Analysis of International Space Station Plasma Interaction (Plasma Interaction Model) - 01.09.14

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone This analysis created a model to predict the voltage difference between the ISS and the plasma background. The ionospheric plasma interacts with the ISS solar arrays and conducting surfaces, causing excess charge to be accumulated, thus creating the potential difference. This model will be used to predict the ISS floating potentials to assess vehicle and EMU dielectric breakdown.

Science Results for Everyone Information Pending



This content was provided by Ronald R. Mikatarian, and is maintained in a database by the ISS Program Science Office.

Experiment Details

OpNom:

Principal Investigator(s)

  • Ronald R. Mikatarian, Boeing, Houston, TX, United States
  • Co-Investigator(s)/Collaborator(s)

  • Brandon Reddell, Ph.D., Boeing, Houston, TX, United States
  • Developer(s)

    Boeing, Houston, TX, United States

    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration:
    April 2005 - April 2008

    Expeditions Assigned
    11,12,13,14,15,16

    Previous ISS Missions
    The Plasma Interaction Model is a unique investigation, which has not been previously performed.

    ^ back to top



    Experiment Description

    Research Overview

    • The ISS must be protected from the hazards of space. The Plasma Interaction Model (PIM) can predict ISS floating potential. This information is needed in order to study vehicle and crew impacts.


    • The Plasma Interaction Model will provide a better understanding of the interaction of ISS vehicle with the surrounding plasma.

    Description
    This experiment was designed to create a model to predict the voltage difference between the ISS and the plasma background. The ionospheric plasma interacts with the ISS solar arrays and conducting surfaces, causing excess charge to be accumulated, thus creating the potential difference. This model will be used to predict the ISS floating potentials to assess vehicle and EMU dielectric breakdown.

    The Plasma Interaction Model (PIM) collected measurements of the ionospheric plasma around the ISS using the Floating Potential Probe (FPP) that was mounted outside on an ISS truss until it was jettisoned in late 2005. Data were also collected using the Incoherent Scatter Radar (ISR) data, a ground-based technique for the study of the Earth's ionosphere and its interactions with the upper atmosphere, the magnetosphere and the interplanetary medium (solar wind). These measurements helped validate the models that used magnetic field inputs from the International Geomagnetic Reference Field (IGRF), and plasma environmental parameters from the International Reference Ionosphere (IRI), an empirical standard model of the ionosphere based on all available data sources. Joint investigations with ISR principal investigators at Millstone Hill (USA) and Irkutsk (Russia) have been conducted. Plasma data from a previously launched satellite, Dynamics Explorer-2 (launched August 3, 1981 and collected data through February 19, 1983) can also be used as input into PIM. This plasma database will be increased as more plasma data become available, i.e., from the CHAMP satellite and ISS Floating Potential Measurement Unit (FPMU). Other inputs to the PIM include vehicle coordinates, configuration of solar arrays, conducting area, and the Plasma Contactor Unit (PCU) currents and current-to-voltage relationship.

    ^ back to top



    Applications

    Space Applications
    This Plasma Interaction Model models the interaction of the space-craft, with high voltage solar arrays, to the local plasma environment.

    Earth Applications
    This model will be the standard for solar arrays in space. With an energy crisis upon us, solar power is a viable alternative. Ultimately solar arrays in space create more power than solar arrays on the ground. This model will be invaluable for those seeking to pioneer solar arrays in space for the private sector.

    ^ back to top



    Operations

    Operational Requirements
    Continue operation of ISS PCU and FPMU to gather test data for various ISS flight configurations and attitudes.

    Operational Protocols
    Data will be collected and analyzed from different inputs, such as the Earth ground stations and ISS. The data points will then be plotted for analysis and interpretation.

    ^ back to top



    Results/More Information
    The PIM has been used to predict the charge build-up and associated dangers for future ISS solar array configurations. Ground data were collected from various locations around the world. Additionally, historical data?e.g., the IRI 2001 model, FPP data, and the Dynamics Explorer-2 Satellite data, are available. Using these data, the PIM has been able to characterize the peak voltage levels for the various ISS stage builds. (Reddell et al. 2006). (Evans et al. 2009)

    ^ back to top



    Results Publications

      Reddell B, Alred J, Kramer L, Mikatarian RR, Minow J, Koontz S.  Analysis of ISS Plasma Interaction. 44th Aerospace Sciences Meeting and Exhibit. Reno, NV; 2006 January 9-12

    ^ back to top


    Ground Based Results Publications

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

      Mikatarian RR, Kern J, Barsamian H, Koontz S, Roussel J.  Plasma Charging of the International Space Station. 53rd International Astronautical Congress, The World Space Congress, Houston, TX; 2002
      Mikatarian RR, Barsamian H, Alred J, Kern J, Minnow JI, Koontz S.  
      Electrical Charging of the International Space Station
      . 41st Aerospace Sciences Meeting and Exhibit, Reno, NV; 2003
      Barsamian H, Mikatarian RR, Alred J, Minnow JI, Koontz S.  
      ISS Plasma Interaction: Measurements and modeling
      . 8th Spacecraft Charging Technology Conference, Huntsville, AL; 2003

    ^ back to top


    Related Websites

    ^ back to top



    Imagery