PK-3 Plus: Plasma Crystal Research on the ISS (PK-3 Plus) - 11.19.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
Plasma crystals are a new kind of matter, rediscovered in 1994. They form under certain conditions in a complex (dusty) plasma. There, the electrically charged dust particles arrange in a regular macroscopic crystal lattice. This structure allows for an investigation of the properties of condensed matter on the kinetic level. This means that basic processes, such as melting, can be followed by observing the motion of individual particles. PK-3 will give investigators a better understanding of plasma in space and will determine the critical points for the plasma.

Science Results for Everyone

The PK-3 Plus investigations examine complex plasmas in space revealing many interesting new phenomena. For example, researchers were able to see the exact point at which matter changes from a liquid to a solid phase in microgravity. PK-3 Plus provides a better understanding of interactions between gases and dusty plasmas; that understanding could help scientists create powders containing specific ingredients for agricultural, hygienic and medical applications for use on Earth. These and other results clearly showed that complex plasma is a good model system for liquid and crystalline states.



The following content was provided by Hubertus M. Thomas, and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.

Experiment Details

OpNom

Principal Investigator(s)

  • Hubertus M. Thomas, Max Planck Institute for Extraterrestrial Physics, Garching, Germany

  • Co-Investigator(s)/Collaborator(s)
  • Daniel Beysens, Ph.D., French Atomic Energy Commission (CEA), Grenoble, France
  • Bernard Zappoli, Centre National d'Etudes Spatiales (CNES), Toulouse, France
  • Laifa Boufendi, Universite d'Orleans, Orleans, France
  • Alexei V. Ivlev, Max-Planck-Institut fur Extraterrestrische Physik, Garching, Germany
  • Gregor E. Morfill, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
  • Michael Kretschmer, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
  • Milenko Rubin-Zuzic, Max Planck Institute for Extraterrestrial Physics, Garching, Germany
  • Hermann Rothermel, Ph.D., Max Planck Institute for Extraterrestrial Physics, Garching, Germany
  • Noriyoshi Sato, Tohoku University, Sendai, Japan
  • Hiroo Totsuji, Okayama University, Okayama, Japan
  • Osamu Ishihara, Yokahama National University, Yokahama, Japan
  • Yasuaki Hayashi, Kyoto Institute of Technology, Kyoto, Japan
  • Yukio Watanabe, Test Facilities Operation and Maintenance, Space Station Engineering Department, Ibaraki, Japan
  • Oleg F. Petrov, Institute for High Energy Densities, Moscow, Russia
  • Vladimir I. Molotkov, Russian Academy of Sciences, Moscow, Russia
  • Vladimir Fortov, Institute of Extremal States Thermophysics, Russia
  • Andrey M. Lipaev, Institute for High Energy Densities, Moscow, Russia
  • Glenn Joyce, Ph.D., George Mason University, Fairfax, VA, United States

  • Developer(s)
    Max Planck Institute for Extraterrestrial Physics, Garching, , Germany

    Kayser Threde, Munich, , Germany

    Sponsoring Space Agency
    European Space Agency (ESA)

    Sponsoring Organization
    Information Pending

    Research Benefits
    Information Pending

    ISS Expedition Duration
    April 2006 - April 2007

    Expeditions Assigned
    13,14

    Previous ISS Missions
    The PKE Nefedov mission was a less sophisticated version of this mission, studying complex plasmas in space from 2001 to 2005. The PK-3 mission has a new and improved design, based on drawbacks noted in the first experiment.

    ^ back to top



    Experiment Description

    Research Overview

    • Gravity plays an important role for the structure of plasma crystals. In microgravity large 3-dimensional plasma crystals can be grown. Plasma is the most ubiquitous state of matter in our universe, so understanding it is critical for space exploration. PK-3 will further the understanding of the phenomenon of plasma.


    • PK-3 will consist of a series of tests in which the state of plasma will be studied, continuing from previous plasma crystal experiments. The critical points (temperature and pressure at which the liquid and gaseous phases of a substance become identical) of plasma will be studied, as well.


    • This investigation will provide a better understanding of the environment of space. With a better understanding of extraterrestrial plasma comes a better understanding of plasma on Earth.

    Description
    PK-3 Plus is a symmetrical driven radio-frequency plasma discharge with special features for the investigation of complex plasmas under microgravity conditions. As a second generation laboratory, PK-3 Plus provides major new possibilities for these investigations due to its design improvements relative to the first long-term experiment PKE-Nefedov. The PK-3 Plus apparatus allows investigations at neutral gas pressures between 0.05 - 2.5 millibar and radio frequency (rf) power of 0.01 - 1 W. The complex plasma can consist of monodisperse particles in a size range from 1 - 20 micrometers. Up to six particle sizes can be added to the experimental volume. It is possible to change the number of particles, the composition of particles, the plasma conditions and the neutral gas pressure during one experiment. The particle cloud can be excited by an electrical low frequency signal on the electrodes (0.1 - 100 Hz at a maximum amplitude of 50 V) or by a low frequency modulation of the rf-amplitude in different wave forms (sinusoidal, square, pulse, etc.).

    The PK-3 investigation has two major pieces of equipment: the experimental block or plasma chamber, and the telescience system (TS). The research will be performed on the ISS inside the plasma chamber. The chamber is attached via a tube to the space environment to produce the vacuum conditions needed. The chamber can produce pressures less than 10-5 millibar.

    The TS is the computer in which the chamber conditions can be altered and the storage unit for the data collected. This chamber will have state of the art hardware and software, and will provide better diagnostics than previous hardware. The chamber has an automatic mode, which will be run twice, measuring such parameters as particle size, gases present, pressures, densities, and plasma power. The third and final time the equipment is run will be an attempt to find different critical points. In this run, the plasma will be manually controlled by the cosmonaut to first be homogeneously distributed, then to be in a liquid phase, and then to have different particle densities predetermined by the investigators.

    ^ back to top



    Applications

    Space Applications
    Learning more about the space environment will help us to better explore it. We can work safer, understand better, and ultimately travel further if we know more about the plasmas of space.

    Earth Applications
    Plasma studies in outer space could provide answers to our questions about terrestrial plasmas such as lightning.

    ^ back to top



    Operations

    Operational Requirements
    The experiment will have 3 or more runs (sessions) to meet the requirements of the investigator. There are two modes, automatic and manual, for this investigation. During the manual mode, crew time will be required to complete the investigation. The chamber records the parameters necessary to achieve the critical points, which will be sent back to Earth. Also to be returned are the videos of the chamber from its cameras, and the data recorded onto the TS hard disks.

    Operational Protocols
    On three consecutive days, the experiment will be run. The first two days will be on automatic, as mentioned above, and the last day will be manual operations. On automatic days, the machine can be left alone to run, passively taking measurements of the plasma behaviors in microspace. On the manual day, there will be a cosmonaut present, adjusting settings to achieve the required states of the plasma. The experiment is expected to take approximately 90 minutes each day.

    ^ back to top



    Results/More Information

    The PK-3 Plus experiments are dedicated to observe basic complex plasma conditions and provide much better insights into the properties of complex plasmas. Here already the difference between using argon or neon as the neutral gas was clear to see. Argon plasma showed a brighter glow, corresponding to a higher ionization rate, close to the electrodes while the neon plasma showed a homogeneous distribution of the glow between the two electrodes. Although one could imagine that a homogeneous plasma distribution would cause a similar distribution in a complex plasma, the experiments showed the opposite. The argon distribution gives the best conditions for  homogeneous, void-free complex plasma,  while the neon glow distribution, unexpectedly resulted in a big void for identical gas and electrical parameters. The physical reason for this difference is not yet clear. There are a number of important differences between complex plasma parameters in neon and argon, e.g. different ion mass and mean free path, different plasma density, different electron temperature etc.

     

    PK-3 Plus showed that the ‘void’ in the center of the complex plasma cloud could be easily closed under certain conditions, thus providing a much better homogeneity of the complex plasma, a feature which was hardly achievable before. This is very promising as it is essential for many precision studies and enables new manipulation possibilities for future experiments.   Instabilities in the plasma (e.g. heartbeat instability which causes continuous contraction and expansion of the void which the microparticles follow) appear at high microparticle densities and are strongly related to changes in the plasma glow. However even though homogeneous and void-free plasma is advantageous for modelling solid (crystalline), fluid and gas phases and transitions between different phases, the reason for the void appearance in the neon distribution has created an interesting field of study for the future by itself.

    ^ back to top



    Results Publications

      Thomas HM, Thomas HM, Morfill GE, Morfill GE, Fortov VE, Ivlev AV, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Hagl T, Rothermel H, Khrapak SA, Sutterlin KR, Rubin-Zuzic M, Petrov OF, Tokarev VI, Krikalev SK.  Complex plasma laboratory PK-3 plus on the international space station. New Journal of Physics. 2008 March 27; 10: 033036. DOI: 10.1088/1367-2630/10/3/033036.

      Totsuji H, Takahashi K, Adachi S, Hayashi Y, Takayanagi M.  Strongly Coupled Plasmas under Microgravity. Japan Society of Microgravity Application. 2011; 28(2): s27-s30. [8th Japan-China-Korea Workshop on Microgravity Sciences for Asian Microgravity Pre-Symposium]

      Jiang K, Nosenko V, LI YF, Schwabe M, Schwabe M, Konopka U, Konopka U, Ivlev AV, Fortov VE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Petrov OF, Turin MV, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  Mach cones in a three-dimensional complex plasma. EPL (Europhysics Letters). 2009 February; 85(4): 45002. DOI: 10.1209/0295-5075/85/45002.

      Sutterlin KR, Thomas HM, Thomas HM, Ivlev AV, Morfill GE, Morfill GE, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Wysocki A, Lowen H.  Lane Formation in Driven Binary Complex Plasmas on the International Space Station. IEEE Transactions on Plasma Science. 2010 April; 38(4): 861-868. DOI: 10.1109/TPS.2009.2035504.

      Hofmann P, Seurig R, Stettner A, Burfeindt J, Morfill GE, Morfill GE, Thomas HM, Thomas HM, Thoma MH, Hofner H, Fortov VE, Molotkov VI, Molotkov VI, Petrov OF, Lipaev AM, Lipaev AM.  Complex plasma research on ISS: PK-3 Plus, PK-4 and impact/plasmalab. Acta Astronautica. 2008 July; 63(1-4): 53-60. DOI: 10.1016/j.actaastro.2007.12.038.

      Kretschmer M, Konopka U, Konopka U, Zhdanov SK, Thomas HM, Thomas HM, Morfill GE, Morfill GE, Fortov VE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Petrov OF.  Particles Inside the Void of a Complex Plasma. IEEE Transactions on Plasma Science. 2011 November; 39(11): 2758-2759. DOI: 10.1109/TPS.2011.2135383.

      Klumov BA, Huber P, Vladimirov S, Thomas HM, Thomas HM, Ivlev AV, Morfill GE, Morfill GE, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI.  Structural properties of 3D complex plasmas: experiments versus simulations. Plasma Physics and Controlled Fusion. 2009 December 1; 51(12): 124028. DOI: 10.1088/0741-3335/51/12/124028.

      Klumov BA, Joyce G, Joyce G, Rath C, Huber P, Thomas HM, Thomas HM, Morfill GE, Morfill GE, Molotkov VI, Molotkov VI, Fortov VE.  Structural properties of 3D complex plasmas under microgravity conditions. EPL (Europhysics Letters). 2010 October; 92(1): 15003. DOI: 10.1209/0295-5075/92/15003.

      Sutterlin KR, Wysocki A, Ivlev AV, Rath C, Thomas HM, Thomas HM, Rubin-Zuzic M, Goedheer WJ, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Morfill GE, Morfill GE, Lowen H.  Dynamics of Lane Formation in Driven Binary Complex Plasmas. Physical Review Letters. 2009 February; 102(8): 085003. DOI: 10.1103/PhysRevLett.102.085003.

      Wysocki A, Rath C, Ivlev AV, Sutterlin KR, Thomas HM, Thomas HM, Khrapak SA, Zhdanov SK, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Lowen H, Morfill GE, Morfill GE.  Kinetics of Fluid Demixing in Complex Plasmas: Role of Two-Scale Interactions. Physical Review Letters. 2010 July; 105(4): 045001. DOI: 10.1103/PhysRevLett.105.045001.

      Zhdanov SK, Schwabe M, Schwabe M, Heidemann RJ, Sutterlin KR, Thomas HM, Thomas HM, Rubin-Zuzic M, Rothermel H, Hagl T, Ivlev AV, Morfill GE, Morfill GE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Petrov OF, Fortov VE, Reiter T.  Auto-oscillations in complex plasmas. New Journal of Physics. 2010 April 1; 12(4): 043006. DOI: 10.1088/1367-2630/12/4/043006.

      Schwabe M, Schwabe M, Zhdanov SK, Thomas HM, Thomas HM, Ivlev AV, Rubin-Zuzic M, Morfill GE, Morfill GE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Fortov VE, Reiter T.  Nonlinear waves externally excited in a complex plasma under microgravity conditions. New Journal of Physics. 2008 March 27; 10(3): 033037. DOI: 10.1088/1367-2630/10/3/033037.

      Liu B, Goree JA, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Morfill GE, Morfill GE, Thomas HM, Thomas HM, Rothermel H, Ivlev AV.  Transverse oscillations in a single-layer dusty plasma under microgravity. Physics of Plasmas. 2009; 16(8): 083703. DOI: 10.1063/1.3204638.

      Worner L, Ivlev AV, Couëdel L, Couëdel L, Huber P, Schwabe M, Schwabe M, Hagl T, Mikikian M, Boufendi L, Boufendi L, Skvortsov A, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Fortov VE, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  The effect of a direct current field on the microparticle charge in the plasma afterglow. Physics of Plasmas. 2013; 20(12): 123702. DOI: 10.1063/1.4843855.

      Sutterlin KR, Wysocki A, Rath C, Ivlev AV, Thomas HM, Thomas HM, Khrapak SA, Zhdanov SK, Rubin-Zuzic M, Goedheer WJ, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Morfill GE, Morfill GE, Lowen H.  Non-equilibrium phase transitions in complex plasma. Plasma Physics and Controlled Fusion. 2010 December 1; 52(12): 124042. DOI: 10.1088/0741-3335/52/12/124042.

      Zhukhovitskii DI, Fortov VE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Naumkin VN, Thomas HM, Thomas HM, Ivlev AV, Schwabe M, Schwabe M, Morfill GE, Morfill GE.  Nonviscous motion of a slow particle in a dust crystal under microgravity conditions. Physical Review E. 2012; 86(1-2): 016401. PMID: 23005544.

      Du C, Sutterlin KR, Jiang K, Rath C, Ivlev AV, Khrapak SA, Schwabe M, Schwabe M, Thomas HM, Thomas HM, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Malenchenko YI, Yurtschichin F, Lonchakov YV, Morfill GE, Morfill GE.  Experimental investigation on lane formation in complex plasmas under microgravity conditions. New Journal of Physics. 2012 July 31; 14(7): 073058. DOI: 10.1088/1367-2630/14/7/073058.

      Heidemann RJ, Couëdel L, Couëdel L, Zhdanov SK, Sutterlin KR, Schwabe M, Schwabe M, Thomas HM, Thomas HM, Ivlev AV, Hagl T, Morfill GE, Morfill GE, Fortov VE, Molotkov VI, Molotkov VI, Petrov OF, Lipaev AM, Lipaev AM, Tokarev VI, Reiter T, Vinogradov PV.  Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station. Physics of Plasmas. 2011 May 16; 18: 053701. DOI: 10.1063/1.3574905.

      Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Naumkin VN, Fortov VE, Thomas HM, Thomas HM, Ivlev AV, Khrapak SA, Morfill GE, Morfill GE, Schwabe M, Schwabe M.  Phase transitions in dust plasma in microgravity. Conference on Low Temperature Plasma Physics, Petrozavodsk, Russia; 2011 June 21-27 146-151.

      Takahashi K, Thomas HM, Thomas HM, Morfill GE, Morfill GE, Ivlev AV, Hayashi Y, Adachi S.  Diagnosis in Complex Plasmas for Microgravity Experiments (PK-3 plus). Fifth International Conference on the Physics of Dusty Plasmas, Ponta Degada, Azores, Portugal; 2008 May 18-23 329-330.

      Schwabe M, Schwabe M, Jiang K, Zhdanov SK, Hagl T, Huber P, Ivlev AV, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Naumkin VN, Sutterlin KR, Thomas HM, Thomas HM, Fortov VE, Morfill GE, Morfill GE, Skvortsov A, Volkov S.  Direct measurement of the speed of sound in a complex plasma under microgravity conditions. EPL (Europhysics Letters). 2011 December; 96(5): 55001. DOI: 10.1209/0295-5075/96/55001.

      Ivlev AV, Zhdanov SK, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  Fluid phase separation in binary complex plasmas. EPL (Europhysics Letters). 2009 February; 85(4): 45001. DOI: 10.1209/0295-5075/85/45001.

      Ivlev AV, Brandt PC, Morfill GE, Morfill GE, Rath C, Thomas HM, Thomas HM, Joyce G, Joyce G, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF.  Electrorheological Complex Plasmas. IEEE Transactions on Plasma Science. 2010 April; 38(4): 733-740. DOI: 10.1109/TPS.2009.2037716.

      Worner L, Nosenko V, Ivlev AV, Zhdanov SK, Thomas HM, Thomas HM, Morfill GE, Morfill GE, Kroll M, Schablinski J, Block D.  Effect of rotating electric field on 3D complex (dusty) plasma. Physics of Plasmas. 2011; 18(6): 063706. DOI: 10.1063/1.3601341.

      Annaratone BM, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C, Elskens Y, Ivlev AV, Morfill GE, Morfill GE, Nosenko V, Sutterlin KR, Schwabe M, Schwabe M, Thomas HM, Thomas HM.  Collective effects in complex plasma. Plasma Sources Science and Technology. 2010 December 1; 19(6): 065026. DOI: 10.1088/0963-0252/19/6/065026. [This paper was presented as an invited talk at the 29th International Conference on Phenomena in Ionized Gases (ICPIG XXIX) held in Cancun, Mexico on 12–17 July 2009. See stacks.iop.org/PSST/19/3.]

      Thomas HM, Thomas HM, Ivlev AV, Morfill GE, Morfill GE, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF.  2. Complex Plasma Research on the International Space Station ISS. Japan Society of Plasma Science and Nuclear Fusion Research. 2011; 87(2): 82-84. [Japanese]

      Thomas HM, Thomas HM, Morfill GE, Morfill GE, Ivlev AV, Hagl T, Rothermel H, Khrapak SA, Sutterlin KR, Rubin-Zuzic M, Schwabe M, Schwabe M, Zhdanov SK, Rath C, Fortov VE, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Petrov OF, Tokarev VI, Malenchenko YI, Turin MV, Vinogradov PV, Yurchikhin FN, Krikalev SK, Reiter T.  New Directions of Research in Complex Plasmas on the International Space Station. Fifth International Conference on the Physics of Dusty Plasmas, Ponta Degada, Azores, Portugal; 2008 May 18-23 41-44.

      Fortov VE, Morfill GE, Morfill GE.  Strongly coupled dusty plasmas on ISS: experimental results and theoretical explanation. Plasma Physics and Controlled Fusion. 2012 12/01/2012; 54(12): 124040. DOI: 10.1088/0741-3335/54/12/124040.

      Liu B, Goree JA, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Petrov OF, Morfill GE, Morfill GE, Thomas HM, Thomas HM, Ivlev AV.  Dusty plasma diagnostics methods for charge, electron temperature, and ion density. Physics of Plasmas. 2010; 17(5): 053701. DOI: 10.1063/1.3400225.

    ^ back to top


    Ground Based Results Publications

      Schwabe M, Schwabe M, Zhdanov SK, Rath C, Graves DB, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  Collective Effects in Vortex Movements in Complex Plasmas. Physical Review Letters. 2014 March 19; 112(11): 115002. DOI: 10.1103/PhysRevLett.112.115002.

      Zhukhovitskii DI, Ivlev AV, Fortov VE, Morfill GE, Morfill GE.  Onset of cavity deformation upon subsonic motion of a projectile in a fluid complex plasma. Physical Review E. 2013 June; 87(6): 063108. DOI: 10.1103/PhysRevE.87.063108.

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

      Samsonov D, Zhdanov SK, Quinn RA, Popel SI, Morfill GE, Morfill GE.  Shock Melting of a Two-Dimensional Complex (Dusty) Plasma. Physical Review Letters. 2004; 92: 255004.

      Fortov VE, Ivlev AV, Khrapak SA, Khrapak AG, Morfill GE, Morfill GE.  Complex (dusty) plasmas: Current status, open issues, perspectives. Physics Reports - Review Section of Physics Letters. 2005 December; 421(1-2): 1-103. DOI: 10.1016/j.physrep.2005.08.007.

      Petrov OF, Fortov VE.  Collective phenomena in strongly coupled dissipative systems of charged dust: From ground to microgravity experiments. Contributions to Plasma Physics. 2013 December; 53(10): 767-777. DOI: 10.1002/ctpp.201310052.

      Chaudhuri M, Ivlev AV, Khrapak SA, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  Complex plasma—the plasma state of soft matter. Soft Matter. 2011; 7(4): 1287-1298. DOI: 10.1039/c0sm00813c.

      Yaroshenko VV, Thoma MH, Thomas HM, Thomas HM, Morfill GE, Morfill GE.  Generation of a Double Layer at the Interface of Strongly Coupled Complex Plasmas. IEEE Transactions on Plasma Science. 2010 Apr 9; 38(4): 869-873. DOI: 10.1109/TPS.2009.2036852.

      Morfill GE, Morfill GE, Ivlev AV, Rubin-Zuzic M, Knapek CA, Pompl R, Antonova T, Thomas HM, Thomas HM.  Complex plasmas - new discoveries in strong coupling physics. Applied Physics B - Lasers and Optics. 2007; 89: 527-534. DOI: 10.1007/s00340-007-2872-7.

      Jiang K, Hou LJ, Ivlev AV, LI YF, Du C, Thomas HM, Thomas HM, Morfill GE, Morfill GE, Sutterlin KR.  Initial stages in phase separation of binary complex plasmas: Numerical experiments. EPL (Europhysics Letters). 2011 March; 93(5): 55001. DOI: 10.1209/0295-5075/93/55001.

      Khrapak SA, Morfill GE, Morfill GE, Ivlev AV, Thomas HM, Thomas HM, Beysens D, Zappoli B, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI.  Critical Point in Complex Plasmas. Physical Review Letters. 2006 January; 96(1): 015001. DOI: 10.1103/PhysRevLett.96.015001.

      Morfill GE, Morfill GE, Ivlev AV, Thomas HM, Thomas HM.  Complex (dusty) plasmas—kinetic studies of strong coupling phenomena. Physics of Plasmas. 2012; 19(5): 055402. DOI: 10.1063/1.4717979.

      Jiang K, Du C, Sutterlin KR, Ivlev AV, Morfill GE, Morfill GE.  Lane formation in binary complex plasmas: Role of non-additive interactions and initial configurations. EPL (Europhysics Letters). 2011 December; 92(6): 65002. DOI: 10.1209/0295-5075/92/65002.

      Ivlev AV, Morfill GE, Morfill GE, Thomas HM, Thomas HM, Rath C, Joyce G, Joyce G, Huber P, Kompaneets R, Fortov VE, Lipaev AM, Lipaev AM, Molotkov VI, Molotkov VI, Reiter T, Turin MV, Vinogradov PV.  First Observation of Electrorheological Plasmas. Physical Review Letters. 2008 March; 100(9): 095003. DOI: 10.1103/PhysRevLett.100.095003.

      Khrapak SA, Klumov BA, Huber P, Molotkov VI, Molotkov VI, Lipaev AM, Lipaev AM, Naumkin VN, Thomas HM, Thomas HM, Ivlev AV, Morfill GE, Morfill GE, Petrov OF, Fortov VE, Malenchenko YI, Volkov S.  Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation. Physical Review Letters. 2011 May; 106(20): 205001. DOI: 10.1103/PhysRevLett.106.205001.

      Morfill GE, Morfill GE, Thomas HM, Thomas HM.  The Physics of Complex Plasmas and the Microgravity Programme on Plasma Crystal (PK) Research. 55th International Astronautical Congress, Vancouver, Canada; 2004

    ^ back to top


    Related Websites
    ESA Astrolab
    PK-3 Plus

    ^ back to top



    Imagery

    image Cosmonaut Tokarev during ISS expedition 12 with the PK-3 hardware. Image courtesy of Max Planck Institute for Extraterrestrial Physics, Germany.
    + View Larger Image


    image
    + View Larger Image