Coarsening in Solid Liquid Mixtures-3 (CSLM-3) - 01.09.14

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone

The Coarsening in Solid Liquid Mixtures-3 (CSLM-3) is a materials science investigation that studies the growth and solidification processes (i.e., coarsening) in lead-tin solid-liquid mixtures that contain a small amount (low volume fraction) of tin branch-like (i.e., dendritic) structures, some of which possess many arms. During sample heating, the growth at the tip of each dendrite continues over time, whereas side branches, behind the tip, develop during constant temperature (i.e., isothermal) conditions. By understanding how temperature and time control the growth of such dendrites, researchers hope to develop more efficient and economical means of producing higher quality products derived from the casting of molten metals.

Science Results for Everyone Information Pending



This content was provided by Peter W. Voorhees, Ph.D., and is maintained in a database by the ISS Program Science Office.

Experiment Details

OpNom:

Principal Investigator(s)

  • Peter W. Voorhees, Ph.D., Northwestern University, Evanston, IL, United States
  • Co-Investigator(s)/Collaborator(s)
    Information Pending

    Developer(s)

    Glenn Research Center, Cleveland, OH, United States
    ZIN Technologies Incorporated, Middleburg Heights, OH, United States

    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration:
    September 2012 - September 2013

    Expeditions Assigned
    33/34,35/36

    Previous ISS Missions

    The initial CSLM-2 investigations were conducted during ISS Increment 7. CSLM-2 high volume fraction samples were conducted during ISS Increment 16/17. CSLM-2R with low volume fraction samples were conducted during Increment 23/24.

    ^ back to top



    Experiment Description

    Research Overview

    • CSLM-3 is a material science investigation that studies the coarsening of dendrites in solid-liquid mixtures at low volume fractions of solid. This low volume fraction enables the examination of the coarsening of a single or a few dendrites at a time; something that is impossible on the ground.


    • The shape of the dendrite will be determined by measuring the morphology of the dendrite as a function of position from the tip. This allows researchers to investigate beyond classical secondary arm spacing measurements.


    • CSLM-3 also studies the three-dimensional topology of the solid liquid mixtures. In particular this study shall focus on topological singularities that occur when a secondary dendrite separates from the main dendrite stem or when two arms fuse together.


    • The CSLM-3 investigation requires reduced gravity found on the International Space Station (ISS) that allows for unprecedented insights into the coarsening of dendrites due to the elimination of sedimentation. Ground-based experiments show that the effects of sedimentation cause secondary dendrite arms to float away from primary dendrite arms; this limits measurement of the rate in which topological singularities occur and the rate at which the structure breaks up.


    • In a microgravity environment it is possible to examine the evolution of the morphology of the mixtures in the diffusive limit where the concentration field is set by the curvatures of the solid-liquid interfaces.


    • The CSLM-3 investigation will process 6 Sample Processing Units in the MSG on board the International Space Station during Increment 33/34.

    Description
    The CSLM-3 investigation expects to grow and examine metal dendrites (i.e., tree-like structures) that form during the solidification of all metals. Dendrites are also observed when water freezes and are called snowflakes. The spacing between the branches of the dendrite controls the mechanical properties of the solidified metals, such as engine blocks used in car engines. During the casting process the dendrites undergo a process called coarsening. During coarsening the dendrites change their shape, with a change in the spacing between the branches of the dendrites. Since the spacing alters the mechanical properties of the alloy, the coarsening of dendrites has a major effect on the properties of metal alloys. The objective of this experiment is to investigate this coarsening process without the complicating effects of convection of the liquid or sedimentation (e.g., gravity induce effects) of the dendrites.

    In the predecessor CSLM-1 and 2 studies, spherical particles of the high volume liquid lead-tin fraction samples were observed during coarsening. The CSLM-1 and 2 experiments also used two-phase solid alloys as analogs that contained precipitates in a solid. The compositions of those alloys are very similar to those that are planned for use in the CSLM-3 experiments, the major difference being that the CSLM-3 alloy consists of solid dendrites rather than spherical particles. Research has shown that spherical particles coarsen in a very different fashion then dendrites.

    The CSLM-3 samples are a mixture consisting of Sn (tin)-rich particles in lead-tin liquid, a mixture that has a low sintering temperature and a high coarsening rate; making it perfect for studying the process of Oswald ripening. Sample runs are conducted inside the sealed MSG work volume using existing CSLM-2 hardware. Samples are processed inside a Sample Processing Unit (SPU), which has a cylindrical sample chamber. Each SPU contains 4 samples and crewmembers must load each SPU and initiate runs individually. Samples are heated to 185 degrees Celsius to enable dendrite growth. This temperature is maintained for various, predetermined intervals. Each isothermal heat soak time is unique for each SPU. After an SPU is processed, pressurized water is released into the chamber to quench the sample, cooling it down to lock in the structures. During a normal sequence the quench cycle is initiated automatically by the Electronic Control Unit (ECU). Quenching can be initiated manually if needed. Data captured by the ECU is transferred to the MSG laptop for storage and down loading to the ground-based researchers. The ECU provides power and controls all stages of the sample processing and experimental parameters and status are displayed on the ECU?s LCD display screen. The ECU also controls the temperature inside the SPU sample chamber and monitors and records the sample?s temperature. A baseplate is used to attach the SPU and ECU to the Microgravity Science Glovebox (MSG) work volume floor.

    ^ back to top



    Applications

    Space Applications
    Information Pending

    Earth Applications
    CSLM-3 examines the growth of metal dendrites (i.e., tree-like structures) that form during the solidification of all metals. This process is called coarsening and the growth of these dendritic structures within solid-liquid mixtures has major technological and production implications, since it occurs in virtually all casting processes. During the casting process, the coarsening of dendrites changes their shape and the spacing between branches of the dendrites, which alters the mechanical properties of the solidified metals and alloys, such as a car engine block. In the case where a dendritic structure forms quickly, a so-called "mushy zone"' is created. This mushy zone can exist, often for long periods of time, during which virtually every dendrite undergoes coarsening. The length of the dendrites in the mushy zone, and thus those present after complete solidification, are determined by the coarsening process and are intimately related to the mechanical properties of metal ingots. Through a better understanding and control of the formation of dendrites and anomalous structures this research leads to the production of more efficient methods and ultimately better products that are cast from molten metals and alloys.

    ^ back to top



    Operations

    Operational Requirements
    CSLM-3 is required to operate within the MSG. Crew support during setup, monitoring, processing of samples, data recording and stowing of investigation hardware is necessary. During both SPU pre and post processing, the temperature of each SPU is required to remain below 30 degrees Celsius.

    Operational Protocols

    • The crew unstows and sets up the CSLM-2 hardware (ECU, first SPU, baseplate, cables, and vacuum hose) in the MSG and runs any necessary vacuum cycles before testing each SPU which contains the lead-tin samples.


    • Sample heating runs are initiated using a toggle switched on the ECU. Once started, the investigation runs autonomously.


    • Individual SPU heat soak times range from 10 min, 1.6 hours, 5.5 hours, 13.5 hours, 27 hours, and 48 hours, followed by a quench cycle.


    • When an individual sample run is completed, the crew downloads data from the ECU to the MSG laptop and switches samples by removing the SPU and replacing it with a new SPU.


    • Once all runs have been completed, the hardware is removed from the MSG work volume and stowed.


    • The processed SPU?s are stored on ISS until they can be returned to Earth. On Earth, the researchers analyze each sample for particle size distribution, particle morphology, matrix structure, and particle crystallographic orientation.

    ^ back to top



    Results/More Information

    ^ back to top



    Related Websites

    ^ back to top



    Imagery

    image

    The Sample Processing Unit (SPU) is the container that holds the samples - lead-tin dendrites or spherules (Glenn Research Center, NASA)


    + View Larger Image


    image

    The Electronics Control Unit (ECU) controls the SPU processing time. The ECU is currently on board the ISS (Glenn Research Center, NASA)


    + View Larger Image


    image

    Flight SPU and Flight ECU installed in the Microgravity Science Glovebox (MSG) on board ISS (NASA)


    + View Larger Image


    image

    CSLM-3 dendrite sample from ground testing (Glenn Research Center, NASA)


    + View Larger Image