TOWARD MACH 2:

THE DOUGLAS D-558 PROGRAM

Edited by J. D. Hunley

Featuring Comments by

Stanley P. Butchart Robert A. Champine A. Scott Crossfield John Griffith Richard P. Hallion and Edward T. Schneider

TOWARD MACH 2: THE DOUGLAS D-558 PROGRAM

NASA SP-4222

TOWARD MACH 2: THE DOUGLAS D-558 PROGRAM

Edited by: J. D. Hunley

Featuring Comments by:

Stanley P. Butchart Robert A. Champine A. Scott Crossfield John Griffith Richard P. Hallion and Edward T. Schneider

The NASA History Series

National Aeronautics and Space Administration NASA Office of Policy and Plans NASA History Office Washington, D.C. 1999

Library of Congress Cataloging-in-Publication Data

Toward Mach 2: The Douglas D-558 Program/edited by J.D. Hunley; featuring comments by Stanley P. Butchart . . . [et al.]. p. cm.—(NASA history series) Papers of the NASA Dryden Flight Research Center Symposium on the D-558 Program, February 4, 1998. "NASA SP: 4222." Includes bibliographical references and index. 1. High-speed aeronautics—United States—History—Congresses. 2. Skystreak (Supersonic planes)—History—Congresses. I. Hunley, J.D., 1941- . II. Series. TL551.5.T69 1999 99-11963 629.132'305'0973–dc21 CIP

Contents

Foreword	xi
Introduction	xii

Symposium Transcript

	Welcome by Edward T. Schneider1
	Richard P. Hallion's Comments on the D-558-12
	Robert A. Champine's Recollections of the D-558-114
	John Griffith's Recollections of the D-558-120
	Richard P. Hallion's Comments on the D-558-2
	Stanley P. Butchart's Recollections of the D-558-2 and P2B
	A. Scott Crossfield's Recollections of the D-558-2
	Audience Questions and Panel Responses
	Wrap-up by Edward T. Schneider
Aj	opendix — The Aircraft61
Do	ocuments
1	Memo, Hartley A. Soulé, Discussion of D-558-1 airplane projects at NACA Headquarters on June 8, 1949, Date: June 13, 1949
2	Memo, Donald R. Bellman, Information concerning elevator vibration of the D-558-1 airplane, September 19, 1951
3	Memo, Donald R. Bellman, Progress report for the D-558-1 airplane (142) for the period September 22 to October 5, 1951, Date: October 12, 1951
4	Memo, Donald R. Bellman, Progress report for the D-558-1 (142) airplane for the period June 28 to July 11, 1952, Date: July 23, 195274
5	Memo, Donald R. Bellman, Progress report for the D-558-1 (142) research airplane for the period July 12 to July 25, 1952, Date: July 30, 1952
6	Memo, Donald R. Bellman, Progress report for the D-558-1 (142) research airplane for the period November 1 to December 1, 1952, Date: December 11, 1952
7	Memo, Herman O. Ankenbruck, Progress report for the D-558-II (37974) research airplane for the period August 25 to September 7, 1951, Date: September 13, 1951
8	Memo, Herman O. Ankenbruck, Progress report for the D-558-II (144) research airplane for the period September 22 to October 5, 1951, Date: October 16, 1951

 9 Memo, Herman O. Ankenbruck, Progress report for the D-558-II (144) research airplane for the period November 3 to November 16, 1951, Date: November 21, 1951	31
 10 Memo, Herman O. Ankenbruck, Progress report for the D-558-II (144) research airplane for the period December 1 to December 14, 1951, Date: December 18, 1951 	32
11 Memo, Herman O. Ankenbruck, Progress report for the D-558-II (144) research airplane for the period June 28 to July 11, 1952, Date: July 23, 195283	3
12 Memo, Herman O. Ankenbruck, Progress for the D-558-II research airplane (144) for the period November 1 to December 1, 1952, Date: December 11, 1952	34
 13 Memo, Gareth H. Jordan, Progress report for the D-558-II (144) research airplane for the period September 1 to September 30, 1954, Date: October 6, 1954. 	86
14 Memo, Gareth H. Jordan, Progress report for the D-558-II (144) research airplane for the period September 1 to September 30, 1956, Date: October 3, 1956.	87
 15 Memo, Gareth H. Jordan, Progress report for the D-558-II (144) research airplane for the period November 1 to November 30, 1956, Date: December 4, 1956. 	88
16 Memo, Gareth H. Jordan, Progress report for the D-558-II (144) research airplane for the period December 1 to December 31, 1956, Date: January 8, 1957	39
17 Memo, James R. Peele, Progress report for the D-558-II (37975) research airplane for the period August 25 to September 7, 1951, Date: September 13, 1951	00
18 Memo, James R. Peele, Progress report for the D-558-II (37975) research airplane for the period September 8 to September 22, 1951, Date: September 28, 1951	91
19 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period October 6 to October 19, 1951, Date: November 6, 1951	2
20 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period October 20 to November 2, 1951, Date: November 8, 195194	4
21 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period December 1 to 14, 1951, Date: December 18, 195190	6

 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period June 28 to July 11, 1952, Date: July 23, 195297
23 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period July 26 to August 8, 1952, Date: August 15, 1952
24 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period October 1 to November 1, 1952, Date: November 21, 195299
25 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period November 1 to December 1, 1952, Date: December 11, 1952101
26 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period November 1 to December 30, 1954, Date: December 20, 1954 .104
27 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period September 1 to September 30, 1954, Date: October 6, 1954105
28 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period March 1 to 31, 1955, Date: April 18, 1955106
29 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period July 1 to July 31, 1955, Date: August 11, 1955107
30 Memo, Jack Fischel, Progress report for the D-558-II (145) research airplane for the period June 1 to 30, 1956, Date: July 24, 1956108
 31 Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Major General Frederick R. Dent, Jr., USAF, Commanding General, Wright Air Development Center, August 13, 1951
32 Letter, J.W. Crowley, [NACA] Associate Director for Research, To: Chief, Bureau of Aeronautics, Department of the Navy, Washington, D.C., Subject: Request for assignment of Navy omni[-]environment full-pressure pilot suit to NACA pilot of the D-558-II airplane, October 23, 1951
33 Letter, J.E. Sullivan, Director of Airborne Equipment Division, [Navy] Bureau of Aeronautics, To: National Advisory Committee for Aeronautics, Subject: Navy Omni-environment Full-pressure Suit, assignment of to the NACA pilot of the D-558-II airplane, November, 1951
 34 Letter, F.A. Santner, Director, Naval Air Experimental Station, To: Chief, [Navy] Bureau of Aeronautics (AE-513), Subject: TED No. NAM AE 5101 Omni-environment full-pressure suit, research, development and test of; Flight test in the D-558-II airplane at Edwards Air Force Base, Edwards, Calif., 3 August to 4 September, 1953, Date: December 8, 1953

35 Letter, Walter C. Williams, Chief, [NACA] High-Speed Flight Research Station,

	To: NACA, Subject: Choice of color for Research Aircraft at Edwards, December 3, 1951
36	Memorandum for Gordon S. Williams, News Bureau Manager, Boeing Airplane Company, April 25, 1952 [Subject: air-launch technique] 118
37	Letter, Walter C. Williams, Chief, NACA High-Speed Flight Research Station, To: NACA, Subject: Increased thrust of the LR8-RM-6 rocket engine, August 28, 1952
38	Letter, Walter C. Williams, Chief, NACA High-Speed Flight Research Station, To: NACA Headquarters; Attention: Mr. Clotaire Wood, Subject: Research Airplane Panel Meeting, January 2, 1953126
39	Letter, Lieutenant Colonel Marion E. Carl, Senior School, Marine Corps Education Center, Marine Corps School, Quantico, Virginia, To: Chief, Bureau of Aeronautics, Aer-AC-241, Subject: Reports of flights in the NACA D-558-II, October 28, 1953
40	Memo, Donald R. Bellman, Aeronautical Research Scientist, To: NACA Headquarters, Subject: Rocket nozzle extensions used on the LR8 engine for the D-558-II, No. 144 airplane, January 25, 1954
41	Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Chief, Bureau of Aeronautics, Department of the Navy, Subject: Results of use of the rocket nozzle extensions for the LR8 engine on the D-558-II airplane, February 3, 1954
42	Memo, Marion I. Kent, [NACA HSFRS] Administrative Officer, To: Mr. Bonney [NACA Headquarters], Subject: The research piloting experience of Joe Walker and Stan Butchart, April 29, 1954141
43	Letter, De E. Beeler, Acting Chief, [NACA] High-Speed Flight Station, To: NACA Headquarters, Subject: Low temperature difficulties with hydrogen peroxide in the model D-558-II airplane, July 29, 1954
44	Letter, B.F. Coffman, Chief, Bureau of Aeronautics, To: National Advisory Committee for Aeronautics, Subject: Improved version of the LR8 liquid engine for use in the D-558-II airplane, June 2, 1954143
45	Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Chief, Bureau of Aeronautics; Department of the Navy, Subject: Improved version of the LR8 liquid rocket engine for use in the D-558-II airplane, July 23, 1954
46	Letter, B.F. Coffman, Bureau of Aeronautics, To: National Advisory Com- mittee for Aeronautics, Subject: Improved version of the LR8 liquid rocket engine for use in the D-558-II airplane, August 11, 1954147

7 Letter, John W. Crowley, [NACA] Associate Director for Research, To:	
Deputy Chief of Staff/Development, United States Air Force, Subject:	
Supply support for the B-29, NACA Serial No. 137, based at the NACA	
High-Speed Flight Station, Edwards, Calif., August 25, 1955	150
40 Lotter Local D. March Astronomic Child MACA II's L.Co. of Fills 14 Gentlem	
48 Letter, Joseph R. Vensel, Acting Chief, NACA High-Speed Flight Station,	
To: Chief, Bureau of Aeronautics, Subject: Completion of the D-558-II	
Research Program, June 17, 1957	151
Index	
The NASA History Series	157

The four D-558 pilots with a model of the D-558-2 at NASA's Dryden Flight Research Center on February 4, 1998. From the viewer's left to right: Scott Crossfield, Stan Butchart, Bob Champine, and John Griffith. (NASA photo EC98-44406-2 by Tony Landis).

Foreword

In the long and proud history of flight research at what is now called the NASA Dryden Flight Research Center, the D-558 project holds a special place as being one of the earliest and most productive flight research efforts conducted here. Data from the D-558 and the early X-planes enabled researchers at what became NASA's Langley Research Center to correlate and correct test results from wind tunnels with actual flight values. Then, the combined results of flight and wind-tunnel testing enabled the U.S. aeronautical community to solve many of the problems that occur in the transonic speed range (about 0.8 to 1.2 times the speed of sound), such as pitch-up, buffeting, and other instabilities. This enabled reliable and routine flight of such aircraft as the century series of fighters (F-100, F-102, F-104, etc.) as well as all commercial transport aircraft from the mid-1950s to the present.

At the symposia honoring the 50th anniversary of the D-558-1 Skyrocket's first flight in February 1948, four D-558 pilots — Stanley P. Butchart, Robert A. Champine, A. Scott Crossfield, and John Griffith — plus Air Force Historian Richard Hallion offered insightful comments and meaningful anecdotes that deserved a wider audience than the few hundred people who attended. To make their recollections and related documents available to such an audience, NASA is publishing this volume. I am sure it will find a ready reception among the large group of people interested in the history of aviation.

Kevin L. Petersen Director, Dryden Flight Research Center Frebruary 1, 1999

Introduction

The Douglas D-558-1 Skystreak and D-558-2 Skyrocket were, with the Bell XS-1, the earliest transonic research aircraft built in this country to gather data so the aviation community could understand what was happening when aircraft approached the speed of sound (roughly 741 miles per hour at sea level in dry air at 32 degrees Fahrenheit). In the early 1940s, fighter (actually, in the terms of the time, pursuit) aircraft like the P-38 Lightning were approaching these speeds in dives and either could not get out of the dives before hitting the ground or were breaking apart from the effects of compressibility—increased density and disturbed airflow as the speed approached that of sound and created shock waves.

At this time, aerodynamicists lacked accurate wind-tunnel data for the speed range from roughly Mach 0.8 to 1.2 (respectively, 0.8 and 1.2 times the speed of sound, so named in honor of Austrian physicist Ernst Mach, who — already in the second half of the 19th century — had discussed the speed of a body moving through a gas and how it related to the speed of sound). To overcome the limited knowledge of what was happening at these transonic speeds, people in the aeronautics community especially the National Advisory Committee for Aeronautics (NACA), the Army Air Forces (AAF — Air Force after 1947), and the Navy — agreed on the need for a research airplane with enough structural strength to withstand compressibility effects in this speed range. The AAF preferred a rocket-powered aircraft and funded the XS-1 (eXperimental Supersonic, later shortened to simply X), while the NACA and Navy preferred a more conservative design and pursued the D-558, with the NACA also supporting the X-1 research.

The flight research took place at the Muroc Army Air Field, with participation from a NACA contingent under Walter C. Williams that became the core of the later NASA Dryden Flight Research Center. While the D-558-1 with its jet engine was slower and less glamorous than the rocket-powered, air-launched XS-1, it flew for longer durations and thus gathered a lot of data more easily than its Bell counterpart. The D-558-2 was variously configured with jet and rocket engines, conventional takeoffs and air launchings. But the rocket-powered D-558-2 number 2 became the first aircraft to reach Mach 2.

The number 1 Skyrocket first flew on February 4, 1948. On the 50th anniversary of that date, the Dryden Flight Research Center held a symposium in honor of the event. It was introduced by current Dryden research pilot Edward T. Schneider and featured four of the original research pilots — Stanley P. Butchart, Robert A. Champine, A. Scott Crossfield, and John Griffith — talking about their experiences with the D-558 and its launch aircraft, the P2B-1S (Navy version of the B-29). In addition, Air Force historian Richard P. Hallion spoke about the Skystreak and the Skyrocket aircraft.

The previous night, the Center also held a symposium with a different format. Instead of each participant making a formal presentation, they all sat in a semicircle on stage and held a round-robin discussion, also with Ed Schneider as moderator. Because all of the participants had valuable and interesting comments to make, it seemed imperative to preserve and print them so that those not privileged to attend the ceremonies could benefit from their recollections.

Naturally, there was a good bit of overlap in the information presented and stories told at the two sessions, so it would have been redundant to provide transcripts of both symposia. What I have chosen to do instead is to take as a basis the formal presentations made on the actual anniversary day and to integrate into them comments and anecdotes from the night before that were not included in the daytime session. Obviously, this violates the verbatim transcripts not only through the juxtaposition of related materials from two separate sessions, but also because I had to use my own words to create the appropriate transitions from one sentence or paragraph to another in the now-combined document. Despite such violation to the verbatim transcripts, I believe that the resultant narrative is true to the spirit of both sessions.

To ensure this, I have circulated the draft of this publication to the participants for their correction. I have also added footnotes to explain (or in a couple of instances, correct) comments made verbally from memory in front of an audience. The participants have contributed to the footnotes in a number of instances. In addition, I have appended historical documents from the National Archives about the D-558 program that add to the materials presented by the participants in the symposia. These are purposely scanned as documents into the study (rather than retyped) to give something of the flavor of looking at the documents themselves in an archive.

I believe the resultant publication adds significantly to the available literature on the D-558 flight research. It should be of interest to scholars, others interested in the history of aviation, and especially people working at or retired from the Dryden Flight Research Center. I would like to thank the participants in the symposia and Mrs. Gloria Champine for their help in getting their comments ready for publication. In addition, Tony Landis was very helpful in selecting photographs to illustrate the D-558 story and generously contributed some of these photographs from home to be scanned into the monograph. He, Peter Merlin, and Ed Schneider were kind enough to read the draft of this publication and offer corrections before it was sent to the participants. Besides Tony Landis, other members of the Dryden Photo Lab assisted in getting photographs assembled for this publication. I would be remiss, however, if I did not point out that I was not able to find several of the photographs used in the two symposia. Given the press of other projects competing for my time, I had to leave them out of this publication in the interest of getting it ready for printing. The All-Quality Secretarial Service of Morris Plains, New Jersey, professionally transcribed audio tapes from the two symposia, and Kelley Clark of OAO provided the tapes through the intermediacy of Lori Losey. Steve Lighthill did an artful job of laying out the typescript and photos, and Darlene Lister handled the copy editing in her usual professional way. I greatly appreciate the help all of these people provided.

J. D. Hunley, Historian NASA Dryden Flight Research Center

NASA DRYDEN FLIGHT RESEARCH CENTER

SYMPOSIUM ON THE D-558 PROGRAM

INTRODUCTION:	Ed Schneider
FIRST SPEAKER:	Dr. Dick Hallion
DATE:	February 4, 1998
PLACE:	Dryden Flight Research Center

SCHNEIDER: Good morning, ladies and gentlemen. My name is Ed Schneider. Welcome to our presentation today.

Let me carry you back in time now to 50 years ago today, February 4, 1948. Here at Muroc, as it was known then, John F. Martin of the Douglas Company climbed into a D-558 Phase 2 Skyrocket, and lifted it off the ground for its very first flight. On November 20, 1953, Scott Crossfield flew another Skyrocket to a speed of Mach 2.005, to become the first man in history to fly faster than Mach 2.

Today is your chance to join us in a colloquium, which is going to be a piece of living history. Our very first speaker is Dr. Dick Hallion. And I would like to take some time now to introduce him. And from that point on, Dick will take you through the rest of the program.

Dick Hallion is the Historian for the United States Air Force in Washington, D.C., and directs its worldwide historical and museum programs. He's got a tremendous amount of experience in this area. Dick has a Ph.D. in aviation history from the University of Maryland and has been active as an author, and a curator, and a museum operator for many, many years. He's worked for the National Air and Space Museum. He has been the Chief Historian for the Air Force Flight Test Center. He worked in staff positions for the Aeronautical Systems Division at Wright Patterson Air Force Base. He was a visiting professor at the Army War College and then came back for a tour of duty with the Secretary of the Air Force. Since 1991, he's been the Air Force Historian in Washington.

Dick is a great friend of the DFRC [Dryden Flight Research Center]. He's a tremendous historian and communicator. He wrote a substantial portion of his book *Supersonic Flight*¹—which, by the way, is on sale at the gift shop—at the age of 21 for his college thesis.

You know, one of the things that we're big on here at Dryden is our alliance with the Air Force Flight Test Center. And it's been very positive, especially under the leadership of our Director Ken Szalai, and the leadership of Air Force General Richard Engel. And both organizations take credit for many, many things. Well, you know, Dick's got a lot of time doing work for the Air Force. And I think we ought to be taking credit for him. So, for starters, I'm going to take credit for him as a NASA person today.

¹ Richard P. Hallion, *Supersonic Flight: Breaking the Sound Barrier and Beyond, the Story of the Bell X-1 and Douglas D-558* (rev. edn.: London and Washington, DC: Brassey's, 1997).

I could invest another 20 minutes going through a bio on Dick. If you want to read all the details about where he was born, where he went to school, and everything that he wrote — including 15 books — you can get that off the Internet. Dick, in short, is a recognized expert on research aircraft — as well, on the air war in the Persian Gulf. He's quoted frequently in air power magazines and treatises for use of air power in the present, and use of air power in future conflicts.

In fact, and this is a true story, his face has become so familiar that there is one executive producer of TV documentaries — I believe she's located on the east coast — who literally begged her staff not to bring in any more scripts with "Hallion" quoted as the expert. And the line she used was: "Doesn't anyone else in America qualify as an expert?" — or words to that effect. So, a true story. He really is an expert.

Some of the books that he's written — I know people have seen *Test Pilots: The Frontiersmen of Flight*² and the very famous *On the Frontier: Flight Research at Dryden, 1946-1981.*³ Dick is going to set the context for our forum today. And he will take you through the rest of the afternoon, introducing our speakers. And now it's time to sit back before lunch and enjoy a piece of living history, "The Skyrocket D-558 Program — The X-Planes That Weren't." And we're going to learn why that is.

Welcome, Dick Hallion. [Audience applause]

HALLION: After an introduction like that, you can only go down. So it's with some foreboding that I approach the podium here.

It's a real pleasure to get back here. I've always enjoyed my personal association with Dryden. And I think it's very fitting today that we're here to commemorate what was an extraordinarily productive research aircraft program — the D-558 program, which historically is not necessarily as well appreciated as it should be. The D-558 aircraft were remarkable airplanes. They were intended originally for research in the transonic regime. And you had then one of the variants, the D-558-2, actually go out and make the first Mach 2 flight. How that occurred we'll be hearing about in some detail later from our panelists.

But first, let me discuss the context in which the D-558 program began. If you take a look at the history of aviation, you see that in mid-century we had two great revolutions. One of those was the turbojet revolution, which promised the ability to fly beyond 500 miles an hour. But at the very same time we had this promise, we had some very acute problems. We had some deficits in our aerodynamic knowledge, caused largely because of deficiencies in the state of wind-tunnel development and wind-tunnel testing. And so the second great revolution that comes along then is the flight research revolution, which basically is the reason why we have the whole transonic and supersonic flight breakthrough coming out of that.

This revolution has its origins as early as the 1920s really, when people start studying the phenomena of the airflow changes around propellers. And then it gets applied to fixed-wing aircraft in the 1930s. Because by the mid-1930s, we were starting to see accidents caused to experimental high-performance fighters. The first one which seems to have experienced this was the Messerschmitt Bf 109 in 1937,

² (rev. ed.; Washington, DC: Smithsonian Institution Press, 1988).

³ (Washington, DC: NASA SP-4303, 1984).

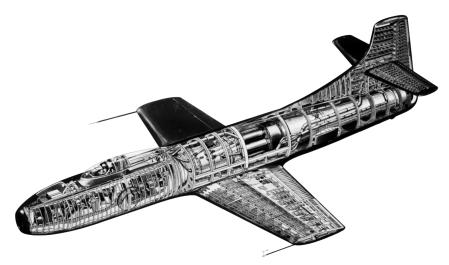
which had an accident due to so-called compressibility effects.4

And then of course in this country very quickly we see this with the P-38, starting in 1941. And there's a tremendous acceleration of interest with World War II to try to close this transonic gap — this gap between Mach .75 and roughly Mach 1.2 — to find out what's taking place here. And although there were many different shortcut research methods developed, and although there was a tremendous stimulus for wind-tunnel research here, the real solution that people approached — largely within the National Advisory Committee for Aeronautics (NACA), and then within both the United States Army Air Forces and the United States Navy — was the idea to develop transonic and supersonic research airplanes. And out of that comes both the Army Air Force's program, which leads to the Bell XS-1, and then a Navy-sponsored program — the Douglas D-558.

Against this background, we have, early on, some tremendous national security needs. We're going from the World War II time period to a cold war time period. We recognize that there's a tremendous challenge to this country in terms of technological development, because we're locked head-to-head with the Soviet Union. And that's obviously going to be a very long confrontation. So there's a very strong desire and a very strong need here to master this whole field. And it's these aircraft that really contribute in a very great way to doing that.

Our first subject is the D-558-1 Skystreak. How did this program come about? There's a tremendous number of similarities in the way that the D-558 program as a whole came about, and the way the X-1 program came about. Both of them grew out of a need for a transonic research airplane. The National Advisory Committee for Aeronautics was very keen on developing some sort of aircraft, vaguely determined and relatively unspecified in terms of specific details, that could undertake transonic and low supersonic flight testing, and thereby address some of the problems that existed in the mid-1940s with the absence of available wind-tunnel technology to do reliable transonic testing.

There were two schools of thought. One of these favored a rocket-propelled airplane. That view was generally expressed by the Army Air Forces. And that climate of thinking resulted in the Bell XS-1. And the other school of thought favored higher-duration turbojet-powered aircraft. That was very much more in line with thinking expressed by NACA engineers, such as the legendary John Stack of Langley Laboratory. And out of this thinking came the D-558 program.


The two programs complemented each other extremely well. The XS-1 could reach high Mach numbers relatively quickly, of course, but had very little duration. The D-558 program could loiter, if you will, in the transonic regime, and collect a tremendous amount of data. What's very interesting in both cases is that there were key individuals in the services who played a major role in getting these programs going. For the Army Air Forces, Major Ezra Kotcher at Wright Field acted as the stimulus within the Army Air Forces to push this proposal. Within the United States Marine Corps, working for the Navy Bureau of Aeronautics, Lieutenant Abraham Hyatt drew up a specification for a transonic research airplane in late 1944.

And then also reflecting what happened in the X-1 program, you now had a requirement for a key industrial figure to become aware of what was going on, and to express corporate interest in developing such an aircraft. Well, in the case of the X-1,

⁴ Increased density, a sharp rise in drag, and disturbed airflow at speeds approaching that of sound (Mach 1).

it was when Robert Woods, a Bell engineer, visited Wright Field in December of 1944, met with his old buddy Ezra Kotcher — and out of that came the X-1 program. And in the case of the D-558, it was an equivalent visit by a Douglas engineer named L. Eugene Root, who visited a buddy of his at the Bureau of Aeronautics named Commander Emerson Conlon — and with Conlon, became aware of the Hyatt specification. And as Root later said, he "grabbed it, and ran with it,"⁵ and took it back to Douglas.

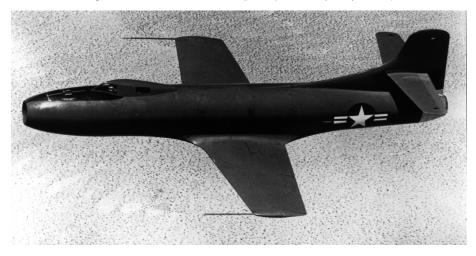
Now as those planes came along in early 1945, both committed to being straight-wing designs — different in configuration, but, nevertheless, straight-wing airplanes. There was a great deal of rising interest in the swept wing which, in this country, had been developed by Robert Jones at Langley, based on some work in industry that he had picked up on and elaborated from. And then, when we had the discovery in the rubble of Nazi Germany, of the Germans' tremendous interest in swept wings — which dated actually to the 1930s — that accelerated this kind of interest.

R. G. Smith watercolor showing cutaway view of the D-558-1 Skystreak (photograph provided by Tony Landis and reprinted with the permission of Boeing, of which the former Douglas Aircraft Corporation is now a part).

Both Bell and Douglas looked at swept-wing derivatives of their airplanes. In the case of Bell, they tried to put a swept wing in the X-1, decided it wouldn't work, and launched the X-2 program. In the case of Douglas, the firm simply had a slightly better situation. Its contract was for six airplanes. And the last three of those airplanes would have had differing wing configurations, in terms of thickness/chord ratio and aspect ratio.⁶ And Douglas and the Navy got together and basically decided to take those last three airplanes and make them overtly swept-wing. And although you had this D-558 designation, in terms of actual design continuity between them,

⁵ Quoted in Hallion, *Supersonic Flight*, p. 64, from a letter and recording Root sent to Hallion. ⁶ The chord is the distance between the leading and trailing edges of an airfoil (the wing, in this case). Aspect ratio relates the span (distance from root to tip) of an airfoil to its area. A wing with high aspect ratio is long and slender; one with low aspect ratio is short and stubby.

The D-558-1 Skystreak under construction (photograph provided by Tony Landis).


they were really very different airplanes, as you can tell simply by looking at them. But the comparison would be the X-1 and the X-2 as basically representing that same philosophy for the Air Force-sponsored projects, and then of course the Navy-sponsored D-558-1 and -2 separately.⁷

So Douglas very quickly undertook design of a transonic research airplane, the idea being here to develop an aircraft that would use the sky as the laboratory. And one of the project engineers, A.M.O. Smith — project aerodynamicist — said their

⁷ The three D-558-1 Skystreaks bore Bureau Numbers 37970 to 37972 and NACA "tail" numbers 140 to 142; the respective bureau and tail numbers for the three D-558-2 Skyrockets were 37973 to 37975 and 143 to 145.

The cockpit of the D-558-1 showing how it opened. (NASA photo E49-86).

The D-558-1 in flight in the late summer of 1947 (photo provided by Tony Landis).

task was basically to build the smallest airplane we could, wrapped around the largest airplane engine they could find. The painting by R.G. Smith [page 4], who was also a member of the Douglas design team and is now very well known as an aviation artist, really indicates to a very great degree what was meant by that.

You see here an aircraft that is indeed very tiny. It was quite cramped inside for the pilot. And it was literally packed with instrumentation. You had a wet wing to carry the fuel of the aircraft. You had specially designed, very thin wheels to retract within the wing. You could not use a conventional wheel arrangement. The wheels and tires had to be specially developed. And then, of course, you had the dominating feature, if you will — this very highly refined body-of-revolution type shape that indeed earned the airplane the nickname "flying test tube" — wrapped around this TG-180 engine.

The airplane was made primarily of aluminum, in terms of the wings and tail surfaces. The fuselage was constructed of aluminum framing, covered with magnesium sheeting. It carried 634 pounds of instruments, and had 400 pressure orifices buried within the wing — which was no mean feat in terms of building the wing at that time. The wing section was a NACA 65 section airfoil, 10 percent thickness:chord ratio. This tracked very much later with the number two XS-1 that was flown by the NACA, and which formed the basis for the X-1E, which is out here, of course, and which had itself a 10 percent thickness:chord ratio wing.⁸

The D-558 contract was an interesting contract. It specified six airplanes, for a total program price of \$6,888,444.80. I don't know where they got the eighty cents. Now when you translate that into today's dollars, that's sixty-two million dollars which, for six research airplanes, I think we'd all agree is pretty much a bargain-basement price.

There was an intention to take the last three aircraft and to experiment with wings of varying aspect ratio and varying thickness:chord ratios. Ultimately, of course, those three aircraft were not built. Instead, that portion of the contract was set aside for the D-558-2. The original aircraft performance specification [for the D-558-1] was Mach .82 at sea level, corresponding to 625 miles per hour. And there was an 18 G ultimate load factor stipulated for the aircraft, which was the same load factor stipulated for the X-1.

There were two mock-up conferences on the airplane in July 1945 and August 1945. In August 1945 the program branched. And we got the substitution for the last three aircraft of a new swept-wing vehicle, the D-558-2. I will defer discussing the D-558-2 until this afternoon.

The first flight of the D-558-1 was on 14 April 1947 by Douglas test pilot Gene May. I have a photo here [page 5] that shows the aircraft under construction. I call your attention to the monocoque construction,⁹ how the airplane came together. The number one airplane was the one that first flew in 1947. The number two airplane, which was the first NACA aircraft, was unfortunately the one in which Howard "Tick" Lilly died.

The number one airplane about the time of its first flight was a scarlet aircraft, nicknamed "the crimson test tube." You see how the cockpit opened on the aircraft.

Now the program moved very, very rapidly. In August 1947, flying both the number one and the number two airplanes, we had two official world airspeed records set in this aircraft. These broke a British record of 615 miles per hour that had been set earlier by Group Captain E.M. Donaldson in a Meteor.¹⁰ The D-558-1 set initially a record of 640.663 miles per hour, flown by Commander Turner Caldwell. These were low altitude record runs, and then on 25 August 1947 — five days later — Marine Major Marion Carl reached 650.796 miles per hour.

Just as in June 1947 you had had a major research program outline developed for the X-1, split between the Army Air Forces and the NACA, in November 1947

⁸ That is, the XS-1 number two had a ten percent thickness:chord ratio. The X-1E had a four percent thickness:chord ratio for its wings.

⁹ A type of construction in which most of the stresses are carried by the covering or skin.

¹⁰ Actually, as Hallion relates in *Supersonic Flight*, p. 141, there had been an intermediate record of 623.738 mph set by Army Air Forces Col. Albert Boyd in a P-80 on 19 June 1947.

Pilots Eugene F. May and Howard C. "Tick" Lilly (viewer's left to right) beside Douglas D-558-1 Skystreak number two, the one in which Lilly died. In this photograph, the Skystreak is painted bright red. (NASA photo E95-43116-8).

you had the same research directive come forth. Basically, Douglas would keep the number one airplane for its own purposes, and the NACA would get the number two and the number three airplanes.

In the latter part of the month, at the end of November 1947, we had the first NACA flight of the number two D-558-1 flown by Howard Lilly. Winter rains — which, of course, are no surprise given what we've had recently — winter rains closed the lakebed, and the plane did not resume flying until the following spring. Unfortunately on its nineteenth flight, on 3 May 1948, Lilly was killed when the compressor section of the TG-180 engine — the J35 engine¹¹ — disintegrated, severing flight control lines. The plane rolled inverted right after takeoff, and dove into the ground.

This caused Douglas to make extensive mods on the airplane, and indeed greatly influenced the subsequent history of the research aircraft program for the NACA in general — in that it put a great deal of emphasis upon ensuring that these research airplanes had such things as armoring of flight control systems that were designed to have significantly better safety characteristics than had been thought possible at that time. At the time of his death, Lilly was the first NACA pilot who had been killed in the line of duty.

In April 1949 we had the program resume, using the number three D-558-1. It was flown by Bob Champine, whom we're fortunate to have with us today. We can take a look at a couple of photos here. We have the classic red Skystreak shown here with Gene May. And despite that red color, it turned out that it was actually quite invisible at high altitudes. So there was a desire to repaint the airplane white to facilitate optical tracking. And, indeed, white became the standard color for the NACA research airplane fleet. Some portions — the flight control surfaces of the D-558-1 — were retained in red, the reason being that the flight control surfaces were extremely intolerant to changes in their overall weight and dynamic characteristics from having paint added to them. And they had to be left in red, lest there be the possibility for flight control surface flutter problems.

¹¹ The Allison J35-A-11 had originally been developed by General Electric as the TG-180.

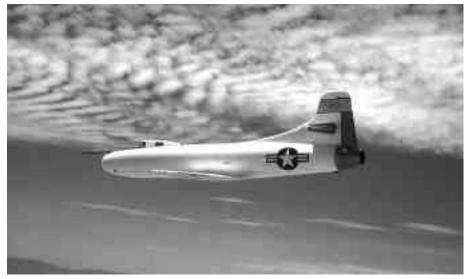
This head-on shot shows how you had a bifurcation in the inlet. If you take a look at the inlet, obviously it splits then and goes around the pilot. So that even though you have what looks like a nice roomy circle of cross-section fuselage — the actual little capsule, if you will, that the pilot fits in is really quite narrow.

Head-on view of the D-558-1 showing the bifurcation in the engine inlet, forcing the intake air to go on either side of the pilot. (NASA photo E49-89).

The airplane had some interesting construction approaches for its time. It had aluminum framing for the fuselage, covered with magnesium sheeting. And then it had aluminum wing and tail surfaces. And even more interestingly, you had those 400 orifices cut into that wing for pressure distribution measurements. When you think about the standards of construction for that airplane at the time, it was really kind of a tribute to Ed Heinemann's design team¹² that it was able to do that as well as it did. It was really extraordinary.

To increase mission endurance, the plane was flown with tip tanks. And we have here just sort of "the sweet nostalgia of the never-to-be-forgotten moment." We have a nice little photograph here [page 10] showing the airplane in its classic NACA markings in white — the number three D-558-1 cruising right along on one of its transonic research missions.

What did the test flights show on this program? Basically, the D-558-1 configuration exhibited a marked increase in wheel force for trim, as Mach number went from about 0.82 to 0.87. It went from about five pounds push to about 30 pounds push [depending upon the incidence of the movable horizontal stabilizer¹³]. Lateral


¹² Edward H. Heinemann was the chief engineer with the Douglas Aircraft Corporation who headed the design team for the D-558-1 and D-558-2. See Hallion, *Supersonic Flight*, esp. pp. 63-5, 167.

¹³ See Melvin Sadoff, William S. Roden, and John M. Eggleston, *Flight Investigation of the Longitudinal Stability and Control Characteristics of the Douglas D-558-1 Airplane* (*BUAERO No. 37972) at Mach Numbers up to 0.89* (Washington, D.C.: NACA Research Memorandum L51D18, 1951), esp. pp. 1, 6-7, 18. Thanks to Ed Saltzman for calling this source to my attention and interpreting it.

stability deteriorated over the same speed range, and there was pronounced wing dropping experience with this aircraft above Mach 0.84.

The NACA was very interested in this and, as a result, undertook many studies here of lateral, longitudinal, and dynamic stability characteristics of the aircraft. One of the most distinctive things added to the airplane was a series of vortex generators, for which Boeing should forever give thanks, employed to stabilize air flow. They worked very well. They were adapted subsequently for a whole range of aircraft — the B-47, the B-52 which had great rows of them, the KC-135, on to the 707 family, up to the 757, 767, and 777 of the present day and, for that matter, the Douglas A-4 as well. And this became sort of a hallmark, as a quick fix of the early supersonic and transonic era.

There was an extensive longitudinal stability research program flown with the D-558-1 number three airplane in 1950 and 1951. And then that was followed in

D-558-1 in flight on one of its transonic research missions. (NASA photo E-713).

1952 by an equally extensive lateral stability investigation. The longitudinal stability program consisted primarily of abrupt pull-ups. The lateral stability program consisted of taking data during abrupt rolls. And then there was a brief dynamic stability program undertaken in the program in 1953, consisting primarily of elevator and rudder pulses before the aircraft was relegated basically to use as a test pilot trainer. It finally made its last flight on 10 June 1953. And it was returned to the United States Navy in dead storage in 1954.

It's very interesting to take a look at the D-558-1, as distinct from the -2 airplane, because it was playing Avis, if you will, to the X-1's Hertz. But at the same time, this airplane — as Scott Crossfield and others have pointed out — was absolutely critical to giving us a thorough understanding of what was happening in the transonic regime. It's also very interesting to me, taking a look at both programs — the -1 and the -2 — to compare the tremendous success we had with these relatively complex aircraft and to contrast that with what was happening in Europe at the same time where you had, indeed, a whole series of false starts, dashed hopes, dashed

expectations of whole families of research airplanes that were being developed in Great Britain, in France, and elsewhere — where there were tremendous national resources and industrial resources going into these. And the programs were not going along at anywhere near the pace that they should.

We'll certainly hear a lot more from our guests this afternoon when we resume the conference. But I would hold that one of the key things in making the American program a success was not merely the design of the airplanes — because the airplanes were very well thought out and extremely well crafted — which, as I've said, is a tremendous tribute to the design team headed by Ed Heinemann at Douglas, but I think also a tremendous tribute to the NACA here at Muroc, which was then the High-Speed Flight Research Station headed by Walt Williams.

And Walt Williams, of course, is a name that's not unfamiliar, certainly, to people in this audience.¹⁴ But it's well worth mentioning, again, that in my view, Walt Williams was probably the finest flight test researcher and research director that this country produced. His impact and his imprint was on every major aerospace revolution, literally going from the transonic era of the late 1940s all the way through the landing on the moon in 1969 and beyond.

We have a number of people who will be receiving due mention and deserved mention today, and I would think that it's very fitting that the first of those that we single out for special mention is the late Walter C. Williams who, of course, loved this Center with the same intensity and passion that he brought to the love of aviation in general.

I would also like to point out that the very fine audiovisual materials which you'll be seeing today have been pulled together, particularly in the case of the photos that I'm using, from the photo archives here at Dryden, which is a unique historical resource. And we have Tony Landis to thank for that. And I appreciate Tony's doing that very much.

And I would also like to mention that in addition to the very distinguished guests we have here today who flew the aircraft and who maintained the aircraft, we have a member, indeed, from the Douglas design team — who worked on this aircraft — Charlie Delavan. And Charlie, if you'd stand up — I'd like you to take a bow. Because [audience applause] without people like Charlie, we certainly would not be able to have this symposium we're having today.

[BREAK FOR LUNCH]

HALLION: We now come, I think, to the real meat of the program. We're going to have presentations by our very distinguished panel of guests. First, two presentations on the D-558-1. Then we'll have a discussion on the D-558-2, followed by some presentations on the D-558-2. So what I'd like to do at this point is to have our distinguished guests please stand up. Bob Champine and his lovely wife, Gloria; John Griffith and his wife, Maxine; Stan Butchart; and Scott Crossfield. We're

¹⁴ Williams was the first head of what later became the Dryden Flight Research Center, where he was instrumental in the successes of the early research aircraft and helped prepare the X-15 program before leaving the High-Speed Flight Station in September 1959 to become Associate Director of NASA's newly formed Space Task Group created to carry out Project Mercury. After serving with the Aerospace Corp. on the Gemini and Titan III vehicles, he joined NASA Headquarters as Chief Engineer. honored, indeed, gentlemen that you're here today. I also want to recognize in the audience Donna Termeer, who's here from Assemblyman George Runner's office. Donna, welcome to the session. We're delighted to have you with us today.

If we take a look at visual images of the D-558-1 and D-558-2 [scattered throughout this volume], we see how evocative these aircraft were, and you think that there's a revolution taking place in aviation at this time. We're seeing a radical transformation literally, from the era of propeller-driven airplane to the era of the supersonic jet aircraft. They had a certain beauty, I think, that was all their own, and frankly, the shapes were extremely evocative. I think when you look at something like an F-86 or the D-558-2, that we haven't developed any aircraft since that time that really had that same degree of elegance. There was something there that I think

Walt Williams, Scott Crossfield, and Joe Vensel, Flight Operations Manager, (viewer's left to right) beside the D-558-2 on November 20, 1953, the day Crossfield exceeded Mach 2. (NASA photo E-1097).

resonates very deeply with us.

As I said earlier, we're very honored to have the individuals who actually flew these aircraft with us today. We'll start first with recognition of two individuals who played a major role in the D-558 program — Bob Champine and John Griffith. These individuals — both of them — had very distinguished flying careers.

Bob Champine graduated from the University of Minnesota in 1943 with a bachelor's degree in aeronautical engineering, went through the civilian pilot training program, and became a naval aviator. After leaving active duty in 1947, he joined the staff of the NACA's Langley Memorial Aeronautical Laboratory at Hampton, Virginia. He did a lot of work there on an airplane that's a relative rarity — people

don't think of it too much — the Bell L-39, which was a swept-wing variant of the P-63 Kingcobra. Despite that "39," it had no relationship to the P-39. It was a very important low-speed, swept-wing test bed, for a number of swept-wing aircraft, including the F-86, the D-558-2, and the Bell X-2. He was transferred out to Edwards in October 1948, did early research flying on both the X-1 and the D-558 program, went back to Langley, did a tremendous amount of work at Langley through the years on a whole range of aircraft, from high performance airplanes through vertical take-off and landing aircraft. Bob became Langley's Senior Test Pilot and retired in January 1979, two days after making his last research flight at NASA's Wallops facility in a CH-47 helicopter. A 31-year career. An utterly distinguished gentleman.

The other individual who's here today is equally distinguished — John Griffith. John undertook some studies at Thornton Township Junior College in Harvey, Illinois, graduating as valedictorian in pre-engineering. He went into the Army Air Forces in November 1941, served in the war in the South Pacific, and flew 189 missions in New Guinea in some very tough times, under some very daunting conditions. He was awarded two Distinguished Flying Crosses and four air medals for service in New Guinea. He left the service in October 1946, went back to study aeronautical engineering at Purdue University, and graduated with honors in aeronautical engineering from that university. He then joined the NACA at Cleveland, where he did some very interesting work in early ramjet testing. That was one of Cleveland's big projects in those days. Some icing research work - something else they were very well known for.15 Then, of course, he came out here in August of 1949 and flew in the early X-series aircraft — the X-1, the X-4, the D-558 program. He left the NACA in 1950, joined Chance Vought, and worked there for a period of time doing experimental flight tests on the F7U Cutlass, had a career with United Airlines, with Westinghouse as the Chief Engineering Test Pilot, and a six-year career with the FAA doing a lot of work assisting in the attempt to develop the first supersonic transport. He had a second tour of duty as a flight instructor with United and flew the line with them for about seven years. We're very fortunate to have John here as well.16

These individuals — and certainly when we talk about Stan and Scott later — you'll see that these were very tough individuals. They were tough individuals dealing with very difficult times. They did very well, and have continued to do so.

To give you an example, Bob here — hale and hearty as he looks — Bob is recovering from a stroke — fortunately mild. He had it two months ago. He's made a remarkable comeback. As a result, Bob doesn't feel terribly comfortable at times speaking. And so, Bob, I'd like you to stand and once again be recognized by our audience. He's left a very fine written memoir that he prepared for this conference. But he's discussed this with John, and John will be handling Bob's portion of the discussion here on the D-558.

So at this point, Bob, I'd like you and John to stand up. And, John, you can

¹⁵ The NACA's laboratory in Cleveland, established in 1941 and renamed in honor of George W. Lewis, NACA Director of Aeronautical Research from 1924 to 1947, in 1948, participated substantially in the NACA's studies of aircraft icing in this period.

¹⁶ These introductions include elements from Ed Schneider's introductions the previous night and additions by John Griffith.

come forward to the podium. [Audience applause]

GRIFFITH: This is a paper that Bob and his wife have prepared. And I will read it as written here:

Good afternoon. I'm happy to be with you today. I thank Mr. Kenneth Szalai, Center Director, and Mr. Cam Martin of External Affairs for inviting us to Dryden, particularly to be with my fellow aviators John Griffith, Scott Crossfield, Stan Butchart, Ed Schneider, and our good friend Dr. Richard Hallion, without whose dedicated research effort and pilot interviews the detailed history of supersonic flight would be forever lost. The complete records just do not exist today.

I'm Bob Champine — a kid who grew up in Minneapolis, Minnesota, with my eyes to the heaven and my heart with wings. I used to ride my bicycle over to World Chamberlin Airport in Minneapolis to clean out hangars, wash airplanes, and do whatever I could to be offered just one ride — a ride in an airplane. My first ride was in a Fleet. I was about 12, and didn't tell my mother because she might not let me go to the airport again. I started flying a Piper Cub in the summer of 1939 and soloed in July 1940. I had to do a lot of sweeping, washing, and polishing airplanes to get that far. Between my building model airplanes, and competing in model meets — winning a lot of the time — and time I spent at the airport, I didn't have a lot of time for my school studies. I was just an average student.

When I graduated from Roosevelt High School in 1939, I wanted to learn to fly. But my mother said, "If you like airplanes so much, you need to learn to design them. I want you to go to college and study to be an aeronautical engineer." This was difficult because of my less-than-exceptional grades. After several conferences with my high school principal and also with the admissions office, I was finally accepted at the University of Minnesota in the Institute of Technology's Aeronautical Engineering Program, backed both by my mom and stepfather, Clifford Champine, who agreed to pay my tuition. I started college that fall. I really had to buckle down and study, as studying did not come easy to me. It was difficult. But my drive to become an aeronautical engineer made the difference.

While I was in college, World War II started, and I began primary flight training under the Naval Civilian Pilot Training Program, and upon graduation in 1943, was commissioned an ensign in the U.S. Navy. Since I wanted to be a naval aviator, I had to give up my commission and enroll in the Naval Cadet Program at Pensacola. At the end of my training, I was commissioned a naval aviator, and my mother pinned my wings on me in Pensacola. That was a proud day.

In 1947 when my Navy term was up, I was stationed at the Naval Air Base in Norfolk, Virginia, flying [F4U] Corsairs. Through my studies at the University of Minnesota, I learned of the outstanding reputation of the National Advisory Committee for Aeronautics, which was just across the river from Norfolk at Hampton, Virginia. With the approval of my superior in Norfolk, I flew my Corsair over to NACA, landed in front of the hangar, and rolled up to the large office building attached to the hangar. I swung the tail around smartly, folded up the Corsair's wings, climbed out, and asked, "Who's the boss here? I would like to talk to him." Of course, everyone there was looking out their windows watching me, and I had no trouble locating the head of the Division, Mr. Mel Gough, and head of the pilots, Mr. Herbert Hoover. I told them I was coming out of the Navy shortly, and would like to come to work for NACA Langley Laboratory as a test pilot. I was told to fill out the government forms for employment and they would look at them. The requirement for a test pilot was 1,000 hours of single-engine and transport flying, and I had only a little over 900.

Well, they offered me a job as an aeronautical engineer scientist, and I wasn't too happy about that. I wanted to be a test pilot, and not a scientist behind a desk. I told them that if they could not hire me as a research pilot, then I was going to use my G.I. Bill and go to helicopter school at Sikorsky in Connecticut. After discussions with Mr. Hoover, Mr. Gough said, "Aw, hell, come on with us as a research pilot and we'll teach you to fly helicopters here at Langley." I accepted.

After receiving my discharge from the Navy, I remained with the Naval Reserve. I found a room in a home in Hampton, Virginia, and began working at NACA in December of 1947. Was I thrilled! Langley had many airplanes and helicopters, and I was just itching to get my hands on the controls. Not long after I was hired, Mr.

Bob Champine and Herb Hoover beside the XS-1. (NASA photo E49-5.

Herbert Hoover, my mentor and dear friend, gave me a manual and told me to take it home; we were flying the B-29 in the morning. This is the way a lot of my training went: read the manual, and then we would go out flying.

I was just thrilled with the opportunity I had and didn't realize that my salary was only about \$50.00 a week. I had saved \$5,000 in the Navy and bought an old Ford car, and I was just the happiest soul on earth. Everyone in the Pilot's Office knew about a super-secret project that was going on in the California desert at the time. But I was happy where I was with just the best job in the world. I was a test pilot with NACA. It doesn't come any better than that.

In California, the XS-1 aerodynamic research program was continuing. Chuck Yeager broke the sound barrier in the Air Force XS-1 6062 October 14, 1947, and Herb Hoover, the second man, broke the sound barrier on March 10, 1948, in the NACA XS-1 6063.¹⁷ Howard Lilly from the NACA Cleveland Laboratory and

¹⁷ The full designations for these two aircraft were 46-062 and 46-063, but they bore the shortened designations 6062 and 6063 on their tails.

Hoover continued with the research program, and on March 31, 1948, Lilly exceeded Mach 1 on his third XS-1 flight. In May 1948 he was killed on his nineteenth flight of the D-558-1 number two.

Hoover needed another pilot at Muroc, and quietly approached me about going out there. I didn't know at the time that other pilots had been approached and, for various reasons, turned the assignment down. I was thrilled to say yes, but I had two conditions: (1) Let me fly all the planes Langley had before I went to California, and (2) I would return to my job at Langley. I had a ball flying everything in the hangar at Langley and being under the wing of Herbert Hoover who, behind closed doors at Langley, gave me critical instruction on the flying qualities of the XS-1 number two, and on NACA's aerodynamic research program.

When he decided I was ready, I left Langley and drove my old Ford out to Muroc in October 1948. Hoover remained at Muroc to train me, and on November 1, 1948, he turned the X-1 over to me. I made my first flight on November 23rd. I became the sixth [pilot in the XS-1 and D-558 series] to reach Mach 1 December 2, 1948, on my fourth flight.

This table shows research flights that John Griffith and I flew in 1948 through 1950:

Aircraft	Bob Champine NACA Research Pilot	John Griffith NACA Research Pilot
X-1	13 flights	9 flights
X-4	0 flights	3 flights
D-558-1	9 flights	16 flights
D-558-2	12 flights	8 flights

During my X-1 flights, there were a couple of incidents I would like to share with you. After settling in the X-1 beneath the B-29, I experienced a radio failure prior to launch. Using my knee pad, I wrote a note on a flight card "secure the drop," which, in my Navy lingo, meant stop. The note was passed through the bomb bay to the Air Force crew on the B-29. They thought everything was secure. They dropped me! I had to scramble to get the radio working. But I had it fixed and completed the flight okay.

On another flight, the cockpit camera just over my shoulder broke loose during the flight, and went slamming around inside the cockpit. I began to jerk the wires out and stash the camera beneath my leg, but not before it cracked the inner windshield. As I was attempting to land, the windshield frosted over, and I could not see. I put my thumb on the windshield, and melted a very small spot. I was able to put my eye close to it and see well enough to land on the dry lakebed. [Aside by John Griffith:] I might say that any of you who have seen the X-1 could see that the visibility for landing was not the best, since they wanted the windscreen to conform to the shape of a .50 caliber rifle bullet. But sometimes it did frost over, and then the chase plane would be telling you how high you were, and you hoped that you'd hit the lake at the right attitude. If you hit the lake with the nose wheel first, the X-1 was out of control, and there were a lot of people, including myself, who started bouncing along the lake as a result of the nose wheel hitting first and breaking off. Anyway, to get back to Bob's story here: This photo gives you an aerial view of the base, with Rogers Dry Lake in the center. When we were here, there was a railroad going across. But we still had seven miles north and south and five miles east and west. Usually when we were landing the X-1, we'd shoot for about the one-mile marker, and usually didn't miss it by very

Aerial view of what was then (1948-49) called Muroc Air Force Base (now Edwards AFB) and vicinity. In the center, shaped somewhat like an hourglass, is Rogers Dry Lake (sometimes referred to as Muroc Dry Lake). (Photograph supplied by Bob Champine, available as NASA photo EC98-44613-1).

much. [Comment by Griffith:] I think there was one day that Bob was a little low on the base leg and he said, "Please advise." And the only advice I could think of was, "Our Father, who art in heaven."

Here is a picture of myself, Chuck Yeager, and Herb Hoover. The next is a picture of Mr. Hoover when he received the Air Force Association Award in 1948 for

Bob Champine, Chuck Yeager, and Herb Hoover (viewer's left to right) standing next to an X-1. (NASA photo EC98-44613-4, originally supplied by Bob Champine).

Herb Hoover with his Air Force Association Award in 1948. (NASA photo EC98-44613-7, originally supplied by Bob Champine).

his flight as the first civilian and the second man to break the sound barrier. He also received the Octave Chanute Award that year.

In the next photo, you can see just how small the X-1 was compared to the B-29 drop plane. Another one lets you see how we entered and exited the aircraft. Once inside, we were in. No thought of escape; we had to land it. Research flights were of short duration — maybe about 15 minutes of actual flight time. Then days and sometimes weeks would pass before there was another flight, and I was anxious for more flight time. I made good use of my Naval Reserve status, and was assigned my weekend warrior duty at Los Alamitos, California. Since I didn't want anyone to

know my actual job at Muroc, I would take the Muroc C-47 and fly it by myself, would park about a mile away, and walk down the flight line to my assignment as an ensign in the Naval Reserve. I was able to get a lot of flying time there and had great fun.

X-1 predominantly flown by NACA pilots next to its B-29 "mothership." (NASA photo E-9).

Bob Champine exiting the X-1. (NASA photo EC98-44613-2, originally supplied by Bob Champine).

The next photograph shows our X-1 (6063), after it was modified for other research flights, as it stands today — proudly, in front of the Administration Building here at Dryden.

Original NACA X-1, modified as the X-1E, in front of the Headquarters Building at NASA Dryden. (NASA photo ECN 12506).

During the X-1 period, NACA took delivery of the D-558-1 number one Skystreak which was relegated to spares support. NACA test pilot Howard Lilly flew the D-558-1 Skystreak on its first NACA flight in November 1947, about six months before he was killed after engine failure on takeoff on May 3, 1948. In 1948, the D-558-1 Skystreak number three was delivered to NACA, and I made NACA flight one on April 22, 1949, for pilot familiarization.

The next two photos show the Skystreak on the ground, and then in flight. I made nine flights in the D-558-1 Skystreak and 12 flights in the D-558-2 Skyrocket, making NACA flight one on May 24, 1949. The next photo [page 22] shows the Skyrocket on the ground, taking off with a JATO assist.¹⁸

My thirty-two years as a test pilot for NACA/NASA were wonderful times from flying the X-1, to spacecraft rendezvous, and simulated landings on the moon. I had it all. Thank you. [Audience applause]

GRIFFITH: Well, to turn to my own experiences, as Dick said, I grew up in Homewood, Illinois, near Chicago. And Green Three went very close to our house, which was one of the early air routes that went from Chicago, to Goshen, to Toledo, to Cleveland, and to New York. Early in the 1930s, I could see Boeing 247s going over, and later on the DC-3s. Sometimes when I saw the airplane going over, I would lie down in the yard, and just lay there and look at it. I thought it would really be a

¹⁸ JATO is the acronym for jet-assisted take-off; despite the term "jet," the device assisting the take-off is actually a small, solid-propellant rocket.

Bob Champine next to the D-558-1. (NASA photo EC98-44613-5, originally supplied by Bob Champine).

great thing to be up there flying that airplane.

The Depression wasn't too good to me and my family. We lost our home, and I went to live with my aunt before I finished junior college. But I was valedictorian of my class in the junior college after two years. At that point, I took my physical, and was accepted in the Army Air Corps. It almost turned me down because I had malocclusion [of the upper and lower teeth]. I never could figure out how that was going to affect how I could fly an airplane, but anyway, they could see the war coming. I think they were taking everybody that was really in physical condition, and

D-558-1 in flight, still painted its original bright red color. (NASA photo EC98-44613-3, originally supplied by Bob Champine).

had the eyesight, and depth perception, and things like that to get in the program.

As Dick said, I went to New Guinea. I was in the Army Air Corps [and Army Air Forces] for five years, getting out in 1946. In the spring of 1946, *Aviation Week* and some of the other magazines I was reading were talking about the X-1, and the glide flights they were making in Florida.¹⁹ Eventually it got to the point where the news was out that [Chalmers] "Slick" Goodlin was asking for quite a large sum of money to fly supersonically with the airplane.²⁰

D-558-2 taking off with jet assisted take-off (JATO). (NASA photo E49-219).

So I wrote a letter to Bell Aircraft. I said I was an honor student in the third year of aeronautical engineering at Purdue, had 1,200 [flying] hours, 189 combat missions, and had done a lot of flying with fighters — and that I'd like to come and fly the Bell X-1. After I was flying the X-1 for the NACA, we went to the [variable-sweep] X-5 mock-up at Bell. I talked to some people who said there were quite a few individuals who had written in and said that they would like to fly the X-1. I don't know whether they were interested in the money, or whether they just wanted to fly the airplane. Scott Crossfield said he just wanted to fly the airplane. I think he wrote a letter, too.

Well anyway, I graduated from Purdue, and people came to interview us for a job. In 1948, the average engineer starting salary was about \$250.00 a month. I interviewed with Ed Gough, who was Mel Gough's brother, and another engineer

¹⁹ The first glide flights occurred at Pinecastle Field, Fla., before the project moved to Muroc Army Air Field (later Edwards Air Force Base).

²⁰ In fact, the story was perhaps somewhat exaggerated; Goodlin's contract arrangements with Bell were consistent with then-industry practices. See Louis Rotundo, *Into the Unknown: The X-1 Story* (Washington, DC and London: The Smithsonian Institution Press, 1994), pp. 126, 226-230.

who came down from the [NACA's] Lewis Lab [in Cleveland], and they accepted me. They were going to pay me \$3,727 a year. That turned out to be about \$140 every two weeks, which we got along with all right. It only cost 27 cents for a T-bone steak, so the salary was commensurate with what things cost.

I was in icing research in Cleveland. I don't think we want to spend a lot of time with that. I do remember we flew the B-24 once with enough ice on it that the propellers were rubbing the ice on the engine cowlings! The post or the support for the air speed indicator was underneath the airplane, and the ice was sticking out far enough on the support that even with the pitot heat on, the ice went around a little bit in front of the pitot tube. We [had to fly] the Instrument Landing System using pitch attitude rather than air speed to get back in at Cleveland.

Well, they had an opening here at Edwards, and I said I wanted to fill it. So I went to Langley and flew a lot of the airplanes that Bob talked about. The L-39 was the first airplane I ever flew in which you could push on the left rudder and the airplane would roll right, which took a little bit of getting used to.

Another airplane they had at Langley that was interesting was the [North American] P-51 [Mustang]. In a compartment on the right wing, they had set up a balance. There were airfoil models that could be put out into the wind stream. And when the P-51 was going 0.75 Mach number, the [accelerated] air over the top of the wing was going Mach 1.2. So they were getting transonic and supersonic lift, drag, and pitch characteristics of various airfoils with this model on the wing out there. This gave a little bit of feeling for what had happened to a lot of the Army Air Corps pilots that were in the P-51s and the P-38s. A fair number got into dives that they didn't pull out of. In the P-51, you could be pushing 40 pounds [stick force] at 0.7 Mach number. At Mach 0.72 it was almost neutral. By Mach 0.76 you had 160 pounds force on the stick, and you might or might not be decreasing the angle of the dive with that 160 pounds. Some pilots went on in the steeper dives and tried to trim out of it. When the air got a little denser, and the temperature went up, and the Mach number dropped off, they had [sufficient] trim in the airplane to pull the wings off. So there were a lot of unknowns that happened in the transonic speed range.

When I was in New Guinea, we had a pilot that was in our [Curtiss] P-40 [Warhawk] squadron and had an opportunity to get with a [Lockheed] P-38 photoreconnaissance squadron that was just across the river from where we were. He ate lunch with us one day and said, "I don't think this P-38 talk is really anything serious." He said, "I'm going to go up this afternoon and really dive one." Well, later on that afternoon we saw him coming down. From the point where we first saw him 'til he hit the ground, he went into a steeper dive. I don't understand why he didn't pull the throttles back. He buried the engines about 30 feet in the ground. So it was pretty obvious that when you went into the transonic speed range, the center of lift on the wing moved aft, and that made the nose go down.

I got a P-40 up to about 32,000 feet and came straight down, and I first experienced a stick that felt like it was cast in about two feet of concrete. It just doesn't move back until you get a little denser air, and the drag increases, and the temperature goes up a little bit, and the Mach number comes back. If you throttle back, it's easy enough to pull the airplane out. This experience went on with quite a few people that flew P-51s and P-38s. Lockheed eventually put a flap underneath the front of the wing, so that if you got into that kind of trouble, you could open that flap and pull out.

But we got to Edwards here and started the Skystreak program. As Dick said, it was a beautiful airplane and really a lot of fun to fly. We were doing a lot of flying between 0.8 and 1.0 Mach number. Quite a few of the flights that I was on were very close to Mach 1. As a matter of fact, one of Dick's flight numbers shows me going to Mach 0.98-1.0. We were measuring the pitch characteristics, and, of course, the pressure distribution over the wing, and all the stability and control aspects of flying through Mach 0.80 to 0.99 — which was giving a lot of information that was pretty much needed to keep these airplanes out of trouble when they got going in that speed range.

So this was a pretty first-hand experience to indicate that there was some reason that we really needed to get into these transonic research airplanes and determine what it was about the airplanes that we were flying that would enable them to fly safely at transonic speed and into supersonic speed.

There are so many things that can happen when you start getting into the transonic speed range — especially instability of the airflow. The normal lift distribution peaks near the front of the wing. That breaks down and moves aft as local Mach 1 speeds are reached and that makes the airplane pitch down. And then there are other characteristics on some of the airplanes that might cause it to pitch up.

One of the flights that I made with the D-558-2 was a series of pull-ups at 200-240 knots. Anyway, in a pull-up, when the airplane got to a pitch-up angle of attack,²¹ it would be interesting to see the position of the horizontal tail in the wing wake in a pitch-up. I expect that when the pitch attitude of the airplane was such that the downwash from the wing went over the horizontal tail, it pitched up quite sharply. Well, at 220-240 knots, it wasn't too bad. But at maybe 280 knots, when I hit that point, without my doing anything except pushing against the stick, the airplane pitched up to a stall and a snap roll. I had done a lot of snap rolls in my life. It wasn't any problem to pull out of a snap roll, but quite a surprise to be doing a pull-up, and all of a sudden the airplane's going out of control.²²

I guess you all know that in those days, most of our data was on an oscillograph²³ that was about this wide [holds hands slightly apart]. And the distance from the baseline to the location of the parameter was an indication of your speed, or altitude, or stick force, or G force [acceleration equal to the force of gravity or a multiple thereof], or all the various things that we were measuring. Sig Sjoberg²⁴ told me when I was going to do this stall that was on the flight plan, "We'd like to see

 $^{^{21}}$ The angle of attack (AoA) is the relationship of the aircraft to the relative wind. At a 45° AoA, the aircraft is pointing 45° above the airstream.

²² Pitch up was violent at high speeds but was much milder at moderate speeds and not noticeable at approach-to-stall speed.

²³ In the early years, an oscillograph recording system collected flight data on film for processing by female "computers" into usable engineering data. In 1967 a more sophisticated pulse code modulation system replaced the oscillograph. See Sheryll Goecke Powers, *Women in Flight Research at NASA Dryden Flight Research Center from 1946 to 1995* (Washington, DC: NASA Monographs in Aerospace History #6, 1997), esp. pp. 12-14, 45-49.

²⁴ An engineer at the NACA High-Speed Flight Station (later NASA Dryden Flight Research Center).

what happens with this airplane when we have the gear and the flaps down, and we're at the end point of the stall approach."

Well, this data point was a little late in the flight, and I had gotten down to about 14,000 feet. The airplane never would go real high with just the jet engine. But anyway, I got the gear and flaps down, slowly approached a stall, and pretty soon I felt like things were getting pretty loose with this machine but no pitch-up was noticeable. I thought: well, Sig wants it really slow, so we'll keep on coming back here. So I came on back to the point where the right wing dropped and the airplane started yawing to the right. I thought it was about time to stop this and recover. But it did maybe a turn of a spin. The airplane spin recovery characteristics were unsatisfactory with the gear and the flaps down, so as I was rolling into this wing dropping and yawing, I was putting the gear and flaps up. I knew it wasn't going to be long until I was going to be going quite a bit faster than I was going then. But I got the nose down, and got a little speed up. And as soon as I had the nose down and the speed up, why the airplane was flying — but I was in a very nearly vertical position.

I later checked the telemetering data, and determined that I did the stall at 14,000 and pulled out at 7,000 feet. Well, the lakebed was at 2,400 feet. I think from then on, if I was going to do any stalls, I'd be at 20,000 feet. Walt Williams was watching this from the lake. They drove the car out to be somewhere near where I stopped when I landed. And he was looking at it with his field glasses. When it slid off into the spin, he handed the glasses to Joe Vensel²⁵ and he said, "Here — you look!"

Another point about the D-558-1: I think the wing on the D-558-1 was about 150 square feet. And that made the stall speed a little high in some cases. I know that I was doing a clean configuration stall according to the flight plan. And I felt pretty good at 150 [knots] indicated [airspeed]. At about 149, why I had dropped 1,000 feet. And so things quit all of a sudden. As far as the high speed part of it was concerned, I flew I know at least three or four flights that went above Mach 0.97. We did several runs from a lower speed to that high nine-tenths with different stabilizer settings. And this gave us a pretty good indication of some of this tucking that I was talking about that went on with the P-38 and the P-51. However, I do remember some buffeting and some trim changes, and things like that. But I felt like it was really a pretty good airplane to fly up to near Mach 1. And I enjoyed flying the airplane. I thought it was a lot of fun.

I can't really think of any more things that are directly tied into the D-558 program. I do know that, as Dick said, in the X-1 it was a short shot. You'd get to 50,000 feet, and start down with four rockets, and maybe get up to Mach 1.2 at the most. And near the end of that time, we'd do a roll or a pull-up, or some kind of maneuver that would give them a little more information about handling qualities at those speeds. And it was not a very long time. Soon as the fuel was gone, you jettisoned the residue. Then it was a no-power flight to the lake.

They were going to have a movie called Jet Pilot, and X-1 number one was

²⁵ A distinguished NACA and Navy pilot, Joe Vensel transferred from the NACA's Aircraft Engine Research Laboratory in Cleveland, Ohio (later NASA's Lewis Research Center), to the not yet officially named NACA Muroc Flight Test Unit (later NASA's Dryden Flight Research Center) as Chief of Flight Operations in April 1947. He remained in the position until his retirement in December 1966.

going to be used for that. The crew came up from Los Angeles — the movie crew. They were painting the airplane, and they had some talk about people's salaries. I heard the salaries these guys were making in the movie crew, and it was more than I was making. I thought: if I'm going to be up here flying this X-1, I ought to get a little more money.

And I really don't know why. But it was just a few days after that that J.R. Clark came from Chance Vought. And he offered me a job that paid almost twice the salary, and with the bonus program, I could maybe earn four times the salary I was making. What he didn't tell me was that in the various X models of the F7U Cutlass, they crashed five airplanes and killed three pilots.²⁶ I didn't know that when I went to work for Chance Vought. But when I got there, from some of the flying that I did, I found out why. I worked for them for a year, and I figured I'd like to see my kids graduate from high school. So I went to work for the airlines.

I do think I probably have time to talk about one episode with this Chance Vought Cutlass that ties into the "tuck" problem that we had with the P-38 and the P-51. The F7U-1 was built with a hydraulic power control system. And if you had lost complete hydraulic power, they had a spring tab system as a backup. It was a mechanical system that could be used to recover the airplane if you lost all your hydraulic pressure. The airplane would fly quite well on the spring tab system if you weren't going fast.

So this was the bonus program I was on. I was supposed to see how fast the airplane could go and still be recovered with the hydraulic control system shut off. I made several practice runs where I shut off the hydraulic control system, but I didn't shut off the hydraulic power that opened the speed brakes. On the day that I was working for this bonus program, there was going to be a complete hydraulic failure, and I was going to have to open the speed brakes with a high-pressure air bottle. Well, the airplane would only get to maybe 37,000 or 38,000 feet. And the higher I went, the more money I was going to make. So I was trying for altitude for a long time.

At about 38,000 feet, I pointed to at least a 60-degree dive angle. And then by 29,000 feet I had slightly over Mach 1, and shut off the hydraulic system. I only had three things to remember. And I think I should have had a checklist to remember these three things. The first thing was to shut off the boost. The next one was to open the speed brakes. Well, that was easy enough. I opened the speed brakes, and nothing happened that I could tell. So instead of pulling back on the throttles, I started thinking: what's the matter with these speed brakes? So I looked in the mirror, and they were just open a little bit. And about this time I looked back in the cockpit, and I was already at 18,000 feet. And the thousand-foot needle was going around more than once a second. I went from 33,000 to 13,000 feet in less than 20 seconds. But instead of pulling the throttles back, I turned the boost back on. I was pulling about 90 pounds with one hand, and as the boost came on, I could easily have pulled the wings off the airplane. But I relaxed that pressure back to about 45 pounds as the airplane approached six Gs. I was aware that the airplane design parameters were six Gs at 520 knots equivalent air speed, and I was doing 560. But without a G-meter, I

²⁶ The F7U Cutlass was a radical twin-jet, swept-wing, tailless jet fighter. Though it did deploy aboard Navy carriers (and was the first operational missile-armed Navy jet fighter), it was not a great success and did not remain in service very long.

thought I must be pulling six Gs.

It showed on the records after I got through that I had pulled between six and six and a half Gs for eight seconds, and missed the ground by less than 2,000 feet. So if I'd have turned the boost on two seconds later, I'd have hit the ground and made probably the biggest hole that an F7U ever made. I was going 700 miles an hour at 12,000 feet. But that was a point where I thought there probably would be some pilot that would pull the wings off. There might be another pilot that would have hit the ground. And then again, there might have been a pilot that would have pulled the throttles back and avoided all that excitement. [Laughter.]

ANOTHER SPEAKER: Did you get your money?

I got part of it. But it turned out that the Navy signed off on their structures and their recovery with the boost shut off. They didn't want any more tests. The airplane had both fins bent and one rudder fluttered. And there was just a jagged piece on the post that was in the fin. I called the ground station and I said, "Well, CVA, this is Mike. I'm still here." And I was pretty glad of that. And I said, "Both fins are bent, and one rudder is gone." And Martin Collis called up. He said, "Well, I'll come up and have a look at it." I said, "Looking at it isn't going to do it any good. Just rig the chain gear,²⁷ and I'll come down and land it there." So that was really an uneventful landing after getting the machine out of the dive.

But I did have several thoughts. You see, thoughts run through your mind when you're in a tense situation sometimes. The first thought that went through my mind after 18,000 feet was: what's Cleo going to do with those three little kids? And the next thought I had, after I was pulling the Gs, was: I guess that engineer that designed that control arm and that hinge point there sure must have done a good job of designing the thing, because it's still hanging on the airplane.

Well anyway, I think that any of you that know anything about physiology of G forces — after three or four seconds of six Gs, most people will be at least grayed out. By the time you get to near eight seconds, most will be unconscious. And I know that I was still pulling the 40 pounds at the bottom of the dive. Because I was going back up again. The canopy completely frosted over, going from 70 below zero to 80 degrees in the Texas area there. And by the time I got back near 12,000 feet, I thought: well, I'm going fast enough and high enough, and pulled the throttles back so I could fly back to the base.

There is one other thing that maybe later on Scotty will talk about. I was really wondering why there were so many high-altitude losses of control. I know a lot of pilots — Yeager did it twice, and [Capt. Arthur "Kit"] Murray did it once. And Milburn Apt²⁸ — that was probably an error in judgment that they sent him that high and that fast on his first flight. But as the years have gone by, we've gotten pretty

²⁷ A runway arresting mechanism for stopping an airplane that might be damaged too seriously to stop by normal braking.

 $^{^{28}}$ Capt. Apt died on 27 Sept. 1956 after flying to Mach 3.2 in the rocket-powered X-2. The aircraft went out of control due to predicted inertial roll coupling after he became the first pilot to reach Mach 3. The rocket had burned longer than predicted, forcing the pilot into a quandary. He had either to decelerate through Mach 2.4 as planned, in order to make a safe turn but at a greater distance from the landing site than expected, or risk the predicted

well into stability augmentation, and yaw dampers, and thrusters, and things like that on airplanes. And my opinion about it is that maybe they should have done a little of this work a little lower and a little slower before they went up there and lost control. But that's probably 20/20 hindsight.

HALLION: Most of you probably heard a strong sonic boom a few minutes ago. That was a tribute, by the way, that Ed Schneider told me that he was going to make specifically for this symposium this afternoon. That was a Dryden F-18 flying through Mach 1 in honor of the D-558-2, and the accomplishments of the D-558-2 and the D-558-1 in transonic and supersonic flight testing.

Now, we're going to start this afternoon much as we did this morning. I'm going to give a quick overview on the D-558-2 program, and some of the work that was undertaken there.

I mentioned this morning that as the D-558 program went along, we had a series of two mock-up conferences. And at the second of those mock-up conferences, which took place in August of 1945, the decision was reached to split the program, so that we would have a Phase 1 that was a straight-wing aircraft and a Phase 2 that was a swept-wing airplane. How did this come about?

Basically, there had been tremendous interest in the swept wing generating in this country since the mid-1940s. In late 1944, you had had Robert T. Jones, an aeronautical research engineer at the Langley Memorial Aeronautical Laboratory, as the Langley Research Center was known in those days — who postulated the notion of the swept wing for transonic drag reduction, independently of German work. This is an important point, because I think that there's a myth that we live with in aviation history — and that is that we got the delta wing and the swept wing from Germany, and that we were ignorant of these things until we had the chance to examine the German aircraft industry. Nothing in point of fact could be further from the truth. Both the swept wing and the delta wing were indigenous American developments. And their history is a very interesting history.

In April of 1945, in fact, Jones undertook research studies on the swept-wing configuration, at the behest of Theodore von Kármán, who was an immigrant Hungarian aeronautical scientist and the scientific advisor to the Army Air Forces.²⁹ And they put a wind-tunnel model together — a very sharply swept model. And it confirmed that the swept wing had very good aerodynamic characteristics — up in the high supersonic range, to Mach 1.72. This is one of those classic problems I mentioned earlier about tunnel testing. You could get very good subsonic data, and

instability that caused his death. On this, see, e.g., Richard E. Day, *Coupling Dynamics in Aircraft: A Historical Perspective* (Edwards, Calif.: NASA SP-532, 1997), pp. 10-13, Richard Hallion, *On the Frontier: Flight Research at Dryden, 1946-1981* (Washington, DC: NASA SP-4303, 1984), pp. 76-78, and Lane E. Wallace, *Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center* (Washington, DC: NASA SP-4309, 1996), pp. 54, 181. ²⁹ Von Kármán had been a student of the eminent fluid dynamicist Ludwig Prandtl at the University of Göttingen and later rivaled his mentor in that field of study, which included aerodynamics. He headed the Guggenheim Aeronautical Laboratory at the California Institute of Technology before becoming the scientific advisor to the AAF. See Michael H. Gorn, *The Universal Man: Theodore von Kármán's Life in Aeronautics* (Washington, DC: Smithsonian Institution Press, 1992). you could get very good supersonic data. But in that transonic region in between, from about Mach 0.75 to about 1.25, the measurements were very suspect. Beyond that, when they were dealing with this model at about the 1.5 to 1.72 range, it exhibited very good characteristics.

Number two D-558-2 Skyrocket being launched from a Navy P2B mothership. (NASA photo E-2478).

In May of 1945, as part of the American industry's effort to study the German aircraft industry, L. Eugene Root and A.M.O. Smith, two individuals — as I mentioned this morning — who were intimately involved in the D-558 program, went to Germany as part of the Naval technical mission to Europe — NAVTECHMISSEU, as it was called. And they visited the, if you will, German Langley — the so-called Aerodynamische Versuchsanstalt [aerodynamic research facility or test station] outside Braunschweig. And they learned there of the tremendous range of work that was going on in Germany on swept-wing development. This came, if you will, as confirmation of their inclinations to pursue the swept wing. Root stayed on in Europe. Smith returned to Douglas in early August. And to show how rapidly this turned — as I mentioned, at the second mock-up conference on the D-558-2 which was held in the middle of August (August 14-17), the decision was reached to go ahead and launch a swept-wing variant of the airplane.

From the first photograph, you'll see that this was a very different beast. If you compare this with the Skystreak, as we saw in cutaway this morning, this aircraft for supersonic performance was to have a rocket engine in the back end, a so-called Reaction Motors 6000C4. That stood for 6,000 pounds of thrust from four thrust chambers. We have an example of the engine here on stage. In fact, you see the independent thrust chambers — each one of which gave you 25 percent thrust. And that would be tucked in the tail cone of the airplane. Therefore, you couldn't have a very large jet engine.

Fortunately Westinghouse, at the time, was developing a family of axial flow

turbojets — the model J30 and the model that would eventually become the J34. And so the decision was reached to put a Westinghouse model 24, the predecessor of the J34, in the belly of the aircraft as well, exiting under the tail cone. So this would be a combined propulsion jet and rocket airplane. That greatly complicated, as you can well imagine, the internal fuel capacity for the aircraft. In fact, the airplane operated initially with three fuels. It operated with a liquid oxygen and water-alcohol mix for the rocket engine. It operated with jet fuel for the J34. And it operated with hydrogen peroxide to power the turbopump. So this was an airplane that was already getting pretty exotic in most respects.

Kermit Van Every was the aerodynamicist who designed the configuration of the D-588-2, working with Ed Heinemann. And if we take a look at this, it's an interesting machine. It was intended for ground takeoff and landing. There was no desire yet to air-launch this airplane. There was some thinking that maybe we'd go in that

Cutaway view of the D-558-2. (Photo provided by Tony Landis).

direction, but it was far off. The airplane was designed with anhedral on the wings. In other words, they were angled downwards slightly. And they had reverse taper. They had a 10 percent thickness:chord ratio at the root, and a 12 percent thickness:chord ratio at the tip. You had Handley Page leading edge slats on the aircraft. You had wing fences, and the flaps of course.³⁰ And it was a 35-degree swept configuration which was relatively conservative in terms of the evolution of the swept wing at that time. It was comparable in wing sweep to the F-86 then coming along.

To ensure that the pilot had adequate control over the aircraft should it encounter transonic difficulties — to prevent the drag divergence Mach number of the wing and the tail being equal — they swept the horizontal tail surfaces at 40 degrees. And it also had a fully adjustable horizontal stabilizer, just like the X-1. The load limit on the airplane was lower than the D-558-1. Instead of the 18 G ultimate load, it had a 12 G ultimate load. It had a 7.33 G limit load, which was consistent with military fighter design practice at the time.

When the aircraft was originally designed, it had an X-1 style nose configuration. You had a smooth ogival body shape and a flush canopy. The cockpit, as with

³⁰ Slats were long, narrow auxiliary airfoils affixed to the leading edges of the wings to increase lift at high angles of attack. Fences were stationary plates or vanes projecting from the upper surfaces of the wings, substantially parallel to the airstream. They were used to prevent spanwise airflow detachment over the wing.

the D-558-1, was a confining little space. Now the first airplane flew on February 4, 1948, with Johnny [John F.] Martin at the controls. He was a Douglas test pilot of distinction, more noted for his work in attack-bomber and transport flying than high-performance aircraft flying. But a couple of deficiencies became visible pretty quickly. One of them was a very annoying Dutch Roll oscillation that resulted in Douglas eventually increasing the height and the area of the vertical fin.³¹ And also, the visibility from that cockpit was pretty horrible. So the airplane was modified to have basically a Skystreak-like high-speed canopy.

It was about a Mach 0.85 airplane, straight and level on jet engine only. Very underpowered, but that would be expected, given the small Westinghouse engine.

Let's go back about ten years to 1938. If we think of 1938 and the Navy's leading fighter in 1938, it's the externally braced Grumman F3F biplane — 250 mile-an-hour maximum speed. A decade later, we have a Mach 2 aircraft flying. It's not at Mach 2. It won't be at Mach 2 for another five years. But that is how rapidly the technological change is taking place. That is the radical transformation that we're seeing in aviation technology at that time.

You know, we speak today of the fact the computational power is doubling every 18 months with computers. And that is obviously extraordinary. But if you look at this — in its own way, in a very hard-core/hard-technology sense, this is an equivalent revolution that we see taking place in terms of the profound impact it's having.

Now there were several difficulties operating the D-558-2 in its initial configuration. I mentioned that it was severely underpowered. This, of course, greatly complicated flight safety. It had some rather dangerous takeoff characteristics. Typically, it would take off with four JATO bottles strapped to the airplane to give it an additional kick in the rear on takeoff. Takeoff rolls were very, very excessive. These kinds of problems, particularly also the problem then of operating it with a rocket engine and very volatile rocket propellants at some point, caused people to begin thinking more and more about both safety and performance advantages of operating it as an airlaunched airplane.

On 24 May 1949, we had the first NACA flight in the D-558-2 number 2 by Bob Champine. It was still a jet-only program. This was the aircraft then, which Bob and John flew briefly before it was returned to Douglas for modification to air launch all-rocket air-launch configuration — in January 1950. But in this brief six-month period of flying — as John and Bob both alluded to in their presentations — it flew extensively on early swept-wing pitch-up investigations. The first pitch-up encounter was by Bob on 8 August 1949. It was a pitch-up, in a four G turn at 0.6 Mach number, to six G. John Griffith then, on 1 November 1949, encountered one that was more interesting. Severe pitch-up, a snap roll, and then a low-speed pitch-up, and a departure [from straight and level flight] in turn that was eroding rapidly into a spin.

In June 1949, the D-558-2 number three, which became NACA 145, made the first supersonic flight using both jet and rocket propulsion. Gene May, Douglas pilot, remarked, "The flight got glassy smooth — quite the smoothest flying I had ever known." I think that was an indication right there that the airplane was going to be pretty successful as a supersonic research airplane.

³¹ Dutch Roll is a complex oscillating motion of an aircraft involving rolling, yawing, and sideslipping. It takes its name from its resemblance to the characteristic rhythm of an ice skater.

In September 1949, Hugh Dryden, who was the NACA's Director of Research,³² recommended to the Navy that the D-558-2 be modified for air launching. Why? Three reasons — safety, performance, and research. The research attributes were that you could now compare the performance of a 10-percent swept-wing aircraft over the same speed range as the straight-wing 10-percent NACA XS-1. And you could compare the conventional airfoil cross-section of the D-558-2's swept wing with the unconventional airfoil cross-section of the Bell XS-2, which used a radical so-called bi-convex section that was then under development. That was good enough for the Navy.

On November 25, they added an amendment to the contract to modify the number two and the number three aircraft to air-launching. The number two would be an all-rocket airplane. The number three would retain its jet and rocket engine. The Navy had a small fleet of B-29s for a variety of test purposes — anti-submarine warfare research, things like this. And so a B-29, or as the Navy designated it, a P2B-1S, was set aside as the launch aircraft for the D-558-2.

We had the first air-launch of a D-558-2 on September 8, 1950 — Bill Bridgeman in the number three airplane. And then you had the first NACA flight in this particular aircraft, beginning the NACA's supersonic air-launch research program with the Skyrocket on December 22 of that same year with Scott Crossfield.

The real attention was focused less on the number three airplane, which of course was both jet- and rocket-propelled and became a maid of all work. The real attention was focused on the most glamorous of the Skyrockets, and certainly the one that has become the most famous to us, and that was, of course, the all-rocket number two airplane, which is now hanging in the Smithsonian Institution. This airplane, which received the call sign of NACA 144, had greatly increased fuel tankage over the jet-and-rocket Skyrocket. It could carry 345 gallons of liquid oxygen, and 378 gallons of water-alcohol.

If we take a look at the Douglas contract and the program on this aircraft which began in 1951, we see some interesting things and some very interesting highlights. We had the inadvertent first flight on 26 January 1951. This was a case where there was a fuel-pressure drop. Bill Bridgeman called to George Jansen, his launch pilot, and said, "Don't drop me, George." And George Jansen, his finger mashed down on the transmit button, kept intoning the countdown. Bridgeman was launched saying, "Damn it, George. I *told* you not to drop me." And the chase pilot, who was Pete Everest in an F-86, said, "You've got some keen friends, Bridgeman."³³ That's one of my favorite stories. Bridgeman recovered very adroitly, and went up to Mach 1.28 in the airplane. He noted a decrease in elevator effectiveness above Mach 1. That, I suspect, didn't come as too much of a surprise.

On May 18 — just to give you some highlights — he reached Mach 1.72 at 62,000 feet, 1,130 miles an hour, making the Skyrocket the world's fastest airplane. In June 1951, he extended this to 1.85 Mach number, 1,220 miles an hour, but experienced some very violent rolling — 80 degrees a second — causing him to

³² That year he assumed the title, Director, rather than just Director of Research. See Michael H. Gorn, *Hugh L. Dryden's Career in Aviation and Space* (Washington, DC: NASA Monographs in Aerospace History #5, 1996), p. 9.

³³ Quotations in Hallion, *Supersonic Flight*, p. 164.

prematurely terminate the rocket flight with over 50 seconds of rocket fuel remaining. The problem here was, as he was going to very low pushover load factors, the airplane was becoming increasingly unstable. Bridgeman assessed this very well. And on August 7, 1951 he reached Mach 1.88 safely, using a higher .6 to .8 G pushover, as opposed to the .25 pushover load factor that he had used on his earlier flight.

Douglas then turned to the potential of the aircraft to exceed the world's altitude record, which was held by the balloon *Explorer II*, going back to 1935 — a 72,395 foot record. Bridgeman on 15 August 1951, reached 79,494 feet, making the Skyrocket both the world's fastest and highest airplane. I think this is a tremendous tribute to Bridgeman as a pilot, and to Ed Heinemann as the designer of the aircraft. The airplane, in fact, when you took a look at it, had some significantly better performance than its designers had predicted. In fact, its supersonic drag was actually less than what people predicted at the time.

D-558-2 number two returning from a research flight with an F-86 flying behind it as a chase aircraft. (NASA photo E-3996).

If we take a look at a couple of classic photos from this period, Bridgeman developed a very close association and friendship with Chuck Yeager, who flew a lot of the F-86 chase missions. And this is a very evocative photograph, I think, of the D-558-2, drifting down from a research flight with Yeager in the F-86, speed brakes deployed, coming down behind him.

Now, for the NACA's part: you know, if 1951 was the time in which Douglas was exploring the high-speed realm with the all-rocket number two airplane, the NACA's part — working on the D-558-2 number three — began basically what would become a two-year program here. And Scotty will certainly be talking about this, and Stan as well, involving basic aircraft handling qualities and evaluation of various flap, fence, and leading edge devices on the aircraft.

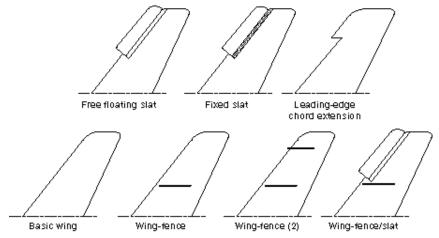
In 1952 and 1953, the NACA shifted to examining the high supersonic behavior of the D-558-2 number two. We have here, I think, another evocative photograph. This is 144 in its prime on the lakebed. And you can see how futuristic it really

looks. And these were really Scotty's glory days in the Skyrocket. Some highlights here: August 5, 1953, he reached Mach 1.878; August 21, the Navy borrowed the airplane for some high altitude and high speed flights. It was hoping — frankly — to break Mach 2. It didn't happen. Marine test pilot (Lt. Col.) Marion Carl nevertheless

D-558-2 number two on the lakebed. (NASA photo E-1441).

distinguished himself. On 21 August, 1953 he reached 83,235 feet, an unofficial world's altitude record. On 14 October, 1953, Scotty reached Mach 1.96. The airplane had boosted performance at this time, due to a rocket nozzle extension on it.

And at this point, the High-Speed Flight Research Station now requested and got Hugh Dryden's permission to attempt Mach 2. Herman Ankenbruck devised the flight plan. Scotty would basically climb to 72,000 feet, do a pushover, and reach Mach 2 in a shallow dive. The plane was extraordinarily prepped for this. Scotty will go into that in much more detail than I will. And on 20 November 1953, as I think we're all aware, he reached over Mach 2 — 1,291 miles an hour at 62,000 feet — the first Mach 2 flight, which was a tremendous accomplishment — both reflecting on Scotty's abilities as an airplane driver and the design of the airplane. This was undoubtedly the high point of the D-558 program.


We have to recognize that a lot of people made this thing come together. I'd like to talk about some of these. These are the P2B as well as D-558 crewmen. And, of course, supporting these people were folks here at the Center on the ground — the maintenance staff you know. The test pilot in this process is merely a singularity, so to speak — the tip of the spear. But that spear is forged and wielded by a great number of other people.

Now if we take a look at the twilight years in the Skyrocket program from 1954 through 1956, the last flight taking place on December 20, 1956, by Jack McKay — and we have Jack's son John with us today. If we take a look at it, these were not years in which things went necessarily very smoothly, although they were undoubtedly extremely productive.

Stan Butchart, Neil Armstrong, and Jack McKay had a very up-close and

personal encounter with a near disaster in 1956 that I think Stan will be giving us a great deal more information on — when they had the number four engine run away with them, shed its prop, and do some serious damage to the launch aircraft, and indeed pass right through the space where a few seconds before Jack McKay had been in the D-558-2 before it was jettisoned in an emergency. That was about the most dangerous moment, I think, in the entire D-558-2 test program.

We had then the fruition of work on the D-558-2 number three's pitch-up investigations, which resulted in some experimental design changes to the airplane, some of which were quite promising, but which didn't pay off. We had, for example,

D-558 wing configurations.

the effort to explore behavior with leading edge slats open. And indeed, fully open slats did work to a great degree. They eliminated pitch-up, except between 0.8 and 0.85 Mach number. However, surprisingly, a sawtooth leading-edge extension from which much was expected actually, in Scotty's views, aggravated the pitch-up problem significantly. And so it proved of no value whatsoever.

A little-known aspect of the D-558 program is that after going through this pitch-up program, it embarked on a number of investigations of external stores, looking at the drag of external stores on aircraft at transonic and supersonic speeds.³⁴ Now, this is extremely significant work. Because if we think about the Mark (Mk.) 80 family of stores — the Mk. 82, the Mk. 84, other bomb shapes, drop tank shapes — that we live with today, that basically is an outgrowth of the D-558 program. The D-558 took these shapes, which were experimentally developed by Douglas, and refined them to the point now that we could operate strike aircraft at long distances with streamlined stores with significantly less drag than the kind of clunky bomb shapes and tank shapes we were operating with that were basically holdovers from the World War II and immediately post-World War II era. The Mk. 80 store shape, which was applied generically then to a whole family of shapes for both tanks and bombs, was really quite a remarkable accomplishment. And the D-558 played a role in it, both here for bomb shapes, and for tank shapes as well.

At this point, I'd like to terminate my little presentation on the raw history, if

³⁴ "Stores" were such things as external fuel tanks or bombs.

you will, of the D-558-2. And we will move from this point on to discussion of actually operating the D-558-2 aircraft. So at this point, I'm going to introduce our two very distinguished personalities that we have here this afternoon to talk about these: Scott Crossfield and Stan Butchart. So, Stan — first we'll start with you.

Stan, of course, was out here for a number of years. He retired from Dryden in 1976, after a 25-year career in research aviation. Born in New Orleans, 1922. Served as a naval aviator in World War II. Graduated from the University of Washington with a Bachelor of Science Degree in Mechanical and Aeronautical Engineering in 1950. In fact, Stan and Scotty were in the same Guggenheim Aeronautical School at the University of Washington. And Stan began his career with the NACA in 1951, a year after Scotty.

His experimental flight career included piloting the X-4, the X-5, both the Skystreak and the Skyrocket. He flew the B-29 that launched the X-1A, and then the B-29 — the P2B-1S — that launched the D-558-2. They're obviously not the same B-29. And also then flew the KC-135 tanker out here, and the F-100A.

D-558-2 number three with a bomb shape under its wing. (NASA photo E-1161).

But there're a couple of other things about Stan that I think we need to mention. I'm sure a lot of you are aware that one of his best buddies in all the world from Torpedo-Bomber Air Group VT-51 on the *San Jacinto* back in World War II was a fellow by the name of George Bush, who went on to bigger and better things. Had Stan profited from that wise counsel and followed a different career path, think of how different the world might be today!

Stan has another distinction that I just learned about last night. And I got to thinking about this. It's really quite interesting. Stan flew the Grumman Avenger, which was a big, hefty torpedo bomber. It was called the TBF when it was built by

Grumman. Grumman couldn't meet the Navy's requirements for mass production of the aircraft. It concentrated instead on fighters. And so most of the Avengers were built by General Motors and were called TBMs. It was a maid of all work for the Navy — did some tremendous work — anti-submarine patrol, attacks on islands, did a lot of basically 500-pound bombing, things like that. In other words, it served primarily in roles other than what it was originally intended for, flying as a torpedo bomber.

Well, Stan is one of the very few people who not only learned to drop torpedoes, as he was becoming a naval aviator and proficient in operating the Avenger. But he actually dropped a torp in combat. In fact, he dropped four of them, I believe. And one of these was against the Japanese carrier *Zuikaku* (which was one of the six that struck Pearl Harbor in 1941) during the Battle of the Philippine Sea. And he's too modest to state with certainty that he got a hit on it. But it absorbed several torpedo hits in the Battle of the Philippine Sea. And I'm certainly willing, for the record, to accord him credit for it. So, Stan, you played a role in avenging Pearl Harbor. And I think we all owe you a tip of the hat for that.

Now I'd like to introduce also a very good friend, Scott Crossfield — a legendary figure in aviation certainly, and an individual that I have a fond affection for. And I'll explain why a little bit later.

Scotty joined the NACA in June 1950. If we take a look at the roster of airplanes he flew, it's sort of a who's who and a what's what of research airplanes — the X-1, the X-4, the X-5, the XF-92A, the D-558-1 and 2. He had 87 rocket flights in the X-1 and the D-558-2 aircraft, plus 12 flights in the D-558-2 on jet power only. He flew a number of modified service aircraft. He did zero-G studies in the F-84, roll coupling studies in the F-100 and the F-86. I think he even cracked a vertebrae at one point, if memory serves me right, in the F-100 in some of the roll coupling work.

He made aeronautical history obviously on November 20, 1953, with his Mach 2 flight. But then he left the NACA in 1955 in an act that was pretty selfless. He was very concerned about the future of the X-15, which he could see was a potentially milestone airplane. And he was very concerned about some of the glamorous hangar queens that had come along, that had actually had some serious difficulties — the Bell X-2 and the Douglas X-3 being notable examples.

And so he went to work for North American Aviation to shepherd the X-15 through its development and through its contract-to-flight test program. And I think the fact that he did that explains in large measure why the X-15 was the tremendous milestone airplane that it was. During his flight testing of the X-15 with North American, he flew the airplane 14 times, made 16 captive flights additionally in it, reached a max Mach of 2.97, 1,960 miles an hour, at a max altitude of 88,000 feet.

Then he did something that I really find interesting. In 1960, he published an autobiography called *Always Another Dawn*.³⁵ And I realize he wrote this when he was age 39. And what's very interesting is if you take a look at Scotty from that point on, he ought to really start thinking about working on volume two. Because from that point on, he continued to do a tremendous amount of work with North American on various programs — the Hound Dog missile program, Paraglider, the Apollo Command and Service Module, the Saturn booster.

He went to work as an executive with Eastern Airlines. He went to work with

³⁵ Subtitled The Story of a Rocket Test Pilot (Cleveland, OH.: World Publishing Co., 1960).

Hawker Siddley Aviation. Served as a technical consultant from 1977 to 1993 on the House Committee on Science and Technology. And Scotty, I think there're many — myself included — who might argue that given what you did with that Committee in that period, it actually may be among the very most significant things that you did. Because you helped keep the Congress straight on aeronautical issues for quite a while there.

We're talking to a man here who's a Collier Trophy winner for 1961 — the Clifford Harmon Trophy for 1960. But the thing that I really remember Scotty for is the fact that when I was an undergraduate at the University of Maryland, I did a senior thesis on transonic and supersonic research airplanes. And I'm kind of embarrassed by it now, frankly, when I flip back through it. But then, with the height of ego, I sent it off to Scotty and said, "Give me your thoughts on this." And he did! And not only that, but they were polite, which amazes me even more, given what he was reading.

And then he took the time to invite me down to meet with him. So I met with him in — I think it was the summer of 1970. And he spent the better part of a day going over this thing, page by page. So Scotty, I personally tip my hat to you, because I owe you a lot for that. And I appreciate it very much. I'm delighted that I'm able to have a chance here today to introduce you to this symposium.

So Stan, we'll start with you. You're up. And the subject is B-29 or P2B-1S launch operations in support of the Skyrocket program. And then we'll follow with Scotty talking about the events leading up to his Mach 2 flight. [Audience applause]

BUTCHART: As Dick said, I had flown both the Skystreak and Skyrocket. I was mainly asked to talk on the B-29/P2B-1S mothership operations. But since I did fly the other two, I'd like to make a couple of comments there.

The Phase 1 was the first research plane that I flew. And I considered it a fun airplane to fly. It was small. And it was just fun to fly. But there's kind of a little story that goes with the day I came down here from Boeing — flew down to be interviewed by Joe Vensel for a job. And we spent the day watching an X-1 ground run, and looking at all the airplanes in the hangar, and crawling in them. And when he got through that afternoon, he wanted to take me up front and introduce me to Walt Williams — the big boss. And the only thing Walt said when he met me, "Will you fit in the Phase 1?" And I said, "Yes, sir." "Okay. You're on."

But the Phase 1 was interesting. As Dick mentioned this morning, the air split and went down the sides. The cockpit was only 22 inches wide, straight down the sides. You flew it with your elbows in, and the wheel between your knees, and crunched down. Your helmet was up into a tight canopy. We had a chamois skin on our helmets to keep from scratching the inside of the plexiglass. There was a double layer — glass and then plexiglass with air in between to keep the frost off. And if you turned your head a little bit to try to see out to a chase or wing tip, your head would get stuck, and you'd have to suck it back down to get forward again. If you ever had claustrophobia, that was the airplane to get it in.

But a couple of other little interesting things that happened in it. I mentioned one the other day to [someone] — I think Bob was the other culprit along with me. But most of the flights made in that airplane were with wing tanks — tip tanks. You took off. And when you got to 40,000 feet, your tip tanks were empty. And you could jettison out over PB-6, one of the bombing range targets out back here. By the time I

got my turn to fly the airplane, Joe Walker had used up all the tip tanks. So all of my flights were made just with internal wing fuel. And it was only 202 gallons. You had a little odometer on the instrument panel. And they'd set it at 202. And as you started the engine, it started clicking down — two gallons at a time. By the time I'd get to 40,000 feet, I'd have enough fuel to do one or two runs, and it was time to head home.

Well, one day I came back. And I guess I stretched it a little bit. And I landed. Joe Vensel walked up and looked in the cockpit, and there was [a reading of only] eight gallons showing. And all he said was, "There was another pilot out here ahead of you. He came back with 12 gallons, and I grounded him." And I think that was you, Bob. But it was going fine. Eight gallons was great.

The other thing that was an interesting story on that little airplane — you saw pictures of it earlier. I'd forgotten that the canopy opened from the back forward. They'd take it out to the south lakebed where we made all our flights from. They'd get set up. And you'd crawl into the thing. And they'd help you strap in.

And Raczkowski — Tom Raczkowski — was the crew chief. He'd get on one side on the stepladder. And Andy Hyland was the inspector. He was on the other side. And as you made your engines start, they were watching to make certain you didn't over-temp it, or didn't do anything wrong. Anyway, when they'd get through, why they'd close the canopy. You had two handles to lock it with. I locked it, and I thought I was all set to go. Then they finally motioned me to open the canopy. They didn't like something. I guess it didn't fair in with the fuselage the way they had expected it to.

So they opened the canopy. And there was an air tube that blew hot air out into a delivery tube in between these windowpanes to keep the frost off. That hot air was blowing in my face. So while they were working on it, I had my hand up over this tube to keep the hot air off. And all of a sudden, Raczkowski decided to close that canopy. My thumb was still there. And oh man, you know, you jump and wail. They saw something happened, and they said, "You okay? You want to go?" It didn't hurt, so I said, "Okay." By the time I got to 40,000 feet, that thing was going thunk, thunk, thunk. And boy I wished I was on the ground.

But one other little item on both the Phase 1 and the Phase 2: all the airplanes nowadays — everybody is proud when they get an airplane that it has "zero-zero" escape capabilities. In other words, you can be sitting at zero air speed on the end of the runway [at zero altitude], and punch the eject button, and go out and make it. Well, as I think back, we had zero-zero on the Phase 1 and Phase 2 — in reverse really. There was a flight envelope. There was a little spot here that it was safe to get out in. And it wasn't an ejection seat. You got out by pulling a handle. And the whole nose fell off. You pulled another handle. That released the back rest. Then you crawled out the back. And this envelope was so small in altitude and speed that we would look at that information and put it in file 13 and go ahead and fly. But that was our "zero-zero" in reverse.

Well, I'd better get on to the main thing I was going to talk about, and that's our launch operations. When I came to work here, as Dick mentioned, I'd always been single-engine.³⁶ And I'd been here a week or two. Scott was going to check me out in the twin-engine C-45 that we had. We went out to the end of the runway. A kid

³⁶ That is, had flown single-engine airplanes.

named Don Turndrup (I think his name was) was flight engineer. He was sitting down between us. Typical fighter pilot, the first thing Scott does is jam both those throttles forward, and we do a 45 degree turn. He got it straightened out, and away we went. He finally got me checked out I guess, and I flew it for two or three weeks. Well, there's a moral there. Never have a fighter pilot check you out in a multiengine airplane. They can't.

I had forgotten the date of Bridgeman's last flight. You say the 15th [of August, 1951]. Well, two days later on the 17th, George Jansen, the B-29 pilot for Douglas,³⁷ called Joe and me and said, "Come on down. We're going to take a flight in the B-29." And we went out and flew for an hour, made a couple of landings on the south lakebed. We were B-29 pilots. You know, nowadays you're months, or weeks anyway, going to ground school.

As I looked back in my log book, I noticed that that was on the 17th of August. A couple of days later, Joe and I took it out for a fam[iliarization] flight on the 21st. On the 22nd of August, we made our first drop flight with Walt Jones in the 145 — the one with the jet engine.³⁸ So we got underway in a hurry. And I think we made three or four flights with Joe in the left seat. Then he turned it over to me, and I had it for the next six years.

I made the following chart up to show the extent of the flying we did from '51 through about '56 with the rocket airplanes. I've included the three — X-1A, X-1B and X-1E — just to show the number of flights we made.

	D-558-2			X-1			
Pilot	143	144	145	X-1A	X-1B	X-1E	Total
Scott Crossfield Walt Jones		43	19 5				62 5
Joe Walker		3	1	1		19	24
Jack McKay Nell Armstrong	1	11	9		11 2	3	35 2
Pete Everest Marion Cari		1 5	1 2				2 7
Al Boyd Totals	1	63	1 38	1	13	22	1 138
Aborted Drops 1951 – 1956							
Scott Crossfleid Walt Jones		7					7
Joe Walker			1	1		8	1 9
Jack McKay Nell Armstrong Pete Everest	1	1	1		7	1	11 0 0
Marion Cari		1					1
Totals	1	9	2	1	7	9	29
Grand Total 167							

Drops 1951 - 1956

³⁷ George Jansen was a noted Douglas test pilot. He had been a B-24 pilot in World War II and was a veteran of the Ploesti raid of August 1943.

³⁸ Douglas D-558-2 #3 (bureau #37975, NACA 145).

Scott has the largest number of flight drops. Jack McKay was next in line. These were just the flights that I made. Joe Walker made a few while I was on vacation. And the bottom half is the aborts that we made. And by aborts I mean instances when we had to bring the rocket airplane back down with us. If I dropped it and the engine didn't fire, that was their fault. At least I got off the hook.

But it was a busy, busy time. We were flying through the summer of '56 - '55 and '56. And we were operating almost six rocket airplanes at the same time. I was making two, sometimes three, flights a week on either a Skyrocket or one of the X-airplanes.

I was going to show our typical daily operation. And Dick mentioned something about what he thought the scariest part of the operation was — that accident we had. And I think *this* was the scariest part. [Shows photo E-1013.] You'd put the B-29 on

D-558-2 number two being positioned under its Navy P2B mothership being elevated on hydraulic jacks. When the Skyrocket was in position, the P2B would be lowered so the D-558-2 could be attached to the bomb bay of the "mothership" for climb to altitude before being launched. (NASA photo E-1013).

jacks. And you'd get it so high in the air you just weren't certain whether it was going to make it or not. We were controlled by wind. We couldn't do this in more than about five or six knots of wind, I think. Anyway, it was pretty low. And once we moved up to this facility³⁹ from South Base, we found we could get in a hangar, and get it between the beams, and jack it up high enough to get the Skyrocket under it. And you didn't have to worry about the wind then.

After they got the thing loaded, they would tow it out to the area where we had the storage tanks for the liquid oxygen and the water-alcohol and peroxide. And it

³⁹ To the present location of the Dryden Flight Research Center from the old location on South Base.

Crew next to P2B and D-558-2. From viewer's left to right, standing, Donald Hall, Dick Hanna, Bill DeGraff, Joseph L. Tipton, Charles Russell; squatting, Joe Walker, Stan Butchart, Dick Payne, Walter P. Jones. (NASA photo E-677).

was out just on the south side of where the big hangar is here now — to load the propellants on board.

There was one interesting thing that happened about '55, I guess. When we moved up here in '54, there was no taxiway between the NACA and the Air Force. It was a year later before they built that. So we would load, and then take off on the lakebed. We used the lakebed a lot anyway. But I think it was in the summer of '55 then. They were going to build the hydraulic hoist that you have out there yet. First they had to dig the concrete out — pretty big area. And then the ground was so hard that they would dig in, and put some dynamite in, cover it with plywood, blow it, and get in and dig some more. And nearly every day we'd hear a dynamite blast go off.

And one day in the summer I was getting ready to go on leave. And Vensel says, "Well, can you stick around until we get this flight off?" "Sure." So it was on a Friday, I think. We were standing by his office, and the B-29 was loaded. It was sitting out in front of us there. And all of a sudden, kaboom — a bigger blast than normal. I looked up and a piece of plywood was flying through the air. It went right through the elevator of the B-29. So I said, "Joe, I'll see you in a couple of weeks." And away we went. But once we got those hoists put in, why, I think you're still using them to lift the vehicles up underneath the B-52.

Well, we got loaded. Now we're back to that crew again. I wanted to show a picture of the crew. And I don't know if I can even remember all the fellows that were there. But the fellow on this left end was one of the fellows that served as flight engineer for me. And I think on the far side I see Dick Payne, who was crew chief on some of the X-airplanes for us. I'll take a peek. Yes. I think that's Joe Walker and Walt Jones both there with us. If you noticed on the front of the airplane, of the B-29, there were lots of patches of Skyrockets.⁴⁰

⁴⁰ Each patch indicated a separate drop.

Anyway, we got the thing loaded and ready to go. The typical operation, the way it went was that if Scott was wearing a pressure suit on a pretty high altitude flight, he'd come aboard the B-29 with it partially on, not fully zipped up, and not in it completely. I'd get the airplane — the B-29 — airborne, and oh, maybe we'd climb out 7-, 8-, 9,000 feet. He could finish zipping up into his pressure suit, and it was time for him to get back in the rocket airplane. Two crewmen would go back with him.

Once they got the canopy closed, and the radio hooked up, and were happy with it, they had a switch they could throw. It would light a light on my instrument panel that would say "ready for drop." And this told me that from then on, any time we had a problem in the '29, our gentlemen's agreement between us was, I'd get rid of him. If he had a problem [in the drop airplane], I'd get rid of him. We'd fight our battles by ourselves. But fortunately we didn't do that on one occasion and, I think, saved a pilot. And another time we did it and saved another pilot.

But those little '29s took a beating. You were at climb power for at least an hour. And if Scott wanted to get a little higher — 34-35,000 feet, we spent another thirty minutes on the last 3-4,000 feet. And the airplane was at climb power all this time. And you know what that does to an engine. Well, there were a few times when the engine would fail by the time I got to altitude — swallow a valve, or something would go wrong.

But the day I want to talk about was March 22nd of '56. Neil [Armstrong] and I were flying the '29. Jack McKay was in the rocket airplane. And just as we got to altitude — around 31,000 feet, somewhere over Palmdale, the number four engine quit. It just quit running, firing. I turned around. Well, I used to kind of let the co-pilot do a lot of the flying. And I would direct him where we wanted to go. Then I could turn around in my seat and kind of watch the flight engineer and the rest of the crew. And I asked [Joseph L.] Tipton, "Well, did you try cross feeding?" "Yep." "Did you try this?" "Yep." We went through two or three things. And nothing was working.

So I thought: well, no sweat. We've done this before. We'll feather it.⁴¹ And I hit the feathering button. And it looked like it was stopped. The blades looked like they were stopped. And all of a sudden the engine started winding up again. And this particular '29 had a separate tank for feathering. So you could feather once, unfeather, and feather again. And I knew I had two left. And I think about that time Jack called me. He said, "Hey, you can't drop me." A valve down at his side that he jacked up some of the nitrogen pressures for the engine with, broke. He said, "I felt it break in my hand." I said, "Okay." And I think we hit our six-minute point by then. I had picked a six-minute point opposite of where we wanted to drop. Two minutes out, two minutes in the turn, two minutes back.

And we started through that procedure. I hit the feathering button the second time. Same thing happened. And I thought: well, we'll make it on around, and get this drop over with. And part way around, I guess that's when Jack called me and said, "Don't drop me." Well, about that time I had hit the feathering button the third time and ran out of fluid again — the last time. And I called Jack and said, "Jack, I've got to drop you." I told Neil to push over. We had to get in a dive — to get up to

⁴¹ To feather a propeller is to rotate it so that the blade is parallel to the direction of the airflow so as to reduce wind resistance.

about 210-220, so they wouldn't come out in a stall. As soon as the needle got it pointed around headed back towards the lake, we were up to speed. I reached up to pull the emergency handle. I had watched them test that every time they ever loaded. It was a T handle on the dash. I reached up and pulled, and nothing [happened]. The other way was to hit two toggle switches, and then pickle it off. And that worked.

Series of photos showing damage to the P2B March 22, 1956, when the number four engine exploded and shed its propeller. (NASA photos E-2200, E-2203, E-2210, E-2213, E-2221).

And away he went. And just a few seconds after he departed, that engine blew — big time.

I could remember seeing the page in the handbook that said if you were above 20,000 feet, and you couldn't slow it down below 120, you were going to have a centrifugal explosion. Well, we did! And Neil said it looked like the kitchen sink going by. It was the nose dome off the B-29. And the blades went in all four directions. Unfortunately, one of them went right through us. It cleaned off that engine completely, as you can see. One blade went through the bottom of the number three engine there. And I don't know if you can see the slot in the fuselage. It went through the bomb bay, right where Jack was sitting. And it hit the number two engine on the other side.

Well anyway, when I heard that boom, I thought: well, we're home free. We got it made. About that time, I reached up to help Neil fly the airplane, and my wheel was loose. I just [turned it and] nothing [happened]. I looked over at Neil and said, "You got lateral control?" "Yeah, a little bit." And he had that much free play in his wheel. [Shows a small space with his hands.] It had cut part of his aileron cables. And the frayed cables were sticking out. And he was dragging those through a fairlead. And they'd get caught once in awhile.

Well anyway, while we were wrestling with that, Tipton turned and said, "Butch, you've got to feather number three." And I said, "Why?" Well, the shrapnel had hit the side of the airplane in so many places that one had cut right through our fuel line, our throttle cable, oil pressure, everything on the engine. So we essentially lost control of [engine number] three. And it feathered all right. Now you can't see there. But it actually hit the bottom part of the number two engine. So you know that blade was traveling going through there. And fortunately number three feathered all right. But that left us with two engines on one side. The only nice thing was we were at 30,000 feet. So we glided out around Boron and came straight into the lakebed.

Then Neil kind of got in an argument. He said, "You'd better get your gear down." I said, "Wait a minute." "We're getting closer. Better get your gear down." Well, nobody had ever made a 30,000-foot approach to the north lakebed in a B-29. He kept thinking we were going to overrun it. And I wanted to make certain we got there. Because I could only use [engine] number two. Number one had too much torque [being further out on the wing]. And both of us on the rudder could not hold it. Anyway, we landed with both of us on the elevators, and both of us on the rudder, and he on the ailerons.

I think we made our last flight on the 20th of December of '56. Jack McKay made it in 144. After that the airplane sat for quite awhile. This was just some time before the Navy came to pick up the various airplanes to take them to the museum. In fact, that was the first time I ever got to see the nose detach to see how that ejection system worked. On the Phase 1, there were two bomb shackles built vertically into the bulkhead. When you pulled a handle, you released the bomb shackles. The Phase 2 was a little different. It had a wheel quite similar to the bank vault, where it pulled pins in from the side. And after everybody had flown the airplane, we finally got to see how it worked.

But they sat like this for awhile. And then Neil and I took the P2B-1S over to Litchfield Park in Arizona, which happens to be the Navy's storage field for airplanes quite similar to what Davis Monthan is for the Air Force. And there's one more little part of that story.

We took it over there on the 5th of August '59, figuring that's the last we'd see of it. It would be melted into pots and pans, like everything else. And about 20 years later, Neil sent me a little newspaper clipping with a story about some guy with a lot of money who had gone in there. And the airplane was still sitting there. He purchased it, and brought in a crew to refurbish it and go over it. And it had zero time engines on it when he took it over. But they still had to go through them all. Anyway, they spent a lot of money going through it, fixing it up, and getting it ready to fly.

He hired some retired colonel who had flown B-29s to fly it for him. And they were going to make a couple of local flights around Litchfield before heading for Oakland. And when he came back from the first flight, he asked him how it was. And the colonel said, "Fine. Except I had to hold that wheel over most of the time." So they went through it, and checked the trim, and checked the rigging, the whole nine yards. And they went out and flew it again. The same thing happened. And that time they really got into it — took all the inspection plates off, and just did a real thorough inspection. And what they finally found was that all the years it sat there, some of the inspection plates were off the bottom of the wing, and birds had been living up in there. And there was about 800 pounds of bird dung out in that one wing. And that's what he was holding up. And they cleaned that out. And the airplane flew over to Oakland.

I never did get to see it. But I had heard it was on the West Coast going to air shows and what not. Then I lost track of it, and a few years ago, at one of our squadron reunions — I think in New Orleans or Pensacola — this fellow that came to our reunion every year and owns a TBM said, "Hey, I found your B-29." I said, "Where is it?" "It's in Florida." Some guy by the name of — is it [Kermit] Weeks? He buys a lot of airplanes. He's got a lot of money. He purchased the thing. The fellow that was telling me said they're going to use it for a static display. Then this last summer when we were back there, he said no. It got damaged in that hurricane a couple of years ago. But he is going to rebuild it as a flying machine. So I'm looking forward to seeing it again. But he went back. Took out the cutouts that we had in it. Put bomb bay doors on it. And put it back so it looks like a B-29, P2B-1S.

Neil used to get the biggest kick out of taking people back — to the back of the airplane and showing them where it said: NAVY P2B-1S. It had been painted on there years ago. Even when you take the paint off, it's still kind of etched into the fuselage. And he thought that was neat. So that was my experience mostly with all the years of making those drops. And Scotty, I think it's probably all yours now. [Audience applause]

SCOTT CROSSFIELD: How sweet it is to be last. You were always late, Butch. But that's all right.

This is kind of a nostalgia trip for me. But I'd like to make one aside while I get up here. I'd like to dedicate my part of this 50th anniversary celebration for the Phase 2 to Walter C. Williams. [Audience applause] Walt Williams probably had more to do with advancing aeronautical and aerospace arts in the 20th century than any other ten men, as far as I'm concerned. He started out with a crew of 12 people here at Muroc. And he was with that program — all the programs that NACA, and NASA, and many that industry did, all the way up through the Space Shuttle. He made the operational go/no-go decisions for every one of those, and had quite a part in keeping some of them from becoming national disgraces. Frankly, I'll say that while I have a high regard and respect for Wernher von Braun,⁴² Walt Williams has been an order of magnitude bigger contributor to what we've done in space than von Braun. So Walt, if I do well, this is to you. If I don't, well. . . . And I'm not sure he's up there, frankly.

You know, there is no history, only biography. If you stop and think: if we ever talk about anything being done, it's done by people like these people down here, who have proved that anybody who can read without moving his lips can fly an airplane.

Another key figure was Jack Russell. Jack Russell probably did more rocket flights than any other 20 men in the world. He was with Bell on the original X-1. He came and worked for the Air Force. And then he came to NACA, stayed all through NASA. And he was with all of the rocket [airplane] flights, I believe, that were ever made. And he was one devil of a good rocket mechanic, technician, and all-around guy. So this is to Jack Russell.⁴³

And then there's another guy that I'd like to pay a little tribute to. And that is the man who brought the United States into prominence with rocket engines. And that was Captain Bob Truax of the United States Navy. He started in 1937 working with the Navy building rocket engines. And actually this family of engines built by RMI [Reaction Motors, Inc.] up in New Jersey was a Navy part number in 1944, before any Paperclip,⁴⁴ before any Germans came over here and claimed Goddard's invention,⁴⁵ and everything else. Those engines were in the inventory for over 35 years. To my knowledge, we never lost an airplane due to the failure of or a problem with the engine, per se. And I'd like to give Bob Truax a little boost on this sort of thing.

JOHN GRIFFITH: I think Gerry Truszynski⁴⁶ should be mentioned in development of the instrumentation and the capability of bringing back the data that could be

⁴² Wernher von Braun, of course, was director of NASA's Marshall Space Flight Center from its inception until 1970 and in that capacity, headed the team that developed the Saturn family of rockets that carried 12 astronauts to the Moon.

⁴³ John W. Russell worked on the XS-1 for Bell and then became crew chief for the Air Force on Chuck Yeager's XS-1, "Glamorous Glennis." He came to work for the NACA High-Speed Flight Research Station in 1950 and for many years headed the rocket propellant group at what became the NASA Dryden Flight Research Center, retiring March 11, 1977.

⁴⁴ Operation Paperclip brought many German scientists and engineers to this country after World War II.

⁴⁵ Robert H. Goddard was an American rocket enthusiast who worked with only a small crew of technicians. He managed to invent many of the technologies used on later rockets, but because of his secretiveness, almost all of them appear to have been reinvented by others. Thus, although he is considered by many to have been the father of American rocketry, it is arguable that his actual influence was slight.

⁴⁶ Gerald M. Truszynski was Chief of the Instrumentation Division at the High-Speed Flight Station and its predecessor organizations. He worked on the XS-1, D-558 and other early research aircraft and was responsible for setting up the High Range used for the X-15 flights before he moved to NASA Headquarters to set up the Project Mercury worldwide tracking network. See oral history interview of him and Hubert M. Drake, Nov. 15, 1996, in the NASA Dryden historical reference collection.

analyzed to produce the reports that were the product, and the result, and the purpose for what we were doing.

SCOTT CROSSFIELD: The D-558-2, as I knew it — I never flew it as a ground takeoff airplane — was the airplane that wrote the book. The X-1 air-launch techniques had proven to be good as a poor man's first stage to get rid of a lot of the energy requirements at the front end of getting an airplane to altitude. That's why they went to air launch for the D-558-2, and for many of the other reasons that my good friend Dick Hallion discussed.

The air that we fly in doesn't like high sweep angles. It doesn't like severe taper ratios. And it doesn't like low aspect ratios. And the D-558-2 had a little bit or a lot of every one of those. And it was classic in what it did as a swept wing. And that's primarily the part I will discuss, as far as the handling qualities are concerned. The tips of [the D-558-2's] wings tended to stall before the roots of the wings.⁴⁷ And if

Wing fences on a D-558-2. (NASA photo E-580).

Wing slat on a D-558-2. (NASA photo E-816).

that's aft of the center of gravity (CG), the airplane wants to pitch up. And the pitchup of the swept wings was the only characteristic that we didn't like. Everything else was in our favor. It was low drag, had excellent supersonic characteristics, and many other things.

So the D-558-2, probably with the group of the pilots here, must have done thousands of pitch-ups, with almost every device known to man on the wing of the airplane. And I'm going to discuss a few of those right now. What we thought was a massive bureaucratic operation in our day was to get one research airplane in the air,

⁴⁷ Stalling consists of flying at an angle and speed such that the wing (or parts thereof) experiences a separation of airflow and loses lift.

and to support the pilot down there in front with all of those great people of NACA on the South Base. And incidentally, the whole organization at that time was only 70 people, including the janitors. Can you imagine trying to make that look big next to an Apollo launch?

We went to air launch, as I say, to get to the energy level that would get us to the 35-40,000 feet and up to launch speed without use of internal propellants. Incidentally, that's a marvelous way to go flying, as compared to the usual commotion of a takeoff with full power and pounding down runways. Airplanes aren't supposed to run fast on the ground, so that was a nice way to get flying. And that was a pretty nice airplane to launch. It didn't go out of the B-29, or the mothership, with as much negative acceleration as the X-1, and it came out flying pretty well. Generally you could get the engines lighting as you felt the shackles let go. We very seldom lost [much altitude] — oh, maybe 100 feet — and the airplane was on its way.

Also on the wing we tried a whole lot of devices to see if we could reduce the lateral transfer or flow of air that caused the separation of the air at the tips, which in turn caused the pitch-up and the tip stalls that were aggravated by the swept configuration. We put fences on it. We put more fences on the wings. We put notched leading edges. We put movable slats on the leading edge. And we put notches — different kinds of notches — different kinds of movable and immovable slats on the airplane. And really, not many of those things did an awful lot of good. The fences probably did as much good as anything, as I remember today. I do not believe that we put vortex generators on.

The technique would be to go up there and pull G at a fairly constant rate, trying to maintain as constant an air speed as possible. And incidentally, there was something we really re-learned with these kinds of wings. And that is that the old C_{MCL}^{48} was a bunch of garbage as far as this goes. And we had to go back to the C_{ma} . Because C_L was dropping so fast, that it looked like the airplane was going stable — when really it was going quite unstable at the time. And the airplane would pitch.

The worst pitching airplane that we ever flew, and we saw some of those problems, was the hard-wing F-86, which was just like this airplane when you had everything locked up, and had just a plain untreated wing. And, of course, they made that to get the speed to be the MiG killer that it was in Korea.⁴⁹ And if we could solve pitch-up, the techniques and methods we used with this airplane were those that became the design criteria in almost every design room that built swept-wing airplanes.

So that was a major contribution of the D-558-2, over a speed range of probably up to about Mach 1.5. We never really could do much when we got above those speeds. Because the speed wouldn't stay up there long enough to maneuver and

 $^{^{48}}$ C_{mCL} represents the static stability in pitch of an aircraft. C_M is the pitching-moment coefficient. C_L is the lift coefficient. C_{ma} is the partial derivative of the pitching-moment coefficient with respect to angle of attack — the angle of the airflow with respect to the wing of an aircraft.

⁴⁹ The F-86 averaged a 10:1 kill ratio over the MiG-15 in Korea, largely because the models used there featured the all-moveable horizontal stabilizer first flown on the XS-1 and the D-558s. Because their flight research was classified—although parts of the story about them were reported in the press—the Soviets were not aware of the benefits of the all-moveable horizontal stabilizer in transonic flight conditions.

accomplish what we wanted. And, of course, all of the work that we did with this airplane was to do it at enough altitude that the wing would stall before we reached its structural limits. I never had any of the roll-off with the D-558-2 that John and Bob Champine mentioned with this airplane. It was probably because I kept the ball in the center [laughter].⁵⁰

You know, I had to be chuckling. I want to tell a little story I mentioned last night. Everybody up here has been having trouble with his memory, along with me. I couldn't remember what we did in this airplane. We were discussing that the other night at supper. And I mentioned that I was having a little trouble. I'd go into the flight service station. Couldn't remember whether I came in to close a flight plan or to open a flight plan. And Bob Champine says, "Yes. Same thing. I'd be at the top of the stairs, and couldn't remember whether I was going to go down or I'd just come up." Griffith says, "I don't have any of those kinds of problems at all. My memory is just as good as ever — knock on wood [sound of rapping]. . . . Come in!" And of course that guy Butch — Butchart's a frustrated fighter pilot. He had to fly torpeckers [slang for torpedo bombers] in the Navy.

Incidentally, the airplane you saw — that beat-up B-29 — you ought to see some pictures of airplanes that Stan Butchart brought aboard a carrier. They were unflyable. He violated the laws of physics; he brought some airplanes home that were pretty badly beat up. And that's one reason I gained quite a bit of respect for him. Because it wasn't to save the airplane. It was that I believe on two occasions he had a badly injured backseat man. And he wasn't going to abandon him.

Well anyway, Butchart checked me out in a B-29 — much as he claims I checked him out in a C-45. That was very interesting. And I'm going to make a long story short. I said, "Do you stall a thing like this?" I'm an old fighter pilot. Stalls are pretty common. He says, "Yeah, you're flying it." So I pulled it back. And it began shaking a little bit. And I looked over at Butch, and I said, "Do you go very deep into the stall?" And he said, "You're flying it." And the guys in the back were beginning to scream. Because things were shaking pretty badly. Well, I didn't want to seem to be chicken with this whole thing. So I looked at him, and he was very calm. Same way he is right now. So I pulled this thing back. And it was shaking. I'll tell you — I'd never been in a Tehachapi earthquake that was shaking so badly. All of a sudden, the right wing went out. And when those four engines started going around, you knew you had your hands full. Well, it was with consummate skill, I got this thing out of the spin into a screaming dive, then leveled out. I think probably I was shaking a little bit by then. I wasn't worried about me. I was worried about how I was going to explain to Vensel about that damn B-29. I looked over at Butch and I said, "What did you let me do that for?" He said, "You were flying it." That's his idea of a checkout.

Incidentally, these guys did me some good favors, too. Bob Champine went back to Virginia. So Griff hired me. And then Griff got an offer from Chance Vought and I said, "Hey, take it — take it." He left me with a fleet of the finest airplanes that a man ever got to fly. Howard Hughes couldn't afford the airplanes that I got paid to fly. And it was a good crew. And it got so there we had a pretty good flight rate for awhile, before we moved to the good laboratory up on the north end. And it would be like an X-1 to fly for breakfast, X-4 for lunch, and a D-558-2 in the afternoon. And

⁵⁰ A reference to centering the turn-and-bank indicator.

where could you get it better than that?

Of course the D-558-2 was one of our major projects. One of the things that very few people know is that when we were looking at a lot of the work we were going to do and then follow up with the X-2, I began working on what became the grandfather of all of our current full-pressure suits. The full-pressure suit final development was done at NACA at Edwards Air Force Base, and we went a long ways to doing that — to building the full-pressure suit.⁵¹

The first operational flight of a full-pressure suit was done by Marion Carl. He wore an exact duplicate of the one that we were developing. On the altitude flights, he went to 83,000 feet for the unofficial record that Butch mentioned. I mention that because it was kind of the way we did things in those days. Nobody ever said we could. But nobody ever said we couldn't. And we never asked permission.

The full-pressure suit — much of it was sewn on my wife's sewing machine. Incidentally, it was a Clark development. And very few people realize that David M. Clark probably was involved with the development of every bit of soft goods a pilot has worn since probably 1937 — whether it be G-suits, coveralls, helmets, ear protectors, much of the electronic gear, or that sort of thing. And he put a lot of his own money in it. And sadly, Dave Clark's gone. Because the nation misses men like him. He sent his people out here. And they lived at my house. And I built the back pad for the suit in my garage. We welded up the pressure bottle, and stress tested it in the shop. Jim Artz welded that up, I believe. Maybe it was Eddie Lane — names I think a lot of you people remember.

So we built this pressure suit. I built the console to test the suit, and did that sort of thing. The way we did things in those days is: I bought the regulator that had the gas ventilation flow go through it from the local gas company for seven dollars. The only bureaucratic problem I ran into was, when I wanted my seven bucks from NACA, I'd lost the receipt. And so I had to sign a voucher and say I really bought this thing. Now if you can imagine the United States government today allowing you to use something that only costs seven bucks, and didn't have any paper on it other than an invoice receipt, well, then you might begin to understand how it is we got some things done in those days, in that glorious era where everything that couldn't be done was done in flight test, based on professional judgment and just moving ahead.

It was, though, on these flights, as Butch described, that we began to realize that we ought to have only one guy on the radio. And he preferably ought to be a pilot. That finally went over through the development that we did on Apollo, and Mercury and Gemini, where they had an astronaut as the one guy on the radio. Because it would get so you had 15 people talking to you. The hydraulics guy wanted you to do this. The aerodynamics guy wanted you to do that. And finally, I had a habit of just turning the damn radio off, which didn't help my reputation with the people on the

⁵¹ See documents 31-34 of this volume. By themselves, these documents are misleading and need to be read in conjunction with the narrative. The Air Force pressure suit mentioned in document 31 was not a full- but a partial-pressure suit. It was used extensively in flights at Edwards. The Navy full pressure suit discussed in documents 32-34 was much more developmental than the documents suggest. Scott Crossfield is emphatic that full credit for its development should go to Joe Ruseckas of the David Clark Co., who worked closely with him in the development effort. As Crossfield says in the narrative, much of the development took place at Edwards and in his garage at home.

ground very much. But it sure helped me get things sorted out.

On the D-558-2, I made the first NACA air launch in aircraft number 3, NACA 145, that used the rocket [as well as a jet] engine. And on that flight, we were going to go up and start exploring the transonic characteristics of setting the trim, and comparing it to the X-1, as we described here earlier, to see how much difference there was in the AC^{52} shift of the swept wing versus the straight wing. And it was appreciable, in that it had a larger chord on the swept wing. And the percentages were about the same, but the moments were a great deal larger.

On that flight I lost an engine. The J34 engines did not like altitude, in spite of one of their representatives here today who claimed they did. I went through about 35,000 feet on the rockets. And the jet engine sounded like a .50 caliber machine gun going off. Very similar to the problems we ran into with a similarly constructed engine in the X-4s. I lost the engine. And as the engine was spooling down, I quickly lost all of the electrical power.

This was because of another totally isolated problem — that the reverse current relay wouldn't cut in until the generator output was down to 11 volts. And while it was coasting from what it needed — around 18 volts to 11 volts — I had no radios, no electrical power, no instruments. I also lost cabin pressurization and ventilation. And the windshields iced over. So about the only choice I had was to put the sun on a spot in the windshield, and then fly the airplane so it stayed there and so I knew at least the airplane was right side up. And it was doing something it was supposed to do.

You cannot fly blind. That's absolutely true. Your sense of balance, and your ears, and your eyes, and all of that, will not let you fly by the seat of the pants, blind. So that was really the only instrument I had at that time. The needle was beginning to wind down, and I didn't trust it, because it was electrically powered.

John Conrad came up on my wing, and he just told me what to do — lower the wing, raise the wing, and all that. He brought me all the way home. I owed him a drink, and I bought it for him. Incidentally, as Fitz Fulton reminded me the other night, he was the other chase pilot on that flight that day.

That was one experience with the D-558-2. And so from then on, we were very cautious. We didn't take the jet engine out to speeds at altitude. The reason for the problem on that was, it was one of the first engines Westinghouse made, or anybody made, that had an annular burner can.⁵³ And when you got way out of design pressure altitudes, the rotary component — the air going through the engine — would cause quite a radical increase in pressure. And the turbines weren't really seeing what the temperature was telling you or the loads on them were telling you. This was a common problem with those engines, until they put flow straighteners in them coming out of the burner can.

The way we did things then was something that I would like to leave, if I leave anything with this group here. Because if you remember — we went Mach 2 in 1953. Today the only airplanes that ever went significantly in excess of Mach 2 some

 $^{^{52}}$ AC is aerodynamic center — the point in the cross section of the wing about which the pitching moment stays practically constant despite changes in angle of attack. It is the center of lift with respect to the chord of the wing.

⁵³ An annular burner can was a combustion chamber on a gas turbine engine that had circular inner and outer boundaries. (Can was simply another name for a combustion chamber.)

40 years later are all in museums. There's something un-American about that. There's something we ought to be able to leave here that would encourage younger people to take the risks and the gambles. And I don't mean with personal hazard — I mean the technical risks and the monetary gambles that it took to get where we were going in those days.

I'd like to give an example of how we worked on those airplanes. We had a lakebed that looked like your lakebed looks out here today [that is, filled with water]. And we put a drogue 'chute on the airplane. I designed the drogue 'chute. Jim Artz welded up the piece. Then we riveted the container for it on the back of the airplane, and literally used parachute pins to open some spring-loaded doors. And that would pop out a little drogue that would pull the big drogue out.

We were going to have the capability to use the 5,000-foot strip down on the South Base,⁵⁴ which was all we had at that time — and keep flying when the lakebed was wet. Unfortunately, that same problem with the reverse current regulator came to bear again. On the first landing, I rolled down, the engine was spooling down, and, of course, the battery didn't cut in. There wasn't enough voltage to pull the pin on the parachute, so I rolled all the way down on the runway — and fortunately again, with consummate skill, managed to save the airplane with a half ground loop at the end of the runway — and then heard the thing come out. And the parachute fell on the ground! My reputation as an inventor didn't last very long after that sort of thing. We fixed the 'chute so it did work, but we never did use it on the runway.

Those were the kinds of things we did. The pilots had a big involvement and participation in what we did with the airplane. We used professional judgment. And we never had to ask anybody in Washington or the Air Force about what we wanted to do. A lot of times we weren't really sure what we were doing, except that we could make some plans of our own, based on professional judgment. There are many more stories like that and like the development of the pressure suit. And the reason for this long-winded dissertation is that I would hope the young people that are coming along now would say: "Hey, I can do that." And go do it. No more of this "whose budget is it going to come out of? Well, we tried that before. Did you think of this?" And all of those cop-outs that caused all of our failures to be in direct proportion to a reason or explanation of why we didn't do something.

With the 144 airplane [which had its turbojet engine replaced by a rocket engine in 1950], I did a dead-stick⁵⁵ landing. Picked up a Joshua tree on landing, and I got a little bit of ribbing from the crew. They photographed that Joshua tree that I'd picked up in the landing gear, and put the photo in a frame. And it hangs in my den today. So if my conceit needs calibrating, I can contemplate this and [laughter].

To get to the high-speed flights, I'd like to make reference to Bill Bridgeman. All of these airplanes had a characteristic that was called high-speed yawing or the instability that came with high speed. It really came with high speed and high altitude. The high altitude reduced the aerodynamic damping. So any small instabili-

⁵⁴ According to James O. Young, *Meeting the Challenge of Supersonic Flight* (Edwards AFB, CA: Air Force Flight Test Center History Office, 1997), p. 28, the main runway at South Base of Muroc Army Airfield (later renamed Edward Air Force Base) was already 6,500 feet long in October 1946. In any event, it was not exceptionally long.

⁵⁵ That is, without engine power.

ties were magnified to a large degree. Those things that did in Yeager, and Apt, and Murray on the X-1 airplanes and the X-2 airplanes, were also similar to characteristics on the D-558-2 — probably more like the X-2 because of the inherent dihedral⁵⁶ that we got from the swept-wing. And it would maybe oscillate once and then diverge. Or if you were at too low a G, it would diverge — directionally diverge [from straight and level flight].

Bill Bridgeman found that by manipulating the G, you could control the rate of this divergence, and give yourself time to get in very soft controls to hold it on almost a knife edge, if you please. He taught that to me. And by virtue of learning that, we overcame that "supersonic yaw," as the newspapers called it. And we managed to take the airplane out substantially beyond its expected design speeds. And in the course of that, we also were doing intermediate flights, going along with this stuff.

And we never did get into any of those instabilities that we were right on the ragged edge of all the time. And it was largely a flying technique. Because really these divergences and motions that we got into were not as expected as many of the other things that we encountered in high-speed flight. We knew that the X-2 was unstable directionally, statically, and dynamically at a certain speed.⁵⁷ We knew that the X-1A and D were unstable at a certain speed directionally, both dynamically and statically. But we really didn't know the manifestation of "supersonic yaw" and why it was happening in those days. In fact, do you remember why they had that huge tail on that X-15? I put that on there.⁵⁸ Fighter pilots need a lot of tail. And you don't have to live with those instabilities if you have an idea of what it is all about.

On the Mach 2 flight, people claim that I went to the Navy and got them to convince Dr. Dryden to let us do that. And I really didn't do that. I just dropped a hint to the Navy — that wouldn't it be great if they could whip Yeager's ass, and beat him to Mach 2! We knew that we had a very marginal situation. We were determined that if we did everything just right, we could thread that needle right out there where Ankenbruck had calculated it, and come out with about Mach 2.03, or something like that.⁵⁹

⁵⁶ Inclination to roll about the longitudinal axis.

⁵⁷ Static stability is the ability of an airplane to return to straight and level flight after it has been disturbed by an outside force, such as atmospheric turbulence. To give one example, if the turbulence forces the nose up slightly, a statically stable aircraft will return to level flight. If the aircraft is statically unstable, on the other hand, it will nose up still more than it did initially. Dynamic stability is the property of an aircraft that enables it gradually to reduce an oscillatory motion produced by an outside force and return to straight and level flight. The aircraft is dynamically unstable if it increases the magnitude of its oscillations unless controlled by the pilot.

⁵⁸ To provide some background to this development, analytical studies at the NACA's Langley Aeronautical Laboratory by a team headed by John V. Becker indicated the need for a large cruciform tail configuration on the X-15, with a "wedge" vertical fin to give an increase in effective vertical fin area.

⁵⁹ Herman O. Ankenbruck was the project engineer on the D-558-2 who designed the flight plan to achieve Mach 2 by climbing to about 72,000 feet and pushing over into a slight dive. Hallion, *Supersonic Flight*, p. 179.

We put nozzle extensions on the propulsion system. I had earlier on put the tank regulators up in the cockpit, so that once we started the engines with the normal pump inlet pressures, I could crank up the tank regulators another 10 or 15 pounds. That was magnified with a pump inlet pressure. And that would give us a lot higher pressures in the rocket — in each of four rocket chambers. That, with the nozzle extensions, gave us an airplane that almost had 9,000 pounds of thrust, as compared to the spec 6,000 pounds of thrust. It also burned the fuel a lot faster — appreciably faster, anyway.

So after launch, and I got the four engines going, I would crank up the regulators. It was just a little bit of a throttle to get them up. The nozzle extensions, I think, gave us probably 1,000 of the couple thousand pounds of thrust that we gained. It wasn't the first time we'd used them. But it's the first time we ever used them to total advantage.

We took that airplane. And everybody said supersonic parasite drag is not a thing of consequence. But we didn't give a darn. We taped every crack in that airplane. We polished it. And it just shone like a — I won't say it. It would get me in trouble politically. And it was very smooth. We took every bump off of it, and sanded it.

And then one of the things we did — we were looking to remove every pound of drag we could on the airplane. The two jettison lines that stuck out the aft end of the airplane that kept the fuel away from the B-29 were not really an essential part of the D-558-2 if we launched. So Jack Russell made a couple of aluminum lines. Instead of going straight out to jettison this, they curved back into the rocket engine wake. So if I launched and fired the engines, they burned off and fell on somebody's house out here. But we didn't have to carry them around with the additional drag they produced. There was also another overboard vent line that came from the fuel tank off the side of the airplane. We took that off the airplane, and put it on a bracket on the B-29 so that when I dropped away, that was flush. So there just was nothing sticking out on this airplane anywhere.

On the night before the flight, we cold soaked the alcohol all night long using a big refrigeration unit. We got it so cold that probably we added another 10-15 gallons to the capacity of the alcohol tank. And we also cold soaked the airplane. We loaded the liquid oxygen (lox) in it very early that night before, and then kept upgrading it all the time so that instead of being at -292 degrees, it was probably colder than that. And we got more lox on board.

That almost did us in. The next morning, it was so cold that when they loaded the peroxide, one of the overboard vents choked with ice. And so the pressure from the loading peroxide vented it out through another part of a manifolded venting system for that tank and sprayed out of the airplane and on to one of the mechanics — Jack Moise. Jack hollered, and put his hands over his face. And another chap named Kincaid — and I can't think of his first name. Do you remember, Vicki?

VICKI IKLER [a retiree from the audience]: Gil.

CROSSFIELD: Gil? Oh, that's a drink measure, isn't it? Okay. Now I know. I'll never forget it. Anyway, he grabbed the hose. And he hosed down Jack Moise. And we immediately bundled him over to the nurses' station. Jack went inside. And the nurse began working on his face, washing out his eyes, and that sort of thing. We

were concerned. Because peroxide is a very vicious chemical — very active. Well, I took him over there. I saw that Jack was being taken care of, and I was going to head out for the airplane.

Then I looked over at Kincaid, and he was sitting there soaking wet. And it was a bitterly cold morning. I said, "You must be cold. Aren't you freezing to death?" He said, "No. I'm really quite warm." "Oh, that's great." Whoa! — I turned around. He was cooking. He was full of hydrogen peroxide himself. And he was getting warmed up from that. He thought I was nuts because I began pulling his pants off, and he didn't know what my intentions were. Well anyway, he had two pairs of pants, and two pairs of winter underwear on. When we got down to his legs, he had those white spots on him that were characteristic of hydrogen peroxide burns.

So that was the kind of morning we started out with. I had a pretty bad case of the flu. But I wasn't about to give up after all the work that crew had done on that airplane. We went out, and very fortunately, we had a little help from wind shear and a flight plan that worked for a change. I was up on the edge of my seat. Everybody was that way. And that day I didn't even have to turn off the radio. So I had a lot of advice, which was a bad habit. I went out and threaded that thing, and we made our Mach 2.001 — or 2.005 they said. It was 1,338 mph. Then they finally re-corrected it to 1,291 and something miles an hour. Mach 2.005, I believe, was what they gave me. That sounds like a little press release because I made it past two. Walt was pretty happy. And we were happy. It means nothing technically. It meant nothing from a research standpoint. It only meant that we got in the ball game, and we got a score on the board. And we beat Yeager there that time.

The Navy was pretty happy with that, and made quite a bit of a to-do about it. And I was pretty happy, because I was invited to the 50th anniversary of flight down at San Diego where the Ryan Corporation was celebrating. And my dinner partner that night up on the head table was Esther Williams. So see, there are rewards for....

The sequel to that story is it almost caused me a divorce. Esther got up to make her speech. And she said, "You know, I've been getting a lot of static all night long about sitting next to the fastest man on earth. But I don't believe it. He hasn't laid a hand on me yet!" So without thinking — or maybe I was thinking — I reached over and swatted her on her beautiful behind. And my wife never did forgive me for that.⁶⁰ Thank you.

HALLION: I think we've had a really great day. We're running just a little bit behind. But with our panelists here, we'll take at least ten minutes Q and A [questions and answers]. So gentlemen, and audience, the floor is now yours. I'll repeat the questions, for those who may have trouble hearing them. Do we have a question out there?

DILL HUNLEY: Dick, this isn't just about the D-558. But the two D-558s and the X-1 shared the movable horizontal stabilizer. And there was a video the British put out last year that attributed that innovation to British research. Do you know if there's any truth to that?

⁶⁰ This story, including the quotation but not some of the details, is also told in Crossfield's *Always Another Dawn*, p. 179.

HALLION: It's an utter myth. This obviously has been a symposium concentrating on the D-558. But there is something here that we have to talk about regarding the X-1 for a minute. The British television program was picked up by <u>Nova</u> [a Public Television Broadcasting Station television series in the U.S.A.] — and to give <u>Nova</u> its credit, it recognized there were a lot of flaws in it. The <u>Nova</u> people tried to work as much as they could with the video. They had to work around those flaws and some of the problems in it. The video that had been done in Great Britain suggested that there was a technology transfer from the Miles Aircraft Corporation and the so-called Miles M.52 program, which was a proposed transonic research airplane that never went anywhere.⁶¹

The video suggests that there was a transfer from the Miles M.52 effort into the XS-1. Absolutely false. Partisans for the Miles M.52 program suggest that after it was canceled, data was transferred to Bell. At the time that the M.52 was canceled, the XS-1 was already flying. Its design had already been fixed. And there was no possible way that there could be any technology transfer there.

This same issue on the all-moving tail — you know, actually the all-moving tail, if we think about it, is like other devices that we've experienced — the flying wing, the swept wing, for example. You know, if we go back in time, you can find predecessors. But you have to think: why were the people actually applying this technology to a particular aircraft design? In the case of the swept wing, which we have talked about today as a means of alleviating transonic drag rise and achieving good high speed performance, the concept actually dates back to the days of John Dunne, before the First World War, where he was using the swept wing to alleviate stability and control problems with tailless airplanes. It bore no relationship to the high-speed requirements that people were looking at in the 1940s.

We had actually had all-moving tails appear as early as pre-World War I airplanes. In fact, if you take a look at the Wright flyer, you have here a canard surface that's an all-moving surface. But that's a very different thing from what people were actually trying to do here.

The NACA at Langley field in the 1940s undertook some very interesting research with an airplane called the Curtiss XP-42, which they modified to have an all-moving tail. And they studied the benefits and the advantages of the all-moving tail thoroughly and recognized, certainly by mid-1944, that if you were to develop a high speed research airplane, that would be a very desirable attribute for the aircraft. So this idea that somehow the all-moving tail we've talked about was something that we gained because we had exposure to or benefited from some foreign research — once again, that's simply not the case. And I'm glad you raised the question, Dill, because it's an important point to bring out. Other question here?

NEW SPEAKER (unidentified): I'll throw this to whoever wants to catch it. I understand a lot of the testing that's gone on. You did your structural testings and your coupling and rolling. But I heard no mention of the structural aerodynamic aero-elasticity validation of the airplane, and was just wondering what particular techniques you used to get stabilized on a dynamics point.

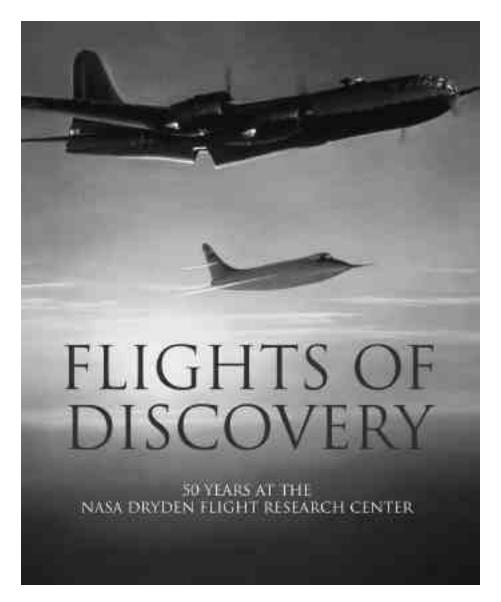
⁶¹ It was canceled in 1946 according to *Jane's Encyclopedia of Aviation*, Michael J. H. Taylor, ed. (rev. ed.; New York: Crescent Books, 1996), p. 675.

HALLION: Okay, Scott. It's all yours.

CROSSFIELD: That one's kind of easy to answer. Number one, the structural demonstration was the responsibility of the contractor. And Douglas demonstrated the airplane would meet the design-limit stress, and took it just beyond limit to establish that. But these airplanes were built so strong, that they were — aerodynamically for what we were doing — virtually rigid. And so the aero-elastic effects hardly ever showed up in the airplanes. The natural frequencies of the wings were very high. And they didn't have much effect on the kind of stability-and-control handling qualities that we're talking about. And that's one of the reasons it didn't show up.

On the D-558-1, there was a rudder buzz at about Mach 0.999, just as it was going to Mach 1.0. And I don't believe anybody ever went into that rudder buzz. That was the only dynamic problem that I remember on any of those airplanes. But it's primarily the strength of the airplanes. They were 18 G and 12 G airplanes, respectively [that is, 18 Gs for the D-558-1 and 12 Gs for the D-558-2] — very rigid.

HALLION: Okay, Scotty. Next question?


NEW SPEAKER: Dick — Where did the designation 558 come from?

HALLION: The Douglas D-558 designation was a company designation. Douglas used that prefix and numbering system for its own aircraft. You know, it's really funny. Because when Ken [Szalai] was getting the symposium together, there was this idea of calling the symposium "The X-Planes That Weren't." And it's really true, you know. If we think about it, these were X-airplanes — undoubtedly. But they were just like the XF-92A, which ostensibly from that designation, you'd think was a prototype fighter, but in point of fact, it was a delta-wing technology test bed, was an X-airplane. But the X designations, as they started out, actually were XS designations in those very early days. And they were basically the province of the Army Air Forces — later the United States Air Force. And it was not really until we got beyond the X-15 era that we started thinking of the X designation as a national designation system, so that it was applied to aircraft that came from organizations other than the United States Air Force. And remember the X-15 had a three-man executive steering committee, beyond the NACA research airplane projects panel. You had an Air Force, a Navy, and an NACA - later NASA - representative steering that. So that clearly, you know, if we were developing the D-558-1 and -2 today, each one of them would undoubtedly have a separate X-series designation. But the D-558 was a corporate designation.

There was, incidentally, a D-558 that we haven't mentioned here today. And before the conference concludes, we should mention it. The Office of Naval Research was very interested in hypersonic flight. And in response to that, Heinemann and his design team put together a proposal for a so-called D-558-3, which would have been a Mach 6 research vehicle. And that was one of the concepts proposed for what eventually became a competition among several aircraft manufacturers that resulted in the North American X-15. But that was the D-558 that never was, so to speak.

Other questions? Well, I think we've had a very good session. And I'm sure

there're a lot of you who want to meet in person with our panel. I want to thank you all for your attendance today. And I want to thank the leadership of the Dryden Flight Research Center for having put this program together. I think Ken Szalai is out here in the audience someplace — or he was earlier. And Ken, you very much deserve a kudo for this. I must say, the activity of this Center over the last few years in putting together historical symposia has been outstanding. So, here's one for you. Thanks a lot. [Audience applause]

Cover of *Flights of Discovery* showing William S. Phillips' painting *Mach 2 Dawn* from the NASA art program. The painting depicts Scott Crossfield's Mach 2 flight in the D-558-2 described in these pages.

SCHNEIDER: Well, I was thinking, first of all, of how fortunate we are to have Dr. Richard Hallion — not only as a historian, but as a biographer and as an aviation advocate. Secondly, how fortunate this country has been to have these pilots. Also, the design team at Douglas, and the crews that made the airplane what it was, and created this great database that this country has built its supersonic and transonic capability on. Third, how fortunate we are to have these people here today, so many years later, and able to talk to us personally where we become a part of this history now by participating in it. And finally, how fortunate we will be if we really listen carefully to the lessons learned, think about them, and apply them in our own areas of responsibility.

I want to close this up by reading off the names of all the pilots that flew the D-558. And I'm going to group them together. And I'll identify them by organization:

From the United States Marine Corps: Maj. Gen. Marion Carl. From the United States Navy: Captain Frederick Trapnell and Commander Turner Caldwell. From the United States Air Force: Lieutenant Colonel Frank Everest, Major General Al Boyd. From the Douglas Corporation — these are gentlemen that really had a tremendous number of flights in the airplane: John Martin, Eugene May, Bill Bridgeman. And lastly, from NACA: Bob Champine, Howard C. "Tick" Lilly, John Griffith, Scott Crossfield, Walter Jones, Stan Butchart, Joe Walker, and John McKay.

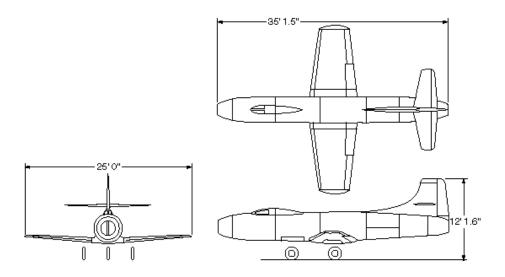
I want to thank these participants. And we're very pleased to have a representative, Charlie Delavan from Douglas, to help celebrate this great anniversary today.

And in recognition of that, we have a small memento. We'd like to ask the four pilots, Charlie Delavan, and Dick Hallion please to come up here. And I'll present a small token of this day. Just come on up here.

We have a copy of a painting for each of you — *Mach 2 Dawn* — a very famous painting, which also happens to be on the cover of our 50-year history, *Flights of Discovery*. And we're pleased to present each of you with this as a remembrance of this day. So we'll start here.

[PRESENTS COPIES]

So thank you, gentlemen. [Audience applause]


[END OF SYMPOSIUM]

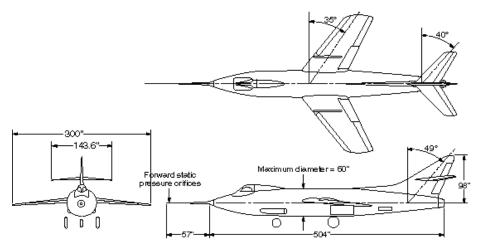
Appendix — The Aircraft

Douglas D-558-1

The Skystreaks were roughly 35 feet long, 12 feet high, and 25 feet across the (straight) wing span. They were powered by one Allison J35-A-11 engine (developed by General Electric as the TG-180), which was rated at 5,000 pounds of static thrust. The airplane carried 230 gallons of aviation fuel (kerosene).

NACA 140 is located at the Naval Aviation Museum in Pensacola, Florida. NACA 142 is at the Marine Corps Air Ground Museum, Quantico, Virginia.

Douglas D-558-2


All three of the Skyrockets had a height of 12 feet 8 inches, a length of 42 feet, and 35-degree swept wings with a span of 25 feet.

Until configured for air launch, NACA 143 featured a Westinghouse J34-40 turbojet engine rated at 3,000 pounds of static thrust. It carried 260 gallons of aviation gasoline and weighed 10,572 pounds at take-off.

NACA 144 (and NACA 143 after modifications in 1955) was powered by an LR-8-RM-6 rocket engine rated at 6,000 pounds of static thrust. Its propellants were 345 gallons of liquid oxygen and 378 gallons of diluted ethyl alcohol. In its launch configuration, it weighed 15,787 pounds.

NACA 145 had both an LR-8-RM-5 rocket engine rated at 6,000 pounds of thrust and a Westinghouse J34-40 turbojet engine rated at 3,000 pounds of static thrust. It carried 170 gallons of liquid oxygen, 192 gallons of diluted ethyl alcohol, and 260 gallons of aviation gasoline for a launch weight of 15,266 pounds.

NACA 143 is currently in storage at the Planes of Fame Museum, Ontario, California. The second Skyrocket, NACA 144, is in the Smithsonian Institution's National Air and Space Museum in Washington, D.C. NACA 145 is on display in front of the Antelope Valley College in Lancaster, California.

Documents

BECLASSIFIED Kentinet TO MACA West, MM2202 010 ONFIDE - 481 MURA BURS/8/24 -12 aley Air Fores ANN LALASSING WAJA - There hone From Langley 41712 Reflect. NAZA Macmanian of D-153-1 mirplane projects at BMA on June 0, 1819 14 Jubject: 1949-1952 By SF 1. In informal discussion was held in MACA Headquarters on Jan

 is informal discussion was held in RACA Basequeriers on Ame 0, 1910 to acquaint the Dureau of Aeronautius pervanual with the status of the D-SGS phase 1 and 2 projects and with other problems at Hurse that are related to these projects.

Z. The discussion was attended by:

H. A. Soulà C. H. Hulse M. H. Gough H. G. Subinson J. W. Growier, Jr.

U. I. Fristin G. U. Stirilag, Combr., DBU S. W. Extering, Lt. Combr., DBU F. C. Bilay, Lt. Guadr., USH O. Rando R. A. Garl, IS G. O. Expton, DB F. A. Londan, DB F. A. Londan, DB F. H. Dishl, Capt., DDM

E and D

Les B. Standifor, Capts, BIAF

Mr. Sould opened the discourters with a review of the D-555-1 strplans project. To dealt with the flights and this spring as pirplane Bo. 37972, the instrumentation, the present plane for this simplane, and the condition of sirplane No. 37972. To also manifested the reports that have been issued or are being property as a result of the flights to date. After a short period where quantized were estand regarding the D-550-1 project, he presented similar information for the D-550-2 simplems project.

CONFIDENTIAL

Document 1: Memo, Hartley A. Soulé, [NACA] Research Airplane Projects Leader, To NACA, Subject: Discussion of D-558-1 airplane projects at NACA Headquarters on June 8, 1949, Date: June 13, 1949

OF CLASSIFIED ONFIDENTIAL 1002 010 NN0202 010 Will NORA DESTRICT - 2 -

3. In the discussion of the D-550-1 project, reference was made to the Birean latter to the RACA requesting that airplane Bo. 37973 be maintained so that it can be flown after release by the Bala. In this consection, it was reported that the airplane is being multitudied but that the tail was correctly at Langlay being instrumented for acrolastic measurements of elevator twist. On completion of the installation of the instruments of elevator twist. On completion of the installation of the instruments of a levator twist. On completion of the installation of the instruments of this tail, it will be traded with the tail on simpleme Ms. 37972. It was also reported that the BACA considered the preservant of pressure distribution on the phase 1 airplane a very impositely project and that the found these desired to complete the measurements planned. It was estimated that not more than 25 percent of the work planned for the airplane had been completed. Reference was made to the fact that the two sets proceed should be out a difficulty of maintaining the significanin particular, the instruments have to be removed each time an angine inspection is made.

Inspection is man.
In a discussion of the D-550-2 project, the question was raised regarding the return of the airplane to the Douglas Company for the installation of the receive engine is airplane in .3974. In ruply, it was stated that the MARA had just complete the installation of instruments and had started on the initial flight program for the simpleme. It was extremely desirable that the MARA had be permitted to complete the work on this phases before the simpleme is turned back to the Bouglas Company. The program agree to suplate before the end of Soylember, but the simpleme will, in any event, be returned to the Douglas Company in December. It was reported that the Douglas Company personnal had entitated the Bouglas Company to the simpleme will and the Douglas Company are requested. The Douglas personnal stated that the Douglas Company as requested. The Douglas personnal stated that the Douglas Company are requested. The Douglas personnal stated that the Soyless for the strip of the costs of modifying a B-29 and D-556 phase 2 simpleme, it uppers desirable to the air installation is definite bid for the work. With repard to the air lemphing of the phase 2 simpleme, it uppers desirable to sliminate the jet unples for the text. There is an need to hold up the persent program while an airplane is being modified for air lemphing.

5. With report to related situations at Horoe, Br. Souls reported that there are two pilots assigned to the Muroe thit. As an aid to the operations at Horoe, the Bursen had previously affered the MuCa s starting unit for jet engines. But which has not arrived, and the Bursen argressentatives agreed to check as to the realizability of the unit. The housing situation is critical at Huroe. The Bursen has supplied here as the staff is expanded to accularize the work on the research airplanes and it expenses desirable to accularize the work on the research airplanes and it expense desirable to accularize the work on the research airplanes and it expense desirable to accularize the work on the research airplanes and it expense desirable to have the present position of the Constituer further expansion. In this connection, reference was made to a suggestion of Commander Visians that the Bureau open up and codify as sportment bouses are up 200-uen burracks at the field that are not being utilized. The

COLD MALLINAL

DECLASSIFIED *** uterin MN0 202 010 y WUD THUR DIS JEAN

An ante Barr CONFIE

possibility of obtaining an simplane for Marco that would not be so experimental in nature as the research simplanes so that more flights could be obtained by the plints at Saros to keep up their plint proficiency was discussed. The Saross representatives indicated that it might be possible to assign a McDennell F-20 alreptanes to Marco for a flying-qualities investigation. They agreed to shock into this possibility.

- 1 -

Ball-sta

Hartley &. Soulà Research Airplane Projects Leader

nt .

CONFIDENTIAL

OECLASSIFIED		
ALLZING Den ST219	CONTRANTIAL	
10 10 - 10] A.V. 1	sere la	altformia r 19, 1991

HENCHANDER to Chief of Renearch

Subjects' Information concerning elevator vibration of the D-550-I airplane. Reference: Letter from MACA to Longley, August EL, 1951, MM/ab.

In the reference latter and also in a telephone conversation with Mr. Bartley A. Scale' a request was made for more detailed information concerning the torainal elevator flutter that has been anountered during flights with the D-550-I simplane. A description of the Douglas Aircraft Company's accounter with the problem along with the histories and other data from KRCA flights during which the vibrations converse, have been collected and are submitted below.

History of the Elevator Vibration.- The vibrations were first encountered during the Bouglas descentration flights No. 85 and 66 with the S7970 mirplans. They occurred at the erd of dives to Mach minhers of shout 0.92 and during the pull-outs. The vibrations were asymmetrical and had a frequency of shout 30 cycles per rescent. The made of the vibration was such that a pole minist at the fursings like, innote the durper attached at that point is institute.

In an attempt to evaluate the negatimes of the vibration the Douglas Company placed none acceleraters and twist indicators on the elevators which indicated a twisting of the elevator of about $\frac{2}{3}\sqrt{2}$ and a balance weight evaluate the indicated a twisting of the elevator of about $\frac{2}{3}\sqrt{2}$ and a balance weight evaluate the indicated that they might have reached three times then flipster her bound to believe that they might have reached three times then flipster at though the balance weights were mily damigned for 60g. As a result of these measurements about merethins of the ones of the outboard balance weights were reacted three times to be into a second to the indicate and the indicate and the flipster were made the flipster of the SU(0). The results of these changes were never checked by the Douglas Support as no more high speed flights were make balance to the MACA. One of their engineers frackly effect.

The withoutions protobly occurred on many of the early NRAA flights with the D=550H-I simplene but went undetected because of a look of mitsbile instrumentation. Resever, during the summer of 1990 the complete horizontal tail from the 27010 airplane which is the one baring the motified beliance weights was placed on the 27912 simplene and singunitally instrumented on that the withoutions could be detected. This unswelly was used for flights 25 through 56 and the alevator vibrations wars frequently encountered.

Because of the possibility of a fatigue failure resulting from the elevator withoutines and older the 27070 tail assembly had been used for more than 100 flights while the 37072 tail assembly had been used for may 22 flights, it was desided to put the original elevators and the uncolified balance weights back on " the 37072 simpleme. This configuration has been used for all flights from So. 25 to the present time.

CONFIDENTIAL.

Document 2, Memo, Donald R. Bellman, Aeronautical Research Scientist [at NACA High-Speed Flight Research Station], To: [NACA HSFRS] Chief of Research, Subject: Information concerning elevator vibration of the D-558-1 airplane, September 19, 1951

DED ASSIETED Sata NND92743 THATA OUR 5/7 - 2 -

Elevator Tilmatian Dala.- Figure one shows a L/D scale drawing of the right side of the horizontal stabilizer and slowator. The institute of the various parts of the instrumentation are indicated. For most flights the elevator STP's had adaptate sering isosing to follow a 50 rates per second situation. Originally all fist type TSTs were used but after flight 34 the unbound once were changed to the pencil type. At first the pencil type CTTs did not have sufficient tension to follow the motion, but later begins motions were installed.

Figure two shows the buffet boundary on a plot of simplane nernal forms coefficient versus heck number and size plotted is the location of flight test data for which then histories are presented. The time bistories are presented in figure 3 through 5. Kach figure has tracing of the elsewhor position reducts and the stabilizer bending moment, shear, and hele two one. Unless othered as maked the coefficient on the right stabilizer and elsewhor are shown. In addition, the Mann moment, sconficient, and angle-uf-stability is plotted on each the datary.

Figures 3. 4. and 5 show data at altitudes of 15.000, 25.000, and 19.000 feet for comparable host manheurs and normal-force coefficients. It sight be supported that the vibrations are more nevers at the lower elititudes, but the variations metalmoble at any one altitude for exceed the other variations. Comparing figures 4 and 6 which are at messawhis altitudes and Nach mombers it can be seen that when the plane is hold at the point of maximum lift and the angle-of-static allowed to increase the anguitude of the fluctuations increases replay. During the run shown in figure 5 the maximum builting of the alevants between the two UTS was 5.0° . According to the Douglas hire and to engineer this corresponds to shows 5.0 percent of the design stress.

The effect of the change in the balance weights is shown in figures 7 and 8. The run shown in figure 7 was node with the achified balance weights and the run shown in figure 8 was note with the unredified balance weights. There is no significant differences.

Figure 9 shows a run at low lift conditions yet at sufficiently high Much number to be in the buffet region. It is apparent from this figure and the other figures covering a rungs of Much numbers that there is no appreciable variation with Much number. The grantest magnitude withretions, thus far encountantd, have occurred during stalls at comparitively low Much numbers.

Sumary of Berults

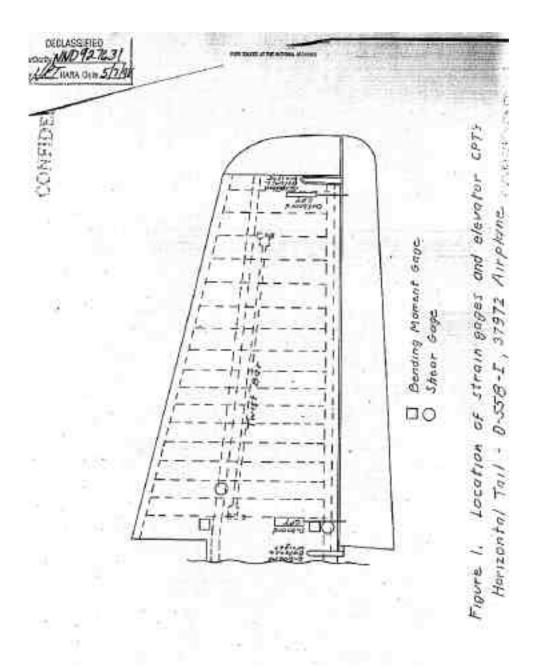
- The withoutions occur primarily under high lift conditions at all Mach mambers.
- 2. The vibrations are always associated with huffrating.

CONFIDENTIAL.

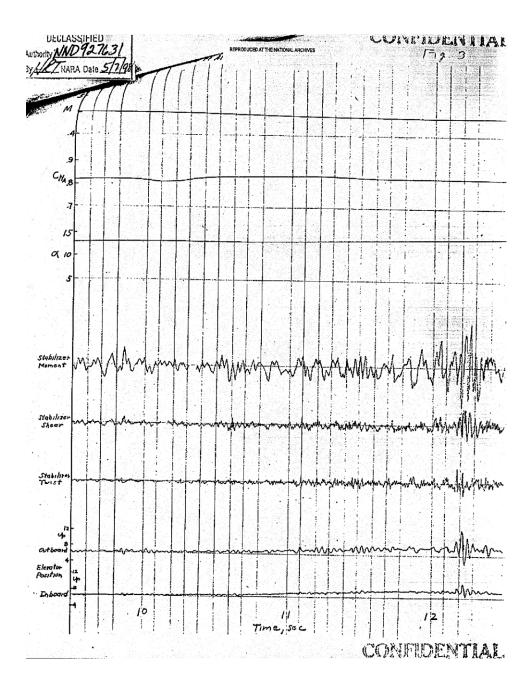
DEDLASSIFIED and be been 26 ZINDA DUN 5 LAST AUGUST IND. - 8 -

 The applitude of the whentions is greatly increased by allowing the angle-of-stheti to increase ofter maximum lift is reached.

 The charge is balance unights make by the Douglas Company had little ar an effect on the vibrations.


20. NRB. 2-

Densid H. Sellram Aproxisical Research Scientist


Distance Marine

coi BACA Readquarters Mr. Arthur Segler. Langley J. Veceni, Murce

SCHPT2HN7LOL

	IAP.	SIF		5	2] 77	70	~		1	T	T		1	1				御	谢	U. K									Щ				H					
1	IAP.	A U	a10	2		10	H	1.1	h			H			+						市市		1/1/ -						H	衍田				#				2
ſ	T	F A		4 11		Ŧ			T	1			Ť	Ľ.		H	Ħ	17	10 11		TH:		54	詽					措			t :-	쁖	4		17		4
	h		詽	情	5	th			t	F	jii			ET.							誧	Ħ											井	#			冊	2
į	描	1 F		備		t			Ê		世		田行	THE REAL			協				퍥	甘花			井					井			#	拱				묊
	Į.	撤	U I	Ţ	1		1	i p		11	Ē				1		h	P			曲				町	H			お	田田	H	S		费	Ħ	H.		
	Ē			ĥ.	iii.	臣			H	1.	11		i,				ij		蔷			喸	t		岢	in the			H.	f	117 117		Ħ	172	壯		#	2
Ì					i.				1	1.	1			U.	T								H.			Ì.	0	90	謸		11		讎		CHI I	曲	Ŧ	2
		E		5	Ŀ				1	15	4		đ	挝	1			R.			瓹					Ì	13	C R. 18	1.11			ł		塑	쀼	擃	世	
			1	4		ŢĿ;	-			-	臣	T		1	Ċ,				旧			H.	17		Ĥ		C	5		ħ		†°	r II	誦		T	T	1
	ĥ	1.		Ť	ĥ	+			9	Rhil	間		1	51.40								h	i.		讲						H		臣		掘	Ē	擳	É
					1	告	71		1	8	11	1	H	H I	1		Į.				Ľ	H		ii.	Ħ				4	間	H.		di	譋	臣	博	瘤	Ĭ
					Ì	6.4	17					111	4	出	E,	a	1						H			堻	H	++++			帚	15	曲	閫		İ	旧	ş
	1		1		f.,			1	1	1				<u>v</u>				法	iii:			H				出	笛	1		Ħ	即		厞	翓	臣	闘	ÌÌ	h
	ij.	h	f		f	j.	£.	i H	ľ	ΠÌ.	0	1	1	Ť.			Ŧ	菹			Ħ	挤							h	罪			ŦŦ		瓹	茚		3
	24		ļļ	ľ	H.	Цį́	1	i		1		2	1		聑	1	Ì	南				1	山	i f	请				U.	ijļ.	はは		1		IF		虚	1
	(R) 131				描				1	Ĩ	1	-	5		4	4	1 L	清	Ŧ		ŧ.		1	摧		讲		jį,			ist.			i.	刑	销	山	Į.
-		1	-	1		抗	譛		4	11	拱			j.	Hi	1	Ð						H					11		H	詳	Ŧ	T,	1	攋	臣	静	*
	抽	Ţj.			H	1			ł	444	3	I.	1			清			H.	†£			H			1 1 1		1.1				1.10	1	HE.	Цİ.	ġ.		
						11	-3		H	1							¥				4	핅				₽	H		F H		1		NIM AN		閧		攤	2
ł	3					湖	and the													1.12			f	Î				Ť		H			4		臣		掛	ľ
ł		譜		1		1144	1				h_{\pm}				1		詌	批加				믭					鬪			ij		1	11		批开	Ĥ		
	19.1 14 12		Í		日本日			1	1					開	14.6				常		ii ii							Ē					Ni-n	拼	\mathbb{H}	井	联	4
					4 433	-15	20	1	-	Faund		+	1	臣	Ŧ		Ì	訩		14		#			井					11	田田		臣	대	11	Ħ	HS	j.
t		ΕĒ			H	H.	2112	E.	4	e a			Ŷ.									莊	苷		쇖	偏加	計					Ь		-	清		蛊	I
ł	Ħ		Ħ				4.0			4	\mathcal{D}_{i}	Ruh 23	7		H		H															臣	蛊	詽	鹊	뿺		
ľ			ĥ		H	击		Ħ		\mathbb{E}		H					İ		T			H								14 541		Ĩ	詽	井	諎	雦	R	ł
	1		ł	T		1	1		Ĩ	1	r r				Ħ	H	Ŧ		雦			Ħ	17										詽		詽	帯		ł
		Ĥ,	12	T		h		Ī,	T	7	南		ij	社			Ŧ	I				i i	İ				h	14			III	Ľ.		ili	E			,
	11	1		T.		臣	ý.		1			H		111	1	1		i ir	h	h			扭							H				圤	詌	韻		ŧ
					4	Щ		Į.		14	即	Į.			讙	Ħ	Ħ	Щ	III.	臣	帥		朝	H	禰			Ų		計			Ħ		誧	康	康	ħ
l	цř.	Ť.		Œ			E.	躗	1	5	lh		ſ	#	벖		Ē	h	Ē	Ë	Пİ.	Ð	II.	Ī	曲	拍		ĮĮ,			H.		The second secon	III.	攔		H.	詣
		ill	即	ŀ	岢	崩	拱	H.	揮			H	1	H.		H							Ш				HI.	攠		劏	腑	m	瞰	ШŤ	魽		誹	İ
	T.	H		4		世	葭		1	卻	圳	F			韻	h		Ŗ	提供					ţ.			Į.	H	4		H.			Ħ	揶	掘	影	NH-
					in	詽	盟	挹		ļ	}			1	1	9		l		1				11		Ψ!					H	N.	P		蟰	雨	中	h
l					ļ			5	II.	Ш	臣	H.		17	ii!	iii		Ś	臣								11	扭	I				推	瞱		盟		ľ
- 11		Щ	ĺΪ.		1			Į.		围		朣			B	E			H.	Ľ.		H.	ļ	擢	譂		閳	H	1				樹	11	雦	野	Ħ	
1		Π.	UU	ľ	1	ST:	Шi		IE.		抑		il.		Ľ.	故		崔				1		1	ŀ	ΨĮ	H	Į.	Ĩ	詽	辟	鼎	攛		魽	踋	趲	苜

DECLASSIFIED

6 .

THE REPRODUCED AT THE MATTONUL ARCHVES

CONSIDENTAL

Muroc, California October 12, 1951

GED TO

MEMORANDUM for Chief of Research

Subject: Progress report for D-558-I airplane (142) for the period September 22 to October 5, 1951.

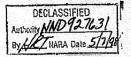
1. The airplane was out-of-commission for the entire report period because of an inspection and overhaul of the stabilizer actuating mechanism.

2. In connection with the tail buffeting intensity variation with altitude, lift, and angle-of-attack, additional data was deemed necessary and is being worked-up.

3. The work-up of tail load data over the Mach number range from 0.47 to 0.83 has been completed except for pitching acceleration corrections which are required for some runs.

Donald R Bellm

Donald R. Bellman Aeronautical Research Scientist


LUCW NOW

DRE, mem

cc: NACA Headquarters (2) Amas Levis ChBuAero Navy Liaison, Muroc Projects Engineer Files

oor the CLASSIFICATION CHARACED TO

Document 3, Memo, Donald R. Bellman, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-1 airplane (142) for the period September 22 to October 5, 1951, Date: October 12, 1951

Edwards, California July 23, 1952

REC'D JUL 28 1952

Nº1

13-1-2

83~

MEMORANDUM for Chief of Research

Subject: Progress report for D-558-I (142) research airplane for the period June 28 to July 11, 1952.

REPRODUCED AT THE NATIONAL ARCHIVES

1. Flight 58 was made on July 2, 1952 for the purpose of obtaining data in connection with the aileron effectiveness investigation.

2. Aileron roll data has been completed at 10,000 feet altitude for Mach numbers from 0.4 to 0.8 and at 25,000 feet altitude for Mach numbers from 0.45 to 0.85. This data extends and substantiates earlier roll data. Data up to the limiting speed of the airplane will be obtained at 35,000 feet altitude on subsequent flights.

Donar R Bell

DRB:mem

';

Donald R. Bellman Aeronautical Research Scientist

1. DEB

cc: NACA Headquarters (2) Ames Lewis ChBuAero Navy Liaison, Edwards Projects Engimeer Files

CONTENNEDAL

Document 4, Memo, Donald R. Bellman, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-1 (142) airplane for the period June 28 to July 11, 1952, Date: July 23, 1952

DECLASSIFIED Authority NND 9276 NARA Date

REPRODUCED AT THE NATIONAL ARCHIVES

THE URITE INFORMATION

Edwards, California July 30, 1952

V13-1-2

-558

MEMORANDUM for Chief of Research

Subject: Progress report for D-558-I (142) research sirplane for the period July 12 to July 25, 1952.

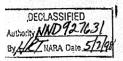
1. Flights 59 and 60 were made on July 17 and 22, respectively. Both were research flights for the purpose of obtaining data in connection with the aileron effectiveness and the dynamic longitudinal stability programs.

2. Aileron rolls at the limiting Mach number of the airplane are still needed to confirm and extend the indicated decrease in the aileron effectiveness.

3. The tail buffeting magnitude data has been extended and is being reviewed by the section head.

4. The horizontal tail load data has remained dormant because the engineer is needed on the D-558-II tail load program.

Dona E; R Beiln


Donald R. Bellman Aeronautical Research Scientist

DRB:mem DEB WCW WCW cc: NACA Hea

NACA Headquarters (2) Lewis Ames ChBuAero Navy Liaison, Edwards Projects Engineer Files

Document 5, Memo, Donald R. Bellman, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-1 (142) research airplane for the period July 12 to July 25, 1952, Date: July 30, 1952

THE TY INFORMATION

Edwards, California December 11, 1952

V B-1:2 (D-5-5"8

MEMORANDUM for Chief of Research

Subject: Progress report for D-558-I (112) research airplane for the period November 1 to December 1, 1952.

COUCED AT THE NATIONAL ARCHIVES

WE CARED ELEVEN SUMMER -

1. The airplane was returned to flying status in this period but heavy rains and wet lake bed conditions have prevented additional flights.

2. During the past year the lateral control effectiveness investigation was completed and the dynamic stability investigation was started. The flight maneuvers for the longitudinal and lateral dynamic stability program consist of elevator and rudder impulses. The data are to be obtained over a range of Mach numbers to 0.90 and at altitudes of 25,000 and 35,000 feet. At the present time about one-third of the elevator impulses and a few of the rudder impulses have been obtained. The data from the three most recent flights is being placed on IHM cards which will be sent to Langley for computation on IBM machines. Six to eight flights will be required for the completion of the flight investigation.

3. The tail load and tail buffeting magnitude programs have complete sets of flight data and partially completed analyses. Both programs are dormant because the engineers have been needed for work on the D-558-II and the X-3 programs.

Senge E. Contra, f.

for Donald R. Bellman Aeronautical Research Scientist

IRB:mem

DER U.C." WCW

cc: NACA Headquarters (2) Lewis Ames ChhuAero Navy Liaison, Edwards Projects Engineer Files

CONFIDENTIAL.

Document 6, Memo, Donald R. Bellman, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-1 (142) research airplane for the period November 1 to December 1, 1952, Date: December 11, 1952

DECLASSIFIED REPRODUCED AT THE NATIONAL ARCHIVES 9276 1.1 ; 110/3 ARA Dale 16.192 5

Muroc, California September 13, 1951

MEMORANDUM for Chief of Research

Subject: Progress report for D-558-II (37974) research airplane for the period August 25 to September 7, 1951.

-

The airplane along with BuAero No. 37973 was delivered on August 31.
 The NACA designation for 37974 will be No. 144.

2. The Operations Section is inspecting the airplane, and work has been started on the instrument changes. The major instrument changes are installation of fuselage and base pressure crifices and manometers, and the connection of certain wing, horizontal and vertical tail strain gages.

3. It is expected that the NACA exploratory flight test program will begin in about two weeks.

Homes O. Ackentour

HOA' mem

Herman O. Ankenbruck Aeronautical Engineer

cc: NACA Headquarters (2) Ames Lewis ChBuAero Navy Liaison, Muroc Projects Engineer Files

STORE OF

Document 7, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress report for the D-558-II (37974) research airplane for the period August 25 to September 7, 1951, Date: September 13, 1951

DECLASSIFIED UARA Date

ζ.,

V

REPRODUCED AT THE NATIONAL ARCHIVES

(complete

Total 3 pages

ULAGOUS AND WINAMELU AMANDATA

> Muroc, California October 16, 1951

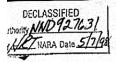
MEMORANDUM for Chief of Research

Subject: Progress report for D-558-II (144) research airplane for the period September 22 to October 5, 1951.

Present status

1. A flight was made as scheduled on September 28. The operation of the engine was rough on 3 cylinders. The inverter failed about halfway through the flight and some data was lost. The maximum Mach number reached was 1.2 at 45,000 feet altitude.

2. A proliminary analysis of the limited amount of data obtained to date has shown that


- (a). The directional stability and damping decrease markedly as Mach number is increased to 1.85.
- (b). There are large changes in the rudder hinge-moment parameter, C_h, with power becoming positive at Mach numbers near 1.8.
- (c). A directional trim change appears to exist at Mach numbers near 1.4. It is felt that the development of the lateral oscillation is associated with this trim change, the changes in rudder $C_{h_{\rm R}}$, and

the fact that the rudder was not rigidly fixed. (Static tests showed that for hinge moments measured in flight it was possible for the rudder to deflect as much as 2° in the locked position).

- (d). There appears to be no wing dropping on No. 144 airplane at Mach numbers from 0.9 to 1.0. Data obtained with the No. 145 airplane shows that some initial aileron trim is required throughout the speed range, and that a slight wing-dropping occurred at a Mach number of 0.96. This wing dropping may in part be due to a measured decrease in aileron effectiveness at about the same Mach number. On the No. 144 airplane, some aileron deflection was used to correct the directional trim change at a Mach number of 1.4, noted in (c) above.
- (e). The data thus far obtained show nose down trim changes near a Mach number of 1.0 and a reversal to nose up trim near a Mach number of 1.1. This nose up trim change appears to reduce as the Mach number increases further to 1.8. As Mach number is increased from 0.6 to 1.7, the stabilizer effectiveness appears to decrease to approximately 30 percent of the low speed value.

CLASSIFICATION CHANCED	10	
CUNFIDENTIAL		

Document 8, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress report for the D-558-II (144) research airplane for the period September 22 to October 5, 1951, Date: October 16, 1951

1

There is no data between Mach numbers of 0.95 and 1.2, however at a Mach number of 1.2, the elevator effectiveness appears to be about the same as the low speed value.

(f). The static stability at low lift coefficients increases as Mach number increase from 0.6 to 0.9 to twice the low speed value, and at a Mach number of 1.2, $C_{m_{\rm H}}$ appears to be three times

01.100

the low speed value. Previous data has shown that the airplane becomes longitudinally unstable considerably below maximum lift coefficient, and that the lift coefficient for instability decreases as Mach number increases to 1.0. This boundary appears to follow the buffet boundary somewhat end is about 0.1 to 0.2 lift coefficient above the buffet boundary. At a Mach number of 1.25 a point of instability was reached at a lift coefficient of about 0.76.

- (g). The huffet boundary for altitule of 40,000 feet decreases from a lift coefficient of 0.6 at a Mach number of 0.70 to about 0.44 at a Mach number of 0.85, then rapidly drops to a lift coefficient of about 0.15 at a Mach number of 0.98. The boundary rises rapidly to a value of 0.60 lift coefficient at a Mach number of 1.0. The buffet boundary appears to be constant at a lift coefficient of 0.60 in the supersonic range to 1.2, lindt of tests at these lift coefficients. Their of buffeting follows a similar pattern, being more intense at Mach numbers near 0.9 for a given lift coefficient. The buffeting tail loads at Mach numbers near 0.9 increases lightly to a lift coefficient of 0.4.
- (h). The drag coefficients for the D-55%-II mirplane are somewhat less than for the X-1 airplane at comparable lift coefficients throughout the Mach number range except at high lift coefficients in the vicinity of the drag rise. The values of drag coefficient lack the "hump" that is characteristic of straight wing airplanes at Mach numbers near 1.0.
- (i). Temperature measurements were made on the canopy glass, wing skin, and fuselage skin. The values of stagnation temperature and nose skin temperature agree fairly well with calculated values using method of T.N. 1725. The theoretical nose skin temperature was computed assuming a perfect cone. The maximum values of stagnation and nose skin temperature measured were 200 and 80 degrees, F, respectively at a Mach number of about 1.8 at 67,000 feet altitude.

classifi<u>gati</u>on changed to CONFIDENTIAL

DECLASSIFIED NND9271 NARA Dale

GLASSI REPROVICED AT THE MITTOW ANCHINES

617151+90.34 + Br ...

5. The pilot is going to Wright Field next week for fitting of a pressure suit so that flights above 45,000 feet may be made.

Hormer O. Frekent

Herman O. Ankenbruck Aeronautical Engineer

CC: NACA Headquarters (2) Ames Levis ChBuAer Navy Liaison, Muroc Projects Engineer Files

> ulassif<u>est</u>ion changed to controential

OLASSIFICATION GHANGED TO Secution FIDENTIAL

REPRODUCED AT THE NATIONAL ARCHIVES

Edwards, California November 21, 1951

MEMORANDUM for Chief of Research

guiled to

91

DECLASSIFIE

0,

Subject: Progress report for the D-558-II (144) research airplane for the period November 3 to November 16, 1951.

1. A flight was made on Tuesday, November 13. The maximum Mach number was 1.11 at 45,000 feet altitude. The flight was made primarily to obtain longitudinal stability and maneuvering loads data and alleron effectiveness in the Mach number range between 1.1 and 0.7.

2. Another flight, the 4th by NACA, was made on Friday, November 16. 1951. The maximum Mach number was about 1.65 at an altitude of about 60,000 feet. The flight was made primarily to obtain longitudinal stability, maneuvering loads, and dynamic lateral stability data at high Mach numbers.

3. The data obtained in these flights are being reduced and analyzed and preparations are being made for a 5th flight as soon as possible.

Hermon O. F. Farlanch

Herman O. Ankenbruck Aeronautical Engineer

HOA: mem

DEB WUW WCW

cc: NACA Headquarters (2) Ames Lewis ChBuAero Navy Liaison, Edwards Projects Engineer Files

> CLASSIFICATION CHANGED TO SECURIT CONTINUENTIAL

Document 9, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress report for the D-558-II (144) research airplane for the period November 3 to November 16, 1951, Date: November 21, 1951

DECLASSIFIED	C. 19 E. C. 19 E. CLASSIFICATION CHANCED TO	1-2- D-558 (SPEC
WART NARA Date 5/7/98	CLASSIFICATION CHANGED TO	(SPECIAL) (complete)

©CONFIDENTIAL

Edwards, California December 18, 1951

MEMORANDUM for Chief of Research

Subject: Progress report for the D-55%-II (144) research airplans for the period December 1 to December 14, 1951/

1. A preliminary flight test program is being carried out with the D-558-II (144) airplane to determine the limits of flight before beginning the formal program.

Status of Program

2. Data has been obtained that indicates that the dynamic lateral stability is very poor in the transcript and supersonic speed range; and at speeds above a Mach number of 1.4, that the static directional stability deteriorates rapidly as Mach number increases.

5. At present, ways are being devised for more satisfactory lateral characteristics. The most promising of these appears to be the installation of a rate autopilot to add damping in yaw. Methods of applying an automatic pilot (already constructed) to this task are being considered, and means of increasing the static stability are being sought. To aid in the analysis of the lateral stability, values of the moments-of-inertia about the Z and X axes will be measured.

Status of Airplane

4. No flights were made since November 16 due to a wet lake bed.

5. Work on a new rudder locking device is progressing.

Norman O. fek

Herman O. Ankenbruck

Aeronautical Engineer

HOA : mem

WEW

cc: NACA Headquarters (2) Ames Lewis ChBuAero Navy Liaison, Edwards Projects Engineer Files

CLASSIFICATION CHANGED TO

Document 10, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress report for the D-558-II (144) research airplane for the period December 1 to December 14, 1951, Date: December 18, 1951

DECLASSIFIED stority NND 92763 NAPA Dale 5

Edwards, California July 23, 1952

MEMORANDUM for Chief of Research

Subject: Progress report for the D-558-II (144) research airplane for the period June 28 to July 11, 1952.

REPRODUCED AT THE N

1. A successful flight (number 8) was made on July 10, 1952 to an altitude of 55,000 feet and a maximum Mach number of 1.68. The flight was made primarily to obtain information on longitudinal stability and tail loads.

2. Flight number 9 is planned for the week of July 13. The purpose of the flight will be essentially the same as flight number 8.

3. The proposed research memorandum "Some Measurements of Aerodynamic Heating Obtained During Demonstration Flights of the Douglas D-558-II Airplane", by Ira P. Jones, is being modified according to comments. The proposed research memorandum "Some Measurements of the Buffet Region of a Swept-Wing Research Airplane During Flights to Supersonic Mach Numbers", by T. F. Baker, is being modified according to comments. The proposed report on Handling Qualities at Supersonic Speeds is being reviewed in the section.

~0.f

HOA:mem

Herman O. Ankenbruck Aeronautical Engineer

cc: NACA Headquarters (2) Lewis Ames ChBuAero Projects Engineer Files

31

Document 11, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress report for the D-558-II (144) research airplane for the period June 28 to July 11, 1952, Date: July 23, 1952

DECLASSIBED steery NHD 92.763 HURA DUE

DADA NO.

Total 2 pages

Stwards, California Bocester 11, 1957

presidential for Chief of Research

Subject: Frogress report for D-955-11 renerch simplers (144) for the period Hovesher 1 to December 1, 1952.

1. How for during the year 1952, night flights have been made, primarily to explore longitudinal stability and con-trol, wing and toll loose, hift, drag, and buffeting character-istics at high lift and unerrowic means. Some data were ob-tained on static directional stability and control, flynamic stability, radius for the fueling and proving at the base and along the side rear of the fueling at high subsamp and super-sonic meeds. Ouring answervers at supersonic speeds, reduction of static longituding, its formation of speeds. shale speeds. Buring sameswars at supersonic speeds, reduction of static longitudinal simulity followed by instability was ancountered at assertie values of normal-force coefficient at low summaries speeds, these values of $Gr_{\rm A}$ messed to be somewhat higher than at high mitsonic speeds, but appear to decrease with increasing supersonic Mach number.

2. The inhourd funces have been recoved from the wings of the sirplane, and pressure orifices on the wing have been con-moded to recorders. The sirplane is in stand-by condition, however recent rain has made the lake bed unisable for the present. r!e

Status of Reports 3.

Published:

"Some Heapurements of Aerodynumic Heating Obtained During Demonstration Flights of the D-558-11 Airplano", hy Ir+ P. Jonan.

"Some Measurements of the Flying Qualities of the Douglar D-958-II Research Airpinne", by H. C. Ankenbruck and T. K. Dahlett.

Interlaboratory review momplated:

"Gram Moonurgants of the Biffet Hegion of a Owept-Wing Airplans During Flights to Superposts Mach Rusber", by I. F. Dekar.

"Maxioum Altitude and Maxioum Much Number Obtained with the Novified Douglas D-548-II Research Airplane During Demonstration Prights", by T. E. Enhlen.

中国語言語 A.TV WITH STITUT

Document 12, Memo, Herman O. Ankenbruck, Aeronautical Engineer, To: Chief of Research, Subject: Progress for the D-558-II research airplane (144) for the period November 1 to December 1, 1952, Date: December 11, 1952

DECLASSIFIED wity NND 92763 THARA Date 5/7

Reports in review:

"Determination of Longitudinal Stability In Supersonic Accelerated Maneuvers For the Douglas D-558-II Research Airplane", by H. O. Ankenbruck.

REPRODUCED AT THE NATIONAL ARCHIVES

-2-

- . The serve wide in the

4. Data on buffeting, wing and tail loads, static directional stability, etc., are being reduced and analyzed.

5. It is anticipated that the next flights will be primarily to explore the directional stability and control and vertical tail loads in supersonic flight. The program of longitudinal maneuvers will be continued in order to obtain a complete breakdown of the stability and control characteristics along with lift, drag, buffeting, wing and iorizontal tail load data. This program will include measurements of wing chordwise pressures at one spanwise station at supersonic speeds.

Homme a. filmanet

Herman O. Ankenbruck Aeronautical Engineer

1.1

HOA:mh

DEB Wer

cc: NACA Headquarters (2) Lewis Ames ChBuAero Navy Liaison, Edwards

> Projects Engineer Files

CONFIDENTIA CET FREETY GEALETTING STORE

DECLASSIFIED 109276 NARA Date

Edwards, California October 6, 1951

MEANANDUM for Research Airplane Projects Leader

Progress report for the D-558-II (144) research airplane for the period September 1 to September 30, 1954. Bubjects

1. During this period two flights were made. One flight canceled be-cause of a grounding order by Reaction Motors until the thrust bearing in the turbine pump could be inspected to insure that a double thrust bearing was installe

Flight his was made September 17 to obtain pressure distributions and structural loads measurements at low supersonic and subsonic speeds.

Flight No. 15 was made September 22 to obtain power on dynamic stability data.at subsonic speeds. This flight was made at 30,000 feet because of a leaking cabin pressure-seal that prevented going to the higher altitudes.

2. Reports in progress:

(a) The report entitled, "Determination of Longitudinal Handling Qualities of the D-558-II Research Airplane at Transonic and Supersonic S by H. O. Ankenbruck has been published as RM H54029A.

(b) The report entitled, "Lateral Motions Encountered with the -558-II All-Rocket Airplane During Exploratory Flights to a Mach Mumber of .0", by H. O. Ankenbruck and G. H. Wolowicz is at Langley swaiting publication.

(c) A prospective report entitled, "Wing Loads Measurements at Super sonic Speeds of the Douglas D-558-II Research Airplane", by G. H. Robinson, G. E. Cothren, and C. Fembo is being revised according to Editorial Committee comments for interlaboratory review.

(d) A general strspeed report to include maximum Mach number and altitude data obtained on the D-558-II airplane is being prepared for Station Editorial Committee.

(e) A prospective report entitled, "Flight Determined Freesure Distri-butions over a Section of the Wing of the D-558-II Research Airplane at Mach Numbers up to 2.0", by G. H. Jordan and E. R. Keener is being revised according to Editorial Committee comments for interlaboratory review.

South HA

Gareth R. Jordan Aeronautical Research Scientist

dquarters (4) Edwards Ingineer

CONFIDENTIAL

Document 13, Memo, Gareth H. Jordan, Aeronautical Research Scientist, To: [NACA] Research Airplane Projects Leader, Subject: Progress report for the D-558-II (144) research airplane for the period September 1 to September 30, 1954, Date: October 6, 1954

DECLASSIFIED D9276 7 NARA Dalo

REPRODUCED AT THE NATIONAL ARCHIVES

B-1-2

Edwards, California October 3, 1956

MEMORANDUM for Chief, High-Speed Flight Station

Subject: Progress report for the D-558-II (144) research airplane for the period September 1, to September 30, 1956.

1. During this report period one flight was made with the airplane. Flight number 69 was made September 25, 1956, to obtain vertical tail loads and stability and control data at M=1.1. The data obtained during this flight are felt to be sufficient to complete the vertical tail loads program.

2. Following this flight a routine turbine pump inspection is being accomplished prior to returning to flight status.

Gareth H. Jordan Aeronautical Research Scientist

GHJ:jr

DEB

cc: NACA Headquarters (4) Lewis - Ames W. J. Underwood Navy Liaison, Edwards ChBuAero Projects, Engineer Files

的外方在新闻的存在

Document 14, Memo, Gareth H. Jordan, Aeronautical Research Scientist, To: Chief, High-Speed Flight Station, Subject: Progress report for the D-558-II (144) research airplane for the period September 1 to September 30, 1956, Date: October 3, 1956

Edwards, California December 4, 1956

MEMORANDUM for Chief, High-Speed Flight Station

Subject: Progress report for the D-558-II (144) research airplane for the period November 1, to November 30, 1956.

REPRODUCED AT THE NATIONAL ARCHIVES

1. During this reporting period two research flights were made with the airplane. Flight numbers 72 and 73 were made November 1, and November 7, to obtain static and dynamic stability data at a Mach number of 1.50 at 60,000 feet altitude. These data are being reduced and analyzed.

2. Instrumentation has been installed to measure the overall noise level in the aft portion of the fuselage at supersonic speeds. This instrumentation will be given an operational check-out on the next flight and it is anticipated that one flight will be required to obtain the presently planned noise data.

3. Additional flights on the airplane were delayed because of the instrumentation installation and due to a shortage of liquid oxygen. Liquid oxygen is available again and it is anticipated that research flights will resume the first week in December.

Hauth H Jordan Gareth H. Jordan Aeronautical Research Engineer

GHJ: Ir JF HMD wen NACA Headquarters (4) cc: Lewis - Ames W. J. Underwood Navy Liaison, Edwards, ChBuAero Projects, Engineer Files

有效可能的方法

20,

Document 15, Memo, Gareth H. Jordan, Aeronautical Research Engineer, To: Chief, High-Speed Flight Station, Subject: Progress report for the D-558-II (144) research airplane for the period November 1 to November 30, 1956, Date: December 4, 1956

DECLASSIFIED NND92763 uthority NARA Date

MEMORANDUM for Chief, High-Speed Flight Station

Subject: Progress report for the <u>D-558-II (144</u>) research airplane for the period December 1 to December 31, 1956

REPRODUCED AT THE NATIONAL ARCHIVES

1. During this report period two research flights were made with the airplane. Flights numbers 74 and 75 were made December 14 and December 20 to obtain dynamic stability data at M = 1.4 at 60,000 and 45,000 feet and to obtain overall sound pressure levels at subsonic and supersonic speeds at 45,000 feet. These data are being reduced and analyzed.

2. Research flights on this airplane are completed and research instrumentation is being removed from the airplane. A 30-minute inspection of the rocket engine is currently being made and the airplane will be returned to flight status to be used for approximately seven pilot-familiarization flights.

Gareth H. Jordan

Gareth H. (Jordan Aeronautical Research Engineer

cc: NACA Headquarters (4)
 Lewis - Ames
 W. J. Underwood
 Navy Liaison, Edwards
 ChBuAero
 Projects, Engineer
 Files

Document 16, Memo, Gareth H. Jordan, Aeronautical Research Engineer, To: Chief, High-Speed Flight Station, Subject: Progress report for the D-558-II (144) research airplane for the period December 1 to December 31, 1956, Date: January 8, 1957.

DECLASSIFIED NARA Date.

.CLASSIFICATION GNAMOLD TO CONFIDENTIAL

REPRODUCED AT THE NATIONAL ARCHIVES

Muroc, California September 13, 1951.

MEMORANDUM for Chief of Research

infortes

171

Subject: Progress report for the D-558-II (37975) research airplane for the period August 25 to September 7, 1951.

1. The rough draft of a report on wing and section loads obtained by pressure distributions during the Douglas rocket-jet flights on the airplane up to a Mach number of 1.04 is being revised by the author after review in section.

2. Analysis of dynamic longitudinal stability data obtained during flight 4 is continuing. Data obtained during flights 7, 8, and 10 are being worked-up and analyzed.

5. September 4 and 5 the weight and balance and the pitching moment of inertia (I_y) were determined. Also on September 5 a strain gage check calibration was made on the horizontal tail.

4. No flights were made during this two week period. A flight scheduled for September 7 has been delayed due to a fuel leak on the P2B-1S.

JRP: mem

James R. Feele Aeronautical Research Scientist

cc: NACA Headquarters (2) Ames Lewis ChBuAero Navy Lisison, Muroc Projects Engineer Files

> CLASSIFICATION CHANCED TO CONTINENTIAL

Document 17, Memo, James R. Peele, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (37975) research airplane for the period August 25 to September 7, 1951, Date: September 13, 1951

DECLASSIFIED 1 8.1-2 2/10/3 uthority NND92763 REPRODUCED AT THE NATIONAL ARCHIVES CLASSIFISTEPTUR CHAMED TH Muroc, California Muroc, California 195 0/8/51 NARA Date 5 September 28, 1951

K

MEMORANDUM for Chief of Research

Subject: Progress report for the D-558-II (37975) research airplane for the period September 8 to September 22, 1951.

1. On September 18, the D-558-II was air-launched at about 33,000 feet. Due to a malfunction of the rocket system, the pilot was unable to fire the rockets and had to jettison the rocket fuel. The flight was continued on jet power at an altitude of 20,000 to 25,000 feet. An accelerated pitching maneuver (simulating a possible rapid pitch to high angle of attack during carrier launching) was attempted at an altitude of around 20,000 feet and a Mach number of about 0.38. The airplane with gear down, flaps half down and slats closed (inadvertently left locked) pitched to a high angle of attack and fell off into a spin. The pilot reported that the recovery from the spin was normal after the gear was raised. Instrumentation functioned properly and the data obtained are being prepared for work-up.

2. The rough draft of a report on wing and section loads obtained by pressure distributions during the Douglas rocket-jet flights of the airplane up to a Mach number of 1.04 is being revised by the author after review in section.

3. Wing-load-distribution, buffet-tail-load and wing-fuselage pitchingmoment data and control information to a normal-force coefficient greater than 1.0 and a Mach number around 0.90 are being evaluated. The C_{N_A} greater than 1.0 was reached in a pitch-up after reaching longitudinal instability at a C_{N_A} of approximately 0.6. Previous data indicate that the longitudinal instability boundary varies from a C_{N_A} of approximately 1.0 at M = 0.50 to a C_{N_A} of

James R. Luce

James R. Peele Aeronautical Research Scientist

JRP: mom

cc: NACA Headquartors (2) Ames Lewis ChBukero Navy Liaison, Muroc Projects Engineer Files

STOLET-

Document 18, Memo, James R. Peele, Aeronautical Research Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (37975) research airplane for the period September 8 to September 22, 1951, Date: September 28, 1951

10000 MMD 92.76.31

(2 pages)" Edwards Rips: Sirecras) (Comp Cil

Strands, California November 6, -1951

INHOMATION for Chief of Recently

Bulifect, Programs report for the p-958-HI (Warm 195) research mirplane for the period October 5 to October 19, 1951

 During the flight performed up September 26, the instrument inverter on the airplane malfunctioned during the landing approach, maning a loss of the landing record. Submanually, this inverter was replaced by one of greater suparity, and the instrumentation was thenked out.

2. A redest-jet flight was not schemaled before Outober 11 or 12, because the Rimards Air Force Base mitrogen evaporator was incomparities. A reacher-jet flight establish for Outober 11 or 12 was cancelled because of a sharing of percente and the priority being given be the D-555-01 (MACA LMA) airplane. As a result of this cancellation, surboard fences (at 0.7) h/2] similar to those tested in the penging Shahility Tunnel on the D-55-11 at low speed ware installed on the MACA LMS airplane to obeck the results of the tunnel tests and to evaluate the effects on the Institutional instability model with the airplane at implicit mission of the finite effects of the functional instability descendent with the airplane at high Mach mumbers. A jet flight was scheduled to determine the effects of the function at species below H = 0.8.

3. On Outster 18, the phase 2 airplane was dropped from the 923-13 insuch airplane at 30,000 funt and proceeded to perform a winher of socalerated times with slate locked and soloded at speads from $0 \approx 0.75$ down to $0 \approx 0.5$. Also, 1g stalls more performed in the simplane clean and dirty conditions, and exercal maneuvers were performed to determine airplane life-drag ratios at speeds slightly above landing speed. Proceeding of flight files stowed that no respective taken during any of these maneuvers because of malfunction of instrumentation scon after takes off of the phase 2 airplane.

b. The pilot of the phase I simplane reported a marked improvement in the simplane heightudinal obsracterializes as a result of suffing cuthoard factors. Only mild or no pitch-up was now disconsible in the accelerated terms, sithough a scenerat controllable instability was noted. The poor interval stability provide all in its scale was noted. The poor interval stability provide all in its scale was noted in its scale was noted in the sceneral stability provide and some service as speed was also much improved, although buffet appeared more service as speed was decreated (possibly become the airplane could go to higher Dg. and lower open more easily).

CHI 10

Document 19, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period October 6 to October 19, 1951, Date: November 6, 1951

DEGLASSIFIED Corty NND 92723 THURL OS IS

CONTRACTOR OF MANY PARTY AND 州石型 NC(DEn.

5. At a result of these promising characteristics reported by the pilot, a rocket-jet flight is played for early next week, during which transmis longitudinal characteristics with the mationard forces will be evaluated and data should be obtained for the speed range covered in the preceding flight (with no data).

11

Jack Fichel

Jack Fischel Arronautical Mahility and Control Scientist

ALL AND ALL AN

.

601 H&TA Hendgaarters (?) Amon Levis Chousers Havy Dalion, Murcu Projects Exgineer Files

613

CONTRACTOR LANGUE FOR

CONFIDENTIAL

X Edu Green

Bowarde, Galifornia November 5, 1991

intainantimi fur Chief of Begaarch

Subject, Programs report for the D-550-JI (MACA 105) remearch mirplane for the period October 20 to November 2, 1951

1. A rocket-jet filmt of the D-558-II strplane was scheduled for Cotoker 22 to determine the effects of outband wing Canced (at 0.7) b/2) on the longitudinal instability experienced with the airplane at high Each methers. The usual pre-flight, climb, and pre-drop procedure was coupleted for the D-558-II airplane from the P20-IB lance airplace, however, it has mide that the D-553-II hydraulic pressure was low and actuation of airplane components was singlish. She flight was thereupen cancelled and the planes landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the D-558-II in captive position) on the Hamme landed together (the Hamme Hamme).

2. Inspection of the D-555-II simplace revealed a hydraulin lask each the aileron eachier on the left wing. finit lask was repaired, and a flight remnershiled for Dotober 33. Unfavorably high winds and clouds orune! cancellation of subsculat flights am October 35 and Dotober 35, and heavy rains obviated the use of the lake for the remainder of the current period.

3. As a result of the adverse labe-bad conditions for flying, and the subsequent grounding of the atrplace, instrumentation changes are being node to the remotrob simplane. A 36-channel modified are perfecting the 18-channel menilograph for recording wire strenges and tail looks and strenges, and other instrumentation is being checked.

L. Analyzic of the data thus far obtained on the airplace shows blat the variation of stict force per ; of nermal acceleration during accelerated turns increases running from a value of about 15 lbs at M = 0.8 to shout 10 lbs at N = 0.9 and about 120 lbs at M = 0.90. Also, the approximately 12° at M = 0.8 to approximately 12° at M = 0.8, and approximately 12° at M = 0.8 to approximately 12° at M = 0.8, and approximately 12° at M = 0.90. Signatur-tegning management school walkes of Gen.

CONTRACTOR IN CONTRACTOR

Document 20, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period October 20 to November 2, 1951, Date: November 8, 1951

DECLASSIFIED NWD927 WAL Date

Q.42. COLUMN TRANSPORT SE 11 KU BRARENTIAL

that were suprovinately the name as the values obtained in the wind tannel for the same s.g. location. These values of $G_{n_{\rm S}}$ were negative over the entire Mach-number range and becade more negative with increase of N.

Jack Frischel

Aeroneutical Stability and Control Scientist

Statue Meni Meni Meni

> oc: Mick Hostmarters (2) Anns Lenis Chikaru Hayy Liakson, Burde Projects Regimer Files

> > CLASSIFICATION DUARDED TO #ONFIDENTIAL

0102ASSILVED 17223 NMD927431

Approximate of the relation of the

D'97 2017 TAL SECONTE LISTORATION

> Scientis, California Secondar 18, 1951

MOULTADON for Chief of Benerch

Subject: Progress record for the D-958-II (RACA 145) remained sliplans for the parlot December 1 to 14, 1951.

1. A rootet-angine rur-up, following the rockstrangine inspection sampleted in the preceding reporting period, we successfully exploited and preparations made for a filable in Forefact 4 or 5. However, heavy rules, which obvioted use of the lake bod, round correlation of this file. Finan over subequarity made for a flight during the week of December 10, but additional heavy rules during this week caused further portpresent of flight tests.

2. Denote of the grounding of the simpleme, proportions are continuing for installation of turks on the right wing much as "commun one being installed in the variant fin noi forward furnings readies of the simplementation section is building a trial-band and approximation was needed with the building of the burkwood tails and which will provide dynamic process and downward of the burkwood tails and which will provide dynamic process and downward and the substanting in this visibility.

5. Further enalysis of onto obtained in preventing frights is continuing. Insights of wing pressure momentum ta, bill lead data, and stability and control data indicate that is a high-Machementer accelerated turn during which a pitch-up way experimently a sizeable decrement in wing stability, and performing in wing-funcing stability, was noted at the pitch where pitch-up concred. This is thought to result from an unstable trend in wing-fuellage stabiling normal. Here, at this high Mooh mether, it is thought that an increase in downwell of the tail had a semiclicity effect in producting the pitch-up.

In low-Hack-mapper accelerated turns, the wing-fundings, which is unstable at low values of $C_{0,0}$ become stable at high values of $C_{0,0}$. In this upped values the pitch-up experiational is thought to result also a minimum from an increase in downeash angle as a increased and the full entered the drag webs. Therefore, an effort will be made, as described in a proceeding torugraph, to obtain downeash encoursements at the tail of the mirgines and to determine times affects on the stability of the simpleme.

rde Freehel

Alt w Alt w Asronutinal Mabbility and Control Scientist

oot MACA Handquarters (2) Amen Levis Childern Newy Lisions, Minards Projects Sogioror Films

> CONTINUTIAL SECULITY DEPONATION

Document 21, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period December 1 to 14, 1951, Date: December 18, 1951

CONTRACTOR OF THE OWNER, MILLION

A 7

Sivarda, California Fuly 23, 1952

MEMORANDOM for Chief of Research

Subject: Progress report for the D-558-11 (MAGA 145) research airplane for the period June 28 to July 11, 1952.

 A rocket-thrust calibration was performed on the Edwards thrust stand, and preparations were made for a rocket-jet flight to obtain slat load fata and stability data with the slat in the locked-oped position. This flight was to extend the Mach number range of data obtained with the same doofiguration in the preceding flight with jet-engine power alone.

2. On July 3, 1952 a rocket-jet flight was accouplished with the foregoing configuration at Mach numbers up to approximately 0.95. Moneuvers completed consisted of accelerated turns and is stalls, and the pilot reported no instability, only changes in stability, up to high accelerations. Decause of a failure in the inverter, however, all internal instrumentation failed to record, with the exception of the oscillograph and manmeter records. Slat loads data are being worked-up ... with the sid of nockylt photographed instrumentation.

3. The sirplane was subsequently propared for captive flight to Ames Luboratory for display at the NACA Annual Inspection, was flown there on July 9, and should return prior to July 18.

4. Structural design of the chord extensions is continuing.

 Work-up is continuing on tail-load, wing-pressure, and stability and control data obtained during the preceding sistopen flight and during preceding flights in the original airplane configuration.

J74DIL

١.

Aeronautial Stability and Control Scientist

MACA Headquarters (2) 003 Levis Azes. ChBuAgro

Mavy Lisison, Stwards Projects Engineer - Files

Document 22, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period June 28 to July 11, 1952, Date: July 23, 1952

WELLED FEMALESCHES

Situards, California August 15, 1952

HORNER for Chief of Messareh

Dubject: Programs remort for the D-558-11 (123) research airplane for the verted July 26 to August 7, 1992.

1. 3 jab-rocket flight of the simpline with the sists locked-upen was scheduled for July 35, but was postnored to July 51 because of inclement seather. On July 51, a jet-rocket flight (flight 12) was performed during which a 2-rocket disk was verformed after drop from the F2D-15 mirplanet however, because of faulty samply heating. The rancy of the 0-550-11 direlane lock-over at about 55,000 freet slittypic and the rocket clish and arceleration was berninated. The rocket engines are subsequently shut-off, modert fuels were jettiments, and altitude was heat to deice the manopy. Below 25,000 freet slittade, the manopy classed and several mineuvers were performed. Hats obtained on this flight are being worked-up.

2. Dreputations were made again to obtain a jet-rectant flight with the slats locked-open, but because of angins trouble on the S2D-IS lound simplane, this flight (flight 12) did not take place until degust 8. A 2-recket elish to 55,000 feet, followed by an acceleration to $N \approx 0.95$, was performed, and subsequent mensures convisied of accelerated turns at speeds up to $N \approx 0.95$, as well as answell colls and sidealize at $N \approx 0.7$. Data film from this flight are being developed.

 Work-up is continuing on stability and control, wing pressure, and tail luad data obtained during messeding flights. Freesertion of a report on thanges in longitudinal stability encountered at sansayering lift coefficients up to high submotic speaks is also continuing.

6. Includingly shalpsize of the data obtained with slats locked-open indicates increased stability characteristics for the atralans as compared to the original slats locked-closed configuration - particularly as reports the severity of the picture economic stabilities, the single of the with slats locked-open emperes to have higher values of $C_{\rm p}$ at low values of $C_{\rm p}$ and lower values of $C_{\rm p}$ at high values of $C_{\rm p}$, then the airplane with slats the site closed, $C_{\rm p}$ at low values of $C_{\rm p}$.

Fichel

J7*3 (1998)

Jack Plantel Ammunical Stability and Control Scientist.

NCH (JCA/

nn' MACA Energuerters (2) Lewis Lucs Chiulern Havy Liston, Edwards Frojects Engineer Files

CONFIDENTLU.

Document 23, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period July 26 to August 8, 1952, Date: August 15, 1952

WHAT WAS DIE ST

Section and the second section of the

Tetal 2 pages

B-1-2 D-3-4-8

A+7

Edwards, Calif. Hovester 21, 1952

HIMCHARDON for Chief of Research

Subject: Fragment movert for the D-559-52 (11.5) research alrplane for the period Cotober 1 to November 1, 1959.

1. Toots of the simpleme with wing sists looked in the hift-open position and with an stall-constrol former on the wing were note on Orbitar L. This was flight He, a rocket-lat flight, and accelerated longitudinal wavevers wind performed up to H 3-0.97 to determine any improvement in the loopitudinal stability characteristics of the simpleme as a result of looking the slate half-open. Seconds with the instrumentiation elevit because, much, only the first two high-opened menacours were recented. However, the place reported pitch-ups were monometered during the accelerated. However, the place reported data varifies this, it the highest speed tested, the place pitched to a value of $a = 36^{\circ}$ and $G_{\rm M_A} = 1.79$.

B. The airplane was microquently modified by planing the elate in their former position (locked or free-floating) in order to obtain data on the airplane in the basis configuration (clean condition, no wing faces).

3. On Obtober 23, a rootat-jet flight (flight 21) was performed with the singlene in the basic configuration. Memoryper performed included annalogated implication and an end of the start of the first two induced turns, the size is particle, and eiterin recented, due to broakings of the string connecting the size and the control-perither-transition. The plint reported pitch-spin during the turns, aspectally so the start of the pitch-spin.

b. Formum of rough operation of the jet engine during the last flight, the simplene and presented for removal and replacement of the jet engine. Shelteneously, the minist angles was removed for imposition, and shard extensions are being installed on the totar 0.35 h/2 of the wings. It is also playned to install the droppe chute with ministic on the simplement at this line, as well as engle-of-siture and total-beed menouring equiptent on the horisental tell. The instrumentation proop is measurable replacing the 50-cell memosters with new Ha-cell memories, and performing other work required on the sinclese.

5. Werk-up is certinuing on load data, lift and drag data, stability and semigral data, and wing-pressure data abtained during pressenting flights.

6. The rough draft of a report on minutements of longitudinal stability at transmic speeds, inclusing the affects of anthorn wing fonces, is surrently being prepared for transmittal to other isheratories for review.

> CONFIDENTIAL COMP DISPUTISION

Document 24, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period October 1 to November 1, 1952, Date: November 21, 1952

DECLASSIFIED NWD 12763 BELLET HARA DEN STAL

Y mexican reason with 1

- 1 -

The rough draft of a report on buffeting starspteriations of the simpleme up to it = 0.95, and of a report on wing-open lowing characteristics through a yaves of $\Omega_{\rm p}$ and at 3 speeds (surgening to transmic), obtained from Wing-pressure exchanges, is currently being reviewed in Section.

Jack Fichel

A

Arronsotical Stability and Dontrel Scientist

53

nz; BACA Headquarters (2) Lonin Anon ChpuAore Havy Linison, Subsards Projects Engineer Files

CONFIDENTIAL

CC strong to the st

Yotal 3 pages RECN DEC 15 1951 2 y3 - 1 2

Siverds, California December 11, 1952 (D-556 A-7

36

MEMORANDER for Chief of Research

Subjects Progress report for the D-598-HI (145) research sirplane for the period November 1 to Denember 1, 1952.

1. The simplane is currently having pressure instrumented wing chord extensions (shown by wind-turned tests to improve the longitudinal stability characteristics) installed over the outer 0.37 wing sumispans. In addition, drops thats attachments are being installed at the tail of the simplane in order to make feasible leadings on the runway while the locobed is wat and unapable. A new jet engine has been installed in the simplane, and the rocket engine is to be reinstalled sharily.

 The instrumentation group is installing new 24-cell memometers and replacing the existing angle-of-statek and sideslip angle systems.

3. During the part several months, the airplane has been flown in various wing slat and wing fence configurations in sitespite to improve the longitudinal stability characteristics of the airplane and eliminate the pitch-up encountered with the airplane in the original configuration (slats closed and inheard fences on wings) as well as to obtain loads on the fully-extended slat up to large values of Gay, and Mach number. The donfigurations flows are as followed:

- (a) Sists fully-extended and inboard fences on wing.
 (b) Blats fully-extended and inboard fences removed from wing.
- (c) Blats half-extended and no wing fences.
 (d) Blate closed and no wing fences.

Date were obtained during the source of these flights up to Har0.97 in ancelerated Longitudinal sanouvers, alloron rolls, and gradual sideslips. Sinest all the stability and control and tail-load date have been worked-up, and all the atrain-gage sist-load data have been worked-up; however, only some of the slat-pressure data have been worked-up. All lift-drag data have been worked-up.

b. The data showed that the configurations flows with slats fully-extended were an improvement over the original airplane configuration, insumch as the pitch-up previously encountered appeared to be eliminated or alloviated, except at Mis0.8 to 0.85. Stability changes were still encountered over

ONFIDER FLAT assembled bits with the

Document 25, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief of Research, Subject: Progress report for the D-558-II (145) research airplane for the period November 1 to December 1, 1952, Date: December 11, 1952

$\mathbb{C}_{\mathbb{P}}$	annound of the storal append	
÷1.	The second secon	1
1228		

-2-

DECLASSIFIED Wety MND 927631

the C_{N_A} or a range, but the most superent change to the pilot we the stick-free instability encountered at moderate values of C_{N_A} or a. In either configuration (e) or (d) above, the airpiane apparent to be an longitudinally uncontrol-lable we in the original configuration, after the plich-up occurred. Drag with slats fully-extended wes ultrast at low veloces of C_L and have at large values of C_L than in the original configuration. With slats fully-extended, tunied to increase after applied to increase after applied to increase after applied to decrease as a increased, and the values C_{N_A} tended to decrease as a increased.

5. The status of several prospective reports based on results obtained on the original configuration and with added outboard feites as well the configurations listed in 3(a) to (d) above, are as follows:

(a) "Transonic Flight Determinative of the Longitudinel. Stability in Accelerated Maneuvers for the Dragles D-990-II Research Airplane Including the Sifects of an Outboord Wing Fence" by Jack Fischel and Jack Magent - being reviewed at other MAGA isborotories.

(b) "Longitudinal fris and Control, and Lateral Tric Characteristics at Transonis Speeds of Douglas D-558-II Research Airplane, Including Effects of Outboard Wing Fances", by Jock Fischel - Nough draft and yet started.

(c) "Gome Measurements of Buffeling Incountared by a Douglas D-558-II Recoarch Airplans in the Hoch Nu ter Sange from 0.5 to 0.95", by Thomas P. Baker - being reviewed in section.

(d) "Variation with Lift of the Belative Span Londing of the Douglas B-558-II Heavarch Airplane for such Hambers of 0.59, 0.76, and 0.69", by Sol Tenenhaum - being reviewed in gention.

(e) "Pressure Margarements over the Wing of the Douglas D-598-II Recearch Airplane at Level Flight Lifts to Each Susbar of 1.14", by James M. Peele - being revise? by author after review in section.

(f) "Tranconic Plight Moveurements of the suredyn mic Loads on the Extended Fist of the Douglas F-55.-12 Resourch Airplane", by James R. Peels.- Rough most slaunt ready for motion review.

(g) "Lift and Drag Results of the Dougles D-558-II Heewarch Airplane with the Sixts Pully Extended and Betracted", by Juck Hugant - Rough draft Loing reviewed in section.

CONCIL: 411.51 ALTER AND STATES

C'AL HILLEN manager (1/4) DECLASSIFIED WET WAR ONE STOP -834 (b) "Effects of Wing Sints and Inboard Wing Pences on the Transpoir Longitudinal Stability Characteristics of the Douglas S-598-11 Research Sirplane in Focular-ted Honeuvers", by Joot Flachel - Hough draft being prepared. heb Fischel 0 **JPrim** Aeronautical Stability and Gostrol Scientist Dist 182 . MACA Hendquarters (2) cos. Leo/1 g Anes Chilli Aezo Mavy Linison, Bdwards Projects Engineer Files

CONFIDENTIAL STORET'S OF DEBALLET

GECLASSIEJED aPA Date

ADDRESS AND ADDRESS ADDRES

Edeards, Galifornia December 20, 1950

Internation for Research Airplans Projects Landor

Subject: Progress report for the D-SSN-31 (115) remarch mirplane for the puriod Wowmher 1 to November 30, 3951.

1. No filents were obtained during this period with the starss or pylan configurations because the large stores-loads nearburgenetic reported in the mesoding period with being investigated. While additional data work-up for the stores filents was being performed at HSFS, Douglas, El Segunde engineering executive was contacted to obtain new intelled information on the list-load characteristics of the wing-pylan-large stores configuration. Dotailed information on stores-loads measurements obtained in a wind-turnal investigation by Douglas would also indicate the seguitade of loads that addit be ensured as the D-955-II atophane in flight, and indicate the feasibility of utilizing the convert stores configuration. Douglas permoted acces,

 If further flights of the promet stores configuration are decard feasible, a complete calibration of the pylon-scanted stain gaps someting the pylon-stores loads will be performed after to remarking of the flight stores.

3. A preliminary evaluation of the hiffeting marginaristics of the airplane with the poles and large stores (from the r.g. accolarces ter) indicates the $O_{1,4} = 2$ boundary for the onset of buffeting is appreciately the same as for the clean airplane at Norh manhers up to about 0.95. Apparently the increase in buffeting fait by the pilot in accolarce teristic longitudinal manuscurs with the stores may have been the stores shuting.

h. Work-up of data obtained in previous flights is continuing.

Jack Fischel Amronautical Research Scientist

cc. NACA Headquarters (b.) [ortis - Amer Mavy Lision, Edmards Ubbakers Projecto, Engineer Files

Document 26, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Research Airplane Projects Leader, Subject: Progress report for the D-558-II (145) research airplane for the period November 1 to December 30, 1954, Date: December 20, 1954

EECLASSIFIED NND 72.7 de, Galifornia CHURCH DUNG 5 Detoher 6, 195h MEMIRANEXI for Research Airplane Projects Lendor Dubjects Progress report for the D-555-II (165) research airplane for the period September 1 to September 30, 1951. During this period, no flighte were performed. At the beginning of this period, the rocket engine was recoved to effect repairs to the turbo-pump, and a periodic rocket engine inspection was also performed. Subsequently, this work was completed and the airplane propered for a strain-gaps collibration to manners loads during external-stores tests. Thile the above work was being performed on the simplane and volket the left wing strain gages were being checked-out and booked-up to t graph, and the left wing pylon used in the external stores tests was quipped with strain gages to measure stores loads. Simultaneous call 1.1 angi mu 4 1 logra * 5415im gages ant proof-loading of the wingattachme istics obtained in The response obers d on the laft wing. alibration of the left wing gages were used to obtain equations (based on probable ervor) which will be used to calculate wing loads. 3. A rocket-engine thrust-stand run was performed on Deptember 23, and proparations were then made to put the strplars in flight ristus for stores investigation. Novewer, flight has been held-up pending coupletion of correct work on the D-22 lammin simplars. b. Because the stores previously tested on the simplane (120" length, 3 1000-1b bosh shapes) sphered rather small compared to the size of the lone and the size of the simplane, it is planned to continue the stores restigation with the 180" length DAC 150 gallon tanks. In order to obtain spate ground choseness with these tanks installed on the D555-11 simple the section of the size tanks installed on the D555-11 simple to obtain aptive mostion under the 3-29) the tank fin vertical and horizontal planes and the lower 29) the tank fins are baing the sapilye vertical fin is being 5. Nork-up of data obtained on previous flights is continuing. ort entitled, "Inegitudinal Stability Character-ere at Subscrib and Transmits Speaks of the rplane Spripped with a Wing Leading Mage Chord and Gyril D. Brum - blue line copy of published 6. Crosolive Tel 100 100 1.1 Grafi D. Brun 3 (ma HShHL6). alved at. Jack Finchel Control Scientist ONFIDEN

Document 27, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Research Airplane Projects Leader, Subject: Progress report for the D-558-II (145) research airplane for the period September 1 to September 30, 1954, Date: October 6, 1954

DECLASSIFIET RARA Date

REPORTED IN SHITTLE REALING

Ameli 16, 1955

minumuumi for Beenarch kiryland Projects Loader-

Subject: Programs report for the D-550-T1 (115) research similares for the period florch 1 to Enrich 31, 1985.

1. No flights were obtained during this period. Initially, oversiteral and instrumentation werk were performed on the airplane to propure the airplane for flight. Among the operational work performed was unlinary adiatomized and re-installation of its overfaciled jet and rookst engines. However, during pro-flight reward checks, it was intermined that both angless were malforetized any pro-flight reward checks, it was intermined that both angless were malforetized pro-flight reward checks, it was intermined that both angless were malforetized pro-flight reward checks, it was intermined that both angless were malforetized pro-flight reward checks, it was intermined that both angless were malforetized pro-flight reward checks, it was intermined that both angless were malforetized for rework, and are currently being re-installed in the airplane. During this petiod, satisfication of all MAR instrumentation was morploid. Flace are being made for resonantion of the external-stores flight program within the met work.

 Generopations, for the loft-pylan strain races becausing store-pylan loads, were worked no free the calibration performed and see being used to reduce the loads data obtained during 2 previous flichts with the fac 180* length 190-pallon stores.

3. A prespective report stitled, "Effect of Several Miny Modifications in the Jus-Speed Shalling Characteristics of the Douglas D-555-II Airolans", by Jack Finchel and Denald Detserb, was transmitted to other TATA Laboratorias for ration.

Juck Finchel Anonimitical Research Scientist

altenti 1899-0 1899-1

co: NACL Handsnarters (h) Davis - keep Havy Linison, Downda Chitarr Projects, Engineer Files

Document 28, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Research Airplane Projects Leader, Subject: Progress report for the D-558-II (145) research airplane for the period March 1 to 31, 1955, Date: April 18, 1955

語語の時期の

Mar AND 127631

8

4

٤.

Edwards, California August 11, 1995

WHEREASTING for Research Airplane Projects Lealer

Rudgert: Progress report for Um D-558-II (165) research simplane for the period July 1 to July 31, 165.

1. He flights sure performed with this airplane during this period because the airplane has been grounded for operational work. The recent engle and pump were recoved for periodic inspection and re-installed in the airplane. Periodic inspection of the stabilizer loading jig is fabricated for use during the inspection procedure. This inspection simplify the completion whether the followed by rescription of the stabilizer loading jig is fabricated for use during the inspection procedure. This inspection simplify the scale of the stabilizer loading is a fabricated for use during the inspection procedure. This inspection simplify the scale of the s

 Hamiling qualities data, baffeting data, whip and pplan-stores loads data, and lift and drag data previously obtained during externalstores flight tools are currently being moment.

Jack Fischel

Asympactical Research Scientist

17:14

5: HAIA Headquartarm (%) Lowis - Anon Projects, Tright Faiteroom W. J. Understand Bajor William W. Smin, Jr. Projects, Engineer Film

CONFIDENTIAL

Document 29, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Research Airplane Projects Leader, Subject: Progress report for the D-558-II (145) research airplane for the period July 1 to July 31, 1955, Date: August 11, 1955 OLOLASSINED Sury MAD 927631 LAZIWAN ORE 5/2/5

1

Particular of the antique, showing

Moverds, California July 24, 1956 7/21/56

14

MEMORANDON for Chief, High-Speed Flight Station

Subject: Progress report for the N=558-II (145) research alrplane for the period June 1, to June 30, 1956.

1. Repairs to the B-29 Istust sirplane, required, as a result of damage sustained during March, were virtually completed during this period. Frier to checkeut of the B-29 sirplane in preparation for completion of the one to two flights remaining of the D-558-II test program, it was noted that the number 1 engine of the B-29 appeared defective, so an engine change will be performed. Hence, no flights were performed with the B-558-II (145) sirplane during the carrent report period.

2. Analysis of stability, performance and loads data obtained during preceding flights with external stores is continuing as other work permits. These data are being included in reports being prepared.

Jack Pischel Assumutical Research Scientist

JFijr END

188 Litt

cc: NACA Headquarters Lowis - Ance W. J. Underwood Navy Lisison, Edwards ChBukero Projects, Engineer Files

CONFRMENCE

Document 30, Memo, Jack Fischel, Aeronautical Stability and Control Scientist, To: Chief, [NACA] High-Speed Flight Station, Subject: Progress report for the D-558-II (145) research airplane for the period June 1 to 30, 1956, Date: July 24, 1956

0.9.660

CON INSTRUMENTS OF INTERNAL

August 13, 1951

Najor General Predarick H. Dent, Jr., USAF Commanding General Wright Air Development Conter, 600 Wright-Patterson Air Forse Dase Dayben, Ohto

Diar General Dinti

As part of the fiv Force-Mary-MACA joint research strplane program, the MACA will soon receive the Mary 2-558-HI all-packet sirplane and the X-2 and X-3 sirplanes. Since much of the flight nesting on these airplanes will be done at extremely high altitudes, it is believed mandatory, from the standpoint of plict mafety, that the plict be equipped with a pressure suit.

The pressure suit presently under research and develeptont by the Air Force appears ideal for this purpose. It is requested, therefore, that the Air Parce loss of angles to the MACA, a pressure suit and the attendent auxiliary equipment.

Er. A. South Cronufield, the MACA test plut sensebular to fly the above noted alroinnes, will be at the Svight Air Development Center on August 16, or 17, 1951. It would be greatly approviated if Mr. Croanfield could be fitted for the pressure suit at this time.

Bincerely yours,

tou H. Abbert

ira 5. Albott Anglatant Director far Research

LiStbfm

333

.spy to langley

Copy to Mr. Underwood

CONFIDENTIAL

Document 31, Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Major General Frederick R. Dent, Jr., USAF, Commanding General, Wright Air Development Center, August 13, 1951

10-15 H - 5 - 1

Cotober 23, 1951

From .	Estional Advisory Counities for Agronautic
201	Chief, Bonau of Association, Tecentment of

Chief, Bureau of Aeronautics, Department of the Ravy, Washington 25, D. G.

ASTRI AR-5

Subject: Request for samignment of Eavy contenvironment full-pressure pilot suit to MACA pilot of D-558-II sirplane

Meforence: Buter letter, July 9, 1951, Aer-102-3 08791

1. Full exploitation of the compatility of the D-558-II airplano in the BACA's research program endured by the Burden of Accounties in the reference better will require operation is initiated as high that the available energency equipment is not adequate to protect the pilot in the event of loss of procouriention. Rescues of the inclosures of this problem, the MACA has investigated known devylopsonts in pressuried suits. It has been concluded that the contenvironment fullproving suit developed by the Envy serve Madical Maginesni Laboratory, Project No. 750 BER-52-510037, affers the most suitable solution for this problem for some bime to came.

2. HACA representatives have discussed the problem of protouting the D-558-II pilot, as well as the state of development of the Mary presented suit, with personnel of the Durosu of Aeronautics and HAMEL. These burking level discussions have indicated that immediate assignment of a Navy pressurined suit to the MAEL's D-558-II pilot will provide the needed protection and at the same time provide HAMEL with a useful field text of the equipment. It has been determined that the D-558-II pilot setion system is very adaptable to this suit.

3. The MACS is source that the comienvironment suit is still in its development stage and expects the Eureau of Aerocautics to scoopt no responsibility in the event of malfunction or failure of the suit. The protection which the suit will provide the Committee's pilot, however,

ONTEDENTIAL.

Document 32, Letter, J.W. Crowley, [NACA] Associate Director for Research, To: Chief, Bureau of Aeronautics, Department of the Navy, Washington, D.C., Subject: Request for assignment of Navy omni[-]environment full-pressure pilot suit to NACA pilot of the D-558-II airplane, October 23, 1951

is an monded the of Apromatics a with an ampienvi	t the BACA urget	bly requests th a RACA pilot Se	at the Dureau ots Cressfield
possible date. Durgan's views of	THE BACK WISLLG I	Instantate Techi	ving the
		1970) - 1985 1977 - 1985	
a 55 - 193	an en ación	Autoriate Dire	top
	1984	for Researd	N.
GloW:bbn		1.4	
	- Attm: Mr. H.		0.18 B
copy to Muroe ()	ny hand by Hr. S	Crossfield)	ANNALIST ANNA
	LOCAL COLUMN	NAMES OF TAXABLE PARTY.	the same and in state.
	10 - 1615 /042 - 2 10 - 21 - 10547 - 10		contraction (Adda
the second second second second second second second second second second second second second second second se	an and a second	DAME A THE CALL IN	APR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
100-00	Adding the Line	12 Mill 21 Million	(Wold (1998)
1	- must heady	AN THE TOTAL	in squaries
	And Andrews	etrapita mine il	ra noris in Talan ing
		111460001	ing in
		56-25-7485er	
			nies-
-1.48			0.05
- 1 PTT, P			

DECLASSIFIED OEPAJIT'S BUREAU OF ARREPULTICS Date WARHINGTON JE, D. G. facurity Information N/W 1051 9 Chief, Burnau of Aurosoutics * Fron Mational Advisory Countites for Aeronautina This assy Dark-environment full Pressure Suit; sestimment of to main pilot of the D-555-II sirplane; request for Reb 14 (a) SADA couf its to maker dated 29 Oct 1951 DeC: 1. Reference (a) requested a full pressure with be provided for the BACA's D-398-II pilot for use in high altitude flight. 2. It is planned to furnish a full pressure suit stand to Mr. Scott Grossfield on on indefinite ion busis to the MACA. The Hurnant of Agromatics is arranging the fabrication of the weit and associated epipters. Ins to the critical sixing problems is such a cult it is recommended that Wr. Crossfield be made couldn't of the fors Radical Equipters ishorebory, Baral air Mellesl Center, Patledelphis, Pa. For a final fitting of the pressure mit. Then could then set in 1.12 will accompany the pressure welt to Douglas Aircraft Company, 101 Segundo, Collifornia for explosive decompression tests and to Edeurds Air force Hase for delivery to the Belickel Mwinory Counities for Antweatics. Seisi Ibeigen Information will be furnished as to the date desired for final fitt and textleg of the complete full pressure suit. The requirements for designie Victory information to be forminted by informal reports will be indicated at the Wich Windowsdelivery is sade to the BADS. Action on ... 1.54 et 10 Yese ALLING Second and To the alternation distant alperize of Arrents' Inclosed Distances BY ALLOWING IN LA LOT OF ALL DATES Redain 18 Copy to: 144 HABATCHE VR 120. COPIE PROVE 0a

Document 33, Letter, J.E. Sullivan, Director of Airborne Equipment Division, [Navy] Bureau of Aeronautics, To: National Advisory Committee for Aeronautics, Subject: Navy Omni-environment Full-pressure Suit, assignment of to the NACA pilot of the D-558-II airplane, November, 1951

DED ASSORD NAPA Extr

of Section and American Street in

BAVAL ADD DATURDAL CONTER-Maval Air Experimental Station Philadelphia 12, Penneylvania

35-2-76C bel 00-022

8 580 1993 10.00 123111.311.4

HLC

- Director, Maval Air Experimental Station Prost Chief, Surnau of Advancutics (4E-515) 201
- TED No. HAN AE 5101 Cont-convironment full pressure outs, recearch, development and test of; Flight test in D-558-II airplane at Edwards Air Force Base, Edwards, Galifornia 3 August to A September Subje 1950) Hwport on

Reft (a) FIMME conf 1tr Acr-AS-513, 031176 of 9 Au 1953

 HalSTA photographs 220779, 280280, 280281, 280282, 280283, 280282 and 280285 showing the David Clark Co. Call pressure Encl: sult and book pan type gas regulating equipment.

 In compliance with reference (a), an Asconatinal Medical Hydramout Informationy representative was ordered to Edwards Air Jords Eggs to surve as technical advisor to it. Gol. M. S. Garl, USAC, and the MAGA on the operation and installation of the David Glark type full pressure suit and Firward Co. control equipment in the D-550-11 rocket airplane.

2. It. Gol. Garl made mix (6) attempts to fly the B-556 airplane in the full pressure with with a back per control system constructed at the AME. The suit and back per gas regulating equipment are shown in annihours (1). The D-556-II was launched from the bottom of a B-29 "nother" ship at allitudes of a provinsion (1) 33,000 feet. The dates for these attempts were 13, 14, 18, 21, 31 August and 2 September 1953. All, except the August 13 Launch, were monoscientif. The August 13 Launch was concentral. The suggest 13 Launch was concentral. The suggest 13 Launch was concentral to find the D-552-II organs and did not reacted on any of the subsequent flights.

3. On the 2 ingust flight, 15. Col. Carl flue to 83,230 feet for a new world altitude record and on the 2 September flight established a new atlitury speet record of 1143 aph.

Mr. J. Researches of David Clark Co., Mr. Sooth Crossfield of NULL, and Hr. W. D. Campidy of the AVEL accessmanied 14. Col. Carl in the B-29 to appint in the domning of the suit and connecting the pressuriantion and respiration services in the D-558-II. This was accomplished between

出动附近的正确 had 10)

Document 34, Letter, F.A. Santner, Director, Naval Air Experimental Station, To: Chief, [Navy] Bureau of Aeronautics (AE-513), Subject: TED No. NAM AE 5101 Omni-environment full-pressure suit, research, development and test of; Flight test in the D-558-II airplane at Edwards Air Force Base, Edwards, Calif., 3 August to 4 September, 1953, Date: December 8, 1953

WWW. BATTERNOOK. MANAGE

CONFIDENTIAL

10-2-190xbeb 426-2 01024

epuroximately 1,000 feet and 10,000 feet. A ground eres set 15. Col. Carl at the completion of each flight to disconnect ship service lines to the suit and assist in the renoval of the pressure suit and personal genu.

5. The flights were note in the unpresentiest condition and at no bias during any of the flights was the sait pressurised above the pressure meeded for ventilation. This pressure was approximately 0.5 pmi. Compressed mitrogen was used as the ventilation selfue in all flights. 14. Col. Carl controlled the amount of ventilation by means of a hard operated meedle value. On two (2) of the five (3) successful flights, the pressure suit was dry when it. Col. Carl returned to the ground; on one (1) it as desp; and on the other two is) it was very set. The factors which appeared to effect 14. Col. Carl's successful the sectors which appeared to

a. Outside temperature - Early suming flights were such more desirable than any other time of the day between of the favorable temperatures outside and inside the 3-29.

b. Accust of time spent in the mit without weutilation. This time was hep't to a minimum by fast proparation and proper flight enbedding.

c. Southenal status of pilot.

*我的前子如*是你

d. Amount of physical exertion by the rilet while wearing the out.

s. Distribution, mantity and temperature of ventilating mitrogen.

6. The following ensemble regarding the suit and component equipment reflect the opinions of it. Col. Carl, and the MSCA personnel closely associated with these flight tests and the AMEL and David Clark Co. representatives:

a. The mylan gloves were not rubberised sufficiently to provide the grippage measurery to efficiently operate togole switches, buttons, and lavers.

h. The exygen valving for the defogging sechaniza on the suit requires refining to provide a'fool proof' system.

c. Since there was no ventilation garsant with the suit, the distribution of the ventilation air was erratic and not dependence.

4. The visibility in all directions other than straight shead was pour. The inshility to look down (front, loft andright) especially assayed the pilot because it limited his view of the instrument panel and control methanism.

02418

э

0

114

Artaty ZUNIA Dala

. +

ACTIVITY OF STREET, MURAL

80-3-VBC/beb 326-2 01084

CONFIDENTIAL

a. The suit was tellored too tightly. A looser fitting suit would permit undiar domning with little secrifies of achility. This would also reduce was.

 The moreovery equipment, 1.4., reprintore, controllers, ballout supply sylinkers, parasitute, etc., should be reduced in size and weight and better integrated.

g. There should be a flight indestribution in the YV-2 or a similar trainer. This is considered connectial for all pilots before they are possibled to fly single place sireraft staring the full pressure suit.

b. The processre cuit should be washed, dried and powdered after each wearing.

 A device should be designed to cocompany such suit or group of suits in the field for measuring suit leakage rate.

J. A portable test stand should be designed for conducting pre-flight obsche of the suit controller, treathing regulator, bellout sylinder, pressure reducer and flow obsck valves.

k. A need for a more suitable disconnect to connect pressure oult and component equipment in the singlene is apparent.

F. A. SAMPER

CONFIDENTIAL

2110	distriction of the	(-119)07
ym/st		

to an anna state Elevents Recents of WASA 255 RG IS IT STATISTICS AND ADDRESS ENC-1-2 194/2 -60, NATIONAL ADVISORY COMMITTE 117 FOR AERONAUTICS BLEY ARROWAUT/GAL LADORATION ŏ LABORET FILLS, VA. THE ... Descentate 3, 1051 862 From: HLCA HEPRS-Houserds Characterily. Tot HALL Cheife drining Subjects Choice of color for Insearch Aircreft at ideards **Continuit** Bag ben Reference: HallA latter to HEFAS dated Howesher 15, 1951; Clow. no. Digities. -Ser. Rectary HARLIN The reference latter transmitted an inpulsy from the Department of the Newy, Bureau of Asconantics, regarding the schlaus ofter for MALA ressaret strengt undergoing tracking texts at Result. Autors Latitica 12Dat Miller Is realise the mourrey destruble from the rador tranking date, Hall V it is important that, is addition to being readily visible for optical HON frantist purposes, the similars is protographills over the entire range of its flight with where data is desired. One of the early sireraft to undergo teaching toots at Edwards was the DSSE-1; this sirelane was **Anthropy ANE** originally painted red. It was found during these initial tests that Dorgani wary little abotegraphic contrast uss being obtained between the red Maint airclass and the relatively dark blue sky scalitions provalent in this YELDON # area with the result that photographs scald not be obtained to sample Where greater than the order of 25 to 30 thousand yords. It was removed that bearing granter than the order of 25 to 36 thousand yards. It was removed to a light of the provided states that the provide the light of the greatly imminoed. With moose filtering lachedques, photographs of the alrednoss are not taken to greater than 50,000 yords and are generally 40 × stable mor their suit a tast flight range. Thin 15 Applica Flatroment privis ways briafly investigated to scortain their Reco value for our specific requirements but were not found to excel white distant. from a visual stand point while shotographic round was decremend to a August 4 value alightly granter than the original D950-1 miler. and statute It should be pointed out that while white the proved superior photo deter in graphically and visually for the type of terms and sity conditions here as were CONFIDENTIAL SECURITY INFORMATION 11.

Document 35, Letter, Walter C. Williams, Chief, [NACA] High-Speed Flight Research Station, To: NACA, Subject: Choice of color for Research Aircraft at Edwards, December 3, 1951

OFFICIASSIFIED 1000 NND 9276 THURS OUR S

COA arrange a second and a second arrange at the second arrange at

Educate, the same may not apply observing Lighter sky backgrounds due to " hous conditions are emistant.

1-

Walter C. Millions Chisf, High-Speed Flight Ressurch Station

GHT:dlb

Carbon copy to Mr. Sould

CONFIDENTIAL SECURITY INFORMATION Memorandam for Gordon S. Williams News Bureau Manager Boolog Airplane Company - 1952-151 % Box # Boolog Airplane Company - 1952-151 % Box #

Use of the air-launch technique in connection with flights of highspeed research airplanes should not be considered in the same light as the parasite fighter which is carried to a theater of operations, released from the carrier-plane to ward off enemy sitesk, and then returned to the mother airplane.

MITE Carrol . relates to 1 High Spred Flight Itation

CONTRACT NUMBER OF THE OWNER

Bather, the sir-launch system used in the research sirplane program can be considered as another form of assisted take-off, similar in some state respects to the two-stage rocket missile ochemes. If the state state is a subscript.

The air-launch idea, for use with research airplanes, was first proposed in connection with flight programs of the Bell X-1. This rocketpowered research airplane was originally designed to be equipped with an turbo-pump system which would couble carrying approximately four minutes of feel. However, the turbo-pump system was not uvaliable at the time the remainder of the airplane and propulsion system was completed, and consequently a altrogen pressure system was substituted which cut the fuel supply to approximately two and one-half minutes.

With ground takeeff, all fuel was expended during the climb before reaching an altitude of 25,000 feet. Further, the hazards both to airplane and pilot were increased by ground takeoff.

te la lisso e presentare unaterí la pasida emilión care

the first street in

Document 36, Memorandum for Gordon S. Williams, News Bureau Manager, Boeing Airplane Company, April 25, 1952 [Subject: air-launch technique] As originally suggested by the Bell Aircraft Corporation, a mothership plan was adopted, using a Boeing B-29 with homb bays modified to accommodate the X-1. Flying to an altitude of 25,000 feet or higher, the X-1 was released and thus was enabled to reach higher speeds, at the altitudes desired, than would have been possible through ground takeoff.

After the initial successes with the X-1 mother-ship program, it was decided that a Bosing B-50 should be similarly modified, thes to permit air launching from even higher altitudes than with the B-29.

To date, more than 140 of the air-laanshed flights, from either the Boeing B-29 or B-50, have been made in the X-1. Major Charles E. Yeager has made more such flights than any of the other pilots, who have included other Air Force officers, men from Bell Aircraft, and the NACA.

More recently, a Boeing 92B-15, one of the few B-29-type airplanes procured by the Navy, was modified to accommodate the Douglas D-558-II Skyrocket. The Skyrocket flights, announced during 1951, which attained the highest speeds ever reached by mas, and the highest altitudes, were air-launched.

In the case of the X-1, the flight program began with a series of flights to demonstrate performance guarantees. During these flights, Bell was responsible for complete operation of the B-25 mother airplane, the X-1, and the Reaction Motors rockst angine in the X-1. Upon completion of the demonstration flight tests, the B-25 was reassigned to the Air Force for maintenance and all fairre operation during launches, whether the X-1 was to be flown by Air Force or X_{3} -1 plicts.

-2-

The X-1 may be used as a good example of the three-way partnership of industry, the military services and the NACA in the high-speed research airplane program. The airplane was designed and constructed by Bell Aircraft Corporation, with the annistance of preliminary design data from the NACA. The project was monitored by the Air Force which, as the procuring agency, had primary cognizance with regard to contractural costs and obligations.

No start and

The X-1 was instrumented by the NACA, both for the performance flights and the more comprobensive research flights which followed. Heduction of data obtained from flights has been performed by the NACA, and results made available to the industry and the military services through NACA reports.

When flown by Air Force pliots, the X-1 was med in an accelerated program to determine the maximum speed and maximum altitude for the airplane. This particular X-1 (two were originally built) has state been retired and now is at the Smithsonian Institute where it occupies a position of promisence as the first airplane over to be flown supersonically. The second X-1 has been operated by NACA pilots in a detailed program of flight research at transmic and supersonic speeds. This airplane is still in service and continues to pay its way, producing valuable research information.

-3-

2284 Hit 1.

40.000 1122

THE OWNER HAVE AND

11 March 1997 No. 1997 Statements

120

The principal differences in operation of the flight program of the D-555-fl have been that Bill Bridgeman, Douglan lest pliot, instead of a Navy pilot, flow the airplane to maximum speed and altitude, and also that since the airplane was delivered to NACA, the mother airplans also has been operated by NACA personnel.

In preparing for a research flight, the planning is done by a staff of research existizies at the NACA High-Speed Flight Research Station at. Edwards. Each simple flight is a part of a carefully programmed series, designed to provide specific aerodynamic data. While the flight planning is underway, flight-operations and instrumentation personnal are readying equipment for flight. The mother airplans is clovated on jacks, and the lastest airplane is relied under and bolated into the bomb bay.

The instruments are loaded with film, and pre-flight checks and callbrations of the instrumentation are made. The test alroises then is loaded with the special feels and games required: liquid oxygen, alsohol, hydrogen perceids, altrogen, and hollom. Then a briefling is held at which the flight plan is discussed. Attending are the research project leader, the crew of the mother airplane, the engineer-test plict of the research sirplane, and the rader crew, Decisions are made concerning the drop altitude and location, the exact headings for the test flight. The maneuvers to be enscued and the information to be mought are also reviewed. Finally, the various segments of the actual flight operation are coordinated, participated in by the Air Force encort

-4-

121

plice, whose mission it is to observe the test and report any multisetices, damage or other unusual condition not visible to the plict of the test sirplane.

11111111

100 million 100 mi

The takeoff is made as soon as possible after faeling to avoid exe sature a week a sette date date to a const. cessive boiling off of the liquid oxygen. The test pilot rides in the mother the state of the last of airplane during takeoff and initial climb. Usually, he enters the test air-15.7 Stellements plane at about 10,000 feet, to begin preparations for the drop. Continuous 14.4.14 the the Hit 17011-17 radio contact is used between the various units involved in a flight -- the AL-MY No. mother airplane, the test airplane, the encort airplane, the radar tranking them being the the station, and the ground control station where personnel are stationed to variance meriles at this tax assist the pilot, and to suggest last minute alterations in the flight plan bethe promotion in accomplained. coase of changing weather conditions, airplane functioning, etc.

The launch is countly made about 25,000 feet, the exact altitude depending on the specific mission. The pliot fires his rochet engine as soon an practicable after the launch, and goes into his predetermined flight plan. After the fael has been exhausted, the plane becomes a gliker, but were during the glide portion of the flight, useful data are obtained. During the latter part of the glide the Air Force succert pliot stays close to the best airplane to maintain constant visual check on landing gear, flags, etc., and also to furnish an added measure of guidance because of the limited visibility available to the test pilot. This guidance is particularly important

-D+

1.1.1.1.1.1.1.1.1.1

during the landing stage where the test pilot has difficulty in determining his exact height above the ground.

After the flight, the pre-flight procedure is essentially reversed. The airpinne is checked over, the instrument film is removed and developed, and a post-flight meeting of the research eclectist and the test pilot is held to discuss generally the results of the flight and to inspect the records. The records are then turned over to the data reduction group where the records are worked up in a form suitable for analysis. These data are then used by the research group for planning the next flight and accumuiating the knowledge into an integrated picture. From a sories of flights each as this, a complete story on some phase of the program is assembled. The results are then prepared in the form of NACA research memorandums and the data is then available for one by anyons who has need of each information.

In addition to the X-1 and two D-558-II airplanes, the NACA High-Speed Flight Research Station also operates one each of the following types: X-4, X-5, YF-92A, and D-558-I.

. . .

April 20, 1958

RECTISEP

CECLASSIFIED Diff. Only

121

Royards, California August 28, 1952

From ISPAS Ťq BADS

Subjects Intreased thrust of the LBB-8046 rocket angles

Inference: Mills 21r to Langley did July 21, 1952; 616N.mst

CONFIDENTI

SECURITY

As requested in the reference letter, the reasons for the т. desirability of sporating the ISS-108-6 rocket engine at increased threat are subsitted. There are two ressours for the seed of higher throuts

It is muticipated that the dreg of the external stores (a). that will be mounted on the D-556-II airplane will be high and will probably limit the speed obtainable at the present rated threat to valves close to M = 1. Calculations, based on extrapolation of wind tunnel drag data, indicate that, with the stores installed, the D=55H-II (No. 145) simpleme will be limited to a maximum Mach number of shout 1.05. An impresses of 50 percent in the thrust of the romat engine woold permit the attainment of a maximum Mach number of about 1.25. The performance of the D-558-II (No. 148] simpleme after the conversion to air leanshing and all rocket in shown on the attached figure for combitings of atorns on, and off, with, and without increased thrust. The calculations at the higher Mach numbers with stores un are questionable because no drag data on stores was available at these speeds.

(b). The utilization of a pressure suit for the pilot has marketly increased the operational altitude of the D-553-II (No. 144) to the point where increases in thrust will materially increase the Mach number attainable. Fuints are included on the attached figure showing the Mach muther increases possible at 10,000 feet altitude from 15 percent and 50 percent increases in the thrust of the rocket angles. The increases in performance resulting from the increased thrust would considerably increase the utility of the D-555-II recearch rehield.

See. 1100 in the second Catherry Training or the states Bertown ligh-thing Zerteinint Lorthy 1.1.1 32-141 Phillin. Tine: Rethered البنية Tionitia Three Thinky Witness When - الم lat Sec. 24 PD-D-P Actin Anna and disting. Aspine mital thinkes

Return in 111

Cuilt 13 je.

х

110

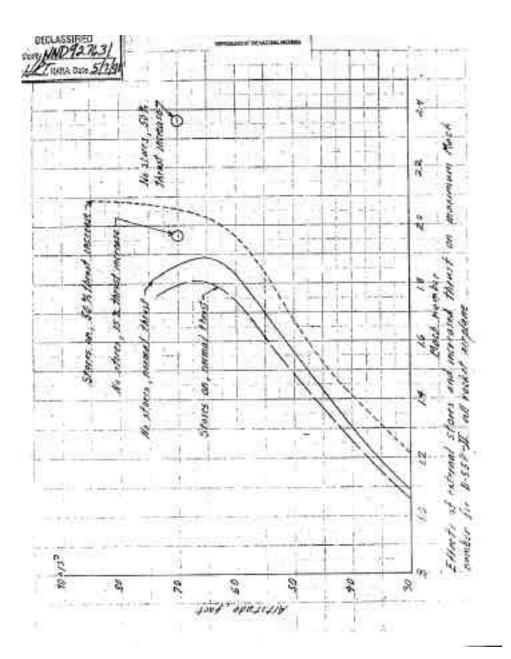
Co.

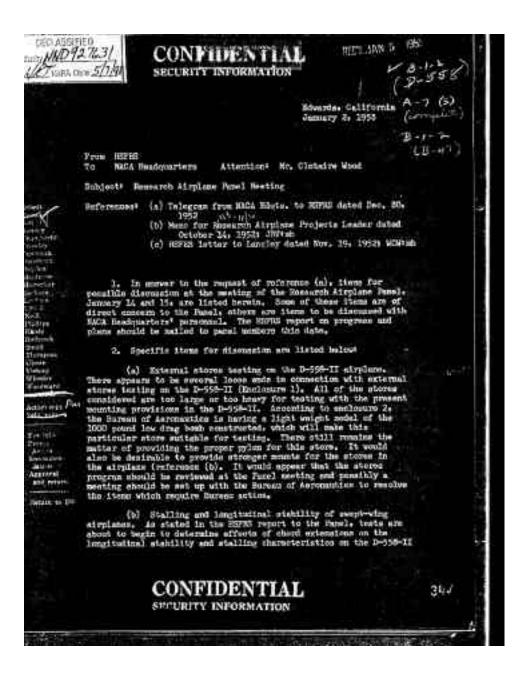
ditte

18

11270

η.


in I tar II. Chief, MACA High Speed Flight Research Station


W50 101

Enclosure (1)

CONFIDENTIAL SECURITY INFORMATION

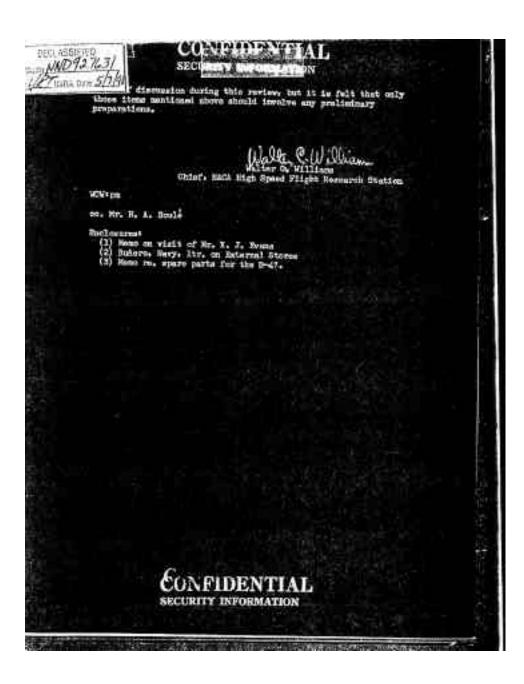
Document 37, Letter, Walter C. Williams, Chief, NACA High-Speed Flight Research Station, To: NACA, Subject: Increased thrust of the LR8-RM-6 rocket engine, August 28, 1952

Document 38, Letter, Walter C. Williams, Chief, NACA High-Speed Flight Research Station, To: NACA Headquarters; Attention: Mr. Clotaire Wood, Subject: Research Airplane Panel Meeting, January 2, 1953

CONTRACTOR DATE OF THE

SECURITY STREET

ABGA 145 simplane is being used for these tests. This e also the simplane debeload to be used for the external stores tests. It is suggested that at the fund meeting a review be made of suggested devices for allowistics of longi-tudinal instability of suggested devices for allowistics of longi-tudinal instability of suggested devices for allowistics of the working which are worker of Gight bouts. It is not known at this time when a third D-558-II (Bulk 148) will be scalable for flight tests. It is suggested, therefore, that if arises will flight tests. It is suggested, therefore, that if arises will flight tests of stall control devices is arisely and such of the work lead to transferred to the 2-3. The D-3 airplane is a very productive research vehicle in that flights can be aven at a sight sets. In the case of testing of multively devices, howevery considerable obsp time is required to succeptish modifications. It would be desirable, therefore, to separate the second 2-5 mirconsiderable shop time is required to geocomplish Schilderichs. It would be desirable, therefore, to acquire the second X-5 min-plane at an early fate in order to minimize dulys to the heald program on the X-5 mirplane. At presents we reported in HERS's report, the second X-5 is being used by the Air Porce on a Prage II evaluation and measurement of dynamic stability. It is suggested that contacts be made with the Air Porce to the affect that they complete their Phase II evaluation and forego the memory of dynamics the drive to which the Air Porce to the second of the they complete their Phase II evaluation and forego the memory of dynamics and the second of the se complete their reasons is weather and covery the Main. This would dynamic stability, turning the airplane over to MAGA. This would appear to be a reasonable request since the Air Force dynamic stability program would only inplicate that has been done and is iming done by MAGA on the Z-5 airplane. If the Air Force program includes development of techniques, this work could better be energylished on a production type butber than a research simplane. In solition, two other specific items of research are suggested for the 2-5 sirglans in the report to the fund.


> (c) Procurement of an P-66F airplane for annelerated longitudinal sightlifty program. A request was made to BACA Haad-quartors through the Research Airplane Projects Leader (reference (a)) for a short term loss of an P-Sim eleplane for longitudinal stability evaluation. To date mothing has been beend from RAGA Heatquarters on this request, an perhaps some discussion is in proer.

> (d) Spars parts support for the D-A1 airylans. To date there is no evidence of action to chiain parts as an expedited hasis for support of the D-A1 flight tests at Stravia (Inclusion 5). Some discussion of this surject appears in order.

-

S. In addition to the specific items mentioned above, it is expected that the programs and progress on the research airplance will be reviewed. There will underbindly be specific

CONFIDENTIAL SECURITY INFORMATION

DECLASSINED WD IMPA Date

BENIOR SCHOOL MARINE CORPS EDUCATIONAL CENTER MARINE CORPS SCHOOL COMPTERS, VISCINIA

all of the second second

Ser : 0115

Encl 111

OCTOPIE BUT I AA

28 002 1953

Promi Limitecant Colonal Marion H. 62811, 06053/7333, USBS Tr: Chief, Person of Acronautics, Acc-45-851

Subj: Flights is NACA D-558-7, report of

Ref; (a) Buder 1tr Serial No. 120772 did 9 Sep 1953

1. In compliance with reference (a) a report on subject flights in hereby substitud.

2. A total of seven (7) flights were made in the D-558-2, for a total flight time of alcory (50) minutes. All flights were als drops from REA's B-59. All flights were shared by at least one (1) Air Force plane and scally by two (2). We. A. S. Gronofield, the MASs project plint on the D-558-11, supervised all plict check out, familiarization and indertrination including shocking the alreraft personally prior to such flight. He also flaw as part of the B-39 ores on such flight and helpel with hoching up the plict within the cockpit.

3. The first two flights were in ship flif which incorporated a J-34 jet engine is addition to the Eachet Motor (BMI). The first flight was strictly jet powered with the drop from the B-29 being sade at about 30,000 feet. Duration of this flight was twenty (20) minutes. This flight consisted mathy of checking pitch up tendenties in wind up turns. "considerable loss of altitude was economized in these maneuvers despite 3000 BFR on the jet engine.

4. The second flight was plasmed for a lammch at 30,000 feet in \$145 utilizing both the jet and rector engines. However, No. J engine on the 3-29 developed trouble and the drop was made at about 30,000 feet. The flight plan for this flight sailed for a lowel flight reas at 35,000 feet to a Yeak of 1.2 Math. No.. As a result of this low drop a marinum 198 of about 0,82 was reached prior to extanating all the rector frail. On

轮站期区销售资

Document 39, Letter, Lieutenant Colonel Marion E. Carl, Senior School, Marine Corps Education Center, Marine Corps School, Quantico, Virginia, To: Chief, Bureau of Aeronautics, Aer-AC-241, Subject: Reports of flights in the NACA D-558-II, October 28, 1953

DECLASSIFIED WD9276 HARA Date 5.

Seri 0115

CONFINENTIAL

CASETINE RELAT

Subj: Flights in MAIS D-555-2, report of

the way down it was intended that a brief chock on lateral, directional and locgitudinal be made, but due to fumms in the eccepit this was not down. Fort flight inspection revealed a hydraulis loak as being the primary remson for fumes in the mockpit. Time for this flight was minuteen (19) minutes.

Tranth m

THE REPORT OF THE OWNER, AND

5. The third scheduled flight was to be the last flight in β 144, the alreadt present by recent only. At about 35,000 feet and a could minutes prior to issues the pilot run out of congen. A prick check revealed ners mayon measure on the 2-558 system, as the calls presenters an about 15,000 the face pilots was opened and mermal breathing reases. The flight was shorted, all los and fuel was jettisoned and the 2-3 landed with the 2-558 system. Foot flight revealed a scrinus corgan lask in the coulding stateshing the suit to the alread is sufficient was required in the back run, this system would have been of little use high the pilot tried to itlike it. The time introduct from the 3-558 system was noticed at five (5) shortes. Thereafter the pilot carried a ball out both equippet with a much piece strapped to one leg as a third system.

6. The first concessful all recket flight was said the most day is \$143. The househ was made at about 35,000 fact. The rocket chardware lighted without more than ternal delay. During this slich the place light and as a result influence speeds throughout the ulish ware too high. Also, considerable difficulty are an explored holding proper sliching statistic day to to fuffet, after the rocket fuel are exhausted the attitute was held short five seconds with the result that diminis 125 ented on the publicar set has also up to be a statistic and the publicar five seconds with the result that diminis 125 ented on the publicar mean half of the public of the statistic was held short five seconds with the result that diminis 125 ented on the publicar mean half of the public of the statistic was held short five seconds with the result that diminis 125 ented on the publicar mean half of the public of the statistic was held short five seconds with the result that diminis 125 ented on the public first seconds with the result that diminis 125 ented on the public first second of the public of the first short on the statistic first second of the public of the short first short is and output of the public of the first and right that should not be completely controlled. When the noise dropped to the horizon full ately effect the alternaft. On this and all subsequent flights the none always sent down steeper than the plich Attantion of some about of before anything 110 full control was mobilished. This indexistely could have been toot avoided by sharing over landistely when the rockets and was hardward by sharing over landistely shart be rockets and was actualed. This holding the more in an enclose to be the same and and while the holding the higher altitudes never annealed 3 g, and even then at the lower indicated

- 2 -

annocation in when, accord

DEDUASSIRED DARA Date.

Ser/ 0315

COMPIDENTIAL

Bobj) Flights in Nals 1-558-2, report at

proofs extreme mare had to be conveloed to avoid pitch up as it and buffet occurred almost simultaneously. As noon as practical a glide speed between 0.85 and 0.90 BHS and established from which point the approach and lambing was positize. Touch down so the dry lake hed mas normally made at an 165 of 150 mph. Maximum altitude attained on this flight was about 72,000 feet.

 The second all recket flight was shaller in all respects to the first with almost the same results. Maximum altitude attained was about 75,000 feet.

8. The third all recket flight started off a hit differently in that the beaking of the D-556 in the D-59 was accomplished the evening prior to the flight rather than the saming of the flight. Despite unexpected dalay this permitted logaring the ground at short 5000 instead of short 1300, as a result it was could, the lox more stable, and the 3-29 was allo to go higher. Learest was main at about 14,000 feet however, the D-555 dropped to 25,000 prior to beaking up. This was caused by fellows of the first chaster to light. Finally another obsater was tracked off from which point all researing sharbers lighted merally. This time the pilot sameged to stay quite close to the options slish schedule which was just below the Eaffet range. As a recell so thifts are noted that the reckets quit at short 75,000 feet initiated altitude asi itst 00,000 feet initiated was reached on the patherner, timiner initiated speed on the poorer was 150 uph 145. An JUM of 1.5 was statening pilor to recovery from the first.

9. The fourth flight was made for the purpose of stisining maximum speed, is on the third flight the E-25 was loaded the night before and take off was hade at about 04.0. Leanch was made at about 04.0. Leanch was made at about 04.0. Leanch was made at about 04.0. Leanch was made at about 04.0. Leanch was made at about 04.0. A grant has been shown which was about 0.2 to 0.4 grant willows the rank will be ranked at about 0.2 to 0.4 grant at an enterview and the show the second of the se

10. The fifth and last flight on \$144, was made two days later. The B-29 took off at about 1300. The Laurah was weld at shout 31,000 feet and this bins pulsaver sum made at 55,000 feet at 0.4 g. During the pushwar a maximum indicated altitude of

- 3 -CARADENTIAL

URCLASSINGO LEVEN MAD 92.76.31 LALZ MARA DEM ST2/50

PERSONAL PROPERTY OF A CONTRACT.

Ser: 0115

CONFIDENTIAL Body: Flights in face C-555-7, report of

21

66,000 was noted. Up to this point it was a good flight even the lateral conflictions were being well controlled by energetic use of the alterons. However, the plint at this point permitted the dive to become too steep with the result that the airwaft descended too los too score precluding optimum speed, A true sir speed of about 1240 mph was reached at about 40,000 feet. There was evidence also that not quite all of the fuel was utilized. For this flight, then from Lemma to Lending on the dry lake had was nime (9) minutes.

11. Bechanics of each flight as far as the pilot was concurred from B-39 take off to isomeh off the D-356 was always the sums. Insudiately after take off of the B-29 the pilot shed his olothee and donned special undereast, then with the help of the representstivesfrom All, and the levid Glarks Compary climited into the prosence with 48 about 7,000 fast the ollot was ready and started entry into the D-558-II. At about 10,000 fast energy high started outry into the D-558-II. At about 10,000 fast energy high started entry late the D-558-II. At about 10,000 fast energy high started marked point until first minutes prior to launch light turned on. Free this point until first minutes prior to launch the pilot was merely along for the ride and did shoot nothing. At five winutes pelor to isometh up pilot started his shock off with Mr. Groosfield on the intervers and performed all steps as required up to the deep. At draw the only remaining item was lighting off the rocket chardens. No. 3 charter was always touthed off if the imposer preserves permitted or within about ton scoods offer langet, is fast as indicated at the realised the store started up and the remaining two measure fired. We note think files in a #1.4 this was redified show for 3 would not fire, to going on to Mn. A then nowing has to Mr. 3 would not fire, to going on to Mn. A then nowing has to Mr. 3 would not fire, is going on

12. The hardest part of each flight was that of maintaining the proper stifteds in the slight. There was no stifteds gives ar artificial horizon in the compile and the pliot could see notther ground nor horizon. Assessment within the workpit was extremely limited. These possible for the pliot to turn his head about 30 deg left and right. The top of bis head touched the canopy, and while each right. The top of bis head touched the canopy, and while each turn the instrument panel as that only the tip of the tous touched the points. Macross of the bet panthe pliot was forced so far forward that full op elawater. In was ubriced in momenting less than full op elawater. In was ubriced in something less than full op elawater. In arginal and could probably have been maintained only by use of the destries powered stabilitain down to below 35,000 feets

+ 4 +

COMPTONENT

ALC: N

Dect. ASSINCE 1007 MAD 92.76.31 407 Kulha Dira 512/50

NECTURE Secto QL15

CUMPICENTIAL

Subje Witghts in MACA D-550-2, report of

when the suit would have definited. Many of the engine instruments eace bidden by the pilot's lags and it was very difficult to neve the lags enough to see than due to the enumped position and limited space.

ALC: NO.

13. Bus to the limited time spect in the structure and various problems encountered during this like moh as ortablishing positive control in the pullmut, sotting up the proper glids speed, and finally the proper pattern for a deal stick leading, so detailed evaluation of the handling characteristics was made. In general it was felt that directional stability was material advantation of the handling characteristics was made. In general it was felt that directional stability was material advantation of the handling characteristics was made. In general it was felt that directional stability was material advantation of the handling characteristics was made. In general it was felt that directional stability was material advantation of the second stability was material advantation of the second stability was provided by the second stability was also estimated at high altitude appeared to be more a function of law ecculeration and was particularly reliable anytime stars of the alternative material advantation of particularly reliable anytime stars of the alternative material advantation of particularly material advantation of law ecculeration of particularly reliable anytime stars of the alternative material advantation of particularly reliable anytime stability and an technicy for contability and in the ballet of a supersons at a star star star of stability appeared to be inspired to prove the advantation of the second stars of the inspired in a supersons and in the ballet combiner of the stability and an index inspired to be advantation of the second stars of the inspired in advantation of the second stability was alightly positive and stability appeared to be inspired to be appeared at a structure particular stability and in the ballet combiner of the second stars a structure advantation of the stability and the stability and the stability and the stability as a structure to a stability appeared to be appeared to be appeared to be appeared to be appeared to be appeared to be appeared to be appeared to be appeare

14. The pressure with utilized on the last five flights was a full pressure type manufactured by the Bavid Clark Company of foresetter, Ressolvations. This mult was about two years in the making. The pilot was able to open and close the worth place and reseve and replace the face lease. It is not possible for the pilot to don or remove the suit unrided. In fact, the pilot carried a built for the copress purpose of cutting his way out should the circumstance wrice in which it was accordary to get and should the science and out in which it was accordary to get

15. After the suit was properly fitted, two and a half days sure speck at AMEL in indocrimation to the energies and functioning of the suit. As the suit fitted alcost thin tight the first problem was flighting off alcostrophybic which turned out

- 5 -

CONFIDENTIAL

DECLASSIBED MAD 92743 LET HARA Die 5/7/5

Contemportune acres

MED rusi Seri 0115

100

DOMFINERTIAL publy Finghts in Nata 9-558-2, report of

to be quite an item when the pilot becaue too wars. After the first couple times in the oult this was mover again of any bousequence. In addition to the present schedule for indecerimation which includes both lisk trainer thes with suit inflated and deflated, a run to 00,000 feet in the charber, and couple explosive decoupressions, it is felt that a flight in a TO-2 with the pilot flying with suit inflated for a short time would have been of definite value.

15. At present one of the biggest problems is the control of body hest. The pilot is wither too hat ar too sold. Earsally this thread out is he too hat - to the point that a certain escunof perspiration was poured out at the same time at the pilot. To a serie estant this could be allowinged by better ventilation. Yentilation around the bed and fore as well as the grow and lags then it is severely limited particularly when the suit is inflated. With the mult definited it is not possible to one next of the controls and gene that are located on the side consolar of the controls and gene that are located on the side consolar of the controls and gene that are located on the side consolar of the controls and gene that are located on the side consolar of the controls and gene that are located on the side consolar of the controls and paper that are located on the side consolar of the controls and paper that are located on the side consolar of the controls and paper that are located on the side consolar of the same not restrained by the catory as was the more in the LoSS-11 Whe pilot can still turn his head only about 45 deg. It is easier to tilt the based up than it is to till if down. More sentitically difficult to alled into and out of the ordering. The pilot was continually sincy of y inshility to group and feel things properly. The gloves were too slick and too cather prove, increase vision through the face pilot escales which of methy is inremaning area of the pilot are used reducing width of methy is internating the face glass would be destrable a probably is internating area of the pilot was reducing width of methy is internating area of the pilot was been part into the part alone withem the obstex was about 20 line, and total thickness of paper and white was about 5 line.

17. Conclusions and reconveniations.

a. In detailed conclusions or recommendations on the aircraft are advanced. The pilot sam but little of the instrumented data taken on the flights - however, it should now be evaluable from SAGA. In general the pilot formed a high opinion net only in respect to the reliability of the airplane but also of the program as conducted and all MACA personnal the pilot unse in contact with.

- 6 -

COMPLETE BALL

1

And in case of the second second second

TIURA DANO STAR

Office -

Subja Flights in Math D-558-2, report of

b. In respect to the pressure suit the following requenendations are said.

Inspects guit vertilation and sutablish a method of positive heat control.

(2) Decrease antility of the suit in general.

(3) Re-design the suit to parait a pilot to don and remove the suit unaided.

(4) Decreases weight and size of the back pack and enote.

(5) Intrases the coefficient of friction on the face of the gloves,

(6) Ingrass sobility of the fingers.

(7) Intrease vision.

1000

Coolusinner

.

1920 A

CECLASSISIED NND 927631

40

It is occalleded that the muit is satisfuctory for continued flight use as an interim measure pouling improvements, and that it is the best muit for high altitude research flights now available.

> MARION E. CARL. 100

Concile.

E Sugar

COMPANYER

COMPUTER LAC

Bdwards, California January 25, 1954

DOM:

NWORAHNIN for BACA Readquarters

Habjact: Reslat neurals extensions used on the UNS engine for the H-SUS-II, No. 114 mirrilans.

102	Letter from MERS to MAN, dated 5-19-57, Minness,	
(c)	Latter from MACA to Batero dated 8-25-52.	
(H)	Latter from H4's to Hidge -lated 5-30-C, film 1900.	
(a)		
(17)		DHB:
(c)	Latter from NACA to HEPHI dates 10-10-12, NASynh,	
	(10 H (1))	 (a) Letter from MERS to MAPL dated 8-19-57, MARLENER. (b) Letter from MAPL to MARL dated 8-80-57, MARLEN. (c) Letter from MAPL to Balaro dated 8-85-52. (d) Letter from MAPL to Balaro dated 8-85-52. (e) Letter from MAPL to Balaro dated 8-85-53. Clowerpep. (e) Letter from MAPL to Balaro dated 10-15-15-33. Clowerpep. (e) Letter from MAPL to Balaro dated 10-15-15-33. Clowerpep. (e) Letter from MAPL to Balaro dated 10-15-15-33. Clowerpep. (f) Letter from MAPL to Balaro dated 10-10-152. MAPLED 10-155.

 Reference istars (a), (b), (c), (d), and (c), deal with a request for models extendents for the DES robust angles used in the D-SSM-II airplane. These extendious new proposited priserily to reduce the airplate pressure change at the notable entry with the possibility of eliminating the airplate rudder binge-moment discreteristics emboastered during high altitude flights at suppressive last numbers.

2. The musils extendious were first used to September, 1953, and a great improvement in the radius bings moments was apparent. Without the notain extensions, the radius hings-excent alone $C_{h_{\rm cont}}$ had a Large positive values thereaver the radius operating during high altitude flights with the maximum value occurring at a Mach number in the visibility of 1.5. With the course extensions, which reduced the said pressure ratio at an altitude of 60,000 fast from 13 to 5, $O_{h_{\rm cont}}$ remained magniture.

3. An additional benefit was derived from the use of the extensions in that at altitudes showe 15,000 feet there was an increase in threat which mounted to show 500 pounds at an altitude of 70,000 feet. Figure 1 shows the effects of the extensions on the thrust. The loss in threat at the inwar altitudes is not significant for the D-558-II because it is not the normal potental Clight range.

b. Reference letters (?) and (g) were concurred with the shility to determine nomile coefficients during ground threat start race when the essen are evereganized as would be the mass them nomile extensions are used. Thursfore, the value of the nomile coefficient was determined by threa different means; [1] Theoretically, using the equation.

 $a_{n} \sqrt{\frac{p+2}{p-1}} \left(\frac{p}{p+1}\right)^{\frac{p+2}{p+1}} \left[1 - \left(\frac{p_{n}}{p_{0}}\right)^{\frac{p-2}{p}}\right]$

where θ' is the ratio of equific bracks, p_0 is the scale writ produce, and P_0 is the conduction chamber pressure. (2) Experimentally by asking a ground

THE PROPERTY OF THE PROPERTY OF THE

Document 40, Memo, Donald R. Bellman, Aeronautical Research Scientist, To: NACA Headquarters, Subject: Rocket nozzle extensions used on the LR8 engine for the D-558-II, No. 144 airplane, January 25, 1954

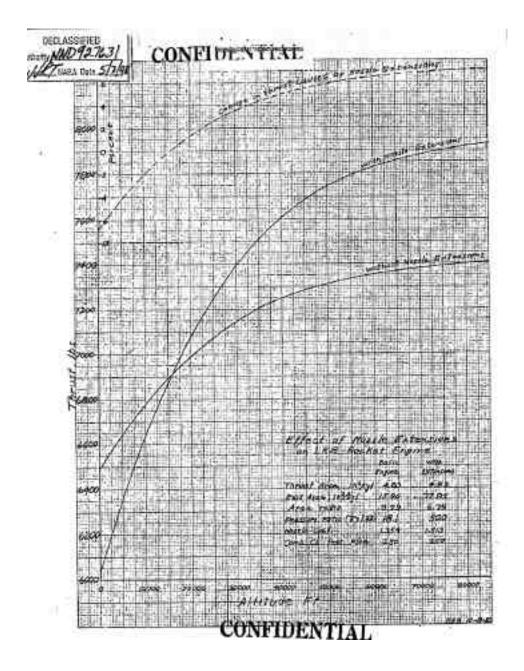
DSCLASSIFIED ALCONT NIND 9270 in the ZIAFA DAIN 577

**

Q.

CO^{rmanic}onaema (1,

run on the Elwards Air Force Pase thrust stand, and (3) Experimentally in flight at allitudes of whost 60,000 feet by noting charges between power-on and never-off somitizens. The following values were obtained:


Theoretical	Ground Buy	FILEN.
1,365	1.355	1.344
	1.396	1.356 1.355

It is experient that with there perticular extendious which expend the gas to 5 pounds our square inch, little or no experision oncome and that the menals coefficients can be determined during ground rune.

5. There has been a partial assumt of deterioration of the mosele in flight as shown in figure 2. In the cases of burnant in flight, there was no effect of the finame on the base plane or other parts of the sirelens. The burnants have occurred in some definite relationship to the mosele injector pattern. Experiments are nor in progress to determine if incomel or mome other model would be more suitable for the mosele extensions.

oo: Longley Anen Lewis Bonald R. Billman Donald R. Bellman Arromatical Becoardh Delectiet

CONFIDENTIAL

RECLASSIE ont arrestsal High Colo 化苯乙酸 Clinities 1000008

The addition of the bar that the state of Thoras -14 Th 24-14 MPH (14) HP. #274 (16) 25 #2 (4)2+3) **** 111 T.A.

February 3, 1954

National Advisory Committee for Aeronautics 1700 £

ANDAR Chief, Bureau of Aeronautico. Department of the Havy 18-March 10 Sector Company Weshington 25, D. C.

Attentions Mr. Oscar Bessio Changell

Subject

To

Results of use of rocket nozzle extensions for the LSS engine on D-558-11 airplane

References: (a) Buker ltr to MACA did 23 July 1952, Acr-SL-

MAGA 1tr to Buder dtd 27 Dec. 1951, LES: hbn

1. The use of uncooled nozzle extensions in lieu of redesigned cylinder normies to alleviate rodder occillations due to shook waves from rocket jet expansion was suggested by the Eureau of Aeronautics in the referenced letter. The nozzie extensions were subsequently built and provided to the NACA.

2. Use of the uncooled norral estemators has reached in considerable improvement in the rudder hings moment observations occurring during high altitude flights of the D-558-II at supersonic Mach numbers. It is believed that the results will be of interest to the Bursau of Aeronautics the remarks will be or interest to the bureau of Arrena of Arrena in connection with the suggestions of the NACA in Reference (b) that rocket cylinders be designed for correct expansion at altitudes of 30,000 to 40,000 feet. For the use of the Bureau of Arronautics, the results obtained on the D-558-11 have been summarized in a brief sensorandum, a copy of which is manual to work the proposition if the scolored by is molosed. It would be appreciated if the sociosure is also brought to the attention of the Aircraft Division of the Bureau of Aeronautics.

Document 41, Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Chief, Bureau of Aeronautics, Department of the Navy, Subject: Results of use of the rocket nozzle extensions for the LR8 engine on the D-558-II airplane, February 3, 1954

DECLASSIFIED Accord NND92.70 By GET WARA OWN 5/2/

-14--

640

ć

. .

Chief, Bureau of Aeronautics Department of the Mary - 2 -

3

February 3, 1954 12:3 10

10

3. The assistance provided to the NACA by the Bureau of Aeronautics in furnishing the subject nozzle extensions is appreciated.

APRILITY M ARCS AUTOM

- LINES - HELINY DUNALEST IN IL MOST STATES

Calls Times of corrubation H. Abbott Calls Times of voy Berry Ascistant Director Very Luging 15, D. C. for Research

strentions we wone sension

Enclosure Cy Heno fromstans dad 25 Jan 2094of restally colonorium for w/encls. The Life suggest on B-595-14 alregante

11 (1) FR (11 11 100) HIR NI 1912 (194) 300 IN-

a status technic an Winst Bull-Wind

0108:011

00, HEFHE (Not HEFTER 1tr dtd 21 Jan, 54, at), 11

y Alle a fin limplet rawise tribtstate her the inter-in and rawses ingrastering fit has ramits highly wonder? The supervised on the property of the second difference of the second d L - Optoble (1 - ALTHOUGHTY.

CONFIDEN

REC'D NACA

Scourds, California April 25, 1956

IMDODAL/0001 he liz, finning-

1. With reference to just letter of April 10, 1954, I will attempt to applify the conwards piloting appriance of Jae Walker and Shar Bitcheft.

2. Welker has had phioting mesignments as the D-550-T, T-1, X-2, X-5, and D-47; while Botehart has been with the D-550-T, T-4, X-5, D-550-H (jet paramet) and D-47. The Hight programs for these air-phices have been encoursed with Buddhing Qualifies, Accorrection Based and Fueldomente. In addition, the program on the D-47 has been encoursed with determining to a silvests of thembelling associated been encoursed with determining to a silvest of thembelling associated been encoursed with determining to a silvest of thembelling associated and being the program on the D-47, B-4, Z-5, D-550-1 and B-550-H (jet percent) have been in the subscript on transmit appeared many, while, of course, the X-1 to be the teacoutte and reparameter encourse.

3. I would also like to paint out that Joe Welker's piloting experience of Levis we concerved will Asian ris jet flight sheltes, and high performance feel tests. Londontally, Restern Alations in their letter of formin 15, 1951 to Dr. Boyless wes complimentary of Held His 2000, of which get Meller was co-outling.

4. I'm sending such their of Walland for you to lack none. If they are not much you note, places let us have and us'll get additional ment mate. Stan Dokament bank as lower before Halpspeth could get some gists. I will follow up on this and Dermard them on to you.

 I're stiading = mapp of Envir S1100' column of April 25, With may be of informat be you.

Marian I. Each Identification Officer

instant.

Document 42, Memo, Marion I. Kent, [NACA HSFRS] Administrative Officer, To: Mr. Bonney [NACA Headquarters], Subject: The research piloting experience of Joe Walker and Stan Butchart, April 29, 1954

DEGLASS/FIFE Ustr

WORDS PTERMAN MICH

Eduarda, California July 29, 1954

Statt's

Repeating

Autoria Racht ----Racht ----

Print.

Philtips

Rott-Cast

Ban's Thompson

Lim.

View

125

With

The set

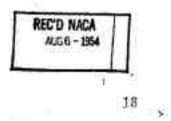
Apprendi Mar relates

Sen Lines

From HIPS To MACL Bondquerters

Dahjeet: Low temperature difficulties with hydrogum permilde in model D-998-II strengft

Reference: Mana MACA Higtre to MBFS, CloWedlr, July 29, 1954, with inclement from Baker, July 5, 1954, B.F.Goffman


1. Magarding the problem of perardide freezing in the lines of the D-SH-II airplane, between the peroxide tank and the problem bypase wrifics, this Station does not consider the situation of safficient importance to justify the superce involved with installing electrical fractions involved with installing electrical fractions in the provide tank and the problem in the provide tank and the problem is the superce involved with installing electrical fractions in the provide tank and the provide tank and the problem is the provide tank and tank and tand tank and tand tank and tank and tank and tank and tank and tand

- b. This Station took remained action on achasgingth flights by heating the peroxide to approximately 50°F prior to filling the aircraft and shortsman the delay between liquid argues filling and takeaff.

Acoing Older, High Speel Flight Station

JHT I PROC

ŧ/

Document 43, Letter, De E. Beeler, Acting Chief, [NACA] High-Speed Flight Station, To: NACA Headquarters, Subject: Low temperature difficulties with hydrogen peroxide in the model D-558-II airplane, July 29, 1954

060	ASSIE				2000	maria	1976
ucony M	APA Date	5/5/41	DEPARTM	an design of me			
10	y		MARCH	1970H ER, O. G		Asp.#L-53	0.00
	<u>č o n</u>	FIDENT	<u>1 A L</u>			2 JUA 01086	
	Seat.				ronautios, 1	724 2 \$t., U. W	e- R
	8-53 ji		raion of LBB availability		cet anglis f	or use in Dyna.	8.
و سرطام	Zefs	(n) 19404 25	r 416 11 Apr	11 1952			
Pretin	Hanlt (1) Sentetive General Restitications, 200 Hodel Senigration 22 114, 6000 15. and 6000 15. ratings.						
	engine This we Account and ass	currently use ink to being p mice contands amblics will	4 in the D55 erformed at 10se 55-808 be reedy dur	H-2 mirginn Heartion Mot Med. 18 10 (ing the lat	s is approach tore, last. un expected that for part of t	Lé liquid rock ting completion dor Barama of tide sigino par this year far the new configu	24
i.	attempt meinten ef enng	to be fourtree	the performance and preserious and a second second second second second second second second second second second second second s	nos, reliab plant. "im tably the d	lity, regrost ages in the d brant shabbed	caling experient insbility and lealge of a could be galiars,	
1-1-10	describ (All sith anglus tested	nd in anclusu mr 5000 lbs. nonponents ha	rs (1). It mr 8000 lbs. Ve bean stre b. lovel. I	will be note of threat. as designed t he ballow	al that this Buts is pos- , prepartions at that this	roved 108 segins segine can be : reible since the d and ser being feature of the	rsted same t
1112 1112	Westing to the south	e of little b rowed. It u spaniet by an	enefit to the ill be moled approvishing	e flight pro from moder leptovenent	agrie uilees aure (L) that t is specific	racess of 6000 1 rackst throat a separation at 1 i impulse. Then rold be of inter	Nonation 1000 lbs. reform,
	strylas om be sparate	m operations ands to the e	should be fund the fund of the second	mished to b currently p enventing p	dite burenu s shoë 5000 15. mp speed nr	for future Dis that final at sugine out be trinning the pu field.	duskaente mode to
	C O N	a ακανουν, π.σ. ΓΙΩΕΝΤ	111		E. K	affreen	. н
			0	X. 利益》	ARIE		

- 1

Document 44, Letter, B.F. Coffman, Chief, Bureau of Aeronautics, To: National Advisory Committee for Aeronautics, Subject: Improved version of the LR8 liquid engine for use in the D-558-II airplane, June 2, 1954

NND 927631		a lagranda de la construcción de la construcción de la construcción de la construcción de la construcción de la
ETANA DAIN 5/2/40	Tarina and	iredue
	BHI Badel Decigne	tion TH 134
	(6000 # Thirt	
Rey Walgha Doviet (& Thread, Charley Rey Notion, Station Total Social Mile	saige Asignminity	2438 (mm.) 9789 (mm.) 3455 (mm.)
Motor of Thrush	Oustern	4
San Inval Cornet I. Intividu 2. Complete	a3. Chieffor	1300 (min.) 6000 Å at _00
Winnet at 90,000 I. Complete		7000
	Bert with 5.7 erus of Route Extension, its. Ingine	7550
Daniga Goldinso-F	ud listic (9/7)	1.15 £ 35
Poselfie Seption	(dantiga G/P)	192 sec. (atn.)
Propallanter 1. Funl 2. Coldinar		Alcount/HEL-4-6091 - suter alatara receipt feal aland 10 a succiard opcoific gurethy of .050 2.610 ph 6597. invald organ/All-0.10, Grade H. Type II
 Francort Francort Francort 		Bitrogen All-3-4013 965 hydrogen percende
Propullant Genam 1. /001 2. Ocidirar 3. Juny Driver		24.5 2.F.S. 17 P.P.S. 0.3 F.F.S. (1 shardwer) to 0.55 P.F.S. (4 standary)
tichapaan Suction L. October 2. Pail		35 pci Nisi 23 pci Nisi
Maifald Prosmers 1. Griffing 2. Fmil**		330 pain to 350 pain 350 min to 370 min

COMERCIPATION

444-

DECLASSISIED Autority NIND 92763 ILAPA 3010 5/7 Rela

an and a state of the section of the sector

histoldes Canada Upanighteeting

Turburochus Election

MI Hodel Sealgestico TH 114

(6000 # 'llisun's)

First Selve Juliet Freeders Intra One Blood

L. Steed During Run Smart Can Intel Promoune Electrical Requirements Type of Typitian

Tienel Charber Couling Toul Aparton

Thrusi to Englas Weight Betto Gratesliability

Similar and Operation Statistics

Rodyn Accoloration Londo

425 to 450 pails.

6.4 ft3/ min. S.T.F.

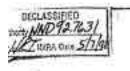
Ald to 440 puls

23-28 T.D.C. LAN GAR.)

Stori alcohol-autor air, suppor for ignitor with bigs incrites sparts plug.

Regenerativo (fuel)

1505 Bits Bankinfor, quisin


17

Nogine to explain of operation with charbors started or stopped individually is any response by second actich mentrols

Souties1 (threat vostor ap) to 30" data threat vostor

10 g downwird along vertiaal ender line, 5 g Snee and aft slamp horizontal phone, 5 g meileg upward, 5 g soting pideward in stüme dissertiam

THE COME A.

Approximation of the optimization of the

July 23, 1994

2 PODI	National Advisory Consistee for Aeronautica
Tot	Chief, Bureau of Aeronautics Department of the Navy Magnington 25, p. C.
With Same	Transmiss and the of the lines and the

Subject: Improved version of LHS liquid rocket engine for use in D-558-II airplanes; availability of

Seferences BuAar itr to MACA and 2 June 54, Aer-SI-55 Ber 010966

 In reply to reference letter, it will be desirable to use the 8,000 ib. thrust version of the LMB engine in the D-958-II mirplanes, since the improvement in specific inpulse will increase flight time available at high Mach numbers. The increase thrust will improve the flight performance slightly and will increase the flight performance slightly and will increase the flightbilly of the angine by perulting greater thrust variations.

2. The exact arount of improvement in performance cannot be determined since the ratings given in the referance letter were only for the 5000 pounds thrust engine. If similar data are available for the 3000 pounds thrust engine, it will be appreciated if Eureau of Aeronautics can provide them directly to the NACA High-Speed Flight Station at Edwards Air Force Ease, Attention: Kr. W. C. Williams.

3. It appears that the change to the improved engine one be accouplished gradually during normal overhaul periods. Gertain of the improved parts are interchangeable with existing parts and two of these, the turbing governor and the gas generator, offer an immediate banefit by greatly reducing maintenance time. Therefore, it is suggested that these two items be next to Edwards as soon as they have been sheeked on complete angles and are available for use on present engines.

NO 14. MARCE

CloWidlf CC: HEFS Ira H. Abbolk Assistant Director for Research

Document 45, Letter, Ira H. Abbott, [NACA] Assistant Director for Research, To: Chief, Bureau of Aeronautics; Department of the Navy, Subject: Improved version of the LR8 liquid rocket engine for use in the D-558-II airplane, July 23, 1954

GECLASSIRED NND9270 TANKS AND ADDRESS OF TAXABLE Activati 1946 sti - NUU DEPARTMENT OF THE NAVE BUREAU OF AEBOMANTICS + 7.97 WASHINGTON 28. D. G. 油 Aur-51-532 D-558 ONFIDENTI 11 AUG 1954 11 - 128 Spec: Chief, Baroau of Aeromatics Yo: Splicoal Advisory Windtites for Aeromatics 1934 F Street, N. W. Numbington 25, D. 0. ٠ Bulija Improved Version of LOU Alguid Books's Engine for Ver in 1556-2 Airplanes; swailability of 1 di vivezz (a) 10.0% 14r ded 23 Ady 1954
 (b) Nu Anv ltr Anv-61-53 nur 010066 did 2 Augus 1954 Belli 11111-00 100 Circlesian. Epcls (1) Tentative General Operification, MMI Model Designation Pa-date fillia, 8000 10. rolding 860. CB). Reference (a) states that the specification for the 8000 lbs. engine version was not received with reference (b) by the Mational Advisory Countities for Aeronautica. Since it appears that this specification may have become inadvertently detached from reference (b), enclosure (b) to forwarded for your information. Buchling Links Think 85-21 Printers, Sh-h -31 th. VINC 1. Y. Chinan ii. He ditmenter John with Post---415 at 1 = 1983 21 CONFIDENTIAL 10000

Document 46, Letter, B.F. Coffman, Bureau of Aeronautics, To: National Advisory Committee for Aeronautics, Subject: Improved version of the LR8 liquid rocket engine for use in the D-558-II airplane, August 11, 1954

DEDLASSIE 3666

NUMBER AND ADDRESS OF

Page

TINTATIVE CEREMAL SPECIFICATE ORS

furberocket Engine

BME Model Sentgration TR 134

(9000 # Thrust)

Day Weight Turnet Chamber Assembly (4 Turnet Chambers) Day Weight Turnespurg Assembly fotal Engine Weight	243# (max.) 97# (mxx.) 347# (mx.)
Busher of Toront Chushern	4
See Lavel Roust Patings, Ibs. 1. Individual Chesher 2. Complete Regime	2000 + 2-1/55 8000 + 2-4/28
Brust at 50,000 Feet, Ins. 1. Complete Bagine	8775# 2-1,95
Brust at 50,000 Feet with 6.7 area ratio through use of Newale Extensions, lbs. 1. Complete Engine	9300 + 2-1/85
Dealgn Oridiger-Faal Hation (0/F)	1.16* 35
Specific Inpulse (design G/F)	203 sec. (min)
Propelinitat 1. Fool 2. Octimer 3. Prosecrising gas 4. Page drives	Alastel/All-4-6091 - meter pixturn rocket fuel wined to a standard specific gravity of .850%.010 at 600%. Lipitd argumylik-0-10, Grade B. Type XI Hitrogen/Mil-5-6011 905 hydrogen paraxide
Frephiant Commention I. Fuel 2. Oxidizer J. Fung Drive	15.3 P.P.S. 31.3 P.P.S. 0.35 P.P.S.(1 chamber) to 0.65 P.P.S.(4 chambers)
hobepunp durtien Freenuren 1. (x):diser 2. Fiel	15 2011 19500 1,3 peri 10200
Manifold Fremewords 1. Oxidiant ** 3. Fosl **	445 peis to 475 peis 475 peis to 475 peis
seferminable operating pressure differential	1 to to 20 per fuel (1)
PARTINENTIAL	Euce -

CONFIDENTIAL

Document 47, Letter, John W. Crowley, [NACA] Associate Director for Research, To: Deputy Chief of Staff/Development, United States Air Force, Subject: Supply support for the B-29, NACA Serial No. 137, based at the NACA High-Speed Flight Station, Edwards, Calif., August 25, 1955

DECLASSIBED Λŧ HARA Dalt

Jugs 2 of 2

Sectative General Specifications

POR ATTER

Turborcolet English

Hil Model Conignation 1W 114

(2000 # Muset)

Pusp Drive Islet Pressure

Loort Gas Blass 1. Hand Daring Ron

Iner's Gas Inlast Pressure

Electrical Regitrements

type of Ignition

Thrust Chasher Cooking.

Fold System

incest to Engine Weight Matio Controlishility

Starting and Openting Attitude Design Anceleration Londo 419 to 440 pain

7.7 19/ min. 3.T.F.

900 in 525 jula

20-28 V.B.C. 14 A (BAR-)

Sthyl alsohol-mater six, oxygen fet igniter with high tennion spark plug

Ingenerative (feel)

H2⁰2 for generator driven turbopuop

23.5

Engine is mapshie of operation with checkers started or stopped individually in any sequence by mnemal suitch control

Vertical (tirust vector up) to 30° down thrust vector 10 g downward along vertical center hime, 5 g fore and aft along borisontal plane, 5 g acting yeard, 5 g setting oldeward in atther direction.

INFIDENTIAL

Document 48, Letter, Joseph R. Vensel, Acting Chief, NACA High-Speed Flight Station, To: Chief, Bureau of Aeronautics, Subject: Completion of the D-558-II Research Program, June 17, 1957

DECLASSIFIED Astorty NND 92.763 PLACTURA Dice 5/2

14

0.12

Trant

Tus

August 25, 1955

.

.

Mational Advisory Committee for Aeronautics

Deputy Chief of Staff/Derologeant Builted States Air Force Washington 25, 0. 0.

154

publicate Supply Support for 5-19, Mai Scriel Ma. 117, based at Rain. Righ-Speed Flight Station, Edmards, California.

.

CODERED IN THE OWNER.

The subject simpleme is the worker ship for the 3-558-11 research simplement, and was done ted to the SACs by the Navy, Survey of Arrownuttre, using the provisions of Public Las 672, 61st Congress. At the ther of its transfor this was the only 3-29 still in active use by the Navy. Supply support for the simpleme was discontinued by the Navy recently show their supply of spare parts becaus achaustal.

Existenance appress on a converied gradies haves are needed from them to time for the subject aircraft. The D-200-HI airplanes are being seek in research on carriage of external stores at supersonic speeds, problem of lateral stability and control at transactic and supersonic speeds, and segnitate and distribution of air loads at supersonic speeds. Although these research stability being controled with this simpleme have not been directly requested by the Air Force, it is believed that the program is of sufficient direct intervent to the Air Force to surjectly under a subject to the intervent of sufficient direct intervent to be Air Force to surject the intervent base parts by the Air Force on a nonrelatorsable basis under Farsgraph Ma(1), Volume II, AFS 67-2. It has been estimated that the value of these parts, including engine shanpen smild be apprecisety \$350,000.00 per year.

The comparation and anulatance of the USEP is this motion will be appreciated.

John W. Cruwlay Associate Elivertar for insearch

E760200ÖR1

Ritt

.....

19:22

DECLASSIFIED WWD927631 ZANEA Date 5/7/4

ADVIDUAL OF TAXABLE ACTOR

CONFIDENTIAL

June 17, 1987

1.00

Chief, Bureau of Aeronautics Westington R5, D. C.

Vis: U. S. Nevy Limison Office Air Force Flight Test Center Biwards Air Force Base, California

Subject: Completion of D-SOB-II Research Program

Teferences: (a) Aer-17-73, 06725, dated 28 May 1907 (b) MACA/P11, Ber 910, 54 May 1907

Dear Stri

The two reference letters inquire as to the disposition of the LHS-NN-5 engine, Serial Number 55, and the spars parts and reinted equiptent. This engine represents an improvement over the earlier LHS rocket engines in that the nominal thrust has been increased from 6000 to 8000 pounds and the specific impose has been increased from about 190 to 207 seconds. In addition to the increased from about 190 there have been other modifications to improve the operation and reliability of the engine.

The -8 engines was originally intended for the D-588-II simplanes, but flight tests on these airplanes have now been completed, and it is feit that the small increase in performance that would result from the use of the -8 engine would not warrant extending the flight tests because of the large amount of sampower involved in these tests. The possibility of using an -8 engine in the X-18 airplane has been complared and calculations show that the maximum attainable much number could be increased 0.5 by such a change. However, the cylinder configuration of the -8 engine is set for the D-508-II airplane and would have to be changed if the angine were to be put into the X-18 airplane. Such a change would be rather extensive and time consuming. Furthermore, the No. 25 engine has not yet been qualified for flight which

CONFIDENTIAL

CON

000LASSINED Auctiony NMD 92.76.31 014 LE TEURA Data 5/2/91

might further delay its use. Considering all the above items, it is felt that this Station will not be able to use the LSB-MM-8 rocket engine.

Some of the parts of the -8 engine such as the pump control valve and the catalyst bed are interchangeable with those co other LHG engines now in use on the X-15 and X-15 airplanes and represent as isprovement over the carlier parts. It would be appreciated if these parts could be made available to these projects.

Since the NACA D-SSS-II program has been concluded, this Station has no further need for LRS-RH-S rocket engines, or related equipment. We would, however, like to retain all LRS-RH-S spare parts that are usable on the LRII engine to support the X-1 airplanes.

Very truly yours

Joseph R. Vensel Acting Chief, NACA High-Sport Flight Station

धारकः इस्व १९४४

12

ec: NACA Headquarters (3) w/cym Ref. (5) (3)

CONFIDENTIAL

Index

A-4, 10 Abbott, Ira H., 109, 139-140, 146 Aerodynamic center, 52 Aerodynamische Versuchsanstalt, 29 Air Force Flight Test Center, 1 Air-launch technique, 118-123 Angle of attack, 24 n Ankenbruck, Herman O., 34, 54 n, 77-85 Apt, Milburn, 27, 54 Armstrong, Neil A., 34-35, 40, 43-46 Army Air Corps, 21, 22 Army Air Forces, xii, 3, 7, 22, 58 Artz, James H., 51, 53 Aspect ratio, defined, 4 n

B-29, 18-19 ill., 36, 40-41, 50, 119, 150, see also P2B-S1 B-47, 10, 127 B-50, 119 B-52, 10, 42 Beeler, De E., 142 Bell Aircraft Corporation, 4, 22, 57, 119-120 Bellman, Donald R., 67-76, 136-137 Bf 109, Messerschmitt fighter, 2 Boeing Airplane Co., 10, 38 Boeing 707, 10 Boeing 757, 10 Boeing 767, 10 Boeing 777, 10 Boyd, Albert, 7 n, 40, 60 Bridgeman, Bill, 32-33, 40, 53-54, 60, 121 Bush, George, 36 Butchart, Stanley P., x ill., xii, 34-46, 42 ill., 50, 60, 141

C-45, 39-40 C-47, 19 Caldwell, Turner, 7, 60 Carl, Marion, 7, 34, 40, 51, 60, 113-114, 129-135 Cassidy, W. B., 113 Century series of fighters, xi, Champine, Gloria, xiii, 11 Champine, Robert A., x ill., xii, 8, 11-13, 14-23, 15 ill., 17 ill., 19 ill., 21 ill., 31, 38-39, 50, 60 Chance Vought, 26-27 Chord, defined, 4 n Clark, David M., 51 Clark, J. R., 26 Coffman, B. F., 143, 147 Color for research airplanes, 116 Compressibility, xii, 3, Conlon, Emerson, 4 Conrad, John, 52 Coupling dynamics, see High-speed instability Crossfield, A. Scott, x ill., xii, 1, 10, 12 ill., 22, 32, 34, 35-41, 43, 46-56, 60, 109-113, 129 Crowley, J. W., 110-111, 150 D-558-1 Skystreak, xi-xii, 2-11, 20, 21-22 ill., 24-25, 28, 38-39, 61-62, 65, 73-76 bureau and tail numbers, 5n TG-180 (J35) engine, 6, 8n first flight, xii, 7 first NACA flight, 20 stalls, 25 ultimate load, 30 cockpit, 31, 38 all-movable horizontal stabilizer, 49 n, 56-57 numbering system, 58 drawings and data, 61-62 elevator vibration, 67-72 tail buffeting, 73, 75 aileron roll data, 74-75 dynamic stability, 75-76 loads, 87 D-558-2 Skyrocket, xii, 4-5, 7, 12, 13, 20, 24-25, 28-36, 29 ill., 33 ill., 36 ill., 39, 40, 41 ill.-42 ill., 48-56, 61-62, 77, 84-109, 129-135 bureau and tail numbers, 5 n ultimate load, 30 cockpit, 31 first flight, 31 modification to air launch, 31, 65 speed and altitude records, 32-34, 51, 54-56 airplane that wrote the book, 48 swept wings and handling qualities, 48 ff. air launching, 49, 121-123 all-movable horizontal stabilizer, 49 n, 56-57 turn-and-bank indicator, 50 n comparison of swept wing with X-1's straight wing, 52 electrical power, 52 drogue chute, 53, 101

nozzle extensions, 55, 136-140 other modifications for Mach 2 flight, 55 drawings and data, 61-62 stability, 78-79, 82, 83 buffet, 79 drag, 79 aerodynamic heating, 79 hydrogen peroxide and, 142 D-558-3 (never built), 58 David Clark Co., 51, 113 DeGraff, William, 42 ill. Delavan, Charles, 11, 60 Dihedral, 54 Divergence, 54 Donaldson, E. M., 7 Douglas Aircraft Co., 1, 4, 7, 8, 9, 29, 32-33, 58, 65, 67, 69, 104 Dryden Flight Research Center, xii, see also High-Speed Flight Research Station, High-Speed Flight Station, Muroc Flight Test Unit (all earlier names) Dryden, Hugh L., 32, 34, 54 Dunne, John, 57 Dutch Roll, 31 Dynamic stability and instability, 54 n

Edwards Air Force Base, see Muroc Army Airfield South Base, 49 runway at South base, 53 Ejection system and procedures, 39, 45 Engel, Richard, Maj. Gen., 1 Everest, Frank 'Pete,' 32, 40, 60 Explorer II (balloon), 33 External stores, 35, 36 ill., 105, 124, 126

F3F, 31
F7U Cutlass, 26-27
F-84, 37
F-86, 12, 13, 30, 32, 33 ill., 37, 49
all-movable horizontal stabilizer, 49 n
stability, 127
F-100A, 36, 37
Feathering a propeller, 43
Fischel, Jack, 92-108
Flights of Discovery, 59
France, 11
Fulton, Fitzhugh, 52

G force, 24, 27 Goodlin, Chalmers, 22 Gough, Ed, 22 Gough, Melvin N., 14-15, 22 Great Britain, 11 Griffith, John, x ill., xii, 12-13, 16, 20-28, 31, 50, 60

Hall, Donald, 42 ill. Hallion, Richard P., xii, 1-2, 24, 38, 60 Hanna, Dick, 42 ill. Hedgepeth, John T., Jr., 141 Heinemann, Edward H., 9, 11, 30, 33, 58 High-Speed Flight Research Station, 11, 15 ff., 34, 49radio communications, 51 ethos, 52-53 High-Speed Flight Station, 11n, 50 High-speed instability, 53-54 Hoover, Herbert, 14-16, 15 ill., 17 ill., 18 ill. Hyatt, Abraham, 3 Hydrogen peroxide, 30, 142 Hyland, Andrew, 39

Icing research, 23 Ikeler, Vicki, 55

Jansen, George, 32, 40 n Jet assisted take-off, 20 n, 22 ill., 31 Jet Pilot (movie), 25-26 Jones, Robert T., 4, 28 Jones, Walter P., 40, 42 ill., 60 Jordan, Gareth H., 86-89

Kármán, Theodore von, 28 KC-135, 36 Kent, Marion I., 141 Kincaid, Gilbert W., 55-56 Kotcher, Ezra, 3

L-39, 13, 23 Landis, Tony, 11 Lane, Eddie, 51 Langley Memorial Aeronautical Laboratory, 4, 12, 14-15, 28 Lewis Laboratory, 13, 23, 25 n Lilly, Howard C., 7, 8 ill., 15, 20, 60 death, 7-8, 20 Liquid oxygen (lox), 55 Litchfield Park, Ariz., 45

M.52, 57 Mach 2 Dawn, 59 Mach, Ernst, xii, Martin, John F., 1, 31, 60 May, Eugene F., 7, 8 ill., 31, 60 McKay, John B., 34-35, 40-41, 43-45, 60 Meteor, 7 Miles Aircraft Corporation, 57 Moise, John W., 55 Mojave Air Station, 65 Monocoque construction, 7 Muroc Army Air Field (later, Air Force Base still later, Edwards AFB), xii, 17, 22 n Muroc Dry Lake, 17 ill. Muroc Flight Test Unit, 25 n, 46, 66 housing, 65 Murray, Arthur, 27, 54

National Advisory Committee for Aeronautics (NACA), , 3, 7, 14, see also Langley, Lewis, Dryden Navy, U.S., xii, 3-4, 54 Navy technical mission to Europe, 29 North American Aviation, 37

P2B-1S, xii, 16, 29 ill., 32, 34, 36, 40-41 ill., 42 ill.-46, 44 ill., 49, 108, 119, 129-132 Explosion of number four engine in, 44-45
P-38, xii, 3, 23
P-40 Warhawk, 23
P-51 Mustang, 23
Paperclip, Operation, 47 n
Payne, Richard E., 42 ill.
Peele, James R., 90-91
Philippine Sea, battle of, 37
Phillips, William S., 59
Pitch-up, 24-25, 31, 35, 48 ff., 98, 99
Pressure suit, 43, 51, 80, 109-115, 124, 133-135

Raczkowski, Thomas J., 39 Reaction Motors, Inc., 29, 47, 86, 143-149 Research airplanes, color for, 116 Rogers Dry Lake, 17 ill., 76, 96 Root, L. Eugene, 4, 29 Ruseckas, Joe, 51n, 113 Russell, Charles W., 42 Russell, John W., 47, 55

San Jacinto, 36 Santner, F. A., 113 Schneider, Edward T., xii, 1, 28 Sjoberg, Sigurd A., 24-25 Smith, A. M. O., 5, 29 Smith, R. G., 4, 6 Soulé, Hartley A., 64 Sound, speed of, xii Stack, John, 3 Stalling, 48 Static stability and instability, 54 n Sullican, J. E., 112 Supersonic yaw, see High-speed instability Swept wings, 4, 28-29, 48, 57 Szalai, Kenneth, 1, 58-59

TBM Avenger, 36-37 Technological revolution, 31 Tipton, Joseph L., 42 ill, 43-45 Torpedo-Bomber Air Group VT-51, 36 Transonic speed range, xi, 3, 23-24, 28, 29 Trapnell, Frederick, 60 Truax, Robert, 47 Truszynski, Gerald M., 47 n Turndrup, Don, 40

Van Every, Kermit, 30 Vensel, Joseph, 12 ill., 25, 38-39, 42, 50 von Braun, Wernher, 47

Walker, Joseph A., 39, 40-41, 42 ill., 60, 141
Westinghouse J34 jet engine, 29-30, 52
Williams, Esther, 56
Williams, Walter C., xii, 11, 13 ill., 25, 38, 46, 116-117, 124, 126-128
Wind tunnels, 2, 28-29
Wing slats, fences, leading-edge extensions, and flaps, 30, 33, 35 ill., 48 ill.-49, 101
Woods, Robert, 4
Wright flyer, 57

X-airplanes, 58 X-1, see XS-1 X-1A, 36, 40, 54 X-1B, 40, 152 X-1D. 54 X-1E, 7, 20 ill., 40, 152 X-2, see XS-2 X-3, 37 X-4, 36, 37, 52, 123 X-5, 36, 37, 123, 127 X-15, 37, 54, 58 XF-92A, 37, 58, 123 XLR-8 (Reaction Motors 6000C4) rocket engine, 29, 47, 124-125 modifications for Mach 2 flight, 55, 86, 136-140 Improved version, 143-149, 151-152 XP-42, 57

XS-2, 4, 5, 13, 32, 37, 51, 54 XS-1, xii, 3-4, 7, 15 ill., 16, 17 ill., 18-19 ill., 20, 25-26, 37 air launch techniques, 48, 49, 118-120 all-movable horizontal stabilizer, 49 n, 56-57 comparison of straight wing with D-558-2's swept wing, 52

Yeager, Chuck, 15, 17 ill., 27, 33, 54, 56, 119 YF-92A, misprint for XF-92A, 123

Zero-zero ejection seat (in reverse), 39 Zuikaku (Japanese carrier), 37

THE NASA HISTORY SERIES

Reference Works, NASA SP-4000:

Grimwood, James M. Project Mercury: A Chronology. (NASA SP-4001, 1963).

- Grimwood, James M., and Hacker, Barton C., with Vorzimmer, Peter J. Project Gemini Technology and Operations: A Chronology. (NASA SP-4002, 1969).
- Link, Mae Mills. Space Medicine in Project Mercury. (NASA SP-4003, 1965).
- Astronautics and Aeronautics, 1963: Chronology of Science, Technology, and Policy. (NASA SP-4004, 1964).
- Astronautics and Aeronautics, 1964: Chronology of Science, Technology, and Policy. (NASA SP-4005, 1965).
- Astronautics and Aeronautics, 1965: Chronology of Science, Technology, and Policy. (NASA SP-4006, 1966).
- Astronautics and Aeronautics, 1966: Chronology of Science, Technology, and Policy. (NASA SP-4007, 1967).
- Astronautics and Aeronautics, 1967: Chronology of Science, Technology, and Policy. (NASA SP-4008, 1968).
- Ertel, Ivan D., and Morse, Mary Louise. The Apollo Spacecraft: A Chronology, Volume I, Through November 7, 1962. (NASA SP-4009, 1969).
- Morse, Mary Louise, and Bays, Jean Kernahan. The Apollo Spacecraft: A Chronology, Volume II, November 8, 1962-September 30, 1964. (NASA SP-4009, 1973).
- Brooks, Courtney G., and Ertel, Ivan D. The Apollo Spacecraft: A Chronology, Volume III, October 1, 1964-January 20, 1966. (NASA SP-4009, 1973).
- Ertel, Ivan D., and Newkirk, Roland W., with Brooks, Courtney G. The Apollo Spacecraft: A Chronology, Volume IV, January 21, 1966-July 13, 1974. (NASA SP-4009, 1978).
- Astronautics and Aeronautics, 1968: Chronology of Science, Technology, and Policy. (NASA SP-4010, 1969).
- Newkirk, Roland W., and Ertel, Ivan D., with Brooks, Courtney G. Skylab: A Chronology. (NASA SP-4011, 1977).
- Van Nimmen, Jane, and Bruno, Leonard C., with Rosholt, Robert L. NASA Historical Data Book, Volume I: NASA Resources, 1958-1968. (NASA SP-4012, 1976, rep.ed. 1988).
- Ezell, Linda Neuman. NASA Historical Data Book, Volume II: Programs and Projects, 1958-1968. (NASA SP-4012, 1988).
- Ezell, Linda Neuman. NASA Historical Data Book, Volume III: Programs and Projects, 1969-1978. (NASA SP-4012, 1988).
- Gawdiak, Ihor Y., with Fedor, Helen. Compilers. NASA Historical Data Book, Volume IV: NASA Resources, 1969-1978. (NASA SP-4012, 1994).

- Astronautics and Aeronautics, 1969: Chronology of Science, Technology, and Policy. (NASA SP-4014, 1970).
- Astronautics and Aeronautics, 1970: Chronology of Science, Technology, and Policy. (NASA SP-4015, 1972).
- Astronautics and Aeronautics, 1971: Chronology of Science, Technology, and Policy. (NASA SP-4016, 1972).
- Astronautics and Aeronautics, 1972: Chronology of Science, Technology, and Policy. (NASA SP-4017, 1974).
- Astronautics and Aeronautics, 1973: Chronology of Science, Technology, and Policy. (NASA SP-4018, 1975).
- Astronautics and Aeronautics, 1974: Chronology of Science, Technology, and Policy. (NASA SP-4019, 1977).
- Astronautics and Aeronautics, 1975: Chronology of Science, Technology, and Policy. (NASA SP-4020, 1979).
- Astronautics and Aeronautics, 1976: Chronology of Science, Technology, and Policy. (NASA SP-4021, 1984).
- Astronautics and Aeronautics, 1977: Chronology of Science, Technology, and Policy. (NASA SP-4022, 1986).
- Astronautics and Aeronautics, 1978: Chronology of Science, Technology, and Policy. (NASA SP-4023, 1986).
- Astronautics and Aeronautics, 1979-1984: Chronology of Science, Technology, and Policy. (NASA SP-4024, 1988).
- Astronautics and Aeronautics, 1985: Chronology of Science, Technology, and Policy. (NASA SP-4025, 1990).
- Noordung, Hermann. *The Problem of Space Travel: The Rocket Motor*. Stuhlinger, Ernst, and Hunley, J.D., with Garland, Jennifer. Editor. (NASA SP-4026, 1995).

Astronautics and Aeronautics, 1986-1990: A Chronology. (NASA SP-4027, 1997).

Management Histories, NASA SP-4100:

Rosholt, Robert L. An Administrative History of NASA, 1958-1963. (NASA SP-4101, 1966).

Levine, Arnold S. Managing NASA in the Apollo Era. (NASA SP-4102, 1982).

Roland, Alex. Model Research: The National Advisory Committee for Aeronautics, 1915-1958. (NASA SP-4103, 1985).

Fries, Sylvia D. NASA Engineers and the Age of Apollo. (NASA SP-4104, 1992).

Glennan, T. Keith. The Birth of NASA: The Diary of T. Keith Glennan. Hunley, J.D. Editor. (NASA SP-4105, 1993). Seamans, Robert C., Jr. Aiming at Targets: The Autobiography of Robert C. Seamans, Jr. (NASA SP-4106, 1996)

Project Histories, NASA SP-4200:

- Swenson, Loyd S., Jr., Grimwood, James M., and Alexander, Charles C. This New Ocean: A History of Project Mercury. (NASA SP-4201, 1966).
- Green, Constance McL., and Lomask, Milton. Vanguard: A History. (NASA SP-4202, 1970; rep. ed. Smithsonian Institution Press, 1971).
- Hacker, Barton C., and Grimwood, James M. On Shoulders of Titans: A History of Project Gemini. (NASA SP-4203, 1977).
- Benson, Charles D. and Faherty, William Barnaby. Moonport: A History of Apollo Launch Facilities and Operations. (NASA SP-4204, 1978).
- Brooks, Courtney G., Grimwood, James M., and Swenson, Loyd S., Jr. *Chariots for Apollo: A History of Manned Lunar Spacecraft.* (NASA SP-4205, 1979).
- Bilstein, Roger E. Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles. (NASA SP-4206, 1980).
- SP-4207 not published.
- Compton, W. David, and Benson, Charles D. Living and Working in Space: A History of Skylab. (NASA SP-4208, 1983).
- Ezell, Edward Clinton, and Ezell, Linda Neuman. The Partnership: A History of the Apollo-Soyuz Test Project. (NASA SP-4209, 1978).
- Hall, R. Cargill. Lunar Impact: A History of Project Ranger. (NASA SP-4210, 1977).
- Newell, Homer E. Beyond the Atmosphere: Early Years of Space Science. (NASA SP-4211, 1980).
- Ezell, Edward Clinton, and Ezell, Linda Neuman. On Mars: Exploration of the Red Planet, 1958-1978. (NASA SP-4212, 1984).
- Pitts, John A. *The Human Factor: Biomedicine in the Manned Space Program to 1980.* (NASA SP-4213, 1985).
- Compton, W. David. Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions. (NASA SP-4214, 1989).
- Naugle, John E. First Among Equals: The Selection of NASA Space Science Experiments. (NASA SP-4215, 1991).
- Wallace, Lane E. Airborne Trailblazer: Two Decades with NASA Langley's Boeing 737 Flying Laboratory. (NASA SP-4216, 1994).
- Butrica, Andrew J. Editor. Beyond the Ionosphere: Fifty Years of Satellite Communication . (NASA SP-4217, 1997).

- Butrica, Andrews J. To See the Unseen: A History of Planetary Radar Astronomy. (NASASP-4218, 1996).
- Mack, Pamela E. Editor. From Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners. (NASA SP-4219, 1998).
- Reed, R. Dale. With Lister, Darlene. Wingless Flight: The Lifting Body Story. (NASA SP-4220, 1997).

Center Histories, NASA SP-4300:

- Rosenthal, Alfred. Venture into Space: Early Years of Goddard Space Flight Center. (NASA SP-4301, 1985).
- Hartman, Edwin, P. Adventures in Research: A History of Ames Research Center, 1940-1965. (NASA SP-4302, 1970).
- Hallion, Richard P. On the Frontier: Flight Research at Dryden, 1946-1981. (NASA SP- 4303, 1984).
- Muenger, Elizabeth A. Searching the Horizon: A History of Ames Research Center, 1940-1976. (NASA SP-4304, 1985).
- Hansen, James R. Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958. (NASA SP-4305, 1987).
- Dawson, Virginia P. Engines and Innovation: Lewis Laboratory and American Propulsion Technology. (NASA SP-4306, 1991).
- Dethloff, Henry C. "Suddenly Tomorrow Came...": A History of the Johnson Space Center. (NASA SP-4307, 1993).
- Hansen, James R. Spaceflight Revolution: NASA Langley Research Center from Sputnik to Apollo. (NASA SP-4308, 1995).
- Wallace, Lane E. Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center. (NASA SP-4309, 1996).
- Herring, Mack R. Way Station to Space: A History of the John C. Stennis Space Center. (NASA SP-4310, 1997).
- Wallace, Harold D., Jr. Wallops Station and the Creation of the American Space Program. (NASA SP-4311, 1997).

General Histories, NASA SP-4400:

- Corliss, William R. NASA Sounding Rockets, 1958-1968: A Historical Summary. (NASA SP-4401, 1971).
- Wells, Helen T., Whiteley, Susan H., and Karegeannes, Carrie. Origins of NASA Names. (NASA SP-4402, 1976).
- Anderson, Frank W., Jr. Orders of Magnitude: A History of NACA and NASA, 1915-1980. (NASA SP-4403, 1981).

Sloop, John L. Liquid Hydrogen as a Propulsion Fuel, 1945-1959. (NASA SP-4404, 1978).

Roland, Alex. A Spacefaring People: Perspectives on Early Spaceflight. (NASA SP-4405, 1985).

- Bilstein, Roger E. Orders of Magnitude: A History of the NACA and NASA, 1915-1990. (NASA SP-4406, 1989).
- Logsdon, John M. Editor. With Lear, Linda J., Warren-Findley, Jannelle, Williamson, Ray A., and Day, Dwayne A. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program, Volume I, Organizing for Exploration. (NASA SP-4407, 1995).
- Logsdon, John M. Editor. With Day, Dwayne A., and Launius, Roger D. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program, Volume II, Relations with Other Organizations. (NASA SP-4407, 1996).
- Logsdon, John M. Editor. With Launius, Roger D., Onkst, David H., and Garber, Stephen. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program, Volume III, Using Space. (NASA SP-4407, 1998).