Search Ames

Go

Text Size

 
 
 

May 25, 2000

John Bluck

NASA Ames Research Center, Moffett Field, CA

650/604-5026 or 650/604-9000

jbluck@mail.arc.nasa.gov


Mary Beth Murrill

NASA Jet Propulsion Laboratory, Pasadena, CA

818/354-5011


RELEASE: 00-42AR (embargoed until 2 p.m. EDT)

ARCTIC OZONE MAY NOT RECOVER AS EARLY AS PREDICTED

The ozone layer that protects life on Earth may not be recovering from the damage it has suffered over the Arctic region as quickly as scientists previously thought, according to a paper published in the May 26 issue of the journal Science. Specifics of the research also will be presented at the annual meeting of the American Geophysical Union in Washington, DC, on May 31.

More polar stratospheric clouds than anticipated are forming high above the North Pole, causing additional ozone loss in the sky over the Arctic, according to Dr. Azadeh Tabazadeh, lead author of the paper and a scientist at NASA's Ames Research Center in California's Silicon Valley. The stratosphere comprises Earth's atmosphere from about 9 to 25 miles (about 15 to 40 kilometers) altitude and includes the ozone layer.

"Polar stratospheric clouds provide a 'double-whammy' to stratospheric ozone. They provide the surfaces which convert benign forms of chlorine into reactive, ozone-destroying forms, and they remove nitrogen compounds that act to moderate the destructive impact of chlorine," said Dr. Phil DeCola, Atmospheric Chemistry Program Manager at NASA Headquarters, Washington, DC.

"The Arctic has become colder and more humid, conditions that promote formation of more polar stratospheric clouds that take part in polar ozone destruction. The main conclusion of our study is that if this trend continues, Arctic clouds will remain longer in the stratosphere in the future," Tabazadeh said.


and at high enough resolution for some publications.


"An ozone hole forms every spring over the Antarctic in the Southern Hemisphere which is colder than the Arctic," said Tabazadeh. "The Arctic has been getting colder and is becoming more like the Antarctic; this could lead to more dramatic ozone loss in the future over the Northern Hemisphere, where many people live."

Researchers used data from NASA's Upper Atmosphere Research Satellite to analyze cloud data from both the north and south polar regions for the study. "What we found from the satellite was that polar stratospheric clouds currently last twice as long in the Antarctic as compared to the Arctic," Tabazadeh said.

"However, our calculations show that by 2010 the Arctic may become more 'Antarctic-like' if Arctic temperatures drop further by about 5 to 7 degrees Fahrenheit (a drop of about 3 to 4 degrees Celsius)," she said.

When Arctic polar stratospheric clouds last longer, they can precipitate, removing nitrogen from the upper atmosphere, which increases the opportunity for chlorine compounds to destroy ozone more efficiently. The polar stratospheric clouds involved in the reactions contain nitric acid and water, according to researchers who discovered these clouds in 1986.

"Data from the Microwave Limb Sounder on UARS have provided the first opportunity to observe nitric acid throughout the Arctic and the Antarctic over a period of many years," said Michelle Santee, a scientist at NASA's Jet Propulsion Laboratory, Pasadena, CA, who is a co-author of the Science paper. "The continued presence of nitric acid in the Arctic winter -- which is not the case in the Antarctic -- helps to moderate ozone loss by reducing the amount of reactive chlorine, but this could change in the future," she added.

More than a decade ago, scientists determined that human-made chlorine and bromine compounds cause most ozone depletion. Manufacturers made the chlorine compounds, chloroflourocarbons or "CFCs," for use as refrigerants, aerosol sprays, solvents and foam-blowing agents. Fire fighters used bromine-containing halogens to put out fires. Manufacture of CFCs ceased in 1996 in signatory countries under the terms of the Montreal Protocol and its amendments.

The Montreal Protocol bans CFC emissions. As a result, the chlorine concentration in the upper atmosphere is already starting to decline, according to Tabazadeh. "Scientists used to believe that as chlorine levels decline in the upper atmosphere, the ozone layer should slowly start to recover. However, greenhouse gas emissions, which provide warming at the Earth's surface, lead to cooling in the upper atmosphere. This cooling promotes formation of the kind of polar stratospheric clouds that contribute to ozone loss," she added. "Several recent studies, including this one, show that ozone recovery is more complex and will take longer than originally thought," she explained.

The Office of Earth Sciences, NASA Headquarters, Washington, DC funded this research.

-end-

NOTE TO BROADCASTERS: A satellite feed related to this story will air on NASA TV today several times. Please check the NASA TV web site for the schedule. Due to the Shuttle Schedule, the "Video File" will play at noon EDT as usual and then replay along with the STS-101 Flight Day Highlights. The feeds may also be distributed tomorrow. For more information, watch NASA TV and check the Shuttle Mission Schedule (http://spaceflight.nasa.gov/realdata/nasatv/schedule.html). The NASA Video File normally airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight EDT. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.

- end -
 

- end -


text-only version of this release

To receive Ames news releases via e-mail, send an e-mail with the word "subscribe" in the subject line to ames-releases-request@lists.arc.nasa.gov. To unsubscribe, send an e-mail to the same address with "unsubscribe" in the subject line.

NASA Image Policies