NanoRacks-CellBox-Effect of Microgravity on Human Thyroid Carcinoma Cells (NanoRacks-CellBox-Thyroid Cancer) - 08.27.15

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
Finding new treatments for cancer requires detailed studies of tumor cells, but when cells are grown in a lab on Earth, gravity affects the way they grow and the shapes they take. NanoRacks-CellBox-Effect of Microgravity on Human Thyroid Carcinoma Cells (NanoRacks-CellBox-Thyroid Cancer) studies thyroid cancer cells in microgravity, which enables cells to grow in spheres or in single layers. These unique views of cell structure will be used to look for new biomarkers, which can be used to develop new drugs to treat thyroid cancer.
Science Results for Everyone
Information Pending

The following content was provided by Daniela Gabriele Grimm, MD, and is maintained in a database by the ISS Program Science Office.
Experiment Details

OpNom: BioRack Experiment Containers

Principal Investigator(s)
Daniela Gabriele Grimm, MD, Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark

Jessica Pietsch, Ph.D., Otto-von-Guericke-University Magdeburg, Magdebug, Germany
Stefan Riwaldt, Universitätsklinikum Magdeburg, Magdebug, Germany
Markus Wehland-von Trebra, Ph.D., Otto-von-Guericke-University Magdeburg, Magdebug, Germany

NanoRacks LLC, Webster, TX, United States
EADS Astrium, Friedrichshafen, Germany

Sponsoring Space Agency
National Aeronautics and Space Administration (NASA)

Sponsoring Organization
National Laboratory (NL)

Research Benefits
Scientific Discovery, Space Exploration, Earth Benefits

ISS Expedition Duration 1
March 2014 - September 2014

Expeditions Assigned

Previous ISS Missions
Information Pending

^ back to top

Experiment Description

Research Overview

  • NanoRacks-CellBox-Effect of Microgravity on Human Thyroid Carcinoma Cells (NanoRacks-CellBox-Thyroid Cancer) investigates the effects of microgravity on human thyroid cancer cells.

  • The goal is to possibly identify new biomarkers in the genome (hereditary information), the proteome (expressed proteins) or the secretome (secreted proteins) which could be used to develop new thyorid cancer drugs or to gain a better understanding of the mechanism leading to cancer development and thus to new strategies of thyroid cancer therapy.

The principle aim of NanoRacks-CellBox-Effect of Microgravity on Human Thyroid Carcinoma Cells (NanoRacks-CellBox-Thyroid Cancer) is to investigate the effects of real microgravity on human thyroid carcinoma cells (FTC-133 cell line). Data obtained from this experiment is compared to the thyroid cancer cells characterized after exposure to simulated microgravity and after the successful SIMBOX on Shenzhou-8 mission (2011, Experiment 14).


Single cancer cells of the FTC-133 cell line are cultured during NanoRacks-CellBox-Thyroid Cancer) investigation. The cells are expected to form three-dimensional multicellular tumor spheroids (MCTS), which clearly resemble the respective originating tumor. Under conditions of microgravity, cells keep floating without stirring so that initial cell-cell interactions required for spheroid formation are induced by forces only due to biochemical components actually expressed on surfaces of cells but gravity related push and shear events do not influence MCTS formation. After the SIMBOX mission, it was shown for the first time that FTC-133 cells grew in form of 3D multicellular spheroids and also adherently as a monolayer in space. Epidermal growth factor (EGF) and connective tissue growth factor (CTGF) may be involved in 3D aggregation in space. The secretion of cytokines was down-regulated in space. The inducers of tumor neoangiogenesis OPN, IL-6, IL-8, and VEGF-a were all reduced under real microgravity. Several gravisensitive signaling elements, such as protein kinases A and C as well as integrins, are involved in the reaction of thyroid cancer cells to microgravity. The increase in VEGF-d secretion of the original low differentiated thyroid cancer cells indicated a redifferentiation of these cells in space. The hope is to confirm these findings and thus increase the number of experiments for statistical reasons. The overall aim of the studies in microgravity is the identification of new biomarkers which can be used for developing new cancer drugs.

^ back to top


Space Applications
Certain cell receptors and cell signaling mechanisms work differently in space, which affects how cancer cells grow. Microgravity enables cells to form three-dimensional clumps, which can be used to study tumor formation and to search for biological markers. These methods for studying cancer would not be possible in Earth’s gravity, making the International Space Station a unique laboratory for studying cancer.

Earth Applications
Thyroid cancer is the fastest-increasing cancer in the United States, mostly because new technology is allowing doctors to find it more easily, according to the American Cancer Society. Results from this investigation may reveal new biological markers for thyroid cancer, which could be used to develop new drugs to treat it.

^ back to top


Operational Requirements
BioRack Experiment Containers are returned at 4°C.

Operational Protocols
A crewmember installs BioRack Experiment Containers no later than docking plus two days. After automatic fixation, the containers must remain in the BioRack for a minimum of 12 days prior to the crewmember removing and storing at 4°C for return.

^ back to top

Results/More Information

Information Pending

^ back to top

Results Publications

    Riwaldt S, Pietsch J, Sickmann A, Bauer J, Braun M, Segerer J, Schwarzw√§lder A, Aleshcheva G, Corydon TJ, Infanger M, Grimm DG.  Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics. 2015 April 29; epub. DOI: 10.1002/pmic.201500067. PMID: 25930030.

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

^ back to top

Related Websites

^ back to top