Component Repair Experiment - 1, SDTO 17012U (CRE-1) - 01.09.14

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone The Component Repair Experiment -1, SDTO 17012U (CRE-1) is an incremental step toward providing an electronics repair capability during future long-duration space missions. Implementation of repair capabilities can help reduce the burden of replacement hardware. Specifically, CRE-1 demonstrates the physical steps of component-level electronics repair conducted by crewmembers aboard the International Space Station (ISS). These physical processes all have a direct gravitational dependence (such as the soldering process itself) or an indirect, operational dependence on the gravity environment (such as placing, aligning, and securing small replacement parts). Therefore, the repair processes must be demonstrated in a relevant environment as part of a repair capability development.

Science Results for Everyone Information Pending



This content was provided by John W. Easton, Peter M. Struk, Ph.D., and is maintained in a database by the ISS Program Science Office.

Experiment Details

OpNom:

Principal Investigator(s)

  • John W. Easton, National Center for Space Exploration Research, Cleveland, OH, United States
  • Peter M. Struk, Ph.D., Glenn Research Center, Cleveland, OH, United States
  • Co-Investigator(s)/Collaborator(s)
    Information Pending

    Developer(s)

    ZIN Technologies Incorporated, Cleveland, OH, United States
    Arctic Slopes Research Corporation, Cleveland, OH, United States
    National Center for Space Exploration Research, Cleveland, OH, United States

    Sponsoring Space Agency
    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization
    Human Exploration and Operations Mission Directorate (HEOMD)

    Research Benefits
    Information Pending

    ISS Expedition Duration
    October 2008 - April 2009

    Expeditions Assigned
    18

    Previous ISS Missions
    The predecessor to CRE-1, Soldering in Reduced Gravity Experiment, SDTO 17003U (SoRGE) was operated on the ISS during Expedition 14.

    ^ back to top



    Experiment Description

    Research Overview

    • The Component Repair Experiment -1, SDTO 17012U (CRE-1) demonstrates the physical steps of manual component-level electronics repair in a microgravity environment of a spacecraft and determines the types and sizes of components that can be repaired manually.


    • CRE-1 also evaluates the tools, processes, and infrastructure needed to support those repairs, and the training and skill levels needed for the crew to successfully conduct such repairs.

    Description
    During Component Repair Experiment -1, SDTO 17012U (CRE-1), a crewmember removed and replaced components on a circuit card. The components included through-hole technology and more modern surface mount devices including both standard and fine-pitched leads. The repair steps included conformal coating removal, component removal, circuit board preparation, and component replacement. The crew was led through these tasks using detailed illustrated procedures and a training video, in much the same way that a future crew might be guided through an unplanned, emergency repair.

    The CRE-1 provides a tool kit to augment existing ISS hardware which included a Maintenance Work Area (MWA) and Soldering Kit. The tool kit included a fiberglass stick and a dental pick to remove conformal coating. Both standard and fine tip cutters were included to allow for cutting away the old components (although some components were removed non-destructively). To assist in manipulating small parts, the kit included curved, straight, and reverse tweezers. Finally, additional soldering equipment was provided which included both 1/8? and 1/32? soldering iron tips, solder wick, no-clean flux cored solder wire, and liquid flux.

    The circuit boards are scheduled to be returned to Earth aboard the Space Shuttle Discovery (Flight 15A) for analysis which includes a visual inspection of the repaired components, functional test of the circuit cards, crew debrief, and an evaluation of processes and tools used in the experiment. Additionally, select solder joints will be examined using Computerized Tomography (CT) X-ray scanning techniques to quantitatively determine the void fraction in the repaired joints. The analysis and evaluation will lead to a recommendation to the ISS and Constellation programs for an electronics repair tool kit that will enable future component-level repairs during long-duration space missions.

    ^ back to top



    Applications

    Space Applications
    The current strategy for electronics' repair aboard the ISS calls for replacement of failed hardware which relies on spares provided by resupply flights from Earth. For future exploration missions beyond low Earth orbit, this logistical support will be much more constrained. Repairing electronics at the lowest component level could potentially ease the logistical burden by minimizing the upmass and volume of required spares. Implementation of such a strategy on the ISS could serve as a test bed for future operations as well as offer additional options for actual contingency maintenance. Before such a strategy can be adopted, data must be gathered about the practicality of performing such repairs in microgravity. CRE-1 serves to advance the state of knowledge and experience involved in manual component-level electronics repair by demonstrating such repairs in an operational environment.

    Earth Applications
    Development of improved toolsets, procedures, and training methods can help enable in-the-field repairs by deployed U.S. military forces, thereby assisting in reducing the logistical support requirements of U.S. forces.

    ^ back to top



    Operations

    Operational Requirements
    CRE-1 conducted operations in the ISS MWA Containment Area, which serves to contain any contaminants created during the electronics repair process. The soldering iron (already on board the ISS), uses a rechargeable battery and can heat up to 316 degrees C (600 degrees F), using newer soldering tips included as part of the CRE-1 tool kit. An ISS video camera captured video of a majority of the repair process including the removal of conformal coatings, component removal and board preparation, and installation of the new component. During CRE-1 operations, crewmembers took detailed still imagery between key steps of the repair process for evaluation by ground-team members.

    Operational Protocols
    Crewmembers set up the MWA, installed the CRE-1 hardware inside the MWA, and positioned the ISS video camera to capture video of the repair operations. Crewmembers then repaired a series of components on each of several circuit boards. Completion of the end-to-end repair of one component on one board constituted one experimental session. In some cases, the crewmembers worked repair steps for multiple components simultaneously (e.g. removal of conformal coating for all the components to be repaired on a single board). Sessions were not continuous and crewmembers suspended and restarted repair operations as their timeline permitted. The MWA remained deployed for the entire experiment. Upon conclusion of the experiment, the crewmembers cleaned up and stowed the MWA. Results of this experiment will be used to guide electronic repair strategies for future space missions.

    ^ back to top



    Results/More Information

    ^ back to top



    Results Publications

    ^ back to top


    Ground Based Results Publications

    ^ back to top


    ISS Patents

    ^ back to top


    Related Publications

      Pettegrew RD, Struk PM, Watson JK, Haylett DR.  Experimental Methods in Reduced-Gravity Soldering Research. NASA Technical Memorandum; 2002.
      Easton JW, Struk PM, Rotella A.  Imaging and Analysis of Void-Defects in Solder Joints Formed in Reduced Gravity Using High-Resolution Computed Tomography. 46th Aerospace Sciences Meeting and Exhibit, Reno, NV; 2008
      Struk PM, Pettigrew RD, Downs RS.  The Effects of an Unsteady Reduced Gravity Environment on the Soldering Process. 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV; 2004
      Pettegrew RD, Struk PM, Watson JK, Haylett DR, Downs RS.  Gravitational Effects on Solder Joints. Welding Journal. 2003; 82(10): 44-48.
      Grugel RN, Cotton LJ, Segre PN, Ogle JA, Funkhouser G, Parris F, Murphy L, Gillies D, Hua F, Anilkumar AV.  The In-Space Soldering Investigation (ISSI): Melting and Solidification Experiments Aboard the International Space Station. 44th Aerospace Sciences Meeting and Exhibit. Reno, NV; 2006

    ^ back to top


    Related Websites

    ^ back to top



    Imagery

    image CRE-1 test cards and components to be removed and replaced during operations. Image courtesy of the CRE-1 team at the Glenn Research Center.
    + View Larger Image


    image CRE-1 tool kit provided to support operations on the ISS. Image courtesy of the CRE-1 team at the Glenn Research Center.
    + View Larger Image


    image NASA Image: ISS018E033818 - Astronaut Mike Fincke removing conformal coating during the CRE-1 experiment.
    + View Larger Image


    image NASA Image: ISS018E035796 - Astronaut Sandra Magnus removing conformal coating during the CRE-1 experiment.
    + View Larger Image