Follow this link to go to the text only version of nasa.gov
NASA -National Aeronautics and Space Administration
Follow this link to skip to the main content
+ Text Only Site
+ Site Help & Preferences
Go
ABOUT NASALATEST NEWSMULTIMEDIAMISSIONSMyNASAWORK FOR NASA

+ Home
RETURN TO FLIGHT
RETURN TO FLIGHT MAIN
STS-114 CREW AND MISSION
MULTIMEDIA
LAUNCH AND LANDING
SPACE SHUTTLE SYSTEM
NEWS AND MEDIA RESOURCES
+ NASA Home > Mission Sections > Space Shuttle > Return to Flight > Launch and Landing
Print ThisPrint This
Email ThisEmail This

NASA Imaging Team Develops 'Eye in the Sky' for Shuttle Chase Planes

04.14.05

When the Space Shuttle Discovery (STS-114) returns to flight, it will have a special escort, but the pair of NASA WB-57 chase jets won't just be along for the ride.

Thanks to an engineering team that includes NASA's Marshall Space Flight Center in Huntsville, Ala. and key industry partners, these high-flying chase planes will provide NASA with extra "eyes in the sky" to watch Discovery's flight and help safeguard its crew.

Ascent Video Experiment equipment is mounted on the nosecone of a NASA WB-57 jet. Image to right: Two WB-57 jet planes, normally used by NASA for high-altitude weather research, will help track Shuttle Discovery during STS-114. The jets will carry a swiveling, nose-mounted video recording system designed to capture visible-light and infrared imagery of the Shuttle as it lifts off on its journey to orbit. The primary optic lens, a 4,150-millimeter reflector telescope, can be seen on the right of the WAVE turret. Image credit: NASA/MSFC/JSC

The jets will carry innovative, on-board video imaging systems, dubbed the WB-57 Ascent Video Experiment, or WAVE project. The system will capture detailed images of how the Space Shuttle behaves as it climbs toward orbit.

During the launch, the jets will keep pace with Discovery, flying at a distance of 15 to 20 miles. The WAVE systems will track the Shuttle for approximately 150 seconds, from liftoff to separation of the Solid Rocket Boosters, the power systems that provide the main thrust to lift Discovery off the pad.

After determining a piece of insulating foam from the External Tank damaged the Space Shuttle Columbia just after liftoff, the Columbia Accident Investigation Board recommended NASA improve imagery during Orbiter ascent. The chase-plane imagery is part of NASA's response to the recommendation.

"Shuttle video captured by the chase vehicles will help us see the launch in greater clarity than ever before," said project manager Bob Page, who leads NASA's Inter-Center Photography Working Group at the agency's Johnson Space Center in Houston. "Along with cameras on the ground, and in and on the Shuttle itself, this imaging system will provide an unprecedented look at Shuttle liftoff and atmospheric flight," he said.

A NASA WB-57 jet in flight Image to right: One of NASA's WB-57 jet planes takes to the skies, carrying the WAVE project. Image credit: NASA/MSFC/JSC

NASA video technicians built and tested the high-definition imaging system earlier this year. They called in optics specialists from Marshall's Space Optics Manufacturing and Technology Center to design the telescopic optics to simultaneously record the Shuttle in visible light and infrared. Mechanical engineers from the Marshall Center and the University of Alabama in Huntsville, Ala., designed the housing. Marshall’s Mission Operations Laboratory helped develop software to control the infrared camera and recorder. Huntsville engineers working for San Diego-based SAIC, a NASA contractor, helped integrate the cameras and recording system.

"This was the very definition of a team effort," said Marshall engineer John West of the Space Optics Manufacturing and Technology Center. "In June 2004, we were looking at nothing more than a concept on a drawing board. In nine months, we built two complete imaging systems."

Just one issue remained: how to get the complex, bulky WAVE systems airborne. Each system had to be mounted in the nosecone of the chase planes, using a large gimbal, a stabilizing anchor to keep the cameras focused on the Shuttle, even if turbulence caused the plane to dip or drift. The WAVE team turned to Southern Research Institute in Birmingham, Ala., for the solution: a gimbal system similar to ones the firm built to support U.S. Army missile tests.

According to John Collier, senior program manager for SRI, the company designed and built a new gimbal to suit NASA's needs, using a lightweight, carbon-graphite epoxy. In March, the firm integrated the WAVE systems with the gimbals. The systems will be shipped this month to Ellington Airfield near Houston, where they will be mounted on the jets.

"Across the Agency, we're all working to make the Space Shuttle safer," said Marshall project lead Rodney Grubbs, who heads NASA’s Digital Television Working Group. "This was our opportunity to contribute, and we're excited about what our imagery might mean for the safety of our astronauts."

Managed by JSC, the WB-57s are former U.S. Air Force planes designed to study weather conditions at high altitudes. When the Air Force phased out its WB-57s in the 1970s, it transferred two of the jets to NASA. NASA's are the last two WB-57s still flying.

For more information on the Web about STS-114: Space Shuttle Return to Flight, visit:

http://www.nasa.gov/returntoflight/main/index.html


For more information about NASA’s mission and the Vision for Space Exploration, visit:

http://www.nasa.gov



Contact:
Melissa Mathews, NASA Headquarters
202.358.1272

Steve Roy, Marshall Space Flight Center
256.544.0994


+ Back to Top


FirstGov - Your First Click to the US Government

ExpectMore.gov

+ Freedom of Information Act
+ Budgets, Strategic Plans and Accountability Reports
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Information-Dissemination Priorities and Inventories
NASA
Editor: Brooke Boen
NASA Official: Brian Dunbar
Last Updated: March 5, 2006
+ Contact NASA
+ SiteMap