Search Glenn


Text Size


For Release: November 6, 2001

Pamelia Caswell
Media Relations Office

Glenn Scientists Build on Flat Technology for Better Semiconductors

Scientists at NASA's Glenn Research Center, Cleveland, and their colleagues believe they have found key secrets to making more reliable wide-band-gap semiconductor devices with two recent breakthroughs: One, their web growth process, extends the size of atomically flat (or step-free) areas on semiconductor wafers. The other, step-free surface heteroepitaxy, eliminates defects in films deposited on those step-free surfaces.

Last year members of the research team announced their method for making step-free silicon carbide by first creating a pattern of square, device-size mesas on commercial wafers, then growing the steps on those mesas to the edges.

The team's web growth process takes advantage of an unexpected feature of the earlier work: The new silicon carbide crystals grew laterally beyond the mesa edges and formed thin cantilevers overhanging the mesa sidewalls. "Seeing the cantilevers in the micrographs was our 'aha'," said Glenn Research Engineer Philip Neudeck who leads the research team.

They created open geometry mesas, such as vee's and crosses, and applied their flattening process to them. As expected, the cantilevers formed. As growth continued, the cantilevers extending from adjacent legs grew together, forming a web covering the entire area between the legs and producing an atomically flat surface that is larger than the original mesa. This web growth process allows atomically flat material to be grown over areas in wafer material that contain inherent defects like screw dislocations.

The team's second breakthrough is an improvement in heteroepitaxy -- the process of growing layers of one material on a substrate of a different material. In this case, they grew a thin film of the cubic crystal form of silicon carbide (3C-SiC) on mesas of the hexagonal crystal form of silicon carbide (4H- or 6H-SiC). The researchers first flattened the hexagonal silicon carbide mesas, then, by a careful manipulation of temperature and crystal nucleation rate, deposited a film of cubic silicon carbide on the flattened mesas.

The films formed not only were free of defects that might have propagated from defects in the substrate, but also were free of planar defects, that is, defects in the order (stacking faults) or the alignment (double positioning boundaries) of crystal planes.

"Our work shows that, for cubic silicon carbide films, too rapid crystal nucleation in the early stages is the likely cause of planar defects," said Neudeck. The team will continue its work using step-free surface heteroepitaxy with other wide-band-gap material films on hexagonal silicon carbide. "If we can produce defect-free films with these other materials, then industrial fabrication of a wider range of much improved wide-band-gap devices is possible," Neudeck said.

Wide-band-gap semiconductors are used widely in opto-electronic devices such as the blue and green light-emitting diodes in stadium and building displays. Improved devices may find wide use in more efficient and compact power control equipment. Short-wave-length wide band gap lasers could greatly improve the capacity of consumer products such as DVDs.

Scientists from OAI (Ohio Aerospace Institute), Cleveland, and the State University of New York, Stony Brook, New York, participated in this research. The breakthroughs were described in papers Neudeck presented last week at the International Conference on Silicon Carbide and Related Materials 2001, in Tsukuba, Japan.

Glenn is one of the Nation's leading aerospace propulsion research laboratories and conducts instrumentation and controls research on sensors, electronics, photonics and microelectromechanical systems for aeronautics and space applications.

Images accompanying the news release are available at:

# # #


- end -

text-only version of this release

NASA Glenn Research Center news releases are available automatically by sending an Internet electronic mail message to:
Leave the subject and body blank. The system will reply with a confirmation via e-mail of each subscription. You must reply to that message to begin your subscription.
To unsubscribe, address an e-mail message to:
Leave the subject and body blank.