Eye Tracking Device (ETD) - 04.10.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone The Eye Tracking Device (ETD) will determine the influence of prolonged microgravity and the accompanying vestibular (inner ear) adaptation on the orientation of Listing's Plane (a coordinate framework, which is used to define the movement of the eyes in the head).

Science Results for Everyone
Information Pending



This content was provided by Andrew H. Clarke, Ph.D., and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.

Experiment Details

OpNom

Principal Investigator(s)

  • Andrew H. Clarke, Ph.D., Charite Medical School, Berlin, Germany

  • Co-Investigator(s)/Collaborator(s)
  • Jelte E. Bos, M.D., Free University, Amsterdam, Netherlands
  • Inessa B. Kozlovskaya, M.D., Ph.D., D.Sc., Institute for Biomedical Problems, Moscow, Russia
  • Elena Tomilovskaya, Institute for Biomedical Problems, Moscow, Russia
  • Thomas Haslwanter, Ph.D., University of Zurich, Zurich, Switzerland

  • Developer(s)
    Kayser Threde, Munich, , Germany

    Sponsoring Space Agency
    European Space Agency (ESA)

    Sponsoring Organization
    Information Pending

    Research Benefits
    Information Pending

    ISS Expedition Duration
    October 2003 - April 2008

    Expeditions Assigned
    8,9,10,11,13,14,16

    Previous ISS Missions
    Performed on ISS Expeditions 9, 10, 11.

    ^ back to top



    Experiment Description

    Research Overview

    • The Eye Tracking Device (ETD) investigation will determine how the vestibular (inner ear) system adapts to a weightless environment and how this relates to the occurrence of space sickness in manned space flights.


    • This type of research can further provide an insight into vestibular disorders on Earth such as Meniere's disease (balance disorder of the inner ear) and related vestibular symptoms such as vertigo and nausea.

    Description
    The working hypothesis is that in microgravity the orientation of Listing's Plane is altered, probably to a small and individually variable degree. Further, with the loss of the otolith-mediated gravitational reference, it is expected that changes in the orientation of the coordinate framework of the vestibular system occur, and thus a divergence between Listing's Plane and the vestibular coordinate frame should be observed. While earlier ground-based experiments indicate that Listing's Plane itself is to a small degree dependent on the pitch orientation to gravity, there is more compelling evidence of an alteration of the orientation of the vestibulo-ocular reflex (VOR), reflex eye movement that stabilizes images on the retina during head movement by producing an eye movement in the direction opposite to head movement, thus preserving the image on the center of the visual field, in microgravity.

    Furthermore, changes in bodily function with relation to eye movement and spatial orientation that occur during prolonged disturbance of the vestibular system most likely play a major role in the problems with balance that astronauts experience following re-entry from space.

    In view of the much larger living and working space in the ISS, and the extended program of spacewalks (EVAs) being planned, particular care must be given to assessing the reliability of functions related to eye movement and spatial orientation.

    The performance of the experiments in space are therefore of interest for their expected contribution to basic research knowledge and to the improvement and assurance of human performance under weightless conditions.

    ^ back to top



    Applications

    Space Applications
    Examination of the orientation of the Listing's plane during the course of a prolonged space mission is of particular interest, as on Earth the Listing's plane appears to be dependent on input from the vestibular system, i.e., detected through the head position with relation to gravity. By exposing the astronaut to the weightlessness of space, this experiment can follow the subsequent adaptation of the astronaut's vestibular system during the flight and after re-entry.

    Earth Applications
    This study has important implications understanding basic mechanisms of motor control in microgravity and for rehabilitative training of neurological patients with impaired motor control.

    ^ back to top



    Operations

    Operational Requirements
    Information Pending

    Operational Protocols
    The ETD consists of a headset that includes two digital camera modules for binocular recording of horizontal, vertical and rotational eye movements and sensors to measure head movement. The second ETD component is a laptop PC, which permits digital storage of all image sequences and data for subsequent laboratory analysis. Listing's Plane can be examined fairly simply, provided accurate three-dimensional eye-in-head measurements can be made. Identical experimental protocols will be performed during the pre-flight, in-flight and post-flight periods of the mission. Accurate three-dimensional eye-in-head measurements are essential to the success of this experiment. The required measurement specifications (less than 0.1 degrees spatial resolution, 200 Hz sampling frequency) are fulfilled by the Eye Tracking Device (ETD).

    Using the ETD all of the subjects, both short-duration and long-duration, are examined:

    • Pre-flight, on the ground, at L- 6 months (launch minus), then four times leading up to the launch typically at L-3 months (+/- 2 weeks), L-21 days (+/-2 days), L-14 days (+/-2 days) and L-7 days (+/-2 days). The total duration of each session is approximately 30 minutes total for each subject except the last one at L-7 days, which has a duration of 1 hour.


    • In-flight, at 48-hour intervals for a maximum of 4 sessions (Flight Day 3, 5, 7 and 9). Each session lasts approximately 30 minutes.


    • Post-flight, for readaptation on days R+0 (return plus), R+2, R+4, R+6, R+8, R+10 and R+12, and once again at approximately R+60.

    ^ back to top



    Results/More Information

    ^ back to top



    Results Publications

    ^ back to top


    Ground Based Results Publications

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

      Clarke AH, Haslwanter T, Haslwanter T.  The orientation of Listing’s Plane in microgravity. Vision Research. 2007 November; 47(25): 3132-3140. DOI: 10.1016/j.visres.2007.09.001.
      Clarke AH.  Vestibulo-oculomotor research & measurement technology for the space station era. Brain Research Reviews. 1998 Nov; 28(1-2): 173-184. PMID: 9795204.
      Bockisch CJ, Haslwanter T, Haslwanter T.  Three-dimensional eye position during static roll and pitch in humans. Vision Research. 2001; 41(16): 2127-2137.

    ^ back to top


    Related Websites
    Columbus Mission - European Experiment Programme
    Orientation of Listing's Plane
    The information provided is courtesy of the ESA Astrolab Mission web page.

    ^ back to top



    Imagery

    image NASA Image: ISS011E13710 - Cosmonaut Sergei K. Krikalev, Expedition 11 Commander representing Russia's Federal Space Agency, uses the Eye Tracking Device (ETD), a European Space Agency (ESA) payload in the Zvezda Service Module of the International Space Station. The ETD measures eye and head movements in space with great accuracy and precision.
    + View Larger Image