Role of Interleukin-2 Receptor in Signal Transduction and Gravisensing Threshold of T-Lymphocytes-2 (Leukin-2) - 09.17.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
Leukin-2 will study the signal transduction pathway of the activation of T-lymphocytes. This investigation will also determine if loss of Interleukin-2 receptor expression is the cause of inhibition. Microgravity will be used as an inhibitor of activation.

Science Results for Everyone
Information Pending

The following content was provided by Isabelle Walther, Ph.D., and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.

Experiment Details


Principal Investigator(s)

  • Isabelle Walther, Ph.D., Swiss Federal Institute of Technology, Space Biology, Zurich, Switzerland

  • Co-Investigator(s)/Collaborator(s)
  • Augusto Cogoli, Ph.D., Zero-g Tec GmbH, Zurich, Switzerland
  • Millie Hughes-Fulford, Ph.D., University of California, San Francisco, CA, United States
  • Proto Pippia, Universiy of Sassari, Sassari, Italy

  • Developer(s)
    Swiss Federal Institute of Technology, Space Biology, Zurich, , Switzerland

    Sponsoring Space Agency
    European Space Agency (ESA)

    Sponsoring Organization
    Information Pending

    Research Benefits
    Information Pending

    ISS Expedition Duration
    September 2006 - April 2007

    Expeditions Assigned

    Previous ISS Missions
    A previous Leukin investigation was flown on STS-107 (Columbia) in 2003. This investigation will fly again for ESA on Expedition 14.

    ^ back to top

    Experiment Description

    Research Overview

    • Leukin-2 will help investigators understand why single cells are sensitive to microgravity and to study the microgravity effect on the immune system cells.

    • The results of Leukin-2 will enable understanding of the cause of reduced immune function associated with spaceflight so crew members stationed on the Moon or on a Mars mission will remain healthy.


    The International Space Station provides a modern platform to study physiology and molecular changes in space. In addition, understanding these physiological changes provides knowledge that we can apply to common diseases found in the general population. The results also help us to understand microgravity-induced immunosuppression.

    Early NASA studies demonstrated that the lymphocytes (white blood cells) had a decreased response to mitogen stimulation of growth. In the late 60's returning Apollo astronauts were found to have reduced immune function after spaceflight, taking approximately 7 days to recover normal function. Astronauts exposed to microgravity did not respond to mitogen, a protein that encourages cell division, while cells belonging to non-flown astronaut backups had normal response.

    The aim of Leukin-2 is to study the signals which cause the activation of T-lymphocytes, white blood cells that play a central role in cell-mediated immunity. The focus is on the role of Interleukin-2 (IL-2), a hormone that stimulates the growth of T-lymphocytes and plays an instrumental role in the body's response to pathogens (bacteria, viruses, fungi, etc.) and in the determination of its genetic expression (process by which a gene's DNA sequence is converted into the structures and functions of a cell).

    ^ back to top


    Space Applications

    Leukin-2 may help scientists to better understand the depression of the immune system which occurs during spaceflight and, therefore, to devise more adequate preventive or corrective measures for crew members during long duration missions.

    Earth Applications

    Determining the factors which cause IL-2 suppression can help scientists on Earth better treat immunosuppressed patients.

    ^ back to top


    Operational Requirements

    Cells will be prepared at the launch site just prior to launch from fresh human blood. The purified T-lymphocytes will be loaded into experiment containers just prior to launch. Following arrival on ISS, fixative will be added to a specified group of the cells. Fixative will be added to another group of cells 30 minutes following arrival on ISS and to a third group 4 hours after arrival on ISS.

    Operational Protocols

    The T-lymphocytes will be purified and sealed in experiment containers shortly before launch. Once on orbit an astronaut will inject an activator. After intervals of 0 minutes, 30 minutes and 4 hours the cultures will be fixed, by injection of a preservation solution, frozen and returned to the investigators for analysis.

    ^ back to top

    Results/More Information
    Information Pending

    ^ back to top

    Results Publications

    ^ back to top

    Ground Based Results Publications

    ^ back to top

    ISS Patents

    ^ back to top

    Related Publications

      Sonnenfeld G.  Editorial: Space flight modifies T cell activation--role of microgravity. Journal of Leukocyte Biology. 2012 December 1; 92(6): 1125-1126. DOI: 10.1189/jlb.0612314.

    ^ back to top

    Related Websites
    The information provided is courtesy of the ESA Astrolab Mission web page.
    The Lab of Cell Growth - University of California Medical School, San Fancisco, CA
    Space Biology Group

    ^ back to top