Drosophila Motility, Behaviour and Ageing (Ageing) - 09.17.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
Information Pending

Science Results for Everyone

The young usually get around better than the old, but that is not the case for flies in space.  Researchers use video to see how microgravity affects movement in mature, young, and microgravity flies.  Previous tests showed the  highest movement levels in young flies, but these flies were exposed to lower temperatures during transport and skewed the results. In contrary, the latest observations show activity levels were increased in all the groups, but mature flies had the highest levels of movement.  This suggests that the sensory and nervous system are rather insensitive to microgravity. However, change in the gravity environment appears to alter the behavior of flies and cause accelerated ageing.



The following content was provided by Roberto Marco, Raúl Herranz, Ph.D., and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.

Experiment Details

OpNom

Principal Investigator(s)

  • Roberto Marco, Instituto de Investifaciones Biomedicas, Madrid, Spain
  • Raúl Herranz, Ph.D., Centro de Investigaciones Bioligicas, Madrid, Spain

  • Co-Investigator(s)/Collaborator(s)
  • Francisco-Javier Medina, Centro de Investigaciones Bioligicas, Madrid, Spain

  • Developer(s)
    Information Pending
    Sponsoring Space Agency
    European Space Agency (ESA)

    Sponsoring Organization
    Information Pending

    Research Benefits
    Information Pending

    ISS Expedition Duration
    April 2003 - April 2004

    Expeditions Assigned
    7,8

    Previous ISS Missions
    Information Pending

    ^ back to top



    Experiment Description

    Research Overview
    Information Pending

    Description

    The main scientific objectives of the experiment are to study in more detail the mechanisms of the abnormal motility response encountered in space by young flies with consequences on the posterior aging response of the flies. For this purpose, three different fly strains with different phenotypes are used, in four configurations. The three strains are a long-lived strain, a short-lived strain and a strain showing an abnormal gravitropic response on the Ground. Recently hatched flies of the three phenotypes will be exposed to the Space Environment. In addition, a two-week old population of the short-lived strain will be also included to confirm the differences between them. During flight, the only experimental activity planned is the video recording of the in flight motility in the different experimental containers. This will be complemented by an extensive series of post-flight analyses involving behavioural assays (gravitropic responses, mating activity of the males, optokinetic responses, gene expression profiles and neuropeptide patterns of defined neurons). The experiment will be complemented by appropriated ground controls involving space simulation exposures of equivalent groups of flies.

    ^ back to top



    Applications

    Space Applications
    Information Pending

    Earth Applications
    Information Pending

    ^ back to top



    Operations

    Operational Requirements
    Information Pending

    Operational Protocols

    Several hours before docking, the Aquarius B Incubator in the Russian segment of the ISS is switched on so that a temperature of 22 degrees C is reached and stabilized when the Biology experiments arrive at the Station. Upon arrival the Biology Transport Container is removed from the Soyuz Capsule. The AGEING biology container is opened and removed and inserted into the Aquarius incubator (22 degrees C +/-3 degrees C). On day 2 in the ISS the first video-recording session is be performed. The Ageing containers are removed from the Aquarius B Incubator and video-recorded four at a time, a minimum of five minutes (15 min of video-recording is preferred if possible). Since the experiment uses eight containers, and the holder can take four at a time, the activity is split in two steps. After completing each video-recording step, the containers are transferred back to the Aquarius B Incubator. The camera is mounted and the tape inserted in it. On day 4 in the ISS the second video-recording session is performed. The Ageing containers are removed from the Aquarius B Incubator and video-recorded four at a time, a minimum of five minutes if possible. Since the experiment uses eight containers, and the holder can take four at a time, the activity is split in two steps. After completing each video-recording step, the containers are transferred back to the Aquarius Incubator. The camera is mounted and the tape inserted in it. On day 6 in the ISS, the third and final video-recording session is performed. The Ageing containers are removed from the Aquarius B Incubator and video-recorded four at a time, a minimum of five minutes if possible. Since the experiment uses eight containers, and the holder can take four at a time, the activity is split in two steps. After completing each video-recording step, the containers are transferred back to the Aquarius Incubator. The camera is mounted and the tape inserted in it. At the end of the mission, the containers are removed from the Aquarius B Incubator and introduced back into the Biology Transport Container, together with the two tapes and the temperature data logger. The final Operation is the transfer of the Transport Container into the Soyuz Capsule. Early retrieval is requested for this experiment.

    ^ back to top



    Results/More Information

    Ageing was sent into space to gain a better understanding of the biological responses inliving organismsafter prolonged exposure to microgravity. On October 18, 2003, a total of 450 Drosophila melanogaster flies were sent to the ISS for an eleven day flight to study their motility behavior.Motility behaviors were studied in 4 different fly strains- short lived mature flies, short lived young flies, gravity altered flies and long lived young flies. In this experiment, the mature fly strain had the highest motility levels. Previous tests led scientist to believe the young flies would have the highest motility levels; however these young flies were exposed to lower temperatures during transport. Temperature plays a huge role in motility levels, and unfortunately skewed this study because only the young flies were exposed and not the mature flies. Although activity levels were increased in all strains, because of the cold transport, they did not reach their full potential and a reflight of this investigation will need to be run for more conclusive results (Juan et al 2007).

    Once samples were returned to Earth, it was determined that the structural components for the sensory and nervous system are rather insensitive to microgravity. No observable changes were found in any of the fly strains. Dendritic and axonal activities remained the same and the somata size was only slightly altered (Horn et al 2007).

    Although this research line has been closed due to the premature death of the PI (Roberto Marco) in 2008, additional work using those and additional altered gravitaxis drosophila strains has been performed later in altered gravity Ground Based Facilities. Both simulated microgravity and hypergavity environments lead to alterations in the behavior of the flies and accelerated ageing, being both processes related (strains selected for a different gravitaxis sensibility show different ageing responses) (Herranz et al 2008; Serrano et al 2010, 2012). It has been particularly interesting to use diamagnetism as a new tool for behavioral studies in flies exposed to altered gravity conditions (Hill et al 2012).

    ^ back to top



    Results Publications

    ^ back to top


    Ground Based Results Publications

      Herranz R, Benguria A, Lavan DA, Lopez-Vidriero I, Gasset G, Medina F, van Loon JJ, van Loon JJ, Marco R.  Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Molecular Ecology. 2010 Oct; 19(19): 4255-4264. DOI: 10.1111/j.1365-294X.2010.04795.x. PMID: 20819157.

      Serrano P, van Loon JJ, van Loon JJ, Manzano AI, Medina F, Herranz R.  Selection of Drosophila altered behaviour and aging strains for Microgravity Research. Journal of Gravitational Physiology. 2010.

      Herranz R, Lavan DA, Dijkstra CE, Dijkstra CE, Larkin O, Davey MR, Medina F, van Loon JJ, van Loon JJ, Marco R, Schiller P.  Drosophila behaviour and gene expression in altered gravity conditions: comparison between space and ground facilities. 2008 Life in Space for Life on Earth Symposium, Angers, France; 2008

      Hill RJ, Larkin O, Dijkstra CE, Dijkstra CE, Manzano AI, de Juan E, Davey MR, Anthony P, Eaves L, Medina F, Marco R, Herranz R.  Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. Journal of the Royal Society Interface. 2012; 9(72): 1438-1449. DOI: 10.1098/​rsif.2011.0715. PMID: 22219396.

      Herranz R, Hill RJ, Dijkstra CE, Dijkstra CE, Eaves L, van Loon JJ, van Loon JJ, Medina F.  The behavioural-driven response of the Drosophila imago transcriptome to different types of modified gravity. Genomics Discovery. 2013; 1(1): 1. DOI: 10.7243/2052-7993-1-1.

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

      van Loon JJ, van Loon JJ, Medina F, Stenuit H, Istasse E, Istasse E, Heppener M, Marco R.  The National - ESA Soyuz Missions Andromede, Marco Polo, Odissea, Cervantes, Delta and Eneide. Microgravity Science and Technology. 2007 September; 19(5-6): 9-32. DOI: 10.1007/BF02919448.

    ^ back to top


    Related Websites
    ESA Erasmus Experiment Archive

    ^ back to top



    Imagery

    image Ageing Biocontainer (photo courtesy Energia).
    + View Larger Image


    image Drosophila chambers.
    + View Larger Image