RNA Interference and Protein Phosphorylation in Space Environment Using the Nematode Caenorhabditis elegans (CERISE) - 08.27.15

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
RNA Interference and Protein Phosphorylation in Space Environment Using the Nematode Caenorhabditis elegans (CERISE) evaluates the effect of microgravity on RNA interference and studies how the space environment effects protein phosphorylation and signal transduction in the muscle fibers of Caenorhabditis elegans.
Science Results for Everyone
Ageing and space travel are hard on the muscles. This investigation studies how space living affects muscle fibers using nematode worms (Caenorhabditis elegans). The data show changes in muscle, bone, and cell proteins and help scientists understand how human muscle decline. Researchers treat the worms in a special way to block the activity of certain genes to stop degradation of muscle-specific proteins in both microgravity and normal gravity. The treatment may be effective in combating muscle loss and other problems on future long-duration space missions. 

The following content was provided by Atsushi Higashitani, Ph.D., and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Japan Aerospace and Exploration Agency (JAXA).
Experiment Details

OpNom:

Principal Investigator(s)
Atsushi Higashitani, Ph.D., Tohoku University, Miyagi, Japan

Co-Investigator(s)/Collaborator(s)
Akira Higashibata, Ph.D., Japan Aerospace and Exploration Agency, Tsukuba, Japan
Nathaniel J. Szewczyk, Ph.D., University of Pittsburg, Pittsburgh, PA, United States

Developer(s)
Information Pending

Sponsoring Space Agency
Japan Aerospace Exploration Agency (JAXA)

Sponsoring Organization
Japan Aerospace Exploration Agency

Research Benefits
Information Pending

ISS Expedition Duration 1
October 2009 - March 2010

Expeditions Assigned
21/22

Previous ISS Missions
The predecessor to this investigation, ICE-First, was flown to ISS in 2004.

^ back to top

Experiment Description

Research Overview

  • RNA interference is an useful technique to artificially knock down a target gene expression. In this experiment we will examine RNA interference under space environment. We will also evaluate the effect of space environment on protein phosphorylation and signal transduction concerning muscle fibers formation using gene knock-downed C.elegans.

Description
Examine RNA interference under space environment and evaluate effect of space environment for protein phosphorylation and signal transduction concerning muscle fibers formation using gene knock downed C.elegans

^ back to top

Applications

Space Applications
Information Pending

Earth Applications
The experimental data will provide the important information to clarify the muscle atrophy in space and also on the Earth. The results will be the first evidence that RNA interference will be a powerful technique in space experiment to investigate the effect of microgravity on gene expression.

^ back to top

Operations

Operational Requirements
Information Pending

Operational Protocols
Information Pending

^ back to top

Results/More Information

Comparison of the in-orbit samples to its Ground Control (GC) equivalent showed no differences. The Gene expression of 228 microRNAs of the 232 analyzed were also unaffected during the micro-g duration. RNAi applied to a GFP reduced chromosomal gfp expression in gonad tissue, which was not different from the GC samples. RNAi applied to a rbx-1 also induced abnormal chromosome segregation in the gonad for the in-orbit samples. Finally, RNAi applied to lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both micro-g and GC conditions (Etheridge [a] 2011).      Treatment with RNAi works as effectively in microgravity as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilized to block muscle protein degradation, both on Earth and in space. Scientists are now attempting to analyze the effect of microgravity on the C. elegans muscular cells using transcriptome and proteome analyses (Etheridge [b] 2011).

^ back to top

Results Publications

    Etheridge T, Nemoto K, Hashizume T, Mori C, Sugimoto T, Suzuki H, Fukui K, Yamazaki TQ, Higashibata A, Szewczyk NJ, Higashitani A.  The next phase of life-sciences spaceflight research: Harnessing the power of functional genomics. Communicative and  Integrative Biology. 2011 Dec; 4(6): 668-669. DOI: 10.4161/cib.4.6.16975.

    Etheridge T, Nemoto K, Hashizume T, Mori C, Sugimoto T, Suzuki H, Fukui K, Yamazaki TQ, Higashibata A, Szewczyk NJ, Higashitani A.  The Effectiveness of RNAi in Caenorhabditis Elegans Is Maintained During Spaceflight. PLOS ONE. 2011 June 1; 6(6): e20459. DOI: 10.1371/journal.pone.0020459.

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

    Higashitani A, Hashizume T, Sugimoto T, Mori C, Nemoto K, Etheridge T, Higashitani N, Takanami T, Suzuki H, Fukui K, Yamazaki TQ, Ishioka N, Szewczyk NJ, Higashibata A.  C. elegans RNAi space experiment (CERISE) in Japanese Experiment Module KIBO. Biological Sciences in Space. 2009; 23(4): 183-187. DOI: 10.2187/bss.23.183.

^ back to top

Related Websites

^ back to top


Imagery