Virtual Project Management Challenge

September 22, 2015

Today on the VPMC

Building Your Systems Mentality: Using systems engineering & integration to solve project challenges

> Presenter: Bo Bejmuk September 22, 2015

> > bo@bejmuk.com 281-723-1973

Shuttle System Configurations and Corresponding Analyses

1) Shuttle on Ground and Liftoff

- Liftoff Loads
- Ground Winds
- Liftoff Clearances
- Acoustics
- ET Pressurization
- Main Propulsion System
- Avionics Sequencing & Timing
- Electrical Power
- Integrated Hydraulics
- Software Requirements
- Integrated Checkout Requirements

2) Post Liftoff Configuration

- Winds Aloft
- High Q Loads
- Heating Aero & Plume
- Flutter & Buffet
- Acoustics
- SRB Separation
- •Control Stability & Control Authority
- •ET Pressurization & MPS
- Integrated Hydraulics
- •Software Requirements •POGO

3) Boost Configuration

- •High G Loads
- •Heating Aero & Plume
- •ET Pressurization & MPS
- Integrated Hydraulics
- •Power
- Control Stability & Control
- Authority
- •POGO
- •Software Requirements
- •ET Separation

 Evaluation of flight test results and the establishment of operational boundaries for all flight phases

STS-1 SRB Ignition Overpressure (IOP)

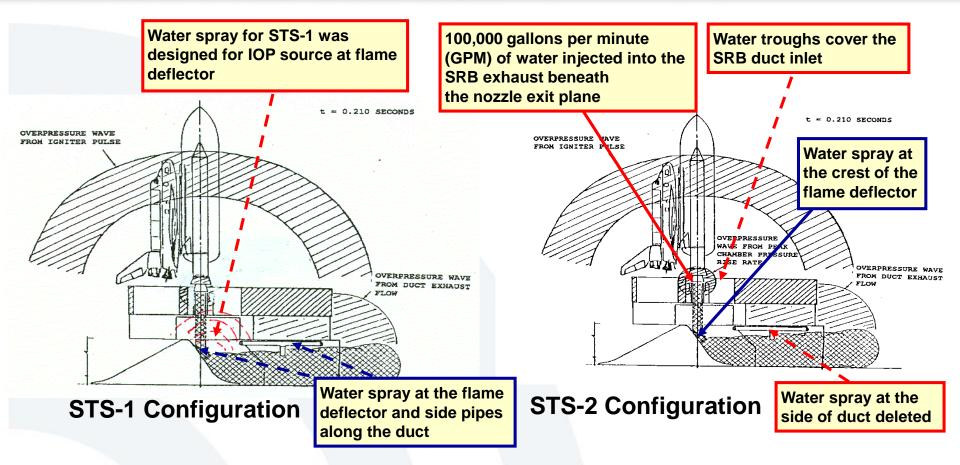
Problem

- Solid rocket booster (SRB) ignition overpressure (IOP) measured at the vehicle exceeded the 3-sigma liftoff design environment
 - Accelerations measured on the wing, body flap, vertical tail, and crew cabin exceeded predictions during the liftoff transient
 - Support struts for the orbiter's reaction control system (RCS) oxidizer tank buckled
- Post-flight analysis revealed that SRB IOP was much more violent than predicted

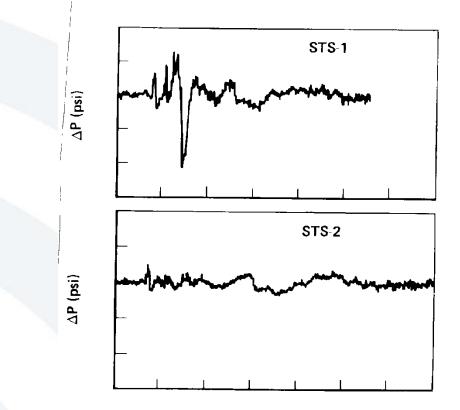
Corrective Actions

- Systems Engineering & Integration (SE&I) "Wave Committee" organized with participation of NASA and the contractors
- A 6.4% model was used to evaluate various suppression schemes
- A new scaling relation was developed based on blast wave theory
- Final fixes—all on the Ground System side
 - Redirected water spray for SRB IOP suppression toward the "source" of SRB IOP
 - Installed water troughs in the SRB exhaust duct

Very significant IOP reduction was achieved



Ignition Overpressure Buckles STS-1 Tank Strut



Safe Flight in STS-2 with New Water Injection

Modified Ground System Eliminated Overpressure Threat to Shuttle

Reduced overpressure by a factor of five

Role of System Engineering in Resolving Excessive Orbiter Loads Due to SRB IOP

- Perform system analysis and tests to verify adequacy of solution
 - Preserve orbiter without redesign
 - Preserve SRB start transient characteristics

Orbiter Wing Negative Margins in STS-1 During Ascent Through Max Q Region

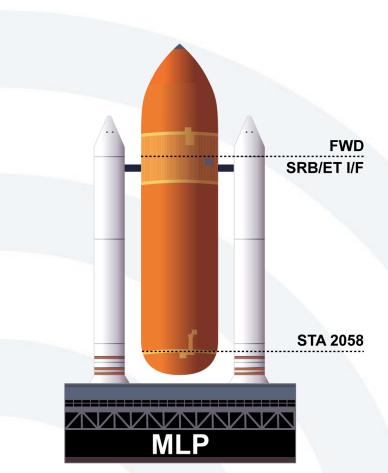
Problem

- Plume simulation used during the wind tunnel test was flawed
 - Observed significant wing lift and vehicle lofting in STS-1
 - Measured strains showed negative structural margins
 - Vehicle lofted and flew close to the range safety boundary
- Grossly under-predicted ascent base pressures
 - Temperature effects were not modeled in cold jet plume simulation parameters used during wind tunnel testing

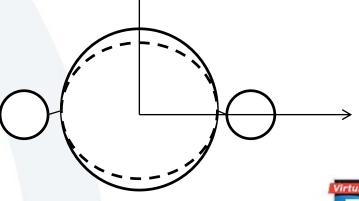
Corrective Actions

- The ascent trajectory was changed to a flight with a negative angle of attack through High Q: Elegant system-level solution
 - Negative angle of attack reduced wing lift and loads
 - Negative angle had to be evaluated for entire shuttle
 - Eliminated need for wing redesign

Role of SE&I in Resolving Wings' Negative Margins During Ascent


Ingenuous system-level solution

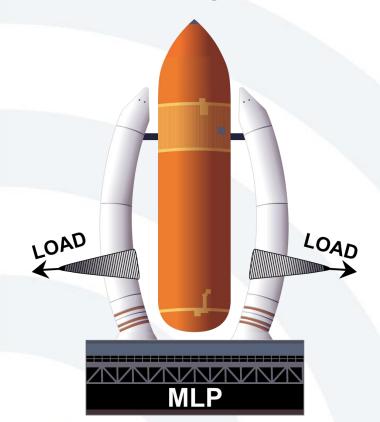
- Changing angle of attack of entire stack to a negative 3.2 deg reduced wing lift to acceptable level
- Extensive system analysis to verify margins
- Avoided extensive wing redesign and recertification
- Avoided unacceptable schedule impact



Problem: Liquid Hydrogen (LH2) Fill Buckles Lower Dome

Problem description:

- During LH2 fill, external tank (ET) diameter shrinks ~ 1in
- 2. SRB provides resistance in Y axis
- 3. 2058 frame deforms into an oval
- 4. Dome gores undergo elastic buckling causing dome insulation to debond



Solution: Modify Stacking Procedure

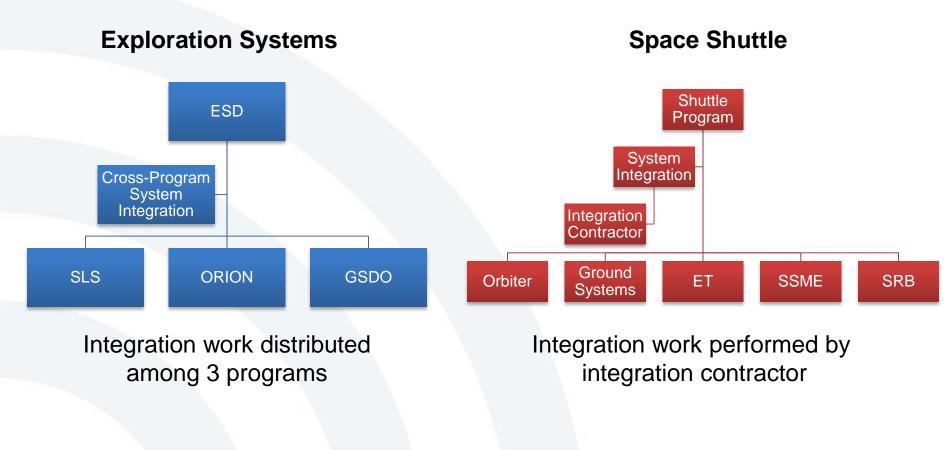
<u>Corrective Action:</u> Preload 2058 frame with compressive preload during ET/SRB mating

Procedure:

1.After mating forward ET/SRB I/F, apply load (using belly bands) to bend SRB away from 2058 frame 2.Install aft ET/SRB struts

3.Release belly bands load to put 2058 frame in compression—amount of preload is critical

A change to stacking operation protected lower dome from buckling without impacting performance


- Ullage backpressure during loading and replenish was avoided
- Redesigning of ET lower dome was not required

SE&I Functions are Invariant Regardless of Organizational Structure

Exploration Systems and Shuttle Integration Structure

Integration functions are the same

Two NASA SE&I Approaches: Shuttle and ESD

Space Shuttle SE&I

Independent office, with its own funding, reporting to shuttle PM

- NASA managed SE&I, supported by integration contractor
- System-level work performed by integration contractor

ESD SE&I

- Cross-program integration team reporting to ESD director
- Managing SE&I shared between CPIT and 3 programs
- System-level work distributed among 3 programs

SE&I in a Commercial Program: Sea Launch

Sea Launch Integration

Example of integration of totally commercial program

Payload unit U.S.	Boeing Integration of payload	Energia (Russia) Integration of payload unit with Stage 3.
Stage 3 Russia		
Stage 1 & Stage 2 of Zenit Ukraine	Yuzhnoye (Ukraine) Integration of entire laur	nch vehicle
R		Energia (Russia) Integration of launch vehicle with launch system
		Virtual

Three Different Systems... Same SE&I Functions

Shuttle

SLS/Orion

Sea Launch

Summary and Takeaways

- Every major government and commercial program benefits from a robust SE&I
- 2. System approach to problem resolution offers great potential for most effective corrective actions
- 3. Developing a system culture in program management a key to successful execution
- 4. Your own "System Mentality" is likely to enhance your career

Q&A Session

#askVPMC

