LOADING...
Text Size
April 3, 2013

Steve Cole
Headquarters, Washington
202-358-0918
stephen.e.cole@nasa.gov

Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
alan.buis@jpl.nasa.gov
 

RELEASE 13-097HQ
NASA Flies Radar South on Wide-Ranging Scientific Expedition
 
 
 
 

This false-color image created from data obtained by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) over the Napo River in Ecuador and Peru on March 17 indicates the likelihood of flooding beneath the forest canopy.This false-color image created from data obtained by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) over the Napo River in Ecuador and Peru on March 17 indicates the likelihood of flooding beneath the forest canopy. Red and yellow shades indicate a high likelihood of standing water with emergent vegetation, blue and green shades are areas less likely to be inundated, and black indicates the open water areas of the Napo River. (NASA/JPL-Caltech) › View Larger Image

This false-color image of Colombia's highly active Galeras Volcano, acquired by UAVSAR on March 13, details a breached caldera and an active cone that produces numerous small to moderate explosive eruptions.This false-color image of Colombia's highly active Galeras Volcano, acquired by UAVSAR on March 13, details a breached caldera and an active cone that produces numerous small to moderate explosive eruptions. By comparing these camera-like images taken at different times, interferograms are generated that reveal changes in Earth's surface caused by volcanic deformation. (NASA/JPL-Caltech)
› View Larger Image

WASHINGTON - A versatile NASA airborne imaging radar system is showcasing its broad scientific prowess for studying our home planet during a month-long expedition over the Americas.

A NASA C-20A piloted aircraft carrying the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is wrapping up studies over the U.S. Gulf Coast, Arizona, and Central and South America. The plane left NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., on March 7. NASA's Jet Propulsion Laboratory in Pasadena built and manages UAVSAR.

The campaign is addressing a broad range of science questions, from the dynamics of Earth's crust and glaciers to the carbon cycle and the lives of ancient Peruvian civilizations.

Flights are being conducted over Argentina, Bolivia, Chile, Colombia, Costa Rica, El Salvador, Ecuador, Guatemala, Honduras, Nicaragua and Peru.

UAVSAR uses a technique called interferometry that sends microwave energy pulses from the sensor on the aircraft to the ground. This technique can detect and measure subtle changes in Earth's surface like those caused by earthquakes, volcanoes, landslides and glacier movements. The radar's L-band microwaves can penetrate clouds and the tops of forests, making it invaluable for studying cloud-covered tropical environments and mapping flooded ecosystems.

"This campaign highlights UAVSAR's versatility for Earth studies," said Naiara Pinto, UAVSAR science coordinator at JPL. "In many cases, study sites are being used by multiple investigators. For example, some volcanic sites also have glaciers. The studies also help U.S. researchers establish and broaden scientific collaborations with Latin America."

NASA's Gulfstream C-20A research aircraft lifts off the Edwards AFB runway while carrying the UAV synthetic aperture radar pod.NASA's Gulfstream C-20A research aircraft lifts off the Edwards AFB runway while carrying the UAV synthetic aperture radar pod. (NASA file / Tom Tschida)
› View Larger Image

Volcano scientists will compare UAVSAR's images taken during this campaign with new imagery collected in 2014 in order to measure very subtle sub-centimeter changes in Earth's surface associated with the movement of magma at depth beneath active volcanoes. These results are expected to improve models used to understand and potentially mitigate volcanic hazards. The volcanoes being studied are in Guatemala, El Salvador, Nicaragua, Costa Rica, Colombia, Ecuador, Peru, Bolivia, Chile and Argentina.

UAVSAR glacier data from South America's Andes Mountains will be combined with ground measurements and airborne lidar data to determine how much these glaciers move during summer and from year to year. The U.S. Geological Survey is leading the collaborative project with the Chilean government to understand glacier processes within the context of climate change impacts from human activities. The glaciers being imaged by UAVSAR provide freshwater for the residents of Santiago and water for regional agriculture.

This year's study sites include coastal mangroves in Central and South America. "Much of Earth's population lives along coasts, and its livelihood and well-being depend on services provided by marine ecosystems," said JPL's Marc Simard, one of the campaign's many principal investigators. "These regions are among the most fragile on Earth. It is critical to understand how the interactions of human activities and climate change may impact the sustainability of these ecosystems."

Another principal investigator, Kyle McDonald, jointly of JPL and the City University of New York, is leading four data collections that will support the mapping of wetlands across the greater Amazon River basin, including Pacaya-Samiria National Park in Peru. "Pacaya-Samiria contains large expanses of flooded palm swamps," McDonald said. "These ecosystems are potential major sources of atmospheric methane, an important greenhouse gas. UAVSAR will help us better understand processes involved with the exchange of methane between Earth's land and atmosphere, and with the contribution of these unique ecosystems to Earth's climate."

An ash cloud from an eruption of the Tungurahua volcano in Ecuador and the peak of the dormant Chimborazo volcano project through cloud cover in this photo taken from NASA's C-20A flying at 41,000 feet altitude about 100 miles northeast of Guayaquil, Ecuador on March 17.An ash cloud from an eruption of the Tungurahua volcano in Ecuador and the peak of the dormant Chimborazo volcano project through cloud cover in this photo taken from NASA's C-20A flying at 41,000 feet altitude about 100 miles northeast of Guayaquil, Ecuador on March 17. (NASA / Bill Brockett)
› View Larger Image

UAVSAR also is supporting agricultural studies of vineyards in Chile's La Serena region. The efforts will help scientists at the Universidad de La Serena's Terra Pacific Group better understand the value of soil moisture data in grape and wine production. Another study site in Argentina will be overflown by both UAVSAR and the Argentine sensor SARAT as part of a collaboration between research scientist Thomas Jackson of the U.S. Department of Agriculture and Argentina's Comision Nacional de Actividades Espaciales. These studies assist scientists preparing for the launch of NASA's Soil Moisture Active Passive (SMAP) satellite in 2014.

The radar also is imaging the northern coastal Peruvian desert, where the Moche culture lived almost 2,000 years ago. Researchers are using UAVSAR's vegetation and cloud penetrating capabilities to search for unrecorded archaeological features in an attempt to preserve sensitive sites from encroaching civilization.

JPL researcher Sassan Saatchi is using UAVSAR to study the structure, biomass and diversity of tropical cloud forests in the Peruvian Andes and Manu National Park, continuing his work there during the past decade. The data will be used to evaluate how much carbon the forests contain and assess their vulnerability to human and natural disturbances.

UAVSAR also is monitoring seasonal land subsidence and uplift in groundwater basins in Arizona's Cochise County for the Arizona Department of Water Resources. Other subsidence studies in New Orleans and the Mississippi Delta are aimed at better understanding what causes Gulf Coast subsidence and predicting future subsidence rates. The data can help agencies better manage the protection of infrastructure, including levees in the New Orleans area.

For more information on UAVSAR, visit:



For more on NASA's Airborne Science program, visit:


 
 

- end -


text-only version of this release

To receive status reports and news releases issued from the Dryden Newsroom electronically, send a blank e-mail message to dfrc-subscribe@newsletters.nasa.gov. To unsubscribe, send a blank e-mail message to dfrc-unsubscribe@newsletters.nasa.gov. The system will confirm your request via e-mail.

 


NASA Dryden Flight Research Center news releases and other information are available automatically by sending an e-mail message with the subject line subscribe to dfrc-request@newsletters.nasa.gov.

To unsubscribe from the list, send an e-mail message with the subject line unsubscribe to dfrc-request@newsletters.nasa.gov.

Page Last Updated: July 28th, 2013
Page Editor: NASA Administrator