 L-12-370	0/4/2021	detected below the reporting limit and silane, methoxytrimethyl- (8.3 ug/L) and one
		unknown compound (7.3 ug/L) were tentatively identified by a GC/MS library search
		in the field blank (2108040941C). Affected data are appropriately qualified.
WB-5-250	9/10/2021	For SW-846 Method 8260C, carbon disulfide (0.65 ug/L) was detected below the
W D-3-230	0/19/2021	reporting limit and sulfur dioxide (26 ug/L) was tentatively identified by a GC/MS
		library search in the equipment blank (2108191410Y). Affected data are appropriately
400-GV-125	9/2/2021	qualified. For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method
400-G V-125	8/3/2021	
		blank for analytical batch 734632 below the reporting limit. Affected data are
BLM-25-455	9/2/2021	appropriately qualified. For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method
BLWI-25-455	8/3/2021	
		blank for analytical batch 734632 below the reporting limit. Affected data are
DI 12 570	0/4/2021	appropriately qualified.
PL-12-570	8/4/2021	, 8 ,
		blank for analytical batch 734632 below the reporting limit. Affected data are
DI 13 000	0/2/2021	appropriately qualified.
PL-12-800	8/3/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method
		blank for analytical batch 734632 below the reporting limit. Affected data are
MDE 11	0/1//2021	appropriately qualified.
MPE-11	8/16/2021	For SW-846 Method 8260C, chloromethane (0.31 ug/L) was detected in the field blank
A CDE O	0/4 6/8 004	(2108161242) below the reporting limit. Affected data are appropriately qualified.
MPE-9	8/16/2021	For SW-846 Method 8260C, chloromethane (0.32 ug/L) was detected in the field blank
		(2108160956) below the reporting limit. Affected data are appropriately qualified.
PL-12-800	8/3/2021	For SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the field blank
		(2108041436C) below the reporting limit. Affected data are appropriately qualified.
MPE-1	8/16/2021	For SW-846 Method 8260C, chloromethane (0.34 ug/L) and tetrahydrofuran (THF)
		(2.2 ug/L) were detected in the field blank (2108160927) below the reporting limit.
		Affected data are appropriately qualified.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, chloromethane (0.34 ug/L) was detected in the method blank
		for analytical batch 734908 below the reporting limit. No groundwater data are affected by
		this method blank contamination.
400-EV-131	8/2/2021	For SW-846 Method 8260C, chloromethane (0.38 ug/L) was detected in the field blank
		(2108021002C) below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-23-431	8/3/2021	For SW-846 Method 8260C, chloromethane (0.38 ug/L) was detected in the field blank
22 20 .01		(2108031422C) below the reporting limit. No groundwater data are affected by this field
		blank contamination.
MPE-8	8/16/2021	For SW-846 Method 8260C, chloromethane (0.45 ng/L) was detected in the field blank
		(2108160946) below the reporting limit. No groundwater data are affected by this field
		blank contamination.
MPE-1	8/16/2021	For SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the method
		blank for analytical batch 736172 below the reporting limit. Affected data are
		appropriately qualified.
MPE-10	8/16/2021	For SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the method
		blank for analytical batch 736172 below the reporting limit. Affected data are
		appropriately qualified.
MPE-11	8/16/2021	For SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the method
		blank for analytical batch 736172 below the reporting limit. Affected data are
		appropriately qualified.
MPE-8	8/16/2021	For SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the method blank
		for analytical batch 736172 below the reporting limit. No groundwater data are affected by
		this method blank contamination.
MPE-9	8/16/2021	For SW-846 Method 8260C, chloromethane (0.58 ug/L) was detected in the method
		blank for analytical batch 736172 below the reporting limit. Affected data are
		appropriately qualified.
400-EV-131	8/2/2021	For SW-846 Method 8260C, field duplicate samples 2108021000C and 2108021001C the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 21.8%. Upper
		acceptance limit for relative percent difference is 25%.
400-EV-131	8/2/2021	For SW-846 Method 8260C, field duplicate samples 2108021000C and 2108021001C the
		relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper
		acceptance limit for relative percent difference is 25%.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, field duplicate samples 2108031420C and 2108031421C the
		relative percent difference for dichlorofluoromethane (CFC 21) was 1.4%. Upper
		acceptance limit for relative percent difference is 25%.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, field duplicate samples 2108031420C and 2108031421C the
		relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 6.9%.
		Upper acceptance limit for relative percent difference is 25%.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, field duplicate samples 2108031420C and 2108031421C the
		relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper
		acceptance limit for relative percent difference is 25%.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, field duplicate samples 2108031420C and 2108031421C the
		relative percent difference for trichloroethene (TCE) was 3.8%. Upper acceptance limit for
		relative percent difference is 25%.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, field duplicate samples 2108031420C and 2108031421C the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper
		acceptance limit for relative percent difference is 25%.
MPE-1	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108160925 and 2108160926 the
		relative percent difference for trichloroethene (TCE) was 6.9%. Upper acceptance limit for
		relative percent difference is 25%.
MPE-1	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108160925 and 2108160926 the
		relative percent difference for trichlorofluoromethane (CFC 11) was 6.9%. Upper
		acceptance limit for relative percent difference is 25%.
MPE-1	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108160925 and 2108160926 the
		relative percent difference for tetrachloroethene (PCE) was 9.5%. Upper acceptance limit
		for relative percent difference is 25%.
MPE-1	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108160925 and 2108160926 the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 2.8%. Upper
		acceptance limit for relative percent difference is 25%.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
MPE-11	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108161240 and 2108161241 the
		relative percent difference for trichloroethene (TCE) was 7.2%. Upper acceptance limit for
		relative percent difference is 25%.
MPE-11	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108161240 and 2108161241 the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 18.2%. Upper
		acceptance limit for relative percent difference is 25%.
MPE-11	8/16/2021	For SW-846 Method 8260C, field duplicate samples 2108161240 and 2108161241 the
		relative percent difference for trichlorofluoromethane (CFC 11) was 13.3%. Upper
		acceptance limit for relative percent difference is 25%.
200-H-433	8/11/2021	For SW-846 Method 8260C, silane, fluorotrimethyl- (19 ug/L) and silane,
200 11 100	0/11/2021	methoxytrimethyl- (5.6 ug/L) were tentatively identified by a GC/MS library search in
		sample 2108111510Y.
400-EV-131	8/2/2021	For SW-846 Method 8260C, silane, methoxytrimethyl- (13 ug/L) was tentatively
400-E V-131	0/2/2021	identified by a GC/MS library search in sample 2108021001C.
MPE-1	Q/16/2021	For SW-846 Method 8260C, silane, methoxytrimethyl- (6.2 ug/L) and one unknown
NIFE-1	0/10/2021	compound (9.7 ug/L) were tentatively identified by a GC/MS library search in
		duplicate sample 2108160926.
DI 13 570	0/4/2021	•
PL-12-570	8/4/2021	For SW-846 Method 8260C, silane, methoxytrimethyl- (8.8 ug/L) and two unknown
		compounds were tentatively identified by a GC/MS library search in sample
		2108040940C.
WB-5-250	8/19/2021	For SW-846 Method 8260C, sulfur dioxide (150 ug/L) and two unknown compounds
		were tentatively identified by a GC/MS library search in sample 2108191500Y.
WB-5-345	8/17/2021	For SW-846 Method 8260C, sulfur dioxide (20 ug/L) and one unknown compound
		(110 ug/L) were tentatively identified by a GC/MS library search in sample
		2108180845Y.
WB-5-280	8/18/2021	For SW-846 Method 8260C, sulfur dioxide (77 ug/L) and one unknown compound (20
		ug/L) were tentatively identified by a GC/MS library search in sample 2108191305Y.
200-H-225	8/12/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-H-331	8/11/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
200-H-433	8/11/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
200-11-433	0/11/2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
400 EV 121	0/2/2021	was not significantly affected and no further corrective action was taken.
400-EV-131	8/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
400-GV-125	8/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
400-JV-150	8/2/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
700-E-458	8/18/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
	3.10,2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
		was not significantly affected and no further confective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
B650-INF-1	8/12/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
B655-INF-2	8/12/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-21-400	8/5/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-25-455	8/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
BEI/1 25 155	0/3/2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
PL-12-570	8/4/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
112 370	0/4/2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
PL-12-800	8/3/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
1 L-12-000	0/3/2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
WB-5-250	8/19/2021	
W D-3-230	0/19/2021	in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
WB-5-280	8/18/2021	
W D-3-280	8/18/2021	
		in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality
WD 5 245	9/17/2021	was not significantly affected and no further corrective action was taken.
WB-5-345	8/1//2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
400 EV 121	0/2/2021	was not significantly affected and no further corrective action was taken.
400-EV-131	8/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
400 CV 105	0/2/2021	action was appropriate.
400-GV-125	8/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples above the reporting limit. The error
		associated with elevated recovery equates to a high bias. The sample data is not
		significantly affected. No further corrective action was appropriate. Affected data
	_	below the reporting limit are appropriately qualified.
400-JV-150	8/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
700-E-458	8/18/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective
BLM-23-431	8/3/2021	action was appropriate. For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective
BLM-25-455	8/3/2021	action was appropriate. For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples above the reporting limit. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
MPE-1	8/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
MPE-10	8/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
MPE-11	8/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
MPE-8	8/16/2021	* * * * * * * * * * * * * * * * * * *
MPE-9	8/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
PL-12-570	8/4/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples above the reporting limit. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
PL-12-800	8/3/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples above the reporting limit. The error associated with elevated recovery equates to a high bias. The sample data is not

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		significantly affected. No further corrective action was appropriate. Affected data
		below the reporting limit are appropriately qualified.
WB-5-250	8/19/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
WB-5-280	8/18/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
WB-5-345	8/17/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
400-EV-131	8/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
400 GTT 105	0/2/2021	significantly affected and no further corrective action was taken.
400-GV-125	8/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
400 IV 150	0/2/2021	significantly affected and no further corrective action was taken.
400-JV-150	8/2/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
		significantly affected and no further corrective action was taken.
700-E-458	8/18/2021	-
700 E 430	0/10/2021	in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
		significantly affected and no further corrective action was taken.
BLM-23-431	8/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes
22 20 .01	0.0.2021	in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
		significantly affected and no further corrective action was taken.
BLM-25-455	8/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
		significantly affected and no further corrective action was taken.
MPE-1	8/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not
		significantly affected and no further corrective action was taken.
MPE-10	8/16/2021	
		in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		(MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
MPE-11	8/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
MPE-8	8/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
MPE-9	8/16/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-12-570	8/4/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-12-800	8/3/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WB-5-250	8/19/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
WB-5-280	8/18/2021	-
WB-5-345	8/17/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-H-331	8/11/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
200-H-433	8/11/2021	For SW-846 Method 8260C, there were no detections in the equipment blank.
WB-5-345		For SW-846 Method 8260C, there were no detections in the equipment blank.
400-GV-125	8/3/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1		For SW-846 Method 8260C, there were no detections in the field blank.
B655-INF-2		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-21-400		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-25-455		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-543		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-571		For SW-846 Method 8260C, there were no detections in the field blank.
BLM-32-632		For SW-846 Method 8260C, there were no detections in the field blank.
700-E-458	8/18/2021	For SW-846 Method 8260C, there were no detections in the trip blank.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-25-455	8/3/2021	For SW-846 Method 8260C, there were no detections in the trip blank.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
BLM-23-431	8/3/2021	For Modified EPA Method 607 in blind control sample (2108031427C), all recoveries were
		within standard limits.
400-JV-150	8/2/2021	For Modified EPA Method 607, field duplicate samples 2108021420C and 2108021421C the
		relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative
		percent difference is 25%.
400-JV-150	8/2/2021	For Modified EPA Method 607, field duplicate samples 2108021420C and 2108021421C the
		relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit
		for relative percent difference is 25%.
400-JV-150	8/2/2021	For Modified EPA Method 607, field duplicate samples 2108021420C and 2108021421C the
		relative percent difference for N-nitrodimethylamine was 2.2%. Upper acceptance limit for
DI 1 01 100	0/5/0001	relative percent difference is 25%.
BLM-21-400	8/5/2021	For Modified EPA Method 607, field duplicate samples 2108050855B and 2108050856B the
		relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative
BLM-21-400	9/5/2021	percent difference is 25%. For Modified EPA Method 607, field duplicate samples 2108050855B and 2108050856B the
BLW-21-400	8/3/2021	relative percent difference for N-nitrosodimethylamine was 2.5%. Upper acceptance limit
		for relative percent difference is 25%.
BLM-21-400	8/5/2021	For Modified EPA Method 607, field duplicate samples 2108050855B and 2108050856B the
DLW-21-400	0/3/2021	relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for
		relative percent difference is 25%.
MPE-10	8/16/2021	For Modified EPA Method 607, field duplicate samples 2108161222 and 2108161223 the
111111111111111111111111111111111111111	0,10,2021	relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for
		relative percent difference is 25%.
MPE-10	8/16/2021	For Modified EPA Method 607, field duplicate samples 2108161222 and 2108161223 the
		relative percent difference for bromacil was 2.7%. Upper acceptance limit for relative
		percent difference is 25%.
MPE-10	8/16/2021	For Modified EPA Method 607, field duplicate samples 2108161222 and 2108161223 the
		relative percent difference for N-nitrosodimethylamine was 3.4%. Upper acceptance limit
		for relative percent difference is 25%.
MPE-11	8/16/2021	For Modified EPA Method 607, field duplicate samples 2108161243 and 2108161244 the
		relative percent difference for N-nitrodimethylamine was 4.7%. Upper acceptance limit for
	0/4 5/2024	relative percent difference is 25%.
MPE-11	8/16/2021	For Modified EPA Method 607, field duplicate samples 2108161243 and 2108161244 the
		relative percent difference for N-nitrosodimethylamine was 0.0%. Upper acceptance limit
CT 4 500	0/2/2021	for relative percent difference is 25%.
ST-4-589	8/2/2021	For Modified EPA Method 607, matrix spike recoveries for sample 2108020938B were
200 H 422	0/11/2021	within laboratory control limits.
200-H-433		For Modified EPA Method 607, there were no detections in the equipment blank.
B655-EFF-2	8/12/2021	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
NASA 3	8/9/2021	For Low Level Nitrosamine Method in blind control sample (2108091550C), the
		percent recovery for N-nitrosodimethylamine (136%) was outside of the standard limits
		(70-130%). Additionally, N-nitrodimethylamine (2.4 ng/L) was detected but none was
		added. Affected data are appropriately qualified.
BLM-32-543	8/9/2021	For Low Level Nitrosamine Method, field duplicate samples 2108091505B and
		2108091550B the relative percent difference for N-nitrosodimethylamine was 31.6%.
		This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-25-455	8/3/2021	For Low Level Nitrosamine Method, for field blank 2108031005B the recovery of the
		internal standard NDMA-d6 (8.16%) was outside laboratory control limits (10-100%). No

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
		corrective action was deemed necessary by the analytical laboratory based on sufficient
DI 14 00	0.10.12.02.1	signal to noise ratios.
BLM-32-571	8/9/2021	For Low Level Nitrosamine Method, for sample 2108091510B the recoveries of the internal standards NDMA-d6 (146%) and DMN-d6 (145%) were outside laboratory control limits (10-100%). This is dure to matrix interferences in the sample causing instability in the lock mass. This resulted in suppression of the recovery standard, which is in a different acquisition function than either of the internal standards. As the associated native compounds elute closely to their internal standards in the same function, the effect of this instability is reduced. Affected data are appropriately qualified.
ST-4-589	8/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21H04CM1) below the reporting limit. Affected data are appropriately qualified.
ST-5-655	8/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21H04CM1) below the reporting limit. No groundwater data are affected by this method blank contamination.
ST-5-985	8/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21H04CM1) below the reporting limit. No groundwater data are affected by this method blank contamination.
ST-5-485	8/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.35 ng/L) was detected in the equipment blank (2108040941Y) below the reporting limit. Affected data are appropriately qualified.
ST-4-589	8/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.37 ng/L) was detected in the trip blank (2108020751B) below the reporting limit. Affected data are appropriately qualified.
B650-EFF-1	8/12/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21H19CM1) below the reporting limit. Affected data are appropriately qualified.
B655-EFF-2	8/12/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21H19CM1) below the reporting limit. Affected data are appropriately qualified.
BLM-25-455	8/3/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the trip blank (2108030741B) below the reporting limit. No groundwater data are affected by this trip blank contamination.
BLM-25-455	8/3/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.41 ng/L) was detected in the field blank (2108031005B) below the reporting limit. No groundwater data are affected by this field blank contamination.
PL-7-560	8/5/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the equipment blank (2108051331Y) below the reporting limit. Affected data are appropriately qualified.
ST-5-1175	8/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the equipment blank (2108041401Y) below the reporting limit. Affected data are appropriately qualified.
PL-7-560	8/5/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.45 ng/L) was detected in the trip blank (2108051031Y) below the reporting limit. Affected data are appropriately qualified.
700-E-458	8/18/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the method blank (PB21H23HE1) below the reporting limit. Affected data are appropriately qualified.
PL-12-570	8/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.49 ng/L) was detected in the field blank (2108040944C). Affected data are appropriately qualified.
PL-7-480		For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.1 ng/L) was detected in the equipment blank (2108100831Y). Affected data are appropriately qualified.
ST-5-985	8/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.4 ng/L) was detected in the equipment blank (2108021531Y). Affected data are appropriately qualified.

Event Date	Low-Level Nitrosamine Method QA Narratives
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108180941C) at 0.63 ng/L. Affected data are appropriately qualified.
8/18/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the trip blank (2108180731C) at 0.75 ng/L. Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108120925) at 0.72 ng/L. Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108121010) at 0.62 ng/L. Affected data are appropriately qualified.
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108091506B) at 0.73 ng/L. Affected data are appropriately qualified.
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108090954C) at 0.53 ng/L. Affected data are appropriately qualified.
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108041439C) at 0.6 ng/L. Affected data are appropriately qualified.
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the field blank (2108020940B) at 0.55 ng/L. Affected data are appropriately qualified.
	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the equipment blank (2108020901Y) at 2.3 ng/L. Affected data are appropriately qualified.
8/3/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine was detected in the equipment blank (2108031341Y) at 0.93 ng/L. Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2108120923 and 2108120924 were within control limits or below the calculable range.
8/18/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (59%) for the laboratory control sample (LCS21H23HE1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/18/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (41%) in the laboratory fortified blank (LFB21H23HE1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (63%) for the laboratory control sample (LCS21H19CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (48%) in the laboratory fortified blank (LFB21H19CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (48%) in the laboratory fortified blank (LFB21H19CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (63%) for the laboratory control sample (LCS21H19CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
8/12/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
8/9/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
	For Low Level Nitrosamine Method, there were no detections in the field blank.
	For Low Level Nitrosamine Method, there were no detections in the trip blank.
	For Low Level Nitrosamine Method, there were no detections in the trip blank.
	8/18/2021 8/18/2021 8/12/2021 8/9/2021 8/9/2021 8/3/2021 8/2/2021 8/2/2021 8/12/2021 8/18/2021 8/18/2021 8/12/2021 8/12/2021 8/12/2021 8/12/2021 8/12/2021 8/12/2021 8/12/2021 8/9/2021 8/9/2021 8/9/2021

Well ID	Event Date	SW-846 Method 8270D QA Narratives
BLM-32-543	8/9/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (2,200 ug/L), seven
		unknown hydrocarbons, and two unknown compounds were tentatively identified by a
		GC/MS library search in sample 2108091630B.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
NASA 3	8/9/2021	For SW-846 Method 8270D, five unknown hydrocarbons and four unknown
		compounds were tentatively identified by a GC/MS library search in sample
		2108090955C.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, nine unknown hydrocarbons were tentatively identified by
		a GC/MS library search in the method blank for analytical batch 385244. Affected data
		are appropriately qualified.
NASA 3	8/9/2021	For SW-846 Method 8270D, nine unknown hydrocarbons were tentatively identified by
		a GC/MS library search in the method blank for analytical batch 385244. Affected data
		are appropriately qualified.
BLM-25-455	8/3/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. Precision is
		also outside limits. There were no detections of the analyte(s) in the associated field
		samples. The LCS/batch MS/MSD are within limits for all analytes. The analytes
		affected are flagged in the LCS Summary. Affected data are appropriately qualified.
PL-12-570	8/4/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. Precision is
		also outside limits. There were no detections of the analyte(s) in the associated field
		samples. The LCS/batch MS/MSD are within limits for all analytes. The analytes
DI 12 000	0/2/2021	affected are flagged in the LCS Summary. Affected data are appropriately qualified.
PL-12-800	8/3/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. Precision is
		also outside limits. There were no detections of the analyte(s) in the associated field
		samples. The LCS/batch MS/MSD are within limits for all analytes. The analytes
DI M 22 542	9/0/2021	affected are flagged in the LCS Summary. Affected data are appropriately qualified.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes
		in the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) in the associated field samples, the quantitation is not affected. The data quality
NIACA 2	9/0/2021	was not significantly affected and no further corrective action was taken.
NASA 3	8/9/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Collination Varification (CCV). Since these years no detections of the
		in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality
		was not significantly affected and no further corrective action was taken.
BLM-25-455	8/2/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
DLWI-23-433	6/3/2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		in the associated field samples. The error associated with elevated recovery equates to a high
		bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
DENT JE JTJ	0/ // 2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		in the associated field samples. The error associated with elevated recovery equates to a high
		bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
NASA 3	8/9/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
	S. J. 2 3 2 1	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		in the associated field samples. The error associated with elevated recovery equates to a high
		bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
PL-12-570	8/4/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
2.2		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		in the associated field samples. The error associated with elevated recovery equates to a high
		bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
PL-12-800	8/3/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more surrogates in sample 21080911630B. The elevated recovery equates to a high bias. Since no target analytes were detected in the sample(s), the quality of the sample data is not significantly affected. No further corrective action was appropriate.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
NASA 3	8/9/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-32-543	8/9/2021	For SW-846 Method 8270D, The upper control limit was exceeded for one or more surrogates in one or more samples in this report. The elevated recovery equates to a high bias. Since no target analytes were detected in the sample(s), the quality of the sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	Total Metals QA Narratives
BLM-23-431	8/3/2021	For Total Metals, blind control sample (2108031428C) was prepared at a concentration below the reporting limits for calcium and boron. The results for these metals are not qualified based on this control.
200-Н-331	8/11/2021	For Total Metals, copper (0.006 mg/L), magnesium (0.04 mg/L), nickel (0.005 mg/L), strontium (0.01 mg/L), and zinc (0.021 mg/L) were detected in the equipment blank (2108110821Y) below the reporting limit with the exception of zinc. Affected data are appropriately qualified.
BLM-32-632	8/9/2021	For Total Metals, field duplicate samples 2108091542B and 2108091615B the relative percent difference for strontium was 0.5%. Upper acceptance limit for relative percent difference is 25%.
BLM-32-632	8/9/2021	For Total Metals, field duplicate samples 2108091542B and 2108091615B the relative percent difference for calcium was 0.7%. Upper acceptance limit for relative percent difference is 25%.
BLM-32-632	8/9/2021	For Total Metals, field duplicate samples 2108091542B and 2108091615B the relative percent difference for magnesium was 0.3%. Upper acceptance limit for relative percent difference is 25%.
BLM-32-632	8/9/2021	For Total Metals, field duplicate samples 2108091542B and 2108091615B the relative percent difference for sodium was 0.3%. Upper acceptance limit for relative percent difference is 25%.
BLM-32-632	8/9/2021	For Total Metals, field duplicate samples 2108091542B and 2108091615B the relative percent difference for zinc was 30.2%. This value is outside the upper acceptance limit for relative percent difference of 25%.
200-Н-331	8/11/2021	For Total Metals, field duplicate samples 2108111005Y and 2108111006Y the relative percent difference for magnesium was 0.0%. Upper acceptance limit for relative percent difference is 25%.
200-Н-331	8/11/2021	For Total Metals, field duplicate samples 2108111005Y and 2108111006Y the relative percent difference for zinc was 69.4%. This value is outside the upper acceptance limit for relative percent difference of 25%.
200-H-331	8/11/2021	For Total Metals, field duplicate samples 2108111005Y and 2108111006Y the relative percent difference for strontium was 0.0%. Upper acceptance limit for relative percent difference is 25%.

Well ID	Event Date	Total Metals QA Narratives
200-Н-331	8/11/2021	For Total Metals, field duplicate samples 2108111005Y and 2108111006Y the relative percent difference for calcium was 0.7%. Upper acceptance limit for relative percent difference is 25%.
200-Н-331	8/11/2021	For Total Metals, field duplicate samples 2108111005Y and 2108111006Y the relative percent difference for sodium was 6.4%. Upper acceptance limit for relative percent difference is 25%.
200-H-225	8/12/2021	For Total Metals, magnesium (0.06 mg/L), strontium (0.01 mg/L), and zinc (0.004 mg/L) were detected in the equipment blank (2108120851Y) below the reporting limit. No groundwater data are affected by this equipment blank contamination.
700-E-458	8/18/2021	For Total Metals, there were no detections in the field blank.

Well ID	Event Date	Miscellaneous QA Narratives
BLM-25-455	8/3/2021	For SW-846 Method 8015D, gasoline range organics (GRO) (13.0 ug/L) was detected in the method blank for analytical batch 753506 below the reporting limit. No groundwater data are affected by this method blank contamination.
NASA 3	8/9/2021	For SW-846 Method 8081B, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
NASA 3	8/9/2021	For SW-846 Method 8082A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
NASA 3	8/9/2021	For SW-846 Method 8082A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
NASA 3	8/9/2021	For SW-846 Method 8151A, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken
NASA 3	8/9/2021	For SW-846 Method 8290A, several compounds were detected below the reporting limit in method blank WBLANK_19AUG21. Affected data are appropriately qualified.

Table 8 – WSTF Blank Sample Detections

Table 6	Will Diank Sample Detections								
Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
WB-5-250	8/19/2021	Carboy G2	8260	VOA-EB	7446-09-5	Sulfur Dioxide	26	ug/L	TIC EB
700-E-458	8/18/2021	Carboy G3	8260	VOA-FB	67-63-0	2-Propanol	14	ug/L	J FB
WB-5-280	8/18/2021	Carboy G2	8260	VOA-EB	67-63-0	2-Propanol	12	ug/L	J EB
200-H-225	8/12/2021	Carboy G2	8260	VOA-EB	67-63-0	2-Propanol	11	ug/L	J EB
400-D-355	8/12/2021	Carboy G2	8260_LL	VOA-EB	67-63-0	2-Propanol	9.6	ug/L	J EB
PL-12-570	8/4/2021	Carboy G5	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	8.3	ug/L	TIC FB
PL-12-570	8/4/2021	Carboy G5	8260	VOA-FB	TIC	Unknown	7.3	ug/L	TIC FB
400-JV-150	8/2/2021	Carboy G5	8260	VOA-FB	TIC	Unknown	7.2	ug/L	TIC FB
PL-12-570	8/4/2021	Carboy G5	8260	VOA-FB	67-63-0	2-Propanol	7.2	ug/L	J FB
400-JV-150	8/2/2021	Carboy G5	8260	VOA-FB	67-63-0	2-Propanol	6	ug/L	J FB
400-D-195	8/16/2021	Carboy G2	8260_LL	VOA-EB	TIC	Unknown	5.8	ug/L	TIC EB
400-D-195	8/16/2021	Carboy G2	8260_LL	VOA-EB	TIC	Unknown	5.4	ug/L	TIC EB
400-D-195	8/16/2021	Carboy G2	8260_LL	VOA-EB	67-63-0	2-Propanol	5.1	ug/L	J EB

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
MPE-10	8/16/2021	Carboy G3	8260	VOA-FB	67-63-0	2-Propanol	4.6	ug/L	J FB
WB-14-520	8/23/2021	Carboy G3	8260_LL	VOA-TB	67-63-0	2-Propanol	3.8	ug/L	J TB
B655-EFF-2	8/12/2021		8260_LL	VOA-FB	67-63-0	2-Propanol	3.7	ug/L	J FB
ST-5-985	8/2/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	2.4	ng/L	RB EB
ST-5-655	8/2/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	2.3	ng/L	RB EB
MPE-1	8/16/2021	Carboy G3	8260	VOA-FB	109-99-9	Tetrahydrofuran (THF)	2.2	ug/L	J FB
PL-7-480	8/10/2021	Carboy G2	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	1.1	ng/L	EB
NASA 3	8/9/2021	Carboy G3	8260_LL	VOA-FB	78-93-3	2-Butanone (MEK)	0.97	ug/L	J FB
ST-5-815	8/3/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.93	ng/L	EB
700-E-458		_	_	NDMA_LL-TB		N-Nitrosodimethylamine	0.75	ng/L	RB * A TB FB
BLM-32-543	8/9/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.73	ng/L	FB
B650-EFF-1		-	_	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * A TB FB
WB-5-250		Carboy G2		VOA-EB	75-15-0	Carbon Disulfide		ug/L	J EB
700-E-458	8/18/2021	Carboy G3	_	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * A TB FB
B655-EFF-2	8/12/2021			NDMA_LL-FB		N-Nitrosodimethylamine		ng/L	RB * A FB
PL-12-800		•	_	NDMA_LL-FB		N-Nitrosodimethylamine			FB
400-D-355		Carboy G2	_	VOA-EB	74-87-3	Chloromethane		ug/L	RB A EB
ST-4-589		-		NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB TB FB
NASA 3		•	_	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB Q
PL-12-570		-		NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
PL-7-560			_	NDMA_LL-TB		N-Nitrosodimethylamine		ng/L	J TB EB
MPE-8		Carboy G3		VOA-FB	74-87-3	Chloromethane		ug/L	J RB A FB
ST-5-1175	8/4/2021	Carboy G2	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J EB
B650-EFF-1		Carboy G3	_	VOA-FB	74-87-3	Chloromethane		ug/L	J RB A TB FB
PL-7-560	8/5/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J TB EB
B655-EFF-2	8/12/2021		8260_LL	VOA-FB	74-87-3	Chloromethane	0.42	ug/L	J RB A FB
BLM-25-455	8/3/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.41	ng/L	J TB FB *
BLM-25-455	8/3/2021	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.39	ng/L	J TB FB
BLM-23-431	8/3/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.38	ug/L	J RB FB
B650-EFF-1	8/12/2021	Carboy G3	8260_LL	VOA-TB	74-87-3	Chloromethane		ug/L	J RB A TB FB
400-EV-131	8/2/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.38	ug/L	J FB
ST-4-589	8/2/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.37	ng/L	J RB TB FB
ST-5-485	8/4/2021	Carboy G2	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.35	ng/L	J EB
400-D-275	8/16/2021	Carboy G2	8260_LL	VOA-TB	74-87-3	Chloromethane	0.35	ug/L	J RB A TB EB
400-D-275	8/16/2021	Carboy G2	8260_LL	VOA-EB	74-87-3	Chloromethane	0.35	ug/L	J RB A TB EB
400-JV-150	8/2/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.35	ug/L	J FB
MPE-1	8/16/2021	Carboy G3	8260	VOA-FB	74-87-3	Chloromethane	0.34	ug/L	J RB A FB
PL-12-800	8/3/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.33	ug/L	J RB A FB

NASA White Sands Test Facility

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
MPE-9	8/16/2021	Carboy G3	8260	VOA-FB	74-87-3	Chloromethane	0.32	ug/L	J RB A FB
MPE-11	8/16/2021		8260	VOA-FB	74-87-3	Chloromethane	0.31	ug/L	J RB A FB
PL-12-570	8/4/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.3	ug/L	J RB A FB
WB-14-520	8/23/2021	Carboy G3	8260_LL	VOA-TB	74-87-3	Chloromethane	0.29	ug/L	J A TB
200-H-225	8/12/2021	Carboy G2	8260	VOA-EB	74-87-3	Chloromethane	0.28	ug/L	J EB
200-H-225	8/12/2021	Carboy G2	8260	VOA-EB	127-18-4	Tetrachloroethene (PCE)	0.27	ug/L	J EB
200-H-225	8/12/2021	Carboy G2	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.06	mg/L	J EB
200-Н-331	8/11/2021	Carboy G2	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.04	mg/L	J EB
200-Н-331	8/11/2021	Carboy G2	METALS	METALS-EB	7440-66-6	Zinc, Total	0.021	mg/L	EB
200-H-225	8/12/2021	Carboy G2	METALS	METALS-EB	7440-24-6	Strontium, Total	0.01	mg/L	J EB
200-Н-331	8/11/2021	Carboy G2	METALS	METALS-EB	7440-24-6	Strontium, Total	0.01	mg/L	J EB
200-Н-331	8/11/2021	Carboy G2	METALS	METALS-EB	7440-50-8	Copper, Total	0.006	mg/L	J EB
200-Н-331	8/11/2021	Carboy G2	METALS	METALS-EB	7440-02-0	Nickel, Total	0.005	mg/L	J EB
200-H-225	8/12/2021	Carboy G2	METALS	METALS-EB	7440-66-6	Zinc, Total	0.004	mg/L	J EB

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

September 2021

NM 8800019434

Report Submitted: January 25, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in September 2021.
- The quantity and type of quality control samples collected or prepared in September 2021.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the September 2021 QAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in September 2021. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for September 2021

Well ID	Event Date	
BLM-7-509	9/1/2021	
WW-1-452	9/1/2021	
WW-3-469	9/1/2021	
WW-3-569	9/1/2021	
BLM-9-419	9/2/2021	
PL-8-455	9/2/2021	
PL-8-605	9/2/2021	

Well ID	Event Date
ST-4-481	9/2/2021
ST-4-690	9/2/2021
200-SG-1	9/7/2021
BLM-42-569	9/7/2021
BLM-42-709	9/7/2021
WW-2-489	9/8/2021
WW-2-664	9/8/2021

Well ID	Event Date
BW-1-268	9/9/2021
300-A-120	9/13/2021
B655-EFF-2	9/13/2021
B655-INF-2	9/13/2021
PL-11-470	9/13/2021
PL-11-530	9/13/2021
200-KV-150	9/14/2021

Well ID	Event Date
PL-11-710	9/14/2021
PL-11-820	9/14/2021
PL-11-980	9/14/2021
PL-2-504	9/14/2021
PL-4-464	9/14/2021
NASA 10	9/15/2021
NASA 5	9/15/2021
ST-6-528	9/15/2021
ST-6-568	9/15/2021

Well ID	Event Date
300-D-153	9/16/2021
ST-6-678	9/16/2021
ST-6-824	9/16/2021
ST-6-970	9/16/2021
200-JG-110	9/20/2021
BLM-5-527	9/20/2021
BW-6-355	9/20/2021
B650-EFF-1	9/27/2021
B650-INF-1	9/27/2021

Well ID	Event Date
700-D-186	9/28/2021
700-H-350	9/28/2021
700-J-200	9/28/2021
700-A-253	9/29/2021
700-H-535	9/29/2021
700-H-670	9/29/2021
PFE-1	9/30/2021

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0
Nitrosamines by EPA Method 607	36	1	1	0	1	4	1
Perchlorate by SW-846 Method 6850	13	0	0	0	0	0	0
Pesticides by SW-846 Method 8081	2	0	0	0	0	0	0
PCBs by SW-846 Method 8082	2	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	2	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	21	18	3	2	1	5	1
Low Level Volatile Organics by SW-846 Method 8260C	25	21	4	8	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	22	1	0	0	0	2	0
Dioxins/Furans by SW-846 Method 8290	2	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	2	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	2	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0
Anions by Various EPA Methods	8	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	25	1	1	0	1	3	1
Nitrosamines by Low-Level Method	29	23	6	9	1	4	1
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 10/1/2020	QC Qty. since 10/1/2020	QC % since 10/1/2020	Sample Quantity September 2021	QC Quantity September 2021	QC % September 2021
VOA Duplicates	10	531	57	11	46	5	11
VOA Matrix Spikes	2	531	12	2	46	1	2
607 Duplicates	10	337	34	10	36	4	11
607 Matrix Spikes	2	337	8	2	36	1	3
607 Equipment Blanks	2	337	11	3	36	1	3
607 Field Blanks	2	337	10	3	36	1	3
NDMA_LL Duplicates	10	313	37	12	29	4	14
NDMA_LL Matrix Spikes	2	313	9	3	29	1	3
Metals Duplicates	10	218	23	11	25	3	12
Metals Matrix Spikes	2	218	6	3	25	1	4
Metals Equipment Blanks	5	218	13	6	25	1	4
Metals Field Blanks	5	218	12	5	25	1	4

Quality Control Requirement	Requirement %	Sample Events since 10/1/2020	QC Qty. since 10/1/2020	QC % since 10/1/2020	Sample Events September 2021	QC Quantity September 2021	QC % September 2021
VOA Equipment Blanks and Field Blanks	Should approach 100%	531	531	100%	46	46	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	309	309	100%	25	25	100%

Quality Control Requirement	Requirement %	Shipments since 10/1/2020	TB Qty. since 10/1/2020	TB % since 10/1/2020	Shipments in September 2021	TB Quantity September 2021	QC % September 2021
VOA Trip Blank (per shipment)	Should approach 100%	100	100	100%	9	9	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	93	93	100%	9	9	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing
	calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The
	presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"ТВ"	"Q"	"QD"	"SP"	"R"
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	120	0	0	0	0	8	0	0
Perchlorate by SW-846 Method 6850	13	0	0	0	0	0	0	0
Pesticides by SW-846 Method 8081		0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	14	0	0	0	0	0	0	0

Method	Total Result Records	"FB"	"EB"	"TB"	"Q"	"QD"	"SP"	"R"
Herbicides by SW-846 Method 8151	12	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1703	6	1	1	4	0	2	0
Low Level Volatile Organics by SW-846 Method 8260C	1625	2	0	0	0	0	0	0
Semi-Volatile Organics by SW-846 Method 8270D	1725	0	0	0	0	2	0	0
Dioxins/Furans by SW-846 Method 8290	50	0	0	0	0	0	0	0
Cyanide by SW-846 Method 9012B	2	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	2	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0	0
Anions by Various EPA Methods	32	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	756	1	1	0	0	0	0	0
Nitrosamines by Low-Level Method	56	20	4	6	2	6	0	0
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11 % 11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Nitrate plus Nitrite as N by EPA Method 353.2	9	0	0	0	0	0	0	0	0	1
Nitrosamines by EPA Method 607	120	1	0	0	0	2	0	0	0	5
Perchlorate by SW-846 Method 6850	13	0	0	0	0	0	0	0	0	2
Pesticides by SW-846 Method 8081	42	0	0	0	0	0	0	0	0	0
PCBs by SW-846 Method 8082	14	0	0	0	0	0	0	0	0	0
Herbicides by SW-846 Method 8151	12	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1703	0	7	0	0	9	0	0	0	32
Low Level Volatile Organics by SW-846 Method 8260C	1625	0	11	0	0	2	0	0	0	18
Semi-Volatile Organics by SW-846 Method 8270D	1725	0	57	0	0	0	0	0	0	0
Dioxins/Furans by SW-846 Method 8290	50	0	0	0	0	2	0	0	0	4
Cyanide by SW-846 Method 9012B	2	0	0	0	0	0	0	0	0	0
Sulfide by SW-846 Method 9030	2	0	0	0	0	0	0	0	0	0
Phenolics by SW-846 Method 9066	2	0	0	0	0	0	0	0	0	0
Anions by Various EPA Methods	32	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	756	0	0	0	0	0	0	0	0	146
Nitrosamines by Low-Level Method	56	13	7	0	0	25	0	0	0	3
Total Dissolved Solids by Standard Method 2540C	8	0	0	0	0	0	0	0	0	0

Table 7 – Quality Assurance Narratives

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-11-470	9/13/2021	For Low Level SW-846 Method 8260C, 2-propanol (10 ug/L) was detected in the trip blank (2109130700B) below the reporting limit. No groundwater data are affected by this trip blank contamination.
WW-2-489		For Low Level SW-846 Method 8260C, 2-propanol (20 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (7.1 ug/L) was tentatively identified by a GC/MS library search in the trip blank (2109080720B). No groundwater data are affected by this trip blank contamination.
PL-11-470	9/13/2021	For Low Level SW-846 Method 8260C, 2-propanol (23 ug/L) was detected in the field blank (2109131301B) below the reporting limit. No groundwater data are affected by this field blank contamination.

cted in the field blank ed by this field blank cted in the trip blank ed by this trip blank cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library r data field blank cted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank s detected in the
cted in the trip blank cted in the trip blank cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library ted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
cted in the trip blank ed by this trip blank cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library tted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library rted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library rted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
cted below the reporting by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library ted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank is detected in the
by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library tted by this field blank cted by this field blank chloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank cted by this trip blank cted by this trip blank
by a GC/MS library r data are affected by this cted below the reporting by a GC/MS library tted by this field blank cted by this field blank chloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank cted by this trip blank cted by this trip blank
r data are affected by this cted below the reporting by a GC/MS library ted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
cted below the reporting by a GC/MS library ted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
by a GC/MS library sted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
by a GC/MS library sted by this field blank hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
hloromethane (0.3 ug/L) limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank is detected in the
limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
limit. Affected data are was detected in the Affected data are detected in the trip blank cted by this trip blank
was detected in the Affected data are detected in the trip blank cted by this trip blank detected in the
detected in the trip blank cted by this trip blank detected in the
detected in the trip blank cted by this trip blank detected in the
detected in the trip blank cted by this trip blank detected in the
cted by this trip blank
cted by this trip blank
detected in the
vater data are affected by
was detected in the
Affected data are
detected in the method
vater data are affected by
was detected in the field
propriately qualified.
he spike recovery of the
alyte. There were no
epancy associated with
ceptable. The analytes
oriately qualified.
pike recovery of the
e. There were no
ncy associated with
able. No groundwater
pike recovery of the
e. There were no
ncy associated with
able. No groundwater
2
pike recovery of the
e. There were no
ncy associated with
able. No groundwater
pike recovery of the

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The LCSD was acceptable. No groundwater
		data are affected by this LCS recovery.
WW-1-452	9/1/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The LCSD was acceptable. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-3-469	9/1/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The LCSD was acceptable. The analytes affected are flagged in the LCS Summary. Affected data are appropriately qualified.
WW-3-569	9/1/2021	For Low Level SW-846 Method 8260C, the lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. The LCSD was acceptable. The analytes
		affected are flagged in the LCS Summary. Affected data are appropriately qualified.
B650-EFF-1	9/27/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-678	9/16/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-824	9/16/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-970	9/16/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	9/27/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B655-EFF-2	9/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
BLM-42-569	9/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-42-569	9/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-42-709	9/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-7-509	9/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-470	9/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-530	9/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-820	9/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-980	9/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
PL-8-455	9/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-8-605	9/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
ST-4-481	9/2/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-4-690	9/2/2021	
ST-6-528	9/15/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-6-568	9/15/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
WW-1-452		For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
WW-2-489	9/8/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
WW-2-664	9/8/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
WW-3-469	9/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
WW-3-569	9/1/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-710	9/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-11-820	9/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PL-4-464	9/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-528	9/15/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-568	9/15/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-42-569		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-42-569		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-42-709		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-7-509		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-7-509	9/1/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-11-530		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-820		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-11-980		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-4-464		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-8-455		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
ST-4-481		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-4-481		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-4-690		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-528		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-568		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-678		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-678		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
ST-6-824		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
ST-6-970		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-489		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-2-469		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-3-469		·
		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WW-3-569		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
NASA 5	9/15/2021	For SW-846 Method 8260C in blind control sample (2109151520C), the percent recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (48%), trichloroethene (44%), tetrachloroethene
		(44%), and trichlorofluoromethane (48%) were outside of the standard limits (75-125%).
		Additionally, vinyl chloride (0.21 ug/L) was detected below the reporting limit but none was
		added. Affected data are appropriately qualified.
B655-INF-2	9/13/2021	For SW-846 Method 8260C, 2-butanone (MEK) (2.6 ug/L) and acetone (7.3 ug/L) were detected
		in the field blank (2109130936) below the reporting limit. No groundwater data are affected by this field blank contamination.
PFE-1	9/30/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank
		for analytical batch 741756 below the reporting limit. Affected data are appropriately
		qualified.
700-A-253	9/29/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for
		analytical batch 741422 below the reporting limit. No groundwater data are affected by this method blank contamination.
700-D-186	9/28/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank
	7,-0,-0-	for analytical batch 741422 below the reporting limit. Affected data are appropriately
		qualified.
700-H-350	9/28/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for
		analytical batch 741422 below the reporting limit. No groundwater data are affected by this method blank contamination.
700-H-535	9/29/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for
700 11 333	3/23/2021	analytical batch 741422 below the reporting limit. No groundwater data are affected by this
		method blank contamination.
700-H-670	9/29/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the equipment
700 H (70	0/20/2021	blank (2109290745Y) below the reporting limit. Affected data are appropriately qualified.
700-H-670	9/29/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for analytical batch 741422 below the reporting limit. Affected data are appropriately
		qualified.
700-J-200	9/28/2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank
		for analytical batch 741422 below the reporting limit. Affected data are appropriately
D(E) DE 1	0/07/0001	qualified.
B650-INF-1	9/2//2021	For SW-846 Method 8260C, chloromethane (0.29 ug/L) was detected in the method blank for analytical batch 741422 below the reporting limit. No groundwater data are affected by this
		method blank contamination.
	1	

Well ID	Event Date	SW-846 Method 8260C QA Narratives
NASA 5	9/15/2021	For SW-846 Method 8260C, chloromethane (0.3 ug/L) was detected in the field blank (2109150922C) below the reporting limit. No groundwater data are affected by this field blank
		contamination.
BW-6-355	9/20/2021	For SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the field blank (2109201452C) below the reporting limit. Affected data are appropriately qualified.
PL-2-504	9/14/2021	For SW-846 Method 8260C, chloromethane (0.33 ug/L) was detected in the field blank (2109140941A) below the reporting limit. No groundwater data are affected by this field blank
200-KV-150	9/14/2021	contamination. For SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the method blank for analytical batch 739515 below the reporting limit. Affected data are appropriately qualified.
PL-2-504	9/14/2021	For SW-846 Method 8260C, chloromethane (0.35 ug/L) was detected in the method blank for analytical batch 739515 below the reporting limit. No groundwater data are affected by this method blank contamination.
700-J-200	9/28/2021	For SW-846 Method 8260C, chloromethane (0.37 ug/L) was detected in the field blank (2109280911A) below the reporting limit. Affected data are appropriately qualified.
700-D-186	9/28/2021	For SW-846 Method 8260C, chloromethane (0.39 ug/L) was detected in the field blank (2109280903C) below the reporting limit. Affected data are appropriately qualified.
BW-1-268	9/9/2021	For SW-846 Method 8260C, chloromethane (0.41 ug/L) was detected in the method blank for analytical batch 738470 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, chloromethane (0.42 ug/L) was detected in the field blank (2109201006C) below the reporting limit. Affected data are appropriately qualified.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, chloromethane (0.47 ug/L) was detected in the method blank for analytical batch 740357 below the reporting limit. No groundwater data are affected by this method blank contamination.
BW-6-355	9/20/2021	For SW-846 Method 8260C, chloromethane (0.47 ug/L) was detected in the method blank for analytical batch 740357 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, chloromethane (0.66 ug/L) was detected in the trip blank (2109200750C) below the reporting limit. Affected data are appropriately qualified.
200-JG-110	9/20/2021	For SW-846 Method 8260C, chloromethane (0.74 ug/L) was detected in the method blank for analytical batch 740270 below the reporting limit. Affected data are appropriately qualified.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, chloromethane (0.74 ug/L) was detected in the method blank for analytical batch 740270 below the reporting limit. Affected data are appropriately qualified.
BW-6-355	9/20/2021	For SW-846 Method 8260C, chloromethane (0.74 ug/L) was detected in the method blank for analytical batch 740270 below the reporting limit. Affected data are appropriately qualified.
200-JG-110	9/20/2021	For SW-846 Method 8260C, chloromethane (0.76 ug/L) was detected in the field blank (2109200857A) below the reporting limit. Affected data are appropriately qualified.
200-SG-1	9/7/2021	For SW-846 Method 8260C, Ethene, chlorotrifluoro- (5.5 ug/L) was tentatively identified by a GC/MS library search in sample 2109071050B.
BLM-9-419	9/2/2021	For SW-846 Method 8260C, field duplicate samples 2109021030C and 2109021031C the relative percent difference for trichlorofluoromethane (CFC 11) was 3.1%. Upper acceptance limit for relative percent difference is 25%.
BLM-9-419	9/2/2021	For SW-846 Method 8260C, field duplicate samples 2109021030C and 2109021031C the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 5.5%. Upper acceptance limit for relative percent difference is 25%.
300-A-120	9/13/2021	For SW-846 Method 8260C, field duplicate samples 2109131000A and 2109131001A the relative percent difference for trichlorofluoromethane (CFC 11) was 3.9%. Upper acceptance limit for relative percent difference is 25%.
200-KV-150	9/14/2021	For SW-846 Method 8260C, field duplicate samples 2109140900C and 2109140902C the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 3.9%. Upper acceptance limit for relative percent difference is 25%.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
200-KV-150	9/14/2021	For SW-846 Method 8260C, field duplicate samples 2109140900C and 2109140902C the relative
		percent difference for trichlorofluoromethane (CFC 11) was 11.8%. Upper acceptance limit for
		relative percent difference is 25%.
NASA 10	9/15/2021	For SW-846 Method 8260C, field duplicate samples 2109151420C and 2109151421C the relative
		percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper acceptance limit for
		relative percent difference is 25%.
200-JG-110	9/20/2021	For SW-846 Method 8260C, field duplicate samples 2109200855A and 2109200856A the
		relative percent difference for trichloroethene (TCE) was 4.3%. Upper acceptance limit for
		relative percent difference is 25%.
200-JG-110	9/20/2021	For SW-846 Method 8260C, field duplicate samples 2109200855A and 2109200856A the
		relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 0.0%. Upper acceptance
200 IC 110	0/20/2021	limit for relative percent difference is 25%.
200-JG-110	9/20/2021	For SW-846 Method 8260C, field duplicate samples 2109200855A and 2109200856A the
		relative percent difference for trichlorofluoromethane (CFC 11) was 3.9%. Upper acceptance
BW-6-355	0/20/2021	limit for relative percent difference is 25%. For SW-846 Method 8260C, matrix spike recoveries for sample 2109201451C for
DW-0-355	9/20/2021	acetonitrile (193%) and (203%), styrene (47%) and (49%), and vinyl acetate (42%) and
		(42%) were outside laboratory control limits (46-154%), (74-136%) and (48-172%).
		Affected data are appropriately qualified.
300-D-153	9/16/2021	For SW-846 Method 8260C, one unknown compound (8.4 ug/L) was tentatively identified
200 B 132	2/10/2021	by a GC/MS library search in the method blank for analytical batch 740352. Affected data
		are appropriately qualified.
700-A-253	9/29/2021	For SW-846 Method 8260C, silane, fluorotrimethyl- (9.4 ug/L), silane, methoxytrimethyl-
		(5.4 ug/L), and one unknown compound (5.4 ug/L) were tentatively identified by a GC/MS
		library search in sample 2109280900C.
700-D-186	9/28/2021	For SW-846 Method 8260C, silane, methoxytrimethyl- (5.9 ug/L), silane, fluorotrimethyl-
		(10 ug/L), and one unknown compound (6.8 ug/L) were tentatively identified by a GC/MS
		library search in sample 2109280902C.
700-J-200	9/28/2021	For SW-846 Method 8260C, silane, methoxytrimethyl- (6.1 ug/L) and two unknown
		compounds were tentatively identified by a GC/MS library search in sample 2109280910A.
200-JG-110	9/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
200 B 152	0/1/6/2021	significantly affected and no further corrective action was taken.
300-D-153	9/16/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
300-D-153	0/16/2021	significantly affected and no further corrective action was taken. For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
300-D-133	9/10/2021	Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-A-253	9/29/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
, 00 11 200	3.23.2021	Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-D-186	9/28/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-H-350	9/28/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-H-535	9/29/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-H-670	9/29/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
700-J-200	9/28/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
D (70 D III 1	0/05/0001	significantly affected and no further corrective action was taken.
B650-INF-1	9/27/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
DI M 5 527	0/20/2021	significantly affected and no further corrective action was taken.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		• • • • • • • • • • • • • • • • • • • •
		the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BW-6-355	9/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
DW-0-333	9/20/2021	Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
PFE-1	9/30/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the
	7.00.2021	Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in
		the associated field samples, the quantitation is not affected. The data quality was not
		significantly affected and no further corrective action was taken.
200-JG-110	9/20/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
		further corrective action was appropriate. Affected data below the reporting limit were
		appropriately qualified.
200-KV-150	9/14/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
		further corrective action was appropriate. Affected data below the reporting limit are
200-SG-1	0/7/2021	appropriately qualified.
200-30-1	9/ //2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the
		associated field samples. The error associated with elevated recovery equates to a high bias. The
		sample data is not significantly affected. No further corrective action was appropriate.
300-A-120	9/13/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more
200 11 120	3/10/2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
		further corrective action was appropriate. Affected data below the reporting limit are
		appropriately qualified.
300-D-153	9/16/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in
		the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the
		associated field samples. The error associated with elevated recovery equates to a high bias. The
		sample data is not significantly affected. No further corrective action was appropriate.
700-A-253	9/29/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in
		the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the
		associated field samples. The error associated with elevated recovery equates to a high bias. The
		sample data is not significantly affected. No further corrective action was appropriate.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
700-D-186	9/28/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
700-H-350	9/28/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
700-H-535	9/29/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
700-H-670	9/29/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
700-J-200	9/28/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B650-INF-1	9/27/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
B655-INF-2	9/13/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit are appropriately qualified.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit were appropriately qualified.
BLM-9-419	9/2/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BW-1-268	9/9/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BW-6-355	9/20/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. Affected data below the reporting limit were appropriately qualified.
NASA 10	9/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
NASA 5	9/15/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
		further corrective action was appropriate. Affected data below the reporting limit are
PL-2-504	0/14/2021	appropriately qualified.
FL-2-504	9/14/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate. Affected data below the reporting limit are appropriately qualified.
200-JG-110	9/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
300-D-153	9/16/2021	
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
DI M 5 507	0/20/2021	further corrective action was taken.
BLM-5-527	9/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
BW-6-355	9/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
NASA 10	9/15/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
NASA 5	0/15/2021	further corrective action was taken. For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the
NASA 3	9/13/2021	Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
	0/00/0004	further corrective action was taken.
700-H-350		For SW-846 Method 8260C, there were no detections in the equipment blank.
700-H-535		For SW-846 Method 8260C, there were no detections in the equipment blank.
200-KV-150		For SW-846 Method 8260C, there were no detections in the field blank.
200-SG-1		For SW-846 Method 8260C, there were no detections in the field blank.
300-A-120	9/13/2021	For SW-846 Method 8260C, there were no detections in the field blank.
300-D-153	9/16/2021	For SW-846 Method 8260C, there were no detections in the field blank.
700-A-253	9/29/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	9/27/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-9-419	9/2/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BW-1-268		For SW-846 Method 8260C, there were no detections in the field blank.
NASA 10		For SW-846 Method 8260C, there were no detections in the field blank.
PFE-1		For SW-846 Method 8260C, there were no detections in the field blank.
PFE-1		For SW-846 Method 8260C, there were no detections in the trip blank.
	7,30,2021	2 of 2 5 to 1.2 and 5.2000, more in december in the trip ordina.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PFE-1	9/30/2021	For SW-846 Method 8260C, two unknown compounds were tentatively identified by a
		GC/MS library search in sample 2109301530.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
NASA 5	9/15/2021	For Modified EPA Method 607 in blind control sample (2109151521C), all recoveries were within standard limits.
BLM-9-419	9/2/2021	For Modified EPA Method 607, bromacil (0.15 ug/L) was detected in the method blank WBLANK_09SEP21. Affected data are appropriately qualified.
PL-8-605		For Modified EPA Method 607, bromacil (0.15 ug/L) was detected in the method blank WBLANK_09SEP21. No groundwater data are affected by this method blank contamination.
BLM-9-419	9/2/2021	For Modified EPA Method 607, field duplicate samples 2109021033C and 2109021034C the relative percent difference for bromacil was 149.5%. This value is outside the upper acceptance limit for relative percent difference of 25%.
300-A-120	9/13/2021	For Modified EPA Method 607, field duplicate samples 2109131003A and 2109131004A the relative percent difference for N-nitrodimethylamine was 22.2%. Upper acceptance limit for relative percent difference is 25%.
300-A-120		For Modified EPA Method 607, field duplicate samples 2109131003A and 2109131004A the relative percent difference for bromacil was 7.2%. Upper acceptance limit for relative percent difference is 25%.
300-A-120	9/13/2021	For Modified EPA Method 607, field duplicate samples 2109131003A and 2109131004A the relative percent difference for N-nitrosodimethylamine was 26.7%. This value is outside the upper acceptance limit for relative percent difference of 25%.
PL-2-504	9/14/2021	For Modified EPA Method 607, field duplicate samples 2109140942A and 2109140943A the relative percent difference for N-nitrodimethylamine was 30.3%. This value is outside the upper acceptance limit for relative percent difference of 25%.
PL-2-504	9/14/2021	For Modified EPA Method 607, field duplicate samples 2109140942A and 2109140943A the relative percent difference for N-nitrosodimethylamine was 26.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.
PL-2-504	9/14/2021	For Modified EPA Method 607, field duplicate samples 2109140942A and 2109140943A the relative percent difference for bromacil was 0.0%. Upper acceptance limit for relative percent difference is 25%.
NASA 10	9/15/2021	For Modified EPA Method 607, field duplicate samples 2109151423C and 2109151424C the relative percent difference for N-nitrodimethylamine was 4.1%. Upper acceptance limit for relative percent difference is 25%.
NASA 10	9/15/2021	For Modified EPA Method 607, field duplicate samples 2109151423C and 2109151424C the relative percent difference for N-nitrosodimethylamine was 5.3%. Upper acceptance limit for relative percent difference is 25%.
NASA 10	9/15/2021	For Modified EPA Method 607, field duplicate samples 2109151423C and 2109151424C the relative percent difference for bromacil was 5.8%. Upper acceptance limit for relative percent difference is 25%.
PL-8-605	9/2/2021	For Modified EPA Method 607, internal standard area for atrazine-d5 fell below the 50% QC criteria in sample 2109021101Y. Since the internal standard areas of samples before and after this sample were within criteria, the sample extract was not reanalyzed. The only analyte quantitated using this internal standard was bromacil and the compound was not detected in the sample. Groundwater data are not significantly affected by this low internal standard recovery.
BLM-42-709		For Modified EPA Method 607, matrix spike recoveries for sample 2109071456C were within laboratory control limits.
200-JG-110	9/20/2021	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
ST-6-568		For Low Level Nitrosamine Method in blind control sample (2109151555B), the percent
		recovery for N-nitrosodimethylamine (182%) was outside of the standard limits (70-130%).
		Affected data are appropriately qualified.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-7-509		For Low Level Nitrosamine Method, due to late, out of temperature shipment of original samples,
		resampling was conducted on 9/9/2021.
WW-1-452	9/1/2021	For Low Level Nitrosamine Method, due to late, out of temperature shipment of original samples,
WWW 2 460	0/1/2021	resampling was conducted on 9/9/2021.
WW-3-469	9/1/2021	For Low Level Nitrosamine Method, due to late, out of temperature shipment of original samples,
WW 2 560	0/1/2021	resampling was conducted on 9/9/2021.
WW-3-569	9/1/2021	For Low Level Nitrosamine Method, due to late, out of temperature shipment of original samples, resampling was conducted on 9/7/2021.
WW-3-569	9/1/2021	For Low Level Nitrosamine Method, field duplicate samples 2109071555Y and
		2109071556Y the relative percent difference for N-nitrosodimethylamine was 164.6%. This
DI 11 520	0/12/2021	value is outside the upper acceptance limit for relative percent difference of 25%.
PL-11-530	9/13/2021	For Low Level Nitrosamine Method, field duplicate samples 2109131318B and 2109131350B the relative percent difference for N-nitrosodimethylamine was 50.0%. This
		value is outside the upper acceptance limit for relative percent difference of 25%.
ST-6-568	9/15/2021	For Low Level Nitrosamine Method, field duplicate samples 2109151311B and
51 0 300	7/13/2021	2109151345B the relative percent difference for N-nitrosodimethylamine was 69.1%. This
		value is outside the upper acceptance limit for relative percent difference of 25%.
PL-8-605	9/2/2021	For Low Level Nitrosamine Method, for equipment blank 2109021001Yand sample
		2109021310Y the recoveries of the internal standard NDMA-d6 (7.59%) and (7.75%) were
		outside laboratory control limits (10-100%). No corrective action was deemed necessary by the
GT 4 401	0/0/0001	analytical laboratory based on sufficient signal to noise ratios.
ST-4-481	9/2/2021	For Low Level Nitrosamine Method, for sample 2109021002B the recovery of the internal
		standard NDMA-d6 (5.17%) was outside laboratory control limits (10-100%). No corrective action was deemed necessary by the analytical laboratory based on sufficient signal to noise
		ratios.
ST-4-690	9/2/2021	For Low Level Nitrosamine Method, for sample 2109021502B and field blank 2109021503B the
		recoveries of the internal standard NDMA-d6 (3.45%) and (9.28%) were outside laboratory
		control limits (10-100%). No corrective action was deemed necessary by the analytical laboratory
		based on sufficient signal to noise ratios.
BLM-42-709	9/7/2021	For Low Level Nitrosamine Method, for sample 2109071547C and field blank 2109071458C the
		recoveries of the internal standard NDMA-d6 (7.58%) and (7.46%) were outside laboratory
		control limits (10-100%). No corrective action was deemed necessary by the analytical laboratory based on sufficient signal to noise ratios.
WW-2-664	9/8/2021	For Low Level Nitrosamine Method, for sample 2109081427B the recovery of the internal
		standard NDMA-d6 (7.86%) was outside laboratory control limits (10-100%). No corrective
		action was deemed necessary by the analytical laboratory based on sufficient signal to noise
		ratios.
WW-1-452	9/1/2021	For Low Level Nitrosamine Method, for sample 2109091420B the recovery of the internal
		standard NDMA-d6 (9.35%) was outside laboratory control limits (10-100%). No corrective action was deemed necessary by the analytical laboratory based on sufficient signal to noise
		ratios.
WW-3-469	9/1/2021	For Low Level Nitrosamine Method, for sample 2109091500Y the recovery of the internal
** ** 5 105	3,1,2021	standard NDMA-d6 (9.33%) was outside laboratory control limits (10-100%). No corrective
		action was deemed necessary by the analytical laboratory based on sufficient signal to noise
		ratios.
PL-11-980	9/14/2021	For Low Level Nitrosamine Method, for sample 2109141416B the recovery of the internal
		standard NDMA-d6 (5.39%) was outside laboratory control limits (10-100%). No corrective
		action was deemed necessary by the analytical laboratory based on sufficient signal to noise
PL-4-464	9/14/2021	ratios. For Low Level Nitrosamine Method, for sample 2109141512A and field blank 2109141513A the
1 12-7-704	2/1 7 /2021	recoveries of the internal standard NDMA-d6 (5.84%) and (9.73%) were outside laboratory
		control limits (10-100%). No corrective action was deemed necessary by the analytical laboratory
		based on sufficient signal to noise ratios.
B650-EFF-1	9/27/2021	For Low Level Nitrosamine Method, for sample 2109270919 the recovery of the internal standard
		NDMA-d6 (9.54%) was outside laboratory control limits (10-100%). No corrective action was
		deemed necessary by the analytical laboratory based on sufficient signal to noise ratios.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-42-569	9/7/2021	For Low Level Nitrosamine Method, for trip blank 2109070701C, sample 2109070923C, and field blank (2109070924C the recoveries of the internal standard NDMA-d6 (3.56%), (4.77%), and (4.58%) were outside laboratory control limits (10-100%). The recovery of the internal standard DMN-d6 (9.27%) for trip blank 2109070701C was outside laboratory limits (10-100%). No corrective action was deemed necessary by the analytical laboratory based on sufficient signal
		to noise ratios.
WW-2-489	9/8/2021	For Low Level Nitrosamine Method, matrix spike recoveries for sample 2109080959B and 2109081000B were within laboratory control limits.
BLM-42-569	9/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21J13CM3) below the reporting limit. Affected data are appropriately qualified.
BLM-42-709	9/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21J13CM3) below the reporting limit. Affected data are appropriately qualified.
WW-2-489	9/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21J13CM3) below the reporting limit. No groundwater data are affected by this method blank contamination.
WW-2-664	9/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21J13CM3) below the reporting limit. Affected data are appropriately qualified.
WW-3-569	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.28 ng/L) was detected in the method blank (PB21J13CM3) below the reporting limit. Affected data are appropriately qualified.
PL-11-710	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
PL-11-820	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
PL-11-980	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
PL-4-464	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
ST-6-528	9/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
ST-6-568	9/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.39 ng/L) was detected in the method blank (PB21J21CM1) below the reporting limit. Affected data are appropriately qualified.
PL-11-530	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.4 ng/L) was detected in the field blank (2109131319B) below the reporting limit. Affected data are appropriately qualified.
BLM-7-509	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.43 ng/L) was detected in the field blank (2109091006B) below the reporting limit. Affected data are appropriately qualified.
PL-11-470	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.44 ng/L) was detected in the trip blank (2109130701B) below the reporting limit. Affected data are appropriately qualified.
PL-11-470	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.45 ng/L) was detected in the field blank (2109131304B) below the reporting limit. Affected data are appropriately qualified.
B650-EFF-1	9/27/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the trip blank (2109270820) below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
B650-EFF-1	9/27/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in the method blank (PB21J30CM3) below the reporting limit. Affected data are
		appropriately qualified.
PL-8-455	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in the method blank (PB21J09CM2) below the reporting limit. Affected data are appropriately qualified.
PL-8-605	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in
		the method blank (PB21J09CM2) below the reporting limit. Affected data are appropriately qualified.
ST-4-481	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in
		the method blank (PB21J09CM2) below the reporting limit. Affected data are appropriately qualified.
ST-4-690	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in
		the method blank (PB21J09CM2) below the reporting limit. Affected data are appropriately qualified.
WW-2-489	9/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.49 ng/L) was detected in the trip blank (2109080721B). No groundwater data are affected by this trip blank contamination.
ST-6-528	9/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.5 ng/L) was detected in the field blank (2109151259B). Affected data are appropriately qualified.
WW-2-664	9/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.51 ng/L) was detected in the field blank (2109081428B). Affected data are appropriately qualified.
B655-EFF-2	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.52 ng/L) was detected in
D033-E11-2	J/13/2021	the field blank (2109130945). Affected data are appropriately qualified.
WW-2-489	9/8/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.52 ng/L) was detected in the
		field blank (2109080958B). No groundwater data are affected by this field blank contamination.
PL-8-455	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.53 ng/L) was detected in the equipment blank (2109021416Y). Affected data are appropriately qualified.
B655-EFF-2	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in
		the method blank (PB21J16CM2) below the reporting limit. Affected data are appropriately qualified.
BLM-7-509	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in
		the method blank (PB21J16CM2) below the reporting limit. Affected data are
	0/40/004	appropriately qualified.
PL-11-470	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in the method blank (PB21J16CM2) below the reporting limit. Affected data are
		appropriately qualified.
PL-11-530	9/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in
		the method blank (PB21J16CM2) below the reporting limit. Affected data are
		appropriately qualified.
ST-6-528	9/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in the trip blank (2109150701B). Affected data are appropriately qualified.
WW-1-452	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in
VV VV 1 132)/1/2 021	the method blank (PB21J16CM2) below the reporting limit. Affected data are appropriately qualified.
WW-3-469	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.54 ng/L) was detected in
		the method blank (PB21J16CM2) below the reporting limit. Affected data are appropriately qualified.
PL-11-820	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.56 ng/L) was detected in
		the field blank (2109141404B). Affected data are appropriately qualified.
ST-6-568	9/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.6 ng/L) was detected in the field blank (2109151312B). Affected data are appropriately qualified.
ST-4-481	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.61 ng/L) was detected in the field blank (2109021003B). Affected data are appropriately qualified.
WW-1-452	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.61 ng/L) was detected in
		the field blank (2109091421B. Affected data are appropriately qualified.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
PL-8-605	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.62 ng/L) was detected in the equipment blank (2109021001Y). Affected data are appropriately qualified.
ST-6-678	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.62 ng/L) was detected in the field blank (2109161344B). No groundwater data are affected by this field blank contamination.
ST-6-678	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.67 ng/L) was detected in the trip blank (2109160701B). No groundwater data are affected by this trip blank contamination.
WW-3-569	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.67 ng/L) was detected in the equipment blank (2109071500Y). Affected data are appropriately qualified.
B650-EFF-1	9/27/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.71 ug/L) was detected in the field blank (2109270920). Affected data are appropriately qualified.
BLM-7-509	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.73 ng/L) was detected in the trip blank (2109090715B). Affected data are appropriately qualified.
ST-4-481	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.74 ng/L) was detected in the trip blank (2109020701B). Affected data are appropriately qualified.
BLM-42-709	9/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.77 ng/L) was detected in the field blank (2109071458C). Affected data are appropriately qualified.
PL-11-980	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.82 ng/L) was detected in the field blank (2109141417B). Affected data are appropriately qualified.
ST-4-690	9/2/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.91 ng/L) was detected in the field blank (2109021503B). Affected data are appropriately qualified.
WW-3-469	9/1/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.91 ng/L) was detected in the equipment blank (2109091345Y). Affected data are appropriately qualified.
ST-6-970	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.95 ng/L) was detected in the field blank (2109161339B). Affected data are appropriately qualified.
ST-6-824	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.96 ng/L) and N-nitrodimethylamine (0.29 ng/L) were detected in the field blank (2109161329B) below the reporting limit for N-nitrodimethylamine only. Affected data are appropriately qualified.
ST-6-678	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.09 ng/L) was detected in the method blank (PB21J23HE2) below the reporting limit. No groundwater data are affected by this method blank contamination.
ST-6-824	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.09 ng/L) was detected in the method blank (PB21J23HE2) below the reporting limit. Affected data are appropriately qualified.
ST-6-970	9/16/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.09 ng/L) was detected in the method blank (PB21J23HE2) below the reporting limit. Affected data are appropriately qualified.
BLM-42-569	9/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.1 ng/L) was detected in the field blank (2109070924C). Affected data are appropriately qualified.
PL-4-464	9/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.5 ng/L) was detected in the field blank (2109141513A). Affected data are appropriately qualified.
BLM-42-569	9/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (5.1 ug/L) was detected in the trip blank (2109070701C). Affected data are appropriately qualified.
PL-11-710	9/14/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
PL-11-820	9/14/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
PL-11-980	9/14/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
PL-4-464	9/14/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
ST-6-528	9/15/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
ST-6-568	9/15/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (139%) for the laboratory control sample (LCS21J21CM1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
ST-6-678	9/16/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (340%) in the laboratory fortified blank (LFB21J23HE1) was outside laboratory control limits (70-130%). No groundwater data are affected by this QC issue.
ST-6-824	9/16/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (340%) in the laboratory fortified blank (LFB21J23HE1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
ST-6-970	9/16/2021	For Low Level Nitrosamine Method, the recovery of N-nitrosodimethylamine (340%) in the laboratory fortified blank (LFB21J23HE1) was outside laboratory control limits (70-130%). Affected data are appropriately qualified.
PL-11-710	9/14/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
ST-6-970	9/16/2021	For SW_846 Method 8270D, benzenesulfonamide, N-butyl- (220 ug/L), benzene, 1-chloro-4-(trifluorometh (4.3 ug/L) and six unknown hydrocarbons were tentatively identified by a GC/MS library search in sample 2109161420B.
PL-11-710	9/14/2021	For SW-846 Method 8270D, 6 unknown hydrocarbons were tentatively identified by a GC/MS library search in the method blank for analytical batch 387770. Affected data are appropriately qualified.
PL-11-820	9/14/2021	For SW-846 Method 8270D, 6 unknown hydrocarbons were tentatively identified by a GC/MS library search in the method blank for analytical batch 387770. No groundwater data are affected by this method blank contamination.
PL-11-980	9/14/2021	For SW-846 Method 8270D, 6 unknown hydrocarbons were tentatively identified by a GC/MS library search in the method blank for analytical batch 387770. Affected data are appropriately qualified.
PL-11-530	9/13/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (110 ug/L) was tentatively identified by a GC/MS library search in sample 2109131415B.
PL-11-820	9/14/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (130 ug/L) was tentatively identified by a GC/MS library search in sample 2109141455B.
PL-11-710	9/14/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (150 ug/L), six unknown hydrocarbons, and one unknown compound (4.4 ug/L) were tentatively identified by a GC/MS library search in sample 2109141435B.
ST-6-568	9/15/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (2,400 ug/L) and two unknown compounds were tentatively identified by a GC/MS library search in sample 2109151355B.
ST-6-678	9/16/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (260 ug/L), four unknown hydrocarbons, and one unknown compound (180 ug/L) were tentatively identified by a GC/MS library search in sample 2109161345B.
ST-6-528	9/15/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (630 ug/L), four unknown hydrocarbons, and two unknown compounds were tentatively identified by a GC/MS library search in sample 2109151330B.
PL-11-980	9/14/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (65 ug/L), two unknown hydrocarbons, and one unknown compound (4.9 ug/L) were tentatively identified by a GC/MS library search in sample 2109141425B.
PL-11-470	9/13/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (75 ug/L) was tentatively identified by a GC/MS library search in sample 2109131335B.
ST-6-824	9/16/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (81 ug/L), eight unknown hydrocarbons, and one unknown compound (16 ug/L) were tentatively identified by a GC/MS library search in sample 2109161405B.
300-A-120	9/13/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		at 61% and 53% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
		and should not be flagged on the summary form.
PL-11-470	9/13/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected
		at 61% and 53% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
	0/40/0004	and should not be flagged on the summary form.
PL-11-530	9/13/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected at 61% and 53% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
		and should not be flagged on the summary form.
ST-6-528	9/15/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
51-0-320	7/13/2021	recovery in the LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected at
		65% recovery, respectively, within laboratory limits. The LCSD is acceptable and should not be
		flagged on the summary form.
ST-6-568	9/15/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected at
		65% recovery, respectively, within laboratory limits. The LCSD is acceptable and should not be
		flagged on the summary form.
ST-6-678	9/16/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected
		at 60% and 61% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
CT. (024	0/16/2021	and should not be flagged on the summary form.
ST-6-824	9/16/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected at 60% and 61% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
		and should not be flagged on the summary form.
ST-6-970	9/16/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
51 0 3 7 0	3,10,2021	recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was detected
		at 60% and 61% recovery, respectively, within laboratory limits. The LCS/LCSD is acceptable
		and should not be flagged on the summary form.
PL-11-530	9/13/2021	For SW-846 Method 8270D, field duplicate samples 2109131450B and 2109131451B the relative
		percent difference for 1,4-dioxane was 5.7%. Upper acceptance limit for relative percent
		difference is 25%.
ST-6-678	9/16/2021	For SW-846 Method 8270D, field duplicate samples 2109161510B and 2109161511B the
		relative percent difference for 1,4-dioxane was 26.1%. This value is outside the upper
DI M 42 560	0/7/2021	acceptance limit for relative percent difference of 25%.
BLM-42-569	9/ //2021	For SW-846 Method 8270D, five unknown hydrocarbons were tentatively identified by a GC/MS library search in sample 2109070925C.
BLM-42-709	9/7/2021	For SW-846 Method 8270D, seven unknown hydrocarbons were tentatively identified by a
DL141-42-707	7/1/2021	GC/MS library search in sample 2109071459C.
300-A-120	9/13/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in the
200 11 120	7,10,2021	method blank for analytical batch 387659. No groundwater data are affected by this method blank
		contamination.
PL-11-470	9/13/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in the
		method blank for analytical batch 387659. No groundwater data are affected by this method blank
		contamination.
PL-11-530	9/13/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in the
		method blank for analytical batch 387659. No groundwater data are affected by this method blank
DT 44 -10	0/4 / /2 05 :	contamination.
PL-11-710	9/14/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in
DI 11 020	0/14/2021	the method blank for analytical batch 387769. Affected data are appropriately qualified.
PL-11-820	9/14/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in the
		method blank for analytical batch 387769. No groundwater data are affected by this method blank contamination.
		contamination.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
PL-11-980	9/14/2021	For SW-846 Method 8270D, several compounds were detected above the reporting limit in the method blank for analytical batch 387769. No groundwater data are affected by this method blank
		contamination.
200-SG-1	9/7/2021	For SW-846 Method 8270D, six unknown hydrocarbons were tentatively identified by a GC/MS library search in sample 2109071100B.
200-SG-1	9/7/2021	For SW-846 Method 8270D, surrogate recovery of 2-fluorobiphenyl and nitrobenzene- d5 is outside control limits for some field and QC samples in analytical batch 387097. There was no extra volume to re-extract samples. Affected data are appropriately qualified.
BLM-42-569	9/7/2021	For SW-846 Method 8270D, surrogate recovery of 2-fluorobiphenyl and nitrobenzene- d5 is outside control limits for some field and QC samples in analytical batch 387097. There was no extra volume to re-extract samples. Affected data are appropriately qualified.
BLM-42-709	9/7/2021	For SW-846 Method 8270D, surrogate recovery of 2-fluorobiphenyl and nitrobenzene- d5 is outside control limits for some field and QC samples in analytical batch 387097. There was no extra volume to re-extract samples. Affected data are appropriately qualified.
ST-6-678	9/16/2021	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.
ST-6-824	9/16/2021	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.
ST-6-970	9/16/2021	For SW-846 Method 8270D, the control limits were exceeded for one or more surrogates in one or more QC samples associated with samples in this report. The associated recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier is flagged accordingly. No further corrective action was appropriate.
200-SG-1	9/7/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample/laboratory Control Sample Duplicate (LCS/LCSD) was exceeded for one or more analyte. Precision is also outside limits. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples could not be performed because insufficient sample remained for testing. Affected data are appropriately qualified.
BLM-42-569	9/7/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample/laboratory Control Sample Duplicate (LCS/LCSD) was exceeded for one or more analyte. Precision is also outside limits. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples could not be performed because insufficient sample remained for testing. Affected data are appropriately qualified.
BLM-42-709	9/7/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the Laboratory Control Sample/laboratory Control Sample Duplicate (LCS/LCSD) was exceeded for one or more analyte. Precision is also outside limits. There were no detections of the analyte(s) in the associated field samples. The discrepancy associated with reduced recovery equates to a potential low bias. Additional analysis of the associated field samples could not be performed because insufficient sample remained for testing. Affected data are appropriately qualified.
200-SG-1	9/7/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
300-A-120	9/13/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
BLM-42-569		For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-42-709	9/7/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-11-470		For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-11-530	9/13/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-528	9/15/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
ST-6-568	9/15/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
PL-11-710	9/14/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-820	9/14/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
PL-11-980	9/14/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-6-678	9/16/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-6-824	9/16/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
ST-6-970	9/16/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
200-SG-1	9/7/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-42-569	9/7/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
BLM-42-709	9/7/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
DI 11 510	0/14/2021	further corrective action was taken.
PL-11-710	9/14/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
PL-11-820	9/14/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
12 11 020	3/11/2021	Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
PL-11-980	9/14/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
GT (530	0/15/2021	further corrective action was taken.
ST-6-528	9/15/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
ST-6-568	9/15/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
ST-6-678	9/16/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-824	0/16/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
31-0-624	9/10/2021	Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
		further corrective action was taken.
ST-6-970	9/16/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the
		Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not
		contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no
DI 0 455	0/2/2021	further corrective action was taken.
PL-8-455		For SW-846 Method 8270D, there were no detections in the field blank.
ST-6-528	9/13/2021	For SW-846 Method 8270D, three unknown compounds and five unknown hydrocarbons were tentatively identified by a GC/MS library search in the method blank for analytical
		batch 387860. Affected data are appropriately qualified.
ST-6-568	9/15/2021	For SW-846 Method 8270D, three unknown compounds and five unknown hydrocarbons were
	J. 15, 2021	tentatively identified by a GC/MS library search in the method blank for analytical batch 387860.
		No groundwater data are affected by this method blank contamination.

Well ID	Event Date	Total Metals QA Narratives			
NASA 5	9/15/2021	For Total Metals, blind control sample (2109151522C) was prepared at a concentration below the reporting limits for calcium. The result for this metal is not qualified based on this control.			
BW-1-268	9/9/2021	For Total Metals, field duplicate samples 2109090818B and 2109090819B the relative percent			
		difference for sodium was 0.3%. Upper acceptance limit for relative percent difference is 25%.			
BW-1-268	9/9/2021	For Total Metals, field duplicate samples 2109090818B and 2109090819B the relative percent difference for strontium was 1.3%. Upper acceptance limit for relative percent difference is 25%.			
BW-1-268		For Total Metals, field duplicate samples 2109090818B and 2109090819B the relative percentifierence for calcium was 0.0%. Upper acceptance limit for relative percent difference is 25			
BW-1-268	9/9/2021	For Total Metals, field duplicate samples 2109090818B and 2109090819B the relative percedifference for magnesium was 1.6%. Upper acceptance limit for relative percent difference 25%.			
300-D-153	9/16/2021	For Total Metals, field duplicate samples 2109161444C and 2109161445C the relative percent difference for calcium was 0.9%. Upper acceptance limit for relative percent difference is 25%.			
300-D-153	9/16/2021	For Total Metals, field duplicate samples 2109161444C and 2109161445C the relative percent difference for magnesium was 1.0%. Upper acceptance limit for relative percent difference is 25%.			
300-D-153	9/16/2021	For Total Metals, field duplicate samples 2109161444C and 2109161445C the relative percent difference for sodium was 0.8%. Upper acceptance limit for relative percent difference is 25%.			
300-D-153	9/16/2021	For Total Metals, field duplicate samples 2109161444C and 2109161445C the relative percent difference for strontium was 0.0%. Upper acceptance limit for relative percent difference is 25%.			
700-H-670	9/29/2021				
700-H-670	9/29/2021	For Total Metals, field duplicate samples 2109290852Y and 2109290915Y the relative percent difference for sodium was 0.0%. Upper acceptance limit for relative percent difference is 25%.			
700-H-670	9/29/2021	For Total Metals, field duplicate samples 2109290852Y and 2109290915Y the relative percent difference for calcium was 0.0%. Upper acceptance limit for relative percent difference is 25%.			
700-H-670	9/29/2021	For Total Metals, field duplicate samples 2109290852Y and 2109290915Y the relative percent difference for strontium was 1.7%. Upper acceptance limit for relative percent difference is 25%.			
PL-11-530	9/13/2021	For Total Metals, for matrix spike sample 2109131453B the concentrations of calcium, magnesium, and sodium in the native sample were greater than four times the concentration of the spike added. The sample results for these metals are not qualified based on this control.			
700-H-535	9/29/2021	For Total Metals, magnesium (0.05 mg/L), strontium (0.02 mg/L), vanadium (0.001 mg/L) and zinc (0.003 mg/L) were detected in the equipment blank (2109291511Y) below the reporting limit. Affected data are appropriately qualified.			
BW-1-268	9/9/2021	For Total Metals, the upper control limit was exceeded for antimony and thallium in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.			
BW-1-268	9/9/2021	For Total Metals, the upper control limit was exceeded for selenium in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.			
NASA 10	9/15/2021	For Total Metals, the upper control limit was exceeded for thallium in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.			
NASA 5	9/15/2021	For Total Metals, the upper control limit was exceeded for thallium in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.			

Well ID	Event Date	Total Metals QA Narratives
ST-6-528	9/15/2021	For Total Metals, the upper control limit was exceeded for thallium in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-6-568	9/15/2021	For Total Metals, the upper control limit was exceeded for thallium in the Contract Required Detection Limit Standard (CRDL). The field samples analyzed in this sequence did not contain the analyte in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-KV-150	9/14/2021	For Total Metals, zinc (0.003 mg/L) was detected in the field blank (2109140905C) below the reporting limit. Affected data are appropriately qualified.

Well ID	Event Date	Miscellaneous QA Narratives
200-SG-1	9/7/2021	For Method Kelada-01, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-A-120	9/13/2021	For SW-846 Method 8081B, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-A-120	9/13/2021	For SW-846 Method 8082A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-SG-1	9/7/2021	For SW-846 Method 8151A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
300-A-120	9/13/2021	For SW-846 Method 8151A, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-SG-1	9/7/2021	For SW-846 Method 8290A, OCDD (1.22 pg/L) and OCDF (0.436 pg/L) were detected below the reporting limit in method blank WBLANK_28SEP21. Affected data are appropriately qualified.
300-A-120	9/13/2021	For SW-846 Method 8290A, OCDD (1.22 pg/L) and OCDF (0.436 pg/L) were detected below the reporting limit in method blank WBLANK_28SEP21. Affected data are appropriately qualified.

Table 8 – WSTF Blank Sample Detections

Table 6 WELL Blank Sample Detections									
Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
PL-11-470	9/13/2021	Carboy G2	8260_LL	VOA-FB	67-63-0	2-Propanol	23	ug/L	J TB FB
WW-2-489	9/8/2021	Carboy G1	8260_LL	VOA-TB	67-63-0	2-Propanol	20	ug/L	J TB
PL-11-470	9/13/2021	Carboy G2	8260_LL	VOA-TB	67-63-0	2-Propanol	10	ug/L	J TB FB
WW-1-452	9/1/2021	Carboy G1	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	7.6	ug/L	TIC FB

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
B655-INF-2	9/13/2021	Carboy PF1	8260	VOA-FB	67-64-1	Acetone	7.3	ug/L	J FB
WW-2-489		Carboy G1	8260_LL	VOA-TB	1825-61-2	Silane, methoxytrimethyl-		ug/L	TIC TB
PL-11-710	9/14/2021	Carboy G2	8260_LL	VOA-FB	67-63-0	2-Propanol	6.8	ug/L	J FB
WW-1-452		Carboy G1	8260_LL	VOA-FB	67-63-0	2-Propanol		ug/L	J FB
BLM-42-569		Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	5.1	ng/L	TB * FB
B650-EFF-1		Carboy G2	8260_LL	VOA-TB	67-63-0	2-Propanol		ug/L	J TB
B655-EFF-2		Carboy PF1	_	VOA-FB	67-63-0	2-Propanol		ug/L	J FB
B655-INF-2		Carboy PF1		VOA-FB	78-93-3	2-Butanone (MEK)		ug/L	J FB
PL-4-464	9/14/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB A * FB
BLM-42-569		Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * TB FB
ST-6-824		Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * FB
ST-6-970		Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * FB
WW-3-469	9/1/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine		ng/L	RB EB
ST-4-690		Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB * FB
PL-11-980	9/14/2021		NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	RB A FB
BLM-42-709	9/7/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.77	ng/L	RB * FB
200-JG-110	9/20/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane		ug/L	J RB A FB
ST-4-481	9/2/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine		ng/L	RB TB FB
BLM-7-509	9/1/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.73	ng/L	RB TB FB
B650-EFF-1	9/27/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.71	ng/L	RB TB FB
WW-3-569	9/1/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.67	ng/L	RB EB
ST-6-678	9/16/2021	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.67	ng/L	RB * TB FB
BLM-5-527	9/20/2021	Carboy G2	8260	VOA-TB	74-87-3	Chloromethane	0.66	ug/L	J RB A TB FB
PL-8-605	9/2/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.62	ng/L	RB * EB
ST-6-678	9/16/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.62	ng/L	RB * TB FB
ST-4-481	9/2/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.61	ng/L	RB TB FB
WW-1-452	9/1/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.61	ng/L	RB FB
ST-6-568	9/15/2021		NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.6	ng/L	RB A FB Q
PL-11-820	9/14/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.56	ng/L	RB A FB
ST-6-528	9/15/2021		NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.54	ng/L	RB A TB FB
PL-8-455	9/2/2021	Carboy G3	NDMA_LL	NDMA_LL-EB	62-75-9	N-Nitrosodimethylamine	0.53	ng/L	RB EB
B655-EFF-2	9/13/2021	Carboy PF1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.52	ng/L	RB FB
WW-2-489	9/8/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.52	ng/L	RB TB FB
WW-2-664	9/8/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.51	ng/L	RB FB
ST-6-528	9/15/2021		NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.5	ng/L	RB A TB FB
WW-2-489	9/8/2021	Carboy G1	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.49	ng/L	RB TB FB
B650-EFF-1	9/27/2021	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.46	ng/L	J RB TB FB
PL-11-470	9/13/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	J RB TB FB
PL-11-470	9/13/2021	Carboy G2	NDMA_LL	NDMA_LL-TB	62-75-9	N-Nitrosodimethylamine	0.44	ng/L	J RB TB FB
BLM-7-509	9/1/2021	Carboy G1	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.43	ng/L	J RB TB FB
B650-EFF-1	9/27/2021	Carboy G2	8260_LL	VOA-FB	74-87-3	Chloromethane	0.43	ug/L	J RB FB
BLM-5-527	9/20/2021	Carboy G2	8260	VOA-FB	74-87-3	Chloromethane		ug/L	J RB A TB FB
PL-11-530	9/13/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine	0.4	ng/L	J RB FB
700-D-186	9/28/2021		8260	VOA-FB	74-87-3	Chloromethane	0.39	ug/L	J RB FB
700-J-200	9/28/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.37	ug/L	J RB FB

NASA White Sands Test Facility

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
PL-2-504	9/14/2021	Carboy G1	8260	VOA-FB	74-87-3	Chloromethane	0.33	ug/L	J RB A FB
BW-6-355	9/20/2021	Carboy G2	8260	VOA-FB	74-87-3	Chloromethane	0.33	ug/L	J RB A FB
PL-8-605	9/2/2021	Carboy G3	8260_LL	VOA-EB	74-87-3	Chloromethane	0.31	ug/L	J A EB
ST-6-528	9/15/2021		8260_LL	VOA-TB	74-87-3	Chloromethane	0.3	ug/L	J A TB
PL-11-710	9/14/2021	Carboy G2	8260_LL	VOA-FB	74-87-3	Chloromethane	0.3	ug/L	J FB
NASA 5	9/15/2021	Carboy G5	8260	VOA-FB	74-87-3	Chloromethane	0.3	ug/L	J A FB
ST-6-824	9/16/2021	Carboy G2	NDMA_LL	NDMA_LL-FB	4164-28-7	N-Nitrodimethylamine	0.29	ng/L	J FB
700-H-670	9/29/2021	Carboy G3	8260	VOA-EB	74-87-3	Chloromethane	0.29	ug/L	J RB EB
700-H-535	9/29/2021	Carboy G3	METALS	METALS-EB	7439-95-4	Magnesium, Total	0.05	mg/L	J EB
700-H-535	9/29/2021	Carboy G3	METALS	METALS-EB	7440-24-6	Strontium, Total	0.02	mg/L	J EB
700-H-535	9/29/2021	Carboy G3	METALS	METALS-EB	7440-66-6	Zinc, Total	0.003	mg/L	J EB
200-KV-150	9/14/2021	Carboy G5	METALS	METALS-FB	7440-66-6	Zinc, Total	0.003	mg/L	J FB
700-H-535	9/29/2021	Carboy G3	METALS	METALS-EB	7440-62-2	Vanadium, Total	0.001	mg/L	J EB

Quality Assurance Report for White Sands Test Facility Groundwater Monitoring Data

October 2021

NM 8800019434

Report Submitted: January 26, 2022

Report Prepared by: Carlyn A. Tufts Environmental Scientist Navarro Research and Engineering, Inc.

1.0 Introduction

The WSTF Groundwater Monitoring Plan (GMP) requires the preparation of a periodic report to assess the quality of groundwater analytical data reported. The monthly Quality Assurance Report (QAR) prepared and reviewed by responsible environmental contractor data management personnel provides the following information:

- A summary of notable anomalies and a follow-up on previous anomalies, if necessary.
- A summary of notable data quality issues by analytical method, if any.
- A list of the sample events for which groundwater samples were collected in October 2021.
- The quantity and type of quality control samples collected or prepared in October 2021.
- Definitions of data qualifiers used in WSTF analytical data reporting.
- The quantity and type of data qualifiers applied to individual analytical results.
- A list of quality assurance narratives for the month arranged by analytical method.
- A summary table of detections in equipment blank, field blank, and trip blank samples.

2.0 Data Quality

2.1 Notable Anomalies Identified in Previous Quality Assurance Reports

There were no notable anomalies requiring follow-up associated with previous QARs.

2.2 Notable Anomalies

There were no notable anomalies in the groundwater data associated with the October 2021 QAR.

3.0 Data Tables

Table 1 summarizes the groundwater sample events initiated in October 2021. This report is based on data quality issues related to the sample events listed in Table 1. Tables 2 through 8 contain information related to the sample events identified in Table 1. As specified by the GMP, specific quality control samples are utilized to assess the quality of analytical data. Table 2 presents the quantity of quality control samples collected for each analytical method. Table 3 compares the quality control sample percentages collected to the requirements in the GMP. When data quality criteria are not met, data qualifiers are applied to the data. Definitions of data qualifiers used for WSTF chemical analytical data are listed in Table 4. Table 5 and Table 6 present the total number of individual result records and summarize the quantity of field and laboratory data qualifiers assigned to individual analyte result records in the WSTF analytical database. Table 7 provides all quality assurance narratives associated with the sample events in Table 1. Narratives associated with qualified data are identified by **bold text** in Table 7. Table 8 provides a summary of all detections in WSTF blank samples.

Table 1 – Sample Events for October <u>2021</u>

Well ID	Event Date
BLM-40-517	10/4/2021
BLM-40-595	10/4/2021
ST-7-453	10/4/2021
ST-7-544	10/4/2021
BLM-10-517	10/5/2021
BLM-40-688	10/5/2021
JP-1-424	10/6/2021

Well ID	Event Date
PL-10-484	10/6/2021
PL-10-592	10/6/2021
ST-7-779	10/6/2021
ST-7-970	10/6/2021
BLM-39-385	10/7/2021
BLM-39-560	10/7/2021
JER-2-504	10/7/2021

Well ID	Event Date
JP-3-689	10/7/2021
PL-6-725	10/12/2021
B650-EFF-1	10/13/2021
B650-INF-1	10/13/2021
JER-2-584	10/13/2021
JER-2-684	10/13/2021
PL-6-545	10/13/2021

Well ID	Event Date
JER-1-483	10/14/2021
PL-1-486	10/14/2021
BLM-6-488	10/15/2021
JER-1-563	10/15/2021
JER-1-683	10/15/2021
400-FV-131	10/18/2021
400-HV-147	10/18/2021
BLM-14-327	10/18/2021
BLM-41-420	10/18/2021

Well ID	Event Date
PFE-1	10/18/2021
PFE-2	10/18/2021
300-C-128	10/19/2021
400-IV-123	10/19/2021
B655-EFF-2	10/19/2021
B655-INF-2	10/19/2021
BLM-41-670	10/19/2021
BW-3-180	10/19/2021
WW-5-459	10/19/2021

Well ID	Event Date
WW-5-579	10/19/2021
200-LV-150	10/20/2021
PFE-4A	10/20/2021
PFE-5	10/20/2021
PFE-7	10/20/2021
WW-5-809	10/20/2021
WW-5-909	10/20/2021
600-G-138	10/21/2021
JP-2-447	10/21/2021

Table 2 - Quantity of Quality Control Samples

Method	Samples	Field Blanks	Equip Blanks	Trip Blanks	Blind Controls	Duplicates	Matrix Spikes
Chloride by EPA Method 300.0	1	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0
Nitrosamines by EPA Method 607	38	1	1	0	1	3	1
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	18	16	2	0	1	4	0
Low Level Volatile Organics by SW-846 Method 8260C	30	26	4	9	0	1	1
Semi-Volatile Organics by SW-846 Method 8270D	23	0	0	0	0	2	0
Anions by Various EPA Methods	5	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	25	2	0	0	1	4	0
Nitrosamines by Low-Level Method	32	28	4	10	1	4	1
Total Dissolved Solids by Standard Method 2540C	5	0	0	0	0	0	0

Table 3 – Quality Control Sample Percentages

Quality Control Requirement	Requirement %	Samp. Qty. since 11/1/2020	QC Qty. since 11/1/2020	QC % since 11/1/2020	Sample Quantity October 2021	QC Quantity October 2021	QC % October 2021
VOA Duplicates	10	527	55	10.44	48	5	10.42
VOA Matrix Spikes	2	527	12	2.28	48	1	2.08
607 Duplicates	10	336	32	9.52	38	3	7.89
607 Matrix Spikes	2	336	9	2.68	38	1	2.63
607 Equipment Blanks	2	336	10	2.98	38	1	2.63
607 Field Blanks	2	336	9	2.68	38	1	2.63
NDMA_LL Duplicates	10	312	37	11.86	32	4	12.50
NDMA_LL Matrix Spikes	2	312	9	2.88	32	1	3.13
Metals Duplicates	10	219	24	10.96	25	4	16.00
Metals Matrix Spikes	2	219	5	2.28	25	0	0.00
Metals Equipment Blanks	5	219	12	5.48	25	0	0.00
Metals Field Blanks	5	219	12	5.48	25	2	8.00

Quality Control Requirement	Requirement %	Sample Events since 11/1/2020	QC Qty. since 11/1/2020	QC % since 11/1/2020	Sample Events October 2021	QC Quantity October 2021	QC % October 2021
VOA Equipment Blanks and Field Blanks	Should approach 100%	527	527	100%	48	48	100%
Low Level Nitrosamine Equipment Blanks and Field Blanks	Should approach 100%	308	308	100%	32	32	100%

Quality Control Requirement	Requirement %	Shipments since 11/1/2020	TB Qty. since 11/1/2020	TB % since 11/1/2020	Shipments in October 2021	TB Quantity October 2021	QC % October 2021
VOA Trip Blank (per shipment)	Should approach 100%	100	100	100%	10	10	100%
Low Level Nitrosamine Trip Blank (per shipment)	Should approach 100%	93	93	100%	10	10	100%

Table 4 - Definitions of Data Qualifiers

Qualifier	Definition
*	User defined qualifier. See quality assurance narrative.
A	The result of an analyte for a laboratory control sample (LCS), initial calibration verification (ICV) or continuing
	calibration verification (CCV) was outside standard limits.
AD	Relative percent difference for analyst (laboratory) duplicates was outside standard limits.
D	The reported result is from a dilution.
EB	The analyte was detected in the equipment blank.
FB	The analyte was detected in the field blank.
G	The result is an estimated value greater than the upper calibration limit.
i	The result, quantitation limit, and/or detection limit may have been affected by matrix interference.
J	The result is an estimated value less than the quantitation limit, but greater than or equal to the detection limit.
NA	The value/result was either not analyzed for or not applicable.
ND	The analyte was not detected above the detection limit.
Q	The result for a blind control sample was outside standard limits.
QD	The relative percent difference for a field duplicate was outside standard limits.
R	The result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The
	presence or absence of the analyte cannot be verified.
RB	The analyte was detected in the method blank.
S	The result was determined by the method of standard addition.
SP	The matrix spike recovery and/or the relative percent difference for matrix spike duplicates was outside standard limits.
T	The sample was analyzed outside the specified holding time or temperature.
TB	The analyte was detected in the trip blank.
TIC	The analyte was tentatively identified by a GC/MS library search and the amount reported is an estimated value.

Table 5 - Quantity of Field Based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	"FB"	"EB"	"ТВ"	"Q"	"QD"	"SP"	"R"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	123	0	0	0	0	0	0	0
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0

Method	Total Result Records	"FB"	"ЕВ"	"ТВ"	"Q"	"QD"	"SP"	"R"
Volatile Organics by SW-846 Method 8260C	1436	1	1	0	8	8	0	0
Low Level Volatile Organics by SW-846 Method 8260C	2030	0	1	0	0	0	1	0
Semi-Volatile Organics by SW-846 Method 8270D	1851	0	0	0	0	0	0	0
Anions by Various EPA Methods	20	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	783	0	0	0	0	4	0	0
Nitrosamines by Low-Level Method	72	10	4	2	0	4	0	0
Total Dissolved Solids by Standard Method 2540C	5	0	0	0	0	0	0	0

Table 6 - Quantity of Laboratory based Data Qualifiers Assigned to Individual Result Records

Method	Total Result Records	11 % 11	"A"	"AD"	"G"	"RB"	"T"	"D"	"i"	"J"
Chloride by EPA Method 300.0	1	0	0	0	0	0	0	0	0	0
Nitrate plus Nitrite as N by EPA Method 353.2	8	0	0	0	0	0	0	0	0	0
Nitrosamines by EPA Method 607	123	0	0	0	0	0	0	3	0	7
Perchlorate by SW-846 Method 6850	5	0	0	0	0	0	0	0	0	0
Organics by SW-846 Method 8015M	2	0	0	0	0	0	0	0	0	0
Volatile Organics by SW-846 Method 8260C	1436	0	0	0	0	2	0	0	0	31
Low Level Volatile Organics by SW-846 Method 8260C	2030	0	0	0	0	1	0	0	0	12
Semi-Volatile Organics by SW-846 Method 8270D	1851	0	7	0	0	0	0	1	0	0
Anions by Various EPA Methods	20	0	0	0	0	0	0	0	0	0
Total Metals by Various SW-846 Methods	783	0	0	0	0	1	0	0	0	144
Nitrosamines by Low-Level Method	72	0	0	0	0	0	0	0	0	6
Total Dissolved Solids by Standard Method 2540C	5	0	0	0	0	0	0	0	0	0

Table 7 – Quality Assurance Narratives

Well ID	Event Date	SW-846 Method 8260C QA Narratives
PL-6-725	10/12/2021	For Low Level SW-846 Method 8260C, 1,1,2-trichloro-1,2,2-trifluoroethane (0.82 ug/L), trichloroethene (TCE) (0.27 ug/L), and trichlorofluoromethane (CFC 11) (0.3 ug/L) were detected in the equipment blank (2110121005Y) below the reporting limit with the exception of 1,1,2-trichloro-1,2,2-trifluoroethane. Affected data are appropriately qualified.
WW-5-809	10/20/2021	For Low Level SW-846 Method 8260C, 2-propanol (13 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.5 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110201052B). Affected data are appropriately qualified.
BLM-41-670	10/19/2021	For Low Level SW-846 Method 8260C, 2-propanol (15 ug/L) was detected below the reporting limit and silane, methoxytrimethyl- (5.9 ug/L) and silanol, trimethyl- (5.5 ug/L) were tentatively identified by a GC/MS library search in the field blank (2110191436C). No groundwater data are affected by this field blank contamination.
JER-2-504	10/7/2021	For Low Level SW-846 Method 8260C, 2-propanol (4.0 ug/L) was detected below the reporting limit and one unknown compound (7.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 742792. Affected data are appropriately qualified.
JP-3-689	10/7/2021	For Low Level SW-846 Method 8260C, 2-propanol (4.0 ug/L) was detected below the reporting limit and one unknown compound (7.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 742792. Affected data are appropriately qualified.

	Event Date	SW-846 Method 8260C QA Narratives
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, 2-propanol (4.5 ug/L) was detected below the
		reporting limit and one unknown compound (8.3 ug/L) was tentatively identified by a
		GC/MS library search in the field blank (2110050941A). Affected data are appropriately
		qualified.
ST-7-544	10/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (5.5 ug/L) was detected below the
		reporting limit and one unknown compound (7.4 ug/L) was tentatively identified by a
		GC/MS library search in the field blank (2110041431B). Affected data are appropriately
JP-2-447	10/21/2021	qualified. For Low Level SW-846 Method 8260C, 2-propanol (5.8 ug/L) was detected in the trip blank
JP-2-44/	10/21/2021	(2110210730C) below the reporting limit. No groundwater data are affected by this trip blank
		contamination.
BLM-40-517	10/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (6.0 ug/L) and chloromethane (0.30
DENT TO ST	10/ 1/2021	ug/L) were detected below the reporting limit and one unknown compound (8.5 ug/L) was
		tentatively identified by a GC/MS library search in the method blank for analytical batch
		742130. Affected data are appropriately qualified.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (6.0 ug/L) and chloromethane (0.30
		ug/L) were detected below the reporting limit and one unknown compound (8.5 ug/L) was
		tentatively identified by a GC/MS library search in the method blank for analytical batch
CT 5 452	10/4/2021	742130. Affected data are appropriately qualified.
ST-7-453	10/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (6.0 ug/L) and chloromethane (0.30 ug/L)
		were detected below the reporting limit and one unknown compound (8.5 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 742130. No groundwater data are affected by this method blank contamination.
ST-7-544	10/4/2021	For Low Level SW-846 Method 8260C, 2-propanol (6.0 ug/L) and chloromethane (0.30 ug/L)
31-/-344	10/4/2021	were detected below the reporting limit and one unknown compound (8.5 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 742130. No
		groundwater data are affected by this method blank contamination.
JP-2-447	10/21/2021	For Low Level SW-846 Method 8260C, 2-propanol (6.3 ug/L) was detected below the
		reporting limit and silane, methoxytrimethyl- (6.3 ug/L) and one unknown compound (6.3
		ug/L) were tentatively identified by a GC/MS library search in the field blank (2110210936C).
		No groundwater data are affected by this field blank contamination.
WW-5-459	10/19/2021	For Low Level SW-846 Method 8260C, 2-propanol (8.2 ug/L) was detected in the field blank
		(2110191047B) below the reporting limit. No groundwater data are affected by this field blank
DI M 41 400	10/10/2021	contamination.
BLM-41-420	10/18/2021	For Low Level SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method
		blank for analytical batch 743561 below the reporting limit. No groundwater data are affected by this method blank contamination.
PL-6-725	10/12/2021	For Low Level SW-846 Method 8260C, chloromethane (0.3 ug/L) was detected in the trip
1 L-0-723	10/12/2021	blank (2110120800Y) below the reporting limit. No groundwater data are affected by this trip
		blank contamination.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, for matrix spike sample 2110041001A the
BENT 10 050	10/ 1/2021	recoveries of the majority of matrix spike duplicate (MSD) analytes and the
		corresponding relative percent difference (RPD) were outside laboratory control limits
		high. The exception was the recovery of vinyl acetate (36%) and (40%) outside low (48-
		172%). Affected data are appropriately qualified.
JER-2-504	10/7/2021	For Low Level SW-846 Method 8260C, one unknown compound (6.3 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110071401B.
BLM-40-517	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (6.5 ug/L) was
IED 2 504	10/7/2021	tentatively identified by a GC/MS library search in sample 2110041420A.
JER-2-504	10///2021	For Low Level SW-846 Method 8260C, one unknown compound (6.8 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110071402B).
		Affected data are appropriately qualified.
BLM-40-517	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (6.9 ug/L) was
	10/1/2021	
22.11 10 01.		tentatively identified by a GC/MS library search in the field blank (2110041421A).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
JP-3-689	10/7/2021	For Low Level SW-846 Method 8260C, one unknown compound (6.9 ug/L) was
		tentatively identified by a GC/MS library search in the field blank (2110071001A).
		Affected data are appropriately qualified.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (7 ug/L) was tentatively
		identified by a GC/MS library search in the trip blank (2110040800A). Affected data are
		appropriately qualified.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.1 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110061341B.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.2 ug/L) was
		tentatively identified by a GC/MS library search in the field blank (2110041002A).
		Affected data are appropriately qualified.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.2 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110050940A.
JP-3-689	10/7/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.3 ug/L) was
		tentatively identified by a GC/MS library search in the trip blank (2110070750A).
		Affected data are appropriately qualified.
ST-7-544	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.4 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110041430B.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.5 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110041000A.
PL-10-484	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.5 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110060934Y.
ST-7-453	10/4/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.5 ug/L) was tentatively
		identified by a GC/MS library search in the field blank (2110041416B). No groundwater data
		are affected by this field blank contamination.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.6 ug/L) was
		tentatively identified by a GC/MS library search in the trip blank (2110050740A).
		Affected data are appropriately qualified.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.6 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110061420Y.
BLM-10-517	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.7 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110051440A.
JP-3-689	10/7/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.7 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110071000A.
ST-7-779	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.8 ug/L) was
		tentatively identified by a GC/MS library search in sample 2110061326B.
PL-10-484	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (7.9 ug/L) was
		tentatively identified by a GC/MS library search in the equipment blank (2110060811Y).
		Affected data are appropriately qualified.
BLM-10-517	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 724527.
		Affected data are appropriately qualified.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 724527.
		Affected data are appropriately qualified.
JP-1-424	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 724527.
		Affected data are appropriately qualified.
PL-10-484	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 724527.
		Affected data are appropriately qualified.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively
		identified by a GC/MS library search in the method blank for analytical batch 724527.
		Affected data are appropriately qualified.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-7-779	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110061327B). Affected data are appropriately qualified.
ST-7-779	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 724527. Affected data are appropriately qualified.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 724527. Affected data are appropriately qualified.
BLM-10-517	10/5/2021	For Low Level SW-846 Method 8260C, one unknown compound (8.1 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110051441A). Affected data are appropriately qualified.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8.1 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110061342B). Affected data are appropriately qualified.
JP-1-424	10/6/2021	For Low Level SW-846 Method 8260C, one unknown compound (8.3 ug/L) was tentatively identified by a GC/MS library search in the field blank (2110061401A). Affected data are appropriately qualified.
ST-7-544		For Low Level SW-846 Method 8260C, one unknown compound (8.6 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 742303. Affected data are appropriately qualified.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, relative percent differences (RPD) for duplicate samples 2110141425C and 2110141426C were within control limits or below the calculable range.
WW-5-809	10/20/2021	For Low Level SW-846 Method 8260C, silane, methoxytrimethyl- (5.7 ug/L) was tentatively identified by a GC/MS library search in sample 2110201051B.
JER-1-563	10/15/2021	For Low Level SW-846 Method 8260C, sulfur dioxide (0.27 ug/L) was tentatively identified by a GC/MS library search in sample 2110151023B.
B650-EFF-1	10/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-10-517	10/5/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-40-517	10/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
BLM-41-420	10/18/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.
JER-1-483	10/14/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
JER-1-563	10/15/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
JER-1-683	10/15/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
JER-1-683	10/15/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
	10/5/0001	The data quality was not significantly affected and no further corrective action was taken.
JER-2-504	10/7/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
	10/10/2001	The data quality was not significantly affected and no further corrective action was taken.
JER-2-584	10/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
HED 2 (0.4	10/12/2021	The data quality was not significantly affected and no further corrective action was taken.
JER-2-684	10/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
ID 1 424	10/6/2021	The data quality was not significantly affected and no further corrective action was taken.
JP-1-424	10/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
JP-3-689	10/7/2021	The data quality was not significantly affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
JP-3-089	10/ //2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-10-484	10/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
1 L-10-404	10/0/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
12 10 372	10/0/2021	analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-6-545	10/13/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
PL-6-725	10/12/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-7-453	10/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
ST-7-544	10/4/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-7-779	10/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, the lower control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). Since there were no detections of
		the analyte(s) above the MRL in the associated field samples, the quantitation is not affected.
		The data quality was not significantly affected and no further corrective action was taken.
B650-EFF-1	10/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
B655-EFF-2	10/19/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
BLM-10-517	10/5/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
DI 16 40 600	10/5/2021	further corrective action was appropriate.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with
		elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.
BLM-41-670	10/10/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
DLW-41-070	10/19/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-1-483	10/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
JER 1 403	10/14/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-1-563	10/15/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-1-683	10/15/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-2-504	10/7/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		elevated recovery equates to a high bias. The sample data is not significantly affected. No
		further corrective action was appropriate.
JER-2-584	10/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
JER-2-684	10/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
	10/5/2021	corrective action was appropriate.
JP-1-424	10/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
ID 2 (00	10/7/2021	corrective action was appropriate.
JP-3-689	10///2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
PL-10-484	10/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
1 L-10-404	10/0/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) in the associated field samples. The error associated with elevated recovery equates
		to a high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
PL-6-545	10/13/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
DI (727	10/12/2021	corrective action was appropriate.
PL-6-725	10/12/2021	
ST_7 544	10/4/2021	
51-/-J 44	10/4/2021	
ST-7-779	10/6/2021	
	10,0,2021	
PL-6-725 ST-7-544 ST-7-779	10/4/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevarecovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevarecovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate. For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevarence of the sample of the sample of the samples of the samples of the samples.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
***************************************	10/10/2021	corrective action was appropriate.
WW-5-459	10/19/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
		more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
WW-5-579	10/19/2021	For Low Level SW-846 Method 8260C, the upper control criterion was exceeded for one or
W W-3-379	10/19/2021	more analytes in the Laboratory Control Sample (LCS). There were no detections of the
		analyte(s) above the MRL in the associated field samples. The error associated with elevated
		recovery equates to a high bias. The sample data is not significantly affected. No further
		corrective action was appropriate.
B650-EFF-1	10/13/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
B655-EFF-2	10/19/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
BLM-10-517	10/5/2021	affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
DLWI-10-317	10/3/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-40-517	10/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-40-595	10/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-40-688	10/5/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
DLW1-40-000	10/3/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-41-420	10/18/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
BLM-41-670	10/19/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-1-483	10/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
IED 1 562	10/15/2021	affected and no further corrective action was taken.
JER-1-563	10/15/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-1-683	10/15/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
2211 1 000	10/10/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-2-504	10/7/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
JER-2-584	10/12/2021	affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
JEK-2-364	10/13/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JER-2-684	10/13/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
	10/5/2021	affected and no further corrective action was taken.
JP-1-424	10/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JP-2-447	10/21/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
	10/21/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
JP-3-689	10/7/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
PL-10-484	10/6/2021	affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
1 L-1U-404	10/0/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
DI (545	10/12/2021	affected and no further corrective action was taken.
PL-6-545	10/13/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
PL-6-725	10/12/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
ST-7-453	10/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-544	10/4/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
51-7-544	10/4/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
ST-7-779	10/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
CT 7 070	10/6/2021	affected and no further corrective action was taken.
ST-7-970	10/6/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
WW-5-459	10/19/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
WW-5-579	10/19/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
WW-5-809	10/20/2021	affected and no further corrective action was taken. For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
vv vv -3-809	10/20/2021	analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
WW-5-909	10/20/2021	For Low Level SW-846 Method 8260C, the upper control limit was exceeded for one or more
		analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this
		sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL).

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		Since the exceedance equates to a potential high bias, the data quality was not significantly
		affected and no further corrective action was taken.
B650-EFF-1		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
B655-EFF-2		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-41-420		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
BLM-41-420	10/18/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
BLM-41-670	10/19/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
JER-1-483	10/14/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-1-563	10/15/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-1-683	10/15/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-584	10/13/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JER-2-684	10/13/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-10-592	10/6/2021	For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
PL-1-486	10/14/2021	For Low Level SW-846 Method 8260C, there were no detections in the field blank.
PL-6-545		For Low Level SW-846 Method 8260C, there were no detections in the equipment blank.
WW-5-579		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
WW-5-809		For Low Level SW-846 Method 8260C, there were no detections in the trip blank.
WW-5-909		For Low Level SW-846 Method 8260C, there were no detections in the field blank.
JP-1-424		For Low Level SW-846 Method 8260C, two unknown compounds were tentatively
31-1-424	10/0/2021	identified by a GC/MS library search in sample 2110061400A.
BW-3-180	10/19/2021	For SW-846 Method 8260C in blind control sample (2110191115C), the percent
		recoveries for 1,1,2-trichloro-1,2,2-trifluoroethane (240%), trichloroethene (220%),
		tetrachloroethene (230%), and trichlorofluoromethane (230%) were outside of the
PFE-2	10/18/2021	standard limits (75-125%). Affected data are appropriately qualified. For SW-846 Method 8260C, 2-propanol (3.6 ug/L) was detected below the reporting limit and
1112-2	10/16/2021	silane, methoxytrimethyl- (5.7 ug/L) was tentatively identified by a GC/MS library search in
		the field blank (2110180942). No groundwater data are affected by this field blank
		contamination.
B655-INF-2	10/19/2021	For SW-846 Method 8260C, 2-propanol (3.6 ug/L) was detected in the field blank
		(2110191026) below the reporting limit. No groundwater data are affected by this field blank contamination.
BLM-39-385	10/7/2021	For SW-846 Method 8260C, 2-propanol (4.0 ug/L) was detected below the reporting limit
BE141-37-303	10/7/2021	and one unknown compound (7.5 ug/L) was tentatively identified by a GC/MS library
		search in the method blank for analytical batch 742792. Affected data are appropriately
		qualified.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, 2-propanol (4.0 ug/L) was detected below the reporting limit
		and one unknown compound (7.5 ug/L) was tentatively identified by a GC/MS library search in the method blank for analytical batch 742792. Affected data are appropriately
		qualified.
PFE-5	10/20/2021	For SW-846 Method 8260C, 2-propanol (8.3 ug/L) was detected in the field blank
		(2110200805) below the reporting limit. Affected data are appropriately qualified.
200-LV-150	10/20/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for
		analytical batch 743909 below the reporting limit. No groundwater data are affected by this
400 EV 121	10/19/2021	method blank contamination.
400-FV-131	10/18/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743561 below the reporting limit. No groundwater data are affected by this
		method blank contamination.
400-HV-147	10/18/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for
		analytical batch 743561 below the reporting limit. No groundwater data are affected by this
		method blank contamination.

Well ID	Event Date	SW-846 Method 8260C QA Narratives
600-G-138	10/21/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743909 below the reporting limit. Affected data are appropriately qualified.
BLM-14-327	10/18/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743561 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-1	10/18/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743561 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-2	10/18/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743561 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-4A	10/20/2021	For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743909 below the reporting limit. No groundwater data are affected by this method blank contamination.
PFE-5		For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743909 below the reporting limit. Affected data are appropriately qualified.
PFE-7		For SW-846 Method 8260C, chloromethane (0.28 ug/L) was detected in the method blank for analytical batch 743909 below the reporting limit. No groundwater data are affected by this method blank contamination.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, field duplicate samples 2110071258Y and 2110071259Y the relative percent difference for 1,2-dichloro-1,1,2-trifluoroethane (CFC 123a) was 44.0%. This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, field duplicate samples 2110071258Y and 2110071259Y the relative percent difference for dichlorofluoromethane (CFC 21) was 29.7%. This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, field duplicate samples 2110071258Y and 2110071259Y the relative percent difference for trichlorofluoromethane (CFC 11) was 34.5%. This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, field duplicate samples 2110071258Y and 2110071259Y the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 43.1%. This value is outside the upper acceptance limit for relative percent difference of 25%.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, field duplicate samples 2110071258Y and 2110071259Y the relative percent difference for trichloroethene (TCE) was 23.3%. Upper acceptance limit for relative percent difference is 25%.
PFE-1	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110180907 and 2110180908 the relative percent difference for trichloroethene (TCE) was 12.6%. Upper acceptance limit for relative percent difference is 25%.
PFE-1	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110180907 and 2110180908 the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 4.5%. Upper acceptance limit for relative percent difference is 25%.
PFE-1	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110180907 and 2110180908 the relative percent difference for trichlorofluoromethane (CFC 11) was 8.2%. Upper acceptance limit for relative percent difference is 25%.
400-HV-147	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110181410A and 2110181412A the relative percent difference for dichlorofluoromethane (CFC 21) was 0.0%. Upper acceptance limit for relative percent difference is 25%.
400-HV-147	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110181410A and 2110181412A the relative percent difference for 1,1,2-trichloro-1,2,2-trifluoroethane was 7.6%. Upper acceptance limit for relative percent difference is 25%.
400-HV-147	10/18/2021	For SW-846 Method 8260C, field duplicate samples 2110181410A and 2110181412A the relative percent difference for trichlorofluoromethane (CFC 11) was 0.0%. Upper acceptance limit for relative percent difference is 25%.

D1051C the Upper ly identified by a undwater data g/L) was and duplicate tively identified ed data are vely identified ie, search in
Upper ly identified by a undwater data g/L) was and duplicate tively identified ed data are vely identified
ly identified by a undwater data g/L) was and duplicate tively identified ed data are wely identified
undwater data g/L) was and duplicate tively identified ed data are wely identified
undwater data g/L) was and duplicate tively identified ed data are wely identified
g/L) was and duplicate tively identified ed data are vely identified
tively identified ed data are vely identified
tively identified ed data are vely identified
tively identified ed data are vely identified
ed data are vely identified
ed data are vely identified
vely identified
ıe,
ıe,
search in
of the
The LCSD
qualified.
ore analytes in
of the analyte(s)
The data
n.
ore analytes in
of the analyte(s)
The data
n.
ore analytes in
of the analyte(s)
The data
n.
ore analytes in
of the analyte(s)
The data
1.
ore analytes in
of the analyte(s)
The data
1.
ore analytes in
of the analyte(s)
The data
1 ne data
ore analytes in
of the analyte(s)
The data
1.
ore analytes in
of the analyte(s)
The data
1.
ore analytes in
of the analyte(s)
The data
i iio aata

Well ID	Event Date	SW-846 Method 8260C QA Narratives
BLM-6-488	10/15/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data
		quality was not significantly affected and no further corrective action was taken.
PFE-1	10/18/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data
DEE 0	10/10/2021	quality was not significantly affected and no further corrective action was taken.
PFE-2	10/18/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data
		quality was not significantly affected and no further corrective action was taken.
PFE-4A	10/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
IIIL-4A	10/20/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data
		quality was not significantly affected and no further corrective action was taken.
PFE-5	10/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
TTE 3	10/20/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data
		quality was not significantly affected and no further corrective action was taken.
PFE-7	10/20/2021	For SW-846 Method 8260C, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s)
		above the MRL in the associated field samples, the quantitation is not affected. The data
		quality was not significantly affected and no further corrective action was taken.
300-C-128	10/19/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes
		in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the
		MRL in the associated field samples. The error associated with elevated recovery equates to a
		high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
BLM-39-385	10/7/2021	For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes
		in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the
		MRL in the associated field samples. The error associated with elevated recovery equates to a
		high bias. The sample data is not significantly affected. No further corrective action was
BLM-39-560	10/7/2021	appropriate. For SW-846 Method 8260C, the upper control criterion was exceeded for one or more analytes
DLWI-39-300	10/ //2021	in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the
		MRL in the associated field samples. The error associated with elevated recovery equates to a
		high bias. The sample data is not significantly affected. No further corrective action was
		appropriate.
200-LV-150	10/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in
200 2 1 100	10/20/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
300-C-128	10/19/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
400-FV-131	10/18/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
400 7777 : :=	10/10/22	no further corrective action was taken.
400-HV-147	10/18/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
400-IV-123	10/19/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
600-G-138	10/21/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
B655-INF-2		For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-14-327	10/18/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-39-385	10/7/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BLM-39-560	10/7/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
BW-3-180	10/19/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-1	10/18/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-2	10/18/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-4A	10/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
PFE-5	10/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the

Well ID	Event Date	SW-846 Method 8260C QA Narratives
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
PFE-7	10/20/2021	For SW-846 Method 8260C, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
200-LV-150	10/20/2021	For SW-846 Method 8260C, there were no detections in the field blank.
300-C-128	10/19/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-FV-131	10/18/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-HV-147	10/18/2021	For SW-846 Method 8260C, there were no detections in the field blank.
400-IV-123	10/19/2021	For SW-846 Method 8260C, there were no detections in the field blank.
600-G-138	10/21/2021	For SW-846 Method 8260C, there were no detections in the field blank.
B650-INF-1	10/13/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-14-327	10/18/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-6-488	10/15/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BW-3-180	10/19/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PFE-1	10/18/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PFE-4A	10/20/2021	For SW-846 Method 8260C, there were no detections in the field blank.
PFE-7	10/20/2021	For SW-846 Method 8260C, there were no detections in the field blank.
BLM-39-385	10/7/2021	For SW-846 Method 8260C, trichloroethene (TCE) (0.46 ug/L), 1,2-dichloro-1,1,2-
		trifluoroethane (CFC 123a) (0.38 ug/L), and 1,1,2-trichloro-1,2,2-trifluoroethane (0.25
		ug/L) were detected below the reporting limit and one unknown compound (5.8 ug/L) was
		tentatively identified by a GC/MS library search in the equipment blank (2110071420Y).
		Affected data are appropriately qualified.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
BW-3-180	10/19/2021	For Modified EPA Method 607 in blind control sample (2110191116C), all recoveries were within standard limits.
B650-INF-1	10/13/2021	For Modified EPA Method 607, field duplicate samples 2110131309 and 2110131310 the relative percent difference for N-nitrosodimethylamine was 9.5%. Upper acceptance limit for relative percent difference is 25%.
400-FV-131	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181002A and 2110181003A the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
400-FV-131	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181002A and 2110181003A the relative percent difference for bromacil was 4.0%. Upper acceptance limit for relative percent difference is 25%.
400-FV-131	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181002A and 2110181003A the relative percent difference for N-nitrosodimethylamine was 4.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-14-327	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181412C and 2110181413C the relative percent difference for N-nitrosodimethylamine was 3.3%. Upper acceptance limit for relative percent difference is 25%.
BLM-14-327	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181412C and 2110181413C the relative percent difference for N-nitrodimethylamine was 0.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-14-327	10/18/2021	For Modified EPA Method 607, field duplicate samples 2110181412C and 2110181413C the relative percent difference for bromacil was 2.2%. Upper acceptance limit for relative percent difference is 25%.
BLM-40-688	10/5/2021	For Modified EPA Method 607, matrix spike recoveries for sample 2110050943A were within laboratory control limits.

Well ID	Event Date	Modified EPA Method 607 QA Narratives
400-HV-147		For Modified EPA Method 607, NDMA and DMN exceeded the calibration range in sample 2110181413A. The sample extract was diluted 50-fold and reanalyzed. Surrogate recovery of this sample was reported from the initial analysis. Affected data are appropriately qualified.
PL-10-592	10/6/2021	For Modified EPA Method 607, there were no detections in the equipment blank.
200-LV-150	10/20/2021	For Modified EPA Method 607, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-41-670	10/19/2021	For Low Level Nitrosamine Method in blind control sample (2110191520C), all recoveries were within standard limits.
BLM-41-420	10/18/2021	For Low Level Nitrosamine Method, field duplicate samples 2110181018C and 2110181019C the relative percent difference for N-nitrosodimethylamine was 37.0%. This value is outside the upper acceptance limit for relative percent difference of 25%.
PFE-7	10/20/2021	For Low Level Nitrosamine Method, field duplicate samples 2110200910 and 2110200911 the relative percent difference for N-nitrosodimethylamine was 6.5%. Upper acceptance limit for relative percent difference is 25%.
WW-5-809	10/20/2021	For Low Level Nitrosamine Method, field duplicate samples 2110201054B and 2110201055B the relative percent difference for N-nitrosodimethylamine was 110.3%. This value is outside the upper acceptance limit for relative percent difference of 25%.
ST-7-544	10/4/2021	For Low Level Nitrosamine Method, for field blank 2110041501B the recovery of the internal standard NDMA-d6 (7.90%) was outside laboratory control limits (10-100%). As the native compound was detected above the PQL, there is minimal impact to the data.
JP-3-689	10/7/2021	For Low Level Nitrosamine Method, for field blank 2110071003A the recovery of the internal standard NDMA-d6 (8.88%) was outside laboratory control limits (10-100%). As the native compound was detected above the PQL in the sample, there is minimal impact to the data.
JER-2-504	10/7/2021	For Low Level Nitrosamine Method, for field blank 2110071426B the recoveries of the internal standard NDMA-d6 (2.33%) and DMN-d6 (6.86%) were outside laboratory control limits (10-100%). As the native N-nitrosodimethylamine was detected above the PQL in the sample, there is minimal impact to the data. With regard to N-nitrodimethylamine, it was not detected in the sample that contained low labeled recovery. However, as signal-to-noise in the low point calibration standard was ~225:1 for the compound, it likely would have been detected if present at the quantitation limit, even at the low recoveries present in the sample.
JP-1-424	10/6/2021	
JP-3-689	10/7/2021	For Low Level Nitrosamine Method, for trip blank 2110070751A the recoveries of the internal standard NDMA-d6 (1.26%) and DMN-d6 (2.64%) were outside laboratory control limits (10-100%). As the native N-nitrosodimethylamine was detected above the PQL in the sample, there is minimal impact to the data. With regard to N-nitrodimethylamine, it was not detected in the sample that contained low labeled recovery. However, as signal-to-noise in the low point calibration standard was ~225:1 for the compound, it likely would have been detected if present at the quantitation limit, even at the low recoveries present in the sample.
BLM-40-595	10/4/2021	For Low Level Nitrosamine Method, matrix spike recoveries for sample 2110041005A and 211041006A were within laboratory control limits.
BLM-41-670	10/19/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.42 ng/L) was detected in the trip blank (2110191251C) below the reporting limit. Affected data are appropriately qualified.
PFE-7	10/20/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.42 ng/L) was detected in the field blank (2110200912) below the reporting limit. Affected data are appropriately qualified.
JER-1-483	10/14/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the field blank (2110141416B) below the reporting limit. No groundwater data are affected by this field blank contamination.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
JP-1-424	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.46 ng/L) was detected in the field blank (2110061403A) below the reporting limit. No groundwater data are affected by
BLM-40-595	10/4/2021	this field blank contamination. For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.47 ng/L) was detected in the trip blank (2110040801A) below the reporting limit. No groundwater data are affected by this
DI M. 41, 420	10/10/2021	trip blank contamination.
BLM-41-420		For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.49 ng/L) was detected in the field blank (2110181020C). Affected data are appropriately qualified.
JP-1-424	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.57 ng/L) was detected in the trip blank (2110060730A). No groundwater data are affected by this trip blank contamination.
PL-10-484	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.57 ng/L) was detected in the equipment blank (2110060812Y). Affected data are appropriately qualified.
BLM-41-670	10/19/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.59 ng/L) was detected in the field blank (2110191439C). Affected data are appropriately qualified.
PL-10-592	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.59 ng/L) was detected in the equipment blank (2110061321Y). Affected data are appropriately qualified.
ST-7-970	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.61 ng/L) was detected in the field blank (2110061422B). No groundwater data are affected by this field blank contamination.
JER-1-683	10/15/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.67 ng/L) was detected in the field blank (2110151051B). Affected data are appropriately qualified.
JER-2-684	10/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.72 ng/L) was detected in the field blank (2110131421B). No groundwater data are affected by this field blank contamination.
ST-7-779	10/6/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (0.82 ug/L) was detected in the field blank (2110061411B). No groundwater data are affected by this field blank contamination.
ST-7-453	10/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.3 ng/L) was detected in the field blank (2110041451B). No groundwater data are affected by this field blank contamination.
ST-7-544	10/4/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.3 ng/L) was detected in the field blank (2110041501B). No groundwater data are affected by this field blank contamination.
JER-2-584	10/13/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (1.4 ng/L) was detected in the field blank (2110131326B). Affected data are appropriately qualified.
JP-3-689	10/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.1 ng/L) was detected in the field blank (2110071003A). Affected data are appropriately qualified.
PL-6-725	10/12/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (2.6 ng/L) and N-nitrodimethylamine (1.1 ng/L) were detected in the equipment blank (2110121006Y). Affected data are appropriately qualified.
JP-3-689	10/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (6 ng/L) was detected in the trip blank (2110070751A). Affected data are appropriately qualified.
JER-2-504	10/7/2021	For Low Level Nitrosamine Method, N-nitrosodimethylamine (6.4 ng/L) was detected in the field blank (2110071426B). Affected data are appropriately qualified.
ST-7-544	10/4/2021	For Low Level Nitrosamine Method, relative percent differences (RPD) for duplicate samples 2110041500B and 2110041520B were within control limits or below the calculable range.
B650-EFF-1	10/13/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
B655-EFF-2	10/19/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-10-517	10/5/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
BLM-40-517	10/4/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
DEIVI 10 517		
BLM-40-595	10/4/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	Event Date	Low-Level Nitrosamine Method QA Narratives
BLM-40-688	10/5/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
BLM-41-420	10/18/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
BLM-6-488	10/15/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
JER-1-563	10/15/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-2-447	10/21/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
JP-2-447	10/21/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-1-486	10/14/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
PL-1-486	10/14/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
PL-6-545	10/13/2021	For Low Level Nitrosamine Method, there were no detections in the equipment blank.
PL-6-725	10/12/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-5-459	10/19/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-579	10/19/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-809	10/20/2021	For Low Level Nitrosamine Method, there were no detections in the trip blank.
WW-5-809	10/20/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.
WW-5-909	10/20/2021	For Low Level Nitrosamine Method, there were no detections in the field blank.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
WW-5-909		For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (1,100 ug/L), seven unknown hydrocarbons, and four unknown compounds were tentatively identified by a GC/MS library search in sample 2110201328B.
JER-2-504	10/7/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (130 ug/L), four unknown hydrocarbons, and two unknown compounds were tentatively identified by a GC/MS library search in sample 2110071445B.
JER-2-684	10/13/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (160 ug/L), three unknown hydrocarbons, and six unknown compounds were tentatively identified by a GC/MS library search in sample 2110131445B.
JER-2-584	10/13/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (170 ug/L), five unknown hydrocarbons, and five unknown compounds were tentatively identified by a GC/MS library search in sample 2110131345B.
JER-1-563	10/15/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (2,800 ug/L) and five unknown compounds were tentatively identified by a GC/MS library search in sample 2110151128B.
JER-1-683	10/15/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (2,800 ug/L) and four unknown compounds were tentatively identified by a GC/MS library search in sample 2110151140B.
ST-7-779	10/6/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (23 ug/L), sulfurous acid, dodecyl 2-propyl e (11 ug/L), four unknown hydrocarbons, and two unknown compounds were tentatively identified by a GC/MS library search in sample 2110061445B.
JER-1-483	10/14/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (270 ug/L) was tentatively identified by a GC/MS library search in sample 2110141446B.
ST-7-544	10/4/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (5,100 ug/L) and two unknown compounds were tentatively identified by a GC/MS library search in sample 2110041545B.
ST-7-453	10/4/2021	For SW-846 Method 8270D, benzenesulfonamide, N-butyl- (540 ug/L) was tentatively identified by a GC/MS library search in sample 2110041515B.
JER-2-504	10/7/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate (6.7 ug/L) was detected in the method blank for analytical batch 389431. No groundwater data are affected by this method blank contamination.
BLM-40-517	10/4/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		detected at 51% and 45% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-1-483	10/14/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 49% and 43% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-1-563	10/15/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 49% and 43% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-1-683	10/15/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 49% and 43% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-2-504	10/7/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 59% and 62% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-2-584	10/13/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 63% and 58% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-2-684	10/13/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 63% and 58% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
ST-7-453	10/4/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 51% and 45% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
ST-7-544	10/4/2021	
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 51% and 45% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
ST-7-779	10/6/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 48% and 54% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
ST-7-970	10/6/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2- ethylhexyl) phthalate was
		detected at 52% and 56% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
WW-5-459	10/19/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) Phthalate was
		detected at 56% and 47% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
WW-5-579	10/19/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 56% and 47% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
WW-5-809	10/20/2021	
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was
		detected at 56% and 47% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
WW-5-909	10/20/2021	For SW-846 Method 8270D, bis(2-ethylhexyl) phthalate has been reported as zero percent
		recovery in the LCS/LCSD due to a limitation in LIMs. Bis(2-ethylhexyl) phthalate was

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		detected at 59% and 58% recovery, respectively, within laboratory limits. The LCS/LCSD is
		acceptable and should not be flagged on the summary form.
JER-2-504	10/7/2021	For SW-846 Method 8270D, field duplicate samples 2110071515B and 2110071516B the
		relative percent difference for 1,4-dioxane was 15.4%. Upper acceptance limit for relative
		percent difference is 25%.
JER-1-683	10/15/2021	For SW-846 Method 8270D, field duplicate samples 2110151110B and 2110151111B the
		relative percent difference for 1,4-dioxane was 2.7%. Upper acceptance limit for relative
		percent difference is 25%.
ST-7-779	10/6/2021	For SW-846 Method 8270D, four unknown compounds and five unknown hydrocarbons
		were tentatively identified by a GC/MS library search in the method blank for analytical
		batch 389296. Affected data are appropriately qualified.
ST-7-970	10/6/2021	For SW-846 Method 8270D, four unknown compounds and five unknown hydrocarbons
		were tentatively identified by a GC/MS library search in the method blank for analytical
		batch 389296. Affected data are appropriately qualified.
WW-5-459	10/19/2021	For SW-846 Method 8270D, four unknown hydrocarbons and one unknown compound
		were tentatively identified by a GC/MS library search in the method blank for analytical
XXXX 5 550	10/10/2021	batch 390072. Affected data are appropriately qualified.
WW-5-579	10/19/2021	For SW-846 Method 8270D, four unknown hydrocarbons and one unknown compound
		were tentatively identified by a GC/MS library search in the method blank for analytical batch 390072. No groundwater data are affected by this method blank contamination.
WW 5 000	10/20/2021	· ·
WW-5-809	10/20/2021	For SW-846 Method 8270D, four unknown hydrocarbons and one unknown compound were tentatively identified by a GC/MS library search in the method blank for analytical
		batch 390072. Affected data are appropriately qualified.
WW-5-909	10/20/2021	For SW-846 Method 8270D, four unknown hydrocarbons and one unknown compound
** ** -3-202	10/20/2021	were tentatively identified by a GC/MS library search in the method blank for analytical
		batch 390072. Affected data are appropriately qualified.
JER-1-483	10/14/2021	For SW-846 Method 8270D, seven unknown hydrocarbons and three unknown compounds
JER 1 103	10/11/2021	were tentatively identified by a GC/MS library search in the method blank for analytical batch
		389816. No groundwater data are affected by this method blank contamination.
JER-1-563	10/15/2021	For SW-846 Method 8270D, seven unknown hydrocarbons and three unknown compounds
		were tentatively identified by a GC/MS library search in the method blank for analytical batch
		389816. No groundwater data are affected by this method blank contamination.
WW-5-809	10/20/2021	For SW-846 Method 8270D, six unknown hydrocarbons and two unknown compounds
		were tentatively identified by a GC/MS library search in sample 2110201303B.
BLM-40-517	10/4/2021	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the
		Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for
		the associated field samples. The data quality was not significantly affected and no further
		corrective action was taken.
JER-2-504	10/7/2021	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the
		Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for
		the associated field samples. The data quality was not significantly affected and no further
GE 5 452	10/4/2021	corrective action was taken.
ST-7-453	10/4/2021	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the
		Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for
		the associated field samples. The data quality was not significantly affected and no further corrective action was taken.
ST-7-544	10/4/2021	For SW-846 Method 8270D, the control limit was exceeded for one or more surrogates in the
01-/-J 44	10/4/2021	Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for
		the associated field samples. The data quality was not significantly affected and no further
		corrective action was taken.
BLM-40-517	10/4/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
DENT-TU-31/	10/7/2021	Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The LCSD is within limits for
		all analytes. The analytes affected are flagged in the LCS Summary. Affected data are
		an analytes. The analytes affected are magged in the LCS Summary. Affected data are

Well ID	Event Date	SW-846 Method 8270D QA Narratives
ST-7-453	10/4/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The LCSD is within limits for
		all analytes. The analytes affected are flagged in the LCS Summary. Affected data are
		appropriately qualified.
ST-7-544	10/4/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The LCSD is within limits for
		all analytes. The analytes affected are flagged in the LCS Summary. Affected data are
		appropriately qualified.
ST-7-779	10/6/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample (LCS) was exceeded for one or more analyte. There were no
		detections of the analyte(s) in the associated field samples. The LCSD is within limits for
		all analytes. The analytes affected are flagged in the LCS Summary. Affected data are
		appropriately qualified.
WW-5-459	10/19/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample Duplicate (LCSD) was exceeded for one or more analyte.
		The LCS was within limits for all analytes. The analytes affected are flagged in the LCS
		Summary. Affected data are appropriately qualified.
WW-5-579	10/19/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample Duplicate (LCSD) was exceeded for one or more analyte.
		The LCS was within limits for all analytes. The analytes affected are flagged in the LCS
		Summary. Affected data are appropriately qualified.
WW-5-809	10/20/2021	For SW-846 Method 8270D, the lower control limit for the spike recovery of the
		Laboratory Control Sample Duplicate (LCSD) was exceeded for one or more analyte.
		The LCS was within limits for all analytes. The analytes affected are flagged in the LCS
		Summary. Affected data are appropriately qualified.
BLM-40-517	10/4/2021	· · · · · · · · · · · · · · · · · · ·
22.11 10 01,	10/ 1/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
JER-1-683	10/15/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
1211 1 000	10/10/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-453	10/4/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
51 / 455	10/4/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-544	10/4/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
51-7-544	10/4/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
ST-7-779	10/6/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
31-7-779	10/0/2021	the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
ST 7 070	10/6/2021	data quality was not significantly affected and no further corrective action was taken.
ST-7-970	10/0/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
WW 5 450	10/10/2021	data quality was not significantly affected and no further corrective action was taken.
WW-5-459	10/19/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.

Well ID	Event Date	SW-846 Method 8270D QA Narratives
WW-5-579	10/19/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
WWW 5 000	10/20/2021	data quality was not significantly affected and no further corrective action was taken.
WW-5-809	10/20/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the
		analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
WW 5 000	10/20/2021	data quality was not significantly affected and no further corrective action was taken.
WW-5-909	10/20/2021	For SW-846 Method 8270D, the lower control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The
		data quality was not significantly affected and no further corrective action was taken.
BLM-40-517	10/4/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
DLWI-40-317	10/4/2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
JER-1-483	10/14/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
DERT 1 103	10/1 1/2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
JER-1-563	10/15/2021	
		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
JER-1-683	10/15/2021	, , , , ,
		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
	10/5/2021	action was appropriate.
JER-2-504	10/7/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). Precision is also outside limits. There were
		no detections of the analyte(s) above the MRL in the associated field samples. The error
		associated with elevated recovery equates to a high bias. The sample data is not significantly
ST-7-453	10/4/2021	affected. No further corrective action was appropriate.
31-/-433	10/4/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
ST-7-544	10/4/2021	• •
51 / 511	10/1/2021	analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
ST-7-779	10/6/2021	
		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
ST-7-970	10/6/2021	For SW-846 Method 8270D, the upper control criterion was exceeded for one or more
		analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s)
		above the MRL in the associated field samples. The error associated with elevated recovery

Well ID	Event Date	SW-846 Method 8270D QA Narratives
		equates to a high bias. The sample data is not significantly affected. No further corrective
		action was appropriate.
BLM-40-517	10/4/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
JER-1-483	10/14/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
JEK-1-403	10/14/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
JER-1-563	10/15/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
TED 1 602	10/15/2021	no further corrective action was taken.
JER-1-683	10/15/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
JER-2-504	10/7/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
JER-2-584	10/13/2021	, , , , ,
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
JER-2-684	10/13/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
2211 2 00 .	10/10/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
ST-7-453	10/4/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
ST-7-544	10/4/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
51 / 511	10/1/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and
		no further corrective action was taken.
ST-7-779	10/6/2021	
		the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.
ST-7-970	10/6/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in
51-7-970	10/0/2021	the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence
		did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the

Well ID	Well ID Event Date SW-846 Method 8270D QA Narratives					
		exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.				
WW-5-459	10/19/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.				
WW-5-579		For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.				
WW-5-809	10/20/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.				
WW-5-909	10/20/2021	For SW-846 Method 8270D, the upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.				
BLM-40-517	10/4/2021	For SW-846 Method 8270D, three unknown compounds and one unknown hydrocarbon were tentatively identified by a GC/MS library search in the method blank for analytical batch 389141. No groundwater data are affected by this method blank contamination.				
ST-7-453	10/4/2021	For SW-846 Method 8270D, three unknown compounds and one unknown hydrocarbon were tentatively identified by a GC/MS library search in the method blank for analytical batch 389141. No groundwater data are affected by this method blank contamination.				
ST-7-544	10/4/2021	For SW-846 Method 8270D, three unknown compounds and one unknown hydrocarbon were tentatively identified by a GC/MS library search in the method blank for analytical batch 389141. No groundwater data are affected by this method blank contamination.				
JER-2-584	10/13/2021	For SW-846 Method 8270D, three unknown compounds and three unknown hydrocarbons was tentatively identified by a GC/MS library search in the method blank for analytical batch 389589. Affected data are appropriately qualified.				
JER-2-684	10/13/2021	For SW-846 Method 8270D, three unknown compounds and three unknown hydrocarbons was tentatively identified by a GC/MS library search in the method blank for analytical batch 389589. Affected data are appropriately qualified.				
WW-5-459	10/19/2021	For SW-846 Method 8270D, two unknown compounds were tentatively identified by a GC/MS library search in sample 2110191315B.				
ST-7-970	10/6/2021	For SW-846 Method 8270D, two unknown hydrocarbons and three unknown compounds were tentatively identified by a GC/MS library search in sample 2110061500B.				

Well ID	Event Date	Total Metals QA Narratives					
BW-3-180	10/19/2021	For Total Metals in blind control sample (2110191117C), all recoveries were within standard limits.					
JER-2-504	10/7/2021	For Total Metals, aluminum (0.04 mg/L), magnesium (0.05 mg/L), and vanadium (0.0008 mg/L) were detected in the method blank for analytical batch 389622 below the reporting limit. Affected data are appropriately qualified.					
JER-1-683	10/15/2021	For Total Metals, due to a chain of custody error sample 2110151142B was not analyzed as a matrix spike sample. It will be designated and treated as a duplicate sample in the database.					
ST-7-544	10/4/2021	For Total Metals, field duplicate samples 2110041610B and 2110041611B the relative percent difference for magnesium was 0.6%. Upper acceptance limit for relative percent difference is 25%.					

Well ID	Event Date	Total Metals QA Narratives					
ST-7-544	10/4/2021	For Total Metals, field duplicate samples 2110041610B and 2110041611B the relative					
		percent difference for sodium was 0.2%. Upper acceptance limit for relative percent difference is 25%.					
ST-7-544	10/4/2021	For Total Metals, field duplicate samples 2110041610B and 2110041611B the relative					
		percent difference for calcium was 0.0%. Upper acceptance limit for relative percent difference is 25%.					
ST-7-544	10/4/2021	For Total Metals, field duplicate samples 2110041610B and 2110041611B the relative					
		percent difference for strontium was 0.4%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for barium was 0.0%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative percent difference for calcium was 1.0%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for manganese was 0.7%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for iron was 1.2%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for strontium was 0.4%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for sodium was 1.3%. Upper acceptance limit for relative percent difference is 25%.					
JER-1-683	10/15/2021	For Total Metals, field duplicate samples 2110151141B and 2110151142B the relative					
		percent difference for magnesium was 0.5%. Upper acceptance limit for relative percent difference is 25%.					
WW-5-579	10/19/2021	For Total Metals, field duplicate samples 2110191410B and 2110191411B the relative					
		percent difference for zinc was 78.2%. This value is outside the upper acceptance limit for relative percent difference of 25%.					
WW-5-579	10/19/2021	For Total Metals, field duplicate samples 2110191410B and 2110191411B the relative					
		percent difference for strontium was 2.6%. Upper acceptance limit for relative percent difference is 25%.					
WW-5-579	10/19/2021	For Total Metals, field duplicate samples 2110191410B and 2110191411B the relative					
		percent difference for calcium was 3.0%. Upper acceptance limit for relative percent difference is 25%.					
WW-5-579	10/19/2021	For Total Metals, field duplicate samples 2110191410B and 2110191411B the relative percent difference for magnesium was 3.3%. Upper acceptance limit for relative percent difference is 25%.					
WW-5-579	10/19/2021	For Total Metals, field duplicate samples 2110191410B and 2110191411B the relative					
		percent difference for sodium was 3.0%. Upper acceptance limit for relative percent difference is 25%.					
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative percent difference for barium was 1.5%. Upper acceptance limit for relative percent difference is 25%.					
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative					
		percent difference for manganese was 25.9%. This value is outside the upper acceptance					
BLM-41-670	10/19/2021	limit for relative percent difference of 25%. For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative					
DLIVI-71-0/0	10/13/2021	percent difference for potassium was 1.5%. Upper acceptance limit for relative percent difference is 25%.					

Well ID	Event Date	Total Metals QA Narratives
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative percent difference for magnesium was 1.4%. Upper acceptance limit for relative percent difference is 25%.
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative percent difference for calcium was 1.1%. Upper acceptance limit for relative percent difference is 25%.
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative percent difference for sodium was 1.0%. Upper acceptance limit for relative percent difference is 25%.
BLM-41-670	10/19/2021	For Total Metals, field duplicate samples 2110191440C and 2110191441C the relative percent difference for strontium was 1.9%. Upper acceptance limit for relative percent difference is 25%.
200-LV-150	10/20/2021	For Total Metals, there were no detections in the field blank.
BLM-40-688	10/5/2021	For Total Metals, there were no detections in the field blank.

Well ID	Event Date	Miscellaneous QA Narratives				
BLM-40-517		For SW-846 Method 8015D, gasoline range organics (GRO) (10 ug/L) was detected in the method blank for analytical batch 775758 below the reporting limit. No groundwater data are affected by this method blank contamination.				

Table 8 – WSTF Blank Sample Detections

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
BLM-41-670	10/19/2021	Carboy G5	8260_LL	VOA-FB	67-63-0	2-Propanol	15	ug/L	J FB
WW-5-809	10/20/2021	Carboy G5	8260_LL	VOA-FB	67-63-0	2-Propanol	13	ug/L	J FB
BLM-40-688	10/5/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	8.3	ug/L	TIC RB TB FB
PFE-5	10/20/2021	Carboy PF1	8260	VOA-FB	67-63-0	2-Propanol	8.3	ug/L	J FB
JP-1-424	10/6/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	8.3	ug/L	TIC RB FB
WW-5-459	10/19/2021	Carboy G5	8260_LL	VOA-FB	67-63-0	2-Propanol	8.2	ug/L	J FB
BLM-10-517	10/5/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	8.1	ug/L	TIC RB FB
ST-7-970	10/6/2021	Carboy G5	8260_LL	VOA-FB	TIC	Unknown	8.1	ug/L	TIC RB FB
ST-7-779	10/6/2021	Carboy G5	8260_LL	VOA-FB	TIC	Unknown	8	ug/L	TIC RB FB
PL-10-484	10/6/2021	Carboy G2	8260_LL	VOA-EB	TIC	Unknown	7.9	ug/L	TIC RB EB
BLM-40-688	10/5/2021	Carboy G1	8260_LL	VOA-TB	TIC	Unknown	7.6	ug/L	TIC RB TB FB
ST-7-453	10/4/2021	Carboy G5	8260_LL	VOA-FB	TIC	Unknown	7.5	ug/L	TIC RB FB
ST-7-544	10/4/2021	Carboy G5	8260_LL	VOA-FB	TIC	Unknown	7.4	ug/L	TIC RB FB
JP-3-689	10/7/2021	Carboy G1	8260_LL	VOA-TB	TIC	Unknown	7.3	ug/L	TIC RB TB FB
BLM-40-595	10/4/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	7.2	ug/L	TIC RB TB FB
BLM-40-595	10/4/2021	Carboy G1	8260_LL	VOA-TB	TIC	Unknown	7	ug/L	TIC RB TB FB
JP-3-689	10/7/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	6.9	ug/L	TIC RB TB FB
BLM-40-517	10/4/2021	Carboy G1	8260_LL	VOA-FB	TIC	Unknown	6.9	ug/L	TIC RB FB
BLM-39-560	10/7/2021	Carboy G2	8260	VOA-EB	TIC	Unknown	6.9	ug/L	TIC RB EB
JER-2-504	10/7/2021	Carboy G5	8260_LL	VOA-FB	TIC	Unknown	6.8	ug/L	TIC RB FB
JER-2-504	10/7/2021	Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine	6.4	ng/L	* FB
JP-2-447	10/21/2021	Carboy G2	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	6.3	ug/L	TIC FB
JP-2-447	10/21/2021	Carboy G2	8260_LL	VOA-FB	67-63-0	2-Propanol	6.3	ug/L	J TB FB
JP-2-447	10/21/2021	Carboy G2	8260_LL	VOA-FB	TIC	Unknown	6.3	ug/L	TIC FB

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
JP-3-689	10/7/2021	Carboy G1	NDMA_LL	NDMA_LL- TB	62-75-9	N-Nitrosodimethylamine	6	ng/L	* TB FB
BLM-41-670	10/19/2021	Carboy G5	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	5.9	ug/L	TIC FB
BLM-39-385	10/7/2021	Carboy G2	8260	VOA-EB	TIC	Unknown	5.8	ug/L	TIC RB EB
JP-2-447	10/21/2021	Carboy G2	8260_LL	VOA-TB	67-63-0	2-Propanol	5.8	ug/L	J TB FB
PFE-2	10/18/2021	Carboy PF1	8260	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	5.7	ug/L	TIC FB FB
ST-7-544	10/4/2021	Carboy G5	8260_LL	VOA-FB	67-63-0	2-Propanol	5.5	ug/L	J RB FB
BLM-41-670	10/19/2021	Carboy G5	8260_LL	VOA-FB	1066-40-6	Silanol, trimethyl-	5.5	ug/L	TIC FB
WW-5-809	10/20/2021	Carboy G5	8260_LL	VOA-FB	1825-61-2	Silane, methoxytrimethyl-	5.5	ug/L	TIC FB
BLM-40-688	10/5/2021	Carboy G1	8260_LL	VOA-FB	67-63-0	2-Propanol	4.5	ug/L	J FB
PFE-2	10/18/2021	Carboy PF1	8260	VOA-FB	67-63-0	2-Propanol	3.6	ug/L	J FB
B655-INF-2	10/19/2021	Carboy PF1	8260	VOA-FB	67-63-0	2-Propanol	3.6	ug/L	J FB
PL-6-725	10/12/2021	Carboy G1	NDMA_LL	NDMA_LL- EB	62-75-9	N-Nitrosodimethylamine	2.6	ng/L	EB
JP-3-689		Carboy G1	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	* TB FB
JER-2-584		Carboy G5	_	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
ST-7-544		Carboy G5	_	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	* FB
ST-7-453		Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
PL-6-725		Carboy G1	_	NDMA LL- EB	4164-28-7	N-Nitrodimethylamine		ng/L	EB
ST-7-779		Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
PL-6-725		Carboy G1	8260_LL	VOA-EB	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane		ug/L	EB
JER-2-684		Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
JER-1-683		Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
ST-7-970		Carboy G5	_	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
BLM-41-670		,	_	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	TB FB
PL-10-592		Carboy G2	_	NDMA_LL- EB	62-75-9	N-Nitrosodimethylamine		ng/L	EB
PL-10-484		Carboy G2	NDMA_LL	NDMA_LL- EB	62-75-9	N-Nitrosodimethylamine		ng/L	EB
JP-1-424		Carboy G1	_	NDMA_LL- TB	62-75-9	N-Nitrosodimethylamine		ng/L	* TB FB
BLM-41-420		Carboy G5	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	FB
BLM-40-595		Carboy G1	NDMA_LL	NDMA_LL- TB	62-75-9	N-Nitrosodimethylamine		ng/L	J TB
JER-1-483		Carboy G5	NDMA_LL	NDMA_LL-FB	62-75-9	N-Nitrosodimethylamine		ng/L	J FB
BLM-39-385		Carboy G2	8260	VOA-EB	79-01-6	Trichloroethene (TCE)		ug/L	J EB
JP-1-424		Carboy G1	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	J TB FB
PFE-7		Carboy PF1	NDMA_LL	NDMA_LL- FB	62-75-9	N-Nitrosodimethylamine		ng/L	J FB
BLM-41-670	10/19/2021	Carboy G5	NDMA_LL	NDMA LL- TB	62-75-9	N-Nitrosodimethylamine	0.42	ng/L	J TB FB

NASA White Sands Test Facility

Well ID	Event Date	Comment	Analysis	Sample Type	CAS No.	Analyte	Result	Units	QA flag
BLM-39-385	10/7/2021	Carboy G2	8260	VOA-EB	354-23-4	1,2-Dichloro-1,1,2- trifluoroethane (CFC 123a)	0.38	ug/L	J EB
PL-6-725	10/12/2021	Carboy G1	8260_LL	VOA-TB	74-87-3	Chloromethane	0.3	ug/L	J TB
PL-6-725	10/12/2021	Carboy G1	8260_LL	VOA-EB	75-69-4	Trichlorofluoromethane (CFC 11)	0.3	ug/L	J EB
PL-6-725	10/12/2021	Carboy G1	8260_LL	VOA-EB	79-01-6	Trichloroethene (TCE)	0.27	ug/L	J EB
BLM-39-385	10/7/2021	Carboy G2	8260	VOA-EB	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	0.25	ug/L	J EB

Appendix D Comparison to Cleanup Levels

Appendix D.1: Groundwater Monitoring Wells
Appendix D.2: PFTS
Appendix D.3: MPITS

Appendix D.1 Groundwater Monitoring Wells

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
300-A-120	9/13/2021	607	2109131004A	N-Nitrosodimethylamine	1.3	μg/L	0.0097	0.0049	58	QD
300-A-120	9/13/2021	607	2109131003A	N-Nitrosodimethylamine	1.7	μg/L	0.0096	0.0048	58	QD
300-C-128	10/19/2021	607	2110191412A	N-Nitrosodimethylamine	3.9	μg/L	0.0096	0.0048	50	
400-EV-131	8/2/2021	607	2108021003C	N-Nitrosodimethylamine	0.78	μg/L	0.01	0.0052	44	
400-FV-131	10/18/2021	607	2110181002A	N-Nitrosodimethylamine	0.76	μg/L	0.0098	0.0049	53	
400-FV-131	10/18/2021	607	2110181003A	N-Nitrosodimethylamine	0.73	μg/L	0.0094	0.0047	53	
400-GV-125	8/3/2021	607	2108030902C	N-Nitrosodimethylamine	2.5	μg/L	0.0094	0.0047	44	
400-HV-147	10/18/2021	607	2110181413A	N-Nitrosodimethylamine	170	$\mu g/L$	0.49	0.24	53	D
400-JV-150	8/2/2021	607	2108021420C	N-Nitrosodimethylamine	2.6	$\mu g/L$	0.0098	0.0049	44	
400-JV-150	8/2/2021	607	2108021421C	N-Nitrosodimethylamine	2.6	μg/L	0.0098	0.0049	44	
BLM-14-327	10/18/2021	607	2110181413C	N-Nitrosodimethylamine	0.3	$\mu g/L$	0.0095	0.0048	53	
BLM-14-327	10/18/2021	607	2110181412C	N-Nitrosodimethylamine	0.31	μg/L	0.0094	0.0047	53	
BLM-21-400	8/5/2021	607	2108050855B	N-Nitrosodimethylamine	0.4	$\mu g/L$	0.0095	0.0048	39	
BLM-21-400	8/5/2021	607	2108050856B	N-Nitrosodimethylamine	0.41	$\mu g/L$	0.0095	0.0048	39	
BLM-23-431	8/3/2021	607	2108031423C	N-Nitrosodimethylamine	0.23	$\mu g/L$	0.0094	0.0047	44	
BLM-32-543	8/9/2021	NDMA_LL	2108091505B	N-Nitrosodimethylamine	2.2	ng/L	0.48	0.44		FB QD
BLM-32-543	8/9/2021	NDMA_LL	2108091550B	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.44		FB QD
BLM-39-385	10/7/2021	607	2110120835Y	N-Nitrosodimethylamine	3.2	$\mu g/L$	0.0094	0.0047	58	
BLM-39-560	10/7/2021	607	2110071300Y	N-Nitrosodimethylamine	0.012	μg/L	0.0095	0.0048	56	
BLM-41-420	10/18/2021	NDMA_LL	2110181018C	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.4		QD FB
BLM-41-420	10/18/2021	NDMA_LL	2110181019C	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		QD FB
BLM-42-569	9/7/2021	NDMA_LL	2109070923C	N-Nitrosodimethylamine	1.6	ng/L	0.47	0.4		RB * TB FB
BLM-42-709	9/7/2021	NDMA_LL	2109071457C	N-Nitrosodimethylamine	1.5	ng/L	0.47	0.4		RB * FB
BLM-5-527	9/20/2021	607	2109201007C	N-Nitrosodimethylamine	0.11	$\mu g/L$	0.0094	0.0047	54	
BLM-9-419	9/2/2021	607	2109021033C	N-Nitrosodimethylamine	0.0086	μg/L	0.0095	0.0048	42	J
BLM-9-419	9/2/2021	607	2109021034C	N-Nitrosodimethylamine	0.0075	$\mu g/L$	0.0094	0.0047	42	J
BW-1-268	9/9/2021	607	2109090817B	N-Nitrosodimethylamine	6.1	$\mu g/L$	0.0096	0.0048	58	
JER-2-504	10/7/2021	NDMA_LL	2110071425B	N-Nitrosodimethylamine	3	ng/L	0.5	0.42		FB
ER-2-584	10/13/2021	NDMA_LL	2110131325B	N-Nitrosodimethylamine	1.1	ng/L	0.48	0.4		FB
ER-2-684	10/13/2021	NDMA_LL	2110131420B	N-Nitrosodimethylamine	7.7	ng/L	0.49	0.41		
JP-3-689	10/7/2021	NDMA_LL	2110071002A	N-Nitrosodimethylamine	1.8	ng/L	0.48	0.4		TB FB
NASA 10	9/15/2021	607	2109151423C	N-Nitrosodimethylamine	0.058	$\mu g/L$	0.0095	0.0048	58	
NASA 10	9/15/2021	607	2109151424C	N-Nitrosodimethylamine	0.055	$\mu g/L$	0.0095	0.0048	58	
NASA 5	9/15/2021	607	2109150923C	N-Nitrosodimethylamine	0.47	μg/L	0.0095	0.0048	58	

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

;
D

CAS Num	ber 127	7-18-4	Analyte	Tetrachloroethene (PCE)							
Cleanup I	Level	5 ug/L	Source	ce GMP							
Well ID	Event Date	Analysis Method	Samula	Constituent	Dogult	IIm:4a	Quant Limit	Det Limit	Xtret Effic	OA Flag	
well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Line	QA Flag	
BLM-39-385	10/7/202	1 8260	2110071520Y	Tetrachloroethene (PCE)	6.8	ug/L	1	0.21	•		

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

Well ID	Event Date	Analysis Method	Sample	Constituent	Result	Units	Quant Limit	Det Limit	Xtret Effic	QA Flag
200-JG-110	9/20/2021	8260	2109200855A	Trichloroethene (TCE)	24	ug/L	1	0.2		
200-JG-110	9/20/2021	8260	2109200856A	Trichloroethene (TCE)	23	ug/L	1	0.2		
200-SG-1	9/7/2021	8260	2109071050B	Trichloroethene (TCE)	110	ug/L	1	0.2		
600-G-138	10/21/2021	8260	2110211105A	Trichloroethene (TCE)	32	ug/L	1	0.2		
BLM-14-327	10/18/2021	8260	2110181410C	Trichloroethene (TCE)	75	ug/L	1	0.2		
BLM-21-400	8/5/2021	8260	2108050853B	Trichloroethene (TCE)	48	ug/L	1	0.2		
BLM-23-431	8/3/2021	8260	2108031420C	Trichloroethene (TCE)	53	ug/L	1	0.2		Q
BLM-23-431	8/3/2021	8260	2108031421C	Trichloroethene (TCE)	51	ug/L	1	0.2		Q
BLM-39-385	10/7/2021	8260	2110071520Y	Trichloroethene (TCE)	180	ug/L	1	0.2		
BLM-39-560	10/7/2021	8260	2110071258Y	Trichloroethene (TCE)	12	ug/L	1	0.2		
BLM-39-560	10/7/2021	8260	2110071259Y	Trichloroethene (TCE)	9.5	ug/L	1	0.2		
BLM-5-527	9/20/2021	8260	2109201005C	Trichloroethene (TCE)	28	ug/L	1	0.2		
PL-12-570	8/4/2021	8260	2108040940C	Trichloroethene (TCE)	13	ug/L	1	0.2		
PL-2-504	9/14/2021	8260	2109140940A	Trichloroethene (TCE)	72	ug/L	1	0.2		

Appendix D.2 PFTS

Analytical Results for PFTS and PFE Wells that Exceed Clean Up Levels

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Cleanup Level 0.0011 ug/L (1.1 ng/L) Source GMP

	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
B650-INF-1	8/12/2021	607	2108120942	N-Nitrosodimethylamine	0.087	μg/L	0.0097	0.0049	43	
B650-INF-1	10/13/2021	607	2110131309	N-Nitrosodimethylamine	0.033	$\mu g/L$	0.0097	0.0049	58	
B650-INF-1	10/13/2021	607	2110131310	N-Nitrosodimethylamine	0.03	$\mu g/L$	0.0098	0.0049	58	
B650-INF-1	9/27/2021	607	2109270948	N-Nitrosodimethylamine	0.068	$\mu g/L$	0.0099	0.005	61	
PFE-1	10/18/2021	607	2110180911	N-Nitrosodimethylamine	0.063	$\mu g/L$	0.0096	0.0048	53	
PFE-1	9/30/2021	607	2109301532	N-Nitrosodimethylamine	0.055	$\mu g/L$	0.0095	0.0048	55	
PFE-2	10/18/2021	607	2110180943	N-Nitrosodimethylamine	0.2	$\mu g/L$	0.0095	0.0048	53	
PFE-4A	10/20/2021	607	2110200829	N-Nitrosodimethylamine	0.009	$\mu g/L$	0.01	0.005	50	J
PFE-5	10/20/2021	607	2110200806	N-Nitrosodimethylamine	0.53	$\mu g/L$	0.0095	0.0048	50	
PFE-7	10/20/2021	NDMA_LL	2110200911	N-Nitrosodimethylamine	1.5	ng/L	0.5	0.42		FB
PFE-7	10/20/2021	NDMA_LL	2110200910	N-Nitrosodimethylamine	1.6	ng/L	0.48	0.4		FB

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Cleanup Level 4.9 ug/L Source GMP

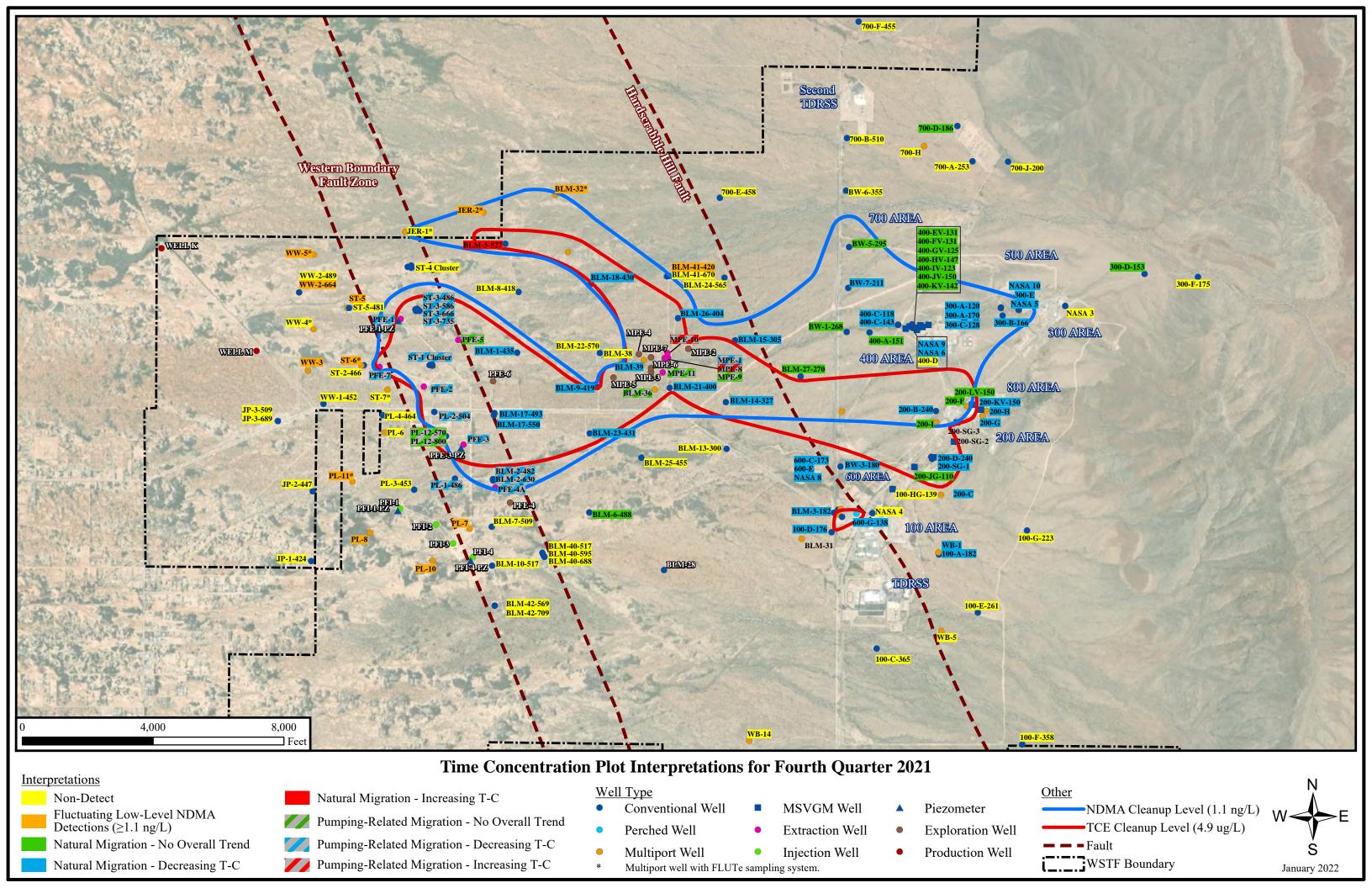
	Event	Analysis					Quant	Det	Xtrct		
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag	
B650-INF-1	8/12/2021	1 8260	2108120940	Trichloroethene (TCE)	35	ug/L	1	0.2			
B650-INF-1	9/27/2021	1 8260	2109270946	Trichloroethene (TCE)	13	ug/L	1	0.2			
PFE-1	10/18/2021	1 8260	2110180907	Trichloroethene (TCE)	5.9	ug/L	1	0.2			
PFE-1	10/18/2021	1 8260	2110180908	Trichloroethene (TCE)	5.2	ug/L	1	0.2			
PFE-2	10/18/2021	1 8260	2110180941	Trichloroethene (TCE)	67	ug/L	1	0.2			
PFE-5	10/20/2021	1 8260	2110200804	Trichloroethene (TCE)	74	по/Г.	1	0.2			

Appendix D.3 MPITS

Analytical Results for MPITS and MPE Wells that Exceed Clean Up Levels

CAS Number 62-75-9 Analyte N-Nitrosodimethylamine

Clean Up Level 0.0011 ug/L (1.1 ng/L) Source GMP


	Event	Analysis					Quant	Det	Xtrct	
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag
B655-EFF-2	8/12/2021	NDMA_LL	2108121009	N-Nitrosodimethylamine	1.4	ng/L	0.48	0.44		RB * A FB
B655-INF-2	9/13/2021	607	2109130937	N-Nitrosodimethylamine	1.6	$\mu g/L$	0.0094	0.0047	58	
B655-INF-2	10/19/2021	607	2110191027	N-Nitrosodimethylamine	1.3	$\mu g/L$	0.0095	0.0048	50	
B655-INF-2	8/12/2021	607	2108121027	N-Nitrosodimethylamine	2.6	$\mu g/L$	0.0099	0.005	43	
MPE-1	8/16/2021	607	2108160928	N-Nitrosodimethylamine	3.2	$\mu g/L$	0.0095	0.0048	44	
MPE-10	8/16/2021	607	2108161222	N-Nitrosodimethylamine	3	$\mu g/L$	0.0095	0.0048	44	
MPE-10	8/16/2021	607	2108161223	N-Nitrosodimethylamine	2.9	$\mu g/L$	0.0095	0.0048	44	
MPE-11	8/16/2021	607	2108161243	N-Nitrosodimethylamine	0.13	$\mu g/L$	0.0095	0.0048	44	
MPE-11	8/16/2021	607	2108161244	N-Nitrosodimethylamine	0.13	$\mu g/L$	0.0095	0.0048	44	
MPE-8	8/16/2021	607	2108160947	N-Nitrosodimethylamine	2.3	$\mu g/L$	0.0096	0.0048	44	
MPE-9	8/16/2021	607	2108160957	N-Nitrosodimethylamine	4.2	μg/L	0.0097	0.0049	44	

CAS Number 79-01-6 Analyte Trichloroethene (TCE)

Clean Up Level 4.9 ug/L Source GMP

	Event	Analysis					Quant	Det	Xtrct		
Well ID	Date	Method	Sample	Constituent	Result	Units	Limit	Limit	Effic	QA Flag	
B655-INF-2	9/13/202	1 8260	2109130935	Trichloroethene (TCE)	40	ug/L	1	0.2			
B655-INF-2	8/12/202	1 8260	2108121025	Trichloroethene (TCE)	72	ug/L	1	0.2			
B655-INF-2	10/19/202	1 8260	2110191025	Trichloroethene (TCE)	39	ug/L	1	0.2			
MPE-1	8/16/202	1 8260	2108160925	Trichloroethene (TCE)	75	ug/L	1	0.2			
MPE-1	8/16/202	1 8260	2108160926	Trichloroethene (TCE)	70	ug/L	1	0.2			
MPE-10	8/16/202	1 8260	2108161220	Trichloroethene (TCE)	61	ug/L	1	0.2			
MPE-8	8/16/202	1 8260	2108160945	Trichloroethene (TCE)	71	ug/L	1	0.2			
MPE-9	8/16/202	1 8260	2108160955	Trichloroethene (TCE)	87	ug/L	1	0.2			

Appendix E Time Concentration Plots

Appendix E:

Reporting Period: 4Q/2021

Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Upgradient Well Group

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCI	Conce	ntration (u	g/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Concentratio	n (ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year Last	Year
100-F-358 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2021	0.43 DL	2010	0.21 DL	2021	0.63 DL	2010	0.2 DL	2021	0.005 DL	NP	2012	0.004 DL	NP	2021	N/A	N/A	
100-G-223 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2021	0.43 DL	2010	0.21 DL	2021	0.63 DL	2010	0.2 DL	2021	0.005 DL	NP	2012	0.004 DL	NP	2021	N/A	N/A	
300-F-175 Conv	2005	Non Detect	0.48 DL	2010	0.24 DL	2021	0.43 DL	2010	0.21 DL	2021	0.63 DL	2010	0.2 DL	2021	0.005 DL	NP	2016	0.004 DL	NP	2021	N/A	N/A	
NASA 3 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A	N/A	

100/600 Area Well Group

Well			Freon	11 Cond	centration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-C-365 Conv	1989	Non Detect	1.00 DL	2010	0.24 DL	2021	1.00 DL	2010	0.21 DL	2021	1.00 DL	2010	0.2 DL	2021	0.05 RL	NP	1992	0.004 DL	NP	2021	N/A		N/A	
100-D-176 Conv	1997	Natural Migration (Decreasing)	1.60 DL	2003	0.24 DL	2020	2.00 DL	1999	0.21 DL	2020	9.60	1999	2.50	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	N/A		N/A	
100-HG-139 MSVGM	2011	Non Detect	0.79 J	2011	0.24 DL	2021	0.33 J	2015	0.21 DL	2021	10	2014	0.2 DL	2021	0.005 DL	NP	2020	0.004 DL	NP	2021	0.93 RB FB	2012	0.93 RB FB	2012
600-C-173 Conv	1988	Natural Migration (Decreasing)	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	9.00	1998	1.80 RB FB	2021	0.1	NP	1988	0.004 DL	NP	2021	N/A		N/A	
600-E WestBay	1998	Natural Migration (Decreasing)	1.60 DL	2002	0.24 DL	2021	2.00 DL	1999	0.21 DL	2021	2.00 DL	1999	0.61 J	2021	0.005 DL	NP	2016	0.004 DL	NP	2021	N/A		N/A	
600-G-138 Conv	2011	Natural Migration (Decreasing)	5.10	2017	0.84 J	2021	0.3 DL	2018	0.21 DL	2021	130	2012	32	2021	0.1 DL	NP	2021	0.1 DL	NP	2021	0.96 RB FB	2012	0.96 RB FB	2012
BW-3-180 Conv	1988	Natural Migration (Decreasing)	10	1988	0.33 J Q	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
NASA 4 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	3.50	2009	0.33 J RB FB	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
NASA 8 Conv	1988	Natural Migration (Decreasing)	5.00	1996	0.27 DL	2018	2.50 RL	1996	0.28 DL	2018	130	1995	7.90	2018	0.05 RL	NP	1993	0.004 DL	NP	2018	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Conc	entration	ı (ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
WB-1 Westbay	1990	Natural Migration (Decreasing)	15	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.26 J	2021	0.05 RL	NP	1993	0.004 DL	NP	2021	N/A		N/A	

200 Area Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	n (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
200-B-240 Conv	1989	Natural Migration (Decreasing)	280	1996	92	2021	15 QD	1989	2.90	2021	290 QD	1989	61	2021	1.60	25	1993	0.37	38	2021	N/A		N/A	
200-C WestBay	1993	Natural Migration (Decreasing)	51	1996	16	2021	2.50 RL	1996	0.21 DL	2021	4.30	2003	2.50	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
200-D-240 Conv	1988	Natural Migration (Decreasing)	240 QD	1995	54	2021	2.50 RL	1995	0.31 J	2021	110	1990	14	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
200-F WestBay	1995	Natural Migration (No Overall Trend)	41	2005	5.50	2021	2.50 RL	1996	0.45 J	2021	34	2009	21	2021	0.41 J A	1	2021	0.41 J A	1	2021	N/A		N/A	
200-G WestBay	1995	Natural Migration (Decreasing)	55	1995	5.10	2020	2.50 RL	1996	0.21 DL	2020	4.80	2004	2.20	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	N/A		N/A	
200-H WestBay	1994	Natural Migration (Decreasing)	6.00	2003	0.92 J	2021	2.50 RL	1996	0.21 DL	2021	3.00 J	1997	0.2 DL	2021	0.05 RL	NP	1997	0.005 DL	NP	2021	N/A		N/A	
200-I WestBay	1997	Natural Migration (No Overall Trend)	2.40 J	1999	0.29 J	2020	2.00 DL	1999	0.62 J RB	2020	35	2019	26	2020	0.021 J	42	2006	0.004 DL	NP	2020	N/A		N/A	
200-JG-110 MSVGM	2012	Natural Migration (No Overall Trend)	17	2013	5.20	2021	2.20	2020	2.10	2021	25	2013	24	2021	0.005 DL	NP	2012	0.004 DL	NP	2021	0.93 J	2012	0.93 J	2012
200-KV-150 MSVGM	2015	Natural Migration (Decreasing)	90	2020	18	2021	0.3 DL	2015	0.21 DL	2021	22	2020	2.90	2021	0.005 DL	NP	2020	0.004 DL	NP	2021	N/A		N/A	
200-LV-150 Conv	2018	Natural Migration (No Overall Trend)	0.27 DL	2018	0.24 DL	2021	0.3 DL	2018	0.21 DL	2021	0.89 J Q	2018	0.24 J	2021	0.004 DL	NP	2018	0.004 DL	NP	2021	N/A		N/A	
200-SG-1 MSVGM	2004	Natural Migration (Decreasing)	81	2008	9.10	2021	17	2007	4.60	2021	380	2007	110	2021	0.016 J	44	2008	0.004 DL	NP	2021	N/A		N/A	
BLM-3-182 Conv	1988	Natural Migration (Decreasing)	10	1988	0.24 DL	2020	2.50 RL	1995	0.21 DL	2020	41	1991	2.80	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	N/A		N/A	

300/400 Area Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	n (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
300-A-120 Conv	1988	Natural Migration (Decreasing)	4300 FB	1996	52	2021	2.50 RL	1996	0.21 DL	2021	2.50	2004	0.34 J	2021	46	24	1990	2.90 QD	58	2021	N/A		N/A	
300-A-170 Conv	1988	Natural Migration (Decreasing)	6000	1988	320	2021	2.50 RL	1996	0.21 DL	2021	7.00	1988	1.10	2021	48 QD	21	1995	3.80	39	2021	N/A		N/A	
300-B-166 Conv	1988	Natural Migration (Decreasing)	1600	1988	190	2021	2.50 RL	1996	0.21 DL	2021	8.00	1988	0.2 DL	2021	14	39	1991	7.80	36	2021	N/A		N/A	
300-C-128 Conv	1988	Natural Migration (Decreasing)	3000	1988	420	2021	2.50 RL	1996	0.21 DL	2021	3.70 J	1996	2.10	2021	47	32	2000	7.80	50	2021	N/A		N/A	
300-D-153 Conv	1988	Natural Migration (No Overall Trend)	6.30	2013	2.20	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
300-E WestBay	1995	Natural Migration (Decreasing)	180	1996	9.00	2021	2.50 RL	1996	0.21 DL	2021	9.30	1997	1.40	2021	49 A	1	2021	0.004 DL	NP	2021	N/A		N/A	
400-A-151 Conv	1989	Natural Migration (No Overall Trend)	450	1990	200	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	1.20	2021	280	18	1991	16	34	2021	N/A		N/A	
400-C-118 Conv	1989	Natural Migration (Decreasing)	1600	1989	200	2019	2.50 RL	1996	0.21 DL	2019	5.00	1989	1.60	2019	87	38	1989	4.90	55	2019	N/A		N/A	
400-C-143 Conv	1989	Natural Migration (Decreasing)	1600	1989	190	2020	2.50 RL	1996	0.21 DL	2020	2.50 RL	1996	0.97 J	2020	93	15	1989	6.50	34	2020	N/A		N/A	
400-EV-131 MSVGM	2017	Natural Migration (No Overall Trend)	520	2017	130	2021	0.3 DL	2018	0.21 DL	2021	13	2017	1.00	2021	3.30	46	2020	1.80	44	2021	N/A		N/A	
400-FV-131 MSVGM	2017	Natural Migration (No Overall Trend)	290	2021	28	2021	0.3 DL	2018	0.21 DL	2021	1.90	2021	0.26 J	2021	3.30	60	2020	1.40	53	2021	N/A		N/A	
400-GV-125 MSVGM	2017	Natural Migration (No Overall Trend)	320	2021	180	2021	0.3 DL	2018	0.21 DL	2021	1.80	2021	1.50	2021	5.70	44	2021	5.70	44	2021	N/A		N/A	
400-HV-147 MSVGM	2017	Natural Migration (No Overall Trend)	240	2021	160	2021	0.3 DL	2018	0.21 DL	2021	2.00	2017	0.93 J	2021	320 D	53	2021	320 D	53	2021	N/A		N/A	
400-IV-123 MSVGM	2017	Natural Migration (No Overall Trend)	430	2017	140	2021	0.93 J	2018	0.21 DL	2021	0.29 J	2021	0.29 J	2021	0.041	87	2017	0.004 DL	NP	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	centration	ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
400-JV-150 MSVGM	2017	Natural Migration (No Overall Trend)	970	2021	500	2021	0.3 DL	2018	0.21 DL	2021	1.50	2017	0.64 J	2021	5.90	44	2021	5.90	44	2021	N/A		N/A	
400-KV-142 MSVGM	2017	Natural Migration (No Overall Trend)	1700	2018	990	2019	7.00 DL	2018	0.21 DL	2019	5.00 DL	2018	0.37 J	2019	1.50	36	2019	1.50	36	2019	N/A		N/A	
BW-1-268 Conv	1989	Natural Migration (No Overall Trend)	1100	1989	190	2021	2.50 RL	1996	0.21 DL	2021	5.00	1989	1.10	2021	130	18	1991	11	58	2021	N/A		N/A	
BW-5-295 Conv	1989	Natural Migration (No Overall Trend)	360	1989	45	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.36 J	2021	1.90	49	1997	1.10	36	2021	N/A		N/A	
BW-7-211 Conv	1989	Natural Migration (Decreasing)	2400	1991	200 QD	2021	2.50 RL	1995	0.21 DL	2021	13	1989	1.30	2021	17	34	1994	2.10	42	2021	N/A		N/A	
NASA 10 Conv	1988	Natural Migration (Decreasing)	250	1996	11	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	4.70	19	1996	0.099	58	2021	N/A		N/A	
NASA 5 Conv	1988	Natural Migration (Decreasing)	350	1991	25 Q	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	13	19	1996	0.81	58	2021	N/A		N/A	
NASA 6 Conv	1988	Natural Migration (Decreasing)	1300	1996	200	2020	2.50 RL	1996	0.21 DL	2020	5.00	1990	0.23 J	2020	95	21	1996	35 D	60	2020	N/A		N/A	
NASA 9 Conv	1988	Natural Migration (Decreasing)	2000	1996	110	2019	12 RL	1988	0.21 DL	2019	12 RL	1988	0.56 J	2019	18	32	1990	1.40	52	2019	N/A		N/A	

Northern Boundary Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA (607 Conc	entration	(ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
700-A-253 Conv	1990	Non Detect	2.50 RL	1996	0.16 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
700-B-510 Conv	1990	Non Detect	2.50 RL	1995	0.24 DL	2020	2.50 RL	1995	0.21 DL	2020	2.50 RL	1995	0.2 DL	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	N/A		N/A	
700-D-186 Conv	1990	Natural Migration (No Overall Trend)	2.50 RL	1995	0.44 J	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.34 J	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
700-E-458 Conv	1990	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
700-F-455 Conv	1991	Non Detect	2.50 RL	1996	0.37 DL	2005	2.50 RL	1996	0.27 DL	2005	2.50 RL	1996	0.52 DL	2005	0.05 RL	NP	1997	0.005 DL	NP	2005	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	g/L)		NDMA	607 Cond	centration	ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
700-H WestBay	1999	Non Detect	1.60 DL	2003	0.16 DL	2021	0.62 DL	2004	0.21 DL	2021	1.90 RB TB EB	2021	0.2 DL	2021	0.005 DL	NP	2013	0.004 DL	NP	2021	N/A		N/A	
700-J-200 Conv	1999	Non Detect	1.60 DL	2003	0.16 DL	2021	0.62 DL	2004	0.21 DL	2021	3.70	2005	0.2 DL	2021	0.005 DL	NP	2017	0.004 DL	NP	2021	N/A		N/A	
BLM-24-565 Conv	1991	Non Detect	2.50 RL	1995	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2020	N/A		N/A	
BLM-41-420 Conv	2013	Fluctuating LL NDMA	0.27 DL	2018	0.24 DL	2021	0.3 DL	2013	0.21 DL	2021	1.00	2013	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	5.40	2017	1.60 QD FB	2021
BLM-41-670 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2013	0.004 DL	NP	2021	5.50 FB	2017	0.84 TB FB	2021
BW-6-355 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.32	37	2004	0.004 DL	NP	2021	N/A		N/A	
JER-1 Westbay	2004	Non Detect	0.6 DL	2004	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.72	2011	0.2 DL	2021	0.014 J	41	2005	0.004 DL	NP	2021	360	2009	0.88 FB	2021
JER-2 Westbay	2004	Fluctuating LL NDMA	0.6 DL	2004	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.63 DL	2010	0.2 DL	2021	0.016 J	43	2005	0.005 DL	NP	2021	290 QD	2006	7.70	2021

Southern Boundary Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Concer	ntration (u	g/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conce	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
100-E-261 Conv	1989	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1996	0.004 DL	NP	2021	N/A		N/A	
BLM-13-300 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-25-455 Conv	1991	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-40-517 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.3 DL	2017	0.21 DL	2021	0.22 DL	2017	0.2 DL	2021	0.005 DL	NP	2018	0.004 DL	NP	2021	1.10	2017	0.48	2021
BLM-40-595 FLUTe	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2019	0.004 DL	NP	2021	0.67 FB	2014	0.4 DL	2021
BLM-40-688 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.3 DL	2016	0.21 DL	2021	0.22 DL	2016	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	0.74	2016	0.4 DL	2021
BLM-6-488 Conv	1990	Natural Migration (No Overall Trend)	3.10 J	1999	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	14	1999	2.20	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	45 FB	2001	0.41 J	2021
WB-14 Westbay	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.26 J	2021	0.05 RL	NP	1993	0.004 DL	NP	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Conc	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA (607 Conc	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
WB-5	1990	Non Detect	2.50	1996	0.24	2021	2.50	1996	0.21	2021	2.50	1996	0.2 DL	2021	0.05	NP	1991	0.017	44	2021	N/A		N/A	
Westbay			RL		DL		RL		DL		RL				RL			J						

MPCA Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Conce	ntration (u	ıg/L)		NDMA	607 Con	centration	n (ug/L)		NDMA	LL Cond	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-14-327 Conv	1990	Natural Migration (Decreasing)	230	1995	95	2021	9.20	2002	3.80	2021	180	1995	75	2021	1.20	18	2002	0.58	53	2021	N/A		N/A	
BLM-15-305 Conv	1989	Natural Migration (Decreasing)	770	1991	130	2021	2.50 RL	1996	0.21 DL	2021	22	1989	1.70	2021	150 A	8	1989	24 D	36	2021	N/A		N/A	
BLM-18-430 Conv	1989	Natural Migration (Decreasing)	120 QD	2005	7.70	2021	2.50 RL	1996	0.21 DL	2021	58	2009	3.90	2021	0.15 QD	31	2009	0.038	36	2021	N/A		N/A	
BLM-21-400 Conv	1991	Natural Migration (Decreasing)	320	1996	79	2021	12	1995	2.40	2021	220	1991	48	2021	5.60	16	1995	1.10	39	2021	N/A		N/A	
BLM-22-570 Conv	1990	Non Detect	2.50 RL	1995	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	
BLM-23-431 Conv	1990	Natural Migration (Decreasing)	240	1995	39 Q	2021	8.00	1991	1.60 Q	2021	240	1995	53 Q	2021	1.10	33	2006	0.52	44	2021	N/A		N/A	
BLM-26-404 Conv	1991	Natural Migration (Decreasing)	110	2008	80	2021	2.50 RL	1996	0.6 J	2021	28	2008	20	2021	1.20	50	1991	0.39	38	2021	N/A		N/A	
BLM-27-270 Conv	1991	Natural Migration (No Overall Trend)	500	2010	490 A	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	1.10	2021	13	41	2006	5.70	42	2021	N/A		N/A	
BLM-36 WestBay	2000	Pumping Related Migration (No Overall Trend)	98	2011	39	2021	4.40	2011	2.70	2021	97	2008	66	2021	2.00	43	2007	1.40	36	2021	N/A		N/A	
BLM-38 WestBay	2000	Non Detect	1.60 DL	2003	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.024 J	33	2002	0.004 DL	NP	2021	N/A		N/A	
BLM-39 WestBay	2000	Natural Migration (Decreasing)	340	2005	81	2021	10	2007	6.80	2021	330 QD	2002	180	2021	9.70	19	2002	5.50	58	2021	N/A		N/A	
BLM-5-527 Conv	1988	Natural Migration (Incr easing)	23	2020	19	2021	2.50 RL	1996	0.82 J	2021	29	2020	28	2021	0.21	38	2021	0.2	54	2021	220 G	2017	220 G	2017
BLM-8-418 Conv	1988	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	3.80 QD	2001	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	E Concer	ntration (u	g/L)		NDMA (607 Cond	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-9-419 Conv	1989	Natural Migration (Decreasing)	320	1991	3.30	2021	12	1989	0.24 J	2021	240	1989	2.10	2021	8.80	16	1995	0.02 J	42	2021	N/A		N/A	

Main Plume Well Group

Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	centration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
BLM-1-435 Conv	1988	Natural Migration (Decreasing)	270	1991	45	2020	18	1988	2.40	2020	360	1988	62	2020	5.90	108	1997	1.30	68	2020	N/A		N/A	
BLM-17-493 Conv	1989	Natural Migration (Decreasing)	480	1989	86	2021	31	1989	3.30	2021	430	1989	75	2021	11 A Q	7	1989	2.20	36	2021	N/A		N/A	
BLM-17-550 Conv	1990	Natural Migration (Decreasing)	440	1991	89	2021	20	1990	2.90	2021	390	1991	75	2021	8.10	16	1995	1.30	39	2021	N/A		N/A	
BLM-2-482 Conv	1988	Pumping Related Migration (Decreasing)	320	1996	9.40	2012	16	1996	0.35 J	2012	450	1990	11	2012	2.30 QD	30	2006	0.072	58	2012	N/A		N/A	
BLM-2-630 Conv	1988	Pumping Related Migration (Decreasing)	470 QD	1988	0.24 DL	2021	8.00	1991	0.21 DL	2021	310 QD	1988	0.26 J	2021	1.30	31	2002	0.004 DL	NP	2020	N/A		N/A	
PL-1-486 Conv	1988	Pumping Related Migration (Decreasing)	190	1996	0.24 DL	2021	4.60	2004	0.21 DL	2021	180	2004	0.2 DL	2021	0.093	43	2005	0.004 DL	NP	2021	260 QD	2002	0.4 DL	2021
PL-2-504 Conv	1989	Pumping Related Migration (Decreasing)	230	1996	48	2021	2.50 RL	1996	1.40	2021	180	2004	72	2021	0.45 QD	58	2021	0.45 QD	58	2021	300 G RB Q	2020	300 G RB Q	2020
ST-1-473 Conv	1989	Pumping Related Migration (Decreasing)	610	1996	180	2021	13	2010	8.10	2021	370	2005	220	2021	1.70	27	2009	0.84	50	2021	N/A		N/A	
ST-1-541 Conv	1992	Pumping Related Migration (Decreasing)	790	1995	97	2020	37	1995	3.90	2020	650	1995	91	2020	4.80 QD	37	2003	3.80	42	2020	N/A		N/A	
ST-1-630 Conv	1992	Pumping Related Migration (Decreasing)	410	2006	160	2021	19 QD	2007	3.70	2021	440	2000	190	2021	1.90	40	2019	0.39	36	2021	N/A		N/A	
¹ST-3-486	1991	Pumping Related	800	1996	3.70	2021	19	2003	0.26 J	2021	690	1991	4.50	2021	4.40	45	2011	0.24	38	2021	N/A		N/A	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE	Concer	ntration (u	g/L)	TCE	Conce	ntration (u	ıg/L)		NDMA	607 Cond	entration	(ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
		Migration (Decreasing)																						
ST-3-586 Conv	1992	Pumping Related Migration (Decreasing)	640 T TB Q	1996	5.20	2021	15	2007	0.29 J	2021	320	2005	6.20	2021	3.80 QD	37	2003	0.057	42	2021	N/A		N/A	
ST-3-666 Conv	1992	Pumping Related Migration (Decreasing)	280	2009	5.50	2021	15	2009	0.5 J	2021	320	2009	24	2021	3.70	30	2006	0.25	38	2021	N/A		N/A	
ST-3-735 Conv	1992	Pumping Related Migration (Decreasing)	240	2005	15	2021	14	2007	0.78 J	2021	320	2005	23	2021	7.80 QD	32	2009	0.9	42	2021	N/A		N/A	

Plume Front Well Group

Well	1st	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)							NDMA LL Concentration (ng/L)			
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year	
BLM-10-517 Conv	1988	Non Detect	5.00 RL	1988	0.33 J	2021	2.50 RL	1996	0.21 DL	2021	4.40	2012	0.2 DL	2021	0.095 RL	NP	1988	0.004 DL	NP	2021	5.90	2020	0.4 DL	2021	
BLM-7-509 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.09 J	32	1996	0.004 DL	NP	2021	0.76 FB	2018	0.55 RB TB FB	2021	
PL-3-453 Conv	1989	Non Detect	5.00 RL	1989	0.24 DL	2020	2.50 RL	1996	0.21 DL	2020	2.50 RL	1996	0.2 DL	2020	0.05 RL	NP	1997	0.004 DL	NP	2020	3.80 RB FB	2005	3.80 RB FB	2005	
PL-4-464 Conv	1990	Non Detect	28	2005	0.46 J	2021	2.50 RL	1996	0.21 DL	2021	21	2005	0.4 J	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.70 RB FB	2005	0.78 RB A * FB	2021	
PL-6 Westbay	1992	Non Detect	4.10 J	1996	0.24 DL	2021	5.60	1996	0.21 DL	2021	4.90 J	1996	0.2 DL	2021	0.64	28	1999	0.004 DL	NP	2021	23	2001	0.57	2021	
PL-7 Westbay	1993	Fluctuating LL NDMA	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	4.90	2021	1.40 EB	2021	
ST-2-466 Conv	1989	Non Detect	2.50 RL	1995	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	2.50 RL	1995	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.60 RB	2004	0.33 DL	2021	
ST-4-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	1.80 FB	2012	1.70 RB * TB FB	2021	
ST-4-589 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	1.10 RB Q	2008	0.44 J RB TB FB	2021	

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

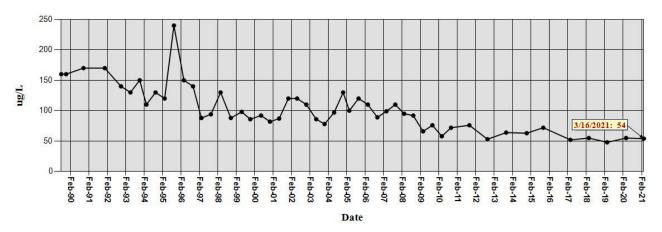
Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE Concentration (ug/L)					Conce	ntration (u	g/L)		NDMA	607 Cond	NDMA LL Concentration (ng/L)						
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
ST-4-690 Conv	1992	Non Detect	3.00 J	1998	0.24 DL	2021	2.50 RL	1995	0.21 DL	2021	10	1998	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	2.70	2008	1.70 RB * FB	2021
ST-5 Westbay	1992	Fluctuating LL NDMA	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	7.20	2017	2.40 EB	2021
ST-5-481 Conv	1992	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.005 DL	NP	2021	0.7 FB	2002	0.7 FB	2002
ST-6 Westbay	1998	Fluctuating LL NDMA	21 EB	2005	0.25 J	2021	2.00 DL	1999	0.21 DL	2021	67	2004	0.39 J	2021	0.012	90	2017	0.004 DL	NP	2021	28 RB FB Q	2005	1.50	2021
ST-7 Westbay	1999	Non Detect	1.60 DL	2003	0.81	2021	0.62 DL	2004	0.21 DL	2021	0.82	2021	0.76	2021	0.005 DL	NP	2013	0.004 DL	NP	2021	3.80 FB	2002	0.4 DL	2021
WW-1-452 Conv	1988	Non Detect	5.00 RL	1988	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.3 T	30	2006	0.004 DL	NP	2021	3.20 RB FB	2012	0.55 RB * FB	2021

Sentinel Well Group

Well	1st	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)							NDMA LL Concentration (ng/L)			
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year	
100-A-182 Conv	1989	Natural Migration (Decreasing)	5.00	1995	1.90	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	N/A		N/A		
400-D WestBay	1995	Non Detect	3.30 J EB	1996	0.24 DL	2021	3.50 J	1998	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.29	34	1996	0.004 DL	NP	2021	N/A		N/A		
BLM-42-569 Conv	2020	Non Detect	0.24 DL	2021	0.24 DL	2021	0.21 DL	2021	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.004 DL	NP	2021	0.004 DL	NP	2021	1.60 RB * TB FB	2021	1.60 RB * TB FB	2021	
BLM-42-709 Conv	2020	Non Detect	0.24 DL	2021	0.24 DL	2021	0.21 DL	2021	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.004 DL	NP	2020	0.004 DL	NP	2021	1.50 RB * FB	2021	1.50 RB * FB	2021	
JP-1-424 Conv	1988	Non Detect	5.50	2001	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	2.50 RL	1996	0.2 DL	2021	0.061 J	36	1998	0.005 DL	NP	2021	15 RB QD	2004	0.41 DL	2021	
JP-2-447 Conv	1988	Non Detect	2.50 RL	1996	0.24 DL	2021	2.50 RL	1996	0.21 DL	2021	4.50	2001	0.2 DL	2021	0.05 RL	NP	1997	0.004 DL	NP	2021	14	2000	0.4 DL	2021	
JP-3-509 Conv	2013	Non Detect	0.27 DL	2019	0.24 DL	2021	0.28 DL	2019	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.004 DL	NP	2017	0.004 DL	NP	2021	0.85 * TB	2021	0.85 * TB	2021	
JP-3-689 Conv	2014	Fluctuating LL NDMA	0.27 DL	2019	0.24 DL	2021	0.28 DL	2019	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2014	0.004 DL	NP	2021	1.80 TB FB	2021	1.80 TB FB	2021	
PL-10 Westbay	2002	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.62 DL	2004	0.2 DL	2021	0.005 DL	NP	2021	0.005 DL	NP	2021	6.10	2019	1.50 EB	2021	

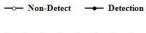
Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

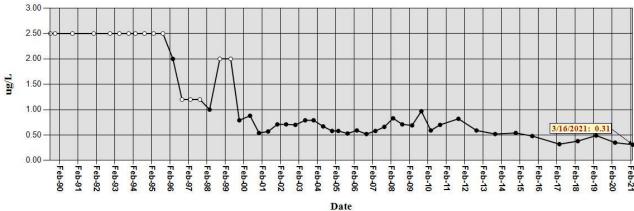
Well	1st	Interpretation	Freon	11 Cond	centration	(ug/L)	PCE	Concen	tration (u	g/L)	TCE	Conce	ntration (u	g/L)		NDMA	607 Cond	centration	ı (ug/L)		NDMA	LL Conc	entration	(ng/L)
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
PL-12-570 Conv	2020	Pumping Related Migration (No Overall Trend)	17	2020	9.30	2021	0.46 J	2020	0.34 J	2021	20	2020	13	2021	0.004 DL	NP	2020	0.004 DL	NP	2021	3.60	2020	3.20 FB	2021
PL-12-800 Conv	2020	Pumping Related Migration (No Overall Trend)	14	2020	3.00	2021	0.24 J	2021	0.21 DL	2021	17	2020	2.10	2021	0.004 DL	NP	2021	0.004 DL	NP	2021	4.60 FB	2021	4.60 FB	2021
PL-8 Westbay	2000	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.005 DL	NP	2015	0.004 DL	NP	2021	12 FB	2002	1.10 RB EB	2021
WW-2-489 Conv	2013	Non Detect	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2014	0.004 DL	NP	2021	0.41 J FB	2016	0.4 DL	2021
WW-2-664 Conv	2013	Fluctuating LL NDMA	0.27 DL	2018	0.24 DL	2021	0.28 DL	2018	0.21 DL	2021	0.2 DL	2021	0.2 DL	2021	0.005 DL	NP	2014	0.004 DL	NP	2021	1.80 RB * FB	2021	1.80 RB * FB	2021
WW-3 Westbay	2001	Fluctuating LL NDMA	1.60 DL	2002	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.7 DL	2003	0.2 DL	2021	0.012 J	40	2004	0.004 DL	NP	2021	95 RB *	2007	7.10 QD	2021
WW-4 Westbay	2001	Non Detect	1.60 DL	2002	0.24 DL	2019	0.62 DL	2004	0.21 DL	2019	0.7 DL	2003	0.2 DL	2019	0.005 DL	NP	2016	0.004 DL	NP	2018	35	2016	0.22 DL	2019
WW-5 Westbay	2001	Fluctuating LL NDMA	1.60 DL	2003	0.24 DL	2021	0.62 DL	2004	0.21 DL	2021	0.62 DL	2004	0.2 DL	2021	0.005 DL	NP	2016	0.004 DL	NP	2021	6.50 *	2021	4.50 QD	2021


Other Well Group

Well	1st	Interpretation	Freon	11 Cond	entration	(ug/L)	PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)							NDMA LL Concentration (ng/L)			
	Sample		Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year Last	Year		
MPE-1 Conv*	1999	Pumping Related Migration (Decreasing)	560	2005	150	2021	8.70	2010	3.30	2021	180	2010	75	2021	25	30	2009	7.30	44	2021	N/A	N/A			
MPE-10 Conv*	2004	Pumping Related Migration (Increasing)	150	2017	81	2021	3.50	2020	2.60	2021	65	2017	61	2021	8.50	40	2021	6.80	44	2021	N/A	N/A			
MPE-11 Conv*	2004	Pumping Related Migration (No Overall Trend)	65	2008	8.00	2021	1.60	2008	0.27 J	2021	41	2008	4.30	2021	1.60	40	2007	0.3	44	2021	N/A	N/A			
MPE-8 Conv*	2003	Pumping Related Migration (Increasing)	200	2020	150	2021	4.20	2020	3.40	2021	83	2020	71	2021	6.50	40	2021	5.20	44	2021	N/A	N/A			
MPE-9 Conv*	2004	Pumping Related	250	2015	54	2021	5.60	2018	3.20	2021	130	2018	87	2021	13	35	2019	9.50	44	2021	N/A	N/A			

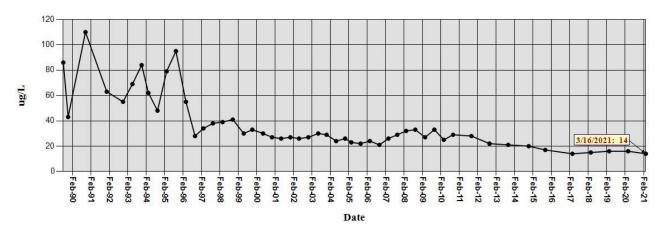
Well ID: 200-D-240 CAS RN: 75-69-4 F11 - Trichlorofluoromethane


Analysis: 8260


→ Non-Detect → Detection

Well ID: 200-D-240 CAS RN: 127-18-4 Tetrachloroethene

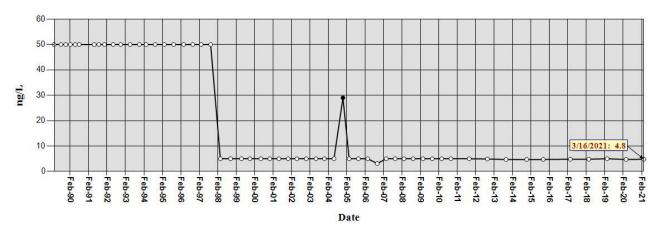
Analysis: 8260



Well ID: 200-D-240 CAS RN: 79-01-6 Trichloroethene

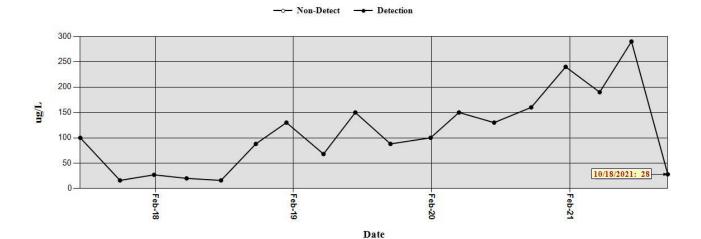
Analysis: 8260

→ Non-Detect → Detection

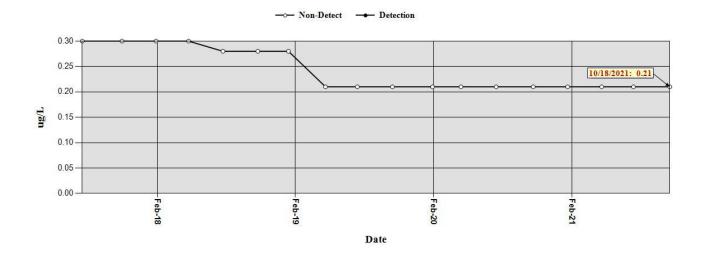


Well ID: 200-D-240 CAS RN: 62-75-9 N-Nitrosodimethylamine

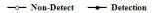
Analysis: 607

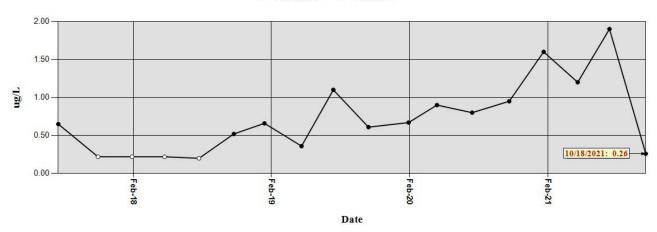

Results are Corrected for Extraction Efficiency

→ Non-Detect → Detection


Well ID: 400-FV-131 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

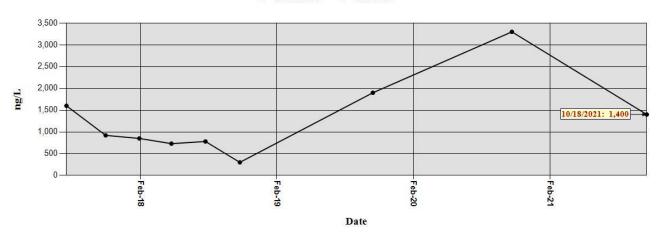
Analysis: 8260


Well ID: 400-FV-131 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

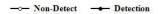
Well ID: 400-FV-131 CAS RN: 79-01-6 Trichloroethene

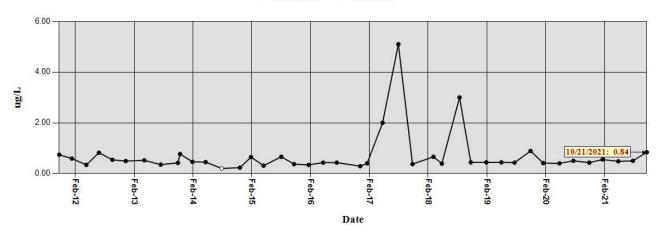
Analysis: 8260



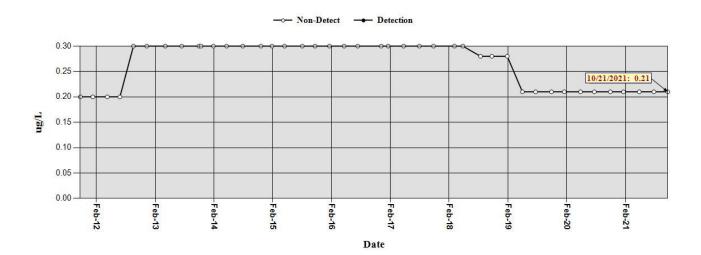
Well ID: 400-FV-131 CAS RN: 62-75-9 N-Nitrosodimethylamine

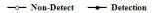
Analysis: 607

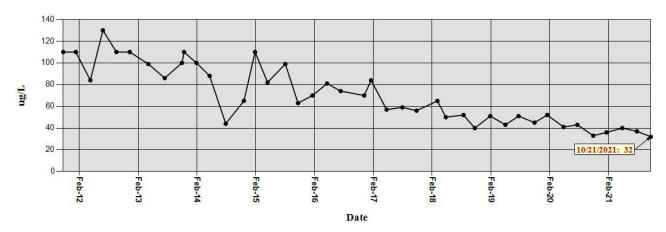

Results are Corrected for Extraction Efficiency


→ Non-Detect → Detection

Well ID: 600-G-138 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

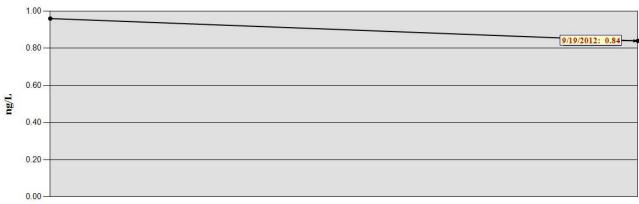

Analysis: 8260


Well ID: 600-G-138 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

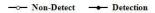
Well ID: 600-G-138 CAS RN: 79-01-6 Trichloroethene

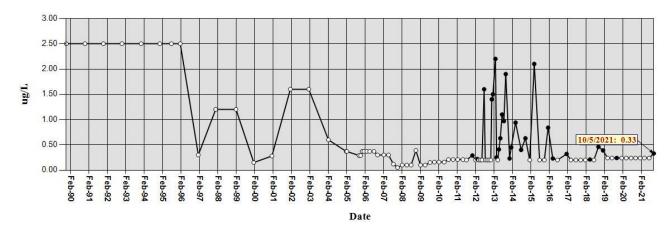
Analysis: 8260



Well ID: 600-G-138 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: NDMA_LL

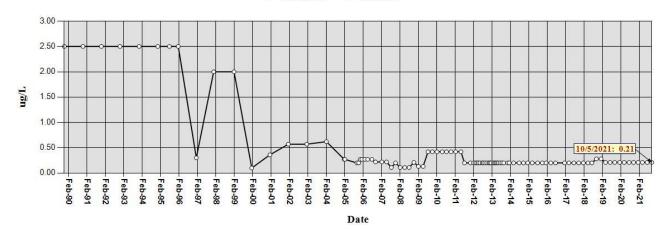

→ Non-Detect → Detection



Date

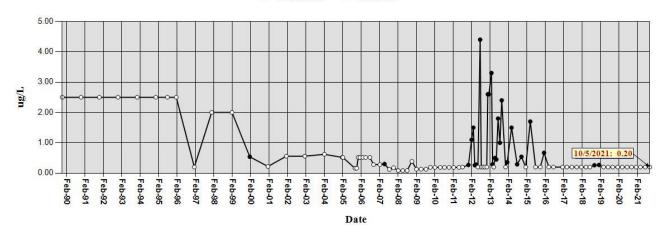
Well ID: BLM-10-517 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260



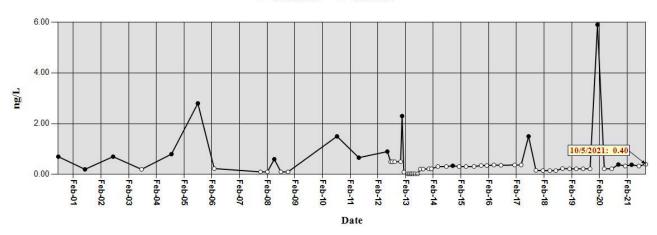
Well ID: BLM-10-517 CAS RN: 127-18-4 Tetrachloroethene

Analysis: 8260


→ Non-Detect → Detection

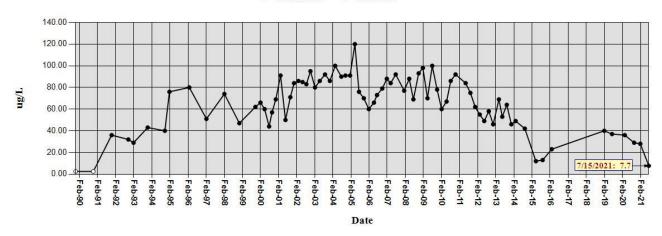
Well ID: BLM-10-517 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

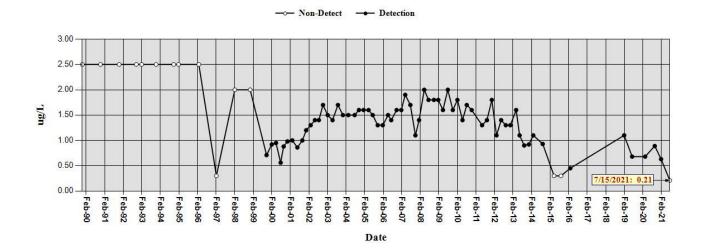


Well ID: BLM-10-517 CAS RN: 62-75-9 N-Nitrosodimethylamine

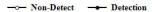
Analysis: NDMA_LL


→ Non-Detect → Detection

Well ID: BLM-18-430 CAS RN: 75-69-4 F11 - Trichlorofluoromethane


Analysis: 8260

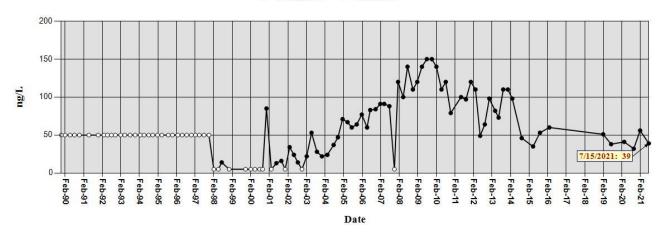
→ Non-Detect → Detection


Well ID: BLM-18-430 CAS RN: 127-18-4 Tetrachloroethene


Analysis: 8260

Well ID: BLM-18-430 CAS RN: 79-01-6 Trichloroethene

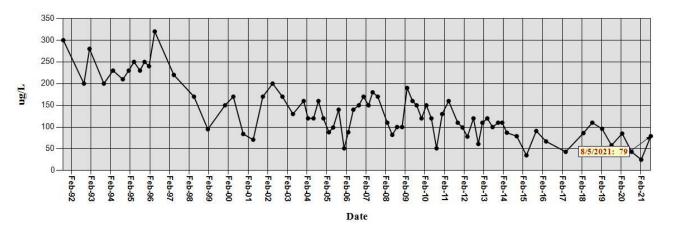
Analysis: 8260

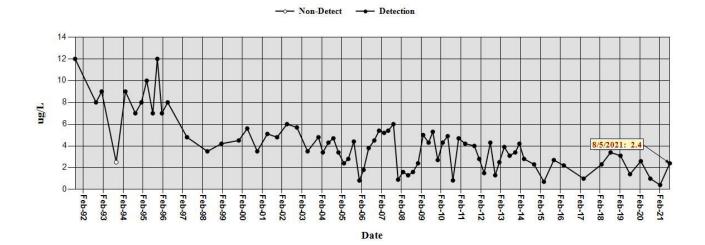


Well ID: BLM-18-430 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

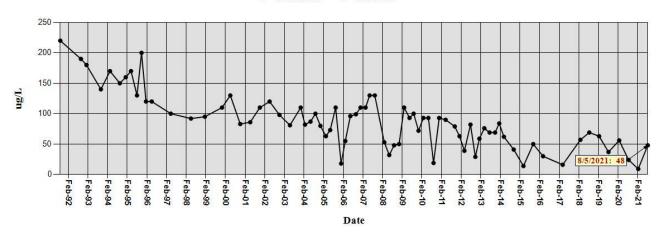
Results are Corrected for Extraction Efficiency


→ Non-Detect → Detection


Well ID: BLM-21-400 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

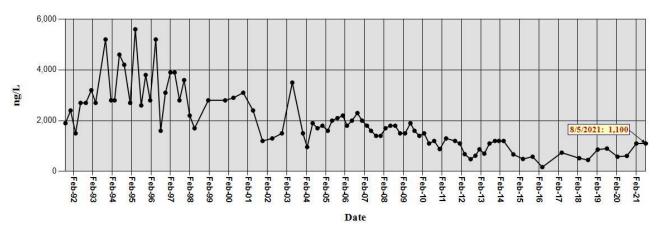
Analysis: 8260

→ Non-Detect → Detection

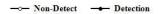

Well ID: BLM-21-400 CAS RN: 127-18-4 Tetrachloroethene

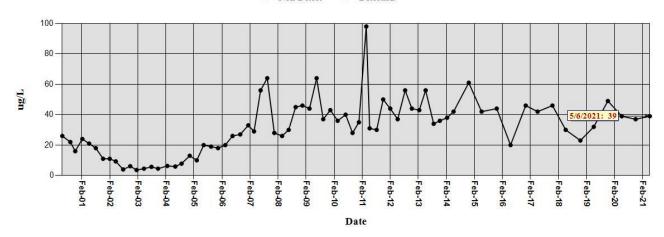
Well ID: BLM-21-400 CAS RN: 79-01-6 Trichloroethene

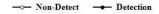
Analysis: 8260

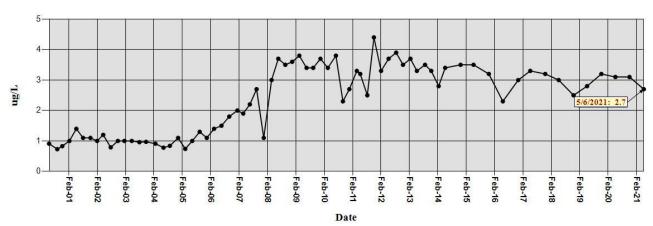

→ Non-Detect → Detection

Well ID: BLM-21-400 CAS RN: 62-75-9 N-Nitrosodimethylamine

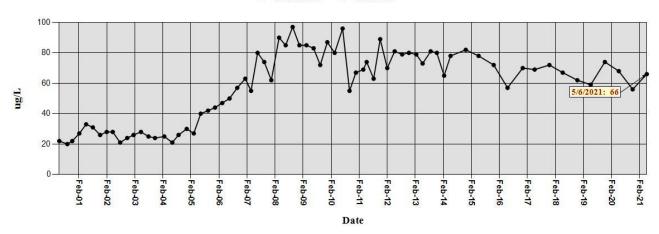

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: BLM-36-350 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

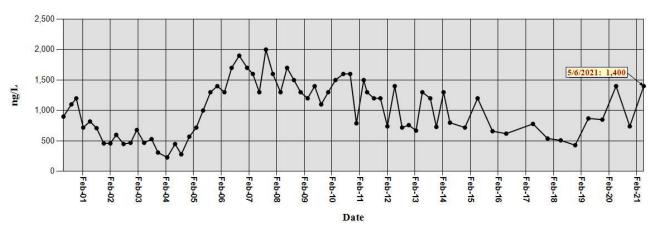

Analysis: 8260

Well ID: BLM-36-350 CAS RN: 127-18-4 Tetrachloroethene

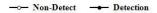


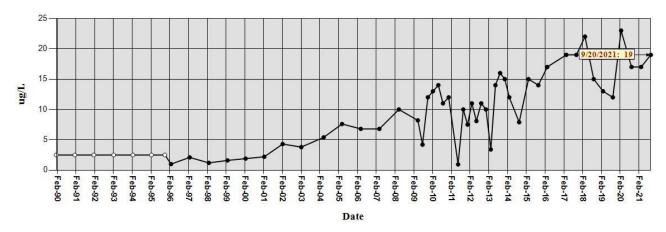
Well ID: BLM-36-350 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260

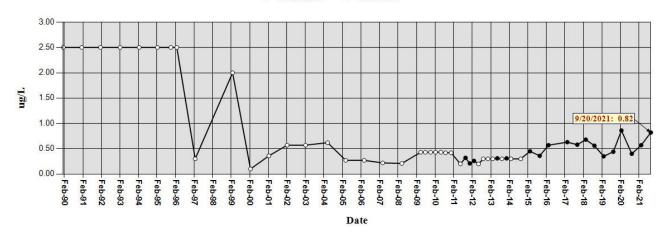

→ Non-Detect → Detection

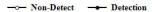
Well ID: BLM-36-350 CAS RN: 62-75-9 N-Nitrosodimethylamine

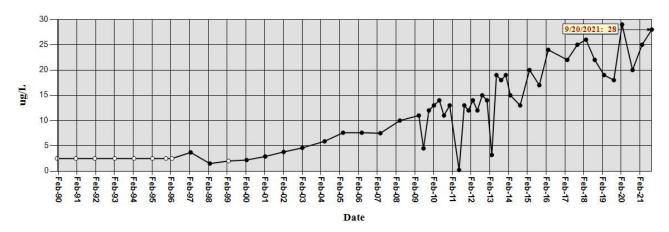

Analysis: 607


Results are Corrected for Extraction Efficiency

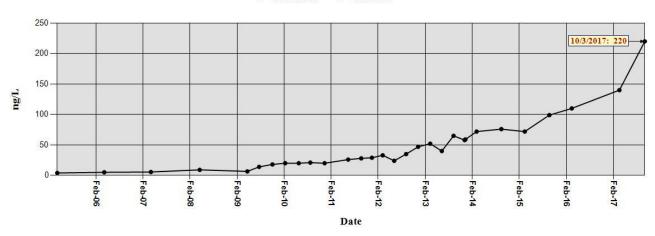
Well ID: BLM-5-527 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

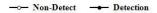

Analysis: 8260

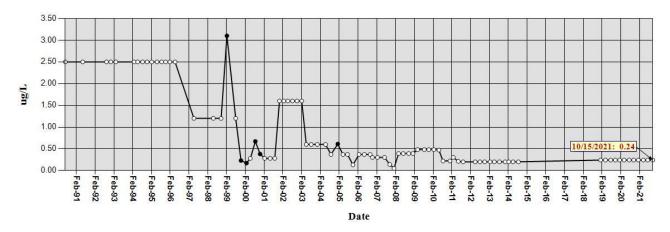

Well ID: BLM-5-527 CAS RN: 127-18-4 Tetrachloroethene

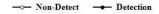

Analysis: 8260

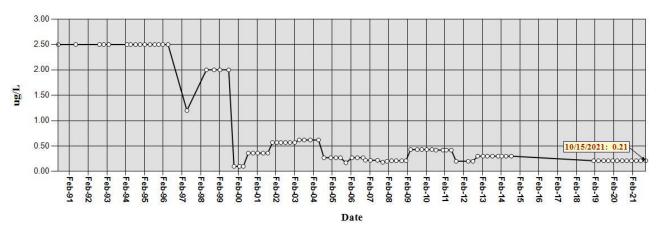
Well ID: BLM-5-527 CAS RN: 79-01-6 Trichloroethene


Analysis: 8260

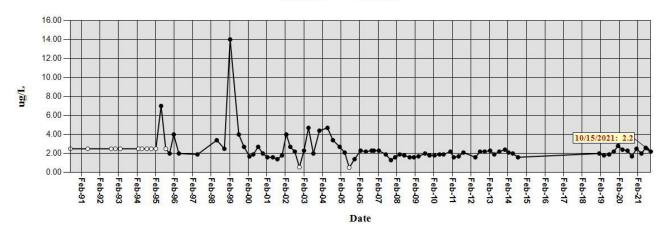

Well ID: BLM-5-527 CAS RN: 62-75-9 N-Nitrosodimethylamine


Analysis: NDMA_LL

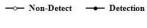

Well ID: BLM-6-488 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

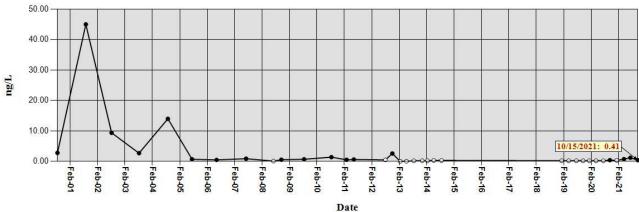

Analysis: 8260

Well ID: BLM-6-488 CAS RN: 127-18-4 Tetrachloroethene

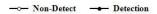


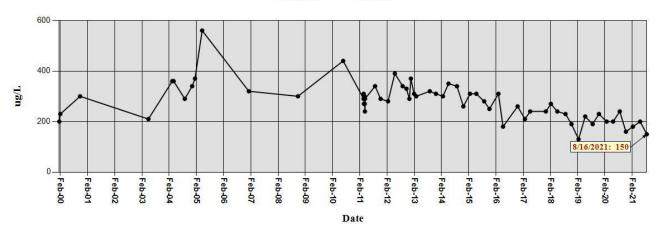
Well ID: BLM-6-488 CAS RN: 79-01-6 Trichloroethene

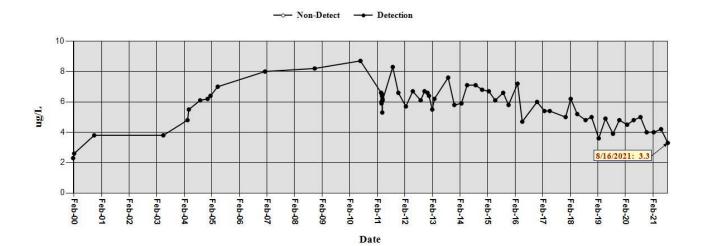

Analysis: 8260


→ Non-Detect → Detection

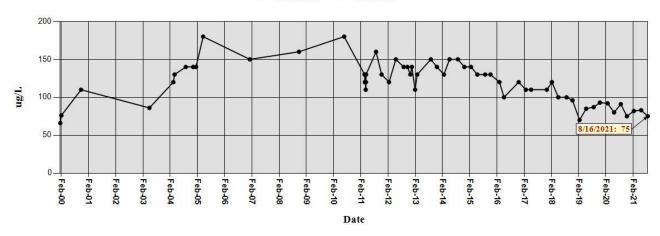
Well ID: BLM-6-488 CAS RN: 62-75-9 N-Nitrosodimethylamine


Analysis: NDMA_LL



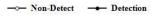

Well ID: MPE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

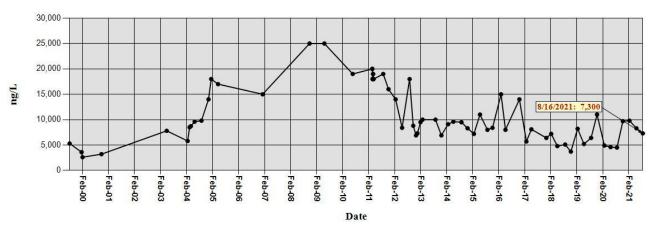
Analysis: 8260


Well ID: MPE-1 CAS RN: 127-18-4 Tetrachloroethene

Well ID: MPE-1 CAS RN: 79-01-6 Trichloroethene

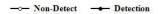
Analysis: 8260

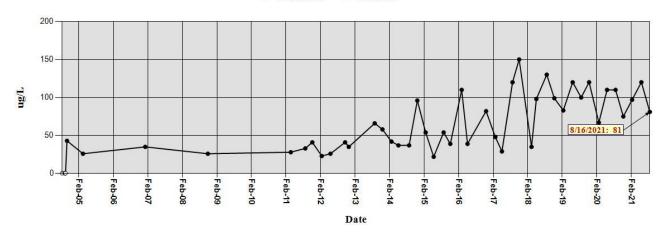


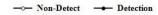


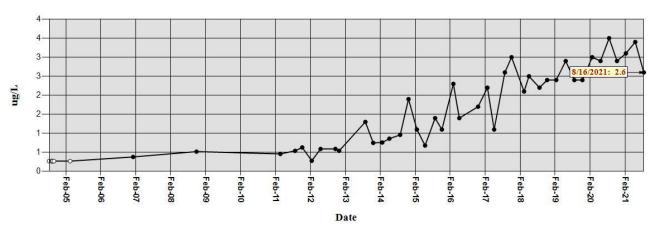
Well ID: MPE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

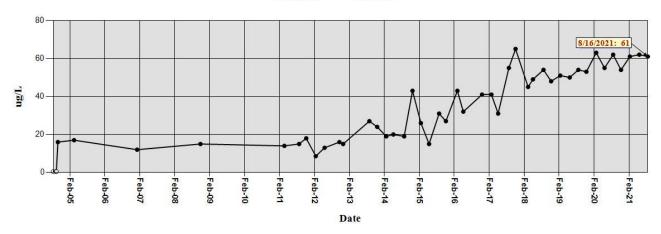

Results are Corrected for Extraction Efficiency




Well ID: MPE-10 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

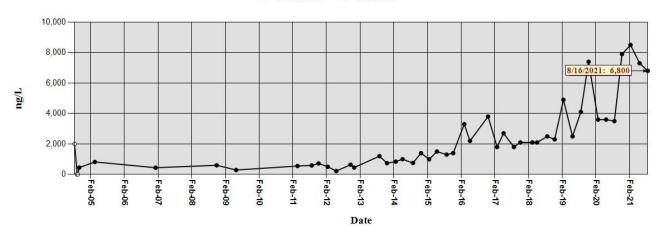

Analysis: 8260

Well ID: MPE-10 CAS RN: 127-18-4 Tetrachloroethene

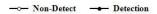


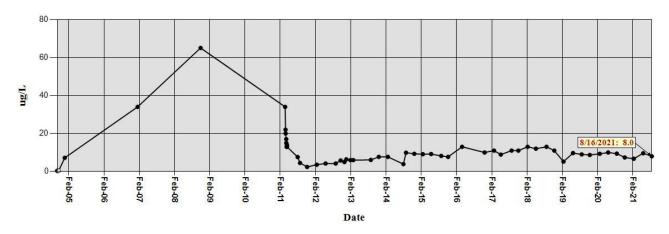
Well ID: MPE-10 CAS RN: 79-01-6 Trichloroethene

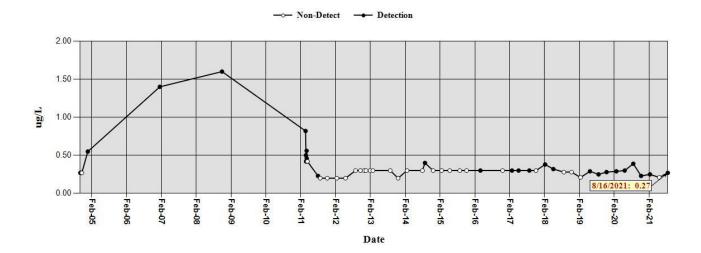
Analysis: 8260



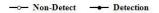
Well ID: MPE-10 CAS RN: 62-75-9 N-Nitrosodimethylamine

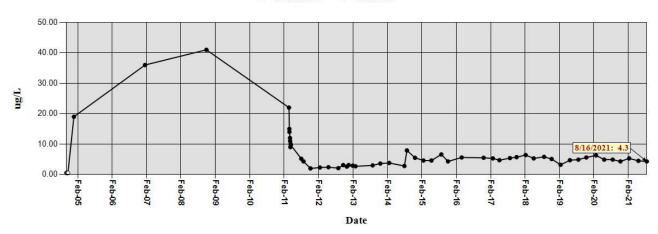

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: MPE-11 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

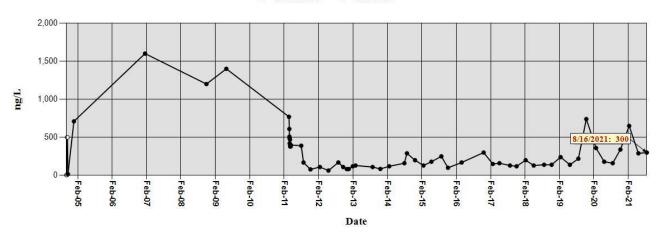
Analysis: 8260



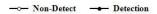

Well ID: MPE-11 CAS RN: 127-18-4 Tetrachloroethene

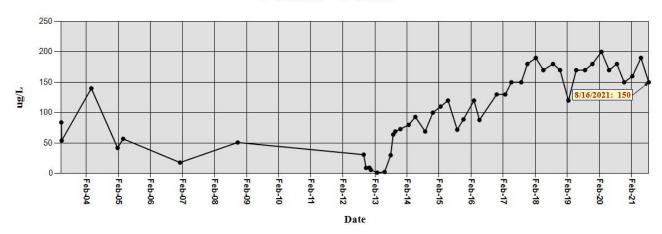
Well ID: MPE-11 CAS RN: 79-01-6 Trichloroethene

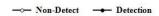
Analysis: 8260



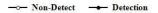
Well ID: MPE-11 CAS RN: 62-75-9 N-Nitrosodimethylamine

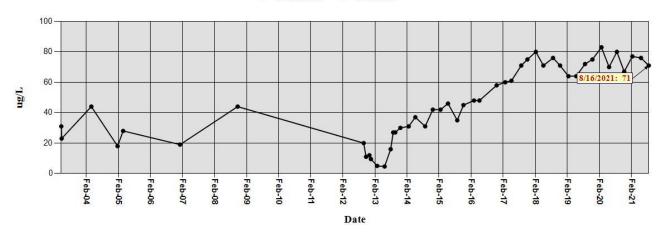

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: MPE-8 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

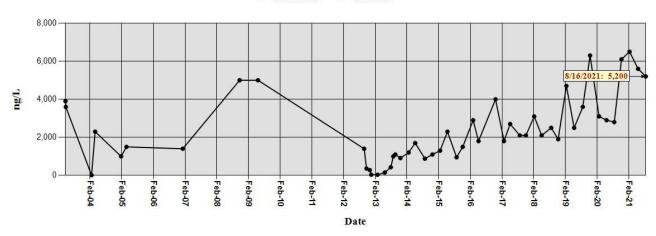

Analysis: 8260


Well ID: MPE-8 CAS RN: 127-18-4 Tetrachloroethene

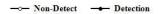


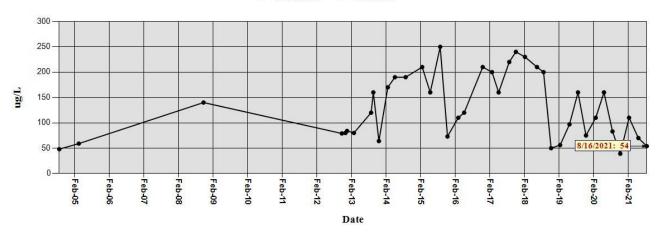
Well ID: MPE-8 CAS RN: 79-01-6 Trichloroethene

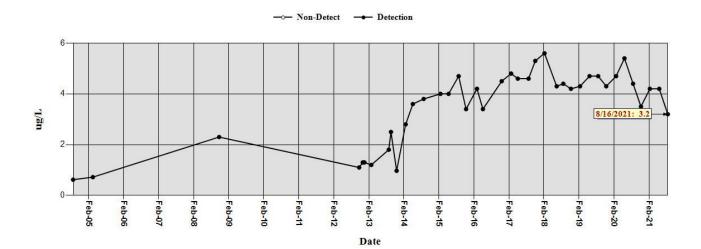
Analysis: 8260



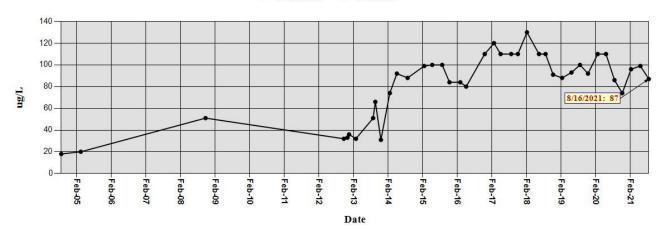
Well ID: MPE-8 CAS RN: 62-75-9 N-Nitrosodimethylamine


Analysis: 607


Results are Corrected for Extraction Efficiency

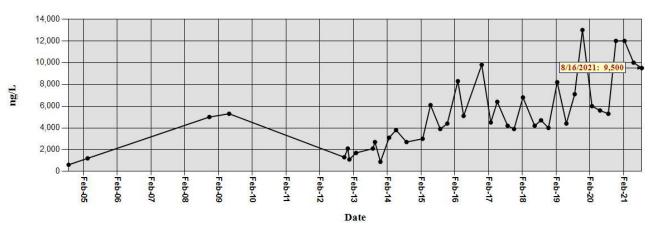

Well ID: MPE-9 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260


Well ID: MPE-9 CAS RN: 127-18-4 Tetrachloroethene

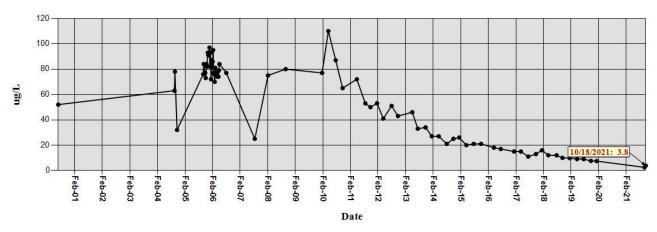
Well ID: MPE-9 CAS RN: 79-01-6 Trichloroethene

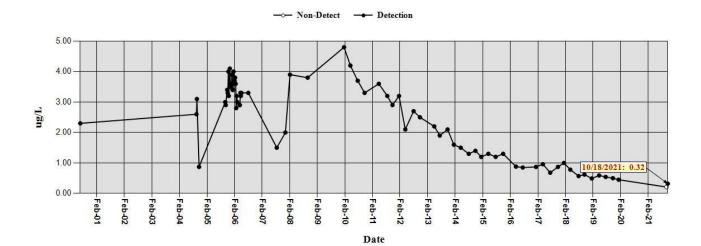
Analysis: 8260



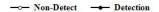
Well ID: MPE-9 CAS RN: 62-75-9 N-Nitrosodimethylamine

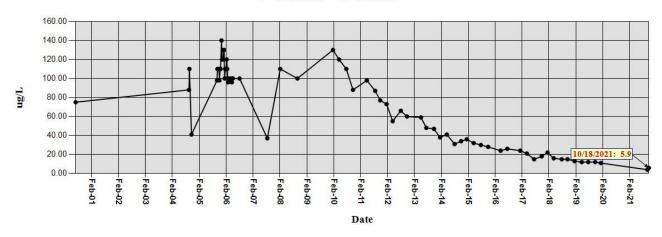

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: PFE-1 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

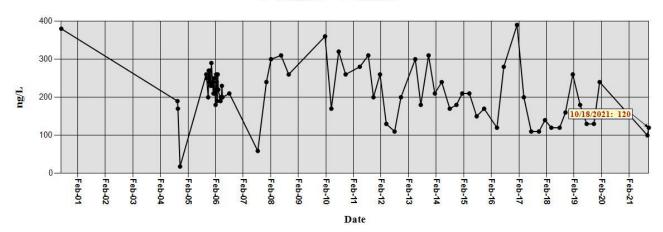
Analysis: 8260



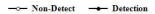

Well ID: PFE-1 CAS RN: 127-18-4 Tetrachloroethene

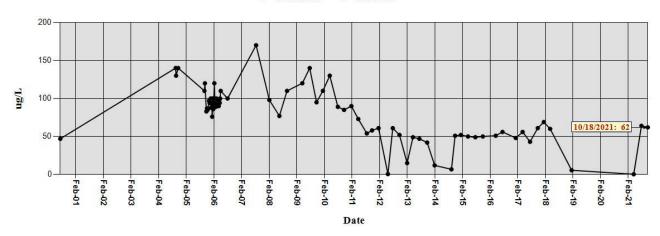
Well ID: PFE-1 CAS RN: 79-01-6 Trichloroethene

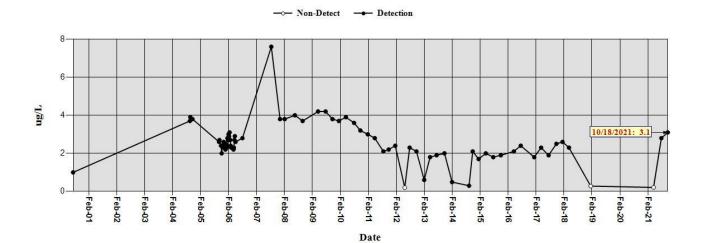
Analysis: 8260



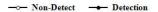
Well ID: PFE-1 CAS RN: 62-75-9 N-Nitrosodimethylamine

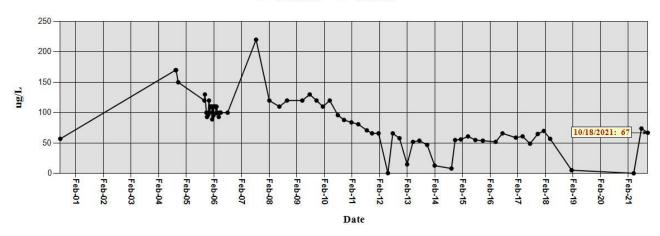

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: PFE-2 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

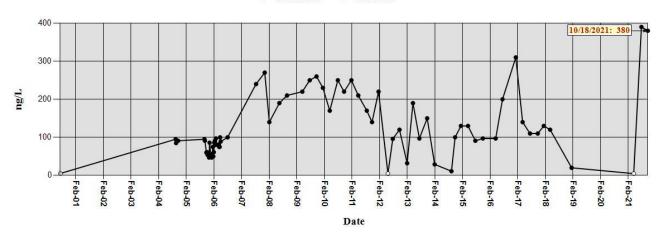
Analysis: 8260



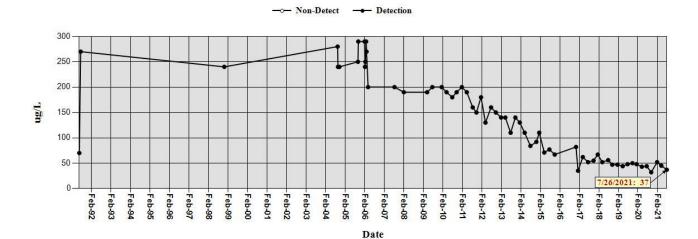

Well ID: PFE-2 CAS RN: 127-18-4 Tetrachloroethene

Well ID: PFE-2 CAS RN: 79-01-6 Trichloroethene

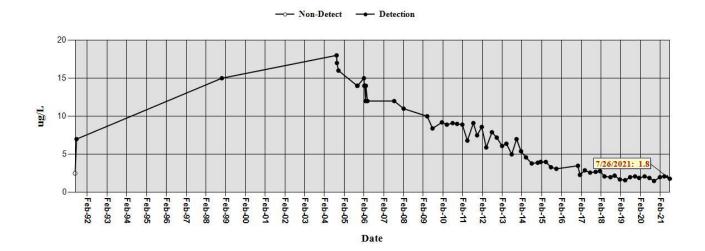
Analysis: 8260



Well ID: PFE-2 CAS RN: 62-75-9 N-Nitrosodimethylamine

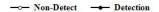

Analysis: 607

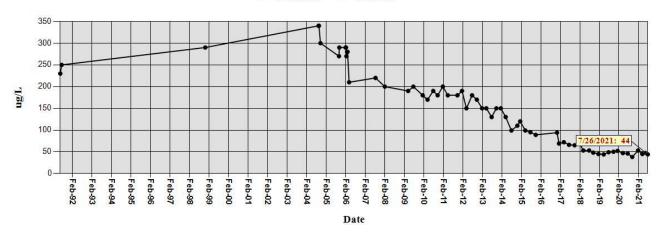
Results are Corrected for Extraction Efficiency



Well ID: PFE-3 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

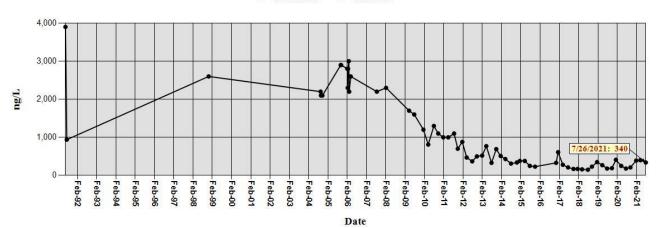
Analysis: 8260



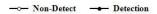

Well ID: PFE-3 CAS RN: 127-18-4 Tetrachloroethene

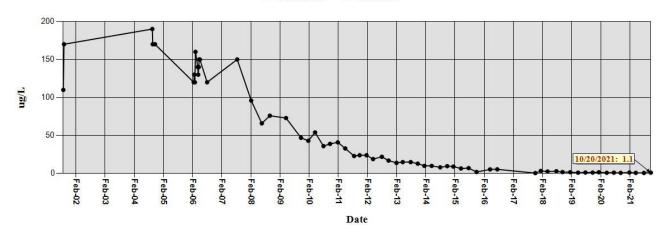
Well ID: PFE-3 CAS RN: 79-01-6 Trichloroethene

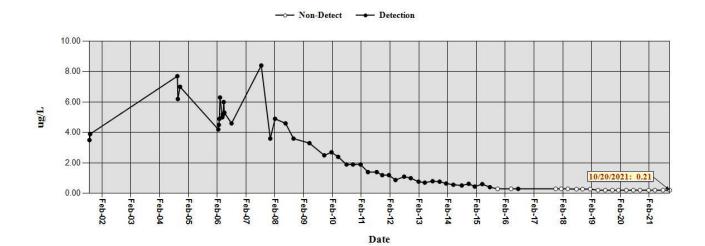
Analysis: 8260



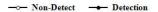
Well ID: PFE-3 CAS RN: 62-75-9 N-Nitrosodimethylamine

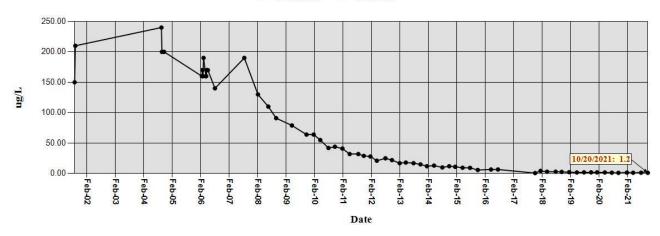

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: PFE-4A CAS RN: 75-69-4 F11 - Trichlorofluoromethane

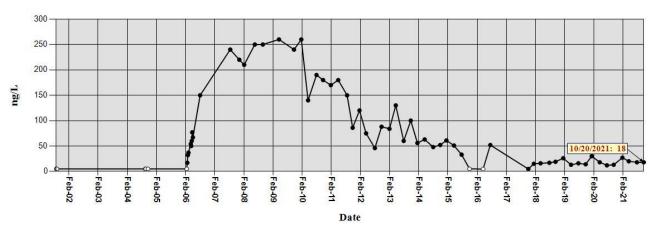
Analysis: 8260




Well ID: PFE-4A CAS RN: 127-18-4 Tetrachloroethene

Well ID: PFE-4A CAS RN: 79-01-6 Trichloroethene

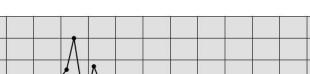
Analysis: 8260



Well ID: PFE-4A CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

Results are Corrected for Extraction Efficiency

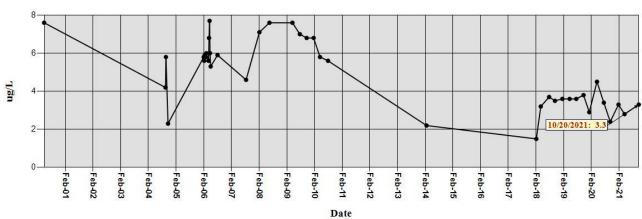


Well ID: PFE-5 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

Analysis: 8260

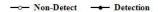
→ Non-Detect → Detection

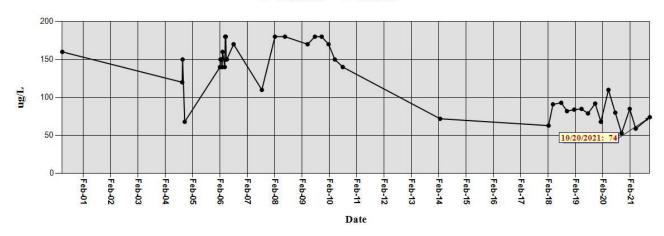

140 -



120 -100 -80 ng/L 60 40 -20 -Feb-14 -Feb-15 Feb-16

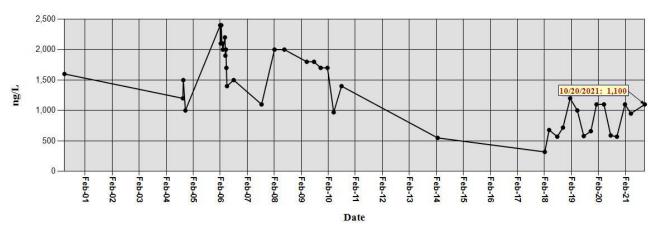
Date


Well ID: PFE-5 CAS RN: 127-18-4 Tetrachloroethene

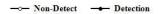


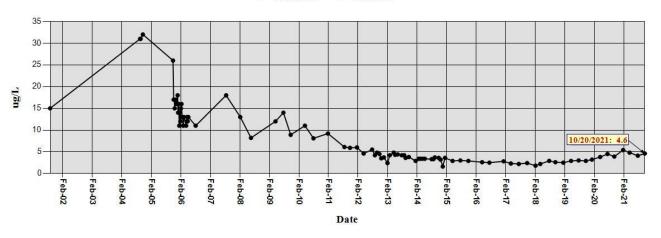
Well ID: PFE-5 CAS RN: 79-01-6 Trichloroethene

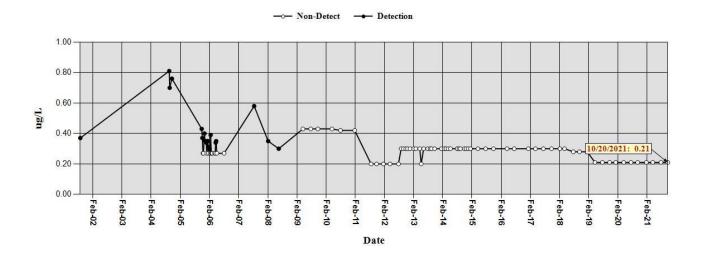
Analysis: 8260



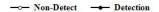
Well ID: PFE-5 CAS RN: 62-75-9 N-Nitrosodimethylamine

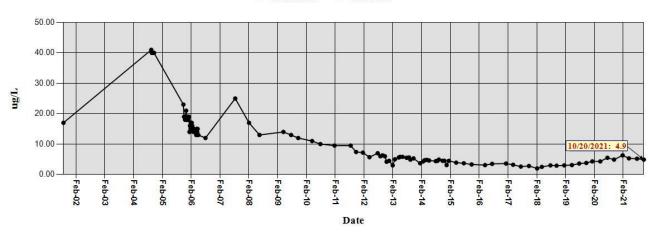

Analysis: 607


Results are Corrected for Extraction Efficiency


Well ID: PFE-7 CAS RN: 75-69-4 F11 - Trichlorofluoromethane

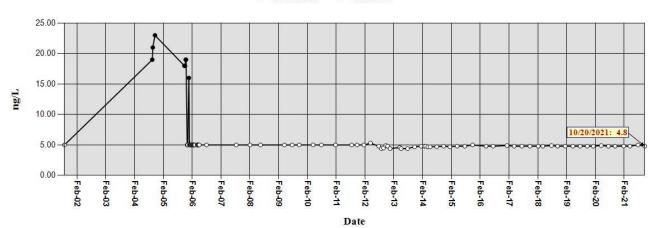
Analysis: 8260




Well ID: PFE-7 CAS RN: 127-18-4 Tetrachloroethene

Well ID: PFE-7 CAS RN: 79-01-6 Trichloroethene

Analysis: 8260



Well ID: PFE-7 CAS RN: 62-75-9 N-Nitrosodimethylamine

Analysis: 607

Results are Corrected for Extraction Efficiency

Appendix E: Summary of Maximum Concentrations, Current Concentrations and T-C Plot Interpretations for WSTF Monitoring Well Network

Well	1st Sample	Interpretation	Freon 11 Concentration (ug/L)				PCE Concentration (ug/L)				TCE Concentration (ug/L)				NDMA 607 Concentration (ug/L)						NDMA LL Concentration (ng/L)			
			Max	Year	Last	Year	Max	Year	Last	Year	Max	Year	Last	Year	Max	Ex Eff	Year	Last	Ex Eff	Year	Max	Year	Last	Year
		Migration (No Overall Trend)																						
PFE-1 Conv*	2000	Pumping Related Migration (Decreasing)	110	2010	3.80	2021	4.80	2010	0.32 J	2021	140	2005	5.90	2021	0.39	36	2017	0.12	53	2021	N/A		N/A	
PFE-2 Conv*	2000	Pumping Related Migration (Decreasing)	170	2007	62	2021	7.60	2007	3.10	2021	220	2007	67	2021	0.39	38	2021	0.38	53	2021	N/A		N/A	
PFE-3 Conv*	1991	Pumping Related Migration (Decreasing)	290	2006	37	2021	18	2004	1.80	2021	340	2004	44	2021	3.90	18	1991	0.34	38	2021	N/A		N/A	
PFE-4A Conv*	2001	Pumping Related Migration (Decreasing)	190	2004	1.10	2021	8.40	2007	0.21 DL	2021	240	2004	1.20	2021	0.26	36	2010	0.018 J	50	2021	N/A		N/A	
² PFE-5	2000	Pumping Related Migration (No Overall Trend)	120	2009	38	2021	7.70	2006	3.30	2021	180	2009	74	2021	2.40	33	2006	1.10	50	2021	N/A		N/A	
PFE-7 Conv*	2001	Pumping Related Migration (Decreasing)	32	2004	4.60	2021	0.81 J	2004	0.21 DL	2021	41	2004	4.90	2021	0.022	44	2004	0.004 DL	NP	2021	N/A		N/A	

Notes

T-C plot interpretations are based on a review of all T-C plots for a given well. This table generalizes the historical maximum concentration and last concentrations for four of the primary VOCs in groundwater. Evaluation of the data in this table should be used in conjunction with T-C plots as the maximum and current values do not always accurately represent the overall T-C plot trend.

NDMA analytical results using two methods: 1) Method 607 (ug/L), extraction efficiency provided, the applicable detection limit is typically 0.004 to 0.005 ug/L; and 2) Low Level (ng/L), the applicable detection limit is 0.22 to 0.23 ng/L. For wells with several maximum concentrations with the same value (typically the detection limit), the latest sampling event for which the detection limit applied was used for the sample year.

DL = Maximum detection limit and most recent year they were used are reported in the table. Detection limits can change over time, typically decreasing as analytical techniques improve.

EB = Detected in equipment blank.

FB = Detected in field blank.

J = Concentration values between the detection limit and practical quantitation limit.

NP = NDMA Method 607 extraction efficiency not provided where the analytical result is non-detect (eg, 0.004DL or 0.05RL).

QD = duplicate error.

RL = Concentration presents half of the reporting limit. The maximum reporting limits and most recent year it was used are reported in the table. Reporting limits can change over time, typically decreasing as analytical techniques improve.

TB = Detected in trip blank.

¹ Increase in NDMA concentration noted for well ST-3-486 since 2011. 2013 result = 3.3 ppb. An increased contaminant mass of Plume Front NDMA may be moving into this well.

² Well PFE-5 taken offline in 2011. Last sampled on 2/19/2014 using a Bennett pump.

Appendix F Summary of Source Area Investigations

Summary of Groundwater Monitoring Projects and Source Area Investigations

A complete history of all projects and investigations prior to Calendar Year 2020 was last reported in the 3Q2021 Periodic Monitoring Report.

1.0 Groundwater Monitoring Projects

1.1 Monitoring Well Installation and Well Plugging and Abandonment

The two most recent wells plugged and abandoned (P&A) and replaced beginning in Calendar Year 2020 were P&A of well BLM-37 and replacement with BLM-42, and P&A of well PL-5 and replacement with well PL-12.

For both new wells, vendors contracted to provide the sampling systems for these wells experienced delays in obtaining the specialized material necessary to fabricate the inflatable packers for inclusion in the systems. NASA requested additional time to complete installation of the sampling systems, collect initial groundwater samples from both monitoring wells, and receive and evaluate analytical data for inclusion in the required well completion reports. NASA submitted the *Third Request for Extension of Time for BLM-42 and PL-12 Well Completion Reports* on February 6, 2020 (NASA, 2020c). NMED approved the extension on February 17, 2020 (NMED, 2020c), extending the due date for submittal of the report from February 28, 2020 to April 30, 2020.

In the first quarter of 2020, NASA installed dedicated low-flow groundwater sampling systems in new groundwater monitoring wells BLM-42 (the replacement for well BLM-37) and PL-12 (the replacement for well PL-5) and performed the required initial groundwater sampling. In the second quarter of 2020, NASA submitted the Well Completion Report for BLM-42 on May 4, 2020 (NASA, 2020f). NMED reviewed the Well Completion Report for BLM-42 (5/4/2020) and issued an approval with modifications on May 6, 2021 (NMED, 2021l). NASA submitted a response to the approval with modifications of the BLM-42 well completion report on May 18, 2021 (NASA, 2021i).

NASA also submitted the Well Completion Report for Well PL-12 on May 4, 2020 (NASA, 2020g). NMED reviewed the Well Completion Report for Well PL-12 (5/4/2020) and issued an approval on May 6, 2021 (NMED, 2021j). NASA determined that additional groundwater monitoring is required beneath the screened interval of current monitoring well BLM-10-517 and developed and submitted the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW* on August 31, 2021 (NASA, 2021q).

1.2 Westbay Well Reconfiguration

As of calendar Year 2020, NASA has reconfigured two Westbay wells (JP-3 and WW-2) to dual-zone dedicated low-flow bladder pumps and seven Westbay wells (BLM-32, JER-1, JER-2, ST-6, ST-7, WW-4, and WW-5) to multiport Water FLUTe sampling systems. NASA has replaced two Westbay wells (BLM-37 and PL-5) with wells BLM-42 and PL-12, respectively. Each has dual-zone dedicated low-flow bladder pumps.

1.2.1 BLM-28

NASA submitted the *Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon* on May 4, 2020 (NASA, 2020i). On November 19, 2020, NMED provided requirements for abandonment and replacement of the well (NMED, 2020k). The requirements were that after complete evaluation of all available data and information, NASA would then either submit a work

plan for a replacement monitoring well or formally notify NMED that BLM-28 will not be replaced no later than January 31, 2022.

Following NMED's direction from the November 19, 2020 response for reconfiguring BLM-28, NASA submitted a work plan for abandonment of well BLM-28 on April 29, 2021 (NASA, 2021h). NASA then determined that a replacement well is necessary and developed and submitted the *NASA WSTF Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW* on August 31, 2021 (NASA, 2021p).

1.2.2 BLM-30

On November 5, 2020, NMED issued an approval with modifications (NMED, 2020i) of NASA's plan to P&A well BLM-30 and replace it with new well BLM-43 and required geophysical logging and a due date as November 30, 2021 for the BM-43 well completion report. NASA provided a response to the Approval with Modifications on February 3, 2021 (NASA, 2021a) and corresponded with the New Mexico Office of the State Engineer (NASA, 2021e; 2021f) on the plugging plan for well BLM-30 and application for a permit to drill well BLM-43. Owing to contractor backlog due to COVID, NASA requested a one-year extension to submit the completion report on September 28, 2021 (NASA, 2021t).

1.2.3 BW-4

NASA determined that the well BW-4 can be reconfigured for continued use and submitted a well reconfiguration work plan for well BW-4 on June 29, 2021 (NASA, 2021m).

1.2.4 Data Representativeness and Westbay Well Reconfiguration Plan

The FLUTe Data Representativeness investigation took the form of isolation and serial sampling of four zones of well WW-4 with the FLUTe liner removed. NASA completed the groundwater data representativeness evaluation performed at groundwater monitoring well WW-4 and submitted the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* to NMED on February 27, 2020 (NASA, 2020b). NMED reviewed the *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report* (2/27/2020) and on June 3, 2021 issued an Approval with Modifications (NMED, 2021m). This approval required a change to the investigation report indicating a need for an expanded investigation, and a subsequent work plan for the investigation. NASA submitted a response to the approval with modifications on August 17, 2021 (NASA, 2021u).

The Westbay Well Reconfiguration Plan required time extensions to allow NASA to evaluate data from FLUTe sampling systems currently in place at WSTF, in the form of data from Westbay wells converted to FLUTe, and from laboratory testing of the FLUTe sample components. Beginning in 2020, NMED approved an extension request to submit the well reconfiguration work plan no later than December 31, 2020 (NMED, 2020d). On November 30, 2020, NASA submitted a *Request for Fourth Extension of Time for Well Reconfiguration Work Plan* (NASA, 2020z). NMED approved the fourth extension request for submittal of the well reconfiguration work plan for wells PL-6, PL-7, PL-8, PL-10, ST-5, and WW-3 on January 25, 2021 (NMED, 2021a). NASA submitted the Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3 to NMED on April 29, 2021 (NASA, 2021h).

2.0 Source Area Investigations

2.1 200 Area

At the start of 2020, NMED approved a request for extension on January for NASA to respond to 12 comments and submit a revised investigation report by February 3, 2020 (NMED, 2020e). NASA

developed the required responses to the 12 comments in NMED's June 5, 2019 Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report (NMED, 2019b) and submitted the *NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report* on January 30, 2020 (NASA, 2020b).

2.2 300 Area

Work in the 300 Area is primarily related to investigation and closure of the adjacent 400 Area. Prior to 2020, NASA's 300 Area Supplemental Abbreviated Drilling Work Plan (5/30/19) was the first document submitted, concerning the 300 Area. NMED disapproved the 300 Area Supplemental Abbreviated Drilling Work Plan (5/30/19) on March 19, 2021 (NMED, 2021f). NMED directed NASA to address four comments and submit a revised work plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 300 Area Supplemental Abbreviated Drilling Work Plan on July 14, 2021 (NASA, 2021p).

2.3 400 Area

Prior to 2020, NASA's last submittal for the 400 Area was the 400 Area Closure Investigation Report (12/30/19; revised). NMED disapproved the 400 Area Closure Investigation Report (12/30/19; revised) on March 19, 2021 (NMED, 2021g). NMED directed NASA to address 17 comments and submit a revised report no later than July 30, 2021. NASA submitted the NASA WSTF 400 Area Closure Investigation Report – NMED Third Disapproval Response on July 27, 2021 (NASA, 2021s). Prior to 2020, NASA last submitted a 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan (5/28/2019) and the related 300 Area Supplemental Abbreviated Drilling Work Plan for two additional multiport soil vapor and groundwater monitoring wells in the 300 Area. NMED disapproved the 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan (5/28/19) on March 15, 2021 (NMED, 2021e). NMED directed NASA to address three comments and submit a revised monitoring plan no later than July 30, 2021. NASA submitted the Response to Disapproval of 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan on July 14, 2021 (NASA, 2021e).

2.4 600 Area Perched Groundwater Extraction

2.4.1 Extraction

NASA initiated extraction of perched groundwater from monitoring well 600-G-138 on April 19, 2013.

NASA submitted the 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report – Project Year 7 on May 26, 2020 (NASA, 2020n). NMED approved the Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Project Year 7 (5/26/20) on May 6, 2021 (NMED, 2021i).

NASA submitted the Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Project Year 8 on April 29, 2021 (NASA, 2021g). Perched Groundwater Investigation.

At the start of 2020, a 600 Area Perched Groundwater investigation and report remained to be completed per an Abbreviated Investigation Work Plan for 600 Area Perched Groundwater (12/22/2016). This work plan was subsequently changed by NASA request and NMED approval to remove the electrical resistivity component of the 600 Area Perched Groundwater geophysical survey.

In 2019, a seismic reflection and reflection survey was completed in accordance with the AIWP and work scope modification to remove the resistivity. Prior to 2020, NASA last submitted a synopsis of findings of the 600 Area Closure geophysical seismic refraction tomography and reflection surveys with revised soil

boring locations to NMED (12/19/2019). The soil borings have always intended to be drilled based on the survey results.

Because of an indeterminate review period for the 600 Area Closure Geophysical Survey Status Report and the start of drilling dependent on approval of the boring locations recommended therein, NASA had submitted a Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report on March 24, 2020 (NASA, 2020c). NMED approved the extension on July 1, 2020 to 150 days after NMED provides comments (NMED, 2020l).

On December 22, 2020, NMED issued its *Approval with Modifications 600 Area Closure Geophysical Survey Status Report* (NMED, 2020x) and set a due date for the 600 Area perched groundwater IR of December 31, 2021. On May 18, 2021, NASA submitted a letter to NMED in partial response to NMED's December 22, 2020 Approval with Modifications. This letter (NASA, 2021j) addressed NMED's Comment 2 (Further Investigation) and proposed a different approach for collection of geophysical data up- and down-gradient of the closure. The accuracy of the 600 Area geophysical survey would be assessed by comparing the actual bedrock depths from six NMED-approved perched groundwater investigation boreholes to the predicted depths from the geophysical survey before expanding the geophysical survey. NMED concurred with the approach via letter on July 6, 2021 (NMED, 2021n).

2.5 SWMUs 2, 8, and 34 and Area of Concern (AOC) 51 (Wastewater Lagoons)

2.5.1 Interim Status Reports and Investigation Reports

2.5.1.1 100 Area Lagoons

Beginning in 2020, NASA's WSTF 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report (5/29/2019) was the report of record for the SWMU. However, NMED responded to NASA's 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report on May 14, 2020 (NMED, 2020i) and informed NASA that comments would be incorporated into the SWMU 2 Investigation Report. NASA submitted the NASA White Sands Test Facility (WSTF) 100 Area Wastewater Lagoons Closure (SWMU 2) Investigation Report on August 3, 2020 (NASA, 2020l).

2.5.1.2 200 Area Lagoons

Beginning in 2020, NASA's WSTF 200 Area Wastewater Lagoons Closure (SWMU 8) Investigation Report to NMED 11/25/2019) is the report of record for the SWMU.

2.5.1.3 600 Area Lagoons

Beginning in 2020, NASA's WSTF 600 Area Wastewater Lagoons Closure (SWMU 34) Investigation Report to NMED (11/26/2019) is the report of record for the SWMU.

2.5.1.4 STGT Lagoons

In February 2020, NASA and a subcontracted drilling company completed installation of the five remaining soil borings at the STGT Wastewater Lagoons. NASA collected and managed samples of subsurface soil and shipped them to the off-site laboratories for analysis. This activity completed soil sampling described in the NMED-approved work plan. NASA conducted soil vapor sampling at the STGT Wastewater Lagoons in March 2020. This completed all investigation fieldwork described in the

NMED-approved work plan. NASA submitted the White Sands Test Facility WSTF STGT Wastewater Lagoons Closure (AOC 51) Investigation Report on October 13, 2020 (NASA, 2020o).

2.6 SWMU 10 (200 Area Hazardous Waste Transmission Lines)

Prior to 2020, NASA's *Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report* (7/30/2019) was the last report of record. On November 16, 2020, NMED disapproved the *Response to Disapproval of the NASA WSTF 200 Area HWTL (SWMU 10) Investigation Report* (July 30, 2019) (NMED, 2020j) and directed NASA to address 16 comments including resampling along the HWTL by August 30, 2021. On May 19, 2021, NASA requested that the IR due date be extended from August 30, 2021 to November 30, 2021 (NASA, 2021i). NMED approved this extension on July 6, 2021 (NMED, 2021n). NASA completed the collection of replacement soil samples for the analysis of volatile organic compounds along the HWTL on August 31, 2021. NASA installed 12 soil vapor implants at the sampling locations nearest the 200 Area occupied buildings and collected soil vapor samples using 1-liter SUMMA canisters on September 23, 2021. Due to ongoing drilling and laboratory contractor backlog due to COVID, on September 14, 2021, NASA then requested a second extension to submit the revised IR by January 31, 2022 (NASA, 2021r).

2.7 SWMU 16 (600 Area Bureau of Land Management [BLM] Off-Site Soil Pile)

The only investigation fieldwork at the 600 Area BLM Off-Site Soil Pile took place in November and December 2015. NMED then disapproved three submittals of the 600 Area IR prior to 2020. Most recently, NMED issued an approval with modifications for the response to fourth disapproval of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report (12/18/19) on May 6, 2021 (NMED, 2021k). The Approval with Modifications required submittal of an Accelerated Corrective Measures work plan no later than September 30, 2021. NASA issued a *Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report* on July 20, 2021 (NASA, 2021o). NASA submitted the *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)* on September 28, 2021 (NASA, 2021s).

2.8 SWMUs 18–20 (700 Area High Energy Blast Facility, 800 Area Below Grade Storage Tank, and 800 Area Oxidizer Burner)

NMED reviewed the Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report (NASA, 2019c), and issued the Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report on August 27, 2020 (NMED, 2020p).

2.9 SWMUs 21–27 (Septic Tanks)

NMED disapproved NASA's July 23, 2019, Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (the revised IR) on January 29, 2021 and directed NASA to address six comments no later than May 30, 2021 (NMED 2021b). NASA addressed six comments from NMED's January 29, 2021 disapproval of NASA's Response to Disapproval of NASA WSTF Septic Tanks (SWMUs 21-27) Investigation Report (7/23/19; the revised IR) and submitted a revised IR on May 18, 2021 (NASA, 2021k).

2.10 SWMUs 29-31 (Small Arms Firing Ranges)

Leading up to 2020, NASA completed additional fieldwork required to respond to NMED's February 21, 2019, Second Disapproval of Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. NMED (NMED, 2019a) approved a NASA request (10/28/2019) to extend the due date for submittal of

the disapproval response and revised remedy completion report from December 31, 2019 to February 28, 2020. NASA determined that additional time was required to complete the planned human and ecological health risk assessment for the three SWMUs and submitted the Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report on January 29, 2020 (NASA, 2020a). NMED approved the request on March 21, 2020 (NMED, 2020d), extending the due date for submittal of the report from February 28, 2020 to April 24, 2020. NASA prepared the response to NMED's February 21, 2019 Second Disapproval of Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report (March 30, 2018) and submitted the Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report on August 3, 2020 (NASA, 2020l).

2.11 SWMU 33 (300 Area Test Stand 302 Cooling Water Pond)

Anticipating closure of Test Stand 302A apart from a full closure, NASA submitted the 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS) (NASA, 2020m) on August 17, 2020.

2.12 SWMU 47 (500 Area Fuel Storage Area)

NMED disapproved the *Response to Disapproval of 500 Area (SWMU 47) Investigation Work Plan* (November 21, 2019; a revised IWP) on March 29, 2021 and directed NASA to address five comments and submit a revised IWP no later than July 31, 2021 (NMED, 2021h). NASA addressed five comments from NMED's March 19, 2021 disapproval of NASA's *Response to Disapproval of 500 Area (SWMU 47) Investigation Work Plan* (11/21/19; the revised IWP) and submitted a response to this second disapproval and revised the IWP on June 29, 2021 (NASA, 2021n).

2.13 SWMU 49 (700 Area Landfill)

At the start of 2020, a 700 Area Landfill investigation and report remained to be completed per an Abbreviated Investigation Work Plan for the 700 Landfill (3/28/2019). The investigation includes Phase 1A and Phase 1B soil vapor sampling and surface geophysics. In late November 2019 through December 2019, NASA deployed 159 passive soil vapor samplers and completed the Phase 1A for the soil vapor survey. NASA and the subcontracted geophysics firm performed the EMI and magnetic gradient field surveys between February 24 and 28, 2020.

In the second quarter of 2020, and due to the COVID-19 pandemic, NASA submitted a *Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on May 4, 2020 (NASA, 2020f). NASA also completed procurement of ground penetrating radar and passive seismic surveys as described in the NMED-approved landfill investigation work plan. NMED issued an *Approval Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on July 1, 2020 (NMED, 2020f). The approved extension for the Phase I field investigation report was to March 31, 2021. Due to the ongoing pandemic, NASA submitted a *Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on February 3, 2021 (NASA, 2021b). NMED issued an *Approval Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report* on March 15, 2021 (NMED, 2021d). The approved extension for the Phase I field investigation report was April 29, 2022.

2.14 SWMU 50 (First TDRSS Diesel Release)

NMED issued a disapproval of the First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report (3/14/2019) on July 8, 2020 (NMED, 2020n). NASA submitted a November 9, 2020 Response to Disapproval of First Tracking Data Relay Satellite System (TDRSS) Diesel Release (SWMU 50) Investigation Report and Risk Screen Evaluation Report (NASA, 2020k).

2.15 SWMU 52 (Second TDRSS UST)

On August 11, 2020, NASA discovered a diesel fuel leak in the area of the SWMU 52 Underground Storage Tank (UST), which is located north of WSTF at the White Sands Complex. NASA initiated a preliminary investigation and confirmed that the leak originated from a puncture in the return fuel line between emergency generator and the UST. NASA informed the NMED HWB of the release via email on August 13, 2020 and in writing in the August 17, 2020 NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification (NASA, 2020n). NASA submitted the Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report to NMED HWB on February 18, 2021 (NASA, 2021c).

Parallel activities are performed with notifications and approvals provided to the NMED Petroleum Storage Tank Bureau (PSTB). During August and September 2020, White Sands Complex personnel coordinated corrective action for this release through the NMED PSTB. On September 21, 2020, NASA submitted the NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update (NASA, 2020o). The update summarized corrective action performed to date, including the removal of 32 yd³ of diesel-contaminated soil from the area of the leak. NASA then submitted the Second TDRSS UST Minimum Site Assessment Work Plan (NASA, 2020x) to the PSTB on November 18, 2020. The work plan described an investigation to determine the extent and magnitude of soil contamination caused by the diesel release. On February 4, 2021 (NMED, 2021c), the NMED PSTB approved NASA's Second TDRSS UST Minimum Site Assessment Work Plan of November 18, 2020 (NASA, 2020q). NASA submitted the Second TDRS UST Minimum Site Assessment Report to NMED Petroleum Storage Tank Bureau (PSTB) on June 25, 2021 (NASA, 2021m). The HWB was copied. The work conducted for the investigation and report had been under a PSTB-approved Minimum Site Investigation Work Plan (NMED, 2021b).

In December 2020, NASA completed shipping the remaining petroleum contaminated soil previously removed from the release location soil to the Valencia Regional Landfill and Recycling Facility for bioremediation and disposal. In total, approximately 214 yd³ of contaminated soil was removed from the release area. NASA drilled five boreholes for characterization of the release from March 22 through March 26, 2021 in accordance with the work plan.

2.16 Newly Identified SWMU

NASA has identified the location of a former 500 Area oxidizer as a potential new SWMU. NMED acknowledged receipt of NASA's fifteen-day notification (10/16/2019) on November 13, 2019 (NMED, 2019aa) and directed NASA to provide a Release Assessment Report no later than May 29, 2020. NASA researched historical information on the newly identified SWMU and submitted the 500 Area Newly Identified SMWU Release Assessment Report on June 22, 2020 (NASA, 2020k).

3.0 References

- NASA Johnson Space Center White Sands Test Facility. (2019a, March 28). Response to NMED Disapproval SWMU 49 (700 Area Landfill) Phase I Investigation Work Plan and Historical Information Summary. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019b, May 29). NASA WSTF (White Sands Test Facility) 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019c, June 27). Response to Disapproval of Revised SWMU 19 (800 Area Below Grade Storage Tank) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019d, July 23). Response to Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21-27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2019e, November 21). *Response to Disapproval of 500 Area Fuel Storage (SWMU 47) Investigation Work Plan.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020a, January 29). Second Request for Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29 31) Response to Second Disapproval Remedy Completion Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020b, January 30). NMED Disapproval Response for 200 Area and 600 Area Vapor Intrusion Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020c, February 6). *Third Request for Extension of Time for BLM-42 and PL-12 Well Completion Reports*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020d, February 27). *Groundwater Data Representativeness Phase 1: Water FLUTe Well Evaluation Abbreviated Investigation Report.* Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020e, March 24). Request for Extension of Time for Submittal of the 600 Area Perched Groundwater Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020f, May 4). *NASA White Sands Test Facility* (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020g, May 4). NASA White Sands Test Facility (WSTF) Well Completion Report for PL-12. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020h, May 4). Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020i, May 4). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020j, May 26). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 7. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2020k, June 22). 500 Area Newly Identified SWMU Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020l, August 3). Response to Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report and Risk Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020m, August 17). NASA White Sands Test Facility (WSTF) 300 Area Test Stand 302 Cooling Water Pond (SWMU 33) Investigation Work Plan (IWP) and Historical Information Summary (HIS). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020n, August 17). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Notification. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020o, September 21). NASA White Sands Test Facility Hazardous Waste Operating Permit SWMU 52 Incident Update. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020p, October 13). NASA White Sands Test Facility (WSTF) STGT Wastewater Lagoons Closure (AOC 51) Investigation Report. Las Cruces, NM.
- NASA White Sands Complex. (2020q, November 18). Second TDRSS UST Minimum Site Assessment Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2020r, November 30). Request for Fourth Extension of Time for Well Reconfiguration Work Plan. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021a, February 3). Response to Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement with Monitoring Well BLM-43. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021b, February 3). Second Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021c, February 18). Second TDRSS Underground Storage Tank (SWMU 52) Release Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021d, March 15). Application for Permit to Drill Monitoring Well (BLM-43) with No Consumptive Use of Water at NASA-JSC White Sands Test Facility. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021e, March 15). Well Plugging Plan of Operations for NASA Well BLM-30. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021f, April 29). 600 Area Perched Groundwater Extraction Pilot Test Interim Status Report Project Year 8. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021g, April 29). NASA WSTF Westbay Well Reconfiguration Work Plan for Wells PL-7, PL-8, PL-10, ST-5, and WW-3. Las Cruces, NM.

- NASA Johnson Space Center White Sands Test Facility. (2021h, April 29). *Well Abandonment Work Plan for Well BLM-28*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021i, May 18). Response to Approval with Modifications for NASA White Sands Test Facility (WSTF) Well Completion Report for BLM-42. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021j, May 18). Response to NMED Approval with Modifications for the 600 Area Closure Geophysical Survey Status Report Comment 2 (Further Investigation). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021k, May 18). Response to Second Disapproval of NASA White Sands Test Facility (WSTF) Septic Tanks (SWMUs 21–27) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021l, May 19). Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021m, June 25). Second TDRS UST Minimum Site Assessment Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021n, June 29). NASA WSTF Well Reconfiguration Work Plan for Well BW-4. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021o, July 20) Response to Approval with Modifications of NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021p, August 31). Work Plan for Drilling and Installation of Monitoring Well 600B-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021q, August 31). Work Plan for Drilling and Installation of Monitoring Well 600C-001-GW at the NASA White Sands Test Facility (WSTF). Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021r, September 14). Request for Second Extension of Time for Submittal of Response to Disapproval of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021s, September 28). *Accelerated Corrective Measures Work Plan for the NASA WSTF SWMU 16 (600 Area BLM Off-Site Soil Pile)*. Las Cruces, NM.
- NASA Johnson Space Center White Sands Test Facility. (2021t, September 28). Request for Extension of Time for Submittal of the Completion Report for Monitoring Well BLM-30 Abandonment and Installation of Replacement Monitoring Well BLM-43. Las Cruces, NM.
- NMED Hazardous Waste Bureau. (2019a, February 21). Second Disapproval Small Arms Firing Ranges (SWMUs 29-31) Remedy Completion Report. Santa Fe, NM.

- NMED Hazardous Waste Bureau. (2019b, November 13). Fifteen-Day Notification of a Newly Identified SWMU Within WSTF 500 Area. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020a, January 16). Approval Request for Extension of Time for Well Reconfiguration Work Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020b, January 16). Approval Request for Second of Extension of Time for Response to Disapproval 200 Area and 600 Area Vapor Intrusion Assessment Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020c, February 17). *Approval Third Request for Extension of Time for BLM-42 and PL-12 Well Completion Reports*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020d, March 21). Approval Request for Second Extension of Time for NASA WSTF Small Arms Firing Ranges (SWMUs 29-31) Response to Second Disapproval Remedy Completion Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020e, May 14). 100 Area Wastewater Lagoons Closure (SWMU 2) Interim Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020f, July 1). Approval Request for Extension of Time for Submittal of 600 Area Perched Groundwater Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020g, July 1). Approval Request for Extension of Time for Submittal of the SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020h, July 8). Disapproval First TDRSS (Tracking and Data Relay Satellite System) Diesel Release (SWMU 50) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020i, November 5). Approval with Modifications Work Plan for Abandonment of NASA WSTF Well BLM-30 and Replacement With Monitoring Well BLM-43. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020j, November 16). Disapproval 200 Area Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020k, November 19). Well Reconfiguration Report for Well BLM-28 and Notice of Intent to Plug and Abandon. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2020l, December 22). Approval with Modifications 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021a, January 25). *Approval Request for Fourth Extension of Time for Well Reconfiguration Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021b, January 29). Disapproval Revised WSTF Septic Tanks (SWMUs 21-27) Investigation Report. Santa Fe, NM.
- NMED Petroleum Storage Tank Bureau. (2021c, February 4). *Technical Approval of Minimum Site Assessment Workplan for White Sand Complex*. Santa Fe, NM.

NASA White Sands Test Facility

- NMED Hazardous Waste Bureau. (2021d, March 15). Approval Request for Extension of Time for Submittal of The SWMU 49 (700 Area Landfill) Phase I Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021e, March 15). Disapproval 400 Area Supplemental Groundwater and Soil Vapor Monitoring Plan. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021f, March 19). *Disapproval 300 Area Supplemental Abbreviated Drilling Work Plan.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021g, March 19). *Disapproval 400 Area Closure Investigation Report.* Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021h, March 19). Disapproval 500 Area Fuel Storage (SWMU 47) Investigation Work Plan: Phase I. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021i, May 6). *Approval Interim Status Report for 600 Area Perched Groundwater Extraction Pilot Test Project Year 7*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021j, May 6). *Approval PL-12 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021k, May 6). Approval with Modifications 600 Area Bureau of Land Management Off-Site Soil Pile (SWMU 16) Revised Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (20211, May 6). *Approval with Modification BLM-42 Well Completion Summary Report*. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021m, June 3). Approval with Modifications Groundwater Data Representativeness Phase I: Water FLUTe Well Evaluation Abbreviated Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021n, July 6). 600 Area Closure Geophysical Survey Status Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021o, July 7). Approval Request for Extension of Time for Submittal of Hazardous Waste Transmission Lines (SWMU 10) Investigation Report. Santa Fe, NM.
- NMED Hazardous Waste Bureau. (2021p, August 27). Approval with Modifications Revised 800 Area Below Grade Storage Tank (SWMU 19) Investigation Report. Santa Fe, NM.