Smoke and Aerosol Measurement Experiment (SAME) - 10.21.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
Smoke and Aerosol Measurement Experiment (SAME) measures smoke properties, or particle size distribution, of typical particles from spacecraft fire smokes to provide data to support requirements for smoke detection in space and identify ways to improve smoke detectors on future spacecraft.

Science Results for Everyone

That ear-piercing smoke detector in your kitchen detects microscopic particles in smoke. Detectors in space do the same thing. This investigation looked at the distribution of particles from combustion of materials found in spacecraft, measuring size and abundance of smoke particles from five different materials. All samples produced significant numbers of small particles best detected by ionization smoke detectors, although light-scattering detectors would work well in most cases. Results suggest overheating events produce broader particulate size distributions, meaning detectors need to measure a wide size spectrum. On spacecraft, the primary target is pre-fire overheating, so these results will help improve detector design.

The following content was provided by David L. Urban, Ph.D., and is maintained in a database by the ISS Program Science Office.

Experiment Details


Principal Investigator(s)

  • David L. Urban, Ph.D., Glenn Research Center, Cleveland, OH, United States

  • Co-Investigator(s)/Collaborator(s)
  • George Mulholland, University of Maryland, College Park, MD, United States
  • Zeng-guang Yuan, Glenn Research Center, Cleveland, OH, United States
  • Jiann Yang, National Institute for Standards and Technology, Gaithersburg, MD, United States
  • Thomas Cleary, National Institute of Standards and Technology, Gaithersburg, MD, United States

  • Developer(s)
    Information Pending
    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration
    April 2007 - September 2010

    Expeditions Assigned

    Previous ISS Missions
    SAME is the successor to the Comparative Soot Diagnostics (CSD) experiment that flew aboard STS-75 in 1996. The experiment showed that smoke produced in low gravity is different from smoke produced in normal gravity (microgravity smoke particles are larger).

    ^ back to top

    Experiment Description

    Research Overview

    • Fire is commonly detected by measuring changes in the amount of airborne microscopic particles (one of the components of smoke).

    • Smoke detectors currently in use on ISS and Space Shuttle are based on detectors used on Earth that detect different sizes of smoke particles.

    • SAME will measure the distribution of particle sizes in smoke from on-orbit combustion of several materials found in the spacecraft. Testing will also examine the effects of sample temperature, air flow and smoke residence time (near the source) on the particle size distribution of the smoke.

    • Results will allow an evaluation of the performance in microgravity of the two existing U.S. spacecraft smoke detector designs, in use on the Shuttle and ISS, and evaluate other fire detection devices.

    • Information from this experiment will improve the design requirements for and reliability of smoke detectors on future spacecraft.

    Spacecraft smoke detectors must detect different types of smoke. For example, hydrocarbon fuels typically produce soot and plastics produce droplets of recondensed polymer fragments. While paper and silicone rubber produce smoke comprised of liquid droplets of recondensed pyrolysis products. Each of these materials produces a different type of smoke, with particles of various sizes and properties.

    Smoke and Aerosol Measurement Experiment (SAME) will assess the size and distribution of smoke particles produced by different types of material found on spacecraft such as, Teflon, Kapton, cellulose and silicone rubber. SAME will evaluate the performance of the ionization smoke detectors (used on Space Shuttles), evaluate the performance of the photoelectric smoke detectors (used on the ISS) and collect data for which a numerical formula can be developed and used to predict smoke droplet growth and to evaluate alternative smoke detection devices on future spacecraft.

    The experimental design and practical application of the data will be complemented by the development of a numerical code to predict the smoke droplet growth as a function of the fuel pyrolysis rate, the thermodynamic properties of pyrolysis vapor, and the flow environment. SAME also has the capability to evaluate other fire detection/particulate sensing devices for the test materials. The results will provide statistics of the smoke particulate size distribution for a range of smoke generation conditions and measurement of a readily modeled reference for validation of smoke growth models.

    ^ back to top


    Space Applications
    The SAME experiment will provide technology for an advanced fire detector for future spacecraft that will be used for long duration missions. SAME will provide quantitative data on the sensitivity of these detectors to reduced gravity smokes that will allow evaluation of the adequacy of these existing technologies using relevant data. The current Fire Prevention, Detection, and Suppression (FPDS) program plan allows for the re-evaluation of future sensor technology, to allow new technology and capability to be utilized. The results from SAME are needed to provide the reduced gravity baseline data against which future detection technology developments can be evaluated.

    Earth Applications
    The smoke detectors developed from the results of SAME can also be useful in other extreme environments on Earth, such as submarines or underwater laboratories. Accurate detection of smoke in these environments can save lives.

    ^ back to top


    Operational Requirements
    For SAME the crew will pyrolyze (decompose the material by extreme heat) basic spacecraft materials (Kapton, Silicon Rubber, Teflon and cellulose (lamp wick)) and a baseline material (Dibutyl Phthalates) in the MSG. There will be a total of twenty test points (each sample will be tested four times) . Each carousel (sample holder) can hold up to six samples. If time permits additional test points can be completed with the samples in the carousel.

    After pyrolysis, the smoke is aged in a chamber to simulate the time it takes the smoke to build up and move to the detectors. Smoke, the product of the pyrolysis is characterized in the following ways:

    • Smoke before and after the aging is trapped on a transmission electron microscopy grid, located inside Thermal Precipitator Module, for study on the ground.

    • Smoke after aging is run through the P-Trak to determine the number of particles per unit volume.

    • Smoke after aging is run through the DustTrak to determine the mass concentration of the particles.

    • Smoke after aging is run through a modified home ionization smoke detector (First Alert) to determine the diameter concentration of the particles.

    • The smoke is then run through the ISS and Shuttle smoke detectors that are parts of SAME in the MSG to test their response to the smoke that has been characterized.

    Operational Protocols
    SAME will use probes to heat a wire and drive the smoke onto a small collection grid (approximately 1/8 in. diameter) as it flows past using an effect know as thermophoresis (what causes dust to stick to the wall behind a radiator). At each test point, two samples of the smoke will be taken: the first within seconds of its generation and the second after a defined aging period, during which the size and shape of the smoke particulates will have changed. These sample grids will be returned to Earth from the ISS and examined under a transmission electron microscope.

    ^ back to top

    Results/More Information

    The Smoke and Aerosol Measurement Experiment (SAME) was conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15. Overall, 30 samples were tested comprising of six samples each of five different materials: TeflonTM, KaptonTM, silicone rubber, cellulose, and dibutyl-phthalate (a chemical used to make flexible plastic) deposited on a porous wick. These were tested at different airflow rates, heating temperatures, and smoke aging durations.

    Smoke properties from different materials were determined using detectors to measure different particulate sizes and their relative abundances in order to describe the overall smoke distribution. A substantial portion of the aerosol mass is in particles that are larger than 1 micron. Teflon smoke comprised primarily of particles having diameters less than 1 um. The effect of aging is consistent with particle coagulation with limited wall loss, the overall number count decreases substantially while the mass concentrations remain relatively steady. This is reasonable given the broader size distribution for silicone smoke containing significant numbers of both large and small particles. Although the arithmetic mean diameters are all in the 100 to 200 nanometer (nm) range, interpreting particle sizes by only one statistic can be deceptive due to the nature of the particle size distribution. In general, since the mass increases with the cube of the diameter, the larger particles do not affect the arithmetic mean diameter (AMD) as much as they affect the light scattering signal which corresponds with the particle mass. Consequently, although the AMD for silicone rubber is 227 nm, almost half the particle mass is larger than 1000 nm. The lamp wick showed similar behavior in the experiment.

    All samples produced significant numbers of sub-micron particulate that are better detected using an ionization smoke detector, however a light scattering detector would perform very well for most of the cases. Depending on the conditions, results suggest broader smoke particulate size distributions can be produced from prefire overheat events, thus detection methods which can measure a wider spectrum of particulate size may show more successful and reliable detection. Spacecraft and associated missions outside of low Earth orbit will require increased reliability of fire detection systems in addition to robust false alarm resistance. Given the constrained space on any spacecraft, the target for the fire detection system is necessarily the early phase and not established flaming fires; consequently, the primary target for detection is the pre-fire heating products and not the soot and ash. This research will help to improve design of future detectors (Urban et al. 2009).

    ^ back to top

    Results Publications

    ^ back to top

    Ground Based Results Publications

    ^ back to top

    ISS Patents

    ^ back to top

    Related Publications

      Ruff GA, Urban DL, King MK.  A Research Plan for Fire Prevention, Detection, and Suppression in Crewed Exploration Systems. 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV; 2005

      Urban DL, Yuan Z, Ruff GA, Cleary T, Griffin DW, Yang J, Mulholland G.  Detection of Smoke from Microgravity Fires. SAE Technical Paper. 2005; 2005-01-2930. DOI: 10.4271/2005-01-2930.

    ^ back to top

    Related Websites
    Microgravity Combustion Science

    ^ back to top


    image A candle flame in Earth's gravity (left) and microgravity (right) showing that difference in the processes of combustion in microgravity. Image courtesy of NASA, Johnson Space Center.
    + View Larger Image

    image The Smoke and Aerosol Measurement Experiment (SAME) hardware located in the Microgravity Science Glovebox (MSG). Image courtesy of NASA, Johnson Space Center.
    + View Larger Image

    image NASA Image - ISS015E26265: View of Smoke and Aerosol Measurement Experiment (SAME) hardware in the Microgravity Science Glovebox (MSG) in the U.S. Laboratory/Destiny. SAME aims to test the performance of ionization smoke detectors and evaluate the performance of the photoelectric smoke detectors.
    + View Larger Image

    image NASA Image - ISS015E27408: Expedition 15 Flight Engineer, Astronaut Clay Anderson examines the sample carousel configuration during the Smoke and Aerosol Measurement Experiment (SAME) hardware set up on board ISS.
    + View Larger Image

    image NASA Image - ISS015E27410: Astronaut Clay Anderson is seen here installing the sample carousel into Smoke and Aerosol Measurement Experiment (SAME) hardware located in the Microgravity Science Glovebox (MSG) in the U.S. Laboratory/Destiny.
    + View Larger Image

    image NASA Image - ISS015E27423: NASA astronaut Clay Anderson, Expedition 15 flight engineer, is seen here working on the Smoke and Aerosol Measurement Experiment (SAME) hardware located in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. SAME will measure the smoke properties, or particle size distribution, of typical particles that are produced from different materials that can be found onboard station and other spacecrafts.
    + View Larger Image