Mission Overview

    Image of the two STEREO spacecraft in orbit around the sun.

    › View larger
    Artist's conceptual drawing of the two spacecraft in orbit around the sun.
    Credit: NASA

    STEREO Overview

    STEREO (Solar TErrestrial RElations Observatory) is the third mission in NASA's Solar Terrestrial Probes program (STP). The mission, launched in October 2006, has provided a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories - one ahead of Earth in its orbit, the other trailing behind - have traced the flow of energy and matter from the Sun to Earth. STEREO has revealed the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO is a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    Why the need for STEREO?

    Coronal mass ejections (CMEs), are powerful eruptions that can blow up to 10 billion tons of the Sun's atmosphere into interplanetary space. Traveling away from the Sun at speeds of approximately one million mph (1.6 million kph), CMEs can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with Earth's magnetosphere.

    Large geomagnetic storms directed towards Earth can damage and even destroy satellites, are extremely hazardous to Astronauts when outside of the protection of the Space Shuttle or the International Space Station performing Extra Vehicular Activities (EVAs), and they have been known to cause electrical power outages.

    CMEs: a Fundamental Science Challenge

    Solar ejections are the most powerful drivers of the Sun-Earth connection. Yet despite their importance, scientists don't fully understand the origin and evolution of CMEs, nor their structure or extent in interplanetary space. STEREO's unique stereoscopic images of the structure of CMEs will enable scientists to determine their fundamental nature and origin.

Related Multimedia