Feature

Text Size

NASA Global Hawk Attends Tropical Storm Nadine's 'Birth'
09.13.12
 
NASA Sees Wind Shear Battering Tropical Storm Nadine

Tropical Storm Nadine is struggling against wind shear and some dry air. Infrared satellite imagery from NASA showed that Nadine's most powerful thunderstorms were being pushed east of the center.

An animation of satellite observations from Sept. 9-13, 2012, shows large Tropical Storm Leslie north of Bermuda, tiny Hurricane Michael east of Leslie and the development of Tropical Storm Nadine in the central Atlantic. This visualization was created by the NASA GOES Project at NASA Goddard Space Flight Center, Greenbelt, Md., using observations from NOAA's GOES-13 satellite. (Credit: NASA/NOAA GOES Project)
› Download Video

NASA's Aqua satellite passed over Tropical Storm Nadine early on Sept. 13 and saw several factors that indicated the storm was still struggling to achieve hurricane status.

Infrared data from the Atmospheric Infrared Sounder (AIRS) that flies aboard Aqua found the strongest thunderstorms with very cold cloud temperatures (colder than -63F/-52C) were being pushed east of Nadine's center by wind shear.

infrared image of Nadine

NASA's Aqua satellite passed over Tropical Storm Nadine on Sept. 13 at 01:23 a.m. EDT. AIRS infrared data found the strongest thunderstorms (purple) with very cold cloud temperatures being pushed east of the center by wind shear. Credit: NASA/JPL, Ed Olsen
› Larger image

Although Nadine is expected to reach hurricane status later on Sept.13 or Sept. 14, the storm did not yet develop an eye. The AIRS infrared image also showed that Nadine's cloud pattern was not symmetric, and a tropical cyclone needs symmetry to intensify. If the moderate southwesterly wind shear relaxes, Nadine will have a better chance of intensifying. Satellite data also suggests that intrusion of mid-level dry air, which is also sapping Nadine's strength.

At 11 a.m. EDT on Sept. 13, Tropical Storm Nadine's maximum sustained winds were just under hurricane strength, near 70 mph (110 kmh). The National Hurricane Center noted that Nadine could become a hurricane later on Sept. 13 (today). The center of Tropical Storm Nadine was located near latitude 22.6 north and longitude 52.2 west, about 770 miles (1,235 km) east-northeast of the Northern Leeward Islands. Nadine is moving toward the northwest near 16 mph (26 kmh) and the National Hurricane Center expects Nadine to turn to the north-northwest and later to the north.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.



Sept. 12, 2012
NASA Global Hawk and Satellites Attend Tropical Storm Nadine's 'Birth'

diagram of HS3 flight path

This is NASA's Global Hawk's completed flight path for Sept. 11-12 around Tropical Depression 14 (now Tropical Storm Nadine). The Global Hawk completed the second of six vertical “lawn mower cuts” on Sept. 12 and returned to NASA's Wallops Flight Facility, Va. Credit: NASA
› Larger image


depiction of Nadine rainfall derived from satellite observations

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Tropical Storm Nadine on Sept. 12 at 1006 UTC (6:06 a.m. EDT) and captured rainfall rates occurring in the storm. The image was a combination visible/infrared image derived from TRMM's Visible and InfraRed Scanner (VIRS) instrument and TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments. Most of the tropical storm had light to moderate rainfall (green and orange), falling at a rate between .78 to 1.57 inches/20 to 40 mm per hour. The red areas (in the southeastern quadrant) indicate heavy rain falling at a rate of 2 inches/50 mm per hour (red). Dark red indicates very heavy rainfall at a rate of 50 to 74 mm (2 to 3 inches) per hour. Credit: SSAI/NASA, Hal Pierce
› Larger image


satellite image of Nadine

This visible image of Tropical Storm Nadine was captured by NOAA's GOES-13 satellite at 1445 UTC (10:45 a.m. EDT). The image shows that Nadine is developing a central dense overcast and bands of thunderstorms all around the storm. Credit: NASA's GOES Project
› Larger image


infrared image of Nadine

The Atmospheric Infrared Sounder (AIRS) instrument onboard Aqua captured an infrared image of Tropical Storm Nadine on Sept. 12 at 0441 UTC (12:41 a.m. EDT). The image revealed that Nadine developed a signature comma shape. The AIRS image also showed that Nadine had a large area of strong thunderstorms surrounding the center of circulation and in a band south of the center, where cloud top temperatures exceeded the -63 Fahrenheit/-52 Celsius threshold, indicating strong thunderstorms with heavy rainfall. Credit: NASA/JPL, Ed Olsen
› Larger image

Tropical Depression 14 strengthened into Tropical Storm Nadine while NASA's Hurricane Severe Storm Sentinel Mission, or HS3 mission, was in full-swing and NASA's Global Hawk aircraft captured the event. While the Global Hawk was gathering data over the storm, NASA satellites were also analyzing Nadine from space.

NASA's Global Hawk landed back at Wallops Flight Facility, Wallops Island, Va., after spending a full day gathering data from the 14th Atlantic Tropical Depression that strengthened into Tropical Storm Nadine during the morning hours of Sept. 12.

The Global Hawk, one of two associated with the HS3 mission, sought to determine whether hot, dry and dusty air associated with the Saharan air layer was being ingested into the storm. This Saharan air typically crosses westward over the Atlantic Ocean and potentially affects tropical cyclone formation and intensification. During its 26 hour flight around Nadine, the Global Hawk covered more than 1 million square kilometers (386,100 square miles) going back and forth over the storm in what's called a "lawnmower pattern." The Global Hawk captured data using instruments aboard and also dropping sensors called sondes into the storm. The dropsonde system ejected the small sensors tied to parachutes that drift down through the storm measuring winds, temperature and humidity.

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Tropical Storm Nadine on Sept. 12 at 1006 UTC (6:06 a.m. EDT) and captured rainfall rates occurring in the storm. Visible and infrared data were combined from TRMM's Visible and InfraRed Scanner (VIRS) instrument and TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments to create an image of Nadine's rainfall. Most of the tropical storm had light to moderate rainfall, falling at a rate between .78 to 1.57 inches/20 to 40 mm per hour. In the southeastern quadrant TRMM data revealed heavy rain was falling at a rate of 2 inches/50 mm per hour. The TRMM data was processed by the TRMM Team at NASA's Goddard Space Flight Center in Greenbelt, Md. TRMM is managed by both NASA and the Japanese Space Agency, JAXA.

NOAA's GOES-13 satellite provided a visible image of Tropical Storm Nadine at 1445 UTC (10:45 a.m. EDT). The image showed that Nadine was developing a central dense overcast and bands of thunderstorms all around the storm. Like the TRMM image, the GOES image was created at NASA Goddard, but made by the NASA GOES Project.

NASA's Aqua satellite also captured an image of Nadine. The Atmospheric Infrared Sounder (AIRS) instrument aboard Aqua captured an infrared image of Tropical Storm Nadine on Sept. 12 at 0441 UTC (12:41 a.m. EDT) that was created at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The AIRS image revealed that Nadine developed a signature comma shape. The AIRS image also showed that Nadine had a large area of strong thunderstorms surrounding the center of circulation and in a band south of the center, where cloud top temperatures exceeded the -63 Fahrenheit/-52 Celsius threshold, indicating strong thunderstorms with heavy rainfall, confirming the data from NASA's TRMM satellite.

On Sept. 11 at 1500 UTC (11 a.m. EDT), Tropical Storm Nadine had maximum sustained winds near 60 mph (95 kmh). The National Hurricane Center has forecast additional strengthening and expects Nadine to reach hurricane strength some time tonight, Sept. 12, or on Thursday, Sept. 13. Tropical storm force winds extend outward up to 115 miles (185 km) from the center, making Nadine about 230 miles (370 km) in diameter.

The center of Tropical Storm Nadine was located near latitude 19.1 north and longitude 47.6 west, about 940 miles (1,510 kilometers) east-northwest of the Lesser Antilles. Nadine is moving toward the west-northwest near 15 mph (24 kmh) and the National Hurricane Center expects Nadine to turn toward the northwest followed by a turn toward the north-northwest Thursday night. Nadine's estimated minimum central pressure is 997 millibars. Nadine is expected to remain in a favorable (weak) upper-level wind environment for the next couple of days.

The HS3 mission targets the processes that underlie hurricane formation and intensity change. The data collected will help scientists decipher the relative roles of the large-scale environment and internal storm processes that shape these systems.

HS3 is supported by several NASA centers including Wallops; Goddard; Dryden; Ames Research Center, Moffett Field, Calif.; Marshall Space Flight Center, Huntsville, Ala.; and the Jet Propulsion Laboratory, Pasadena, Calif. HS3 also has collaborations with partners from government agencies and academia.

HS3 is an Earth Venture mission funded by NASA's Science Mission Directorate in Washington. Earth Venture missions are managed by NASA's Earth System Science Pathfinder Program at the agency's Langley Research Center in Hampton, Va. The HS3 mission is managed by the Earth Science Project Office at NASA's Ames Research Center.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.



Sept. 11, 2012
NASA's Global Hawk Investigating Atlantic Tropical Depression 14

visible light image of Tropical Depression 14 over the Atlantic This visible image of System 91L was captured by NOAA's GOES-13 satellite at 1145 UTC (7:45 a.m. EDT). Credit: NASA's GOES Project
› Larger image

3D heat map of Tropical Depression 14 On Sept. 10, the TRMM satellite showed System 91L was getting organized and that convective storms were dropping heavy rain to the northwest and northeast of the center of the circulation. Those thunderstorms northeast of the center were reaching heights of about 13km (~8.1 miles). Credit: NASA/SSAI, Hal Pierce
› Larger image
NASA's Hurricane and Severe Storm Sentinel (HS3) airborne mission sent an unmanned Global Hawk aircraft this morning to study newborn Tropical Depression 14 in the central Atlantic Ocean that seems primed for further development. The Global Hawk left NASA's Wallops Flight Facility on Wallops Island, Va., this morning for a planned 26-hour flight to investigate the depression.

NASA's latest hurricane science field campaign began on Sept. 7 when the Global Hawk flew over Hurricane Leslie in the Atlantic Ocean. HS3 marks the first time NASA is flying Global Hawks from the U.S. East Coast.

According to Chris Naftel, project manager of NASA's Global Hawk program at NASA's Dryden Flight Research Center, Edwards Air Base, Calif., the Global Hawk aircraft took off at 7:06 a.m. EDT and headed for Tropical Depression 14, which at the time of take-off, was still a developing low pressure area called System 91L.

At 1500 UTC (11 a.m. EDT), Tropical Depression 14 was located near 16.3 North latitude and 43.1 West longitude, about 1,210 miles (1,950 km) east of the Lesser Antilles. The depression had maximum sustained winds near 35 mph. It was moving to the west near 10 mph (17 kmh) and had a minimum central pressure of 1006 millibars.

The National Hurricane Center expects Tropical Depression 14 to strengthen into a tropical storm over the next 48 hours, and turn to the northwest.

On Sept. 10, the Tropical Rainfall Measuring Mission (TRMM) satellite passed over Tropical Depression 14, when it was known as low pressure System 91L and data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) were used to create a rainfall analysis. The data was overlaid on a combination infrared and visible image from TRMM's Visible and InfraRed Scanner (VIRS) and showed that System 91L was getting organized and that convective storms reaching heights of about 13km (~8.1 miles) were dropping heavy rain to the northwest and northeast of the center of the circulation.

The HS3 mission targets the processes that underlie hurricane formation and intensity change. The data collected will help scientists decipher the relative roles of the large-scale environment and internal storm processes that shape these systems.

HS3 is supported by several NASA centers including Wallops; Goddard; Dryden; Ames Research Center, Moffett Field, Calif.; Marshall Space Flight Center, Huntsville, Ala.; and the Jet Propulsion Laboratory, Pasadena, Calif. HS3 also has collaborations with partners from government agencies and academia.

HS3 is an Earth Venture mission funded by NASA's Science Mission Directorate in Washington. Earth Venture missions are managed by NASA's Earth System Science Pathfinder Program at the agency's Langley Research Center in Hampton, Va. The HS3 mission is managed by the Earth Science Project Office at NASA's Ames Research Center.