Binary Colloidal Alloy Test-5: Phase Separation (BCAT-5-PhaseSep) - 10.21.14

Overview | Description | Applications | Operations | Results | Publications | Imagery
ISS Science for Everyone

Science Objectives for Everyone
The Binary Colloidal Alloy Test 5: Phase Separation (BCAT-5-PhaseSep) experiment studies how microscopic particles suspended in a liquid separate from the liquid over time. Crew members photograph mixed colloid samples to measure the rate at which they separate. Reducing undesirable phase separation increases the shelf lives of household goods and consumer products.
 

Science Results for Everyone
Information Pending



The following content was provided by Matthew Lynch, Ph.D., David A. Weitz, Ph.D., and is maintained in a database by the ISS Program Science Office.

Experiment Details

OpNom

Principal Investigator(s)

  • Matthew Lynch, Ph.D., Procter and Gamble, Cincinnati, OH, United States
  • David A. Weitz, Ph.D., Harvard University, Cambridge, MA, United States

  • Co-Investigator(s)/Collaborator(s)
  • Peter J. Lu, Ph.D., Harvard University, Cambridge, MA, United States

  • Developer(s)
    ZIN Technologies Incorporated, Cleveland, OH, United States

    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration
    March 2009 - March 2013

    Expeditions Assigned
    19/20,21/22,25/26,27/28,29/30,31/32,33/34

    Previous ISS Missions
    The predecessors to BCAT-5; BCAT-3 and BCAT-4 are in operation on the ISS.

    ^ back to top



    Experiment Description

    Research Overview

    • The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment uses microscopic spheres (described as colloids) suspended in a liquid to serve as a large scale representation of the atoms and small molecules which constitute liquids (like oil and water) so that scientists can visualize what happens at the individual particle level when liquids separate from one another after being mixed.


    • Results allow scientists to see some of the fundamental physics concepts that are behind the separation of different liquids in commercial products; these observations have been cloaked by the effects of gravity up to now.


    • The BCAT-5-PhaseSep samples will be formulated using key components found in products like DownyTM. Many such products require expensive additives to ensure that they last for the stated shelf-life. A fundamental understanding of the underlying physics that is needed to stabilize these everyday products may enable a formulation with enhanced performance and stability, while simultaneously lowering the cost of manufacture.

    Description

    The Binary Colloidal Alloy Test - 5 (BCAT-5) hardware supports four investigations. Samples 1 - 5, the Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) will study collapse (phase separation rates that impact product shelf-life). In microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth. Samples 6 - 8, Binary Colloidal Alloy Test - 5: Compete (BCAT-5-Compete) will study the competition between phase separation and crystallization, which is important in the manufacture of plastics and other materials. Sample 9, Binary Colloidal Alloy Test - 5: Seeded Growth (BCAT-5-SeededGrowth) will study the properties of concentrated systems of small particles when 99.8% are identical 0.36 diameter micron spheres and 0.2% are 4.14 microns in diameter (11.5x larger); these seed particles may cause heterogeneous crystal growth. Sample 10, Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3D-Melt) will look at the mechanisms of crystal formation and 3-dimensional melting using colloidal particles that change size with temperature.

    BCAT-5-PhaseSep is a follow-on experiment to BCAT-3, which has been performed on several ISS increments, since increment 8, and BCAT-4, which was begun during Increment 17. Fabric enhancers are composed of mixtures of vesicle and polymers which, in some cases, form weak particle gels. These gels often coarsen exhibiting sintering, cracking or collapse, which significantly reduce the product shelf life. The factors that contribute to coarsening are enigmatic, as the processes are often concealed by the gravitational compression of the gel. Microgravity experiments offer a unique opportunity to elucidate coarsening mechanisms in these weak gel systems.

    ^ back to top



    Applications

    Space Applications

    The BCAT-5-Phase Separation experiments explores multi-phase separation which can be potentially applied to liquid waste recycling, coolant operations, and controlling the flow behavior of rocket fuel in future spacecraft.
     

    Earth Applications

    Many household products require expensive additives that ensure particles do not separate from the liquid. Understanding this phase separation helps make household goods, such as fabric softener, with longer shelf lives and fewer additives. In the long term, the experiment aids in the development of next-generation computer technology, advanced optics, and medical technology.
     

    ^ back to top



    Operations

    Operational Requirements

    The BCAT-5 experiment consists of ten small samples of colloidal particles. The ten BCAT-5 samples are contained within a small case the size of a school textbook. The experiment requires a crewmember to set up on the Maintenance Work Area (MWA) or on a handrail/seat track configuration, ISS Laptop and utilize EarthKAM software to take digital photographs of Samples 1 - 8 at close range using the onboard Kodak DCS760 camera. Camera Control Files for running the EarthKAM software can be uploaded from Earth to control the photography intervals (how many photographs per hour) and spans (run for how many days) once it is running. Samples 6 - 10, which may form crystals, require manual photographs (at least initially) be taken by a crewmember. The pictures are down-linked to investigators on the ground for analysis.

    Operational Protocols

    A crewmember sets up the video camera and BCAT-5 hardware (Slow Growth Sample Module, DCS760 Camera, pen-light source, flash and SSC Laptop with EarthKAM software) in the Maintenance Work Area (MWA) to document the BCAT-5 operations as performed on-board the ISS. The crewmember homogenizes (mixes) the sample(s) and takes the first photographs manually. This helps them optimize the setup and shows that the samples were initially fully homogenized when publishing results later. The EarthKAM software automates the rest of the photography session over a period of a few days to a few weeks. The crewmember performs a daily status check once a day (when time is available) to assure proper alignment and focus. At the completion of the run, the crewmember tears down and stows all hardware.

    ^ back to top



    Results/More Information
    Information Pending

    ^ back to top



    Results Publications

    ^ back to top


    Ground Based Results Publications

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

    ^ back to top


    Related Websites
    ISS Research Project-BCAT-PhaseSep
    Experimental Soft Condensed Matter Group
    NIH BioMed-ISS Meeting Video Presentation, 2009—BCAT-5-PhaseSep
    NIH BioMed-ISS Meeting, 2009—BCAT-5-PhaseSep

    ^ back to top



    Imagery

    image NASA Image: ISS016E027863 - Astronaut Dan Tani photographing the BCAT-3 Sample Module using his own design for a ceiling mount in Node 2 of the International Space Station. Great high contrast pictures of difficult-to-capture images resulted from using this setup (February 2008).
    + View Larger Image


    image NASA Image: ISS025E008239 - NASA astronaut Shannon Walker, Expedition 25 flight engineer, uses a digital still camera to photograph Binary Colloidal Alloy Test-5 (BCAT-5) experiment samples in the Kibo laboratory of the International Space Station.
    + View Larger Image