LOADING...
Text Size
NASA - Twisting Solar Jets in STEREO
June 7, 2007

[image-50]

Coronal jets are small-scale transient ejections of hot gases, or plasma, occurring in the solar atmosphere. During a typical event, about a million tons of matter are ejected at speeds reaching a million miles per hour over a few minutes' time. The jets are believed to contribute significantly to the mass flow constantly ejected by the Sun, known as the solar wind. Despite their relative simplicity, jets may serve as a paradigm for more complex and far larger events originating in the solar atmosphere, such as coronal mass ejections.

Until recently, all jet observations suffered from an inherent limitation: because they were observed from a single viewpoint, their complete geometry could not be determined unambiguously. This situation improved dramatically once the stunning images from the SECCHI instruments onboard the twin NASA/STEREO spacecraft became available in early 2007.

A unique polar coronal jet observation was made on June 7, 2007. Analysis of the images from the two distinct viewpoints of the STEREO spacecraft reveals an unmistakable helical structure in the jet. These pioneering, multi-viewpoint observations from STEREO provide the first conclusive evidence for the jet's helical geometry.

A recent theoretical model of jet initiation conjectures that the twisting of magnetic fields is the key element that explains the helical geometry of the jet. State-of-the-art numerical simulations have confirmed this prediction, and explained how the key observed features of the jets are formed. Highly twisted magnetic fields eventually become unstable, much like an overwound spring. When the writhing fields come into contact with nearby untwisted fields that extend into the solar wind, the twist is transferred to those very long field lines. The twist then rapidly leaves the Sun, pushing the plasma outward at high speed.

The combination of unprecedented STEREO observations and advanced numerical simulations allows us to meaningfully test physical mechanisms for coronal jets for the first time. The demonstration that magnetic twist is a key element in initiating ejections from the solar atmosphere deepens our understanding of the dynamic Sun-Earth relationship.
 

Movies:

› solarjets_intro.mov - (12.24 mb)
The jet seen in three different extreme ultraviolet wavelengths by STEREO's SECCHI/EUVI (171 A at 1 million K, 195 A at 1.4 million K and 304 A at about 60,000-80,000 K), and in visible light by the SECCHI/Cor1 coronagraph.

› solarjets_movie2.mov - (2.20 mb)
The jet seen in extreme ultraviolet by STEREO A and B.

› solarjets_visualization.mov - (1.68 mb)
Models simulation showing twisted magnetic field lines shooting a jet of material out from the the solar surface.
 

Print Download

› Download tiff
 

References:

STEREO Stereoscopic Observations Constraining the Initiation of Polar Coronal Jets
S. Patsourakos, E.Pariat, A. Vourlidas, S. K. Antiochos, J. P. Wuesler
The Astrophysical Journal Letters; June 10 2008
http://arxiv.org/abs/0804.4862
 

A Model for Solar Jets
E. Pariat, S.K. Antiochos, C.R. DeVore
The Astrophysical Journal, submitted

A unique polar coronal jet observation was made on June 7, 2007.
A unique polar coronal jet observation was made on June 7, 2007 by the ESA/NASA SOHO spacecraft. Analysis of the images from the two distinct viewpoints of the STEREO spacecraft (top right and left) reveals an unmistakable helical structure in the jet.
Image Credit: 
NASA/STEREO, ESA&NASA/SOHO
Image Token: 
[image-50]
Image Token: 
[image-69]
Image Token: 
[image-82]
Page Last Updated: November 4th, 2014
Page Editor: Holly Zell