
A NASA Discovery Mission

Mercury Orbit Insertion
March 18, 2011 UTC  
(March 17, 2011 EDT)



Media Contacts

NASA Headquarters   
Policy/Program Management
Dwayne C. Brown  
(202) 358-1726 
Dwayne.C.Brown@nasa.gov

The Johns Hopkins University Applied Physics Laboratory  
Mission Management, Spacecraft Operations 
Paulette W. Campbell 
(240) 228-6792 or (443) 778-6792 
Paulette.Campbell@jhuapl.edu

Carnegie Institution of Washington 
Principal Investigator Institution
Tina McDowell 
(202) 939-1120 
tmcdowell@ciw.edu



Mission Overview
MESSENGER is a scientific investigation  
of the planet Mercury. Understanding 
Mercury, and the forces that have shaped 
it, is fundamental to understanding the 
terrestrial planets and their evolution.  

The MESSENGER (MErcury Surface, Space 
ENvironment, GEochemistry, and Ranging) 
spacecraft will orbit Mercury following three 
flybys of that planet. The orbital phase will  
use the flyby data as an initial guide to 
perform a focused scientific investigation of 
this enigmatic world. 

MESSENGER will investigate key  
scientific  questions regarding Mercury’s 
characteristics and environment during 
these two complementary mission phases. 
Data are provided by an optimized set of 
miniaturized space instruments and the 
spacecraft tele commun ications system. 

MESSENGER will enter orbit about Mercury 
in March 2011 and carry out comprehensive 
measurements for one Earth year. Orbital 
data collection concludes in March 2012.

Key Spacecraft Characteristics
 Redundant major systems provide critical backup.

 Passive thermal design utilizing ceramic-cloth 
sunshade requires no high-temperature electronics.

 Fixed phased-array antennas replace a deployable 
high-gain antenna.

 Custom solar arrays produce power at safe operating 
temperatures near Mercury. 

MESSENGER is designed to answer six  
broad scientific questions: 
 Why is Mercury so dense? 

 What is the geologic history of Mercury?

 What is the nature of Mercury’s magnetic field?

 What is the structure of Mercury’s core? 

 What are the unusual materials at Mercury’s poles?

 What volatiles are important at Mercury?

MESSENGER provides:
 Multiple flybys for global mapping, detailed study of high-priority 

targets, and probing of the atmosphere and magnetosphere.

 An orbiter for detailed characterization of the surface, 
interior, atmosphere, and magnetosphere.

 An education and public outreach program to produce 
exhibits,  plain-language books, educational modules, and  
teacher training through partnerships.

Mission Summary 

Launch: 3 August 2004
Launch vehicle: Delta II 7925H-9.5
Earth flyby: 2 August 2005 
Venus flybys (2): 24 October 2006,  
 5 June 2007

Mercury flybys (3): 14 January 2008,  
 6 October 2008,  
 29 September 2009
Mercury orbit insertion: 17 March 2011 (EDT) 
 18 March 2001 (UTC)



MESSENGER  — Mercury, the Last Frontier of the Terrestrial Planets
Understanding Mercury is fundamental to understanding terrestrial planet evolution. 

Discoveries from MESSENGER’s Mercury Flybys: 
In addition to providing key gravity assists that enable orbit insertion as well as opportunities to test scientific operations and 
command sequences for all payload instruments, MESSENGER’s three flybys of Mercury yielded a number of discoveries that have 
markedly changed our view of Mercury and influenced our preparations for orbital operations. These include:

Geology

•	 Volcanism	was	widespread	on	Mercury	and	extended	from	
before the end of heavy bombardment to the second half 
of solar system history.

•	 Mercury	experienced	explosive	volcanism,	indicating	that	
interior volatile contents were at least locally much higher 
than thought.

•	 Contraction	spanned	much	of	Mercury’s	geologic	history.

Composition and surface-derived exosphere

•	 Mercury’s	surface	silicates,	even	in	fresh	crater	ejecta,	
contain little or no ferrous oxide.

•	 Mercury’s	thermal	neutron	flux	matches	that	of	several	
lunar maria, indicating that iron and titanium are present in 
comparable collective abundances, perhaps as oxides.

•	 Magnesium	and	ionized	calcium	are	present	in	Mercury’s	
exosphere.

Internal structure and dynamics

•	 The	equatorial	topographic	relief	of	Mercury,	in	agreement	
with earlier radar results, is at least 5.5 km. 

•	 The	case	for	a	liquid	outer	core	in	Mercury	is	 
greatly strengthened.

•	 Mercury’s	internal	magnetic	field	is	dominantly	dipolar	
with a vector moment closely aligned with the spin axis.

Magnetospheric dynamics 

•	 Mercury’s	magnetosphere	is	more	responsive	to	
interplanetary magnetic field (IMF) fluctuations than those 
of other planets.

•	 Under	southward	IMF,	rates	of	magnetic	reconnection	 
are ~10 times that typical at Earth.

•	 Loading of magnetic flux in Mercury’s magnetic tail can 
be so intense that much of Mercury’s dayside could be 
exposed to the shocked solar wind of the magnetosheath 
during such episodes.

On the Web
MESSENGER mission:  http://messenger.jhuapl.edu NASA Discovery Program:  http://discovery.nasa.gov

FS2 03-11

Mission Management
Principal Investigator: Sean C. Solomon,
 Carnegie Institution of  Washington
Project Management: The Johns Hopkins University
 Applied Physics Laboratory (JHU/APL)
Spacecraft Integration 
and Operation: JHU/APL

Instruments: JHU/APL, 
 NASA Goddard Space Flight Center,  
 University of Colorado, 
 University of Michigan
Structure: Composite Optics, Inc.
Propulsion: GenCorp Aerojet
Navigation: KinetX, Inc.

Science Payload

Mercury Dual Imaging System 
(MDIS) takes detailed color and 
monochrome images of Mercury’s 
surface.    

Gamma-Ray and Neutron 
Spectrometer (GRNS) measures 
surface elements (including polar 
materials).

X-Ray Spectrometer (XRS) maps 
elements in Mercury’s crust.

Magnetometer (MAG) maps 
Mercury’s magnetic field.

Mercury Atmospheric 
and Surface Composition 
Spectrometer (MASCS) 
measures atmospheric  
species and surface minerals.

Energetic Particle and  
Plasma Spectrometer (EPPS) 
measures charged particles in 
Mercury’s magnetosphere.

Mercury Laser Altimeter (MLA) 
measures topography of surface 
features; determines whether 
Mercury has a fluid core.

Radio Science uses Doppler 
tracking to determine Mercury’s 
mass distribution.

Sunshade

EPPS

GRNS
MLA

MASCS
XRS

MDIS

MAG

Antenna
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Media Services Information

News and Status Reports
NASA and the MESSENGER team will issue periodic news releases and status reports on mission activities  

and make them available online at http://messenger.jhuapl.edu and http://www.nasa.gov/messenger. 

When events and science results merit, the team will hold media briefings at NASA Headquarters in Washington, 
D.C., or the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. Briefings will be carried on NASA TV  
and the NASA website.

NASA Television
NASA Television is carried on the Web and on an MPEG-2 digital signal accessed via satellite AMC-6, at 72 degrees 

west longitude, transponder 17C, 4040 MHz, vertical polarization. It is available in Alaska and Hawaii on AMC-7, at  
137 degrees west longitude, transponder 18C, at 4060 MHz, horizontal polarization. A Digital Video Broadcast-
compliant Integrated Receiver Decoder is required for reception. For NASA TV information and schedules on the Web, 
visit http://www.nasa.gov/ntv.

MESSENGER on the Web
MESSENGER information — including an electronic copy of this press kit, press releases, fact sheets, mission  

details and background, status reports, and images — is available on the Web at http://messenger.jhuapl.edu. 
MESSENGER multimedia files, background information, and news are also available at http://www.nasa.gov/messenger. 
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MESSENGER Quick Facts 

Spacecraft 
Size: Main spacecraft body is 1.44 meters (57 inches) tall, 1.28 meters (50 inches) wide, and 1.85 meters (73 inches) 
deep; a front-mounted ceramic-fabric sunshade is 2.54 meters tall and 1.82 meters across (100 inches by 72 inches); 
two rotatable solar panel “wings” extend about 6.14 meters (20 feet) from end to end across the spacecraft.

Launch weight: Approximately 1,107 kilograms (2,441 pounds), including 599.4 kilograms (1,321 pounds) of 
propellant and 507.6 kilograms (1,119 pounds) of “dry” spacecraft and instruments.

Power: Two body-mounted gallium arsenide solar panels and one nickel-hydrogen battery. The power system generated 
about 490 watts near Earth and will generate its maximum possible output of 720 watts in Mercury orbit.

Propulsion: Dual-mode system with one bipropellant (hydrazine and nitrogen tetroxide) thruster for large maneuvers;  
4 medium-sized and 12 small hydrazine monopropellant thrusters for small trajectory adjustments and attitude control.

Science investigations: Mercury Dual Imaging System (MDIS), with wide-angle color and narrow-angle monochrome 
imagers; the Gamma-Ray and Neutron Spectrometer (GRNS); the X-Ray Spectrometer (XRS); the Magnetometer (MAG); 
the Mercury Laser Altimeter (MLA); the Mercury Atmospheric and Surface Composition Spectrometer (MASCS); the 
Energetic Particle and Plasma Spectrometer (EPPS); and the radio science experiment.

Mission
Launch: August 3, 2004, from Pad B of Space Launch Complex 17 at Cape Canaveral Air Force Station, Fla., at 2:15:56 
a.m. EDT aboard a three-stage Boeing Delta II rocket (Delta II 7925H-9.5).

Gravity assist flybys: Earth (1) August 2005; Venus (2) October 2006, June 2007; Mercury (3) January 2008, October 
2008, September 2009.

Enter Mercury orbit: March 18, 2011 UTC (March 17, 2011 EDT).

Total distance traveled from Earth to Mercury orbit: 7.9 billion kilometers (4.9 billion miles). Spacecraft circles the 
Sun 15.2 times from launch to Mercury orbit insertion.

Primary mission at Mercury: Orbit for one Earth year (equivalent to just over four Mercury years, or two Mercury 
solar days), collecting data on the composition and structure of Mercury’s crust, its topography and geologic history, the 
nature of its thin atmosphere and active magnetosphere, and the makeup of its core and polar materials.

Program
Cost: Approximately $446 million (including spacecraft and instrument development, launch vehicle, mission operations, 
and data analysis). 
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Mercury Orbit Insertion & Station Keeping

Getting into Mercury orbit….
On March 18, 2011 UTC (March 17, 2011 EDT), after almost five years in development and more than six and a 

half years in cruise toward its destination, NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging 
(MESSENGER) spacecraft will execute a 15-minute maneuver that will place it into orbit about Mercury, making it the 
first craft ever to do so, and initiating a one-year science campaign to understand the innermost planet. The Mercury 
Orbit Insertion maneuver and subsequent orbital activities are described in the next few pages.

Just over 33 hours before the main Mercury orbit insertion event, two antennas from the Deep Space Network — 
one main antenna and one backup — will begin to track the MESSENGER spacecraft continuously. Nearly thirty-one 
hours later, at 6:30 p.m. EDT on March 17, 2011, the number of antennas tracking MESSENGER will increase to five — 
four of these are arrayed together in order to enhance the signal coming from the spacecraft, and a fifth will be used for 
backup.

About two and a half hours later, at 8:00 p.m. EDT, the solar arrays, telecommunications, attitude control, and 
autonomy systems will all be configured for the main thruster firing (known as a “burn”), and the spacecraft will be 
turned into the correct orientation for MESSENGER’s Mercury orbit insertion maneuver. 

In order to slow the spacecraft down sufficiently so that it can be captured into orbit around Mercury, the main 
thruster will begin firing at 8:45 p.m. and will continue for 15 minutes until 9:00 p.m. About 31% of the spacecraft’s 
original allotment of propellant is required for Mercury orbit insertion, and MESSENGER’s thrusters must slow the 
spacecraft by just over 0.86 kilometers (0.53 miles) per second. As the spacecraft approaches Mercury, the largest 
thruster must fire close to the forward velocity direction of the spacecraft. After the thruster has finished firing, the 
spacecraft will be turned toward Earth and reconfigured for normal post-maneuver operations. Data will be collected by 
Deep Space Network antennas and transferred to the Mission Operations Center at APL to be analyzed. It is expected 
that by 10:00 p.m. EDT the Mission Operations Team will be able to confirm that MESSENGER has been successfully 
captured into orbit around Mercury. 

Approximately one and a half hours after the maneuver is complete, the DSN coverage will be stepped back to two 
stations. At 2:47 a.m. EDT on March 18, the spacecraft will begin its first full orbit around Mercury (as measured from 
the highest point in the orbit). About 10 hours later, the Deep Space Network coverage will be further reduced to 
continuous coverage with only one station.

The MESSENGER spacecraft will continue to orbit Mercury once every twelve hours for the duration of its primary 
mission. The first two weeks from orbit insertion will be focused on ensuring that the spacecraft systems are all working 
well in the harsh thermal environment of orbit; this interval is known as the orbital commissioning phase. Starting on 
March 23 the instruments will be turned on and checked out, and on April 4 the science phase of the mission will begin 
and the first orbital science data from Mercury will be returned.

The table on the next page summarizes the spacecraft events surrounding Mercury orbit insertion. Note that the 
times given in the first column are ground receipt times, which are approximately 9 minutes after a maneuver is 
executed on the spacecraft.
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Ground Receipt Time* Spacecraft Time

Event
Eastern Daylight Time (EDT)

Coordinated  
Universal Time (UTC) 

{DOY-hh:mm}

Time Relative 
to Burn Start

{hh:mm}

Tuesday 
March 15

8:54 p.m. 75-00:45 48:00
Start initial pre-burn propulsion system  

configuration

Wednesday 
March 16

11:40 a.m. 75-15:31 33:14
Start critical Deep Space Network coverage 
(two stations, one primary and one backup)

8:54 p.m. 76-00:45 24:00
Spacecraft commanded to pre-critical burn  

configuration

Thursday 
March 17

5:00 p.m. 76-20:51 03:54
Start configuration for DSN burn coverage 

(four stations arrayed together)

6:30 p.m. 76-22:21 02:24
Finish configuration for DSN burn coverage 

(backup 70-m antenna)

7:45 p.m. 76-23:37 01:09 Start final pre-burn propulsion system configuration

8:09 p.m. 77-00:00 00:45 Start RF configuration for burn execution

8:21 p.m. 77-00:12 00:33 Complete RF configuration for burn execution

8:24 p.m. 77-00:15 00:30
Turn spacecraft to burn attitude and configure  

attitude control for burn execution

8:34 p.m. 77-00:25 00:20 Configure solar arrays for burn execution

8:49 p.m. 77-00:40 00:05
Configure spacecraft fault protection for  

burn execution

8:54 p.m. 77-00:45 00:00
Mercury orbit insertion (MOI) 

engine ignition

9:09 p.m. 77-01:00 00:15 Engine shutdown

9:21 p.m. 77-01:12 00:27
Turn spacecraft to Earth and acquire  

post-maneuver data

9:32 p.m. 77-01:23 00:38
Re-configure spacecraft systems for normal  

post-maneuver operations

10:25 p.m. 77-02:16 01:31
End DSN burn coverage 

(back to critical coverage with 2 stations)

Friday 
March 18

2:56 a.m. 77-06:47 06:02
First orbital apoapse passage 

(start orbit #1) 

12:40 p.m. 77-16:31 15:46
End DSN critical coverage 

(back to 1 station continuous coverage)

2:57 p.m. 77-18:48 18:03
Second orbital apoapse passage 

(start orbit #2)

Monday 
March 21

12:56 p.m. 80-16:48
Orbital commissioning period begins 

(spacecraft checkout)

Tuesday 
March 22

Start Gamma-Ray Spectrometer (GRS) cooler

Wednesday 
March 23

Turn on all instruments and configure for operations 
(except imagers)

Monday 
March 28

3:51 p.m. 087-19:45
Continue orbital commissioning period 

(Instrument checkout — imagers turned on)

Monday 
April 4

4:20 p.m. 094-20:15 Mercury science observations begin

*Ground Receipt Time adjusted for one-way light time, which gradually decreases through the reporting period. 
-- Events without specific execution times are initiated by direct commands from the ground.
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Three views of MESSENGER's insertion into orbit about Mercury are shown above; they include a view from 
the direction of Earth, a view from the direction of the Sun, and a view from over Mercury’s north pole 
looking down toward the planet. Time is given in Coordinated Universal Time (UTC). The 15-minute orbital 
insertion maneuver is shown in light blue in the figures and places the spacecraft into the primary science 
orbit, which is shown in dark blue. The bright areas near the poles indicate portions of the surface not 
imaged by either Mariner 10 or MESSENGER during their respective flybys.
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….and staying there
After MESSENGER arrives in its primary science orbit, small forces, such as solar gravity — the gravitational attraction 

of the Sun — slowly change the spacecraft’s orbit. Although these small forces have little effect on MESSENGER’s 
12-hour orbit period, they can increase the spacecraft’s minimum altitude, orbit inclination, and latitude of the surface 
point below MESSENGER’s minimum altitude. Left uncorrected, the increase in the spacecraft’s minimum altitude would 
prevent satisfactory completion of several science goals.

To keep the spacecraft’s minimum altitude below 500 kilometers (310 miles), propulsive maneuvers must occur at 
least once every Mercury year — one complete revolution around the Sun, or 88 Earth days. The first, third, and fifth 
maneuvers after Mercury orbit insertion will occur at the farthest orbital distance from Mercury, where a minimum 
amount of propellant will be used to slow the spacecraft just enough to lower the minimum altitude to 200 kilometers 
(124 miles). The act of lowering the spacecraft’s altitude in this way has an unavoidable side effect of also lowering orbit 
period by about 15 minutes. 

The second and fourth maneuvers after orbit insertion will increase the orbit period back to about 12 hours by 
speeding up the spacecraft around the time when it is closest to Mercury. Because the sunshade must protect the main 
part of the spacecraft from direct sunlight during propulsive maneuvers, the timing of these maneuvers is limited to a 
few days when Mercury is either near the same point in its orbit as it was during Mercury orbit insertion, or near the 
point where Mercury is on the opposite side of the Sun from that for orbit insertion.

Science orbit: Working at Mercury
The MESSENGER mission has six specific science objectives. 

•	 Provide	major-element	maps	of	Mercury	to	10%	relative	uncertainty	on	the	1000-km	scale	and	determine	local	
composition and mineralogy at the ~20-km scale.

•	 Provide	a	global	map	with	>	90%	coverage	(monochrome,	or	black	and	white)	at	250-m	average	resolution	and	
> 80%	of	the	planet	imaged	stereoscopically.	Also	provide	a	global	multi-spectral	(color)	map	at	2	km/pixel	average	
resolution, and sample half of the northern hemisphere for topography at 1.5-m average height resolution.

•	 Provide	a	multi-pole	magnetic-field	model	resolved	through	quadrupole	terms	with	an	uncertainty	of	less	than	~20%	
in the dipole magnitude and direction.

•	 Provide	a	global	gravity	field	to	degree	and	order	16	and	determine	the	ratio	of	the	solid-planet	moment	of	inertia	to	
the total moment of inertia to ~20% or better.

•	 Identify	the	principal	component	of	the	radar-reflective	material	at	Mercury’s	north	pole.

•	 Provide	altitude	profiles	at	25-km	resolution	of	the	major	neutral	exospheric	species	and	characterize	the	major	ion-
species energy distributions as functions of local time, Mercury heliocentric distance, and solar activity.

To accomplish these science goals, the MESSENGER spacecraft must obtain many types of observations from different 
portions of its orbit around Mercury. Some major constraints must be met, including completing the observations within 
two Mercury solar days (equivalent to one Earth year) and keeping the spacecraft sunshade facing the Sun at all times. 
The observation plan must also take into account MESSENGER’s orbit around Mercury. The orbit is highly elliptical 
(egg-shaped), with the spacecraft passing 200 kilometers (124 miles) above the surface at the lowest point and more 
than 15,193 kilometers (9,420 miles) at the highest. At the outset of the orbital phase of the mission, the plane of the 
spacecraft’s orbit is inclined 82.5° to Mercury’s equator, and the lowest point in the orbit is reached at a latitude of 60° 
North. 

The spacecraft’s orbit is elliptical rather than circular because the planet’s surface radiates back heat from the Sun. At 
an altitude of 200 km, the re-radiated heat from the planet alone is 4 times the solar intensity at Earth. By spending only 
a short portion of each orbit flying this close to the planet, the temperature of the spacecraft can be better regulated. 
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Observing the surface
MESSENGER’s 12-month orbital phase covers two Mercury solar days; one Mercury solar day, from sunrise to sunrise, 

is equal to 176 Earth days. This means that the spacecraft passes over a given spot on the surface only twice during the 
mission, 6 months apart, making the time available to observe the planet’s surface a precious resource. The first solar 
day is focused on obtaining global map products from the different instruments, and the second focuses on specific 
targets of scientific interest and completion of a global stereo map.

As Mercury moves around the Sun, the spacecraft’s orbit around the planet stays in a nearly fixed orientation that 
allows MESSENGER to keep its sunshade toward the Sun. In effect, Mercury rotates beneath the spacecraft and the 
surface illumination changes with respect to the spacecraft view. At some times, the spacecraft is traveling in an orbit 
that follows the terminator — the line that separates day from night. These are known as “dawn-dusk” orbits and are 
good for imaging surface features such as craters, as shadows are prominent and topography and texture can be clearly 
seen. At other times, the spacecraft follows a path that takes it directly over a fully lit hemisphere of Mercury, then over 
a completely dark hemisphere. These are called “noon-midnight” orbits and are good for taking color observations on 
the dayside, because there are fewer shadows to obscure surface features. 

Some instruments, such as Mercury Laser Altimeter (MLA), can operate whether the surface is lit or not, but others, 
such as Mercury Dual Imaging System (MDIS), need sunlight in order to acquire data. The low-altitude segments of 
the orbit over the northern hemisphere will allow MESSENGER to conduct a detailed investigation of the geology and 
composition of Mercury’s giant Caloris impact basin — the planet’s largest known surface feature, among other goals.

As Mercury moves around the Sun, the MESSENGER spacecraft stays in an approximately fixed 
orientation with its sunshade facing the Sun, so effectively the planet rotates beneath the spacecraft. 
Different parts of the surface are illuminated depending on where Mercury is in its year, so the 
spacecraft can view the surface of the planet under every possible lighting condition.
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Orchestrating the observations
Different instruments are given priority in determining spacecraft pointing at different portions of the spacecraft orbit 

and as a function of the parts of Mercury’s surface that are illuminated at any given time. For example, MLA “drives” 
the spacecraft pointing whenever its laser can range to the planet’s surface (less than ~1500 km altitude), UVVS controls 
the pointing when no other instruments can “see” the planet, and MAG and EPPS primarily ride along and collect 
data regardless of what else is going on, since they generally don’t need to point at the planet’s surface. The two MDIS 
imagers are mounted on a common pivot, and so they can often look at the surface or at other targets when the rest of 
the instruments are pointed in a different direction.

MESSENGER will operate in orbit around Mercury for one Earth year, equivalent to four Mercury years or 
two Mercury solar days. Different portions of the orbit are used by different instruments to acquire data.

This image shows a typical view from 
MESSENGER’s science planning software 
tool. The picture on the left shows the 
orientation of the spacecraft with respect 
to Mercury, and the table on the right 
shows details of the spacecraft’s orbit at 
that time. Views such as this one allow 
scientists to decide how best to take data 
to accomplish their science goals.
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To meet the mission science objectives while taking into consideration the constraints associated with spacecraft 
safety and orbital geometry, the MESSENGER Project has planned the entire year of observations in advance of the 
orbital phase. Because of the large number of different science observations required to meet the science objectives, a 
special software tool has been developed to help carry out the complicated process of maximizing the scientific return 
from the mission and minimizing conflicts between instrument observations. This task is particularly challenging because 
most of the instruments are fixed on the spacecraft and are pointed in the same direction, but the different instruments 
may need to be pointed toward different locations at different times to meet the science goals. 

Some observations also must be taken under specific observing conditions (such as taking color images when the Sun 
is high overhead), and the software tool works by finding the best opportunities for each of the instruments to make 
their measurements and then analyzing how those measurements contribute toward the science goals of the entire 
mission. Many iterations are necessary before a solution is found that satisfies all the science goals while staying within 
the limitations associated with the spacecraft’s onboard data storage and downlink capacity.

Although a baseline plan for the entire year has been formulated, commands to execute the plan will be sent up 
to the spacecraft on a weekly basis. Each “command load” contains all the commands that the spacecraft will need 
to execute during a given week. Because each command load is different and contains many tens of thousands of 
commands, the mission operations engineers start each load three weeks ahead of time. This schedule permits the 
command load to be thoroughly tested and reviewed before it is sent up to the spacecraft. Because of this process, 
mission operations personnel at any given time will be working on several command loads, each of which is at a 
different stage of development. 

This planning-tool view shows MDIS image footprints (boxes) on Mercury’s surface 
after one orbit. The footprints vary in size depending on where the spacecraft is in its 
orbit and which of the two imagers are used. Here, the footprints are smallest at high 
northern latitudes, when MESSENGER is closest to the planet, and are largest near 
the bottom of the view because at that time the spacecraft is much farther  
from Mercury.



16

NASA’s Mission to Mercury

The Science Team has also developed the capability to regenerate the plan at short notice in order to respond to any 
anomalies that might occur in flight, such as an instrument problem, or on the ground, such as a missed Deep Space 
Network track.

Under this plan, each instrument will obtain the data needed to fulfill MESSENGER’s science objectives. Once in orbit, 
MDIS will build on the imaging it acquired during the three Mercury flybys to create global color and monochrome 
image mosaics during the first six months of the orbital mission phase. Emphasis during the second six months will shift 
to targeted, high-resolution imaging with the NAC and repeated mapping at a different viewing geometry to create a 
stereo map. MLA will measure the topography of the northern hemisphere over four Mercury years. GRNS and XRS will 
build up observations that will yield global maps of elemental composition. MAG will measure the vector magnetic field 
under a range of solar distances and conditions. VIRS will produce global maps of surface reflectance from which surface 
mineralogy can be inferred, and UVVS will produce global maps of exospheric species abundances versus altitude. 
EPPS will sample the plasma and energetic particle population in the solar wind, at major magnetospheric boundaries, 
and throughout the environment of Mercury at a range of solar distances and levels of solar activity. The radio science 
experiment will extend topographic information to the southern hemisphere by making occultation measurements of 
planet radius, and the planet’s obliquity and the amplitude of the physical libration will be determined independently 
from the topography and gravity field. 

Each orbit is 12 hours in duration, so MESSENGER orbits Mercury twice every Earth day. Once a day, the spacecraft 
stops making measurements and turns its antenna toward Earth for 8 hours, in order to send data back to the Deep 
Space Network, from which it will be sent on to the MESSENGER Mission Operations Center.
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General 
•	 One	of	five	planets	known	to	ancient	astronomers;	

in Roman mythology Mercury was the fleet-footed 
messenger of the gods, a fitting name for a planet that 
moves quickly across the sky.

•	 The	closest	planet	to	the	Sun,	Mercury	is	also	the	
smallest planet in the Solar System.

•	 Prior	to	January	2008,	Mercury	had	been	visited	by	only	
one spacecraft; NASA’s Mariner 10 viewed less than half 
the surface (~45%) in detail during its three flybys in 
1974 and 1975.

Physical characteristics 
•	 Mercury’s	diameter	is	4,880	kilometers	(3,032	miles),	

about one-third the size of Earth and only slightly larger 
than our Moon.

•	 The	densest	planet	in	the	Solar	System	(when	corrected	
for compression), Mercury’s density is 5.3 times greater 
than that of water. 

•	 The	largest	known	feature	on	Mercury’s	pockmarked	
surface is the Caloris basin (1,550 kilometers or 960 
miles in diameter — see http://messenger.jhuapl.edu/
gallery/sciencePhotos/image.php?page=&gallery_
id=2&image_id=149), likely created by an ancient 
asteroid impact. 

•	 Mercury’s	surface	is	a	combination	of	craters,	smooth	
plains, and long, winding cliffs. 

•	 There	is	possibly	water	ice	on	the	permanently	
shadowed floors of craters in Mercury’s polar regions.

•	 An	enormous	iron	core	takes	up	at	least	60%	of	the	
planet’s total mass — twice as large a fraction as 
Earth’s.

Environment 
•	 Mercury	experiences	the	Solar	System’s	largest	swing	

in surface temperatures, from highs above 700 Kelvin 
(about 800° Fahrenheit) to lows near 90 Kelvin  
(about –300° Fahrenheit).

•	 Mercury’s	extremely	thin	atmosphere	contains	
hydrogen, helium, oxygen, sodium, potassium,  
calcium, and magnesium.

•	 The	only	inner	planet	besides	Earth	with	a	global	
magnetic field, Mercury’s field is about 100 times 
weaker than Earth’s (at the surface).

Orbit 
•	 Mercury’s	average	distance	from	the	Sun	is	58	million	

kilometers (36 million miles), about two-thirds closer to 
the Sun than Earth is.

•	 The	highly	elliptical	(elongated)	orbit	ranges	from	
46 million kilometers (29 million miles) to 70 million 
kilometers (43 million miles) from the Sun.

•	 Mercury	orbits	the	Sun	once	every	88	Earth	days,	
moving at an average speed of 48 kilometers (30 miles) 
per second and making it the “fastest” planet in the 
Solar System.

•	 Because	of	its	slow	rotation	—	Mercury	rotates	on	its	
axis once every 59 Earth days — and fast speed around 
the Sun, one solar day on Mercury (from noon to noon 
at the same place) lasts 176 Earth days, or two Mercury 
years.

•	 Mercury’s	distance	from	Earth	(during	MESSENGER’s	
orbit) ranges from about 87 million to 212 million 
kilometers, about 54 million to 132 million miles.

Mercury at a Glance



18

NASA’s Mission to Mercury

Why Mercury?
Mercury, Venus, Earth, and Mars are the terrestrial (rocky) planets. Among these, Mercury is an extreme: the smallest, 

the densest (after correcting for self-compression), the one with the oldest surface, the one with the largest daily 
variations in surface temperature, and the least explored. Understanding this “end member” among the terrestrial 
planets is crucial to developing a better understanding of how the planets in our Solar System formed and evolved. To 
develop this understanding, the MESSENGER mission, spacecraft, and science instruments are focused on answering six 
key questions.

Question 1: Why is Mercury so dense?
Each of the terrestrial planets consists of a dense iron-rich core surrounded by a rocky mantle, composed largely of 

magnesium and iron silicates. The topmost layer of rock, the crust, formed from minerals with lower melting points than 
those in the underlying mantle, either during differentiation early in the planet’s history or by later volcanic or magmatic 
activity. The density of each planet provides information about the relative sizes of the iron-rich core and the rocky 
mantle and crust, since the metallic core is much denser than the rocky components. Mercury’s uncompressed density 
(what its density would be without compaction of its interior by the planet’s own gravity) is about 5.3 g/cm3, by far 
the highest of all the terrestrial planets. In fact, Mercury’s density implies that at least 60% of the planet is a metal-rich 
core, a figure twice as great as for Earth, Venus, or Mars. To account for about 60% of the planet’s mass, the radius of 
Mercury’s core must be approximately 75% of the radius of the entire planet!

There are three major theories to explain why Mercury is so much denser and more metal-rich than Earth, Venus, 
and Mars. Each theory predicts a different composition for the rocks on Mercury’s surface. According to one idea, 
before Mercury formed, drag by solar nebular gas near the Sun mechanically sorted silicate and metal grains, with the 
lighter silicate particles preferentially slowed and lost to the Sun; Mercury later formed from material in this region and 
is consequently enriched in metal. This process doesn’t predict any change in the composition of the silicate minerals 
making up the rocky portion of the planet, just the relative amounts of metal and rock. In another theory, tremendous 
heat in the early nebula vaporized part of the outer rock layer of proto-Mercury and left the planet strongly depleted in 
volatile elements. This idea predicts a rock composition poor in easily evaporated elements like sodium and potassium. 
The third idea is that a giant impact, after proto-Mercury had formed and differentiated, stripped off the primordial crust 
and upper mantle. This idea predicts that the present-day surface is made of rocks highly depleted in those elements 
that would have been concentrated in the crust, such as aluminum and calcium.

William Hartmann’s depiction of the early solar 
nebula shows the time when the terrestrial planets 
were forming. Processes such as nebular gas drag, 
vaporization in the hot early nebula, and giant 
impacting collisions have all been suggested as 
having possible effects on the bulk composition of 
Mercury. (“During the Formation of the Terrestrial 
Planets,” painting, copyright 1999 by William K. 
Hartmann. This and additional artwork associated 
with Mercury and the early solar system is available 
from Dr. Hartmann at hartmann@psi.edu).
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MESSENGER will determine which of these ideas is correct by measuring the composition of the rocky surface. X-ray, 
gamma-ray, and neutron spectrometers will measure the elements present in the surface rocks and determine if volatile 
elements are depleted or if elements that tend to be concentrated in planetary crusts are deficient. A visible-infrared 
spectrometer will determine which minerals are present and will permit the construction of mineralogical maps of the 
surface. Analysis of gravity and topography measurements will provide estimates of the thickness of Mercury’s crust. To 
make these challenging measurements of Mercury’s surface composition and crustal characteristics, these instruments 
will need to accumulate many observations of the surface. MESSENGER’s three Mercury flybys provided opportunities 
to make preliminary observations, but numerous measurements from an orbit around Mercury are needed to determine 
accurately the surface composition. Once in orbit, these measurements will enable MESSENGER to distinguish among 
the different proposed origins for Mercury’s high density and, by doing so, gain insight into how the planet formed and 
evolved.

Question 2: What is the geologic history of Mercury?
Prior to MESSENGER, only 45% of Mercury’s surface had been seen by spacecraft during the Mariner 10 mission. 

Combining the Mariner 10 photos with the images from MESSENGER’s three Mercury flybys, about 98% of the surface 
of Mercury has been seen in detail. It is now possible for the first time to begin to investigate Mercury’s geologic history 
on a global basis. 

Much of Mercury’s surface appears cratered and ancient, with a resemblance to the surface of Earth’s Moon. 
Slightly younger, less cratered plains sit within and between the largest old craters. Many of these plains are volcanic, 
on the basis of their age relative to nearby large impact features and other indicators of volcanic activity. Data from 
MESSENGER’s flybys indicate that volcanism on Mercury persisted for at least the first half of the planet’s history, and 

that the style of volcanism included both effusive and 
explosive eruptions.

Mercury’s tectonic history is unlike that of any 
other terrestrial planet. On the surface of Mercury, 
the most prominent features produced by tectonic 
forces are long, rounded, lobate scarps or cliffs, some 
over a kilometer in height and hundreds of kilometers 
in length. These giant scarps are believed to have 
formed as Mercury cooled and the entire planet 
contracted on a global scale. Understanding the 
formation of these scarps thus provides the potential 
to gain insight into the thermal history and interior 
structure of Mercury.

Once in orbit, MESSENGER will bring a variety 
of investigations to bear on Mercury’s geology in 
order to determine the sequence of processes that 
have shaped the surface. The X-ray, gamma-ray, 
and visible-infrared spectrometers will determine 
the elemental and mineralogical makeup of rock 
units composing the surface. The cameras will image 
Mercury’s surface in color and at a typical imaging 
resolution that surpasses that of most Mariner 10 
pictures. Nearly all of the surface will be imaged in 
stereo to determine the planet’s global topographic 
variations and landforms; the laser altimeter 
will measure the topography of surface features 
even more precisely in the northern hemisphere. 

A portion of the long, lobate scarp named Beagle Rupes (right 
side of this image) deforms an impact craters seen in the upper 
right. This image was taken during MESSENGER’s first flyby of 
Mercury, and the width of the image is about 110 km. (Courtesy 
of NASA, JHU/APL, CIW.)
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Comparing the topography with the planet’s gravity field, measured by tracking the MESSENGER spacecraft, will allow 
determinations of local variations in the thickness of Mercury’s crust. This diversity of high-resolution data returned by 
MESSENGER will enable the reconstruction of the geologic history of Mercury. 

Question 3: What is the nature of Mercury’s magnetic field?
Mercury’s magnetic field and the resulting magnetosphere, produced by the interaction of Mercury’s magnetic field 

with the solar wind, are unique in many ways. Perhaps one of the most noteworthy observations about Mercury’s 
magnetic field is that the small planet possesses one at all. Mercury’s magnetic field is similar in its “dipole” shape to 
Earth’s magnetic field, which resembles the field that would be produced if there was a giant bar magnet at the center 
of the planet. In contrast, Venus, Mars, and the Moon do not show evidence for intrinsic dipolar magnetic fields, but the 
Moon and Mars have evidence for local magnetic fields centered on different rock deposits.

Earth’s magnetosphere is very dynamic and constantly changes in response to the Sun’s activity, including both solar 
storms and more modest changes in the solar wind and interplanetary magnetic field. We see the effects of these 
dynamics on the ground as they affect power grids and electronics, causing blackouts and interference with radios and 
telephones. Mercury’s magnetosphere was shown by Mariner 10 to experience similar dynamics; understanding those 
variations will help us understand the interaction of the Sun with planetary magnetospheres in general.

Although Mercury’s magnetic field is thought to be a miniature version of Earth’s, Mariner 10 didn’t measure 
Mercury’s field well enough to characterize it. There was even considerable uncertainty in the strength and source of 
the magnetic field after Mariner 10. MESSENGER’s Mercury flybys confirmed that there is a global magnetic field on 
Mercury, and that the field has a strong dipolar component nearly aligned with the planet’s spin axis. Mercury’s magnetic 
field most likely arises from fluid motions in an outer liquid portion of Mercury’s metal core. There is debate, however, 
about the molten fraction of the core as well as whether the field is driven by compositional or thermal differences. 
These different ideas for the driving force behind Mercury’s magnetic field predict slightly different field geometries, so 
careful measurements by spacecraft can distinguish among current theories.

 MESSENGER’s 
magnetometer will characterize 
Mercury’s magnetic field in 
detail from orbit over four 
Mercury years (each Mercury 
year equals 88 Earth days) to 
determine its precise strength 
and how that strength varies 
with position and altitude. 
The effects of the Sun on 
magnetospheric dynamics will 
be measured by MESSENGER’s 
magnetometer and by the 
energetic particle and plasma 
spectrometer. MESSENGER’s 
highly capable instruments 
and broad orbital coverage 
will greatly advance our 
understanding of both the 
origin of Mercury’s magnetic 
field and the nature of its 
interaction with the solar wind.

The different components of Mercury’s magnetosphere result from the complex and 
dynamic interactions between Mercury’s magnetic field and the solar wind. (Courtesy 
of Jim Slavin, NASA Goddard Space Flight Center.)



21

NASA’s Mission to Mercury

Question 4: What is the structure of Mercury’s core?
As discussed in Questions 1 and 3, Mercury has a very large iron-rich core and a global magnetic field; this 

information was first gathered by the Mariner 10 flybys. More recently, Earth-based radar observations of Mercury have 
also determined that at least a portion of the large metal core is still liquid. Having at least a partially molten core means 
that a very small but detectable variation in the spin rate of Mercury has a larger amplitude because of decoupling 
between the solid mantle and the liquid core. Knowing that the core has not completely solidified, even as Mercury has 
cooled over billions of years since its formation, places important constraints on the planet’s thermal history, evolution, 
and core composition.

However, these constraints are limited because of the low precision of current information on Mercury’s gravity field 
from the Mariner 10 and MESSENGER flybys. Fundamental questions about Mercury’s core remain to be explored, such 

as its composition. A core of pure 
iron would be completely solid 
today, due to the high melting 
point of iron. However, if other 
elements, such as sulfur, are also 
present in Mercury’s core, even 
at only a level of a few percent, 
the melting point is lowered 
considerably, allowing Mercury’s 
core to remain at least partially 
molten as the planet cooled. 
Constraining the composition 
of the core is intimately tied to 
understanding what fraction of 
the core is liquid and what fraction 
has solidified. Is there just a very 
thin layer of liquid over a mostly 
solid core, or is the core completely 
molten? Addressing questions 
such as these can also provide 
insight into the current thermal 
state of Mercury’s interior, which 
is very valuable information for 
determining the evolution of the 
planet.

Using the laser altimeter in orbit, MESSENGER will verify the presence of a liquid outer core by measuring Mercury’s 
libration. Libration is the slow, 88-day wobble of the planet about its rotational axis. The libration of the rocky outer 
part of the planet will be twice as large if it is floating on a liquid outer core than if it is frozen to a solid core. By radio 
tracking of the spacecraft in orbit, MESSENGER will also determine the gravity field with much better precision than can 
be accomplished during flybys. The libration experiment, when combined with improved measurements of the gravity 
field, will provide information on the size and structure of the core. 

Question 5: What are the unusual materials at Mercury’s poles?
Mercury’s axis of rotation is oriented nearly perpendicular to the planet’s orbit, so that in polar regions sunlight strikes 

the surface at a near-constant grazing angle. Some of the interiors of large craters at the poles are thus permanently 
shadowed and perpetually very cold. Earth-based radar images of the polar regions show that the floors of large craters 

The radius of the core of Mercury is approximately 75% of that of the entire planet, 
which is a much larger fraction of the plan than for Earth. Like Earth, Mercury has a 
core that is at lest partially liquid. However, unlike Earth, the size of the solid inner 
core is not known. (Courtesy of NASA, JHU/APL, CIW.)
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are highly reflective at radar wavelengths, unlike the surrounding terrain. Furthermore, the radar-bright regions are 
consistent in their radar properties with the polar cap of Mars and the icy moons of Jupiter, suggesting that the material 
concentrated in the shadowed craters is water ice. The idea of water ice being stable on the surface of the planet closest 
to the Sun is intriguing. 

The temperature inside these permanently shadowed craters is believed to be low enough to allow water ice to 
be stable for the majority of the observed deposits. Ice from infalling comets and meteoroids could be cold-trapped 
in Mercury’s polar deposits over millions to billions of years, or water vapor might outgas from the planet’s interior 
and freeze at the poles. A few craters at latitudes as low as 72° N have also been observed to contain radar-bright 
material in their interiors, and at these warmer latitudes, maintaining stable water ice for longer periods of time may 
be more difficult; a recent comet impact, in the last few million years, may be required to satisfy all radar observations. 
Alternatively, it has been suggested that the radar-bright deposits are not water ice but rather consist of a different 

material, such as sulfur. Sulfur would be stable in the cold traps of the permanently shadowed crater interiors, and the 
source of sulfur could be either meteoritic material or the surface of Mercury itself. It has also been proposed that the 
naturally occurring silicates that make up the surface of Mercury could produce the observed radar reflections when 
maintained at the extremely low temperatures present in the permanently shadowed craters. 

MESSENGER’s three flybys of Mercury passed nearly over the equator and did not allow for viewing of the planet’s 
poles. Once in orbit around Mercury, however, MESSENGER’s neutron spectrometer will search for hydrogen in any polar 
deposits, the detection of which would suggest that the polar deposits are water-rich. The ultraviolet spectrometer and 
energetic particle and plasma spectrometer will search for the signatures of hydroxide or sulfur in the tenuous vapor over 
the deposits. The laser altimeter will provide information about the topography of the permanently shadowed craters. 
Understanding the composition of Mercury’s polar deposits will clarify the inventory and availability of volatile materials 
in the inner Solar System. 

A radar image of the north polar region of Mercury shows radar-bright regions concentrated in circular 
floors of craters with permanently shadowed interiors. The radar-bright material might be water ice, but 
alternative suggestions have also been proposed. (Courtesy of John K. Harmon, Arecibo Observatory.)
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Question 6: What volatiles are important at Mercury?
Mercury is surrounded by an extremely thin envelope of gas. It is so thin that, unlike the atmospheres of Venus, Earth, 

and Mars, the molecules surrounding Mercury don’t collide with each other and instead bounce from place to place on 
the surface like many rubber balls. This tenuous atmosphere is called an “exosphere.”

Seven elements are known to exist in Mercury’s exosphere: hydrogen, helium, oxygen, sodium, potassium, calcium, 
and, as discovered by MESSENGER, magnesium. The observed exosphere is not stable on timescales comparable to the 
age of Mercury, and so there must be sources for each of these elements. High abundances of hydrogen and helium are 
present in the solar wind, the stream of hot, ionized gas emitted by the Sun. The other elements are likely from material 
impacting Mercury, such as micrometeoroids or comets, or directly from Mercury’s surface rocks. Several different 
processes may have put these elements into the exosphere, and each process yields a different mix of the elements: 
vaporization of rocks by impacts, evaporation of elements from the rocks in sunlight, sputtering by solar wind or 
magnetospheric ions, or diffusion from the planet’s interior. Strong variability in the composition of Mercury’s exosphere 
has been observed, suggesting an interaction of several of these processes. 

MESSENGER will determine the composition of Mercury’s exosphere using its ultraviolet spectrometer and energetic 
particle and plasma spectrometer. The exosphere composition measured by these instruments will be compared with 
the composition of surface rocks measured by the X-ray, gamma-ray, and neutron spectrometers. As MESSENGER orbits 
Mercury, variations in the exosphere’s composition will be monitored. The combination of these measurements will 
elucidate the nature of Mercury’s exosphere and the processes that contribute to it.

During MESSENGER’s first flyby of Mercury, the distribution of neutral sodium in the 
“tail” of Mercury’s exosphere was measured. (Courtesy of NASA, JHU/APL, CIW.)
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Highlights from the Mercury Flybys
MESSENGER has completed three flybys of Mercury, utilizing the planet’s gravity to alter its trajectory and bring its 

orbit about the Sun closer to that of the innermost planet. All three flybys were executed flawlessly.

To make full use of this opportunity, the Science Team developed a comprehensive plan to conduct observations 
throughout the encounters. The data recorded by MESSENGER during its flybys have been used to fine-tune the 
observation strategy for the prime orbital phase of the mission. Even now these data are providing exciting new insights 
into the history and dynamics of our Solar System’s innermost planet.

MESSENGER’s first flyby of Mercury on January 14, 2008, was a resounding success. Measurements were made that 
had never been possible with Mariner 10 or from ground-based telescopes. These include plasma ion measurements, 
laser altimetry, high-resolution surface spectroscopy, spacecraft elemental chemical remote sensing, high-spatial-
resolution observations of both known and new species in Mercury’s exosphere, and eleven-color imaging. In addition 
to these observations, complementary measurements were made to those from Mariner 10 by the MESSENGER 
Magnetometer, and 21% of the previously unseen hemisphere was imaged for the first time, bringing to 66% the total 
surface area of the planet imaged by spacecraft.

During MESSENGER’s second flyby on October 6, 2008, MDIS images filled in a further 24% of the previously unseen 
hemisphere, so that 90% of the planet had at that point been observed by spacecraft. Much of the hemisphere imaged 
by Mariner 10 was viewed by MESSENGER under different lighting conditions or in color, allowing new discoveries. 
MESSENGER became the first spacecraft to fly over the planet’s western hemisphere, making the first measurements of 
Mercury’s internal magnetic field above that portion of the planet. All instruments took data during the flyby, and an 
emerging picture of Mercury’s global environment and history continued to take shape.

On September 29, 2009, MESSENGER flew by Mercury for the third and final time prior to orbit insertion in March 
2011. An additional 6% of the surface was imaged, completing the equatorial coverage by spacecraft and leaving only 
the polar regions yet to be seen by spacecraft. Shortly before closest approach to the planet, as the spacecraft passed 
into eclipse, an unexpected configuration of the power system caused the fault protection system to halt the science 
command sequence. Although the spacecraft was never at risk and continued through the needed gravity assist, a 
number of planned science observations were not made. Despite the truncated set of measurements, new discoveries 
were made about the innermost planet, including the first observations of emission from an ionized species in Mercury’s 
exosphere, indications of a surprisingly complex distribution of exospheric species over the north and south poles, new 
information about magnetic substorms, and evidence for younger volcanism than had been previously anticipated.
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Mapping an old world
Initial mapping of the innermost world of the Solar System is now almost complete. MESSENGER has now seen 91% 

of Mercury from its three encounters with Mercury. In the accompanying map of imaging coverage, the narrow regions 
are the sunlit crescents seen as MESSENGER approached Mercury prior to each flyby, and include the area imaged during 
the approach to flyby 3 (yellow outline). The larger areas are the sunlit portions of the surface seen as MESSENGER 
departed the Solar System’s innermost planet on its first and second flybys. Between Mariner 10 and MESSENGER, more 
than 98% of Mercury’s surface has been mapped at a resolution of 1 kilometer or better. Because of the fast encounter 
velocity and Mercury’s slow rotation, the lighting angle within the global mosaic varies from high noon to just over the 
horizon, resulting in a non-uniform look at the planet. After MESSENGER enters orbit about Mercury in 2011, a higher-
resolution (on the average of 250 meters/pixels) global mosaic will be built up with more uniform illumination.

MESSENGER has now seen 91% of Mercury from its three encounters with the planet. Combining images from MESSENGER’s 
first (outlined in blue), second (red), and third (yellow) Mercury flybys with photos obtained from Mariner 10’s three flybys in 
1974-75 (outlined in green) yields nearly total coverage of Mercury’s surface with the exception of the regions poleward of 
60° N or 60° S. Along with revealing intriguing geologic features in previously unseen terrain, completion of this nearly global 
map of Mercury’s surface, free of gaps, has been valuable for planning MESSENGER’s orbital operations, which begin in  
March 2011.
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Mercury — in color!
During the flybys, the Mercury Dual Imaging System (MDIS) Wide-Angle Camera (WAC) snapped images of Mercury 

through 11 different narrow-band color filters, which range from violet in the visible (395 nm) to the near-infrared (1040 
nm). The specific colors of the filters were selected to discriminate among common minerals, and statistical methods 
that utilize all 11 filters in the visible and near-infrared are used to enhance subtle color differences and aid geologists 
in mapping regions of different composition. What do the exaggerated colors tell us about Mercury? The nature of 
color boundaries, color trends, and brightness values help MESSENGER geologists understand the distinct regions (or 
geological “units”) on the surface. This color information has shown Mercury’s surface to be composed of a variety of 
materials with different color characteristics, such as smooth volcanic plains; darker material excavated from depth by 
impact craters; younger, less space-weathered material; reddish deposits near volcanic vents; and very bright material on 
some crater floors. The color images are complemented by images from the MDIS Narrow-Angle Camera (NAC), which 
provides higher resolution views of areas with interesting color properties.

These images are orthographic projections of Mercury created with WAC enhanced-color 
images. The orthographic projection produces a view that has the perspective that one 
would see from deep space. The WAC enhanced color uses a statistical analysis of images 
from all 11 WAC filters to highlight subtle differences in the color of crustal rocks on 
Mercury’s surface. The top view uses images from Mercury flyby 1, with the thin crescent 
of Mercury imaged during approach forming the right portion of the globe and the fuller 
departure view showing Caloris basin forming the left side and majority of the view. The 
black strip between the approach and departure images is a portion of Mercury’s surface 
not viewed by MESSENGER during the flyby. Similarly, the approach and departure 
images obtained during Mercury flyby 2 yielded the bottom view. The top and bottom 
projections are centered on 180° and 0° longitude, respectively.
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From the color images alone it is not possible to determine unambiguously the minerals that comprise the rocks 
of each unit. During the brief flybys, MESSENGER’s other instruments sensitive to composition lacked the time 
needed to build up adequate signal or gain broad areal coverage, so only MESSENGER’s cameras were able to acquire 
comprehensive measurements. Once in orbit about Mercury, MESSENGER’s full suite of instruments will be brought to 
bear on the newly discovered color units, and the results will provide information about Mercury’s composition and the 
processes that acted on Mercury’s surface.

First clues to mineralogy: Clear differences from Earth’s Moon
High-resolution, ultraviolet-to-infrared spectra of Mercury’s surface acquired by the Mercury Atmospheric and Surface 

Composition Spectrometer (MASCS) revealed differences in color from the Earth’s Moon that, despite some general 
similarities, indicate a different composition. For mineralogical identification, spectral differences of a few percent are 
significant, and the differences found by MASCS are up to 20%, indicating that the surface of Mercury has a number of 
important surprises in store. Identifying the classes of minerals consistent with the observed spectra will require extensive 
analysis and comparison with the color imaging from MDIS and laboratory measurements of the reflectance of mineral 
and rock mixtures, but it is already clear that these spectra will play a key role in sifting out the geologic history of the 
range of materials evident on the surface and, ultimately, in telling the story of Mercury’s unique history.

Volcanism on Mercury
The role volcanism played in shaping the landscape of Mercury was a subject of scientific debate after the flybys of 

Mariner 10. From MESSENGER’s flybys, high-resolution images combined with complementary color information have 
led to the first identification of volcanic vents on Mercury. The vents are seen as irregularly shaped, rimless depressions, 
which distinguish them from impact craters. Smooth, bright, diffusely distributed deposits surround the vents, similar to 
material seen around explosive volcanoes on Earth and other planets. The characteristics of this bright material suggest 
that it was erupted explosively from magma that contained substantial amounts of gas, or volatiles. By measuring how 
far the material fell from the source vent, scientists can estimate the speed at which it was erupted, and what kinds 

Close-up of the short-
wavelength portion of the 
spectrum comparing the 
MASCS spectra from the Moon 
and Mercury. Note the sharp 
departure of the Mercury 
spectrum from that of the Moon 
at wavelengths below 300 nm.
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of volatiles were present in Mercury’s interior at that time. This information provides insight into how Mercury was 
assembled during its formation and how its interior has evolved.

High-resolution MDIS images reveal many examples of impact craters that have been flooded and embayed by 
volcanic lava. By measuring the shallow depth of craters flooded by volcanic processes, lava flow thicknesses as great 
as 5 km have been estimated. Further evidence for volcanic processes comes from high-resolution color images from 
MDIS, which can indicate variations in composition and age of different features. Many impact basins (including Caloris) 
have floors that are covered with material of a different composition and younger age, implying that they were flooded 
by later volcanism. The impacts that formed some craters have punched through the surface material to excavate older 
material from the subsurface. Impacts make it possible to assess how Mercury’s crust varies with depth and ultimately 
how the crust evolved through time. Thus, results from MESSENGER’s flybys indicate that volcanism was an important 
process in the geologic history of Mercury, and additional MESSENGER data will further elucidate the extent of volcanism 
on the Solar System’s innermost planet.

Other evidence for volcanism on Mercury comes from craters that contain rimless, often irregularly shaped pits within 
their floors. These pits display no associated ejecta or lava flows. They are thought to be evidence of shallow magmatic 
activity and may have formed when retreating magma caused an unsupported area of the surface to collapse, creating a 
pit. The discovery of multiple pit-floor craters augments a growing body of evidence that volcanic and magmatic activity 
has been a widespread process in the geologic evolution of Mercury’s crust.

MESSENGER identified volcanic vents on Mercury for the first time. The irregularly shaped depression marking the vent in the 
left image is about 20 km across in its longest dimension and is surrounded by a bright, smooth deposit with diffuse margins. 
The bright material is believed to consist of pyroclastic deposits ejected during explosive volcanic eruptions at the vent. A 
flooded impact crater (right image), about 60 km in diameter, shows further evidence that volcanism has shaped Mercury’s 
surface.
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This enhanced-color image was created by using 
high-resolution images taken in all 11 WAC filters 
and comparing and contrasting them to accentuate 
differences on Mercury’s surface. Here, smooth 
reddish plains material near Rudaki crater shows clear 
boundaries with bluer, more cratered terrain, indicating 
that the two units have different compositions. The rim 
of and ejecta surrounding Calvino, the 68-km-diameter 
crater in the center of the image, is more orange than 
the surrounding plains, indicating that this crater 
excavated material differing in composition from the 
plains. Furthermore, its central peak is comparatively 
blue, indicating that material of a third composition 
was excavated from still greater depth during the 
crater’s formation. Impacts make it possible to assess 
how Mercury’s crust varies with depth and ultimately 
how the crust evolved through time.

Lermontov crater (~150 km in diameter) was first 
observed by Mariner 10 and seen more recently by 
MESSENGER during its second flyby of Mercury. The 
crater floor is somewhat brighter than the surrounding 
surface and is smooth with several irregularly shaped 
depressions. Such features may be evidence of past 
explosive volcanic activity on the crater floor. 
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The duration of volcanic activity
Prior to MESSENGER, it was thought that the volcanism on Mercury had ceased relatively early in its history, 

probably around 3.8 billion years ago. Images from MESSENGER’s flybys showed basins that were very sparsely cratered 
compared to some other terrains on the planet, implying that they are much younger. On the inner floor of one basin, 
Rachmaninoff, there is a volcanic deposit that contains even fewer craters per area than the remaining portions of the 
basin floor, suggesting modification by volcanism some time after the basin had formed. By counting the craters per area 
in the inner floor deposit, the MESSENGER Science Team has estimated that the volcanic deposit is probably younger 
then 2 billion years. Volcanism on Mercury thus continued over a much longer time span than was previously thought, 
probably at least half of the history of the Solar System. This discovery means that Mercury’s interior remained hotter for 
longer than had been predicted. Once in orbit, other examples of relatively young volcanism may be discovered, and it 
will be possible to reconstruct Mercury’s surface history in greater detail.

The great Caloris impact basin
It was known from Mariner 10 photos that Mercury’s Caloris basin is a large, well preserved impact basin, but 

MESSENGER images showed the true extent of the feature for the first time. From Mariner 10 photos, only a portion 
of the eastern half of Caloris was visible, and the diameter of Caloris was estimated at 1,300 km. MESSENGER’s 
images of the entire Caloris basin show that the structure is larger than previously believed, with a diameter of about 
1,550 km.	The	density	of	superposed	smaller	craters	inside	and	outside	Caloris	basin	shows	that	the	deposits	formed	at	
the same time as the basin date from fairly early in the history of the Solar System, likely around 3.8 billion years ago. 
Plains interior and exterior to the basin, however, have a lower density of impact craters, indicating that they postdate 
the basin and consist of volcanic deposits. Near the center of Caloris basin, a set of over 200 narrow troughs, named 
Pantheon Fossae, radiate outward in a pattern unlike anything previously seen on Mercury. Structures interpreted 
as volcanic vents are seen around the margins of the great basin. Craters with intriguing dark- and light-color 
characteristics are found on the basin floor. Overall, understanding the formation and evolution of this giant basin will 
provide insight into the early history of major impacts in the inner Solar System, with implications not just for Mercury, 
but for all the rocky planets, including Earth.

 This enhanced-color image of the Rachmaninoff 
basin (~290 km in diameter) highlights differences 
in reflectance, color, and surface form between the 
smooth plains within the basin’s inner ring and the 
surrounding surface. MESSENGER team members 
have documented evidence that these interior 
smooth plains are products of relatively young 
volcanism, the youngest documented on Mercury 
to date. Whereas interpretations of Mariner 10 
images prior to the MESSENGER flybys were that 
volcanism on Mercury ended early in the planet’s 
history, MESSENGER’s images of Rachmaninoff 
reveal that some volcanism extended well beyond 
that time, probably into the second half of Solar 
System history.
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High-precision topography from laser ranging
The very first laser ranging by the Mercury Laser Altimeter (MLA) to Mercury’s surface yielded topographic profiles 

across multiple craters, smooth plains, and other terrain. During the first flyby, MLA was within range only over the night 
side of Mercury, and the surface within view of MLA had not been imaged by Mariner 10, so the ranging results were 
correlated with Earth-based, radar images of the surface. During the second flyby, topographic measurements were 
made across territory that was photographed in high resolution by the MDIS NAC as well as other areas that had been 
imaged during the first flyby.

The MLA ranging provided the first definitive observations of terrain slopes and crater depths on Mercury, showing 
that the slopes are more gradual and older craters shallower than those on the Moon, presumably the result of volcanic 
infilling. The results also clearly show that there is great variation in the surface roughness of crater floors, suggesting 
differences in ages or in the geologic processes that have operated in different craters. From orbit, MESSENGER will be 
able to construct a topographic map of Mercury’s northern hemisphere, enabling a better understanding of the shape 
and depth of impact craters and how they vary on Mercury compared with other bodies.

This mosaic of multiple MDIS images shows the Caloris basin in its entirety. The Caloris 
basin was discovered in 1974 from Mariner 10 images, but when Mariner 10 flew by 
Mercury, only the eastern half of the basin was in daylight. During MESSENGER’s first 
Mercury flyby, the spacecraft was able to acquire high-resolution images of the entire 
basin, revealing its full extent for the first time.
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Rembrandt — A newly discovered impact basin
Impact basins are formed by the impact of objects much larger than those that form craters, resulting in much 

larger structures as well as multiple rings of elevated terrain formed during the impact process. MESSENGER’s second 
flyby revealed a basin not previously known, Rembrandt, which has a diameter of 715 km (440 miles). The number 
of impact craters superposed on Rembrandt’s rim indicates that it is one of the youngest basins on Mercury. The floor 
of Rembrandt appears to be filled with volcanic material, which is overprinted with a system of wrinkle-ridges and 
troughs in radial or concentric shapes, lending the basin an unusual “wheel and spoke” appearance. The troughs bear a 
similarity to the extensional troughs of Pantheon Fossae, imaged near the center of Caloris basin. From an examination 
of relationships among the different features within Rembrandt, the relative timing of volcanism, deformation, and 
cratering within this basin is being revealed.

This figure shows a 400-kilometer-long 
(250-mile-long) section of the MLA 
topographic profile from MESSENGER’s second 
Mercury flyby superposed on a high-resolution 
NAC departure mosaic acquired during the 
same encounter. The blue dots indicate the 
spacecraft ground track, and the yellow dots 
show the altimetry data points; the blue arrow 
shows the spacecraft’s direction of travel. Near 
the center of this profile, the MLA track crosses 
two craters of comparable sizes but different 
depths. The deeper crater in the center of the 
track is Machaut crater, and the unnamed 
crater to Machaut’s east is considerably 

shallower and has probably been filled by volcanic material. By making such measurements systematically over the surface, it 
will be possible to measure the volumes of volcanic material erupted over Mercury’s history.

NAC mosaic of the newly discovered Rembrandt impact basin (left) with a diameter of ~715 kilometers (444 miles), 
slightly less than half the diameter of the Caloris basin. To put the size of Mercury’s Rembrandt basin into a familiar 
context, a NAC mosaic of the basin is overlaid on an Advanced Very High Resolution Radiometer image of the east 
coast of the United States (right). Such a feature, if formed at this location on Earth, would encompass the cities of 
Washington, D.C., and Boston, Massachusetts, and everything in between. The basin contains an unusual pattern 
of troughs and ridges in its center and appears to be one of the youngest impact basins on Mercury.
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Mercury’s unique history — Global fault scarps
Images from Mariner 10 showed many long and high scarps (cliffs) on Mercury’s surface, suggesting that its history 

is unlike that of any other planet in the Solar System. These giant scarps are believed to be the surface expressions 
of great faults that formed as Mercury’s interior cooled and the entire planet shrank slightly as a result. Images from 
MESSENGER’s flybys have 
revealed many new examples of 
scarps that extend for hundreds 
of kilometers. MESSENGER 
images show that scarps are 
widespread across the surface of 
the planet. The different lighting 
conditions allowed MESSENGER 
to discover scarps not previously 
identified on parts of Mercury’s 
surface seen by Mariner 10, 
meaning that the Mariner 10 
estimate for the amount of 
global contraction is too low. 
Additionally, the MESSENGER 
images show promise for 
constraining the timing of global 
contraction by using relationships 
observed between the 
embayment of surface features 
and the formation of the scarps. 
Timing information will be very 
valuable for modeling Mercury’s 
interior thermal evolution.

Mercury’s global magnetic field
The MESSENGER spacecraft made magnetic field measurements that provided more constraints on the internal field 

while also revealing more of the dynamics produced by its interplay with the magnetic field of the Sun. MESSENGER’s 
full suite of particle and fields instruments was used during the mission’s three flybys and has provided new science 
contributions and insights. Mercury’s magnetosphere displayed many phenomena reminiscent of Earth’s own 
magnetosphere, but with new twists owing to the small size of Mercury’s system relative to our own.

Extending from the left edge of this image diagonally toward the lower right corner is a 
long scarp face. This scarp runs through a large ancient crater in the center of the frame 
and was seen for the first time during MESSENGER’s second Mercury flyby. Scarps such 
as this one have been identified over nearly the entire surface of the planet. These giant 
scarps are believed to be the surface expressions of great faults that formed as Mercury’s 
interior cooled and the entire planet contracted slightly as a result, causing the surface 
rocks to fracture and some blocks of crust to thrust over others.

MESSENGER Magnetometer observations for 
January 14, 2008, and October 6, 2008. This figure 
graphs the magnetic field strength measured during 
MESSENGER’s first (blue) and second (orange) Mercury 
flybys; the maximum field strengths measured 
during the two encounters were very similar. The 
observations are displayed versus distance along the 
planet-Sun line; closest approach occurred at about 
three-fourths of a Mercury radius above the night side 
of the planet.
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The probe was within Mercury’s magnetosphere, the volume of space within which the magnetic field is dominated 
by that of the planet, for about 30 minutes during each flyby. The second Mercury flyby provided the only data to date 
from the planet’s western hemisphere, and those data are therefore key to constraining the geometry of the planet’s 
internal magnetic field. Magnetic field measurements showed that the planet’s field is that of a magnetic dipole, similar 
in strength and direction to that measured by Mariner 10 over three decades earlier. The planetary magnetic moment 
is very nearly centered within the planet and is strongly aligned with the rotation axis, to within a tilt of 2°. The dipole 
nature of the field favors an active dynamo in Mercury’s molten outer core as the source of the field.

Solar wind control of Mercury’s magnetosphere
The Sun has been relatively quiet during and between MESSENGER’s three transits of Mercury’s magnetosphere, 

and the maximum measured strength of Mercury’s internal magnetic field was comparable during each of the flybys. 
Nonetheless, magnetospheric activity varied greatly from 
one flyby to the next as a result of small differences in 
the interplanetary magnetic field (IMF). The north-south 
component of the field outside the magnetosphere, in the 
solar wind, was northward for flyby 1, southward for flyby 
2, and varied from northward to southward and back during 
flyby 3. The northward IMF during the first flyby produced 
a very quiet magnetosphere, and MESSENGER measured 
steady magnetic fields and registered the presence of only 
very-low-energy charged particles. 

The second flyby’s southward IMF resulted in a 
magnetosphere whose outer boundary was highly porous to 
solar wind charged particles as a consequence of magnetic 
reconnection between interplanetary and planetary 
magnetic fields. Huge bundles of twisted magnetic flux, 
somewhat resembling flux bundles ejected from the Sun 
in coronal mass ejections following solar flares, were 
observed to emanate from Mercury’s magnetosphere. This 
dynamic interaction creates magnetic linkage over the polar 
regions of the planet and provides “open windows” for 
the entry of solar wind charged particles. Once inside the 
magnetosphere, these charged particles impact the surface 
of Mercury where they give up their energy to atoms, 
such as sodium, which are ejected to resupply the planet’s 
atmosphere. 

The most extreme magnetospheric conditions were 
observed in response to the variable north–south 
component of the IMF observed during the third and 
final flyby. MESSENGER documented the rapid buildup 
of magnetic energy in Mercury’s magnetic tail followed 
by its rapid release in magnetic “substorms.” Although 
qualitatively similar to magnetospheric substorms at Earth, 
these events at Mercury were much faster, lasting only a few 
minutes rather than the few hours at Earth, and the relative 
effect on the configuration and intensity of Mercury’s 
magnetic field was at least a factor of 10 greater than seen 
at Earth. 

The top figure shows the angle that the magnetic field 
made with the northward direction for the outbound 
passes through the magnetopause and bow shock for 
the mission’s first (blue) and second (orange) Mercury 
flybys. The bottom figure illustrates the profound 
difference in magnetic connection between Mercury and 
the solar wind when the magnetic field in the solar wind 
is southward (left) as for flyby 2 versus northward (right) 
as for flyby 1. These views from the Sun show a notional 
cross section of the magnetic lines of force in the dawn-
dusk meridian plane. 
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Taken together, the magnetospheric measurements from the three MESSENGER flybys indicate that Mercury’s 
magnetosphere responds more strongly to the direction of the IMF than that of any other planet with an internal 
magnetic field. MESSENGER measurements collected from orbit will be necessary to resolve the question of why 
Mercury’s magnetic fields are so dynamic.

MESSENGER also made the first measurements of the planetary ions that interact with Mercury’s magnetosphere, 
revealing a remarkable richness in the species present and providing information about the complex interaction of 
the plasma, solar wind, and surface. In addition to the solar wind protons that make up the bulk of the solar wind, 
MESSENGER’s Fast Imaging Plasma Spectrometer discovered that Mercury’s magnetosphere is host to a wide variety 
of heavy ions. This richness of ion species links to material driven off the surface, providing another opportunity for 
deducing, albeit indirectly, Mercury’s surface composition.

Mercury’s exosphere as never seen before…
Mercury’s exosphere — an atmosphere so tenuous that particles are more likely to hit the surface than to collide 

with each other — was discovered during the Mariner 10 flybys. Ground-based telescopic observations over the past 
25 years have added to our knowledge and shown that Mercury also has an extended exospheric tail, a result of solar 
radiation pressure effects (basically sunlight pushing exospheric atoms in the antisunward direction). But these ground-
based observations are both difficult to make and limited by the Earth’s atmosphere. With the Mercury Atmospheric and 
Surface Composition Spectrometer (MASCS) on MESSENGER, however, Mercury’s exosphere has been observed with 
unprecedented wavelength coverage and spatial resolution.

During the three flybys, the Ultraviolet and Visible Spectrometer (UVVS) channel of MASCS obtained the most 
detailed measurements of the exosphere and tail ever made, yielding “maps” of emission from several species present in 
the exosphere, including sodium, calcium, and magnesium. Although both sodium and calcium in Mercury’s exosphere 
had previously been observed with ground-based telescopes on Earth, the flybys were the first time that measurements 
of the two species were obtained simultaneously. Observations of magnesium were a first for MESSENGER because 
the emission from magnesium atoms occurs at ultraviolet wavelengths and is therefore blocked from ground-based 
observation by Earth’s atmosphere.

Atoms in Mercury’s exosphere that are heavier than hydrogen and helium predominantly originate from the surface 
of Mercury. The detection of magnesium in the exosphere thus provided evidence that magnesium is an important 
component of surface material, something that had long been expected but never proven. A number of processes 
contribute to the release of exospheric species from the surface, and differences in their distributions in both time and 
space provide insight into the relative importance of the processes that generate and maintain the exosphere. The 
observed spatial distributions for all three species differ from one another, indicating that the source and loss processes 
controlling the distributions affect each species in distinct ways or that there are other, currently unknown, processes 
that play a role.
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Schematic summary of the processes that generate and maintain the exosphere of Mercury.
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The histograms in the upper part of this figure represent typical observations of emission in Mercury’s 
exosphere from magnesium (left), calcium (center), and sodium (right) atoms. Known as “spectral 
lines,” these emissions have been scaled to approximately the same peak level for ease of comparison; 
however, the sodium emission is much brighter than that of either magnesium or calcium. Each 
emission occurs at a characteristic wavelength. Sodium (which is actually two lines known as D1 
and D2) and calcium are in the visible portion of the spectrum, at approximately yellow and blue 
wavelengths, respectively, whereas magnesium falls in the ultraviolet portion of the spectrum that 
cannot be observed by ground-based telescopes because of blockage by Earth’s atmosphere. The three 
panels in the lower part of the figure show the spatial distributions of emission in the polar and tail 
regions of Mercury from these three elements during MESSENGER’s third flyby. In these panels, the 
rainbow color scale represents brightness rather than wavelength. Individual rectangles indicate the 
relative brightness of each measurement and the region over which the measurement was made. The 
sodium emission shows strong peaks over the polar regions with a rapid fall-off in the tail region. In 
contrast, the calcium emission shows a more gradual fall-off toward the tail but relatively more emission 
concentrated near the equatorial regions. The magnesium emission is different from either of the other 
two in that it appears to have a less rapid fall-off than sodium between the polar and tail regions but 
lacks the equatorial concentration within the tail region of calcium. These differences indicate that the 
processes controlling these exospheric distributions act on each species in distinct ways.
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… complete with “seasonal” variations …
The emissions observed by the UVVS are primarily solar resonance lines, so-called because the atoms in Mercury’s 

exosphere absorb sunlight at specific wavelengths and then re-radiate a fraction of that light back at the same 
wavelengths. However, the elements in Mercury’s exosphere are also present in the Sun, where they absorb light at these 
same resonance wavelengths and create dark lines in the solar spectrum known as Fraunhofer lines. When Mercury is 
farthest or closest to the Sun in its orbit (aphelion and perihelion, respectively), the planet’s radial velocity with respect 
to the Sun is zero, causing the resonance wavelengths of the atoms to match up with the Fraunhofer lines in the solar 
spectrum, and there is relatively little sunlight for the atoms to absorb and re-emit. For a similar reason, the effects of 
solar radiation pressure are also at a minimum, so there are very few atoms being accelerated into the tail region at 
these same points in Mercury’s orbit. But Mercury’s orbit is elliptical, and when Mercury — along with its surrounding 
exospheric atoms — is accelerating away from or toward the Sun, the heliocentric radial velocity is non-zero and leads 
to a small Doppler shift of sunlight that is just enough to move the atoms’ resonance wavelengths away from the center 
of the deep Fraunhofer lines, providing much more sunlight for the atoms to absorb and re-emit while at the same time 
leading to a larger solar radiation pressure that pushes an increased number of atoms into the tail region. 

Although these changes in the exosphere with Mercury’s orbital position were not unexpected, the MESSENGER 
flybys provided strong evidence for such effects. During the first and second flybys, the sodium tail was both extended 
and bright because the flybys occurred near points in Mercury’s orbit where the Doppler shift was close to the maximum 
and the radiation pressure was high. However, the third flyby occurred at a point where the Doppler shift — and 
therefore the radiation pressure — was small; thus, the tail was effectively “missing,” with the emission down by a 
factor of 10-20 at the same downtail distance compared with the first two flybys. Because radiation pressure affects 
different atoms to different degrees (e.g., sodium strongly, calcium weakly, magnesium insignificantly), the sodium 
tail shows more variation with orbital position than those for other species. The changes in the observed emission as 
Mercury orbits the Sun thus reflect “seasonal-style” variations in Mercury’s exosphere and demonstrate why Mercury’s 
exosphere is perhaps the most dynamic in the solar system. Studying the changes of the “seasons” for a range of 
species during MESSENGER’s orbital mission phase will be vital to quantifying the processes at work in Mercury’s 
exosphere and understanding the transport of volatile material within Mercury’s environment.

This figure illustrates the “seasonal” variation in Mercury’s neutral sodium tail. The sodium tail at the time of the second 
flyby was well developed whereas the tail was effectively “missing” during the third flyby. Stretching the scale on the third 
flyby shows that there is sodium in the region, but both the brightness and the number of atoms were significantly less 
than in the second flyby (by a factor of as much as 10-20 at the same downtail distance). This strong effect on the sodium 
tail is related to variations in solar radiation pressure along Mercury’s orbit. The second flyby occurred close to the point of 
maximum radiation pressure, whereas the third flyby occurred close to the point of minimum radiation pressure.
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… and a few surprises
Whereas the “seasonal” changes in the exosphere observed by MESSENGER were expected, there were a number of 

discoveries during the flybys that were complete surprises. 

During each flyby, a spacecraft roll was executed as MESSENGER entered Mercury’s shadow. This roll rotated the 
look direction of the UVVS field of view about the Sun-Mercury line, carrying it from dawn through north to dusk in 
the first two flybys and from south through dawn to just past north in the third flyby. In all three flybys, an equatorial 
enhancement in the calcium distribution was seen in the dawn direction. This enhancement remains a mystery, not 
just in terms of how it originates but also in its persistence across all three flybys. Despite differences in the space 
environment among flybys that should have affected the source processes for calcium as they are currently understood, 
this feature of the calcium distribution remained relatively unchanged in both location and intensity.

Other surprises came from the third flyby, which presented a special opportunity to observe the exosphere over the 
polar regions. Altitude profiles of sodium, calcium, and magnesium were obtained over both the north and south poles. 
Although it had been inferred from ground-based observations that sodium is released from the surface by both low- 
and high-energy processes, the clear two-component nature of the observed altitude profiles for sodium were the first 
direct evidence that this is indeed the case. But more surprising were the profiles for magnesium. A distinctly different 
profile was observed in the north compared to the south, and the structure in the northern profile cannot be fit with 
the normal models applied to Mercury’s exosphere. This difference is even more startling when one considers the fact 
that the calcium profiles show no such north-south difference. Both calcium and magnesium are refractory elements 
and as such are expected to derive from similar processes in approximately the same manner. This is clearly not the case 
over the north pole, and given the lack of an equatorial dawn enhancement in magnesium, the assumption that calcium 
and magnesium will behave similarly is one that must be abandoned in favor of new ideas about the effect of several 
contributory processes.

Perhaps the biggest surprise during the flybys, though, was the distribution of emission from ionized calcium. The 
observation itself was the first observation of emission from an ionized species in Mercury’s exosphere. The ionized 
calcium was observed to be concentrated close to equatorial plane in a narrow region 1–2 planetary radii tailward of 
the planet. This distribution is inconsistent with local conversion of neutral calcium to ionized calcium, because there 
is simply too much ionized calcium. Instead, the ionized calcium must be concentrated in that region by interaction 
of the calcium ions with Mercury’s magnetosphere. The most likely explanation is that ions created on the dayside of 
the planet, where there should be an abundance of photoions (ions created by sunlight hitting the neutral calcium 
atoms), have been transported around Mercury to the tail region and concentrated by magnetospheric forces. The 
magnetosphere was particularly active during the third flyby, so it remains to be seen whether this concentration was 
specific to the conditions of the third flyby or will be observed during the orbital phase to be a regular phenomenon. 
But one thing is clear: there is a greater degree of interaction between the exosphere and the magnetosphere than 
previously suspected.
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Mercury: An old world seen in new light
The three flybys of Mercury by MESSENGER in 2008 and 2009 produced more than 3,700 images (1,213 during flyby 

1, 1,287 during flyby 2, and 1,214 during flyby 3), more than 8,000 MLA range measurements (3,617 during flyby 1 and 
4,388 during flyby 2) for a profile length of 6,000 km on the surface, 20,000 UVVS spectra of the exosphere, 1,100 VIRS 
spectra of the surface, and a host of other Magnetometer, GRNS, EPPS, XRS, and radio science data. With MESSENGER 
already rewriting the textbooks on the innermost planet of the Solar System, a great deal more is to come with the 
orbital phase of the mission. 

The sixth and last planetary flyby of MESSENGER (including one of Earth, two of Venus, and three of Mercury) was 
crucial for lining up the trajectory of MESSENGER for orbit insertion. Each Mercury flyby has extracted about 2 km/s 
of speed from MESSENGER as it rapidly circles the Sun to reach near-synchronicity with Mercury’s own trajectory. Only 
by matching speeds sufficiently closely by means of these flybys is MESSENGER’s own propulsion system capable of 
completing the final braking maneuver into orbit in March 2011. 

Several surprising variations in the concentrations of different species in Mercury’s exosphere 
were documented during the MESSENGER flybys. The leftmost panel compares the 
magnesium altitude profiles over the north and south poles to a model fit to the south-pole 
profile. A shifted model fails to fit the north-pole profile, and the mismatch indicates that 
a second, unknown process is at play at one of the two poles. The center panel compares 
calcium distributions observed during the spacecraft rolls when the spacecraft was in 
Mercury’s shadow, highlighting the persistent enhancement of calcium at equatorial dawn. 
The rightmost panel is an “image” generated from the observations of ionized calcium in 
Mercury’s antisunward tail. The concentration of the emission over a relatively small region  
is evidence of a high degree of interaction between the exosphere and magnetosphere.
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The Spacecraft
After Mariner 10’s visits to Mercury, the space science and engineering communities yearned for a longer and 

more detailed look at the innermost planet — but that closer look, ideally from orbit, presented formidable technical 
obstacles. A Mercury orbiter would have to be tough, with enough protection to withstand searing sunlight and roasting 
heat bouncing back from the planet below. The spacecraft would need to be lightweight, since most of its mass would 
be fuel to fire its rockets to slow the spacecraft down enough to be captured by Mercury’s gravity. And the probe would 
have to be sufficiently compact to be launched on a conventional and cost-effective rocket. 

Designed and built by the Johns Hopkins University Applied Physics Laboratory (APL) — with contributions from 
research institutions and companies around the world — the MESSENGER spacecraft tackles each of these challenges. 
A ceramic-fabric sunshade, heat radiators, and a mission design that limits time over the planet’s hottest regions protect 
MESSENGER without expensive and impractical cooling systems. The spacecraft’s graphite composite structure — strong, 
lightweight, and heat tolerant — is integrated with a low-mass propulsion system that efficiently stores and distributes 
the approximately 600 kg of propellant that accounts for 54% of the total launch weight. 

To fit behind the 2.5-m by 2-m sunshade, the wiring, electronics, systems, and instruments are packed into a small 
frame that could fit inside a large sport utility vehicle. And the entire spacecraft is light enough to launch on a Delta II 
7925H-9.5 (“heavy”) rocket, the largest launch vehicle allowed under NASA’s Discovery Program of lower-cost space 
science missions. 

MESSENGER spacecraft during integration and testing. The sunshade is visible on the left with the 
spacecraft undergoing testing in thermal-vacuum conditions at NASA’s Goddard Space Flight Center. On 
the right, the solar panels and Magnetometer boom are in their position for flight during work at APL.
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Science payload
MESSENGER carries seven scientific instruments and a radio science experiment to accomplish an ambitious objective: 

return the first data from Mercury orbit. The miniaturized payload — designed to work in the extreme environment 
near the Sun — will image the entire surface of Mercury, as well as gather data on the composition and structure of 
Mercury’s crust, its geologic history, the nature of its active magnetosphere and thin atmosphere, and the makeup of its 
core and the materials near its poles.

The instruments include the Mercury Dual Imaging System (MDIS), the Gamma-Ray and Neutron Spectrometer 
(GRNS), the X-Ray Spectrometer (XRS), the Magnetometer (MAG), the Mercury Laser Altimeter (MLA), the Mercury 
Atmospheric and Surface Composition Spectrometer (MASCS), and the Energetic Particle and Plasma Spectrometer 
(EPPS). The instruments communicate to the spacecraft through fully redundant Data Processing Units (DPUs).

The process of selecting the scientific instrumentation for a mission is typically a balance between answering as 
many science questions as possible and fitting within the available mission resources for mass, power, mechanical 
accommodation, schedule, and cost. In the case of MESSENGER, the mass and mechanical accommodation issues were 
very significant constraints. Payload mass was limited to 50 kg because of the propellant mass needed for orbit insertion. 
The instrument mechanical accommodation was difficult because of the unique thermal constraints faced during the 
mission; instruments had to be mounted where Mercury would be in view but the Sun would not, and they had to be 
maintained within an acceptable temperature range in a very harsh environment. Instrument details follow. In each case 

Spacecraft Instruments
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the mass includes mounting hardware and thermal control components, and the power is the nominal average power 
consumption per orbit; actual values vary with instrument operational mode.

Mercury Dual Imaging System
Mass: 8.0 kg 
Power: 7.6 W  
Development: The Johns Hopkins University Applied Physics Laboratory

The multi-spectral MDIS has wide- and narrow-angle cameras (the “WAC” and 
“NAC,” respectively) — both based on charge-coupled devices (CCDs) similar to those 
found in digital cameras — to map the rugged landforms and spectral variations on 
Mercury’s surface in monochrome, color, and stereo. The imager pivots, giving it the 
ability to capture images from a wide area without having to re-point the spacecraft.

The wide-angle camera has a 10.5° by 10.5° field of view and can observe Mercury 
through 11 different filters and monochrome across the wavelength range 395 to 1,040 

nm (visible through near-infrared light). Multi-spectral imaging will help scientists investigate the diversity of rock types 
that form Mercury’s surface. The narrow-angle camera can take black-and-white images at high resolution through its 
1.5° by 1.5° field of view, allowing extremely detailed analysis of features as small as 18 m across. 

Gamma-Ray and Neutron Spectrometer
GRNS packages separate gamma-ray and neutron 

spectrometers to collect complementary data on 
elements that form Mercury’s crust. 

Gamma-Ray Spectrometer 
Mass: 9.2 kg 
Power: 16.5 W 
Development: The Johns Hopkins University Applied 
Physics Laboratory, Patriot Engineering, Lawrence 
Berkeley National Laboratory, Lawrence Livermore 
National Laboratory

GRS measures gamma rays emitted by the nuclei of atoms on Mercury’s 
surface that are struck by cosmic rays. Each element has a signature emission, 
and the instrument will look for geologically important elements such as 
hydrogen, magnesium, silicon, oxygen, iron, titanium, sodium, and calcium. It 
may also detect naturally radioactive elements such as potassium, thorium, and 
uranium. 

Neutron Spectrometer  
Mass: 3.9 kg 
Power: 6.0 W 
Development: The Johns Hopkins University Applied 
Physics Laboratory, Patriot Engineering, Los Alamos 
National Laboratory

NS maps variations in the fast, thermal, and epithermal neutrons that 
Mercury’s surface emits when struck by cosmic rays. “Fast” neutrons shoot 
directly into space; others collide with neighboring atoms in the crust before 
escaping. If a neutron collides with a light atom (like hydrogen), it will lose energy 
and be detected as a slow (or thermal) neutron. Scientists can look at the ratio of 

Hot Space, Cool 
Instrument
To help it measure surface 

gamma rays from long 

distances, MESSENGER 

uses the most sensitive 

detector available — a 

high-purity germanium 

semiconductor crystal. 

But while MESSENGER 

moves through one of the 

Solar System’s hottest 

environments, the crystal 

must operate at cryogenic 

temperatures. Instrument 

designers addressed this 

challenge by suspending 

the detector on thin Kevlar 

strings inside a high-tech 

thermos bottle, with a small, 

powerful refrigerator (called 

a cryocooler) that keeps 

temperatures at a frosty 

—183° C, or about —300° F.
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thermal to epithermal (slightly faster) neutrons across Mercury’s surface to estimate the amount of hydrogen — possibly 
locked up in water molecules — and other elements.

X-ray Spectrometer
Mass: 3.4 kg 
Power: 6.9 W 
Development: The Johns Hopkins University Applied Physics Laboratory

XRS maps the elements in the top millimeter of Mercury’s crust using three gas-
filled detectors (MXU) pointing at the planet, one silicon solid-state detector pointing 
at the Sun (SAX), and the associated electronics (MEX). The planet-pointing detectors 
measure fluorescence, the X-ray emissions coming from Mercury’s surface after solar 
X-rays hit the planet. The Sun-pointing detector tracks the X-rays bombarding the 
planet.

XRS detects emissions from elements in the 1–10 keV range — specifically, 
magnesium, aluminum, silicon, sulfur, calcium, titanium, and iron. Two detectors have 
thin absorption filters that help distinguish among the lower-energy X-ray lines of 
magnesium, aluminum, and silicon. 

Beryllium-copper honeycomb collimators give XRS a 12° field of view, which is narrow enough to eliminate X-rays 
from the star background even when MESSENGER is at its farthest orbital distance from Mercury. The small, thermally 
protected, solar-flux monitor is mounted on MESSENGER’s sunshade.

Magnetometer
Mass (including boom): 4.4 kg  
Power: 4.2 W 
Development: NASA Goddard Space Flight Center and the Johns Hopkins University Applied Physics Laboratory

A three-axis, ring-core fluxgate detector, MAG characterizes Mercury’s magnetic field 
in detail, helping scientists determine the field’s precise strength and how it varies with 
position and altitude. Obtaining this information is a critical step toward determining the 
source of Mercury’s magnetic field.

The MAG sensor is mounted on a 3.6-m-long boom that keeps it away from the 
spacecraft’s own magnetic field. The sensor also has its own sunshade to protect it from 
the Sun when the spacecraft is tilted to allow for viewing by the other instruments. While 
in orbit at Mercury the instrument will collect magnetic field samples at 50-ms to 1-s 
intervals; the rapid sampling will take place near Mercury’s magnetospheric boundaries. 
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Mercury Laser Altimeter
Mass: 7.4 kg  
Peak Power: 16.4 W 
Development: NASA Goddard Space Flight Center

MLA maps Mercury’s landforms and other surface characteristics using an infrared laser 
transmitter and a receiver that measures the round-trip time of individual laser pulses. The 
data will also be used to track the planet’s slight, forced libration — a wobble about its spin 
axis — which will tell researchers about the state of Mercury’s core.

MLA data combined with Radio Science Doppler tracking and ranging will be used to map 
the planet’s gravitational field. MLA can view the planet from up to 1,500 km away with an 
accuracy of 30 cm. The laser’s transmitter, operating at a wavelength of 1,064 nm, will deliver 
eight pulses per second. The receiver consists of four sapphire lenses mounted on beryllium 
structures, a photon-counting detector, a time-interval unit, and processing electronics.

Mercury Atmospheric and Surface Composition Spectrometer
Mass: 3.1 kg 
Peak Power: 6.7 W 
Development: Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder

Combining an ultraviolet spectrometer and infrared spectrograph, MASCS will measure the 
abundance of atmospheric gases around Mercury and detect minerals in its surface materials.

The Ultraviolet and Visible Spectrometer (UVVS) will determine the composition and 
structure of Mercury’s exosphere — the extremely low-density atmosphere — and study its 
neutral gas emission lines. It will also search for and measure ionized atmospheric species. 
Together these measurements will help researchers understand the processes that generate 
and maintain the atmosphere, the connection between surface and atmospheric composition, 
the dynamics of volatile materials on and near Mercury, and the nature of the radar-reflective 
materials near the planet’s poles. The instrument has 25-km resolution at the planet’s limb. 

Perched atop the ultraviolet spectrometer, the Visible and Infrared Spectrograph (VIRS) will 
measure the reflected visible and near-infrared light at wavelengths diagnostic of iron- and 

titanium-bearing silicate materials on the surface, such as pyroxene, olivine, and ilmenite. The sensor’s best resolution of 
Mercury’s	surface	is	3 km.

Energetic Particle and Plasma Spectrometer 
Mass: 3.1 kg  
Peak Power: 7.8 W  
Development: The Johns Hopkins University Applied Physics Laboratory and University of Michigan, Ann Arbor

EPPS will measure the mix and characteristics of charged particles 
in and around Mercury’s magnetosphere using an Energetic Particle 
Spectrometer (EPS) and a Fast Imaging Plasma Spectrometer (FIPS). 
The unit is equipped with time-of-flight and energy-measurement 
technology to determine simultaneously particle velocities and 
elemental species. 

From its vantage point near the top deck of the spacecraft, EPS will 
observe ions and electrons accelerated in the magnetosphere. EPS has a 
160° by 12° field of view for measuring the energy spectra and pitch-

EPS (left) and FIPS 
(right)
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angle distribution of these ions and electrons. Mounted on the side of the spacecraft, FIPS will observe low-energy ions 
coming from Mercury’s surface and sparse atmosphere, ionized atoms picked up by the solar wind, and other solar-wind 
components. FIPS provides nearly full hemispheric coverage. 

Radio Science Experiment
Radio Science observations — gathered by tracking the spacecraft through its communications system — will 

precisely measure MESSENGER’s speed and distance from Earth. From this information, scientists and engineers will 
watch for changes in MESSENGER’s movements at Mercury to measure the planet’s gravity field, and to support the laser 
altimeter investigation to determine the size and condition of Mercury’s core. NASA’s Goddard Space Flight Center leads 
the Radio Science investigation.

Spacecraft systems and components

Thermal Design
While orbiting Mercury, MESSENGER will “feel” significantly hotter than spacecraft that orbit Earth. This is because 

Mercury’s elongated orbit swings the planet to within 46 million km of the Sun, or about two-thirds closer to the Sun 
than Earth. As a result, the Sun shines up to 11 times brighter at Mercury than we see from our own planet.

MESSENGER’s first line of thermal defense is a heat-resistant and highly reflective sunshade, fixed on a titanium frame 
to the front of the spacecraft. Measuring about 2.5 m tall and 2 m across as viewed head-on, the thin shade has front 
and back layers of Nextel ceramic cloth — the same material that protects sections of the Space Shuttle — surrounding 
several inner layers of Kapton plastic insulation. While temperatures on the front of the shade could reach 370° C when 
Mercury is closest to the Sun, behind it the spacecraft will operate at room temperature, around 20° C. 

As the second line of defense against this challenging environment, the science orbit is designed to limit 
MESSENGER’s exposure to the heat re-radiating from the surface of Mercury. (MESSENGER will only spend about 25 
minutes of each 12-hour orbit crossing Mercury’s broiling surface at low altitude.) Multilayered insulation covers most of 

MESSENGER spacecraft in flight configuration, rear view
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the surfaces of the spacecraft to protect against incident thermal radiation and insulate against internal heat loss, and 
radiators connected to diode (“one-way”) heat pipes are installed on the sides of the spacecraft to carry heat away from 
the spacecraft body. The combination of the sunshade, unique orbital design, thermal blanketing, and heat-radiation 
system allows the spacecraft to operate without special high-temperature electronics. 

Power
Two single-sided solar panels are the spacecraft’s main source of electric power. To run MESSENGER’s systems and 

charge its 23-ampere-hour nickel-hydrogen battery, the panels, each about 1.5 m by 1.75 m in extent, will support 
between 440 and 475 W of spacecraft load power during the cruise phase and 650 W during the orbit at Mercury. The 
panels themselves produce more than 2 kW of power near Mercury, but to prevent stress on MESSENGER’s electronics 
and keep operating temperatures within acceptable limits, onboard power processors convert only what the spacecraft 
was designed to consume in orbit. 

The custom-developed panels are two-thirds mirrors (called optical solar reflectors) and one-third triple-junction solar 
cells, which convert 28% of the sunlight hitting them into electricity. Each panel has two rows of mirrors for every row 
of cells; the small mirrors reflect the Sun’s energy and keep the panel cooler. The panels also rotate, so the operations 
team tilts the panels away from the Sun, positioning them to get the required power while maintaining a normal surface 
operating temperature of about 150° C.

Propulsion
MESSENGER’s dual-mode propulsion system includes a 660-N bipropellant thruster for large maneuvers and 16 

hydrazine-propellant thrusters for smaller trajectory adjustments and attitude control. The Large Velocity Adjust (LVA) 
thruster requires a combination of hydrazine fuel and nitrogen tetroxide oxidizer. Fuel and oxidizer are stored in custom-
designed, lightweight titanium tanks integrated into the spacecraft’s composite frame. Helium pressurizes the system 
and pushes the fuel and oxidizer through to the engines.

At launch the spacecraft carried just under 600 kg of propellant, and it will use nearly 30% of it during the maneuver 
that inserts the spacecraft into orbit around Mercury. The hydrazine thrusters play several important roles: four 22-N 
thrusters are used for small course corrections and help steady MESSENGER during large engine burns. The dozen 4.4-N 
thrusters are also used for small course corrections and also help steady the spacecraft during all propulsive maneuvers. 
These smallest thrusters can also serve as a backup for the reaction wheels that maintain the spacecraft’s orientation 
during normal cruise and orbital operations.

Communications
MESSENGER’s X-band coherent communications system includes two high-gain, electronically steered, phased-array 

antennas — the first ever used on a deep-space mission; two medium-gain fanbeam antennas; and four low-gain 
antennas. The circularly polarized phased arrays — developed by APL and located with the fanbeam antennas on the 
front and back of the spacecraft — are the main link for sending science data back to Earth. For better reliability in the 
high-temperature environment the antennas are fixed; they “point” electronically across a 45° field of regard without 
moving parts.

High-gain antennas send radio signals through a narrower, more concentrated beam than medium- or low-gain 
antennas and are used to send large amounts of data over the same distance as a lower-gain antenna. The fanbeam 
antennas, also located on MESSENGER’s front and back sides, are used for lower-rate data transmissions to the Earth 
as well as nominal command transmissions from the Earth, such as operating commands, status data, or emergency 
communications. The four low-gain antennas provide hemispheric fields of view from the top, bottom, front, and 
back of the spacecraft, providing primarily an emergency bi-directional communications link with the Earth in the 
event attitude knowledge is lost. MESSENGER’s downlink rate ranges from 9.9 bits per second to 104 kilobits per 
second; operators can send commands at 7.8 to 500 bits per second. Transmission rates vary according to onboard 
communications system configuration, spacecraft distance from the Earth, and ground-station antenna size.
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Command and Data Handling 
MESSENGER’s “brain” is its Integrated Electronics Module (IEM), a space- and weight-saving device that combines 

the spacecraft’s core avionics into a single box. The spacecraft carries a pair of identical IEMs for backup purposes; both 
house a 25-MHz main processor and 10-MHz fault-protection processor. All four are radiation-hardened RAD6000 
processors, based on predecessors of the PowerPC chip found in some models of home computers. The computers, 
slow by current home-computer standards, are state of the art for the radiation tolerance required on the MESSENGER 
mission.

Programmed to monitor the condition of MESSENGER’s key systems, both fault-protection processors are turned 
on at all times and protect the spacecraft by turning off components and/or switching to backup components when 
necessary. The main processor runs the command and data handling software for data transfer and file storage, as well 
as the guidance and control software used to navigate and point the spacecraft. Each IEM also includes a solid-state 
data recorder, power converters, and the interfaces between the processors and MESSENGER’s instruments and systems. 

Intricate flight software executes MESSENGER’s Command and Data Handling system. MESSENGER receives operating 
commands from Earth and can perform them in real time or store them for later execution. Most of the frequent, 
critical operations (such as propulsive maneuvers) are programmed into the flight computer’s memory and timed to run 
automatically.

For data, MESSENGER carries two solid-state recorders (one backup) able to store up to 1 gigabyte each. The main 
processor collects, compresses, and stores images and other data from the subsystems and instruments onto the 
recorder; the software sorts the data into files in a manner similar to how files are stored on a PC. The main processor 
selects the files with highest priority to transmit to Earth, or mission operators can download data files in any order the 
team chooses. 

In orbit around Mercury, data downlink rates will vary predominantly with spacecraft-to-Earth distance. Thus when 
orbiting Mercury, MESSENGER will store most of its data when it’s farther from Earth, typically sending only information 
on its condition and the highest-priority images and measurements during contacts through NASA’s Deep Space 
Network. The spacecraft will send most of the recorded data when Mercury’s path around the Sun brings it closer to 
Earth.

Guidance and Control
MESSENGER is well protected against the heat, but it must always know its orientation relative to Mercury, Earth, 

and the Sun and be “smart” enough to keep its sunshade pointed at the Sun. Attitude determination — knowing in 
which direction MESSENGER is facing — is performed using star-tracking cameras, digital Sun sensors, and an inertial 
measurement unit (IMU), which contains gyroscopes and accelerometers). Attitude control for the three-axis stabilized 
craft is accomplished using four internal reaction wheels and, when necessary, MESSENGER’s small thrusters. 

The IMU accurately determines the spacecraft’s rotation rate, and MESSENGER tracks its own orientation by checking 
the location of stars and the Sun. Star-tracking cameras on MESSENGER’s top deck store a complete map of the 
heavens; once a second, one of the cameras takes a wide-angle picture of space, compares the locations of stars to its 
onboard map, and then calculates the spacecraft’s orientation. The guidance and control software also automatically 
rotates the solar panels to the commanded Sun-relative orientation, as the spacecraft body rotates, ensuring that the 
panels produce sufficient power while maintaining safe temperatures. 

The suite of Sun sensors backs up the star trackers, continuously measuring MESSENGER’s angle to the Sun. If the 
flight software detects that the Sun is “moving” out of a designated safe zone, it can initiate an automatic turn to 
ensure that the shade faces the Sun. Ground controllers can then analyze the situation while the spacecraft turns its 
antennas to Earth and awaits instructions — an operating condition known as “safe” mode.
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Hardware suppliers

Spacecraft Hardware Suppliers
Antenna Waveguide:  
Continental Microwave, Exeter, N.H.

Battery (with APL):  
EaglePicher Technologies, Joplin, Mo.

Heat Pipes:  
ATK (formally Swales Aerospace),  
Beltsville, Md.

Sunshade Material (with APL):  
3M Ceramic Textiles, St. Paul, Minn.

Inertial Measurement Unit:  
Northrop Grumman, Woodland Hills, Calif.

Integrated Electronics Module (with APL):  
BAE Systems, Manassas, Va.

Launch Vehicle:  
Boeing, Huntington Beach, Calif.

Precision Oscillator:  
Datum Timing Test and Measurement,  
Beverly, Mass.

Propulsion:  
Aerojet, Sacramento, Calif.

Reaction Wheels:  
Teldix GmbH, Heidelberg, Germany

Semiconductors:  
TriQuint, Dallas, Tex.

Solar Array Drives:  
Moog, Inc., East Aurora, N.Y.

Solar Arrays:  
Northrop Grumman Space Technology,  
Redondo Beach, Calif.

Solid-State Power Amplifier Converters:  
EMS Technologies, Montreal, Quebec, Canada

Star Trackers:  
Galileo Avionica, Florence, Italy

Structure:  
ATK Composite Optics, Inc., San Diego, Calif.

Sun Sensors:  
Adcole Corporation, Marlborough, Mass.

Transponder:  
General Dynamics, Scottsdale, Ariz. 

Instrument Hardware Suppliers 
MDIS:
Integrator: APL, Laurel, Md.
SSG, Inc. (NAC telescope), Wilmington, Mass.
Atmel (CCD), San Jose, Calif.
CDA Intercorp (filter wheel motor for WAC), Deerfield, Fla.
Starsys Research (pivot motor), Boulder, Colo.
Optimax (WAC lenses), Chicago, Ill.
Northrop Grumman Poly Scientific (twist capsule), 
Blacksburg, Va.
Optical Coating Laboratory, Inc. (heat filters), Santa Rosa, 
Calif. 

GRNS:
Integrator: APL, Laurel, Md.
Ricor (cooler), En Harod Ihud, Israel
Patriot Engineering (design, analysis, and subassembly of 
sensors), Chagrin Falls, Ohio.
Hamamatsu Corp. (photomultipliers), Bridgewater, N.J.
Lawrence Berkeley National Laboratory (GRS), Berkeley, 
Calif.
Lawrence Livermore National Laboratory (GRS), Livermore, 
Calif.
Space Science Laboratory, University of California, Berkeley, 
(GRS), Berkeley, Calif.

XRS: 
Integrator: APL, Laurel, Md.
Amptek (components), Bedford, Mass.
Metorex (X-ray sensor tubes), Espoo, Finland

MAG:
Integrator and digital electronics: APL, Laurel, Md.
Goddard Space Flight Center (sensor and analog 
electronics), Greenbelt, Md.

MLA: 
Integrator: Goddard Space Flight Center, Greenbelt, Md.

MASCS: 
Integrator: LASP, University of Colorado, Boulder, Colo.

EPPS: 
Integrator, common electronics, and EPS subassembly: APL, 
Laurel, Md.
University of Michigan (FIPS subassembly), Ann Arbor, 
Mich. 
Amptek (components), Bedford, Mass.
Luxel (microchannel plate), Friday Harbor, Wash.
Micron Semiconductor (solid-state detectors), Lancing, 
Sussex, UK
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Mission Summary

Cruise trajectory
The MESSENGER mission takes advantage of an ingenious 

trajectory design, lightweight materials, and miniaturization 

of electronics, all developed in the three decades since 

Mariner 10 flew past Mercury in 1974 and 1975. The 

compact orbiter, fortified against the searing conditions 

near the Sun, will investigate key questions about Mercury’s 

characteristics and environment with a set of seven scientific 

instruments. 

On a 7.9-billion-km journey that included more than 

15 loops	around	the	Sun,	the	spacecraft’s	trajectory	included	

one pass by Earth, two by Venus, and three by Mercury, 

before a propulsive burn will ease it into orbit around its 

target planet. The Earth flyby in August 2005, along with 

the Venus flybys in October 2006 and June 2007 and the 

three Mercury flybys in January 2008, October 2008, and 

September 2009 used the pull of each planet’s gravity to 

guide MESSENGER toward Mercury’s orbit. 

The combined effect of the six gravity assists from three 

planets and five deterministic deep-space maneuvers (DSMs) 

— using the bipropellant Large Velocity Adjust (LVA) engine 

of the spacecraft and the influence of the Sun — accelerated 

the spacecraft from an average speed around the Sun of 

30 km/s	(the	Earth’s	average	speed	around	the	Sun)	to	

48 km/s	(Mercury’s	average	speed	around	the	Sun).

The cruise phase of the mission concludes in March 2011, 

when the spacecraft will execute the Mercury orbit insertion 

(MOI) maneuver, slowing the spacecraft and allowing it to 

be captured into orbit around Mercury. 

Getting a Boost
For a gravity assist, a spacecraft flies close to 

a planet and trades with the planet’s orbital 

momentum around the Sun. Depending on the 

relative difference in mass between the planet 

and the spacecraft, as well as the distance 

between the two, this exchange of momentum 

can impart a substantial change in spacecraft 

speed. Since the spacecraft’s mass is negligible 

compared with that of the planet, this process 

has a negligible effect on the planet’s orbit 

around the Sun. But the spacecraft receives a 

great boost on the way to its next destination. 

Gravity-assist maneuvers can be used to speed 

a spacecraft up or slow a spacecraft down. 

Closest approach distance, direction, and the 

velocity of a spacecraft relative to the planet’s 

velocity all affect the acceleration magnitude and 

direction change of the spacecraft’s trajectory. 

The greatest change in a spacecraft’s speed and 

direction occurs when a slow-moving spacecraft 

approaches just above the surface or cloud 

tops of a massive planet. The least change in a 

spacecraft’s speed and direction occurs when 

a fast-moving spacecraft approaches a small 

planet from a great distance.
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Earth to Mercury

MESSENGER cruise trajectory from the Earth to Mercury with annotation of critical flyby and maneuver events.  
View looks down from the ecliptic north pole.

Multiple Flybys
Mariner 10 flew past Venus to reach Mercury, but the idea of multiple Venus/Mercury flybys to help 

a spacecraft “catch” Mercury and begin orbiting the planet came years later, when Chen-wan Yen of 

NASA’s Jet Propulsion Laboratory developed the concept in the mid-1980s. MESSENGER adopted this 

mission design approach; without these flybys, MESSENGER would move so fast past Mercury that no 

existing propulsion system could slow it down sufficiently for it to be captured into orbit.
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Launch
MESSENGER launched from Pad B of Space Launch Complex 17 at Cape Canaveral Air Force Station, Fla., on a three-

stage Boeing Delta II expendable launch vehicle on August 3, 2004. The Delta II 7925H-9.5 (heavy lift) model was the 
largest allowed for NASA Discovery missions. It features a liquid-fueled first stage with nine strap-on solid boosters, a 
second-stage liquid-fueled engine, and a third-stage solid-fuel rocket. With MESSENGER secured in a 9.5-m fairing on 
top, the launch vehicle was about 40 m tall. 

The launch vehicle imparted an excess launch energy per mass (usually denoted by C3 and equal to the excess over 
what is required for Earth escape) of approximately 16.4 km2/s2 to the spacecraft, setting up the spacecraft for a return 
pass by the Earth approximately one year from launch.

Earth flyby highlights
MESSENGER swung by its home planet on August 2, 2005, for a gravity assist that propelled it deeper into the inner 

Solar System. MESSENGER’s systems performed flawlessly as the spacecraft swooped around Earth, coming to a closest 
approach point of about 2,348 km over central Mongolia at 3:13 p.m. EDT. The spacecraft used the tug of Earth’s 
gravity to change its trajectory significantly, bringing its average orbital distance nearly 29 million km closer to the Sun 
and sending it toward Venus for gravity assists in 2006 and 2007.

Team members in the MESSENGER Mission Operations Center at APL watch the spacecraft launch from Cape 
Canaveral. The team began operating the spacecraft less than an hour later, after MESSENGER separated 
from the launch vehicle.
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Earth Flyby

View of the Earth flyby trajectory from above northern Asia. Major country borders are 
outlined in green on Earth’s nightside. The yellow line marks the position of the day/night or 
dawn/dusk terminator.

North ecliptic pole view of the trajectory between Earth and the first Venus flyby.  
Dashed lines depict the orbits of Earth and Venus. Timeline fading helps emphasize 
primary events.

Earth to Venus
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MESSENGER’s main camera snapped several approach shots of Earth and the Moon, including a series of color images 
that science team members strung into a “movie” documenting MESSENGER’s departure. On approach, the Mercury 
Atmospheric and Surface Composition Spectrometer (MASCS) also made several scans of the Moon in conjunction with 
the camera observations, and during the flyby the particle and magnetic field instruments spent several hours making 
measurements in Earth’s magnetosphere. 

The close flyby of Earth and the Moon allowed MESSENGER to give its two Mercury Dual Imaging System (MDIS) 
cameras a thorough workout. The images helped the team understand fully how the cameras operate in flight in 
comparison with test results obtained in the laboratory before launch. Images were taken in full color and at different 
resolutions, and the cameras passed their tests.

Not only were these pictures useful for carefully calibrating the imagers for the spacecraft’s Mercury encounters, they 
also offered a unique view of Earth. Through clear skies over much of South America, features such as the Amazon, the 
Andes, and Lake Titicaca are visible, as are huge swaths of rain forest.

The pictures from MESSENGER’s flyby of Earth include “natural” color and infrared views of North and South 
America; a peek at the Galápagos Islands through a break in the clouds; and the movie of the rotating Earth, taken as 
MESSENGER sped away from its home planet.

Using various combinations of filters in the optical path, MESSENGER’s camera can obtain a mix of 
red, green, and blue (RGB) light in various proportions to create a full spectrum of colors. On the left 
is a “normal” color image of the Earth. On the right, infrared images are visualized by substituting 
one of the RGB components. Continental areas are mostly red due to the high reflectance of 
vegetation in the near-infrared. Short-wavelength light (blue) is easily scattered in Earth’s atmosphere, 
producing our blue skies, but also obscuring the surface from MESSENGER’s viewpoint. Infrared light 
is not easily scattered, so images of the Earth remain sharp.

Twins Image
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Venus gravity assists
MESSENGER has flown by Venus twice using the tug of the planet’s gravity to change its trajectory, to shrink the 

spacecraft’s orbit around the Sun, and to bring it closer to Mercury.

During the first Venus flyby on October 24, 2006, the spacecraft came within 2,987 km of the surface of Venus. 
Shortly before the encounter, MESSENGER entered superior solar conjunction, where it was on the opposite side of the 
Sun from Earth and during which reliable communication between MESSENGER and mission operators was not possible. 
In addition, during the flyby the spacecraft experienced the mission’s first and longest eclipse of the Sun by a planet. 
During the eclipse, which lasted approximately 56 minutes, the spacecraft’s solar arrays were in the shadow of Venus 
and MESSENGER operated on battery power.

MESSENGER swung by Venus for the second time on June 5, 2007, speeding over the planet’s cloud tops at a 
relative velocity of more than 48,000 km/hour and passing within 338 km of its surface near the boundary between the 
lowland plains of Rusalka Planitia and the rifted uplands of Aphrodite Terra. The maneuver sharpened the spacecraft’s 
aim toward the first encounter with Mercury and presented a special opportunity to calibrate several of its science 
instruments and learn something new about Earth’s nearest neighbor.

North ecliptic pole view of the trajectory between the first Venus flyby and the first Mercury flyby. Dashed lines 
depict the orbits of Earth, Venus, and Mercury. Timeline fading helps emphasize primary events.

Venus to Mercury
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View of the second Venus flyby trajectory from above the planet’s northern pole. The yellow line marks the 
position of the day/night or dawn/dusk terminator. Closest approach time listed is in local spacecraft time, not 
accounting for the one-way light time for the signals to reach the Earth. 

Venus Flyby 2

Venus Flyby 1

View of the first Venus flyby trajectory from above the planet’s northern pole. The yellow line marks the 
position of the day/night or dawn/dusk terminator. Closest approach time listed is in local spacecraft time, not 
accounting for the one-way light time for the signals to reach the Earth.
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All of the MESSENGER instruments operated during the flyby. The camera system imaged the nightside in near-
infrared bands and obtained color and higher-resolution monochrome mosaics of both the approaching and departing 
hemispheres. The ultraviolet and visible spectrometer on the MASCS instrument obtained profiles of atmospheric species 
on the day and night sides as well as observations of the exospheric tail on departure.

The MASCS visible and infrared spectrometer observed the Venus dayside near closest approach to gather 
compositional information on the upper atmosphere and clouds, and the Mercury Laser Altimeter (MLA) carried out 
passive radiometry and attempted to range to the Venus upper atmosphere and clouds for several minutes near closest 
approach. The Gamma-Ray and Neutron Spectrometer (GRNS) instrument observed gamma-rays and neutrons from 
Venus’ atmosphere, providing information for planning the upcoming Mercury flybys and for calibration from a source of 
known composition.

The European Space Agency’s Venus Express mission was operating at the time of the flyby, permitting the 
simultaneous observation of the planet from two independent spacecraft, a situation of particular value for 
characterization of the particle-and-field environment at Venus. MESSENGER’s Energetic Particle and Plasma 
Spectrometer (EPPS) observed charged particle acceleration at the Venus bow shock and elsewhere, and the 
Magnetometer (MAG) measured the upstream interplanetary magnetic field (IMF), bow shock signatures, and pick-up 
ion waves as a reference for energetic particle and plasma observations by both spacecraft. The encounter also enabled 
two-point measurements of IMF penetration into the Venus ionosphere, primary plasma boundaries, and the near-tail 
region.

Venus 2 Approach

Approach image taken 
through the MDIS 630-
nm filter (stretched). 
Global circulation 
patterns in the clouds 
are clearly visible.
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Flying by Mercury
On January 14, 2008, at 19:04:39 UTC (2:04:39 p.m. EST) the MESSENGER spacecraft executed its first Mercury flyby, 

passing over the uncharted surface of the planet at an altitude of 201.4 km, an even more accurate aim than for the 
second Venus flyby. The primary purpose of this activity was to shrink the orbital period of the spacecraft around the 
Sun by 11 days, bringing MESSENGER’s orbit closer to Mercury’s orbit. On October 6, 2008, at 08:40:22 UTC (4:40:22 
EDT) the MESSENGER spacecraft executed its second Mercury flyby, passing above the surface at an altitude of 199.2 
km, within a phenomenal 760 meters of the planned flyby altitude! Although the flyby enabled direct observation of 
additional previously unobserved planetary surface features, the primary purpose of the flyby was to shrink the orbital 
period of the spacecraft around the Sun by an additional 16 days and increase the ecliptic inclination of the spacecraft 
by 0.1 degrees, further matching the orbit of Mercury around the Sun. The third and final Mercury flyby on September 
29, 2009, at 21:54:56 UTC (5:54:56 p.m. EST) further decreased the spacecraft’s orbital period around the Sun by 
almost 13 days to 104.8 days, and increased the inclination of the spacecraft’s orbit by a tiny amount (0.001º) such that 
it now closely matches Mercury’s 7.0 degree orbit inclination. The spacecraft’s lowest altitude above the planet was 
227.5 kilometers. These adjustments to the spacecraft’s orbit will enable it to enter orbit about Mercury on March 18, 
2011 UTC.

In conjunction with these flyby activities, pre-determined course-correction maneuvers — deep-space maneuvers 
(DSMs) using the main Large Velocity Adjust (LVA) engine — were scheduled approximately two months after each flyby 
to adjust further the spacecraft trajectory in preparation for the eventual capture into orbit around Mercury.

Mercury Flybys

North ecliptic pole view of the trajectory between the first Mercury flyby and Mercury orbit insertion. Dashed 
lines depict the orbits of Earth, Venus, and Mercury. Timeline fading helps emphasize primary events.
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As a result of the three flybys of Mercury, MESSENGER has viewed nearly 91% of the entire planet in color, imaged 
most of the areas not seen by Mariner 10, and taken measurements of the composition of the surface, atmosphere, and 
magnetosphere. In contrast to the orbital phase of the mission, the closest approach points during the flybys were on 
the night side and near the planet’s equator. These approaches provide special vantages to gather high-resolution images 
of the low- to mid-latitude regions of the planet as well as low-latitude measurements of the magnetic and gravitational 
fields.

Mercury Flybys

View of the three Mercury flyby trajectories from above the planet’s northern pole. The yellow line marks the 
position of the day/night or dawn/dusk terminator. Closest approach time listed is in local spacecraft time, not 
accounting for the one-way light time for the signals to reach the Earth.
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MESSENGER’s deep-space maneuvers
In conjunction with the six planetary flybys, MESSENGER’s complex 6.6-year cruise trajectory has included more than 

40 anticipated trajectory-correction maneuvers (TCMs). These TCMs included five deterministic deep-space maneuvers 
(DSMs), which used the spacecraft’s bipropellant Large Velocity Adjust (LVA) engine. In addition to imparting a combined 
spacecraft change in velocity of more than 1 km/s, the DSMs were the primary method used to target the spacecraft 
before each planetary flyby (except the second Venus flyby). Smaller velocity-adjustment maneuvers that used the 
propulsion system’s monopropellant thrusters fine-tuned the trajectory between the main DSMs and the gravity-assist 
flybys of the planets.

On December 12, 2005, MESSENGER successfully fired its bipropellant LVA engine for the first time, completing the 
first of the five critical deep-space maneuvers (DSM-1). The maneuver, just over 8 minutes long, changed MESSENGER’s 
speed by approximately 316 m/s, placing the spacecraft on target for the first Venus flyby on October 24, 2006. 
This maneuver was the first to rely solely on the LVA, the largest and most efficient engine of the propulsion system. 
Maneuvers performed with the LVA use about 30% less total propellant mass — both fuel and oxidizer — than the 
other thrusters, which use monopropellant fuel only. Approximately 100 kg of propellant (both fuel and oxidizer), about 
18% of the total onboard propellant, was used to complete DSM-1.

On October 17, 2007, MESSENGER completed its second critical DSM — 250 million km from Earth — successfully 
firing the LVA again to change the spacecraft’s trajectory and target it for its historic flyby of Mercury on January 14, 
2008. The maneuver, just over 5 minutes long, consumed approximately 70 kg of propellant (both fuel and oxidizer), 
changing the velocity of the spacecraft by approximately 226 m/s.

On March 19, 2008, MESSENGER completed its third critical DSM, successfully firing the LVA once again to change 
the spacecraft’s trajectory and target it for the second flyby of Mercury on October 6, 2008. The shortest deterministic 
maneuver for the mission on the LVA, just over 2.5 minutes long, consumed approximately 21 kg of propellant (both 
fuel and oxidizer), changing the velocity of the spacecraft by approximately 72 m/s.

On December 4 and 8, 2008, MESSENGER completed its fourth critical DSM, successfully firing the LVA twice to 
adjust the spacecraft’s trajectory and target it for the third flyby of Mercury on September 29, 2009. This maneuver 
was purposely split into two parts to provide engineers a practice opportunity for the cruise-ending Mercury Orbit 
Insertion maneuver. Combined, the two parts of this DSM consumed about 68 kg of propellant over a total firing time 
of	6.5 minutes,	changing	the	spacecraft	velocity	by	222	m/s	and	then	by	25	m/s,	respectively,	for	each	part	of	the	
maneuver.

MESSENGER completed its fifth and final critical DSM on November 24, 2009. This maneuver, which lasted 
4.6 minutes,	changed	the	spacecraft’s	velocity	by	178	m/s	and	used	approximately	46	kg	of	propellant.
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The MESSENGER Science Team
The MESSENGER Science Team consists of experts in all fields of planetary science, brought together by their ability 
to complete the science investigations conducted by MESSENGER. The team is divided into four discipline groups: 
Geochemistry, Geology, Geophysics, and Atmosphere and Magnetosphere, with each team member given responsibility 
for implementation of a particular part of the mission’s science plan.
Principal Investigator: Sean C. Solomon, Director of the Department of Terrestrial Magnetism at the Carnegie 
Institution of Washington
Project Scientist: Ralph L. McNutt, Jr., Johns Hopkins University Applied Physics Laboratory (APL)
Deputy Project Scientists: Brian J. Anderson and Louise M. Prockter, APL

Science Team members
Mario H. Acuña*
NASA Goddard Space Flight Center 

Daniel N. Baker
University of Colorado

Mehdi Benna
NASA Goddard Space Flight Center

David T. Blewett
APL

William V. Boynton
University of Arizona

Clark R. Chapman 
Southwest Research Institute

Andrew F. Cheng
APL

Larry G. Evans
Computer Sciences Corporation and  
NASA Goddard Space Flight Center

Deborah L. Domingue
Planetary Science Institute

William C. Feldman
Planetary Science Institute

Robert W. Gaskell
Planetary Science Institute

Jeffrey J. Gillis-Davis
University of Hawaii

George Gloeckler
University of Michigan and  
University of Maryland

Robert E. Gold
APL

Steven A. Hauck, II
Case Western Reserve University

James W. Head III
Brown University

Jörn Helbert
Institute for Planetary Research, Deutsches 
Zentrum für Luft- und Raumfahrt

Kevin Hurley
University of California, Berkeley

Catherine L. Johnson
University of British Columbia and  
Planetary Science Institute

Rosemary M. Killen
NASA Goddard Space Flight Center

Stamatios M. Krimigis
APL and the Academy of Athens

David J. Lawrence
APL

Jean-Luc Margot
University of California, Los Angeles

William E. McClintock
University of Colorado

Timothy J. McCoy
Smithsonian Institution National  
Museum of Natural History 

Scott L. Murchie
APL

Larry R. Nittler
Carnegie Institution of Washington

Jürgen Oberst
Institute for Planetary Research, Deutsches 
Zentrum für Luft- und Raumfahrt

David A. Paige
University of California, Los Angeles

Stanton J. Peale
University of California, Santa Barbara

Roger J. Phillips
Southwest Research Institute

Michael E. Purucker
Raytheon at Planetary Geodynamics Lab, 
NASA Goddard Space Flight Center

Mark S. Robinson
Arizona State University

David Schriver
University of California, Los Angeles

James A. Slavin
NASA Goddard Space Flight Center

Ann L. Sprague
University of Arizona

David E. Smith
Massachusetts Institute of Technology

Richard D. Starr
The Catholic University of America

Robert G. Strom 
University of Arizona

Jacob I. Trombka
NASA Goddard Space Flight Center

Ronald J. Vervack, Jr.
APL 

Faith Vilas
MMT Observatory

Thomas R. Watters
Smithsonian Institution National Air and  
Space Museum

Maria T. Zuber
Massachusetts Institute of Technology

Thomas H. Zurbuchen
University of Michigan

 deceased
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Program/Project Management
Sean C. Solomon of the Carnegie Institution of Washington (CIW) leads the MESSENGER mission as the Principal 

Investigator. The Johns Hopkins University Applied Physics Laboratory (APL), Laurel, Md., manages the MESSENGER 
mission for NASA’s Science Mission Directorate, Washington, D.C.

At NASA Headquarters, Edward J. Weiler is the Associate Administrator for NASA’s Science Mission Directorate. 
James L. Green is the Director of that directorate’s Planetary Science Division. Anthony Carro is the MESSENGER Program 
Executive, and Edwin J. Grayzeck is the MESSENGER Program Scientist. The NASA Discovery Program is managed out 
of the Marshall Space Flight Center, where Dennon J. Clardy is the Discovery Program Manager, and James E. Lee is the 
MESSENGER Mission Manager.

At APL, Peter D. Bedini is the MESSENGER Project Manager, Ralph L. McNutt, Jr., is Project Scientist, Eric J. Finnegan is 
the Mission Systems Engineer, and Andrew B. Calloway is the Mission Operations Manager.

NASA Discovery Program
MESSENGER is the seventh mission in NASA’s Discovery Program of lower-cost, highly focused, planetary science 

investigations. Created in 1992, Discovery challenges teams of scientists and engineers to find innovative and 
imaginative ways to uncover the mysteries of the Solar System within limited, cost-capped budgets and schedules. 

Other Discovery missions
NEAR (Near Earth Asteroid Rendezvous) marked the Discovery Program’s first launch, in February 1996. The NEAR 

Shoemaker spacecraft became the first to orbit an asteroid when it reached 433 Eros in February 2000. After collecting 
10 times the data initially expected during a year around Eros, in February 2001, NEAR Shoemaker became the first 
spacecraft to land on an asteroid and collect data from its surface.

Mars Pathfinder launched December 1996 and landed on Mars in July 1997. The mission demonstrated several 
tools and techniques for future Mars missions — such as entering, descending, and landing with airbags to deliver a 
robotic rover — while captivating the world with color pictures from the red planet.

Lunar Prospector orbited Earth’s Moon for 18 months after launching in January 1998. The mission’s data enabled 
scientists to create detailed maps of the gravity, magnetic properties, and chemical makeup of the Moon’s entire surface.

Stardust, launched in February 1999, collected samples of comet dust and provided the closest look yet at a comet 
nucleus when it sailed through the coma of Wild 2 in January 2004. It returned the cometary dust to Earth in January 
2006.

Genesis, launched in August 2001, collected solar wind particles and returned them to Earth in September 2004. 
The samples are improving our understanding of the isotopic composition of the Sun, information that will help to 
identify what the young Solar System was like.

CONTOUR (Comet Nucleus Tour) was designed to fly past and study at least two very different comets as they visited 
the inner Solar System. The spacecraft was lost six weeks after launch, during a critical rocket-firing maneuver in August 
2002 to boost it from Earth’s orbit onto a comet-chasing path around the Sun. 

Deep Impact, launched in January 2005, was the first experiment to probe beneath the surface of a comet, 
attempting to reveal never-before-seen materials that would provide clues to the internal composition and structure 
of a comet. In July 2005, a variety of instruments, both onboard the spacecraft and at ground-based and space-based 
observatories around the world, observed the impact with the comet and examined the resulting debris and interior 
material.
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Dawn, launched in September 2007 toward Vesta and Ceres, two of the largest main-belt asteroids in our Solar 
System, will provide key data on asteroid properties by orbiting and observing these minor planets. Dawn is scheduled to 
arrive at Vesta in July 2011.

Kepler, launched in March 2009, is monitoring 100,000 stars similar to our Sun for four years, using new technology 
to search local regions of the galaxy for Earth-size (or smaller) planets for the first time.

The GRAIL (Gravity Recovery and Interior Laboratory) mission, scheduled to launch in September 2011, will fly twin 
spacecraft in tandem orbits around the Moon for several months to measure its gravity field in unprecedented detail. 
The mission also will answer longstanding questions about Earth’s Moon and provide scientists a better understanding of 
how Earth and other rocky planets in the Solar System formed.

Discovery also includes Missions of Opportunity — not complete Discovery missions, but pieces of a larger NASA or 
non-NASA mission or creative reuses of spacecraft that have completed their prime missions. Those selected to date for 
flight include:

•	 The	ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) instrument is studying the interaction between the 
solar wind and the Martian atmosphere from the European Space Agency’s Mars Express spacecraft, which began 
orbiting Mars in December 2003. 

•	 The	M3 (Moon Mineralogy Mapper), pronounced M-cubed, is one of eleven instruments that flew onboard 
Chandrayaan-1, which launched in October 2008. Chandrayaan-1, India’s first deep space mission, was a project of 
the Indian Space Research Organisation (ISRO). The goals of the mission included expanding scientific knowledge of 
the Moon, upgrading India’s technological capability, and providing challenging opportunities for planetary research 
for the younger generation.

•	 The	EPOXI mission combines two science investigations — the Extrasolar Planet Observation and Characterization 
(EPOCh) and the Deep Impact Extended Investigation (DIXI). Both investigations are using the Deep Impact spacecraft, 
which finished its prime mission in 2005. EPOCh is using the Deep Impact spacecraft to observe several nearby bright 
stars for transits by orbiting planets, and DIXI involved the successful flyby of comet Hartley 2 in October 2010.

•	 NExT (New Exploration of Tempel 1) reused NASA’s Stardust spacecraft to revisit comet Tempel 1, the cometary 
target of Deep Impact, in February 2011. This investigation provided the first look at the changes to a comet nucleus 
produced after its close approach to the Sun.

•	 STROFIO (Start from a ROtating FIeld mass spectrOmeter) is a mass spectrometer that is part of the SERENA (Search 
Exospheric Refilling and Emitted Natural Abundances) instrument package selected to fly on the European Space 
Agency’s BepiColombo Mercury Planetary Orbiter spacecraft, scheduled to launch in 2014. The SERENA instrument 
has two neutral particle analyzers (STROFIO and ELENA) and two ion spectrometers (MICA and PICAM). STROFIO, 
from the Greek word “strofi” (to rotate), will determine the composition of Mercury’s exosphere.

For more on the Discovery Program, visit http://discovery.nasa.gov.




