Dose Distribution Inside the International Space Station - 3D (DOSIS-3D) - 07.15.15

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
International Space Station crewmembers are continually exposed to varying levels of radiation which can be harmful to their health. Dose Distribution Inside the International Space Station - 3D (DOSIS-3D) uses several active and passive detectors to determine the radiation doses inside the ISS. The goal is a three-dimensional radiation map covering all sections of the ISS.
 
Science Results for Everyone
Information Pending

The following content was provided by Thomas Berger, and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.
Experiment Details

OpNom: Dosis 3D

Principal Investigator(s)
Thomas Berger, German Aerospace Center, Köln, Germany

Co-Investigator(s)/Collaborator(s)
Michael Hajek, International Atomic Energy Agency, Vienna, Austria
Soenke Burmeister, University of Kiel, Kiel, Germany
Filip Vanhavere, Ph.D., Belgium Nuclear Research Centre (SCK-CEN), Mol, Belgium
Yvonne Roed, Universities Space Research Association, Houston, TX, United States
Ramona Gaza, Universities Space Research Association, Houston, TX, United States
Vyacheslav A. Shurshakov, Institute of Biomedical Problems, Moscow, Russia
Günter Reitz, Ph.D., German Aerospace Center, Köln, Germany
Attila Hirn, KFKI-Atomic Energy Research Institute, Budapest, Hungary
Aiko Nagamatsu, Ph.D., Japan Aerospace and Exploration Agency, Tsukuba, Japan
Bernd Heber, University of Kiel, Kiel, Germany
Jozsef K. Palfalvi, Atomic Energy Research Institute, Budapest, Hungary
Frantisek Spurny, Ph.D., Nuclear Physics Institute, Rez, Czech Republic
Peter Szanto, KFKI-Atomic Energy Research Institute, Budapest, Hungary
Eric R. Benton, Eril Research Incorporated, Richmond, CA, United States
Marco Casolino, Ph.D., Universita of Roma Tor Vergata, Rome, Italy
Denis O'Sullivan, Dublin Institute for Advanced Studies, Dublin, Ireland
Yukio Uchihori, National Institute of Radiological Sciences, Chiba, Japan
Pawel Bilski, Institute of Nuclear Physics, Krakow, Poland
Vladislav P. Petrov, Institute for Biomedical Problems, Moscow, Russia
Dazhuang Zhou, Johnson Space Center, Houston, TX, United States
Eduardo G. Yukihara, Ph.D., Oklahoma State University, Stillwater, OK, United States
Edward Neal Zapp, Ph.D., Johnson Space Center, Houston, TX, United States
Nakahiro Yasuda, National Institute of Radiological Sciences, Chiba, Japan
Iva Ambrozova, Nuclear Physics Institute ASCR and Czech Technical University, Prague, Czech Republic

Developer(s)
Information Pending

Sponsoring Space Agency
European Space Agency (ESA)

Sponsoring Organization
Information Pending

Research Benefits
Information Pending

ISS Expedition Duration
May 2012 - Ongoing

Expeditions Assigned
31/32,33/34,35/36,37/38,39/40,41/42,43/44,45/46,47/48

Previous ISS Missions
Increment 29/30 is the first planned mission for DOSIS-3D operations.

^ back to top

Experiment Description

Research Overview

  • Dose Distribution Inside the International Space Station - 3D (DOSIS-3D) determines the radiation field parameters absorbed dose and dose equivalent inside the ISS with various active and passive radiation detector devices, aiming for a concise three dimensional dose distribution (3D) map of all the segments of the ISS.


  • This is achieved by applying and combining data from passive radiation detector systems consisting of thermoluminescence (TLD-involves the release of previously absorbed radiation upon being heated) and passive nuclear track detectors (PNTD) able to provide absorbed dose, LET (Linear Energy Transfer-a measure of energy transferred to a material as an ionizing particle travels through it) spectra and dose equivalent information.

Description
The DOSIS-3D experiment will provide documentation of the actual nature and distribution of the radiation field inside the ISS. Integral measurements of energy, charge and LET spectra of the heavy ion component will be done by the use of different nuclear track detectors. TLDs deliver mission averaged absorbed doses. Different neutron dosimeters allow for measurement of the neutron dose.

^ back to top

Applications

Space Applications
The experiment will pinpoint the distribution and levels of radiation inside the space station. Nuclear track detectors will measure the energy and charge of heavy ions, while neutron dosimeters will track exposure to free neutrons. Thermoluminescent dosimeters, or TLDs, will track the average radiation dose absorbed throughout a mission. A comprehensive understanding of the space radiation environment will allow scientists to issue recommendations for space radiation protection.
 

Earth Applications
Flight crews and nuclear plant workers are also exposed to greater-than-average radiation. The DOSIS-3D experiment provides insight into combining different devices for dosage monitoring, and provides lessons in how to monitor real-time data. This could prove beneficial to radiation monitoring for commercial and military airline crews, as well as other workers exposed to radiation.
 

^ back to top

Operations

Operational Requirements
DOSIS-3D requires continuous monitoring of the ISS radiation environment, making use of various instruments provided by ESA, JAXA, NASA and Russia. Concerning ESA, continuous power for the DOSIS/DOSTEL units, and regular monthly data downlink via EPM is required. Deployment and retrieval of the passive PDP dosimeters at the beginning and at the end of the increments, respectively is also required.

Operational Protocols
DOSIS-3D shall be performed for a total of 4-6 increments. The passive dosimeters shall not be exposed to X-rays during ground transportation.

^ back to top

Results/More Information

^ back to top

Results Publications

    Berger T, Hajek M, Summerer L, Vana N, Akatov YA, Shurshakov VA, Arkhangelsky VV.  Austrian dose measurements onboard space station MIR and the International Space Station - overview and comparison. Advances in Space Research. 2004; 34(6): 1414-1419. DOI: 10.1016/j.asr.2003.08.063.

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

^ back to top

Related Websites

^ back to top


Imagery

image NASA Image: ISS015E12110 - View of the Tissue Equivalent Proportional Counter (TEPC) Radiation Detector (gold cylinder) and the TEPC Spectrometer (gold box) in the U.S. Laboratory, Destiny during Expedition 15. The TEPC will be one of several radiation measurement devices used for DOSIS-3D.
+ View Larger Image