Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions-3 (InSPACE-3) - 08.18.16

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions-3 (InSPACE-3) studies magnetic colloidal mixtures under the influence of various magnetic fields. A magnetic colloidal fluid, a type of smart fluid, contains materials which solidify within the liquid when a magnetic field is applied to it, thus changing the physical properties of the liquid as a whole.  Conducting these experiments on board the International Space Station (ISS) allows scientists to examine in detail the network and arrangement of the 'frozen' solid structures unaffected by the force of gravity which can deform them on Earth.
Science Results for Everyone
Information Pending

The following content was provided by Eric M. Furst, Ph.D., and is maintained in a database by the ISS Program Science Office.
Experiment Details


Principal Investigator(s)
Eric M. Furst, Ph.D., University of Delaware, Newark, DE, United States

Robert D. Green, Glenn Research Center, Cleveland, OH, United States

Information Pending

Sponsoring Space Agency
National Aeronautics and Space Administration (NASA)

Sponsoring Organization
Human Exploration and Operations Mission Directorate (HEOMD)

Research Benefits
Information Pending

ISS Expedition Duration
March 2011 - March 2014; September 2015 - March 2016

Expeditions Assigned

Previous Missions
InSPACE, the precursor to InSPACE-2 was performed on ISS Expeditions 6, 7, 12 and 13.

^ back to top

Experiment Description

Research Overview

  • InSPACE-3 studies the fundamental behavior of magnetic colloidal fluids under the influence of various magnetic fields. Observations of the microscopic structures yield a better understanding of the interplay of magnetic, surface, repulsion forces, and particle shape between particles in magnetically responsive fluids.
  • These fluids are classified as smart materials which transition to a solid-like state by the formation and cross-linking of microstructures in the presence of a magnetic field. On Earth, these materials are used for vibration damping systems that can be turned on or off.
  • This technology has promise to improve the ability to design structures, such as bridges and buildings, to better withstand earthquake forces.


The use of external fields to control the microstructure of colloidal suspensions has long been recognized as a powerful means for tailoring the mechanical, optical and electronic properties of materials. Magnetorheological (MR) suspensions, in particular, provide a striking example. These normally stable fluids undergo a dynamic transition to a solid within milliseconds after the application of an external magnetic field. They are also important models for developing methods of bottom-up fabrication of micro- and nano-structured materials and devices using field-directed self-assembly.
Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions-2 (InSPACE-2) experiments focused on the structure of magnetically-polarizable particle suspensions over long times in steady (DC) and pulsed magnetic fields. In pulsed fields especially, the long-time kinetics of the suspension micro-structural coarsening provided new and important results. The InSPACE-2 experiments were the first to yield information on the full, three-dimensional aggregation process over timescales much longer than those that are accessible on the ground, which are limited by catastrophic sedimentation. Furthermore, the experiments identified a novel and intriguing dynamic instability in which the suspension microstructures were observed to buckle at specific field frequencies and field strengths.  InSPACE-3 investigates the effect of particle shape on the micro-structural evolution of MR suspensions. Recent ground-based experiments demonstrate a startling effect that particle shape has on the interactions of dipolar chains and the resulting suspension microstructure. Specifically, the suspensions of paramagnetic ellipsoid-shaped particles are investigated. In combination with the results of InSPACE-2, it is hypothesized that particle shape will dramatically alter the aggregation kinetics, microstructures and microscopic mechanics. This potentially leads to the ability to engineer enhanced properties of these suspensions, including suppression of the lateral aggregation in magnetorheological fluid-based electromechanical devices or the ability to create new colloidal materials through field-directed self-assembly.

^ back to top


Space Applications
The quick phase-shifting property of magnetic colloidal fluids makes them potentially useful for devices such as optical interfaces, active noise, and vibration dampers inside spacecrafts.  Future uses could include robotics, energy-transfer devices such as clutches, and other control systems. 

Earth Applications
The work has application to directed self-assembly of crystalline structures from particles that may eventually allow creation of new nano-materials fabricated from nanoparticle building blocks, with potential applications in medicine, energy storage, chemical separations, and catalysis. Magnetic colloidal fluid technology is currently used for shock absorbers in race cars and sport cars.  This technology is expanding to include making large-scale building foundation stabilizers for areas prone to earthquakes.  

^ back to top


Operational Requirements and Protocols

InSPACE-3 is conducted inside the MSG work volume. The fluid sample in the vial assembly must be uniformly mixed prior to test operations. Thirty-six tests are performed, two or three per day. The Vial Assemblies may be reused indefinitely after restoring an even distribution to the particles within the fluid. Video downlink is monitored on the ground during testing and provided to the PI as desired. Sample return of the Vial Assemblies is not required. Video imagery is stored on 72 Mini-DVCAM tapes and 36 Hi-8 tapes for later return to the ground for more complete analysis.

The crew installs the hardware into the MSG, and as part of that, uniformly distributes the particles in the fluid of the first Vial Assembly prior to installation in the hardware. Two DVCAMs and one Hi-8 tape are loaded into the video recorders in the video drawer. The crew member next focuses each optical train onto the particles in the center of the vial. A run starts by setting the current per the test matrix and then setting the pulse frequency of the current. Both are simple adjustments of dial pots by the crew while observing digital displays of the values of each. Note that the current level controls the strength of the magnetic field applied to the MR fluid. A Field of View sweep and a focus sweep are performed right away with each optical train and then again about 20 minutes later. The experiment runs autonomously with ground monitoring for the next two to three hours. Another FOV sweep and focus sweep for each optical train is performed prior to removing the magnetic field from the vial by setting the current to zero. Another run may be started with the same vial assembly after remixing the particles in the fluid, or a different vial assembly may be used. Upon completion of all testing, the hardware is removed from the MSG.

^ back to top

Decadal Survey Recommendations

Applied Physical Science in Space AP5
Fundamental Physical Sciences in Space FP1

^ back to top

Results/More Information

^ back to top

Related Websites
ISS Research Project-InSPACE-3

^ back to top


image NASA Image: ISS016E021067 - Expedition 16 Commander Peggy Whitson works with the InSPACE-2 (Investigating the Structure of Paramagnetic Aggregates from Colloidial Emulsions-2) experiment in the Microgravity Science Glovebox (MSG) in the U.S. Laboratory/Destiny.
+ View Larger Image

image InSPACE-2 MR fluid microstructure chains forming under a 2 Hz pulsed magnetic field. Image courtesy of NASA.
+ View Larger Image

image Increment 18 astronaut Mike Fincke setting up the InSPACE-2 hardware in the Microgravity Science Glovebox (MSG)
+ View Larger Image

image InSPACE-3 Vial Assembly. Image courtesy of Glenn Research Center.
+ View Larger Image

image NASA Image: ISS032E005652 - Side view of an InSPACE-3 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3) vial (VA3-005 3:1 B). Photo taken during an inspection for clumps and bubbles.
+ View Larger Image