IntraVenous Fluid GENeration for Exploration Missions (IVGEN) - 09.17.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
IntraVenous Fluid GENeration for Exploration Missions (IVGEN) demonstrates the capability to purify water to the standards required for intravenous administration, then mix the water with salt crystals to produce normal saline. This hardware is a prototype that will allow flight surgeons more options to treat ill or injured crewmembers during future long-duration exploration missions.

Science Results for Everyone
Information Pending

The following content was provided by John B. McQuillen, and is maintained in a database by the ISS Program Science Office.

Experiment Details


Principal Investigator(s)

  • John B. McQuillen, Glenn Research Center, Cleveland, OH, United States

  • Co-Investigator(s)/Collaborator(s)
    Information Pending
    ZIN Technologies Incorporated, Cleveland, OH, United States

    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration
    March 2010 - September 2010

    Expeditions Assigned

    Previous ISS Missions
    This is the first mission for the IVGEN investigation.

    ^ back to top

    Experiment Description

    Research Overview

    • The Patient Condition Database (PCDB) provides a list of over four hundred medical conditions that may present and require treatment during long-duration space exploration. Of the conditions, approximately 25 percent may require medical fluids during the course of treatment. Operational constraints such as mass limitations and lack of refrigeration may limit the volume of such fluids that can be carried onboard spacecraft. Some conditions that may require fluid treatment include major bone fracture, burns, and acute anemia.

    • Limitations on launch mass and available spacecraft volume restricts the amount of intravenous (IV) fluid that could be available during these missions. Additionally, prepackaged IV water would likely reach the expiration of shelf life before the end of long-duration exploration missions. As a result, NASA is developing hardware that can produce IV solution with cabin water as the feedstock. The IntraVenous Fluid GENeration for Exploration Missions (IVGEN) system requires much less mass and volume than an equivalent amount of prepackaged IV fluid.

    IntraVenous Fluid GENeration for Exploration Missions (IVGEN) will demonstrate a microgravity compatible water purification and pharmaceutical mixing system. IVGEN utilizes a deionizing resin bed to remove contaminants from feedstock water to a purity level that meets the standards of the United States Pharmacopeia (USP), which is chartered by the United States Food and Drug Administration to function as the governing body for pharmaceuticals in the United States. The water will then be introduced into an intravenous (IV) bag where the fluid will be mixed with USP grade crystalline salt to produce USP normal saline. Inline conductivity sensors will quantify feedstock water quality, output water purity, and normal saline mixing uniformity.

    The resin bed is made from 0.5 mm diameter beads packed into a cylinder including bubble-trapping hardware upstream from the filter to insure that no failures occur from trapping bubbles within the filter to insure optimal performance. The hardware will quantify system performance using flow and pressure transducers. If the hardware were to experience performance degradation, these transducers would allow the fluid physicists to identify and fix the problem.

    IVGEN will operate in the Microgravity Sciences Glovebox, (MSG) and will utilize cameras and video recording devices provided by that facility to observe system performance.

    ^ back to top


    Space Applications
    Due to mass and volume limitations, space vehicles cannot carry sufficient IV fluid for medical contingencies. A filtering and mixing system that can make IV fluid in situ would provide the treatment capability without the mass and volume constraints. IVGEN was designed and will be tested to meet that need.

    Earth Applications
    IVGEN technology could be used on Earth to generate IV fluid in Third World countries where medical resources are limited.

    ^ back to top


    Operational Requirements
    IVGEN requires MSG resources such as electrical power, video capability, and data collection/transmission. IVGEN also requires access to pressurized nitrogen to pressurize the accumulator. IVGEN requires one 1.5 liter bag of IV fluid be returned in refrigerated stowage for ground-based analysis. IVGEN requires return of a second 1.5 liter bag of IV fluid, but it can remain ambient. Each IVGEN run will take approximately 1.5 hours, but does not require crew interaction for the duration of session.

    Operational Protocols
    Astronauts will install IVGEN in the MSG per procedures. The astronaut will transfer ISS water from an Iodine Crew Water Container (ICWC) to the IVGEN accumulator. When that is complete, the astronaut will pressurize the IVGEN accumulator with nitrogen. The pressure will force water through the IVGEN system, beginning with a bubble trap to eliminate unwanted air, and a conductivity sensor to quantify the quality of the incoming water. Following the conductivity sensor, the water will pass through the packed resin bed, through another bubble trap to remove any air that may have been present in the filter, and then into the mixing bag. The mixing bag will contain the salt required to make a saline solution, as well as a sterile magnetic stir bar. After the bag has been filled with 1.5 liters of water, the stir bar will mix the solution. Following mixing, the fluid will pass out of the mixing bag, through a conductivity sensor to measure uniformity, and into a final collection bag. After all of the solution is in the collection bag, it will be disconnected from the system, sealed, and appropriately stowed.

    ^ back to top

    Results/More Information
    Information Pending

    ^ back to top

    Results Publications

    ^ back to top

    Ground Based Results Publications

    ^ back to top

    ISS Patents

    ^ back to top

    Related Publications

    ^ back to top

    Related Websites
    IV Fluids

    ^ back to top


    image Glenn researchers test the effectiveness of an IV fluid mixing method on NASA's zero-gravity aircraft (Credit: NASA).
    + View Larger Image

    image Planar Laser-Induced Fluorescence (PLIF) image of mixing pharmaceuticals and IV fluid (Credit: NASA).
    + View Larger Image